UNIX-Type APIs (V5R2)

Interprocess Communication (IPC) APIs

Table of Contents

Interprocess Communication (IPC) APIs
« ldentifier Based Services
 Pointer Based Services
« Managing IPC Objects
o APIs
o ftok() (Generate IPC Key from File Name)

o msgctl() (Perform Message Control Operations)

o msgget() (Get Message Queue)

o msgrev() (Receive Message Operation)

o msgsnd() (Send Message Operation)

o QlgFtok() (Generate IPC Key from File Name (using NLS-enabled path name))
o QlgSem open() (Open Named Semaphore (using NL S-enabled path name))

o QlgSem open_np() (Open Named Semaphore with Maximum Value (using NL S-enabled
path name))

o QlgSem_unlink() (Unlink Named Semaphore (using NL S-enabled path name))
o QPOZDIPC (Delete Interprocess Communication Objects)

o QPOZOLIP (Open List of Interprocess Communication Objects)

o QPOZOLSM (Open List of Semaphores)

o QPOZRIPC (Retrieve an Interprocess Communication Object)

o semctl() (Perform Semaphore Control Operations)

o semget() (Get Semaphore Set with Key)

o semop() (Perform Semaphore Operations on Semaphore Set)

o sem close() (Close Named Semaphore)

o sem _destroy() (Destroy Unnamed Semaphore)

o sem getvalue() (Get Semaphore Value)

o sem_init() (Initialize Unnamed Semaphore)

o sem_init_np() (Initialize Unnamed Semaphore with Maximum Value)
o sem_open() (Open Named Semaphore)

o sem_open np() (Open Named Semaphore with Maximum Value)

o sem _post() (Post to Semaphore)

o sem post np() (Post Valueto Semaphore)

o sem_trywait() (Try to Decrement Semaphore)

o sem_unlink() (Unlink Named Semaphore)

o sem wait() (Wait for Semaphore)

o sem wait np() (Wait for Semaphore with Timeout)

o shmat() (Attach Shared Memory Segment to Current Process)

o shmctl() (Perform Shared Memory Control Operations)

o shmdt() (Detach Shared Memory Segment from Calling Process)
o shmget() (Get ID of Shared Memory Segment with Key)

Header Filesfor UNIX-Type Functions
Errno Values for UNIX-Type Functions

Interprocess Communication (IPC) APIs

Interprocess communication (1PC) on OS/400 is made up of five services divided into the two categories of
identifier-based services and pointer-based services. The identifier-based IPC services consist of message
gueues, semaphore sets, and shared memory. The pointer-based services consist of unnamed and named
semaphores. The basic purpose of these servicesis to provide OS/400 processes and threads with away to
communicate with each other through a set of standard APIs. These functions are based on the definitions
in the Single UNIX Specification.

For additional information on the Interprocess Communication APIs, see:

Identifier Based Services
o Message Queues
o Semaphore Sets
o Shared Memory

Pointer Based Services (Named and Unnamed Semaphores)

Managing | PC Objects

The interprocess communication functions and what they do are:

ftok() (Generate IPC Key from File Name) generates an | PC key based on the combination of path
and id.

msgctl() (Perform Message Control Operations) provides message control operations as specified
by cmd on the message queue specified by msgid.

msgget() (Get M essage Queue) returns the message queue identifier associated with the parameter
key.

msgrev() (Receive Message Operation) reads a message from the queue associated with the
message queue identifier specified by msgid and places it in the user-defined buffer pointed to by
msgp.

msgsnd() (Send Message Operation) is used to send a message to the queue associated with the
message queue identifier specified by msqgid.

QlgFtok() (Generate IPC Key from File Name (using NL S-enabled path name)) generates an IPC
key based on the combination of path and id.

QlgSem_open() (Open Named Semaphore (using NL S-enabled path name)) opens a named
semaphore and returns a semaphore pointer that may be used on subsequent callsto sem_post(),
sem_post_np(), sem_wait(), sem wait_np(), sem_trywait(), sem_getvalue(), and sem_close().
QlgSem open np() (Open Named Semaphore with Maximum Value (using NL S-enabled path

name)) opens a named semaphore and returns a semaphore pointer that may be used on subsequent
callsto sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(),
and sem_closg().

QlgSem unlink() (Unlink Named Semaphore (using NL S-enabled path name)) unlinks a named
semaphore.

QPOZDIPC (Delete Interprocess Communication Objects) deletes one or more interprocess
communication (IPC) objects as specified by the delete control parameter.

QPOZOLIP (Open List of Interprocess Communication Objects) lets you generate alist of

interprocess communication (1PC) objects and descriptive information based on the selection
parameters.

QPOZOL SM (Open List of Semaphores) lets you generate a list of description information about
the semaphores within a semaphore set.

QPOZRIPC (Retrieve an Interprocess Communication Object) lets you generate detailed
information about a single interprocess communication (1PC) object.

semctl() (Perform Semaphore Control Operations) provides semaphore control operations as
specified by cmd on the semaphore specified by semnum in the semaphore set specified by semid.
semget() (Get Semaphore Set with Key) returns the semaphore ID associated with the specified
semaphore key.

semop() (Perform Semaphore Operations on Semaphore Set) performs operations on semaphoresin
a semaphore set. These operations are supplied in a user-defined array of operations.

sem_close() (Close Named Semaphore) closes a named semaphore that was previously opened by a
thread of the current process using sem_open() or sem_open_np().

sem_destroy() (Destroy Unnamed Semaphore) destroys an unnamed semaphore that was previously
initialized using sem_init() or sem_init_np().

sem_getvalue() (Get Semaphore Value) retrieves the value of a named or unnamed semaphore.

sem _init() (Initialize Unnamed Semaphore) initializes an unnamed semaphore and setsitsinitial
value.

sem_init_np() (Initialize Unnamed Semaphore with Maximum Value) initializes an unnamed
semaphore and setsitsinitial value.

sem_open() (Open Named Semaphore) opens a named semaphore, returning a semaphore pointer
that may be used on subsequent callsto sem_post(), sem_post_np(), sem_wait(), sem_wait_np(),
sem_trywait(), sem_getvalue(), and sem_close().

sem_open_np() (Open Named Semaphore with Maximum Value) opens a named semaphore,

returning a semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(),
sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

sem_post() (Post to Semaphore) posts to a semaphore, incrementing its value by one.

sem post _np() (Post Vaue to Semaphore) posts to a semaphore, incrementing its value by the
increment specified in the options parameter.

sem_trywait() (Try to Decrement Semaphore) attempts to decrement the value of the semaphore.
sem_unlink() (Unlink Named Semaphore) unlinks a named semaphore.

sem_wait() (Wait for Semaphore) decrements by one the value of the semaphore.

sem_wait_np() (Wait for Semaphore with Timeout) attempts to decrement by one the value of the
semaphore.

shmat() (Attach Shared Memory Segment to Current Process) returns the address of the shared
memory segment associated with the specified shared memory identifier.

shmctl() (Perform Shared Memory Control Operations) provides shared memory control operations
as specified by cmd on the shared memory segment specified by shmid.

shmdt() (Detach Shared Memory Segment from Calling Process) detaches the shared memory
segment specified by shmaddr from the calling process.

shmget() (Get ID of Shared Memory Segment with Key) returns the shared memory |D associated
with the specified shared memory key.

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions. See Header Files for

UNIX-Type Functions for the file and member name of each header file.

Top | UNIX-Type APIs| APIs by category

Identifier Based Services

Although each IPC service provides a specific type of interprocess communication, the three identifier
based services share many similarities. Each service defines a mechanism through which its
communications take place. For message queues, that mechanism is a message queue; for semaphore sets, it
is a semaphore set; and for shared memory, it is a shared memory segment. These mechanisms are
identified by a unique positive integer called, respectively, a message queue identifier (msgid), a semaphore
set identifier (semid), and a shared memory identifier (shmid).

Note: Throughout the Interprocess Communication APIs, the term thread is used extensively. This does not
mean that 1PC objects can be used only between threads within one process, but rather that authorization
checks and waits occur for the calling thread within a process.

Associated with each identifier is adata structure that contains state information for the |PC mechanism, as

well as ownership and permissions information. The ownership and permissions information is defined in a
structure in the <sys/ipc.h> header file as follows:

typedef struct ipc_perm{

uid t ui d; /* Omer's user ID */
gidt gi d; /* Owner's group ID */
uid t cui d; /* Creator's user ID */
gidt cgi d; /* Creator's group ID */
node_t node; /* Access npdes */

} ipc_permt;

This structure is similar to afile permissions structure, and isinitialized by the thread that creates the IPC
mechanism. It is then checked by all subsequent IPC operations to determine if the requesting thread has
the required permissions to perform the operation.

To get an identifier, athread must either create a new 1PC mechanism or access an existing mechanism.
This is done through the msgget (), semget(), and shmget() functions. Each get operation takes asinput a
key parameter and returns an identifier. Each get operation also takes a flag parameter. This flag parameter
contains the IPC permissions for the mechanism as well as bits that determine whether or not a new
mechanism is created. The rules for whether a new mechanism is created or an existing oneis referred to
areasfollows:

« Specifying akey of IPC_PRIVATE guarantees a new mechanism is created.

o Setting the IPC_CREAT bit in the flag parameter creates a new mechanism for the specified key if
one does not already exist. If an existing mechanism is found, itsidentifier is returned.

o Setting both IPC_CREAT and IPC_EXCL creates a new mechanism for the specified key only if a
mechanism does not aready exist. If an existing mechanism isfound, an error is returned.

When a message queue, semaphore set, or shared memory segment is created, the thread that creates it
determines how it can be accessed. The thread does this by passing mode information in the low-order 9
bits of the flag parameter on the msgget(), semget(), or shmget() function call. Thisinformation is used to
initialize the mode field in the ipc_perm structure. The values of the bits are given below in hexadecimal
notation:

Bit M eaning
X'0100" Read by user
X'0080" Write by user

X'0020" Read by group

X'0010" Write by group
X'0004' Read by others
X'0002" Write by others

Subsequent | PC operations do a permission test on the calling thread before allowing the thread to perform
the requested operation. This permission test is done in one of three forms:

« For the msgget(), semget(), or shmget() callsthat are accessing an existing |PC mechanism, the
caller'sflag parameter is checked to make sure it does not specify access bits that are not in the
mode field of the existing IPC mechanism'sipc_perm structure. If the flag parameter does not
contain any bits that are not in the mode field, permission is granted.

« For most of the other IPC APIs, the effective user ID and effective group ID of the thread are
retrieved, and these values are compared with the datain the ipc_perm structure as follows:

o If the effective user 1D equals either the uid or the cuid field for the IPC mechanism, and if
the appropriate access bit is on in the mode field (either Read by user or Write by user,
depending on the operation being requested), permission is granted.

o If the effective group ID equals either the gid or the cgid field for the IPC mechanism, and
if the appropriate access hit is on in the mode field (either Read by group or Write by
group), permission is granted.

o If none of the above tests are true, and if the appropriate access bit is on for others (either
Read by others or Write by others), permission is granted.

« For the msgctl(), semctl(), or shmctl() APIs, some values of the cmd parameter require the caller to
be the owner or creator of the IPC object, or have appropriate privileges. The values of cmd that
this rule applies to depends on the API. Thisis shown in the API descriptions for msgctl(),
semctl(), and shmctl().

Message Queues

M essage queues provide aform of message passing in which any process (given that it has the necessary
permissions) can read a message from or write a message to any |PC message queue on the system. There
are no requirements that a process be waiting to receive a message from a queue before another process
sends one, or that a message exist on the queue before a process requests to receive one.

Every message on a queue has the following attributes:

» Messagetype

« Message length (length of data part of message)

« Message data (if length is greater than 0)
A thread gets a message queue identifier by calling the msgget() function. Depending on the key and msgfig
parameters passed in, either a new message queue is created or an existing message queue is accessed.

When a new message queue is created, a data structure is also created to contain information about the
message queue. This structure is defined in the <sys/fmsg.h> header file asfollows:

typedef struct msqid_ds {
struct ipc_perm nsg_perm /* QOperation perm ssion struct */
nmsggnum t nsg_qgnum /* # nmegs currently on queue */
/

nmegl en_t nmeg_qgbytes; * Max # bytes all owed on queue*/

pidt nmeg_| spi d; * Process |ID of last nmsgsnd() */

pid t nmsg_| rpid; /* Process ID of last nsgrcv() */

time_t neg_sti ne; /[* Time of |ast nsgsnd() */

time_t neg_rtimne; [* Time of last nsgrcv() */

time_t neg_cti ne; /* Time of |ast change */
} meqgid_ds t;

A thread puts a message on a message queue by calling the msgsnd() function. The following parameters
are passed in:

» Message queue ID

« Pointer to abuffer containing the message type and message data

« Length of the message

« Flag that specifies whether or not the thread is willing to wait to send the message.
A thread gets a message from a message queue by calling the msgr cv() function. The following parameters
are passed in:

« Message queue |D

« Pointer to a buffer in which to receive the message

« Length of the buffer

« Type of message

« Flag that specifies whether or not the thread is willing to wait and whether or not the thread is
willing to truncate a message to receive it

A thread removes a message queue 1D by calling the msgctl() function. The thread also can use the
msgctl() function to change the data structure val ues associated with the message queue ID or to retrieve
the data structure val ues associated with the message queue ID. The following parameters are passed in:

« Message queue |D

« Command the thread wants to perform (remove 1D, set data structure values, receive data structure
values)

« Pointer to a buffer from which to set data structure values or in which to receive data structure
values

Message Queue Differences and Restrictions

0S/400 message queues differ from the message queue definition in the Single UNIX Specification in the
following ways:

« The maximum message size is 65535 bytes.
« The maximum number of bytes on a message queueis 16 777 216.
« The maximum number of message queues that can be created (system-wide) is 2 147 483 646.

The message queue functions are:
« ftok() (Generate IPC Key from File Name) generates an | PC key based on the combination of path

and id.

« msgctl() (Perform Message Control Operations) provides message control operations as specified
by cmd on the message queue specified by msgid.

« msgget() (Get Message Queue) returns the message queue identifier associated with the parameter
key.

« msgrev() (Receive Message Operation) reads a message from the queue associated with the
message queue identifier specified by msgid and placesit in the user-defined buffer pointed to by
msgp.

« msgsnd() (Send Message Operation) is used to send a message to the queue associated with the
message queue identifier specified by msqgid.

o QlgFtok() (Generate IPC Key from File Name (using NL S-enabled path name)) generates an |PC
key based on the combination of path and id.

Semaphore Sets

A semaphor e is a synchronization mechanism similar to amutex or a machine interface (MI) lock. It can
be used to control access to shared resources, or used to notify other threads of the availability of resources.
It differs from a mutex in the following ways.

« A semaphore set is not asingle value, but has a set of values. It isreferred to through a semaphore
set containing multiple semaphores. Each semaphore set isidentified by a semid, which identifies
the semaphore set, and a semnum, which identifies the semaphore within the set. Multiple
semaphore operations may be specified on one semop() call. These operations are atomic on
multiple semaphores within a semaphore set.

« Semaphore vaues can range from 0 to 65535.

« Semaphores have per missions associated with them. A thread must have appropriate authorities to
perform an operation on a semaphore.

» A semaphore can have a semaphor e adj ustment value associated with it. This value represents
resource allocations which can be automatically undone by the system when the thread ends,
representing the releasing of resources. The adjustment value can range from -32767 to 32767.

Thus, a semaphore can be used as a resource counter or as alock.

A process gets a semaphore set identifier by calling the semget() function. Depending on the key and semflg
parameters passed in, either a new semaphore set is created or an existing semaphore set is accessed. When
anew semaphore set is created, a data structure is also created to contain information about the semaphore
set. This structure is defined in the <sys/sem.h> header file as follows:

typedef struct sem d _ds {
struct ipc_perm semperm /* Perm ssions structure */
unsi gned short sem nsens; [/* Nunber of sens in set */
tinme_t semotine; [* Last semop tine */
tinme_t semctine; [* Last change tine */
} sentablentry t;

A thread performs operations on one or more of the semaphoresin a set by calling the semop() function.
The following parameters are passed in:

« Semaphore ID
« Pointer to an array of sembuf structures
» Number of sembuf structuresin the array.

The sembuf structure is defined in the <sys/sem.h> header file as follows:

struct senbuf ({

unsi gned short semnum /* Semaphore nunber */
short semop; /* Semaphore operation */
short semflg; /* Operation flags */

b

The operation performed on a semaphore is specified by the sem_op field, which can be positive, negative,
or Zero:

« If sem_opispositive, the value of sem_op is added to the semaphore's current value.
« If sem_opiszero, the caler will wait until the semaphore's value becomes zero.

« If sem_opisnegative, the caller will wait until the semaphore's value is greater than or equal to the
absolute value of sem_op. Then the absolute value of sem_op is subtracted from the semaphore's
current value.

The sem_flg value specifies whether or not the thread is willing to wait, and also whether or not the thread
wants the system to keep a semaphore adjustment value for the semaphore.

Semaphore waits are visible from the Work with Active Jobs display. A thread waiting on a semaphorein a
semaphore set appears to be in a semaphore wait state (SEMW) on the Work with Threads display
(requested using the WRKJOB command and taking option 20). Displaying the call stack of the thread
shows the semop() function near the bottom of the stack.

A thread removes a semaphore set | D by calling the semctl() function. The thread also can use the semctl()
function to change the data structure values associated with the semaphore set ID or to retrieve the data
structure values associated with the semaphore set ID. The following parameters are passed in:

o Semaphore set ID

« Command the thread wants to perform (remove ID, set data structure values, receive data structure
values),

« Pointer to abuffer from which to set data structure values, or in which to receive data structure
values.

In addition, the semctl() function can perform various other control operations on a specific semaphore
within a set, or on an entire semaphore set:

« Set or retrieve a semaphore value.

« Retrieve the process ID of the last thread to operate on a semaphore.

« Retrieve the number of threads waiting for a semaphore value to increase.

« Retrieve the number of threads waiting for a semaphore value to become zero.

« Retrieve the value of every semaphore in a semaphore set.

« Set the value of every semaphore in a semaphore set.

Semaphore Set Differences and Restrictions

0S/400 semaphore sets differ from the definition in the Single UNIX Specification in the following ways:

« The Single UNIX Specification does not define threads. Consequently, Single UNIX Specification
semaphores are defined in terms of processes and the semaphore:

o Causesthe entire process to wait
0 Releases resources when the process ends
0S/400 handles semaphores at the thread level. An OS/400 semaphore:
o Causes only asingle thread to wait
0 Releases resources when the thread ends

« The maximum number of semaphore sets that can be created (system-wide) is 2 147 483 646.
« The maximum number of semaphores per semaphore set is 65535.

« Semaphores values are limited to the range from 0 to 65535. Adjustment values associated with a
semaphore are limited to the range -32767 to 32767.

The semaphore set functions are:

« ftok() (Generate IPC Key from File Name) generates an | PC key based on the combination of path
andid.

o QlgFtok() (Generate IPC Key from File Name (using NL S-enabled path name)) generates an |PC
key based on the combination of path and id.

« semctl() (Perform Semaphore Control Operations) provides semaphore control operations as
specified by cmd on the semaphore specified by semnum in the semaphore set specified by semid.

« semget() (Get Semaphore Set with Key) returns the semaphore ID associated with the specified
semaphore key.

« semop() (Perform Semaphore Operations on Semaphore Set) performs operations on semaphoresin
a semaphore set. These operations are supplied in a user-defined array of operations.

Shared Memory

Processes and threads can communicate directly with one another by sharing parts of their memory space
and then reading and writing the data stored in the shared memory. Synchronization of shared memory is
the responsibility of the application program. Semaphores and mutexes provide ways to synchronize shared
memory use across processes and threads.

A thread gets a shared memory identifier by calling the shmget() function. Depending on the key and
shmflg parameters passed in, either a new shared memory segment is created or an existing shared memory
segment is accessed. The size of the shared memory segment is specified by the size parameter. When a
new shared memory segment is created, a data structure is al'so created to contain information about the
shared memory segment. This structure is defined in the <sys/shm.h> header file as follows:

typedef struct shmd ds {
struct ipc_permshm perm [* Operation permssion struct*/

i nt shm segsz; /* Segnent size */
pid_t shm | pi d; /[* Process id of |ast shnop */
pid_t shm cpi d; /* Process id of creator */

i nt shmnattch; /* Current # attached */

time_t shmatine; /* Last shnmat tine */
time_t shmdtinme; /* Last shndt tine */
time_t shmctinme; [/* Last change tine */

} shmablentry t;

A process gets addressability to the shared memory segment by attaching to it using the shmat() function.
The following parameters are passed in:

» Shared memory ID
« Pointer to an address
« Flag specifying how the shared memory segment is to be attached

A process detaches a shared memory segment by calling the shmdt() function. The only parameter passed
in isthe shared memory segment address. The process implicitly detaches from the shared memory when
the process ends.

A thread removes a shared memory 1D by calling the shmctl() function. The thread also can use the
shmctl() function to change the data structure val ues associated with the shared memory 1D or to retrieve
the data structure val ues associated with the shared memory ID. The following parameters are passed in:

» Shared memory ID

« Command the thread wants to perform (remove 1D, set data structure values, receive data structure
values)

« Pointer to a buffer from which to set data structure values, or in which to receive data structure
values.

Shared Memory Differences and Restrictions

Shared memory segments are created as teraspace-shared memory segments or as nonteraspace-shared
memory segments. A teraspace shared memory segment is accessed by adding the shared memory segment
to aprocess's teraspace. A teraspace is a space that has a much larger capacity than other OS/400 spaces
and is addressable from only one process. A nonteraspace shared memory segment creates shared memory
using OS/400 space objects.

A teraspace shared memory segment is created if SHM_TS NP is specified on the shmflag parameter of
shmget() or if a shared memory segment is created from a program that was compiled using the
TERASPACE(*YES*TSIFC) option of CRTBNDC or CRTCMOD. The following capabilities and
restrictions apply for teraspace shared memory segments.

« Teraspace shared memory objects may be attached in read-only mode.

« The address specified by shmaddr is only used when shmat() is called from a program that uses
datamodel LLP64 and attaches to a teraspace shared memory segment. Otherwiseit is not possible
to specify the address in teraspace at which the shared memory isto be mapped. The shmaddr
parameter on the shmat() function isignored.

« After ateraspace shared memory segment is detached, it cannot be addressed through a pointer
saved by the process.

« The maximum size of ateraspace shared memory segment is 4 294 967 295 bytes (4 GB minus 1).

« The maximum number of shared memory segments that can be created (system-wide) is
2 147 483 646.

A teraspace shared memory segment may be created such that its size can be changed after it is
created. The maximum size of this type of shared memory segment is 268 435 456 bytes (256 MB).

The OS/400 nonteraspace shared memory differs from the shared memory definition in the Single UNIX
Specification in the following ways:

The nonteraspace shared memory segments are OS/400 space objects and can be attached only in
read/write mode, not in the read-only mode that the Single UNIX Specification allows. If the
SHM_RDONLY flag is specified in the shmflg parameter on a shmget() call, the call fails and the
errno variable is set to [EOPNOTSUPP.

