
UNIX-Type APIs (V5R2)

Interprocess Communication (IPC) APIs

Table of Contents

Interprocess Communication (IPC) APIs

Identifier Based Services●

Pointer Based Services●

Managing IPC Objects●

APIs

ftok() (Generate IPC Key from File Name)❍

msgctl() (Perform Message Control Operations)❍

msgget() (Get Message Queue)❍

msgrcv() (Receive Message Operation)❍

msgsnd() (Send Message Operation)❍

QlgFtok() (Generate IPC Key from File Name (using NLS-enabled path name))❍

QlgSem_open() (Open Named Semaphore (using NLS-enabled path name))❍

QlgSem_open_np() (Open Named Semaphore with Maximum Value (using NLS-enabled
path name))

❍

QlgSem_unlink() (Unlink Named Semaphore (using NLS-enabled path name))❍

QP0ZDIPC (Delete Interprocess Communication Objects)❍

QP0ZOLIP (Open List of Interprocess Communication Objects)❍

QP0ZOLSM (Open List of Semaphores)❍

QP0ZRIPC (Retrieve an Interprocess Communication Object)❍

semctl() (Perform Semaphore Control Operations)❍

semget() (Get Semaphore Set with Key)❍

semop() (Perform Semaphore Operations on Semaphore Set)❍

sem_close() (Close Named Semaphore)❍

sem_destroy() (Destroy Unnamed Semaphore)❍

sem_getvalue() (Get Semaphore Value)❍

sem_init() (Initialize Unnamed Semaphore)❍

sem_init_np() (Initialize Unnamed Semaphore with Maximum Value)❍

sem_open() (Open Named Semaphore)❍

sem_open_np() (Open Named Semaphore with Maximum Value)❍

sem_post() (Post to Semaphore)❍

●

sem_post_np() (Post Value to Semaphore)❍

sem_trywait() (Try to Decrement Semaphore)❍

sem_unlink() (Unlink Named Semaphore)❍

sem_wait() (Wait for Semaphore)❍

sem_wait_np() (Wait for Semaphore with Timeout)❍

shmat() (Attach Shared Memory Segment to Current Process)❍

shmctl() (Perform Shared Memory Control Operations)❍

shmdt() (Detach Shared Memory Segment from Calling Process)❍

shmget() (Get ID of Shared Memory Segment with Key)❍

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Interprocess Communication (IPC) APIs
Interprocess communication (IPC) on OS/400 is made up of five services divided into the two categories of
identifier-based services and pointer-based services. The identifier-based IPC services consist of message
queues, semaphore sets, and shared memory. The pointer-based services consist of unnamed and named
semaphores. The basic purpose of these services is to provide OS/400 processes and threads with a way to
communicate with each other through a set of standard APIs. These functions are based on the definitions
in the Single UNIX Specification.

For additional information on the Interprocess Communication APIs, see:

Identifier Based Services

Message Queues❍

Semaphore Sets❍

Shared Memory❍

●

Pointer Based Services (Named and Unnamed Semaphores)●

Managing IPC Objects●

The interprocess communication functions and what they do are:

ftok() (Generate IPC Key from File Name) generates an IPC key based on the combination of path
and id.

●

msgctl() (Perform Message Control Operations) provides message control operations as specified
by cmd on the message queue specified by msqid.

●

msgget() (Get Message Queue) returns the message queue identifier associated with the parameter
key.

●

msgrcv() (Receive Message Operation) reads a message from the queue associated with the
message queue identifier specified by msqid and places it in the user-defined buffer pointed to by
msgp.

●

msgsnd() (Send Message Operation) is used to send a message to the queue associated with the
message queue identifier specified by msqid.

●

QlgFtok() (Generate IPC Key from File Name (using NLS-enabled path name)) generates an IPC
key based on the combination of path and id.

●

QlgSem_open() (Open Named Semaphore (using NLS-enabled path name)) opens a named
semaphore and returns a semaphore pointer that may be used on subsequent calls to sem_post(),
sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

●

QlgSem_open_np() (Open Named Semaphore with Maximum Value (using NLS-enabled path
name)) opens a named semaphore and returns a semaphore pointer that may be used on subsequent
calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(),
and sem_close().

●

QlgSem_unlink() (Unlink Named Semaphore (using NLS-enabled path name)) unlinks a named
semaphore.

●

QP0ZDIPC (Delete Interprocess Communication Objects) deletes one or more interprocess
communication (IPC) objects as specified by the delete control parameter.

●

QP0ZOLIP (Open List of Interprocess Communication Objects) lets you generate a list of●

interprocess communication (IPC) objects and descriptive information based on the selection
parameters.

QP0ZOLSM (Open List of Semaphores) lets you generate a list of description information about
the semaphores within a semaphore set.

●

QP0ZRIPC (Retrieve an Interprocess Communication Object) lets you generate detailed
information about a single interprocess communication (IPC) object.

●

semctl() (Perform Semaphore Control Operations) provides semaphore control operations as
specified by cmd on the semaphore specified by semnum in the semaphore set specified by semid.

●

semget() (Get Semaphore Set with Key) returns the semaphore ID associated with the specified
semaphore key.

●

semop() (Perform Semaphore Operations on Semaphore Set) performs operations on semaphores in
a semaphore set. These operations are supplied in a user-defined array of operations.

●

sem_close() (Close Named Semaphore) closes a named semaphore that was previously opened by a
thread of the current process using sem_open() or sem_open_np().

●

sem_destroy() (Destroy Unnamed Semaphore) destroys an unnamed semaphore that was previously
initialized using sem_init() or sem_init_np().

●

sem_getvalue() (Get Semaphore Value) retrieves the value of a named or unnamed semaphore.●

sem_init() (Initialize Unnamed Semaphore) initializes an unnamed semaphore and sets its initial
value.

●

sem_init_np() (Initialize Unnamed Semaphore with Maximum Value) initializes an unnamed
semaphore and sets its initial value.

●

sem_open() (Open Named Semaphore) opens a named semaphore, returning a semaphore pointer
that may be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(),
sem_trywait(), sem_getvalue(), and sem_close().

●

sem_open_np() (Open Named Semaphore with Maximum Value) opens a named semaphore,
returning a semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(),
sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

●

sem_post() (Post to Semaphore) posts to a semaphore, incrementing its value by one.●

sem_post_np() (Post Value to Semaphore) posts to a semaphore, incrementing its value by the
increment specified in the options parameter.

●

sem_trywait() (Try to Decrement Semaphore) attempts to decrement the value of the semaphore.●

sem_unlink() (Unlink Named Semaphore) unlinks a named semaphore.●

sem_wait() (Wait for Semaphore) decrements by one the value of the semaphore.●

sem_wait_np() (Wait for Semaphore with Timeout) attempts to decrement by one the value of the
semaphore.

●

shmat() (Attach Shared Memory Segment to Current Process) returns the address of the shared
memory segment associated with the specified shared memory identifier.

●

shmctl() (Perform Shared Memory Control Operations) provides shared memory control operations
as specified by cmd on the shared memory segment specified by shmid.

●

shmdt() (Detach Shared Memory Segment from Calling Process) detaches the shared memory
segment specified by shmaddr from the calling process.

●

shmget() (Get ID of Shared Memory Segment with Key) returns the shared memory ID associated
with the specified shared memory key.

●

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. See Header Files for
UNIX-Type Functions for the file and member name of each header file.

Top | UNIX-Type APIs | APIs by category

Identifier Based Services
Although each IPC service provides a specific type of interprocess communication, the three identifier
based services share many similarities. Each service defines a mechanism through which its
communications take place. For message queues, that mechanism is a message queue; for semaphore sets, it
is a semaphore set; and for shared memory, it is a shared memory segment. These mechanisms are
identified by a unique positive integer called, respectively, a message queue identifier (msqid), a semaphore
set identifier (semid), and a shared memory identifier (shmid).

Note: Throughout the Interprocess Communication APIs, the term thread is used extensively. This does not
mean that IPC objects can be used only between threads within one process, but rather that authorization
checks and waits occur for the calling thread within a process.

Associated with each identifier is a data structure that contains state information for the IPC mechanism, as
well as ownership and permissions information. The ownership and permissions information is defined in a
structure in the <sys/ipc.h> header file as follows:

typedef struct ipc_perm {
 uid_t uid; /* Owner's user ID */
 gid_t gid; /* Owner's group ID */
 uid_t cuid; /* Creator's user ID */
 gid_t cgid; /* Creator's group ID */
 mode_t mode; /* Access modes */
} ipc_perm_t;

This structure is similar to a file permissions structure, and is initialized by the thread that creates the IPC
mechanism. It is then checked by all subsequent IPC operations to determine if the requesting thread has
the required permissions to perform the operation.