A nonteraspace shared memory segment can be attached only at the actual address of the OS/400
space object, not at an address specified by the thread. The shmaddr parameter on the shmat()
function isignored.

After anonteraspace shared memory segment is detached from a process, it still can be addressed
through a pointer saved by the process. For nonteraspace shared memory segments, OS/400 does
not "map" and "unmap" regions of storage to the address space of a process.

The maximum size of a nonteraspace shared memory segment is 16 776 960 bytes. Although the
maximum size of a shared memory segment is 16 776 960 bytes, shared memory segments larger
than 16 773 120 bytes should be created as teraspace shared memory segments. When the operating
system accesses a honteraspace shared memory segment that has a size larger than 16 773 120
bytes, a performance degradation may be observed.

The maximum number of shared memory segments that can be created (system-wide) is
2 147 483 646.

The size of a nonteraspace shared memory segment may be changed using the SHM_RESIZE
command of shmctl(), up to a maximum size of 16 773 120 bytes.

The shared memory functions are:

ftok() (Generate IPC Key from File Name) generates an | PC key based on the combination of path
and id.

QlgFtok() (Generate IPC Key from File Name (using NL S-enabled path name)) generates an IPC
key based on the combination of path and id.

shmat() (Attach Shared Memory Segment to Current Process) returns the address of the shared
memory segment associated with the specified shared memory identifier.

shmctl() (Perform Shared Memory Control Operations) provides shared memory control operations
as specified by cmd on the shared memory segment specified by shmid.

shmdt() (Detach Shared Memory Segment from Calling Process) detaches the shared memory
segment specified by shmaddr from the calling process.

shmget() (Get ID of Shared Memory Segment with Key) returns the shared memory 1D associated
with the specified shared memory key.

Top | UNIX-Type APIs | APIs by category

Pointer Based Services

The pointer based services consist of named and unnamed semaphores. The named and unnamed
semaphores on OS/400 differ from the other IPC mechanismsin that they do not have an IPC identifier
associated with them. Instead, pointers to the semaphore are used to operate on the semaphore. Before
using a semaphore, a process must obtain a pointer to the semaphore. Unlike a semaphore set, a named or
unnamed semaphore refersto a single semaphore only. A semaphore contains a value, a maximum value,
and atitle.

There are two types of semaphores. named semaphores and unnamed semaphores. Once a semaphore is
created and a pointer to the semaphore is obtained, the same operations are used to manipulate the values of
both types of semaphores. Like the semaphores in a semaphore set, a named or unnamed semaphore has a
nonzero value. A semaphore can be used as a resource counter or as alock. A thread decrements a
semaphore to obtain one or more associated resources, and increments the semaphore to release the
resource. A semaphore also has a maximum value associated with it. An attempt to increment the value of a
semaphore above its maximum value resultsin an error.

Besides a value, named and unnamed semaphores contain a maximum value and atitle. The maximum
value sets the highest value that the semaphore value may obtain. The title is a null-terminated string with a
maximum size of 16 characters that are associated with the semaphore and may be used to contain
debugging information. The titles associated with named and unnamed semaphores may be obtained by
using the QPOZOLIP() API.

A process obtains a pointer to a named semaphore by calling the sem_open() or sem_open_np() functions.
These functions find the semaphore associated with a name. The name is a character string, interpreted in
the CCSID of the job. The name may be structured so that it looks like a pathname. This name, however,
has no relationship to any file system. If the semaphore exists and the process has permission to use the
semaphore, then the system allocates memory for the semaphore and returns a pointer to the caller. If the
semaphore does not exist, it will be created if the appropriate flags are set. When a new named semaphore
is created, the permissions of the semaphore are set using the information provided by the mode parameter.
These permissions are the same as those used by the identifier- based 1PC services. The sem_open_np()
function permits the caller to set the maximum value and title of a semaphore when creating a named
semaphore. When a process is finished using a named semaphore, it should call sem_clos() to close the
semaphore. The semaphore is also explicitly closed when a process terminates. When a named semaphore
will no longer be needed, it can be removed from the system using sem_unlink().

A process obtains a pointer to an unnamed semaphore calling the sem_init() or sem_init_np() functions.
These functions initialize a semaphore at the specified memory location. The sem_init_np() function
permits the caller to set the maximum value and title of a unnamed semaphore when it is created. When a
processis finished using an unnamed semaphore, it should call sem_destroy() to destroy the semaphore
and release system resources associated with that semaphore.

A process decrements by one the value of a semaphore using the sem_wait() and sem_wait_np() functions.
If the value of the semaphore is currently zero, then the thread is blocked until the value of the semaphoreis
incremented or until the time specified on the sem_wait_np() has expired. The sem_trywait() call may be
used to decrement the value of the semaphore if it is greater than zero. If the current value of the semaphore
is zero, then sem_trywait() will return an error. The sem_post()and sem_post_np()functions are used to
increment the value of a semaphore. After the value of the semaphore isincremented, it may be
decremented immediately by threads that have blocked trying to decrement the semaphore.

Named and unnamed semaphore waits are visible from the Work with Active Jobs display. A thread
waiting on a named or unnamed semaphore will be in a semaphore wait state (SEMW).

The sem_getvalue()function returns the value of the semaphore if the value is greater than or equal to zero.
If there are threads waiting on the semaphore, sem_getvalue() returns a negative number whose absolute
value is the number of threads waiting on the semaphore.

For details on the semaphore functions, see the following:

o QlgSem open() (Open Named Semaphore (using NL S-enabled path name)) opens a named

semaphore and returns a semaphore pointer that may be used on subsequent calls to sem_post(),
sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

o QlgSem open np() (Open Named Semaphore with Maximum Value (using NL S-enabled path

name)) opens a named semaphore and returns a semaphore pointer that may be used on subsequent
callsto sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(),
and sem_closg().

o QlgSem unlink() (Unlink Named Semaphore (using NL S-enabled path name)) unlinks a named
semaphore.

« sem close() (Close Named Semaphore) closes a named semaphore that was previously opened by a
thread of the current process using sem_open() or sem_open_np().

» sem destroy() (Destroy Unnamed Semaphore) destroys an unnamed semaphore that was previously
initialized using sem_init() or sem_init_np().

« sem getvalue() (Get Semaphore Value) retrieves the value of a named or unnamed semaphore.

« sem init() (Initialize Unnamed Semaphore) initializes an unnamed semaphore and setsitsinitial
value.

o sem init_np() (Initialize Unnamed Semaphore with Maximum Value) initializes an unnamed
semaphore and setsitsinitial value.

« sem_open() (Open Named Semaphore) opens a named semaphore, returning a semaphore pointer

that may be used on subsequent callsto sem_post(), sem_post_np(), sem_wait(), sem_wait_np(),
sem_trywait(), sem_getvalue(), and sem_close().

« sem_open np() (Open Named Semaphore with Maximum Value) opens a named semaphore,

returning a semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(),
sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

« sem post() (Post to Semaphore) posts to a semaphore, incrementing its value by one.

« sem post np() (Post Vaueto Semaphore) posts to a semaphore, incrementing its value by the
increment specified in the options parameter.

« sem trywait() (Try to Decrement Semaphore) attempts to decrement the value of the semaphore.
« sem _unlink() (Unlink Named Semaphore) unlinks a named semaphore.
« sem wait() (Wait for Semaphore) decrements by one the value of the semaphore.

« sem wait _np() (Wait for Semaphore with Timeout) attempts to decrement by one the value of the
semaphore.

Top | UNIX-Type APIs| APIs by category

Managing IPC Objects

Interprocess communication objects can be managed with the following APIs. The QPOZOLIP API opens a
list of message queue, shared memory, semaphore set, named semaphore or unnamed semaphore objects by
type, by owner, by creator, or by key. The QPOZOLSM API opensalist of semaphoresin a semaphore set.
Both APIsreturn a handle that can be used to get list entries with the QGY GTLE AP, find entries by
number with the QGY FNDE AP, or close the list with the QGY CLST API.

The QPOZRIPC API retrieves detailed information about message queue, shared memory, or semaphore set
objects. The QPOZDIPC API deletes message queue, shared memory, or semaphore set objects.

The IPC object management APIs are:
« QPOZDIPC (Delete Interprocess Communication Objects) deletes one or more interprocess
communication (1PC) objects as specified by the delete control parameter.

o QPOZOLIP (Open List of Interprocess Communication Objects) lets you generate alist of
interprocess communication (1PC) objects and descriptive information based on the selection
parameters.

o« QPOZOLSM (Open List of Semaphores) lets you generate alist of description information about
the semaphores within a semaphore set.

« QPOZRIPC (Retrieve an Interprocess Communication Object) lets you generate detailed
information about a single interprocess communication (IPC) object.

Top | UNIX-Type APIs| APIs by category

ftok()--Generate IPC Key from File Name

Syntax

#i ncl ude <sys/ipc. h>

key t ftok(const char *path, int id);

Service Program Name: QPOZCPA
Default Public Authority: * USE

Threadsafe: Conditional; see Usage Notes.

The ftok() function generates an |PC key based on the combination of path and id.

I dentifier-based interprocess communication facilities require you to supply akey to the msgget(),
semget(), shmget() subroutines to obtain interprocess communication identifiers. The ftok() function is one
mechanism to generate these keys.

If the values for path and id are the same as a previous call to ftok() and the file named by path was not
deleted and re-created in between calls to ftok(), ftok () will return the same key.

The ftok () function returns different keysif different values of path and id are used.

Only the low-order 8-bits of id are significant. The remaining bits are ignored by ftok().

Parameters
path
(Input) The path name of the file used in combination with id to generate the key.

See QlgFtok--Generate |PC Key from File Name (using NL S-enabled path name) for a description
and an example of supplying the path in any CCSID.

id
(Input) The integer identifier used in combination with path to generate the key. Only the low order
8-hits of id are significant. The remaining bits will beignored.

Authorities

Authorization Required for ftok() (excluding QOPT)

Object Referred to Authority Required | errno

Each directory in the path name preceding the object | *X EACCES

Object None ’ None ‘

Authorization Required for ftok() in the QOPT File System

Object Referred to Authority Required | errno
Volume containing directory or object | *USE EACCES
Directory or object within volume None None

Return Value

value ftok () was successful.

(key_t)-1 ftok() was not successful. The errno variableis set to indicate the error.

Error Conditions

If ftok () is not successful, errno indicates one of the following errors.
[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFES)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as possible.
[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.
[EFILECVT]

File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.
[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.
A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.
An argument valueis not valid, out of range, or NULL.
[EIQ]
Input/output error.

A physical /O error occurred.

A referenced object may be damaged.
[ELOOP]
A loop exists in the symbolic links.
This error isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.

A path name islonger than PATH_MAX characters or some component of the name islonger than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.
[ENOSPC]
No space available.
The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.
Insufficient space remains to hold the intended file, directory, or link.
[ENOTDIR]
Not adirectory.
A component of the specified path name existed, but it was not a directory when a directory was
expected.
Some component of the path name is not a directory, or is an empty string.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.
[EPERM]
Operation not permitted.
Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.
[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.
[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:
o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in afile system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

« QNTC

= QSYS.LIB

= ZIndependent ASP QSY S.LIBX
= QOPT

2. If thevaluesfor path and idare the same as a previous call to ftok() and if the file named by path
was deleted and re-created in between calls to ftok(), ftok() will return adifferent key.

3. Theftok() function will return the same key for different values of path if the path names refer to
symboalic links or hard links whose target files are the same.

4. The ftok() function may return the same key for different values of path if the target filesarein
different file systems.

5. Theftok() function may return the same key for different values of path if thetarget fileisin afile
system that contains more than 224 files.

Related Information

« OQlgFtok--Generate IPC Key from File Name (using NL S-enabled path name)

« msgget()-Get M essage Queue

o semget()-Get Semaphore Set with Key

« shmget()-Get ID of Shared Memory Segment with Key

Example
The following example uses ftok () and semget() functions.

#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>
#i ncl ude <errno. h>
#i ncl ude <stdio. h>

int main(int argc, char *argv[])

{
key t nyKey;
i nt sem d;
/* Use ftok to generate a key associated with a file. */
/* Every process wll get the same key back if the */
/* caller calls with the sane paraneters. */
myKey = ftok("/myApplication/nyFile", 42);
if(nyKey == -1) {
printf("ftok failed with errno = %\ n", errno);
return -1;
}
/* Call an xxxget() APlI, where xxx is sem shm or nsg.
/* This will create or reference an existing |IPC object
/* with the "well known' key associated with the file
/* name used above.
sem d = senget (nyKey, 1, 0666 | | PC_CREAT);
if(semd == -1) {
printf("senget failed with errno = %\ n", errno);
return -1;
}
/* ... Use the semaphore as required ... */
return O;
}

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

msgctl()-Perform Message Control Operations

Syntax
#i ncl ude <sys/ nsg. h>
int nsgctl (int neqid, int cnd, struct nsqid _ds *buf);

Service Program Name: QPOZUSHR
Default Public Authority: *USE

Threadsafe: Yes

The msgctl() function provides message control operations as specified by cmd on the message queue
specified by msgid.

Parameters

msqid
(Input) Message queue identifier, a positive integer. It is created by the msgget() function and used
to identify the message queue on which to perform the control operation.

cmd
(Input) Command, the control operation to perform on the message queue.

buf

(1/0) Painter to the message queue data structure to be used to get or set message queue
information.

The cmd parameter can have one of the following values:

IPC_STAT Put the current value of each member of the msgid_ds data structure associated with msqgid
into the structure pointed to by buf.

IPC_SET Set the value of the following members of the msgid_ds data structure associated with
msgid to the corresponding value found in the structure pointed to by buf:

» msg_perm.uid

» msg_perm.gid
o Msg_perm.mode

o Mmsg_gbytes

IPC_SET can be run only by athread with appropriate privileges or one that has an
effective user ID equal to the value of msg_perm.cuid or msg_perm.uid in the msgid_ds
data structure associated with msgid. Only athread with appropriate privileges can raise
the value of msg_gbytes.

IPC_RMID Remove the message queue identifier specified by msgid from the system and destroy the
message queue and msgid_ds data structure associated with it. IPC_RMID can be run only
by athread with appropriate privileges or one that has an effective user ID equal to the
value of msg_perm.cuid or msg_perm.uid in the msgid_ds data structure associated with
msgid. The structure pointed to by buf isignored and can be NULL.

Authorities

Figure 1-4. Authorization Required for msgctl()

Object Referred to Authority Required | errno
Message queue for which state information isretrieved (cmd = Read EACCES
IPC_STAT)

Message queue for which state information is set (cmd = IPC_SET) | See Note EPERM
Message queue to be removed (cmd = IPC_RMID) See Note EPERM

Note: To set message queue information or to remove a message queue, the thread must be the owner or
creator of the queue, or have appropriate privileges. To raise the value of msg_gbytes, athread must have
appropriate privileges.

Return Value

0 msgcetl() was successful.

-1 msgcetl() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgctl() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may
also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

The parameter cmd is IPC_STAT, but the calling thread does not have read permission.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The message queue has been damaged by a previous message queue operation.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:
o Thevalue of cmdiseither IPC_SET or IPC_STAT and the value of buf isNULL.

o Thevalue of msgid is not avalid message queue identifier.
o Thevalue of cmd isnot avalid command.
o Thevalueof cmdisIPC_SET and the value of msg_gbytes exceeds the system-imposed

[imit.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

The parameter cmd isequal to IPC_RMID or IPC_SET and both of the following are true:
o the caller does not have the appropriate privileges.

o the effective user ID of the caller is not equal to the value of msg_perm.cuid or
msg_perm.uid in the data structure associated with msgid.

The parameter cmd is IPC_SET and an attempt is being made to increase the value of msg_gbytes,
but the the caller does not have appropriate privileges.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

"Appropriate privileges' is defined to be * ALLOBJ specia authority. If the user profile under which the
thread is running does not have * ALL OBJ special authority, the caller does not have appropriate privileges.

Related Information

o The <sys/msg.h> file (see Header Files for UNIX-Type Functions)

« msgget()-Get Message Queue

« msgrev()-Receive M essage Operation

« msgsnd()-Send M essage Operation

Example

The following example performs a control operation on a message queue:

#i ncl ude <sys/nmsg. h>

mai n() {
int neqid;

int rc;
struct nsqi d_ds buf;

rc = megctl (nsqid, | PC STAT, &buf);
}

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

msgget()-Get Message Queue

Syntax

#i ncl ude <sys/ nsg. h>
#i ncl ude <sys/stat.h>

i nt nsgget (key t key, int negflg);

Service Program Name: QPOZUSHR
Default Public Authority: *USE

Threadsafe: Yes

The msgget () function returns the message queue identifier associated with the parameter key.

Parameters

key
(Input) Key associated with the message queue. Specifying akey of IPC_PRIVATE guarantees that
aunique message queue is created. A key also can be generated by the caller or by calling the
ftok () function.

msgflg
(Input) Operations and permissions flag.

The value of msgflg is either O or is obtained by performing an OR operation on one or more of the
following constants:

'0x0100' or S IRUSR Permits the creator of the message queue to read it

'0x0080" or S IWUSR Permits the creator of the message queue to write it

'0x0020" or S IRGRP Permits the group associated with the message queue to read it
'0x0010' or S IWGRP Permits the group associated with the message queue to write it
'0x0004' or S IROTH Permits others to read the message queue

'0x0002' or S IWOTH Permits others to write the message queue

'0x0200' or IPC_CREAT Creates the message queue if it does not exist already

'0X0400' or IPC_EXCL Causes msgget() to fail if IPC_CREAT is set and the message queue aready
exists

Authorities

Figure 1-5. Authorization Required for msgget()

Object Referred to Authority Required | errno
M essage gueue to be created None None
Existing message queue to be accessed | See Note EACCES

Note: If the thread is accessing an existing message queue, the mode specified in the last 9 bits of msgfig
must be a subset of the mode of the existing message queue.

Return Value

value msgget() was successful. The value returned is the message queue I D associated with the key
parameter.

-1 msgget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgget() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may
also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

A message queue identifier exists for the parameter key, but operation permission as specified by
the low-order 9 bits of msgflg would not be granted.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The message queue has been damaged by a previous message queue operation.

[EEXIST]

File exists.
The file specified already exists and the specified operation requires that it not exist.
The named file, directory, or path already exists.

A message queue identifier exists for the parameter key, but ((msgfig & IPC_CREAT) && (msgflg
& IPC_EXCL)) isnot zero. (& isabitwise AND; && isalogical AND.)

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

A message queue identifier does not exist for the parameter key, and (msgfig & IPC_CREAT) is
zero. (& isahbitwise AND.)

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

A message queue identifier is to be created, but the system-imposed limit on the maximum number
of allowed message queue identifiers system-wide would be exceeded.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

None.

Usage Notes
1. A message queue identifier, associated message queue, and data structure (see the <sysmsg.h>
header file) are created for the parameter key if one of the following istrue:
2. 0 The parameter key isequal to IPC_PRIVATE.

o The parameter key does not aready have a message queue identifier associated with it and
(msgflg & IPC_CREAT) is not zero.

3. On creation, the data structure associated with the new message queue identifier isinitialized as

follows:
o msg_perm.cuid and msg_perm.uid are set equal to the effective user ID of the calling
thread.

o msg_perm.cgid and msg_perm.gid are set equal to the effective group ID of the calling
thread.

o Thelow-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg.
o msg_gnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal to 0.
o msg_ctimeis set equal to the current time.

o0 msg_gbytesis set equal to the system limit.

Related Information

o The <sygmsg.h> file (see Header Files for UNIX-Type Functions)

o ftok()--Generate IPC Key from File Name

« msgctl()-Perform Message Control Operations

« msgrev()-Receive M essage Operation

« msgsnd()-Send M essage Operation

Example
The following exampl e creates a message queue:

#i ncl ude <sys/ msg. h>
#i ncl ude <sys/stat. h>

mai n() {
int nmegflg = O;
int neqid;

meqi d = nsgget (1 PC_ PRI VATE, nsgflg | IPC CREAT | S IRUSR | S IWISR);
}

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

msgrcv()--Receive Message Operation

Syntax

#i ncl ude <sys/ nsg. h>

int megrcv(int nmeqid, void *nsgp, size t nsgsz,
long int megtyp, int nsgflg);

Service Program Name: QPOZUSHR
Default Public Authority: *USE

Threadsafe: Yes

The msgrcv() function reads a message from the queue associated with the message queue identifier
specified by msgid and placesit in the user-defined buffer pointed to by msgp.

Parameters

msqid
(Input) Message queue identifier from which the message will be received.

msgp

(Output) Pointer to a buffer in which the received message will be stored. See the details below on
the structure of the user-defined buffer.

msgsz
(Input) Length of the data portion of the buffer.

msgtyp
(Input) Type of message to be received.

msgflg
(Input) Action to be taken if amessage of the desired type is not on the queue, or if the data portion
of the message to be received islarger than msgsz.

The parameter msgp points to a user-defined buffer that must contain the following:
1. A field of typelong int that will specify the type of the message.

2. A datapart that will hold the data bytes of the message.

The following structure is an example of what this user-defined buffer might look like:

struct nynsg {

long int nt ype; /* message type */
char next[1]; /* message text */

}

The structure member mtype is the type of the received message, as specified by the sending thread. The
structure member mtext is the text of the message.

The parameter msgtyp specifies the type of message requested as follows:
« If msgtyp isequal to zero, the first message on the queue is received.

« If msgtyp is greater than zero, the first message of type msgtyp is received.

o If msgtyp islessthan zero, the first message of the lowest type that is less than or equal to the
absolute value of msgtyp is received.

The parameter msgsz should include any bytes inserted by the compiler for padding or alignment purposes.
These bytes are part of the message data and affect the total number of bytes in the message queue.

The following example shows pad data and how it affects the size of a message:

struct nynsg {

l ong int nt ype; /* 12 bytes padding inserted after */
char *poi nt er; /* the ntype field by the conpiler.*/
char C; /* 15 bytes padding inserted after */
char *poi nt er 2; /* the ¢ field by the conpiler. */
} msg; /* After the nype field, there are*/

/* 33 bytes of user data, but 60 */
/* bytes of data including padding.*/
nmegsz = sizeof (nmsg) - sizeof(long int); /* 60 bytes. */

Authorities

Figure 1-6. Authorization Required for msgrcv()

Object Referred to Authority Required | errno

M essage gqueue from which message isreceived | Read EACCES

Return Value

value msgrcv() was successful. The value returned is the number of bytes of data placed in the buffer
mtext.

-1 msgr cv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgrcv() isnot successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[E2BIG]
Argument list too long.
The size in bytes of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is equal to zero.
(& isabitwise AND.)
[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.
The calling thread does not have read permission.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The message queue has been damaged by a previous message queue operation.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.
[EIDRM]

ID has been removed.

The message queue identifier msgid was removed from the system.
[EINTR]
Interrupted function call.

The function msgrcv() was interrupted by asignal.
[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:
o Thevalue of msgpis NULL.

o Thevalue of msgidis not avalid message queue identifier.

[ENOMSG]
Message does not exist.

The queue does not contain a message of the desired type and (msgflg & IPC_NOWAIT) is not
zero.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. The parameter msgsz specifies the size in bytes of mtext. The received message is truncated to
msgsz bytesif it islarger than msgsz and (msgflg & MSG_NOERROR) is not zero. The truncated
part of the message islost and no indication of the truncation is given to the calling thread.

2. The parameter msgflg specifies the action to be taken if a message of the desired typeis not on the
queue. These actions are as follows:

o If (msgflg & IPC_NOWAIT) is not zero, the calling thread will return immediately with a
return value of -1 and errno set to [ENOMSG].

o If (msgflg & IPC_NOWAIT) is zero, the calling thread suspends processing until one of
the following occurs:

= A message of the desired type is placed on the queue.

= The message queue identifier msgid is removed from the system. When this
occurs, errno is set to [EIDRM] and avalue of -1 is returned.

= Thecalling thread receives asignal that is to be caught. In this case, amessage is
not received and the calling thread resumes processing in the manner prescribed in
sigaction().

3. Themsgrcv() function does not tag message data with a CCSID (coded character set identifier)

value. If aCCSID valueisrequired to correctly interpret the message data, it is the responsibility of
the caller to include the CCSID value as part of the data.

4. On successful completion, the following actions are taken with respect to the data structure
associated with msgid:

0 msg_gnum is decremented by 1.
o msg_lrpidis set to the process ID of the calling thread.
0 msg_rtimeis set to the current time.

5. If the msgrcv() function does not compl ete successfully, the requested message is not removed
from the message queue.

Related Information

o The <sygmsg.h> file (see Header Files for UNIX-Type Functions)

« msgctl()-Perform Message Control Operations

« msgget()-Get M essage Queue

« msgsnd()-Send M essage Operation

Example
The following example receives a message from a message queue:

#i ncl ude <sys/nsg. h>

mai n() {
int nseqid = O;
int msgflg = O;
int rc;
size_t nsgsz;
I ong int megtyp;
struct nynsg {
long int ntype;

char nt ext [256] ;
1
nsgsz = 256;
megtyp = 1;

rc = nmegrecv(nsqid, &mynmsg, nsgsz, nsgtyp, nsgflg | | PC_NOMIT);

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

msgsnd()-Send Message Operation

Syntax

#i ncl ude <sys/ nsg. h>

int negsnd(int nsqid, const void *nsgp,
size t nsgsz, int nsgflg);

Service Program Name: QPOZUSHR
Default Public Authority: *USE

Threadsafe: Yes

The msgsnd() function is used to send a message to the queue associated with the message queue identifier
specified by msgid.

Parameters

msqid
(Input) Message queue identifier to which the message will be sent.

msgp
(Input) Pointer to the message to be sent.

msgsz
(Input) Length of the data part of the message to be sent.

msgflg
(Input) Action to be taken if the message cannot be immediately placed on the queue.

The parameter msgp points to a user-defined buffer that must contain the following:
1. Afield of typelong int that will specify the type of the message.

2. A datapart that will hold the data bytes of the message.

The following structure is an example of what this user-defined buffer might look like:

struct nynsg {
long int nt ype; /* message type */
char ntext[1]; /* message text */

}

The structure member mtypeisalong int that is greater than zero. It can be used by the receiving thread for
message selection. The structure member mtext is any text of length msgsz bytes. The parameter msgsz can

range from zero to a system-imposed maximum.

The parameter msgsz should include any bytes inserted by the compiler for padding or alignment purposes.
These bytes are part of the message data and affect the total number of bytes in the message queue.

The following example shows pad data and how it affects the size of a message:

struct nynsg {

l ong int nt ype; /* 12 bytes padding inserted after */
char *poi nt er; /* the ntype field by the conpiler.*/
char C; /* 15 bytes padding inserted after */
char *poi nt er 2; /* the ¢ field by the conmpiler. */
} msg; /* After the ntype field, there are*/

/* 33 bytes of user data, but 60 */
/* bytes of data including padding.*/
nmsgsz = sizeof (nmsg) - sizeof(long int); /* 60 bytes. */

Authorities

Figure 1-7. Authorization Required for msgsnd()

Object Referred to Authority Required | errno

M essage queue on which message is placed | Write EACCES

Return Value

0 msgsnd() was successful.

-1 msgsnd() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgsnd() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.
If you are accessing aremote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)

command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

The calling thread does not have write permission.
[EAGAIN]
Operation would have caused the process to be suspended.

The message cannot be sent for one of the reasons cited above and (msgflg & IPC_NOWAIT) is
not zero. (& isabitwise AND.)

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The message queue has been damaged by a previous message queue operation.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EIDRM]
ID has been removed.

The message queue identifier msgid was removed from the system.
[EINTR]
Interrupted function call.

The function msgsnd() was interrupted by asignal.
[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:
o Thevalue of msgpisNULL.

o Thevalue of msgid is not avalid message queue identifier.
o Thevalue of mtypeislessthan or equa to zero.

o Thevalue of msgsz is greater than the system-imposed limit.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and

correct any errorsthat are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. The parameter msgflg specifies the action to be taken if the number of bytes already on the queueis
equal to msg_gbytes (see M essage Queues or the <sysimsg.h> header file). The possible actions
are asfollows:

o If (msgflg & IPC_NOWAIT) is not zero, the message is not sent. The calling thread will
return immediately with areturn value of -1 and errno set to [EAGAIN].

o If (msgflg & IPC_NOWAIT) is zero, the calling process suspends processing until one of
the following occurs:

= The condition responsible for the suspension no longer exists, in which case the
message is sent.

= The message queue identifier msgid is removed from the system. When this
occurs, errno is set to [EIDRM] and avalue of -1 is returned.

= The calling thread receives asignal that isto be caught. In this case, amessage is
not sent and the calling thread resumes processing in the manner prescribed in
sigaction().

2. The msgsnd() function does not tag message data with a CCSID (coded character set identifier)
value. If aCCSID vaueisrequired to correctly interpret the message data, it isthe responsibility of
the caler to include the CCSID value as part of the data.

3. On successful completion, the following actions are taken with respect to the data structure
associated with msqid:

0 msg_gnum isincremented by 1.

o msg_Ispidis set to the process ID of the calling thread.

0 msg_stimeis set to the current time.

4. 1f the msgsnd() function does not compl ete successfully, the requested message is nhot placed on the
message queue.

Related Information

« The <sygmsg.h> file (see Header Files for UNIX-Type Functions)

o msgctl()-Perform Message Control Operations

« msgget()-Get Message Queue

« msgrev()-Receive M essage Operation

Example

The following example sends a message to a message queue:

#i ncl ude <sys/nsg. h>

mai n() {
int meqid = O;
int megflg = 0;
int rc;
size_t nsgsz;
struct nynsg {
long int ntype;
char nt ext [256] ;
i

nsgsz = 256;

nmynmsg. ntype = 1;
rc = nmegsnd(nsqid, &mwynsg, nsgsz, nsgflg | | PC_NOMIT);

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

QlgFtok()--Generate IPC Key from File Name
(using NLS-enabled path name)

Syntax

#i ncl ude <sys/ipc. h>
#i ncl ude <gl g. h>

key t Q gFtok(const Qg _Path Name T *path, int id);

Service Program Name: QPOZCPA
Default Public Authority: *USE

Threadsafe: Conditional

The QlgFtok() function, like the ftok() function, generates an |PC key based on the combination of path
and id. The difference is that the QlgFtok() function takes a pointer to a Qlg_Path Name_T structure,
while the ftok () function takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, returnvalues, and related information, see
ftok()--Generate |IPC Key from File Name.

Parameters

path

(Input) The path name of the file used in combination with id to generate the key. For more
information on the Qlg_Path_Name_T structure, see Path name format.

Related Information

ftok()--Generate IPC Key from File Name

Example

The following example uses the QlgFtok() and semget() functions.

#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>
#i ncl ude <errno. h>
#i ncl ude <stdio. h>

#i ncl ude <ql g. h>

int main(int argc, char *argv[])

{

key t nyKey;
i nt sem d;

#define nypath "/ nyApplication/nyFile"
const char US const[3]= "US";

const char Language_const[4] ="ENU';
const char Path_Nane Del const[2]= "/";
t ypedef struct pnstruct

Qg _Path Name T gl g struct;

char[100] pn; [/* This size nmust be >= the path */
/* name length or be a pointer */
/* to the path nane. */

H

struct pnstruct path;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) path nanme, 0x00, sizeof(struct pnstruct));
path. gl g_struct.CCSID = 37;
mencpy(path. ql g struct. Country I D, US const, 2);
mencpy(path. ql g _struct. Language | D, Language_const, 3);
pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;
pat h. gl g_struct. Path_Length = sizeof (nypath)-1;
mencpy(path. ql g struct. Path_Name Delimter, Path Nanme Del const, 1);
mencpy(pat h. pn, mypat h, si zeof (nypat h)) ;

/* Use QgFtok to generate a key associated with a file. */
/* Every process will get the sane key back if the caller */
/* calls with the same paraneters. */
myKey = QgFtok((Q g Path Nane T *)path nane, 42);
i f(nmyKey == -1)

printf("QgFtok failed with errno = %l\n", errno);

return -1;
}
/* Call an xxxget() APlI, where xxx is sem shm or nsg. */
/* This will create or reference an existing |IPC object */
/* with the "well known' key associated with the file */
/* name used above. */
sem d = senget (nyKey, 1, 0666 | | PC _CREAT);
if(semd == -1) {

printf("senget failed with errno = %d\n", errno);

return -1;
}
/* ... Use the semaphore as required ... */
return O;

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgSem_open()--Open Named Semaphore
(using NLS-enabled path name)

Syntax

#i ncl ude <semaphore. h>
#i ncl ude <gl g. h>

semt * Q gSem open(const Qg Path Nane T *nane,
int oflag, ...);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The QlgSem_open() function, like the sem_open() function, opens a named semaphore and returns a
semaphore pointer that may be used on subsequent callsto sem_post(), sem_post_np(), sem_wait(),
sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close(). The QlgSem_open() function takes a
pointer to aQlg_Path Name T structure, while the sem_open() function takes a pointer to a character
string that isin the CCSID of the job.

Limited information on the name parameter is provided in this API. For additional information on the name
parameter and a discussion of other parameters, authorities required, return values, and related information,
see sem_open()--Open Named Semaphore.

Parameters

name

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the semaphore to be opened. For more information on the Qlg_Path_Name_T structure,
see Path name format.

Error Conditions

If QlgSem_open() is not successful, errno usually indicates the following error or one of the errors
identified in sem_open()--Open Named Semaphore.

[ECONVERT] A conversion error for the parameter name.

Related Information

o The<qlg.h> file (see Header Files for UNIX-Type Functions)

« sem_open()--Open Named Semaphore

o QlgSem open np()--Open Named Semaphore with Maximum Value (using NL S-enabled path
name)

o QlgSem unlink()--Unlink Named Semaphore (using NL S-enabled path name)

Note: All of therelated information for sem_open() appliesto QlgSem_open(). See Related Information in
sem_open().

Example

The following example opens the named semaphore "/mysemaphore” and creates the semaphore with an
initial value of 10 if it does not already exist. If the semaphore is created, the permissions are set such that
only the current user has access to the semaphore.

#i ncl ude <semaphore. h>
#i ncl ude <ql g. h>
mai n() {

semt * my_semaphore;
int rc;

#define nypath "/ nysemaphore"

const char US const[3]= "US";

const char Language_const[4] ="ENU';
const char Path_Nane_Del _const[2]= "/";
typedef struct pnstruct

Qg _Path_Name_T gl g_struct;

char[100] pn; /* This size nust be >= the path */
/* nane length or be a pointer */
/* to the path nane. */

i

struct pnstruct path;

/***/

/* Initialize Qg _Path_Nane_ T paraneters */
/***/

menset ((voi d*) path nane, 0x00, sizeof(struct pnstruct));

pat h. gql g_struct. CCSID = 37;

mencpy(path. gl g_struct. Country_I D, US _const, 2);

mencpy(pat h. gl g_struct. Language_I D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

pat h. gl g_struct. Path_Length = sizeof (nypath)-1;

mencpy(path. gl g_struct. Path_Name_Del i mter, Path_Name_Del const, 1);

mencpy(pat h. pn, mypat h, si zeof (nypat h)) ;

my_semaphore = @ gSem open((Q g_Path_Nanme T *)pat h nane,
O CREAT, S IRUSR | S IWSR, 10);

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgSem_open_np()--Open Named Semaphore
with Maximum Value (using NLS-enabled path
name)

Syntax

#i ncl ude <semaphore. h>
#i ncl ude <ql g. h>

semt * Q gSemopen_np(const Qg _Path_Name_ T *nane, int oflag

node_t node, unsigned int val ue,
semattr_np_t * attr);

Service Program Name: QPOZPSEM
Default Public Authority: * USE

Threadsafe: Yes

The QlgSem_open_np() function, like the sem_open_np() function, opens a named semaphore and returns
a semaphore pointer that may be used on subsequent callsto sem_post(), sem_post_np(), sem_wait(),
sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close(). The QlgSem_open_np() function takes
apointer to a Qlg_Path Name T structure, while the sem_open_np() function takes a pointer to a character
string.

Limited information on the name parameter is provided in this API. For additional information on the name
parameter and a discussion of other parameters, authorities required, return values, and related information,
see sem_open _np()--Open Named Semaphore with Maximum Vaue.

Parameters

name

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the semaphore to be opened. For more information on the Qlg_Path_Name_T structure,
see Path name format.

Error Conditions

If QlgSem_open_np() is not successful, errno usually indicates the following error or one of the errors
identified in sem_open_np()--Open Named Semaphore with Maximum Value.

[ECONVERT]
A conversion error for the parameter name.

Related Information

» The<qlg.h> file (see Header Files for UNIX-Type Functions)
« sem _open np()--Open Named Semaphore with Maximum Value
o QlgSem open()--Open Named Semaphore (using NL S-enabled path name)

o QlgSem unlink()--Unlink Named Semaphore (using NL S-enabled path name)

Note: All of therelated information for sem_open_np() appliesto QlgSem_open_np(). See Related
Information in sem_open().

Example

The following example opens the named semaphore "/mysemaphore” and creates the semaphore with an
initial value of 10 and amaxiumum value of 11. The permissions are set such that only the current user has
access to the semaphore.

#i ncl ude <senmaphore. h>
#i ncl ude <qgl g. h>
mai n() {

semt * my_semaphore;
int rc;
semattr_np_t attr;

#defi ne nypath "/ mysemaphore”
const char US const[3]= "US";
const char Language_const[4] ="ENU';
const char Path_Name Del const[2]= "/";
typedef struct pnstruct
{
Qg Path Nane T gl g _struct;
char[100] pn; /* This size must be >= the path */
/* nane | ength or be a pointer */
/* to the path nane. */

b

struct pnstruct path;

/*****-k*-k*******-k*-k*-k*-k*-k*******-k*-k*****************************/

/* Initialize Qg _Path _Nane T paraneters */
/*-k***********************/
nmenset ((voi d*) pat h nane, 0x00, sizeof(struct pnstruct));
path. gl g_struct.CCSID = 37;
mencpy(path. gl g _struct. Country I D, US const, 2);
mencpy(pat h. gl g_struct. Language_| D, Language_const, 3);
path. gl g_struct. Path_Type = QLG CHAR SI NGLE;

pat h. gl g_struct. Path_Length = sizeof (nypath)-1;
mencpy(path. ql g struct.Path_Nanme Delimter, Path Nane Del const, 1);
mencpy(pat h. pn, mypat h, si zeof (nypath)) ;

menset (&attr, 0, sizeof(attr));
attr. maxval ue=11;
my_semaphore = Q@ gSem open_np((Q g Path _Nane T *)path nane,
O_CREAT| O_EXCL,
S IRUSR | S IWISR,
10,
&attr);

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgSem_unlink()--Unlink Named Semaphore
(using NLS-enabled path name)

Syntax

#i ncl ude <semaphore. h>
#i ncl ude <gl g. h>

int QgSemunlink(const Qg Path Nanme T *nane);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The QlgSem_unlink() function, like the sem_unlink() function, unlinks a named semaphore. The
QlgSem_unlink() function takes a pointer to a Qlg_Path Name_T structure, while the sem_unlink()
function takes a pointer to a character string.

Limited information on the name parameter is provided in this API. For additional information on the name
parameter, authorities required, return values, and related information, see sem_unlink()--Unlink Named

Semaphore.

Parameters

name

(Input) A pointer aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the semaphore to be unlinked. For more information on the Qlg_Path_Name T structure,
see Path name format.

Error Conditions

If QlgSem_unlink() is not successful, errno usually indicates the following error or one of the errors
identified in sem_unlink()--Unlink Named Semaphore.

[ECONVERT]
A conversion error for the parameter name.

Related Information

The <glg.h> file (see Header Files for UNIX-Type Functions)

sem_unlink()--Unlink Named Semaphore

o QlgSem open()--Open Named Semaphore (using NL S-enabled path name)

QlgSem_open_np()--Open Named Semaphore with Maximum Value (using NL S-enabled path
name)

Note: All of therelated information for sem_unlink() appliesto QlgSem_unlink(). See Related
Information in sem_unlink().

Example
The following example unlinks the named semaphore "/mysem".

#i ncl ude <semaphore. h>
#i ncl ude <ql g. h>

mai n() {
int rc;

#defi ne nypath "/ nysent

const char US const[3]= "US";

const char Language_const[4] ="ENU';
const char Path_Nane_Del _const[2]= "/";
typedef struct pnstruct

Qg _Path_Name_T gl g_struct;

char[100] pn; /* This size nust be >= the path */
/* nane length or be a pointer */
/* to the path nane. */

b

struct pnstruct path;

/***/

/* Initialize Qg _Path_Nane_ T paraneters */
/***/
menset ((voi d*) path nanme, 0x00, sizeof(struct pnstruct));
pat h. gql g_struct. CCSID = 37;
mencpy(path. gl g_struct. Country_I D, US _const, 2);
mencpy(pat h. gl g_struct. Language_I D, Language_const, 3);
pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;
pat h. gl g_struct. Path_Length = sizeof (nypath)-1;
mencpy(path. gl g_struct. Path_Name_Delim ter, Path_Nanme_Del const, 1);
mencpy(pat h. pn, mypat h, si zeof (nypath));

rc = Q@gSemunlink((Qg_Path_Nane_T *)path nane);

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

Delete Interprocess Communication Objects
(QPOZDIPC) API

Required Parameter Group:

1 Delete control Input Char(*)
2 Error code I/O Char(*)

Default Public Authority: * USE

Threadsafe: No

The Delete Interprocess Communication Objects (QPOZDIPC) API deletes one or more interprocess
communication (IPC) objects as specified by the delete control parameter.

Authorities and Locks
Job Authority

The calling thread must be the owner, must be the creator, or must have * ALLOBJ special
authority.

For additiona information on these authorities, see the i Series Security Reference@ book.

Required Parameter Group

Delete control
INPUT; CHAR(*)
Information about which IPC objects to delete. For the layout of this structure, see Delete Control
Format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Delete Control Format

The following shows the format of the delete control parameter. For detailed descriptions of the fieldsin the
table, see Field Descriptions.

| Offset
IDec [Hex |Type Field
| 0 | 0 |BINARY(4) |Number of objectsto delete.
These fields ICHAR(1) |IPC type
repeat for each [CHAR(3) [Reserved
object to delete. —
[BINARY(4) [Identifier

Field Descriptions

Identifier. A unique IPC identifier that is used to specify which IPC object isto be deleted. Theidentifier is
obtained from calling the API's semget(), shmget(), msgget(), or QPOZOLIP.

I PC type. Thisvalue describes the type of IPC object to delete. Possible values follow:
1 Delete asemaphore set object.
2 Delete a shared memory object.

3 Delete amessage queue object.

Number of objectsto delete. The number of IPC objects in the delete control parameter.

Reserved. A reserved field. These characters must be set to '00'x.

Error Messages

Message | D Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPFA986 E &1 IPC objects deleted; & 2 IPC object not deleted
CPDA981 D Not authorized to delete |PC object & 1.
CPDA982 D IPC object & 1 does not exist.

CPDA983 D IPC object & 1 is marked as damaged.

CPFA987 E Delete control not valid.

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

Open List of Interprocess Communication
Objects (QPOZOLIP) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Listinformation Output Char(80)
4 Number of recordsto return Input Binary(4)
5 Format name Input Char(8)
6 Filter information Input Char(*)
7 Filter format name Input Char(8)
8 Error code /O Char(*)

Default Public Authority: * USE

Threadsafe: No

The Open List of Interprocess Communication Objects (QPOZOLIP) API lets you generate alist of
interprocess communication (1PC) objects and descriptive information based on the selection parameters.
The QPOZOLIP API places the specified number of list entries in the receiver variable. Y ou can access
additional records by using the Get List Entries (QGY GTLE) API. On successful completion of the
QPOZOLIP API, ahandleis returned in the list information parameter. Y ou may use this handle on
subseguent calls to the following APIs:

o Get List Entries (QGYGTLE)
« Find Entry Number in List (QGY FNDE)

o CloseList (QGYCLST)

Y ou can use the QPOZOLIP API to:

« Openalist of al IPC objects of a specific type (semaphore sets, message queues, shared memory,
named semaphores, or unnamed semaphores).

« Openalist of identifier-based |PC objects (semaphore sets, message queues, or shared memory) of
a specific type with akey in a specified range.

« Openalist of identifier-based IPC objects of a specific type that are owned by one or more
specified users.

« Openalist of IPC objects of a specific type (semaphore sets, message queues, shared memory, or
named semaphores) that were created by one or more specified users.

Only one IPC type (either semaphore sets, message queue, shared memory, named semaphores, or unnamed
semaphores) can be returned in one call to this API. The IPC type is determined by the format name
parameter.

The records returned by QPOZOLIP include an information status field that describes the completeness and
validity of theinformation. Be sure to check the information status field before using any other information
returned.

Authorities and Locks

Job Authority
Service specia authority (* SERVICE) is needed to call this API.

For additional information on this authority, see the iSeries Security Reference @‘ book.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is used to return the IPC object information that you requested.
Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable.
List information
OUTPUT; CHAR(80)

Information about the list of 1PC objects that were opened. For a description of the layout of this
parameter, see Format of Open List Information.

Number of recordstoreturn
INPUT; BINARY (4)

The number of recordsin thelist to put into the receiver variable.
Format name
INPUT; CHAR(8)

The format of the information to be returned in the receiver variable. This parameter will determine
the type of |PC mechanism to open the list for. Y ou must use one of the following format names:

LSST0100 Thisformat isdescribed in LSST0100 Format.

LMSQ0100 Thisformat is described in LM SQO0100 Format.

LSHMO0100 Thisformat isdescribed in LSHM0100 Format.

LNSMO0100 Thisformat isdescribed in LNSM 0100 Format.

LUSM0100 Thisformat isdescribed in LUSM0100 Format.