To get an identifier, a thread must either create a new IPC mechanism or access an existing mechanism.
This is done through the msgget(), semget(), and shmget() functions. Each get operation takes as input a
key parameter and returns an identifier. Each get operation also takes a flag parameter. This flag parameter
contains the IPC permissions for the mechanism as well as bits that determine whether or not a new
mechanism is created. The rules for whether a new mechanism is created or an existing one is referred to
are as follows:

Specifying a key of IPC_PRIVATE guarantees a new mechanism is created.●

Setting the IPC_CREAT bit in the flag parameter creates a new mechanism for the specified key if
one does not already exist. If an existing mechanism is found, its identifier is returned.

●

Setting both IPC_CREAT and IPC_EXCL creates a new mechanism for the specified key only if a
mechanism does not already exist. If an existing mechanism is found, an error is returned.

●

When a message queue, semaphore set, or shared memory segment is created, the thread that creates it
determines how it can be accessed. The thread does this by passing mode information in the low-order 9
bits of the flag parameter on the msgget(), semget(), or shmget() function call. This information is used to
initialize the mode field in the ipc_perm structure. The values of the bits are given below in hexadecimal
notation:

Bit Meaning

X'0100' Read by user

X'0080' Write by user

X'0020' Read by group

X'0010' Write by group

X'0004' Read by others

X'0002' Write by others

Subsequent IPC operations do a permission test on the calling thread before allowing the thread to perform
the requested operation. This permission test is done in one of three forms:

For the msgget(), semget(), or shmget() calls that are accessing an existing IPC mechanism, the
caller's flag parameter is checked to make sure it does not specify access bits that are not in the
mode field of the existing IPC mechanism's ipc_perm structure. If the flag parameter does not
contain any bits that are not in the mode field, permission is granted.

●

For most of the other IPC APIs, the effective user ID and effective group ID of the thread are
retrieved, and these values are compared with the data in the ipc_perm structure as follows:

If the effective user ID equals either the uid or the cuid field for the IPC mechanism, and if
the appropriate access bit is on in the mode field (either Read by user or Write by user,
depending on the operation being requested), permission is granted.

❍

If the effective group ID equals either the gid or the cgid field for the IPC mechanism, and
if the appropriate access bit is on in the mode field (either Read by group or Write by
group), permission is granted.

❍

If none of the above tests are true, and if the appropriate access bit is on for others (either
Read by others or Write by others), permission is granted.

❍

●

For the msgctl(), semctl(), or shmctl() APIs, some values of the cmd parameter require the caller to
be the owner or creator of the IPC object, or have appropriate privileges. The values of cmd that
this rule applies to depends on the API. This is shown in the API descriptions for msgctl(),
semctl(), and shmctl().

●

Message Queues

Message queues provide a form of message passing in which any process (given that it has the necessary
permissions) can read a message from or write a message to any IPC message queue on the system. There
are no requirements that a process be waiting to receive a message from a queue before another process
sends one, or that a message exist on the queue before a process requests to receive one.

Every message on a queue has the following attributes:

Message type●

Message length (length of data part of message)●

Message data (if length is greater than 0)●

A thread gets a message queue identifier by calling the msgget() function. Depending on the key and msgflg
parameters passed in, either a new message queue is created or an existing message queue is accessed.
When a new message queue is created, a data structure is also created to contain information about the
message queue. This structure is defined in the <sys/msg.h> header file as follows:

typedef struct msqid_ds {
 struct ipc_perm msg_perm; /* Operation permission struct */
 msgqnum_t msg_qnum; /* # msgs currently on queue */
 msglen_t msg_qbytes; /* Max # bytes allowed on queue*/
 pid_t msg_lspid; /* Process ID of last msgsnd() */
 pid_t msg_lrpid; /* Process ID of last msgrcv() */
 time_t msg_stime; /* Time of last msgsnd() */
 time_t msg_rtime; /* Time of last msgrcv() */
 time_t msg_ctime; /* Time of last change */
} msqid_ds_t;

A thread puts a message on a message queue by calling the msgsnd() function. The following parameters
are passed in:

Message queue ID●

Pointer to a buffer containing the message type and message data●

Length of the message●

Flag that specifies whether or not the thread is willing to wait to send the message.●

A thread gets a message from a message queue by calling the msgrcv() function. The following parameters
are passed in:

Message queue ID●

Pointer to a buffer in which to receive the message●

Length of the buffer●

Type of message●

Flag that specifies whether or not the thread is willing to wait and whether or not the thread is
willing to truncate a message to receive it

●

A thread removes a message queue ID by calling the msgctl() function. The thread also can use the
msgctl() function to change the data structure values associated with the message queue ID or to retrieve
the data structure values associated with the message queue ID. The following parameters are passed in:

Message queue ID●

Command the thread wants to perform (remove ID, set data structure values, receive data structure
values)

●

Pointer to a buffer from which to set data structure values or in which to receive data structure
values

●

Message Queue Differences and Restrictions

OS/400 message queues differ from the message queue definition in the Single UNIX Specification in the
following ways:

The maximum message size is 65535 bytes.●

The maximum number of bytes on a message queue is 16 777 216.●

The maximum number of message queues that can be created (system-wide) is 2 147 483 646.●

The message queue functions are:

ftok() (Generate IPC Key from File Name) generates an IPC key based on the combination of path●

and id.

msgctl() (Perform Message Control Operations) provides message control operations as specified
by cmd on the message queue specified by msqid.

●

msgget() (Get Message Queue) returns the message queue identifier associated with the parameter
key.

●

msgrcv() (Receive Message Operation) reads a message from the queue associated with the
message queue identifier specified by msqid and places it in the user-defined buffer pointed to by
msgp.

●

msgsnd() (Send Message Operation) is used to send a message to the queue associated with the
message queue identifier specified by msqid.

●

QlgFtok() (Generate IPC Key from File Name (using NLS-enabled path name)) generates an IPC
key based on the combination of path and id.

●

Semaphore Sets

A semaphore is a synchronization mechanism similar to a mutex or a machine interface (MI) lock. It can
be used to control access to shared resources, or used to notify other threads of the availability of resources.
It differs from a mutex in the following ways:

A semaphore set is not a single value, but has a set of values. It is referred to through a semaphore
set containing multiple semaphores. Each semaphore set is identified by a semid, which identifies
the semaphore set, and a semnum, which identifies the semaphore within the set. Multiple
semaphore operations may be specified on one semop() call. These operations are atomic on
multiple semaphores within a semaphore set.

●

Semaphore values can range from 0 to 65535.●

Semaphores have permissions associated with them. A thread must have appropriate authorities to
perform an operation on a semaphore.

●

A semaphore can have a semaphore adjustment value associated with it. This value represents
resource allocations which can be automatically undone by the system when the thread ends,
representing the releasing of resources. The adjustment value can range from -32767 to 32767.

●

Thus, a semaphore can be used as a resource counter or as a lock.

A process gets a semaphore set identifier by calling the semget() function. Depending on the key and semflg
parameters passed in, either a new semaphore set is created or an existing semaphore set is accessed. When
a new semaphore set is created, a data structure is also created to contain information about the semaphore
set. This structure is defined in the <sys/sem.h> header file as follows:

typedef struct semid_ds {
 struct ipc_perm sem_perm; /* Permissions structure */
 unsigned short sem_nsems; /* Number of sems in set */
 time_t sem_otime; /* Last sem op time */
 time_t sem_ctime; /* Last change time */
} semtablentry_t;

A thread performs operations on one or more of the semaphores in a set by calling the semop() function.
The following parameters are passed in:

Semaphore ID●

Pointer to an array of sembuf structures●

Number of sembuf structures in the array.●

The sembuf structure is defined in the <sys/sem.h> header file as follows:

struct sembuf {
 unsigned short sem_num; /* Semaphore number */
 short sem_op; /* Semaphore operation */
 short sem_flg; /* Operation flags */
};

The operation performed on a semaphore is specified by the sem_op field, which can be positive, negative,
or zero:

If sem_op is positive, the value of sem_op is added to the semaphore's current value.●

If sem_op is zero, the caller will wait until the semaphore's value becomes zero.●

If sem_op is negative, the caller will wait until the semaphore's value is greater than or equal to the
absolute value of sem_op. Then the absolute value of sem_op is subtracted from the semaphore's
current value.