Filter information
INPUT; CHAR(*)
The information in this parameter is used to filter the list of 1PC objects. The format of this variable
depends on the filter format name.
Filter format name
INPUT; CHAR(8)

The name of the format that is used to filter the list of IPC objects. Y ou must use one of the
following format names:

FIPC0100 Thisformat isdescribed in FIPC0100 Format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

FIPC0100 Format

The following shows the format of the filter information for the FIPC0100 format. For detailed descriptions
of thefield in the table, see Field Descriptions.

14 |BINARY(4) |Offset to creator profilesarray
24 | 18 |[BINARY(4) |Number of creator profiles specified

Thisfield repeats (CHAR(10) Owner profile name
for each owner
profile name.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |CHARQ) |Filter on key

[T [1 [CHAR® |Reserved

| 4 | 4 |BINARY(4) |Minimum key

| 8 | 8 |BINARY(4) |Maximum key

| 12 | C |BINARY(4) |Offset to owner profilesarray

| 16 | 10 |BINARY(4) |Number of owner profiles specified
| |

|

Thisfield repeats |CHAR(10) Creator profile name
for each creator
profile name.

Field Descriptions

Creator profile name. The user profile names that created the |PC objects being returned. These values are
used only if the number of creator profiles specified field is greater than one. Possible special values follow:

*ALL I PC objects created by any user profile are added to the list. The rest of the user profilesin
the array are ignored.

*CURRENT IPC objects created by the current user profile are added to the list.

Filter on key. Whether filtering will be done based on the key value of the IPC object. Possible values
follow:

0 Nofiltering is done based on the key value. The values of minimum key field and maximum key
field areignored.

1 Filtering is done based on the values of minimum key field and maximum key field.

Maximum key. The maximum IPC object's key value. Only the IPC objects with a key greater than or
equal to the minimum key and less than or equal to the maximum key will be added to the generated list.
Thisvaueisonly used if the filter on key field is set to one.

Minimum key. The minimum |PC object's key value. Only the IPC objects with a key greater than or equal
to the minimum key and less than or equal to the maximum key will be added to the generated list. This
valueisonly used if the filter on key field is set to one.

Number of creator profiles specified. The number of creator profiles specified in the creator profile
names array. If thisvalueis zero, no filtering is to be done for the creator user profile.

Number of owner profiles specified. The number of owner profiles specified in the owner profile names
array. If thisvalueis zero, no filtering is to be done for the owner user profile.

Offset to creator profilesarray. The offset in characters (bytes) from the beginning of the filter
information to the beginning of the array of creator profiles.

Offset to owner profilesarray. The offset in characters (bytes) from the beginning of the filter
information to the beginning of the array of owner profiles.

Owner profile name. The user profile names that own the |PC objects being returned. These values are
used only if the number of owner profiles specified field is greater than one. Possible specia values follow:

*ALL IPC objects that are owned by any user profile are added to the list. The rest of the user
profilesin the array are ignored.

*CURRENT IPC objects that are owned by the current user profile are added to the list.

Reserved.These characters must be set to '00'x.

LSST0100 Format

Thisformat name is used to return list information for semaphore sets. The following table shows the
information returned in each record in the receiver variable for the LSST0100 format. For a detailed
description of each field, see Field Descriptions.

Offset

’Field

I Dec | Hex |Type

| 0 | O |BINARY(4) |Identifier

[4 [4 [BINARY(4) |Key

| 8 | 8 |BINARY(4) |Number of ssmaphores

| 12 | C |CHAR() |Damaged

| 13 | D |CHARQ) |Owner read permission

| 14 | E |CHARQ) |Owner write permission

| 15 | F |CHAR(1) |Group read permission

| 16 | 10 |CHAR(1) |Group write permission

| 17 | 11 |CHARQ) |General read permission

| 18 | 12 |CHAR(1) |General write permission

| 19 | 13 |CHAR() |Authorized to delete

| 20 | 14 |CHAR(16) |Last semop() date and time
| 36 | 24 |CHAR(16) |Last administration change date and time
[52 | 34 [CHAR(10) |Owner

| 62 | 3E |CHAR(10) |Group owner

| 72 | 48 |CHAR(10) |Creator

| 82 | 52 |CHAR(10) |Creator's group

LMSQO0100 Format

Thisformat name is used to return list information for message queues. The following table shows the
information returned in each record in the receiver variable for the LM SQO0100 format. For a detailed

description of each field, see Field Descriptions.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Identifier

[4 [4 [BINARY(4) |Key

[8 [8 [CHAR®) |Damaged

| 9 | 9 |CHAR(1) |Owner read permission

| 10 | A |CHARQ) |Owner write permission

| 11 | B |CHARQ) |Group read permission

| 12 | C |CHAR() |Group write permission

| 13 | D |CHARQ) |General read permission

| 14 | E |CHARQ) |General write permission

| 15 | F |CHAR(1) |Authorized to delete

| 16 | 10 |BINARY(4) |Number of messageson queue

| 20 | 14 |BINARY(4) |Sizeof &l messages on queue

| 24 | 18 |BINARY(4) |Maximum size of all messageson queue
| 28 | 1C |BINARY(4) |Number of threads to receive message

| 32 | 20 |BINARY(4) |Number of threadsto send message

| 36 | 24 |CHAR(16) |Last msgrev() date and time

| 52 | 34 |CHAR(16) |Last msgsnd() date and time

| 68 | 44 |CHAR(16) |Last administration change date and time
[84 [54 [CHAR(@0) |Owner

| 94 | BE |CHAR(10) |Group owner

[104 [68 |[CHAR(0) |Creator

| 114 | 72 |CHAR(10) |Creator's group

LSHMO0100 Format

Thisformat name is used to return list information for shared memory. The following table shows the
information returned in each record in the receiver variable for the LSHM 0100 format. For a detailed

description of each field, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

[0 [0 |[BINARY(4) |[Identifier

[4 [4 [BINARY(®) |Key

[8 [8 [CHARQ®) |Damaged

| 9 | 9 |CHARQ) |Owner read permission

| 10 | A |CHARQ) |Owner write permission

| 11 | B |CHAR(1) |Group read permission

| 12 | C |CHARQ) |Group write permission

| 13 | D |CHARQ) |General read permission

| 14 | E |CHAR(1) |General write permission
[15 [F [CHAR®) |[Makedtobedeleted

| 16 | 10 |CHAR() |Authorized to delete

| 17 | 11 |CHAR(1) | Teraspace

[18 [12 [CHAR®) |Resze

[19 [13 [CHAR®) |Reserved

| 20 | 14 |BINARY(4) |Segmentsize

[24 [18 [BINARY(4) |Number attached

| 28 | 1C |CHAR(16) |Last shmat() date and time
| 44 | 2C |CHAR(16) |Last detach date and time
| 60 | 3C |CHAR(16) |Last administration change date and time
[76 [4C [CHAR(@0) |Owner

| 8 | 56 |CHAR(10) |Group owner

[96 [60 |CHAR(10) |Creator

| 106 | 6A |CHAR(10) |Creator's group

LNSMO0100 Format

This format name is used to return list information for named semaphores. The following table shows the
information returned in each record in the receiver variable for the LNSM 0100 format. For a detailed

description of each field, see Field Descriptions.

| Offset ’ ’
| Dec | Hex |Type Field
| 0 | 0 |BINARY(4) |Lengthof entry
[4 [4 [BINARY(4) |Vaue
| 8 | 8 |BINARY(4) |Maximum vaue
| 12 | C |BINARY(4) |Offset towaiting threads
| 16 | 10 |BINARY(4) |Number of waiting threads
| 20 | 14 |BINARY(4) |Offsettoname
| 24 | 18 |BINARY(4) |Lengthof name
[28 [I1IC [CHAR@6) |[Title
| 44 | 2C |CHAR(1) |Marked to be deleted
| 45 | 2D |CHAR(1) |Authorized to delete
[46 [2E [CHAR(10) |Creator
| 56 | 38 |CHAR(10) |Creator's group
| 66 | 42 |CHAR(1) |Owner read permission
| 67 | 43 |CHAR(1) |Owner write permission
| 68 | 44 |CHAR(1) |Group read permission
| 69 | 45 |CHAR(1) |Group write permission
| 70 | 46 |CHAR(1) |General read permission
| 71 | 47 |CHAR(1) |General write permission
| 72 | 48 |CHAR(26) |Last sem_post() qualified job identifier
[98 [62 [CHAR®) |Reserved
| 100 | 64 |CHAR(16) |Last sem_post() thread identifier
[116 | 74 |[CHAR(26) |Lastsem_wait() qualified job identifier
[142 [8 [CHAR® |Reserved
| 144 | 90 |CHAR(16) |Lastsem wait() thread identifier
Thesefields |CHAR(26) |Waiting qualified job identifier
repeat for each
thread waiting |CHAR(2) Reserved
Ser‘;g;ﬂgre_ CHAR(16) |Waiting thread identifier
Thisfield CHAR(*) Name of the semaphore
followsthe list
of threads
waiting on the
semaphore.

LUSMO0100 Format

Thisformat name is used to return list information for unnamed semaphores. The following table shows the
information returned in each record in the receiver variable for the LUSMO0100 format. For a detailed

description of each field, see Field Descriptions.

| Offset ’ ’
| Dec | Hex |Type Field
| 0 | 0 |BINARY(4) |Lengthof entry
[4 | 4 |[BINARY(4) |Vaue
| 8 | 8 |BINARY(4) |Maximum vaue
| 12 | C |BINARY(4) |Offset towaiting threads
| 16 | 10 |BINARY(4) |Number of waiting threads
| 20 | 14 |BINARY(4) |Reserved
[24 [18 [CHAR@6) [Title
| 40 | 28 |CHAR(26) |Last sem_post() qualified job identifier
| 66 | 42 |CHAR(2 |Reserved
| 68 | 44 |CHAR(16) |Last sem_post() thread identifier
| 84 | 54 |CHAR(26) |Last sem_wait() qualified job identifier
| 110 | 6E |CHAR(2) |Reserved
112 [70 [CHAR(16) |Lastsem_wait() thread identifier

Thesefields |CHAR(26) Waiting qualified job identifier

repeat for each

thread waiting |CHAR(2) Reserved

Serﬂggﬂgre CHAR(16) | Waiting thread identifier

Field Descriptions

Authorized to delete. Thisvalue determines if the caller has the authority to delete this |PC object.

Possible values follow:

0 Thecaling thread cannot delete the | PC object.

1 Thecalling thread can delete the IPC object.

Creator. The name of the user profile that created this |PC object.

Creator's group. The name of the group profile that created this IPC object. A special vaue can be

returned:

*NONE The creator does not have a group profile.

Damaged. Whether the IPC object has suffered internal damage. Possible values follow:

0 ThelPC object is not damaged.

1 ThelPC abject is damaged.

General read permission. Whether any user other than the owner and group owner has read authority to
the IPC object. Possible values follow:

0 Genera read authority is not allowed to the |PC object.
1 Genera read authority is allowed for the | PC object.

General write permission. Whether if any user other than the owner and group owner has write authority
to the IPC abject. Possible values follow:

0 Genera write authority is not allowed to the IPC object.

1 Genera write authority is allowed to the IPC object.

Group owner. The name of the group profile that owns this |PC object. A special value can be returned:

*NONE The IPC object does not have a group owner.

Group read permission. Whether the group owner has read authority to the IPC object. Possible values
follow:

0 Thegroup owner does not have read authority to the |PC object.

1 Thegroup owner has read authority to the IPC object.

Group write per mission. Whether the group owner has write authority to the |PC object. Possible values
follow:

0 Thegroup owner does not have write authority to the IPC object.

1 Thegroup owner has write authority to the |PC object.

I dentifier. The unique |PC object identifier.
Key. The key of the IPC object. If thisvalue is zero, this IPC object has no key associated with it.

Last administration change date and time. The date and time of the last change to the IPC object for the
owner, group owner, or permissions. The 16 characters are:

1 Century, where O indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Last detach date and time. The date and time of the last detachment from the shared memory segment. If
no thread has performed a successful detachment, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgrev() date and time. The date and time of the last successful msgrev() call. If no thread has
performed a successful msgrev() call, thisvalue will be set to all zeros. The 16 characters are:

1 Century, where O indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

L ast msgsnd() date and time. The date and time of the last successful msgsnd() call. If no thread has
performed a successful msgsnd() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Last sem_post() qualified job identifier. The job name, the job user profile, and the job number of the last
thread that successfully called sem_post() or sem_post_np() if the job has not ended. The 26 characters are:

1-10 Thejob name
11-20 The user profile
21-26 Thejob number

If the thread has ended, then the first 16 characters contain 16 characters that uniquely identify the ended
job, followed by 10 spaces. If no thread has used sem_post() to post to the semaphore, then the 26
characters will contain spaces.

Last sem_post() thread identifier. The thread ID of the last thread that successfully called sem_post() or
sem_post_np() if the thread has not ended.

Last sem_wait() qualified job identifier. The job name, the job user profile, and the job number of the last
thread that returned from a sem_wait(), sem_wait_np(), or sem_wait() call, if the job has not ended. The 26
characters are:

1-10 Thejob name
11-20 The user profile

21-26 Thejob number
If the thread has ended, then the first 16 characters contain 16 characters that uniquely identify the ended

job, followed by 10 spaces. If no job has used sem_wait() to wait on the semaphore, then the 26 characters
will contain spaces.

Last sem_wait() thread identifier. Thethread ID of the last thread that returned from a sem_wait(),
sem_wait_np(), or sem_wait() call, if the thread has not ended.

Last semop() date and time. The date and time of the last successful semop() call. If no thread has
performed a successful semop() call, this value will be set to all zeros. The 16 characters are:

1 Century, where O indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Last shmat() date and time. The date and time of the last successful shmat(). If no thread has performed a
successful shmat() call, this value will be set to all zeros. The 16 characters are:

1 Century, where O indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Length of entry. The length of thisrecord in the list.

Length of name. The number of bytes in the name of the semaphore, not including the terminating null
character.

Marked to be deleted. Whether the shared memory is marked to be deleted when the number attached
becomes zero. Possible values follow:

0 The shared memory segment is not marked for deletion.
1 The shared memory segment is marked for deletion.

Maximum size of all messages on queue. The maximum byte size of all messages that can be on the
gueue at one time.

Maximum value. The maximum value of the semaphore.

Name of the semaphor e. The null-terminated name of the semaphore.

Number attached. The number of times any thread has done a shmat() without doing a detach.
Number of messages on queue. The number of messages that are currently on the message queue.
Number of semaphores. The number of semaphores in the semaphore set.

Number of threadsto receive message. The number of threads that are currently waiting to receive a
message.

Number of threadsto send message. The number of threads that are currently waiting to send a message.

Number of waiting threads. The total number of threads that are waiting for this semaphoreto reach a
certain value.

Offset to name. The offset to where the name field begins.

Offset to waiting threads. The offset to where the fields containing waiting threads begin.

Owner. The name of the user profile that owns this IPC object.

Owner read permission. Whether the owner has read authority to the IPC object. Possible values follow:
0 The owner does not have read authority to the IPC object.
1 The owner has read authority to the IPC object.

Owner write permission. Whether the owner has write authority to the IPC object. Possible values follow:

0 The owner does not have write authority to the I1PC object.

1 Theowner has write authority to the IPC object.

Reserved. Anignored field.

Resize. Whether the shared memory object may be resized. Possible values follow:
0 The shared memory object may not be resized.
1 The shared memory object may be resized.

Segment size. The size of the shared memory segment.
Size of all messages on queue. The byte size of all of the messages that are currently on the queue.

Teraspace. Whether the shared memory object is attachable only to a process's teraspace. Possible values
follow:

0 The shared memory object is not attachable to a process's teraspace.

1 The shared memory object is attachable to a process's teraspace.

Title. Thetitle of the semaphore. Thetitle contains the 16 characters that are associated with the semaphore
when it is created.

Value. The value of the semaphore.

Waiting qualified job identifier. The job name, the job user profile, and the job number of athread
waiting on the semaphore. The 26 characters are:

1-10 Thejob name
11-20 The user profile
21-26 Thejob number

Waiting thread identifier. The thread ID of athread waiting on the semaphore.

Error Messages

Message I D
CPFOFO1 E
CPF2204 E
CPF24B4 E
CPF3C19E
CPF3C21 E
CPF3C90 E
CPF3CF1E
GUI0002 E
GUI0027 E
GUIO115E
GUIO118 E
GUIO135E
GUIO136 E

Error Message Text

*SERVICE authority isrequired to run this program.

User profile &1 not found.

Severe error while addressing parameter list.

Error occurred with receiver variable specified.

Format name & 1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

&2 isnot valid for length of receiver variable.

&lisnot valid for number of recordsto return.

Thelist has been marked in error. See the previous messages.
Starting record cannot be 0 when records have been requested.
Filter key information is not valid.

Filter information is not valid.

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

Open List of Semaphores (QPOZOLSM) API

Required Parameter Group:

1 Recelver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Listinformation Output Char(80)

4 Number of recordsto return Input Binary(4)

5 Format name Input Char(8)

6 Semaphore set identifier Input BINARY (4)
7 Error code /0 Char(*)

Default Public Authority: * USE

Threadsafe: No

The Open List of Semaphores (QPOZOLSM) API lets you generate alist of description information about
the semaphores within a semaphore set.

The QPOZOLSM API places the specified number of list entriesin the receiver variable. Y ou can access
additional records by using the Get List Entries (QGY GTLE) API. On successful completion of the

QPOZOLSM API, ahandleis returned in the list information parameter. Y ou may use this handle on
subsequent callsto the following APIs:

o Get List Entries (QGYGTLE)

« Find Entry Number in List (QGY FNDE)

« CloseList (QGYCLST)

The records returned by QPOZOL SM include an information status field that describes the completeness
and validity of the information. Be sure to check the information status field before using any other
information returned.

Authorities and Locks

Job Authority
Service special authority (* SERVICE) is needed to call this API.

For additional information on this authority, see the i Series Security Reference @ book.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is used to return the semaphore information that you requested.
Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable.
List information
OUTPUT; CHAR(80)

Information about the list of semaphores that were opened. For a description of the layout of this
parameter, see Format of Open List Information.

Number of recordstoreturn
INPUT; BINARY (4)

The number of recordsin thelist to put into the receiver variable.
Format name
INPUT; CHAR(8)

The format of the information to be returned in the receiver variable. Y ou must use the following
format name;

LSEMO0100 Thisformat isdescribed in LSEM0100 Format.

Semaphor e set identifier
INPUT; BINARY (4)
The semaphore set identifier of the semaphore set whose semaphores you would like the

information about. The semaphore set identifier can be obtained from calling either the semget(), or
QPOZOLIP API.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

LSEMO0100 Format

Thisformat name is used to return list information for the semaphores in a semaphore set. The following
table shows the information returned in each record in the recelver variable for the LSEM 0100 format. For
adetailed description of each field, see Field Descriptions.

| Offset

| Dec | Hex |Type |Fie|d

| 0 | 0 |BINARY(4) |Length of entry

| 4 | 4 |BINARY(4) [Number

[8 [8 |[BINARY(4) [|Value

| 12 | C |BINARY(4) |Displacement to wait values

| 16 | 10 |BINARY(4) |Number of waiters

| 20 | 14 |BINARY(4) |Sizeof waitinginformation

| 24 | 18 |BINARY(4) |Waitingfor zero

| 28 | 1C |BINARY(4) |waiting for positive value

| 32 | 20 |CHAR(26) |Last changed qualified job identifier
[58 [3A [CHAR(Q) [Reserved

| 60 | 3C |BINARY(4) |Processidentifier

Thesefields BINARY(4) [Wait value

repeat for each — —
waiter on the CHAR(26) Waiting qualified job identifier
\Slzlnaaef’hore CHAR(Q2) Reserved

Field Descriptions

Displacement to wait values. The offset in characters (bytes) from the beginning of the semaphore record

to the beginning of the array of wait values.

Last changed qualified job identifier. The job name, the job user profile, and the job number of the thread

that last changed the value of the semaphore. The 26 characters are:

1-10

The job name

11-20 The user profile

21-26 Thejob number

These fieldswill be all blanks if any of the following are true:
« No thread has changed the semaphore value.

« The process that changed the semaphore has ended.

« The process that changed the semaphore has not been initialized for signals.

Length of entry. The length of this semaphore record in the list.

Number. The semaphore number in the semaphore set.

Number of waiters. Thetotal number of threads that are waiting for this semaphore to reach a certain

value,

Processidentifier The processidentifier of the last thread to change the value of the semaphore. If no

thread has changed the semaphore value, thisfield will be zero.

Reserved. Anignored field.

Size of waiting information. The size, in bytes, of the record that is used to store information about a
thread that is waiting for a semaphore value.

Value. The current value of the semaphore.

Wait value. The value that athread is waiting for the semaphore to reach. If the valueis zero, the thread is
waiting for the semaphore value to equal zero. If the value is a positive number, the thread is waiting for the
semaphore value to be greater than or equal to thisvalue.

Waiting for positive value. The number of threads that are currently waiting for a semaphore value to
reach a positive number.

Waiting for zero. The number of threads that are currently waiting for the semaphore value to reach zero.

Waiting qualified job identifier. The job name, the job user profile, and the job number of the thread that
is currently waiting for the semaphore. The 26 characters are:

1-10 Thejob name

11-20 The user profile

21-26 Thejob number

Error Messages

Message | D Error Message Text

GUI0002 E &2 isnot valid for length of receiver variable.

GUI10027 E &lisnot valid for number of recordsto return.

GUIO115E Thelist has been marked in error. See the previous messages.
GUIO118 E Starting record cannot be 0O when records have been requested.
CPFOFO1 E *SERVICE authority is required to run this program.
CPF2204 E User profile &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19E Error occurred with receiver variable specified.

CPF3C21 E Format name & 1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1lE Error code parameter not valid.

CPFA988 E IPC object & 1 does not exist.

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

Retrieve an Interprocess Communication
Object (QPOZRIPC) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Identifier Input Binary(4)
5 Error code /0 Char(*)

Default Public Authority: * USE

Threadsafe: No

The Retrieve an Interprocess Communication Object (QPOZRIPC) API lets you generate detailed
information about a single interprocess communication (IPC) object. The object isidentified by the format
name and the identifier that is passed in.

The QPOZRIPC API places the information about the object in the receiver variable. The information that is
written to the receiver variable is dependent on the format name parameter.

Authorities and Locks

Job Authority
Service specia authority (* SERVICE) is needed to call this API.

For additional information on this authority, see the iSeries Security Reference @‘ book.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is used to return the I1PC object information that you requested.
Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. The minimum length is 8 bytes.
Format name
INPUT; CHAR(8)

The format of the information to be returned in the receiver variable. This parameter will determine

the object type (either message queues, semaphore sets, or shared memory) to retrieve the list for.
Y ou must use one of the following format names:

RSST0100 Thisformat is described in RSST0100 Format.

RMSQ0100 Thisformat isdescribed in RM SQ0100 Format.

RSHMO0100 Thisformat isdescribed in RSHM0100 Format.

Identifier
INPUT; BINARY (4)
The identifier of the IPC object that you would like to retrieve information about. This identifier is
returned from the APIs semget(), shmget(), msgget(), or QPOZOLIP.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RSST0100 Format

Thisformat name is used to return information for a single semaphore set. The following table shows the
information returned in the receiver variable for the RSST0100 format. For a detailed description of each
field, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

[8 | 8 |[BINARY(4) |identifier

[12 [C [BINARY(4) |Key

| 16 | 10 |BINARY(4) |Number of semaphores

[20 [14 [CHAR®) |Damaged

| 21 | 15 |CHAR(1) |Owner read permission

| 22 | 16 |CHAR(1) |Owner write permission

| 23 | 17 |CHAR() |Group read permission

| 24 | 18 |CHAR(1) |Group write permission

| 25 | 19 |CHAR()) |General read permission

| 26 | 1A |CHAR() |General write permission

| 27 | 1B |CHAR(1) |Authorized to delete

| 28 | 1C |CHAR(16) |Last semop() date and time
| 44 | 2C |CHAR(16) |Last administration change date and time
[60 | 3C [CHAR(0) |Owner

| 70 | 46 |CHAR(10) |Group owner

80
90

[50
[5A

[CHAR(10)
[CHAR(10)

|Creator
Creator's group
|

RMSQO0100 Format

This format name is used to return information about a single message queue. The following table shows
the information returned in the receiver variable for the RM SQO0100 format. For a detailed description of
each field, see Field Descriptions.

| Offset

’ Dec ’ Hex [Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

[4 [4 [BINARY(4) |Bytesavalable

[8 [8 |[BINARY(4) |[identifier

| 12 | C |BINARY(4) |Key

[16 [10 [CHAR®) |Damaged

| 17 | 11 |CHAR(1) |Owner read permission

| 18 | 12 |CHAR() |Owner write permission

| 19 | 13 |CHAR() |Group read permission

| 20 | 14 |CHAR(1) |Group write permission

| 21 | 15 |CHAR()) |General read permission

| 22 | 16 |CHAR() |General write permission

| 23 | 17 |CHAR(1) |Authorized to delete

| 24 | 18 |BINARY(4) |Number of messageson queue

| 28 | 1C |BINARY(4) |Sizeof al messages on queue

| 32 | 20 |BINARY(4) |Maximum sizeof all messageson queue
| 36 | 24 |BINARY(4) |Number of threads to receive message
| 40 | 28 |BINARY(4) |Number of threadsto send message

| 44 | 2C |CHAR(16) |Last msgrev() date and time

| 60 | 3C |CHAR(16) |Last msgsnd() date and time

| 76 | 4C |CHAR(16) |Last administration change date and time
[92 [5C [CHAR(0) |Owner

| 102 | 66 |CHAR(10) |Group owner

[112 [70 [CHAR(@0) [Creator

| 122 | 7A |CHAR(10) |Creator’'s group

| 132 | 84 |CHAR(26) |Last msgsnd() qualified job identifier
[158 [9E [CHAR(2) |Reserved

| 160 | AO |BINARY(4) |Last msgsnd() process identifier

| 164 | A4 |CHAR(26) |Last msgrev() qualified job identifier
[[100 [BE [CHAR®) |Reserved

| 192 | CO |BINARY(4) |Lastmsgrcv() process identifier

| 196 | C4 |BINARY(4) |Offset to messagetype

| 200 | C8 |BINARY(4) |Sizeof messageinformation record
| 204 | CC |BINARY(4) |Offsettowait type

| 208 | DO |BINARY(4) |Sizeof message receive record

[212 [D4 |[BINARY(4) [Offsettowaitsize

| 216 | D8 |BINARY(4) |Sizeof message send record
Thesefields BINARY (4) Message type

repeat for each

message on BINARY (4) Message size

queue.

Thesefields BINARY (4) Message wait type

repeat for each

tﬁfr)ead waiting to |CHAR(26) Message receive qualified job identifier
receive a

message. CHAR(2) Reserved

Thesefields |BINARY(4) |Messagewaitsize

repeat for each —_— —
thread waiting to |CHAR(26) |Message send qualified job identifier
send a message. |CHAR(2) |Rmvw

RSHMO0100 Format

Thisformat name is used to return information for a single shared memory object. The following table
shows the information returned in the receiver variable for the RSHM 0100 format. For a detailed
description of each field, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

[8 [8 [BINARY(4) |[Identifier

[12 [C [BINARY(4) |Key

| 16 | 10 |CHAR(1) |Damaged

| 17 | 11 |CHARQ) |Owner read permission

| 18 | 12 |CHAR(1) |Owner write permission
| 19 | 13 |CHAR(1) |Group read permission

| 20 | 14 |CHARQ) |Group write permission
| 21 | 15 |CHAR(1) |General read permission
| 22 | 16 |CHAR(1) |General write permission
[23 [17 [CHAR®) |[Makedto bedeleted

| 24 | 18 |CHAR(1) |Authorized to delete

| 25 | 19 |CHAR(1) | Teraspace

[26 [1A [CHAR®) |Resze

[27 [1B [CHAR®) |Reserved

[28 [IC [BINARY(4) |[Segmentsze

[32 [20 [BINARY(4) |Number attached

| 36 | 24 |CHAR(16) |Last shmat() date and time

| 52 | 34 |CHAR(16) |Last detach date and time

| 68 | 44 |CHAR(16) |Last administration change date and time
["8 [54 [CHAR({0) |Owner

| 94 | BE |CHAR(10) |Group owner

[104 [68 |[CHAR(10) |Creator

| 114 | 72 |CHAR(10) |Creator's group

| 124 | 7C |CHAR(26) |Last attach or detach qualified job identifier
[150 [96 [CHAR®) |Reserved

| 152 | 98 |BINARY(4) |Lastattach or detach processidentifier

| 156 | 9C |BINARY(4) |Offset to times attached

| 160 | AO |BINARY(4) |Number of attach entries

| 164 | A4 |BINARY(4) |Sizeof attach entry

Thesefields |BI NARY (4) |Times attached

:]iprﬁgtefro(;ftgﬁach [CHAR(26) [Attached qualified job identifier

entries. |CHAR(2) |Re£erved

Field Descriptions

Attached qualified job identifier. The job name, the job user profile, and the job number of ajob that is

attached to the shared memory segment. The 26 characters are:

1-10

The job name

11-20 The user profile

21-26 Thejob number

Authorized to delete. Thisvalue determines if the caller has the authority to delete this IPC object.

Possible values follow:

0 The current thread cannot delete the | PC abject.

1 The current thread can delete the |PC object.

Bytes available. The number of bytes of data available to be returned. All available datais returned if

enough space is provided.

Bytesreturned. The number of bytes of data returned.

Creator. The name of the user profile that created this |PC object.

Creator's group. The name of the group profile that created this IPC object. A special value can be
returned:

*NONE The creator does not have a group profile.

Damaged. Whether the IPC object has suffered internal damage. Possible values follow:
0 ThelPC object is not damaged.
1 ThelPC object is damaged.

General read permission. Whether any user other than the owner and group owner has read authority to
the I|PC object. Possible values follow:

0 Generad read authority is not allowed to the |PC object.
1 Genera read authority is allowed to the |PC object.

General write permission. Whether any user other than the owner and group owner has write authority to
the IPC object. Possible values follow:

0 Genera write authority is not allowed to the IPC object.

1 Genera write authority is allowed to the IPC object.

Group owner. The name of the group profile that owns this |PC object. A special value can be returned:

*NONE The IPC object does not have a group owner.

Group read permission. Whether the group owner has read authority to the |PC object. Possible values
follow:

0 Thegroup owner does not have read authority to the |PC object.

1 Thegroup owner has read authority to the IPC object.

Group write per mission. Whether the group owner has write authority to the |PC object. Possible values
follow:

0 The group owner does not have write authority to the IPC object.

1 Thegroup owner has write authority to the |PC object.

Identifier. The unique IPC object identifier.
Key. The key of the IPC object. If thisvalueis zero, this IPC object has no key associated with it.

Last administration change date and time. The date and time of the last change to the IPC object for the
owner, group owner, or permissions. The 16 characters are:

1 Century, where O indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Last attach or detach processidentifier. The processidentifier of the thread that performed the last
successful attachment or detachment from the shared memory segment. If no thread has attached or
detached from the shared memory segment, this field will be zero.

Last attach or detach qualified job identifier. The job name, the job user profile, and the job number of
the thread that performed the last successful attachment or detachment from the shared memory segment.
The 26 characters are:

1-10 Thejob name
11-20 The user profile
21-26 Thejob number

These fieldswill be all blanksif any of the following are true:
» No thread has performed an attachment or detachment on the shared memory.

« Thelast processthat did an attachment or detachment on the shared memory has ended.

o Thelast process that did an attachment or detachment on the shared memory isnot initialized for
signals.

Last detach date and time. The date and time of the last detachment from the shared memory segment. If
no thread has performed a successful detachment, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Last msgrev() date and time. The date and time of the last successful msgrev() call. If no thread has
performed a successful msgrev() call, this value will be set to al zeros. The 16 characters are:

1 Century, where O indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Last msgrev() processidentifier. The processidentifier of the thread that performed the last successful
msgrev(). If no thread has done a msgrev(), thisfield will be zero.

Last msgrev() qualified job identifier. The job name, the job user profile, and the job number of the
thread that performed the last successful msgrev(). The 26 characters are:

1-10 Thejob name
11-20 The user profile
21-26 Thejob number

These fieldswill be all blanks if any of the following are true:
« No thread has received a message on this message queue.

« Thelast process to receive a message has ended.

« Thelast process to receive a message has not been initialized for signals.

L ast msgsnd() date and time. The date and time of the last successful msgsnd() call. If no thread has
performed a successful msgsnd() call, this value will be set to al zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Last msgsnd() process identifier. The processidentifier of the thread that performed the last successful
msgsnd(). If no thread has done a msgsnd(), this field will be zero.

Last msgsnd() qualified job identifier. The job name, the job user profile, and the job number of the
thread that performed the last successful msgsnd(). The 26 characters are:

1-10 Thejob name
11-20 The user profile
21-26 Thejob number

These fieldswill be all blanks if any of the following aretrue:
« No thread has sent a message to this message queue.

« Thelast processto send a message has ended.

« Thelast process to send a message has not been initialized for signals.

Last semop() date and time. The date and time of the last successful semop() call. If no thread has
performed a successful semop() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.
2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Timeof day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Last shmat() date and time. The date and time of the last successful shmat(). If no thread has performed a
successful shmat() call, this value will be set to al zeros. The 16 characters are:

1 Century, where O indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.
14-16 Milliseconds.

Marked to be deleted. Whether the shared memory is marked to be deleted when the number attached
becomes zero. Possible values follow:

0 The shared memory segment is not marked for deletion.
1 The shared memory segment is marked for deletion.

Maximum size of all messages on queue. The maximum byte size of all messages that can be on the
gueue at one time.

M essage receive qualified job identifier. The job name, the job user profile, and the job number of the
thread that is waiting to receive a message. The 26 characters are:

1-10 Thejob name
11-20 The user profile
21-26 Thejob number

M essage send qualified job identifier. The job name, the job user profile, and the job number of the
thread that is waiting to send a message. The 26 characters are:

1-10 Thejob name
11-20 The user profile
21-26 Thejob number

M essage size. The message size of amessage that is currently on the queue.

M essage type. The message type of a message that is currently on the queue.

M essage wait size. The message size of a message that athread is currently waiting to put on the queue.
M essage wait type. The message type that athread is currently waiting to receive.

Number attached. The number of times any thread has done a shmat() without doing a detach. One
process can be attached multiple times to the same shared memory segment.

Number of attach entries. The number of entriesin the variable length section of RSHM0100.

Number of threadsto receive message. The number of threads that are currently waiting to receive a
message.

Number of threadsto send message. The number of threads that are currently waiting to send a message.
Number of messages on queue. The number of messages that are currently on the message queue.
Number of semaphores. The number of semaphoresin the semaphore set.

Offset to message type. The offset in characters (bytes) from the beginning of the RM SQ0100 record to
the message type field.

Offset to times attached. The offset in characters (bytes) from the beginning of the RSHM 0100 record to
the times attached field.

Offset to wait size. The offset in characters (bytes) from the beginning of the RM SQO0100 record to the
wait sizefield.

Offset to wait type. The offset in characters (bytes) from the beginning of the RM SQ0100 record to the
wait type field.

Owner. The name of the user profile that ownsthis |PC object.

Owner read per mission. Whether the owner has read authority to the IPC object. Possible values follow:
0 The owner does not have read authority to the |PC aobject.
1 The owner has read authority to the IPC object.

Owner write permission. Whether the owner has write authority to the IPC object. Possible values follow:
0 The owner does not have write authority to the IPC object.

1 The owner has write authority to the IPC object.

Reserved. Anignored field.

Resize. Whether the shared memory object may be resized. Possible values follow:
0 The shared memory object may not be resized.
1 The shared memory object may be resized.

Segment size. The size of the shared memory segment.

Size of all messages on queue. The size, in bytes, of al of the messages that are currently on the queue.
Size of attach entry. The size, in bytes, of each attach entry in the array of attach entries.

Size of message infor mation record. The size, in bytes, of each message information record.

Size of message receiverecord. The size, in bytes, of the record that is used to store information about a
thread waiting to receive a message.

Size of message send record. The size, in bytes, of the record that is used to store information about a
thread waiting to send a message.

Teraspace. Whether the shared memory object is attachable only to a process's teraspace. Possible values
follow:

0 The shared memory object is not attachable to a process's teraspace.

1 The shared memory object is attachable to a process's teraspace.

Times attached. The number of times that this process is attached to the shared memory.

Error Messages

GUI0002 E
CPFOFO1 E
CPF24B4 E
CPF3CI19E
CPF3C21 E
CPF3C90 E
CPF3CF1 E
CPFA988 E

&2 isnot valid for length of receiver variable.
*SERVICE authority is required to run this program.
Severe error while addressing parameter list.

Error occurred with receiver variable specified.
Format name & 1 is not valid.

Literal value cannot be changed.

Error code parameter not valid.

IPC object &1 does not exist.

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

semctl()-Perform Semaphore Control
Operations

Syntax

#i ncl ude <sys/sem h>

int senctl(int senid, int sermum int cnd, ...);

Service Program Name: QPOZCPA
Default Public Authority: * USE

Threadsafe: Yes

The semctl() function provides semaphore control operations as specified by cmd on the semaphore
specified by semnum in the semaphore set specified by semid.

Parameters

semid

(Input) Semaphore set identifier, a positive integer. It is created by the semget() function and used
to identify the semaphore set on which to perform the control operation.

semnum

cmd

(Input) Semaphore number, a non-negative integer. It identifies a semaphore within the semaphore
set on which to perform the control operation.

(Input) Command, the control operation to perform on the semaphore. See below for details.

(Input/output) An optional fourth parameter whose type depends on the value of cmd. For acmd
value of SETVAL, this parameter must be an integer. For acmd value of IPC_STAT or IPC_SET,
this parameter must be a pointer to a semid_ds structure. For acmd value of GETALL or SETALL,
this parameter must be a pointer to an array of type unsigned short. For all other values of cmd, this
parameter is not required.

Note: Before Version 3 Release 6 of OS/400, the Common Programming APIs (CPA) Toolkit/400
support for semctl() required the use of the semun structure for this fourth parameter. With support
for semaphores in OS/400, use of semun is not required and is not recommended when passing an
integer value. If the optional fourth parameter is an integer, |PC expectsit to directly follow the
third parameter in storage. However, if the semun structure is used to pass the integer value, the
value is aligned on a 16-byte boundary, which might not directly follow the third parameter.
Therefore, the value used by IPC for the fourth parameter might not be the value intended by the
caller, and unexpected results could occur.

The cmd parameter can have one of the following values:

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

GETALL

SETALL

IPC_STAT

IPC_SET

IPC_RMID

Return the semval value in the semaphore_t data structure associated with the specified
semaphore. This command requires read permission.

Set the semval value in the semaphore_t data structure associated with the specified
semaphore to the integer value found in the fourth parameter and clear the associated
per-thread semaphore adjustment value. This command requires write permission.

Return the sempid value in the semaphore _t data structure associated with the specified
semaphore. Thisvaue isthe process ID of the last thread to operate on the specified
semaphore. This command requires read permission.

Return the semncnt value in the semaphore _t data structure associated with the specified
semaphore. Thisvalue isthe number of threads waiting for the specified semaphore's value
to increase. This command requires read permission.

Return the semzent value in the semaphore_t data structure associated with the specified
semaphore. Thisvalue isthe number of threads waiting for the specified semaphore's value
to reach zero. This command requires read permission.

Return the semval value in the semaphore t data structure associated with each semaphore
in the specified semaphore set. The semval values will be returned in the array pointed to
by the fourth parameter, which will be a pointer to an array of type unsigned short. This
command requires read permission.

Set the semval value in the semaphore _t data structure associated with each semaphore in
the specified semaphore set and clear all associated per-thread semaphore-adjustment
values. The semval values are set to the values contained in the array pointed to by the
fourth parameter, which is a pointer to an array of type unsigned short. This command
reguires write permission.

Place the current value of each member of the semid_ds data structure associated with
semid into the structure pointed to by the fourth parameter, which is a pointer to a
semid_ds structure. This command requires read permission.

Set the value of the following members of the semid_ds data structure associated with
semid to the corresponding value found in the structure pointed to by the fourth parameter,
which is apointer to asemid_ds structure:

o Sem perm.uid
« Sem_perm.gid

« Sem_perm.mode

IPC_SET can be performed only by athread with appropriate privileges or one that has an
effective user ID equal to the value of sem_perm.cuid or sem_perm.uid in the semid_ds
data structure associated with semid.

Remove the semaphore identifier specified by semid from the system and destroy the set of
semaphores and semid_ds data structure associated with it. IPC_RMID can be performed
only by athread with appropriate privileges or one that has an effective user ID equal to
the value of sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated
with semid.

Authorities

Figure 1-11. Authorization Required for semctl()

Object Referred to Authority Required | errno
Semaphore, get the value of (cmd = GETVAL) Read EACCES
Semaphore, set the value of (cmd = SETVAL) Write EACCES
Semaphore, get last process to operate on (cmd = GETPID) Read EACCES
Semaphore, get number of threads waiting for value to increase Read EACCES
(cmd = GETNCNT)

Semaphore, get number of threads waiting for value to reach zero Read EACCES
(cmd = GETZCNT)

Semaphore set, get value of each semaphore (cmd = GETALL) Read EACCES
Semaphore set, set value of each semaphore (cmd = SETALL) Write EACCES
Semaphore set, retrieve state information (cmd = IPC_STAT) Read EACCES
Semaphore set, set state information (cmd = IPC_SET) See Note EPERM
Semaphore set, remove (cmd = IPC_RMID) See Note EPERM

Note: To set semaphore set information or to remove a semaphore set, the thread must be the owner or

creator of the semaphore set, or have appropriate privileges.

Return Value

value semctl() was successful. Depending on the control operation specified in cmd, semctl() returns

the following values:

GETVAL The value of the specified semaphore.

GETPID The process ID of the last thread that performed a semaphore
operation on the specified semaphore.

GETNCNT The number of threads waiting for the value of the specified

semaphore to increase.

GETZCNT The number of threads waiting for the value of the specified

semaphore to reach zero.

For all other valuesof cmd: ThevalueisO.

-1 semctl() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semctl() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.
Operation permission is denied to the calling thread.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The vaue of semid corresponds to a semaphore set that has been marked as damaged by a previous
semaphore operation.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:
o Thevalue of semid isnot avalid semaphore identifier.

o Thevalue of semnum islessthan zero or greater than or equal to sem_nsems.

o Thevaue of cmd is not avalid command.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

The parameter cmd isequal to IPC_RMID or IPC_SET and both of the following are true:
o the calling thread does not have appropriate privileges.

0 the effective user ID of the calling thread is not equal to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with semid.

[ERANGE]
A range error occurred.

The value of an argument is too small, or aresult too large.

The parameter cmd is equal to SETVAL, and the value to which semval isto be set is greater than
the system-imposed maximum.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

None.

Usage Notes

"Appropriate privileges' is defined to be * ALLOBJ specia authority. If the user profile under which the
thread is running does not have * ALLOBJ special authority, the thread does not have appropriate
privileges.

Related Information

o The <sys/sem.h> file (see Header Files for UNIX-Type Functions)

o semget()-Get Semaphore Set with Key

« semop()-Perform Semaphore Operations on Semaphore Set

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

semget()-Get Semaphore Set with Key

Syntax

#i ncl ude <sys/sem h>
#i ncl ude <sys/stat.h>

int senget (key_ t key, int nsens, int senflg);

Service Program Name: QPOZCPA
Default Public Authority: *USE

Threadsafe: Yes

The semget() function returns the semaphore ID associated with the specified semaphore key.

Parameters

key
(Input) Key associated with the semaphore set. Specifying akey of IPC_PRIVATE guarantees that
aunique semaphore set is created. A key also can be generated by the caller or by calling the ftok()
function.

nsems

(Input) Number of semaphores in the semaphore set. The number of semaphoresin the set cannot
be changed after the semaphore set is created. If an existing semaphore set is being accessed, nsems
can be zero.

semflg
(Input) Operations and permission flags.

The semflg parameter valueis either 0, or is obtained by performing an OR operation on one or more of the
following constants:

S IRUSR Permits the creator of the semaphore set to read it.

S IWUSR Permits the creator of the semaphore set to write it.

S IRGRP Permits the group associated with the semaphore set to read it.

S IWGRP Permits the group associated with the semaphore set to write it.

S IROTH Permits others to read the semaphore set.

S IWOTH Permits others to write the semaphore set.

IPC_CREAT Creates the semaphore set if it does not already exist.

IPC_EXCL Causes semget() to fail if IPC_CREAT isalso set and the semaphore set already exists.

Authorities

Figure 1-12. Authorization Required for semget()

Object Referred to Authority Required | errno
Semaphore set to be created None None
Existing semaphore set to be accessed | See Note EACCES

Note: If the thread is accessing a semaphore set that already exists, the mode specified in the last 9 bits of
semflg must be a subset of the mode of the existing semaphore set.

Return Value

value semget() was successful. The value returned is the semaphore ID associated with the key
parameter.

-1 semget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semget() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

A semaphore identifier exists for the parameter key, but operation permission as specified by the
low-order 9 bits of semflg would not be granted.
[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The vaue of key corresponds to a semaphore set that has been marked as damaged by a previous
semaphore operation.

[EEXIST]
File exists.
Thefile specified already exists and the specified operation requiresthat it not exist.
The named file, directory, or path already exists.

A semaphore identifier exists for the parameter key, but ((semflg & IPC_CREAT) & & (semflg &
IPC_EXCL)) ishot zero. (& isabitwise AND; && isalogical AND.)

[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:
o Thevalue of nsemsis either less than or equal to zero or greater than the system-imposed
limit.

o A semaphore identifier exists for the parameter key, but the number of semaphoresin the
set associated with it is less than nsems and nsems is not zero.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

A semaphore identifier does not exist for the parameter key, and (semflg & IPC_CREAT) isequa
to zero.

[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

A semaphore identifier isto be created but the system-imposed limit on the maximum number of
allowed semaphores system-wide would be exceeded.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. semget() creates a semaphore set and its associated semid_ds data structure if one of the following
istrue:

o The semaphore key isIPC_PRIVATE.
o A semaphore set is not already associated with the semaphore key, and the IPC_CREAT
flagis set.
2. When the semaphore set is created, the semid_ds data structure associated with the semaphore set is

initialized as follows:

o Thesem_perm.cuid and sem_perm.uid values are set to the current user ID (uid) of the
thread.

o Thesem_perm.cgid and sem_perm.gid values are set to the current group ID (gid) of the
thread.

o Thesem_perm.mode s set according to the permissions specified in semflg.
o The number of semaphores, sem_nsems, is set to the nsems parameter.
o sem_otimeis set to zero and sem_ctime is set to the current time.

3. A samctl() call specifying acmd parameter of SETALL should be used to initialize the semaphore
values after the semaphore set is created.

Related Information

« The<sys/sem.h> file (see Header Files for UNIX-Type Functions)

« ftok()--Generate |IPC Key from File Name

« semctl()-Perform Semaphore Control Operations

« semop()-Perform Semaphore Operations on Semaphore Set

Example

For an example of using this function, see Using Semaphores and Shared Memory in Appendix A,
Examples.

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

semop()-Perform Semaphore Operations on
Semaphore Set

Syntax

#i ncl ude <sys/sem h>

int senop(int semd, struct senmbuf *sops,
size_ t nsops);

Service Program Name: QPOZCPA
Default Public Authority: * USE

Threadsafe: Yes

The semop() function performs operations on semaphores in a semaphore set. These operations are
supplied in auser-defined array of operations.

Parameters
semid
(Input) Semaphore set identifier.

sops
(Input) Pointer to array of semaphore operation (senbuf) structures.

Nnsops
(Input) Number of serbuf structuresin sops array.

Following is an example of what one of the senbuf structures should look like:

struct senbuf { /* semaphore operation structure */
unsi gned short sem num /* semaphore nunber */
short sem op; /* semaphore operation */
short semflg; /* operation flags SEM UNDO and | PC_NOMI T */
}
Authorities

Figure 1-13. Authorization Required for semop()

Object Referred to Authority Required | errno

Semaphore, sem_op is negative | Write EACCES

Semaphore, sem_op ispositive | Write EACCES

Semaphore, sem_op is zero Read ’ EACCES ‘

Return Value

0 semop() was successful.

-1 semop() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semop() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.
Operation permission is denied to the calling thread.

[EAGAIN]
Operation would have caused the process to be suspended.
The operation would result in suspension of the calling thread but (sem_flg & IPC_NOWAIT) is
not zero. (& isabitwise AND.)

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The vaue of semid corresponds to a semaphore set that has been marked as damaged by a previous
semaphore operation.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.
[EFBIG]
Object istoo large.

The size of the abject would exceed the system allowed maximum size.

The value of sem numislessthan O or greater than or equal to the number of semaphores in the set
associated with semid.
[EIDRM]

ID has been removed.

The semaphore identifier semid has been removed from the system.
[EINTR]
Interrupted function call.

The semop() function was interrupted by a signal while the thread wasin await state.
[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

The value of semid is not avalid semaphore identifier.
[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

The limit on the number of individual threads requesting a SEM_UNDO would be exceeded.
[ERANGE]
A range error occurred.

The value of an argument istoo small, or aresult too large.

An operation would cause a semval to overflow the system-imposed limit, or an operation would
cause a semaphore adjustment value to overflow the system-imposed limit.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. Each semaphore operation specified by the sops array is performed on the semaphore set specified
by semid. The entire array of operationsis performed atomically; no other thread will operate on
the semaphore set until al of the operations are done or it is determined that they cannot be done. If
the entire set of operations cannot be performed, none of the operations are done, and the thread
waits until all of the operations can be done.

2. semop() changes each semaphore specified by sem_numaccording to the value of sem op:

o If sem op ispositive, semop() increments the value of the semaphore and awakens any
threads waiting for the semaphore to increase. This corresponds to releasing resources
controlled by the semaphore.

o If sem op isnegative, semop() attempts to decrement the value of the semaphore. If the
result would be negative, it waits for the semaphore value to increase. If the result would be
positive, it decrements the semaphore. If the result would be zero, it decrements the
semaphore and awakens any threads waiting for the semaphore to be zero. This
corresponds to the allocation of resources.

o If sem op iszero, the thread waits for the semaphore's value to be zero.

3. If IPC_NOWAIT is set and the operation cannot be completed, semop() returns an [EAGAIN]
error instead of causing the thread to wait.

4. 1f SEM_UNDO is set, semop() causes |PC to reverse the effect of this semaphore operation when
the thread ends, effectively releasing the resources or request for resources controlled by the
semaphore. This vaue is known as the semaphore adjustment val ue.

5. A semop() isinterruptible by an asynchronous signal when the thread is waiting for a semaphore to
reach avalue.

Related Information

o The <sys/sem.h> file (see Header Files for UNIX-Type Functions)

o semget()-Get Semaphore Set with Key

« semctl()-Perform Semaphore Control Operations

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

sem_close()-Close Named Semaphore

Syntax

#i ncl ude <semaphore. h>

int semclose(semt * sem;

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_close() function closes a named semaphore that was previously opened by athread of the current
process using sem_open() or sem_open_np(). The sem_close() function frees system resources associated
with the semaphore on behalf of the process. Using a semaphore after it has been closed will result in an
error. A semaphore should be closed when it is no longer used. If asem_unlink() was performed
previously for the semaphore and the current process holds the last reference to the semaphore, then the
named semaphore will be deleted and removed from the system.

Parameters

sem
(Input) A pointer to an opened named semaphore. This semaphore is closed for this process.

Authorities

No authorization is required. Authorization is verified during sem_open().

Return Value

0 sem_close() was successful.

-1 sem_close() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_close() is hot successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The sem parameter is not avalid semaphore.

Error Messages

None.

Related Information

« The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o sem getvalue()-Get Semaphore Value

« sem open()-Open Named Semaphore

« sem open np()-Open Named Semaphore with Maximum Vaue

o sem post()-Post to Semaphore

¢ Sem post np()-Post Vaue to Semaphore

o« sem trywait()-Try to Decrement Semaphore

« sem unlink()-Unlink Named Semaphore

o sem wait()-Wait for Semaphore

o sem wait np()-Wait for Semaphore with Timeout

Example

The following example opens a named semaphore with an initial value of 10 and then closesiit.

#i ncl ude <semaphore. h>
mai n() {
semt * my_semaphore;
int rc;

nmy_semaphore = sem open("/ nysemaphore",
O CREAT, S IRUSR | S _IWISR,
10);

sem cl ose(nmy_semaphore);

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_destroy()-Destroy Unnamed Semaphore

Syntax

#i ncl ude <semaphore. h>

int semdestroy(semt * sem;

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_destroy() function destroys an unnamed semaphore that was previously initialized using
sem_init() or sem_init_np(). Any threads that have blocked from calling sem_wait() or sem_wait_np() on
the semaphore will unblock and return an [EINVAL] or [EDESTROY ED] error.

Parameters

sem
(Input) A pointer to an initialized unnamed semaphore. The semaphore is destroyed.

Authorities

None

Return Value

0 sem_destroy() was successful.

-1 sem_destroy() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_destroy() is hot successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

The semaphore is being destroyed by another thread.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The sem parameter is not avalid semaphore.

Error Messages

None.

Related

Information

« The <semaphore.h> file (see Header Files for UNIX-Type Functions)

e SEM

getvalue()-Get Semaphore Vaue

init()-Initialize Unnamed Semaphore

init np()-Initialize Unnamed Semaphore with Maximum Vaue

post()-Post to Semaphore

post np()-Post Vaue to Semaphore

trywait()-Try to Decrement Semaphore

unlink()-Unlink Named Semaphore

wait()-Wait for Semaphore

wait np()-Wait for Semaphore with Timeout

Example

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of
the current process and sets its value to 10. The semaphore is then destroyed using sem_destr oy().

#i ncl ude <semaphore. h>

mai n() {
semt ny_semaphore;
int rc;
rc sem.init(&my_semaphore, 0, 10);

rc sem dest roy(&y _senaphore);

}

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_getvalue()-Get Semaphore Value

Syntax

#i ncl ude <semaphore. h>

int semgetvalue(semt * sem int * value);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_getvalue() function retrieves the value of a named or unnamed semaphore. If the current value of
the semaphore is zero and there are threads waiting on the semaphore, a negative value isreturned. The
absolute value of this negative value is the number of threads waiting on the semaphore.

Parameters
sem
(Input) A pointer to an initialized unnamed semaphore or an opened named semaphore.

value
(Output) A pointer to the integer that contains the value of the semaphore.

Authorities

None

Return Value

0 sem_getvalue() was successful.

-1 sem_getvalue() was not successful. The errno variableis set to indicate the error.

Error Conditions

If sem_getvalue() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Error Messages

None.

Related Information

« The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o sem close()-Close Named Semaphore

o« Sem destroy()-Destroy Unnamed Semaphore

o sem init()-Initialize Unnamed Semaphore

« sem init np()-Initialize Unnamed Semaphore with Maximum Value

« sem open()-Open Named Semaphore

« sem open np()-Open Named Semaphore with Maximum Vaue

o sem post()-Post to Semaphore

« Sem post np()-Post Vaue to Semaphore

o« sem trywait()-Try to Decrement Semaphore

« sem unlink()-Unlink Named Semaphore

o sem wait()-Wait for Semaphore

o sem wait np()-Wait for Semaphore with Timeout

Example

The following example retrieves the value of a semaphore before and after it is decremented by
sem_wait().

#i ncl ude <stdi o. h>
#i ncl ude <semaphore. h>
mai n() {

semt ny_semaphore;

i nt val ue;

sem.init(&ry_semaphore, 0, 10);

sem get val ue(&y_semaphore, &val ue);

printf("The initial value of the semaphore is %\ n", value);

sem wai t (&ry_semaphore) ;

sem get val ue(&y_semaphore, &val ue);

printf("The value of the senaphore after the wait is %\ n", value);

Output:

The initial value of the semaphore is 10
The val ue of the semaphore after the wait is 9

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_init()-Initialize Unnamed Semaphore

Syntax

#i ncl ude <semaphore. h>

int seminit(semt * sem int shared,
unsi gned int val ue);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_init() function initializes an unnamed semaphore and setsitsinitial value. The maximum value of
the semaphoreis set to SEM_VALUE_MAX. Thetitle for the semaphore is set to the character
representation of the address of the semaphore. If an unnamed semaphore already exists at sem, then it will
be destroyed and a new semaphore will be initialized.

Parameters

sem

(Input) A pointer to the storage of an uninitialized unnamed semaphore. The pointer must be
aligned on a 16-byte boundary. This semaphoreisinitialized.

shared

(Input) An indication to the system of how the semaphore is going to be used. A value of zero
indicates that the semaphore will be used only by threads within the current process. A nonzero
value indicates that the semaphore may be used by threads from other processes.

value
(Input) The value used to initialize the value of the semaphore.

Authorities

None

Return Value

0 sem_init() was successful.

-1 sem_init() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_init() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value parameter is greater than SEM_VALUE_MAX.
[ENOSPC]
No space available.

System semaphore resources have been exhausted.

Error Messages

None.

Related Information
» The<semaphore.h> file (see)

o sem destroy()-Destroy Unnamed Semaphore

o sem getvalue()-Get Semaphore Value

o sem init np()-Initialize Unnamed Semaphore with Maximum Vaue

o sem post()-Post to Semaphore

¢ Sem post np()-Post Vaue to Semaphore

o« sem trywait()-Try to Decrement Semaphore

« sem wait()-Wait for Semaphore

« sem wait np()-Wait for Semaphore with Timeout

Example

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of
the current process. Itsvalueis set to 10.

#i ncl ude <semaphore. h>
mai n() {
semt my_semaphore;
int rc;

rc = sem.init(&rny_semaphore, 0, 10);

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_init_np()-Initialize Unnamed Semaphore
with Maximum Value

Syntax

#i ncl ude <semaphore. h>
int seminit_np(semt * sem int shared,

unsi gned int val ue,
semattr _np_t * attr);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_init_np() function initializes an unnamed semaphore and setsitsinitial value. The sem_init_np()
function uses the attr parameter to set the maximum value and title of the semaphore. If an unnamed
semaphore already exists at sem, then it will be destroyed and a new semaphore will beinitialized.

Parameters

sem

(Input) A pointer to the storage of an uninitialized unnamed semaphore. The pointer must be
aligned on a 16-byte boundary. This semaphoreisinitialized.

shared

(Input) An indication to the system of how the semaphore is going to be used. A value of zero
indicates that the semaphore will be used only by threads within the current process. A nonzero
value indicates that the semaphore may be used by threads from other processes.

value
(Input) The value used to initialize the value of the semaphore.

attr
(Input) Attributes for the semaphore.

The members of the sem_attr_np_t structure are as follows.
unsigned int reserved1[1] A reserved field that must be set to zero.

unsigned int maxvalue The maximum value that the semaphore may obtain. maxvalue must
be greater than zero. If asem_post() or sem_post_np() operation
would cause the value of a semaphore to exceed its maximum value,
the operation will fail, returning EINVAL.

unsigned int reserved2[2] A reserved field that must be set to zero.

char title[16] Thettitle of the semaphore. Thetitle isanull-terminated string that
contains up to 16 bytes. Any bytes after the null character are
ignored. Thetitleis retrieved using the Open List of Interprocess
Communication Objects (QPOZOLIP) API.

void * reserved3| 2] A reserved field that must be set to zero.

Authorities

None

Return Value

0 sem_init_np() was successful.

-1 sem_init_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_init_np() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value parameter is greater than the maxvalue field of the attr parameter.
The maxvalue field of the attr parameter is greater than SEM_VALUE_MAX.
The maxvalue field of the attr parameter is equal to zero.

The reserved fields of the attr argument are not set to zero.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

System semaphore resources have been exhausted.

Error Messages

None.

Related Information

» The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o sem destroy()-Destroy Unnamed Semaphore

o sem getvalue()-Get Semaphore Value

o sem init()-Initialize Unnamed Semaphore

o sem post()-Post to Semaphore

« sem post np()-Post Vaueto Semaphore

o« sem trywait()-Try to Decrement Semaphore

« sem wait()-Wait for Semaphore

o sem wait np()-Wait for Semaphore with Timeout

Example

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of
the current process and sets its value to 10. The maximum value and title of the semaphore are set to 10 and
"MY SEM".

#i ncl ude <semaphore. h>
mai n() {
semt my_semaphore;
semattr_np_t attr;
int rc;

menset (&attr, 0, sizeof(attr));

attr. maxval ue = 10;

strcpy(attr.title, "MYSEM);

rc = seminit_np(&mwy_semaphore, 0, 10, &attr);

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_open()--Open Named Semaphore

Syntax

#i ncl ude <semaphore. h>

semt * semopen(const char *nane, int oflag, ...);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_open() function opens a named semaphore, returning a semaphore pointer that may be used on
subsequent callsto sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(),
sem_getvalue(), and sem_close(). When a semaphore is being created, the parameters mode and value must
be specified on the call to sem_open(). If a semaphore is created, then the maximum value of the
semaphoreisset to SEM_VALUE MAX and the title of the semaphore is set to the last 16 characters of
the name.

If sem_open() is called multiple times within the same process using the same name, sem_open() will
return a pointer to the same semaphore, as long as another process has not used sem_unlink() to unlink the
semaphore.

If sem_open() is called from a program using data model LL P64, the returned semaphore pointer must be
declaredasasem t*_ ptrl28.

Parameters

name

(Input) A pointer to the null-terminated name of the semaphore to be opened. The name should
begin with aslash (/') character. If the name does not begin with adash (/') character, the system
adds a slash to the beginning of the name.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

The nameis added to a set of namesthat is used only by named semaphores. The name has no
relationship to any file system path names. The maximum length of the nameis
SEM_NAME_MAX.

See QlgSem_open()--Open Named Semaphore (using NL S-enabled path name) for a description
and an example of supplying the namein any CCSID.

oflag
(Input) Option flags.

The oflag parameter valueis either zero or is obtained by performing an OR operation on one or
more of the following constants:

'0x0008' or O_CREAT

'0x0010" or O_EXCL

mode
(input) Permission flags.

Creates the named semaphore if it does not already exist.

Causes sem_open() to fail if O_CREAT is also set and the named
semaphore aready exists.

The mode parameter valueis either zero or is obtained by performing an OR operation on one or

more of the following list

of constants. For another process to open the semaphore, the process's

effective UIDd must be able to open the semaphore in both read and write mode.

'0x0100' or S IRUSR

'0x0080" or S IWUSR

'0x0020" or S IRGRP

'0x0010' or S IWGRP

'0x0004' or S IROTH

'0x0002' or S IWOTH

value

Permits the creator of the named semaphore to open the semaphorein
read mode.

Permits the creator of the named semaphore to open the semaphorein
write mode.

Permits the group associated with the named semaphore to open the
semaphore in read mode.

Permits the group associated with the named semaphore to open the
semaphore in write mode.

Permits others to open the named semaphore in read mode.

Permits others to open the named semaphore in write mode.

(Input) Initial value of the named semaphore.

Authorities

Authorization required for sem_open()

Object Referred to

Authority Required | errno

Named semaphore to be created

None None

Existing named semaphore to be accessed | *RW EACCES

Return Value

value sem_open() was successful. The value returned is a pointer to the open named
semaphore.

SEM_FAILED sem_open() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_open() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

[EEXIST]
Semaphore exists.

A named semaphore exists for the parameter name, but O_CREAT and O_EXCL are both set in
oflag.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value parameter is greater than SEM_VALUE_MAX.
[ENAMETOOLONG]
The name istoo long. The nameislonger than the SEM_NAME_MAX characters.

[ENOENT]
No such path or directory.
The name specified on the sem_open() call does not refer to an existing named semaphore and
O_CREAT was not set in oflag.
[ENOSPC]
No space available.
The regquested operations required additional space on the device and there is no space left. This

also could be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

System semaphore resources have been exhausted.

Error Messages

None.

Related Information

« The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o QlgSem open() Open Named Semaphore (using NL S-enabled path name)
o sem close()--Close Named Semaphore

o sem getvalue()--Get Semaphore Vaue

« sem _open np()--Open Named Semaphore with Maximum Value

o sem_post()--Post to Semaphore

« sem post_np()--Post Value to Semaphore

o sem trywait()--Try to Decrement Semaphore

« sem unlink()--Unlink Named Semaphore

« sem wait()--Wait for Semaphore

o sem wait _np()--Wait for Semaphore with Timeout

Example

The following example opens the named semaphore "/mysemaphore” and creates the semaphore with an
initial value of 10 if it does not already exist. If the semaphore is created, the permissions are set such that
only the current user has access to the semaphore.

#i ncl ude <semaphore. h>
mai n() {
semt * my_semaphore;
int rc;

my_semaphore = sem open("/ nmysemaphore",
O CREAT, S IRUSR | S IWSR, 10);

API introduced; V4R4

Top | UNIX-Type APIs| APIs by category

sem_open_np()--Open Named Semaphore with
Maximum Value

Syntax

#i ncl ude <semaphore. h>
semt * semopen_np(const char *name, int oflag,

node_t node, unsigned int val ue,
semattr _np_t * attr);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_open_np() function opens a named semaphore, returning a semaphore pointer that may be used
on subsequent callsto sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(),
sem_getvalue(), and sem_close(). If anamed semaphore is being created, the parameters mode, value, and
attr are used to set the permissions, value, and maximum value of the created semaphore.

If sem_open_np() is called multiple times within the same process using the same name, sem_open_np()
will return a pointer to the same semaphore, as long as another process has not used sem_unlink() to unlink
the semaphore.

If sem_open_np() is called from a program using data model LL P64, the returned semaphore pointer must
be declared asasem_t *__ ptr128.

Parameters

name

(Input) A pointer to the null-terminated name of the semaphore to be opened. The name should
begin with adlash (/') character. If the name does not begin with adlash (/') character, the system
adds a slash to the beginning of the name.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

The name is added to a set of names used by named semaphores only. The name has no
relationship to any file system path names. The maximum length of the nameis
SEM_NAME_MAX.

See QlgSem_open_np()--Open Named Semaphore with Maximum Value (using NL S-enabled path
name) for a description and an example of supplying the name in any CCSID.

oflag
(Input) Option flags.

The oflag parameter valueis either zero or is obtained by performing an OR operation on one or
more of the following constants:

'0x0008' or O_CREAT Creates the named semaphore if it does not already exist.

'0X0010" or O_EXCL Causes sem_open_np() tofail if O_CREAT isaso set and the named
semaphore already exists.

mode
(input) Permission flags.
The mode parameter valueis either zero or is obtained by performing an OR operation on one or
more of the list of constants. For another process to open the semaphore, the process's effective
UID must be able to open the semaphore in both read and write mode.
'0x0100" or S IRUSR Permitsthe creator of the named semaphore to open the semaphorein
read mode.

'0x0080" or S IWUSR Permits the creator of the named semaphore to open the semaphorein
write mode.

'0x0020" or S IRGRP Permits the group associated with the named semaphore to open the
semaphore in read mode.

'0x0010" or S IWGRP Permits the group associated with the named semaphore to open the
semaphore in write mode.

'0x0004' or S IROTH Permits others to open the named semaphore in read mode.

'0x0002' or S IWOTH Permits others to open the named semaphore in write mode.

value
(Input) Theinitial value of the named semaphore.

attr
(Input) Attributes for the semaphore.
The members of the sem_attr_np_t structure are as follows:

unsigned int reserved1[1] A reserved field that must be set to zero.

unsigned int maxvalue

unsigned int reserved2[1]

char title] 16]

void * reserved3[2]

Authorities

The maximum value that the semaphore may obtain. maxvalue must
be greater than zero. If asem_post() or sem_post_np() operation
would cause the value of a semaphore to exceed its maximum value,
the operation will fail, returning EINVAL.

A reserved field that must be set to zero.

The title of the semaphore. The title is a null-terminated string that
has a maximum length of 16 bytes. The string is associated with the
semaphore. If the first byte is zero, then the system assigns atitle to
the semaphore that is based on the semaphore name. Thetitleis
retrieved using the Open List of Interprocess Communication
Objects (QPOZOLIP) API.

A reserved field that must be set to zero.

Authorization required for sem_open_np()

Object Referred to

Authority Required | errno

Named semaphore to be created None None
Existing named semaphore to be accessed | *RW EACCES
Return Value
value sem_open_np() was successful. The value returned is a pointer to the opened named

semaphore.

SEM_FAILED sem_open_np() was not successful. The errno variableis set to indicate the error.

Error Conditions

If sem_open_np() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

[EEXIST]

A named semaphore exists for the parameter name, but O_CREAT and O_EXCL are both set in
oflag.

[EFAULT]
The address used for an argument is not correct.
In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The maxvalue field of the attr argument is greater than SEM_VALUE_MAX.
The maxvalue field of the attr argument is equal to zero.

The value argument is greater than the maxvalue field of the attr argument.

The reserved fields of the attr argument are not set to zero.
[ENAMETOOLONG]
The name istoo long. The nameislonger than the SEM_NAME_MAX characters.

[ENOENT]
No such path or directory.
The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

The name specified on the sem_open_np() call does not refer to an existing named semaphore and
O_CREAT was not set in oflag.
[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This

also could be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

System semaphore resources have been exhausted.

Error Messages

None.

Related Information

» The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o QlgSem open np()--Open Named Semaphore with Maximum Value (using NL S-enabled path
name)

o sem close()--Close Named Semaphore

o sem getvalue()--Get Semaphore Vaue

« sem_open()--Open Named Semaphore

« sem post()--Post to Semaphore

o sem post_np()--Post Vaue to Semaphore

o sem trywait()--Try to Decrement Semaphore
« sem_unlink()--Unlink Named Semaphore

o sem wait()--Wait for Semaphore

o sem wait_np()--Wait for Semaphore with Timeout>

Example

The following example opens the named semaphore "/mysemaphore” and creates the semaphore with an
initial value of 10 and a maxiumum value of 11. The permissions are set such that only the current user has
access to the semaphore.

#i ncl ude <semaphore. h>
mai n() {
semt * mny_semaphore;
int rc;
semattr_np_t attr;

menset (&attr, 0, sizeof(attr));

attr. maxval ue=11;

my_semaphore = sem open_np("/ nysemaphore",
O_CREAT| O_EXCL,
S IRUSR | S I WISR,

10,
&attr);

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_post()-Post to Semaphore

Syntax
#i ncl ude <semaphore. h>
int sempost(semt * senj;

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_post() function posts to a semaphore, incrementing its value by one. If the resulting value is
greater than zero and if there is athread waiting on the semaphore, the waiting thread decrements the
semaphore value by one and continues running.

Parameters

sem
(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

0 sem_post() was successful.

-1 sem_post() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_post() is not successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and

the operation specified is not supported for that type of object.
An argument value is not valid, out of range, or NULL.

Posting to the semaphore would cause its value to exceed its maximum value. The maximum value
iISsSEM_VALUE_MAX or was set using sem_open_np() or sem_init_np().

Error Messages

None.

Related Information

» The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o sem close()-Close Named Semaphore

o sem destroy()-Destroy Unnamed Semaphore

o sem getvalue()-Get Semaphore Value

o sem init()-1nitialize Unnamed Semaphore

« sem open()-Open Named Semaphore

« sem open np()-Open Named Semaphore with Maximum Value

« sem post np()-Post Vaueto Semaphore

o sem trywait()-Try to Decrement Semaphore

o sem unlink()-Unlink Named Semaphore

« sem wait()-Wait for Semaphore

« sem wait np()-Wait for Semaphore with Timeout

Example
The following example initializes an unnamed semaphore and poststo it, incrementing its value by 1.

#i ncl ude <stdio. h>
#i ncl ude <senmmphore. h>

mai n() {
semt ny_semaphore;
int val ue;

sem.init(&ry_semaphore, 0, 10);

sem get val ue(&y_semaphore, &val ue);

printf("The initial value of the semaphore is %\ n", value);

sem post (&y _semaphore) ;

sem get val ue(&y_semaphore, &val ue);

printf("The value of the senmaphore after the post is %\ n", value);

Output:

The initial value of the semaphore is 10
The val ue of the semaphore after the post is 11

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_post_np()-Post Value to Semaphore

Syntax

#i ncl ude <semaphore. h>

int sempost _np(semt * sem
sem post _options_np_t *options);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_post_np() function posts to a semaphore, incrementing its value by the increment specified in the
options parameter. If the resulting value is greater than zero and if there are threads waiting on the
semaphore, the waiting threads decrement the semaphore and continue running.

Parameters

sem
(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

options
(Input) Post options.
The members of the sem_post_options np_t structure are as follows.
unsigned int reservedl1[1] A reserved field that must be set to zero.
unsigned int increment The value, greater than zero, used to increment the semaphore. If the
value specified causes the value of a semaphore to exceed its

maximum value, sem_post_np() will fail by returning [EINVAL].

unsigned int reserved2[2] A reserved field that must be set to zero.

Authorities

None

Return Value

0 sem_post_np() was successful.

-1 sem_post_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_post_np() is not successful, errno usualy indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
[EOVERFLOW]
Maximum value exceeded.

Posting to the semaphore would cause its value to exceed its maximum value. The maximum value
isSEM_VALUE_MAX or was set using sem_open_np() or sem_init_np().

The reserved fields of the attr argument are not set to zero.

Error Messages

None.

Related Information

« The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o« sem close()-Close Named Semaphore

o sem destroy()-Destroy Unnamed Semaphore

o sem getvalue()-Get Semaphore Vaue

« sem init()-Initialize Unnamed Semaphore

o sem init np()-Initialize Unnamed Semaphore with Maximum Vaue

« sem open()-Open Named Semaphore

« sem open np()-Open Named Semaphore with Maximum Value

o sem post()-Post to Semaphore

« sem trywait()-Try to Decrement Semaphore

« sem unlink()-Unlink Named Semaphore

o sem wait()-Wait for Semaphore

« sem wait np()-Wait for Semaphore with Timeout

Example
The following example initializes an unnamed semaphore and posts to it, incrementing its value by 2.

#i ncl ude <stdi o. h>

#i ncl ude <semaphore. h>

mai n() {
semt my_semaphore;
sem post _options_np_t options;
int val ue;

sem.init(&ry_semaphore, 0, 10);

sem get val ue(&y_semaphore, &val ue);

printf("The initial value of the semaphore is %l.\n", val ue);

menset (&options, 0, sizeof (options));

options. i ncrenment =2;

sem post _np(&my_senmaphor e, &options);

sem get val ue(&y_semaphore, &val ue);

printf("The value of the senaphore after the post is %l.\n", value);

Output:

The initial value of the semaphore is 10.
The val ue of the semaphore after the post is 12.

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_trywait()-Try to Decrement Semaphore

Syntax
#i ncl ude <semaphore. h>
int semtrywait(semt * sem;

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_trywait() function attempts to decrement the value of the semaphore. The semaphore will be
decremented if its value is greater than zero. If the value of the semaphore is zero, then sem_trywait() will
return -1 and set errno to EAGAIN.

Parameters

sem
(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

0 sem_trywait() was successful.

-1 sem_trywait() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_trywait() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]
Operation would have caused the process to be suspended.

The value of the semaphore is currently zero and cannot be decremented.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.

Error Messages

None.

Related

Information

« The <semaphore.h> file (see Header Files for UNIX-Type Functions)

sem

close()-Close Named Semaphore

e SEM

destroy()-Destroy Unnamed Semaphore

getvalue()-Get Semaphore Vaue

init\)-Initialize Unnamed Semaphore

init np()-Initialize Unnamed Semaphore with Maximum Value

open()-Open Named Semaphore

open np()-Open Named Semaphore with Maximum Value

post()-Post to Semaphore

post np()-Post Vaue to Semaphore

unlink()-Unlink Named Semaphore

wait()-Wait for Semaphore

wait np()-Wait for Semaphore with Timeout

Example
The following example attempts to decrement a semaphore with a current value of zero.

#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <semaphore. h>
mai n() {
semt ny_semaphore;
i nt val ue;
int rc;

sem.init(&y_semaphore, 0, 1);

sem get val ue(&y_semaphore, &val ue);

printf("The initial value of the semaphore is %\ n", value);

sem wai t (&ry_semaphore);

sem get val ue(&y_semaphore, &val ue);

printf("The value of the senmaphore after the wait is %\ n", value);

rc = semtrywait(&my_senaphore);

if ((rc == -1) & (errno == EAGAIN)) {
printf("semtrywait did not decrement the semaphore\n");

}

Output:

The initial value of the semaphore is 1
The val ue of the semaphore after the wait is O
semtrywait did not decrenment the semaphore

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_unlink()--Unlink Named Semaphore

Syntax

#i ncl ude <semaphore. h>

int semunlink(const char *nane);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_unlink() function unlinks a named semaphore. The name of the semaphore is removed from the
set of names used by named semaphores. If the semaphore is still in use, the semaphore is not deleted until
all processes using the semaphore have ended or have called sem_close(). Using the name of an unlinked
semaphore in subsequent callsto sem_open() or sem_open_np() will result in the creation of a new
semaphore with the same name if the O_CREAT flag of the oflag parameter has been set.

Parameters

name

(Input) A pointer to the null-terminated name of the semaphore to be unlinked. The name should
begin with aslash (/') character. If the name does not begin with a slash (/') character, the system

adds a slash to the beginning of the name.

This parameter is assumed to be represented in the coded character set identifier (CCSID) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented

in the default CCSID of the job.

The nameis present in a set of names used only by named semaphores. The name has no relation to
any file system path names. The maximum length of the nameis SEM_NAME MAX.

See QlgSem_unlink()--Unlink Named Semaphore (using NL S-enabled path name) for a description
and an example of supplying the namein any CCSID.

Authorities

Authorization required for sem_unlink()

Object Referred to Authority Required

errno

Named semaphore to be deleted | See note

EACCES

Note: To unlink a named semaphore, the effective UID of the process must be the creator of the semaphore

or the process must have * ALLOBJ authority.

Return Value

0 sem_unlink() was successful.

-1 sem_unlink() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_unlink() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
[ENOENT]
No such path or directory.

The specified name doesnot refer to an existing named semaphore.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[ENAMETOOLONG]
The nameistoo long. The nameislonger than the SEM_NAME_MAX characters.

Error Messages

None.

Related Information

» The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o QlgSem unlink()--Unlink Named Semaphore (using NL S-enabled path name)

« sem_open()--Open Named Semaphore

« sem _open np()--Open Named Semaphore with Maximum Value

Example

The following example unlinks the named semaphore "/mysem".

#i ncl ude <semaphore. h>
mai n() {
int rc;

rc = semunlink("/mysent);

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

sem_wait()-Wait for Semaphore

Syntax
#i ncl ude <semaphore. h>
int semwait(semt * senj;

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_wait() function decrements by one the value of the semaphore. The semaphore will be
decremented when its value is greater than zero. If the value of the semaphore is zero, then the current
thread will block until the semaphore's value becomes greater than zero.

Parameters

sem
(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

0 sem_wait() was successful.

-1 sem_wait() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_wait() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINTR]
Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Error Messages

None.

Related Information

« The <semaphore.h> file (see Header Files for UNIX-Type Functions)

sem close()-Close Named Semaphore

o sem destroy()-Destroy Unnamed Semaphore

o sem getvalue()-Get Semaphore Vaue

« sem init()-Initialize Unnamed Semaphore

o sem init np()-Initialize Unnamed Semaphore with Maximum Vaue

« sem open()-Open Named Semaphore

« sem open np()-Open Named Semaphore with Maximum Value

o sem post()-Post to Semaphore

« sem post np()-Post Vaueto Semaphore

o sem trywait()-Try to Decrement Semaphore

o sem unlink()-Unlink Named Semaphore

« sem wait np()-Wait for Semaphore with Timeout

Example

The following example creates a semaphore with an initial value of 10. The value is decremented by calling
sem_wait().

#i ncl ude <stdi o. h>
#i ncl ude <semaphore. h>
mai n() {

semt ny_semaphore;

i nt val ue;

sem.init(&ry_semaphore, 0, 1);

sem get val ue(&y_semaphore, &val ue);

printf("The initial value of the semaphore is %\ n", value);

sem wai t (&ry_semaphore) ;

sem get val ue(&y_semaphore, &val ue);

printf("The value of the senaphore after the wait is %\ n", value);

}
Output:

The initial value of the semaphore is 1
The val ue of the semaphore after the wait is 0

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_wait_np()-Wait for Semaphore with
Timeout

Syntax

#i ncl ude <semaphore. h>

int semwait _np(semt * sem
semwait_options_np t * options);

Service Program Name: QPOZPSEM
Default Public Authority: *USE

Threadsafe: Yes

The sem_wait_np() function attempts to decrement by one the value of the semaphore. The semaphore will
be decremented by one when its value is greater than zero. If the value of the semaphore is zero, then the
current thread will block until the semaphore's value becomes greater than zero or until the timeout period
specified on the options parameter has ended. If the semaphore is not decremented before the timeout ends,
sem_wait_np() will return with an error, setting errno to [ETIMEDOUT].

Parameters

sem
(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

options

(Input) A pointer to a semaphore wait (sem_wait_options_np_t) structure. The members of the
sem_wait_options_np_t structure are as follows:

unsigned int reservedl] 2] A reserved field that must be set to zero.

struct sem timeout_t timeout Thetime, in MI time, that sem_wait_np() should wait for the
semaphore. If the timeout is zero, sem_wait_np() will return
immediately with errno set to [ETIMEDOUT] if the semaphore
cannot be decremented. If atimeout value of
OxFFFFFFFF FFFFFFFF is specified, then sem_wait_np() will
wait indefinitely. The maximum timeout that may be specified is
281 272 976 710 655 (2 ** 48 -1) microseconds. Any value
larger than this, other than OXFFFFFFFF FFFFFFFF, will cause
sem_wait_np() to wait for the maximum timeout
(281 272 976 710 655 microseconds). The Qp0zCvtToMITime()
may be used to convert atimeval structure to the corresponding
MI time.

Authorities

None

Return Value

0 sem_wait_np() was successful.

-1 sem_wait_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_wait_np() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[ECANCEL]
Operation canceled.

[EDESTROYED]
The semaphore was destroyed.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
[ETIMEDOUT]
A remote host did not respond within the timeout period.

Error Messages

None.

Related Information

« The <semaphore.h> file (see Header Files for UNIX-Type Functions)

o« sem close()-Close Named Semaphore

o sem destroy()-Destroy Unnamed Semaphore

o sem getvalue()-Get Semaphore Vaue

« sem init()-Initialize Unnamed Semaphore

o sem init np()-Initialize Unnamed Semaphore with Maximum Vaue

« sem open()-Open Named Semaphore

« sem open np()-Open Named Semaphore with Maximum Value

o sem post()-Post to Semaphore

« sem post np()-Post Vaueto Semaphore

o sem trywait()-Try to Decrement Semaphore

« sem unlink()-Unlink Named Semaphore

« sem wait np()-Wait for Semaphore with Timeout

Example

The following example creates a semaphore with an initial value of 1. The value is decremented using
sem_wait(). The program then attempts to decrement the semaphore using sem_wait_np() with atimeout of
2 seconds. Thiswill fail with ETIMEDOUT because the semaphore's value is currently zero.

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i ncl ude <semaphore. h>
#i ncl ude <tine. h>

#i ncl ude <qp0z1170. h>

mai n() {
semt my_semaphore;
i nt val ue;
semwait_options_np_t options;
int rc;
struct tinmeval waittine;

time_t start _tine;
time_t end tine;

sem.init(&ry_semaphore, 0, 1);
sem get val ue(&y_semaphore, &val ue);
printf("The initial value of the semaphore is %\ n", value);
sem wai t (&ry_semaphore);
sem get val ue(&y_semaphore, &val ue);
printf("The value of the senmaphore after the wait is %\ n", value);
menset (&options, 0, sizeof(options));
waittinme.tv_sec = 2;
waittime.tv_usec = O;
Q0zCvt ToM Ti me((unsi gned char *) &options.timeout,

wait tinme,

QP0Z_CVTTI ME_TO _OFFSET) ;
time(&start _tine);
rc = semwait_np(&my_senaphore, &options);
time(&end_tine);
if ((rc == -1) && (errno == ETI MEDQOUT)) {

printf("semwait _np tinmed out after % seconds\n"
end time - start_tine);

Output:

The initial value of the semaphore is 1
The val ue of the semaphore after the wait is O
semwait_np tinmed out after 2 seconds

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

shmat()-Attach Shared Memory Segment to
Current Process

Syntax

#i ncl ude <sys/shm h>

void *shmat (i nt shnmid, const void *shmaddr,
int shnflg);

Service Program Name: QPOZUSHR
Default Public Authority: *USE

Threadsafe: Yes

The shmat() function returns the address of the shared memory segment associated with the specified
shared memory identifier.

Parameters

shmid
(Input) Shared memory identifier.

shmaddr

(Input) Shared memory address. The address at which the calling thread would like the shared
memory segment attached.

shmflg
(Input) Operations flags.
The value of the shmflg parameter is either zero or the following constant:

'0x1000" or SHM_RDONLY Places the shared memory segment in read-only memory. Thisflag isvalid
only for teraspace shared memory segments.

Authorities

Figure 1-14. Authorization Required for shmat()

Object Referred to Authority Required | errno

Shared memory segment to be attached in read/write memory Read and Write EACCES

Shared memory segment to be attached in read-only memory in a Read EACCES
process's teraspace.

Return Value
value shmat() was successful. The value returned is a pointer to the shared memory segment
associated with the specified identifier.

NULL shmat() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmat() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

Operation permission is denied to the calling thread.

Shared memory operations are not permitted because the QSHRMEMCTL system valueis set to 0.

[EADDRINUSE]
A damaged object was encountered.

Address already in use.

An attempt was made to attach to a SHM_MAP_FIXED_NP teraspace shared memory segment,
but the address range is not available in the teraspace of the current process.

[EDAMAGE]
A damaged object was encountered.
The vaue of shmid corresponds to a shared memory ID that has been marked as damaged by a
previous shared memory operation.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.
[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and

the operation specified is not supported for that type of object.
An argument value is not valid, out of range, or NULL.

The value of shmid is not avalid shared memory identifier.
[EOPNOTSUPP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

The vaue of (shmflg & SHM_RDONLY) is not zero. (& isabitwise AND.) Read-only shared
memory segments are not supported for nonteraspace shared memory segments. Read-only shared
memory segments are not supported for shared memory segments created using the
SHM_MAP_FIXED_NP option of shmget().

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

The available data space is not large enough to accommodate the shared memory segment.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

The IPC implementation has the following restrictions over the X/Open single UNIX specification
(formerly Spec 1170) definition:

1. The address specified by shmaddr is only used when shmat() is called from a program that uses
datamodel LL P64 and attaches to a teraspace shared memory segment. Otherwise the address
specified by shmaddr isignored and the actual shared memory segment address is returned
regardless of the value of shmaddr.

2. Theonly supported operation flag is SHM_READONLY . This operation flag is supported only
when you attach to a teraspace shared memory segment. If shmflg specifies SHM_RDONLY for a
nonteraspace shared memory segment, then an [EOPNOTSUPP] error isreturned. All other values
for shmflg are ignored.

3. A module that was not created with teraspace memory enabled should not attach to a teraspace
shared memory segment. The call to shmat() will succeed and return a pointer. Any attempt,
however, by a module not created with teraspace memory enabled to use the returned pointer will
result in an MCH3601 (Pointer not set for location referenced) exception.

4. When a process attaches to a shared memory segment that was created using
SHM_MAP_FIXED_NP, an address range within the process's teraspace is used for the shared
memory mapping. When a subsequent process attaches to the shared memory segment, the same
address range within its teraspace must be available. If the address range is not available, the call to
shmat() will fail with an [EADDRINUSE] error.

5. The storage for a shared memory segment is alocated when the first process attaches to the shared
memory segment. The storage is charged against the process's temporary storage limit. If the
process does not have enough temporary storage to satisfy the request, the call to shmat() will fail
with an [ENOMEM)] error.

Related Information

« The <sys/shm.h> file (see Header Files for UNIX-Type Functions)

o shmctl()-Perform Shared Memory Control Operations

« shmget()-Get ID of Shared Memory Segment with Key

« shmdt()-Detach Shared Memory Segment from Calling Process

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

shmctl()-Perform Shared Memory Control
Operations

Syntax

#i ncl ude <sys/shm h>

int shnctl (int shnid, int cnd, struct shnid ds *buf);

Service Program Name: QPOZUSHR
Default Public Authority: *USE

Threadsafe: Yes

The shmctl() function provides shared memory control operations as specified by cmd on the shared
memory segment specified by shmid.

Parameters

shmid

(Input) Shared memory identifier, a positive integer. It is created by the shmget() function and used
to identify the shared memory segment on which to perform the control operation.

cmd
(Input) Command, the control operation to perform on the shared memory segment.

buf
(1/O) Painter to the shmid_ds structure to be used to get or set shared memory information.
The cmd parameter can have one of the following values:
'0x0002' or IPC_STAT Place the current value of each member of the shmid_ds data structure

associated with shmid into the structure pointed to by buf. This command
requires read permission.

'0x0001" or IPC_SET

‘00000’ or IPC_RMID

'0x0006' or SHM_SIZE

Authorities

Set the value of the following members of the shmid_ds data structure
associated with shmid to the corresponding value found in the structure pointed
to by buf:

o shm_perm.uid
« Shm_perm.gid

« shm_perm.mode

IPC_SET can be performed only by athread with appropriate privileges or one
that has an effective user ID equal to the value of shm_perm.cuid or
shm_perm.uid in the shmid_ds data structure associated with shmid.

Remove the shared memory identifier specified by shmid from the system and
destroy the shared memory segment and the shmid_ds data structure associated
with it. IPC_RMID can be performed only by athread with appropriate
privileges or one that has an effective user 1D equal to the value of
shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated
with shmid. The structure pointed to by buf isignored and aNULL pointer is
valid.

Set the size of the shared memory segment using the shm_segsz member of the
shmid_ds data structure pointed to by buf. This value may be larger or smaller
than the current size. Thisfunction is valid for nonteraspace shared memory
segments and for teraspace shared memory segments created using the
SHM_RESIZE_NP option of shmget(). The maximum size to which a
nonteraspace shared memory segment may be expanded is 16 773 120 bytes
(16 MB minus 4096 bytes). The maximum size of aresizeable teraspace shared
memory segment is 268 435 456 bytes (256 MB). SHM_SIZE can be
performed only by athread with appropriate privileges or athread that has an
effective user ID equal to the value of shm_perm.cuid or shm_perm.uid in the
shmid_ds data structure associated with shmid.

If ashared memory segment isresized to a smaller size, other threads using the
shared memory that is being removed from the shared memory segment may
experience memory exceptions when accessing that memory.

Figure 1-15. Authorization Required for shmctl()

Object Referred to

Authority Required | errno

Shared memory segment for which state information is retrieved Read EACCES
(cmd = IPC_STAT)

Shared memory segment for which state information is set (cmd = See Note EPERM
IPC_SET)

Shared memory segment to be removed (cmd = IPC_RMID) See Note EPERM

Shared memory segment to be resized (cmd = SHM_SIZE) See Note EPERM

Note: To set shared memory segment information, to remove a shared memory segment, or to resize a
shared memory segment, the thread must be the owner or creator of the shared memory segment or have
appropriate privileges.

Return Value

0 shmctl() was successful.

-1 shmctl() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmctl() isnot successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

The parameter cmd isequal to IPC_STAT and the calling thread does not have read permission.
[EDAMAGE]
A damaged object was encountered.

The vaue of shmid corresponds to a shared memory ID that has been marked as damaged by a
previous shared memory operation.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.
One of the following has occurred:

o Thevalue of shmid isnot avalid shared memory identifier.

o Thevaue of cmd is not avalid command.

o Thevalue of cmdis equal to SHM_SIZE, and the shared memory segment cannot be
resized because it was not created by specifying SHM_RESIZE_NP on the shmflg
parameter of shmget().

o Thevalue of cmd isequa to SHM_SIZE, and the new sizeis not valid for the shared
memory segment.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

A shared memory identifier segment is to be resized, but the amount of available physical memory
is not sufficient to fulfill the request.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The parameter cmd isequal to IPC_RMID or IPC_SET and both of the following are true:
o the calling thread does not have the appropriate privileges.

o the effective user ID of the calling thread is not equal to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

None.

Usage Notes

"Appropriate privileges' is defined to be * ALLOBJ specia authority. If the user profile under which the
thread is running does not have * ALLOBJ special authority, the thread does not have appropriate
privileges.

Related Information

« The <sys/shm.h> file (see Header Files for UNIX-Type Functions)

« shmat()-Attach Shared Memory Segment to Current Process

« shmdt()-Detach Shared Memory Segment from Calling Process

« shmget()-Get |D of Shared Memory Segment with Key

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

shmdt()-Detach Shared Memory Segment from
Calling Process

Syntax

#i ncl ude <sys/shm h>

i nt shndt (const void *shmaddr);

Service Program Name: QPOZUSHR
Default Public Authority: *USE

Threadsafe: Yes

The shmdt() function detaches the shared memory segment specified by shmaddr from the calling process.

Parameters

shmaddr
(Input) Address of the shared memory segment to be detached.

Authorities

Figure 1-16. Authorization Required for shmdt()

Object Referred to Authority Required | errno

Shared memory segment to be detached | None None

Return Value

0 shmdt() was successful.

-1 shmdt() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmdt() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EDAMAGE]

A damaged object was encountered.

The vaue of shmid corresponds to a shared memory ID that has been marked as damaged by a
previous shared memory operation.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value of shmaddr is not the data segment start address of a shared memory segment.
[ENOSYY
Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.

The function is not implemented.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

None.

Usage Notes

This function does not del ete the shared memory segment. To delete a shared memory segment, a shmctl()
call specifying acmd parameter of IPC_RMID must be used.

Related Information

« The <sys/shm.h> file (see Header Files for UNIX-Type Functions)

« shmat()-Attach Shared Memory Segment to Current Process

o shmctl()-Perform Shared Memory Control Operations

« shmget()-Get |D of Shared Memory Segment with Key

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

shmget()-Get ID of Shared Memory Segment
with Key

Syntax

#i ncl ude <sys/shm h>
#i ncl ude <sys/stat.h>

int shnget(key_ t key,size t size, int shnflg);

Service Program Name: QPOZUSHR
Default Public Authority: *USE

Threadsafe: Yes

The shmget() function returns the shared memory |D associated with the specified shared memory key.

Parameters

key
(Input) The key associated with the shared memory ID. Specifying akey of IPC_PRIVATE

guarantees that a unique shared memory 1D and shared memory segment are created. A key may
also be generated by the caller or by calling the ftok () function.

size
(Input) The size of the shared memory segment being created. The size of the segment may be
changed using the shmctl() API if it is nonteraspace shared memory segment or if it was created by
specifying SHM_RESIZE NP on the shmflg parameter of shmget(). If an existing shared memory
ID is being accessed, the size may be zero.

shmflg

(Input) Operation and permission flags

The value of the shmflg parameter is either zero or is obtained by performing an OR operation on one or
more of the constants listed below. If an existing shared memory 1D is being accessed, then the permissions
specified must be a subset of the existing permissions of the shared memory segment. If an existing shared
memory ID is being accessed, then the SHM_TS NP and SHM_MAP_FIXED_NP flags must match the
existing attributes of the shared memory segment.

'0x0100" or S IRUSR Permits the creator of the shared memory ID to attach toitin
read mode.
'0x0080' or S IWUSR Permits the creator of the shared memory ID to attach toit in

write mode.

'0x0020' or S IRGRP Permits the group associated with the shared memory ID to
attach to it in read mode

'0x0010' or S IWGRP Permits the group associated with the shared memory ID to
attach to it in write mode

'0x0004' or S IROTH Permits others to attach to the shared memory ID in read mode.

'0x0002' or S IWOTH Permits others to attach to the shared memory ID in write
mode.

'0x0200' or IPC_CREAT Creates the shared memory segment ID if it does not exist
already.

'0x0400' or IPC_EXCL Causes shmget() to fail if IPC_CREAT isalso set and the

shared memory ID already exists.

'0x10000' or SHM_TS NP If shmget() creates a new shared memory segment, then the
new shared memory segment will be created as a teraspace
shared memory segment. When a process attaches to this
shared memory segment, the shared memory segment will be
added to the process's teraspace. Some compilers permit the
user to indicate that the teraspace versions of storage functions
should be used. For example, if aC module is compiled using
CRTCMOD TERASPACE(*YES*TSIFC), this flag will be set
automatically.

'0x40000' or SHM_RESZE_NP If shmget() creates a new teraspace shared memory segment,
then the size of the shared memory segment may be changed
using the shmctl() API. The maximum size of this teraspace
shared memory segment is 268 435 456 bytes (256 MB). This
flag isignored for nonteraspace shared memory segments. A
nonteraspace shared memory segment may always be resized
up to 16 773 120 bytes (16 MB - 4096 bytes).

'0x100000' or SHM_MAP_FIXED NP If shmget() creates a new teraspace shared memory segment,
then all processes that successfully attach to the shared memory
segment will attach to the shared memory segment at the same
address. The shared memory segment may not be attached in
read-only mode. Thisflag isignored for nonteraspace shared
memory segments.

Authorities

Figure 1-17. Authorization Required for shmget()

Object Referred to Authority Required | errno
Shared memory segment to be created None None
Existing shared memory segment to be accessed | See Note EACCES

Note: If the thread is accessing a shared memory segment that already exists, the mode specified in the last
9 bits of shmflg must be a subset of the mode of the existing shared memory segment.

Return Value

value shmget()was successful. The value returned is the shared memory 1D associated with the key
parameter.

-1 shmget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmget() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

A shared memory identifier exists for the parameter key, but operation permission as specified by
the low-order 9 bits of shmflg would not be granted.

Shared memory operations are not permitted because the QSHRMEMCTL system valueis set to 0.
[EDAMAGE]
A damaged object was encountered.

The value of key corresponds to shared memory that has been marked as damaged by a previous
shared memory operation.

[EEXIST]

File exists.
The file specified aready exists and the specified operation requires that it not exist.
The named file, directory, or path already exists.

A shared memory identifier exists for the parameter key, but ((shmflg & IPC_CREAT) & & (shnmflg
& IPC_EXCL)) isnot zero. (& isabitwise AND; && isalogical AND.)

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

One of the following has occurred:

o Thevalue of the parameter sizeisless than the system-imposed minimum or greater than
the system-imposed maximum.

o A shared memory identifier exists for the parameter key, but the size of the segment
associated with it isless than size and size is not zero.

o A shared memory identifier exists for the parameter key, but the SHM_MAP_FIXED NP
or SHM_TS NP attributes of the shared memory segment do not match the attributes
specified by the parameter shmflg.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

A shared memory identifier does not exist for the parameter key, and (shmflg & IPC_CREAT) is
zero.
[ENOMEM]

Storage alocation request failed.
A function needed to allocate storage, but no storage is available.

A shared memory identifier and associated shared memory segment are to be created, but the
amount of available physical memory is not sufficient to fulfill the request.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

A shared memory identifier isto be created, but the system-imposed limit on the maximum number
of allowed shared memory identifiers system-wide would be exceeded.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. shmget() creates a shared memory ID, its associated shmid_ds data structure, and a shared memory
segment of at least size bytesif one of the following istrue:

o The shared memory key isIPC_PRIVATE

o Thereisno shared memory ID already associated with the shared memory key and the
IPC_CREAT flagis set.

2. When the shared memory ID is created, the shmid_ds structure (defined in the <sys/shm.h> header
file) that is associated with the shared memory ID isinitialized as follows:

o Theshm_perm.cuid and shm_perm.uid values are set equal to the effective user ID (uid) of
the calling thread.

o Theshm_perm.cgid and shm_perm.gid values are set equal to the effective group ID (gid)
of the calling thread.

o Thelow-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of shmflg.
0 shm_segsz is set to the value specified in size.
o shm_lpid, shm_nattch, shm_atime, and shm_dtime are set to zero.

o shm_ctimeis set to the current time.

3. shmat() should be used to set or gain pointer addressability to the shared memory segment
associated with the shared memory ID after the shared memory ID is obtained.

4. The maximum size of ateraspace shared memory segment is 4 294 967 295 bytes (4GB - 1). The
maximum size of aresizeabl e teraspace shared memory segment is 268 435 456 bytes (256 MB).
The maximum shared memory segment size for nonteraspace shared memory segmentsis
16 776 960 bytes (16 MB - 256 bytes).

5. The storage for a shared memory segment is not allocated until it is attached to a process. A process
will not be able to attach to a shared memory segment that islarger than the amount of storage
available on the system.

6. Processes cannot attach a nonteraspace shared memory segment in read-only or write-only mode.
Conseguently, permissions that specify read-only or write-only will always result in shmat()
failure. Processes are permitted to attach a teraspace shared memory segment in read-only mode.

7. Shared memory segments larger than 16 773 120 bytes (16 MB minus 4096 bytes) should be
created as teraspace shared memory segments. When the operating system accesses a nonteraspace
shared memory segment that has asize in the range 16 773 120 bytes (16 MB minus 4096 bytes) to
16 776 960 bytes (16 MB minus 256 bytes), a performance degradation may be observed.

Related Information

o The <sys/shm.h> file (see Header Files for UNIX-Type Functions)

ftok()--Generate | PC Key from File Name

shmat()-Attach Shared Memory Segment to Current Process

shmctl()-Perform Shared Memory Control Operations

shmdt()-Detach Shared Memory Segment from Calling Process

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

« Macro definitions
« Datatype definitions
« Structure definitions
« Function prototypes
The header files are provided in the QSY SINC library, which is optionally installable. Make sure

QSY SINC ison your system before compiling programs that use these header files. For information on
installing the QSY SINC library, see Data structures and the QSY SINC Library.

The table below shows the file and member name in the QSY SINC library for each header file used by the
UNIX-type APIsin this publication.

Nameof Filein

Name of Header File QSYSINC Name of M ember
| arpalinet.h | ARPA | INET
| apanameserh | ARPA | NAMESER
| bse.h | H | BSE
| bsedos.h | H | BSEDOS
| bseerr.h | H | BSEERR
| dirent.h | H | DIRENT
| errno.h | H | ERRNO
| fentl.h | H | FCNTL
| grp.h | H | GRP
| Zinttypes.h | H | INTTYPES®
| limits.h | H | LIMITS
| #mman.h | H | MMAN
| netdbh.h | H | NETDB
| Pnetinet/icmpé.h | NETINET | ICMP6&
| net/if.h | NET | IF
| netinet/in.h | NETINET | IN
| netinet/ip_icmp.h | NETINET | IP_ICMP
| netinet/ip.h | NETINET | IP
| Pnetinet/ipph | NETINET | IP6
| netinet/tcp.h | NETINET | TCP
| netinet/udp.h | NETINET | UDP
| netns/idp.h | NETNS | IDP
| netns/ipx.h | NETNS | IPX
| netngns.h | NETNS | NS
| netns/sp.h | NETNS | SP
| net/route.h | NET | ROUTE
| nettel/tel.h | NETTEL | TEL

| 0s2.h | H | 02

| 0s2def h | H | OS2DEF

| pwd.h | H | PWD

| Qigh | H | QLG

| qpOlflop.h | H | QPOLFLOP
| Zqpoljrnl.h | H | QPOLJRNL
| #qpOiror.h | H | QPOLROR%
[Qpoistdih | H [QPOLSTDI
[opOwpidh | H [QPOWPID
| qpOzdipc.h | H | QPOZDIPC

| gpO0zipc.h | H | QPOZIPC

| gpOzolip.h | H | QPOZOLIP

| gpOzolsm.h | H | QPOZOLSM
| gpOzripc.h | H | QPOZRIPC

| gpOztrc.h | H | QPOZTRC

| qpOztrml.h | H | QPOZTRML
[gpozi170h | H | QPOZ1170
| Pgsoasynch | H | QSOASYNCX
[anxapih | H [QTNXAAPI
| gtnxadtp.h | H | QTNXADTP
| qgtomeapi.h | H | QTOMEAPI
| qgtossapi.h | H | QTOSSAPI

| resolv.h | H | RESOLVE

| semaphore.h | H | SEMAPHORE
| signal.h | H | SIGNAL

| spawn.h | H | SPAWN

| ss.h | H | SSL

| syslerrno.h | H | ERRNO

[sysioctih | SYS | IOCTL

| syslipc.h | SYS | IPC

| sys/layout.h | H | LAYOUT

| sys/limits.h | H | LIMITS

| sys/msg.h | SYS | MSG

| sys/param.h | SYS | PARAM

| Psysresourceh | SYS | RESOURCE#
| sys/sem.h | SYS | SEM

[syesimph | SYS | SETIMP

| sys/shm.h | SYS | SHM

[sys/signah | SYS | SIGNAL

[syssocketh | SYS [SOCKET

| sys/stat.h | SYs | STAT

[gesavfsh | SYS [STATVFS

| sys/time.h | SYS | TIME

| sysitypes.h | SYS | TYPES

| sys/uio.h | SYS | ulo

| sys/un.h | SYS | UN

| syswait.h | SYs | WAIT

| Zulimith | H | ULIMIT
| unistd.h | H | UNISTD
| utime.h | H | UTIME

You can display a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(5)

« Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FI LE(QSYSI NC/ SYS) MBR(STAT)

Y ou can print a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(6)

« Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROVFI LE(QSYSI NC/ SYS) TOFI LE(* PRI NT) FROMVBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs| APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

IName |Value | Text

EDOM 3001 A domain error occurred in a math
function.

|ERANGE |3002 |A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

|[ENOTOPEN 13004 |Fileis not open.

|[ENOTREAD |3005 |Fileis not opened for read operations.

|EIO 13006 |Input/output error.

|ENODEV 13007 INo such device.

ERECIO ’3008 Cannot get single character for files
opened for record 1/0.

|[ENOTWRITE 13009 |Fileis not opened for write operations.

|ESTDIN 13010 | The stdin stream cannot be opened.

|ESTDOUT 13011 | The stdout stream cannot be opened.

|ESTDERR 13012 | The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

|EBADNAME 13014 | The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

|EBADPOS 13017 | The position specifier is not correct.

ENOPOS 3018 Thereis no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 ngﬁ current record position istoo long for
tell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 _Functi on parameter in the signal function
is not set.

|ENOENT 13025 INo such path or directory.

|[ENOREC 13026 |Record is not found.

|EPERM 13027 |The operation is not permitted.

|EBADDATA 13028 |Message datais not valid.

|EBUSY 13029 |Resource busy.

|EBADOPT 13040 |Option specified is not valid.

|[ENOTUPD 13041 |Fileis not opened for update operations.

|[ENOTDLT |3042 |Fileis not opened for delete operations.

EPAD 3043 The number of characterswritten is
shorter than the expected record length.
EBADKEYLN 3044 A length that was not valid was specified
for the key.
EPUTANDGET 3080 A read operation should not immediately
follow awrite operation.
EGETANDPUT 3081 A write operation should not immediately
follow aread operation.
|EIOERROR 3101 |A nonrecoverable 1/O error occurred.
|EIORECERR 3102 |A recoverable /O error occurred.
|EACCES 3401 |Permission denied.
|ENOTDIR 3403 INot adirectory.
|ENOSPC 3404 INo spaceis available.
|EXDEV 3405 |Improper link.
EAGAIN 3406 Operation would have caused the process
to be suspended.
EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.
|EINTR 3407 |Interrupted function call.
EFAULT 3408 The address used for an argument was not
correct.
|ETIME 3409 |Operation timed out.
|ENXIO 3415 INo such device or address.
EAPAR 3418 Possible APAR condition or hardware
failure.
|ERECURSE 13419 |Recursive attempt rejected.
|EADDRINUSE 3420 |Address already in use.
|[EADDRNOTAVAIL 3421 |Address is not available.
EAFNOSUPPORT 3422 The type of socket isnot supported in this
protocol family.
|EALREADY 3423 |Operation is already in progress.
|[ECONNABORTED 3424 |Connection ended abnormally.
ECONNREFUSED 3425 A remote host refused an attempted
connect operation.
ECONNRESET 3426 A connection with a remote socket was
reset by that socket.
|EDESTADDRREQ |3427 |Operation requires destination address.
|EHOSTDOWN 3428 |A remote host is not available.
|[EHOSTUNREACH 3429 |A route to the remote host is not available.
|EINPROGRESS 3430 |Operation in progress.
|EISCONN 3431 |A connection has already been established.
|EMSGSIZE 3432 |Message size is out of range.
|[ENETDOWN 3433 |The network currently is not available.
ENETRESET A socket is connected to a host that is no

=

longer available.

|[ENETUNREACH 3435 |Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
regquested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

|[ENOTSUP 3440 |Operation is not supported.
|EOPNOTSUPP 3440 |Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT (3442 No protocol of the specified type and
domain exists.

EPROTOTY PE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

|ESHUTDOWN 3445 |Cannot send data after a shutdown.
|ESOCKTNOSUPPORT |3446 | The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
thistime.

|EBADF 3450 |Descriptor is not valid.

|EMFILE 3452 |Too many open files for this process.
|ENFILE 3453 |Too many open filesin the system.
|EPIPE 3455 |Broken pipe.

|ECANCEL 3456 |Operation cancelled.

|EEXIST 3457 |File exists.

|EDEADLK 3459 |Resource deadlock avoided.
|[ENOMEM 3460 | Storage all ocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

|ETERM 3464 |Operation was terminated.
|ENOENT1 3465 INo such file or directory.

ENOEQFLOG 3466 Object is aready linked to a dead
directory.

|[EEMPTYDIR 3467 |Directory is empty.

EMLINK 3468 Maximum link count for afile was
exceeded.

|ESPIPE 3469 | Seek request is not supported for object.

|ENOSYS 3470 |Function not implemented.

|EISDIR 3471 |Specified target is adirectory.

|EROFS 3472 |Read-only file system.

|[EUNKNOWN 3474 |Unknown system state.

|EITERBAD 3475 |Iterator is not valid.

|EITERSTE 3476 |Iterator isin wrong state for operation.

|EHRICLSBAD |3477 |HRI classisnot valid.

|EHRICLBAD 3478 IHRI subclass is not valid.

|EHRITYPBAD |3479 |HRI typeisnot valid.

|ENOTAPPL 3480 |Data requested is not applicable.

|EHRIREQTYP 3481 IHRI request type s not valid.

|[EHRINAMEBAD 3482 IHRI resource name is not valid.

|EDAMAGE 3484 |A damaged object was encountered.

|ELOOP 3485 |A loop exists in the symbolic links.

IENAMETOOLONG 3486 |A path name is too long.

|ENOLCK 3487 INo locks are available.

|[ENOTEMPTY 3488 |Directory is not empty.

|ENOSY SRSC 3489 |System resources are not available.

|[ECONVERT 13490 |Conversion error.

|E2BIG 3491 |Argument list istoo long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

|ETYPE 3493 |Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

|ESOFTDAMAGE 3497 |Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

|EOFFLINE 13499 |Object is suspended.

|EROOBJ 13500 |Object is aread-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDS 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 | Duplicate extended attribute record.

ELOCKED 3506 Areabeing read from or writtentois

locked.

EFBIG 3507 |Object too large.

EIDRM 3509 The semaphore, shared memory, or
message gqueue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of

the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

|EFILECVT 3511 |File ID conversion of adirectory failed.

EBADFID 3512 A file 1D could not be assigned when
linking an object to a directory.

|ESTALE 3513 |File handle was rejected by server.

|ESRCH 3515 INo such process.

|IENOTSIGINIT 3516 |Process is not enabled for signals.

|ECHILD 3517 INo child process.

|EBADH 13520 IHandleis not valid.

ETOOMANY REFS 3523 The operation would have exceeded the

maximum number of references allowed
for a descriptor.

|ENOTSAFE 3524 |Function is not allowed.

|[EOVERFLOW 3525 |Object istoo large to process.

|EIRNDAMAGE 3526 \Journal is damaged.

|EJRNI NACTIVE |3527 |Journa| isinactive.

|EJRNRCVSPC 3528 |Journal space or system storage error.

|EIRNRMT 3529 |Journal is remote.

|ENEWJRNRCV 3530 INew journal receiver is needed.

|ENEWJRN 3531 INew journal is needed.

|EJOURNALED 3532 |Object already journaled.

|[EJRNENTTOOLONG 3533 |Entry istoo large to send.

|EDATALINK 3534 |Object is adatalink object.

|[ENOTAVAIL 3535 |IASPisnot available.

|ENOTTY 3536 |10 control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

|ETXTBSY 3543 | Text file busy.

|[EASPGRPNOTSET 3544 |ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs| APIs by category

	Interprocess Communication (IPC) APIs (V5R2)
	Table of Contents
	Interprocess Communication (IPC) APIs
	Identifier Based Services
	Pointer Based Services
	Managing IPC Objects
	APIs
	ftok()--Generate IPC Key from File Name
	msgctl()-Perform Message Control Operations
	msgget()-Get Message Queue
	msgrcv()-Receive Message Operation
	msgsnd()-Send Message Operation
	QlgFtok()--Generate IPC Key from File Name (using NLS-enabled path name)
	QlgSem_open()--Open Named Semaphore (using NLS-enabled path name)
	QlgSem_open_np()--Open Named Semaphore with Maximum Value (using NLS-enabled path name)
	QlgSem_unlink()--Unlink Named Semaphore (using NLS-enabled path name)
	Delete Interprocess Communication Objects (QP0ZDIPC) API
	Open List of Interprocess Communication Objects (QP0ZOLIP) API
	Open List of Semaphores (QP0ZOLSM) API
	Retrieve an Interprocess Communication Object (QP0ZRIPC) API
	semctl()-Perform Semaphore Control Operations
	semget()-Get Semaphore Set with Key
	semop()-Perform Semaphore Operations on Semaphore Set
	sem_close()-Close Named Semaphore
	sem_destroy()-Destroy Unnamed Semaphore
	sem_getvalue()-Get Semaphore Value
	sem_init()-Initialize Unnamed Semaphore
	sem_init_np()-Initialize Unnamed Semaphore with Maximum Value
	sem_open()--Open Named Semaphore
	sem_open_np()--Open Named Semaphore with Maximum Value
	sem_post()-Post to Semaphore
	sem_post_np()-Post Value to Semaphore
	sem_trywait()-Try to Decrement Semaphore
	sem_unlink()--Unlink Named Semaphore
	sem_wait()-Wait for Semaphore
	sem_wait_np()-Wait for Semaphore with Timeout
	shmat()-Attach Shared Memory Segment to Current Process
	shmctl()-Perform Shared Memory Control Operations
	shmdt()-Detach Shared Memory Segment from Calling Process
	shmget()-Get ID of Shared Memory Segment with Key

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