●

The sem_flg value specifies whether or not the thread is willing to wait, and also whether or not the thread
wants the system to keep a semaphore adjustment value for the semaphore.

Semaphore waits are visible from the Work with Active Jobs display. A thread waiting on a semaphore in a
semaphore set appears to be in a semaphore wait state (SEMW) on the Work with Threads display
(requested using the WRKJOB command and taking option 20). Displaying the call stack of the thread
shows the semop() function near the bottom of the stack.

A thread removes a semaphore set ID by calling the semctl() function. The thread also can use the semctl()
function to change the data structure values associated with the semaphore set ID or to retrieve the data
structure values associated with the semaphore set ID. The following parameters are passed in:

Semaphore set ID●

Command the thread wants to perform (remove ID, set data structure values, receive data structure
values),

●

Pointer to a buffer from which to set data structure values, or in which to receive data structure
values.

●

In addition, the semctl() function can perform various other control operations on a specific semaphore
within a set, or on an entire semaphore set:

Set or retrieve a semaphore value.●

Retrieve the process ID of the last thread to operate on a semaphore.●

Retrieve the number of threads waiting for a semaphore value to increase.●

Retrieve the number of threads waiting for a semaphore value to become zero.●

Retrieve the value of every semaphore in a semaphore set.●

Set the value of every semaphore in a semaphore set.●

Semaphore Set Differences and Restrictions

OS/400 semaphore sets differ from the definition in the Single UNIX Specification in the following ways:

The Single UNIX Specification does not define threads. Consequently, Single UNIX Specification
semaphores are defined in terms of processes and the semaphore:

Causes the entire process to wait❍

Releases resources when the process ends❍

OS/400 handles semaphores at the thread level. An OS/400 semaphore:

Causes only a single thread to wait❍

Releases resources when the thread ends❍

●

The maximum number of semaphore sets that can be created (system-wide) is 2 147 483 646.●

The maximum number of semaphores per semaphore set is 65535.●

Semaphores values are limited to the range from 0 to 65535. Adjustment values associated with a
semaphore are limited to the range -32767 to 32767.

●

The semaphore set functions are:

ftok() (Generate IPC Key from File Name) generates an IPC key based on the combination of path
and id.

●

QlgFtok() (Generate IPC Key from File Name (using NLS-enabled path name)) generates an IPC
key based on the combination of path and id.

●

semctl() (Perform Semaphore Control Operations) provides semaphore control operations as
specified by cmd on the semaphore specified by semnum in the semaphore set specified by semid.

●

semget() (Get Semaphore Set with Key) returns the semaphore ID associated with the specified
semaphore key.

●

semop() (Perform Semaphore Operations on Semaphore Set) performs operations on semaphores in
a semaphore set. These operations are supplied in a user-defined array of operations.

●

Shared Memory

Processes and threads can communicate directly with one another by sharing parts of their memory space
and then reading and writing the data stored in the shared memory. Synchronization of shared memory is
the responsibility of the application program. Semaphores and mutexes provide ways to synchronize shared
memory use across processes and threads.

A thread gets a shared memory identifier by calling the shmget() function. Depending on the key and
shmflg parameters passed in, either a new shared memory segment is created or an existing shared memory
segment is accessed. The size of the shared memory segment is specified by the size parameter. When a
new shared memory segment is created, a data structure is also created to contain information about the
shared memory segment. This structure is defined in the <sys/shm.h> header file as follows:

typedef struct shmid_ds {
 struct ipc_perm shm_perm; /* Operation permission struct*/
 int shm_segsz; /* Segment size */
 pid_t shm_lpid; /* Process id of last shmop */
 pid_t shm_cpid; /* Process id of creator */
 int shm_nattch; /* Current # attached */

 time_t shm_atime; /* Last shmat time */
 time_t shm_dtime; /* Last shmdt time */
 time_t shm_ctime; /* Last change time */
} shmtablentry_t;

A process gets addressability to the shared memory segment by attaching to it using the shmat() function.
The following parameters are passed in:

Shared memory ID●

Pointer to an address●

Flag specifying how the shared memory segment is to be attached●

A process detaches a shared memory segment by calling the shmdt() function. The only parameter passed
in is the shared memory segment address. The process implicitly detaches from the shared memory when
the process ends.

A thread removes a shared memory ID by calling the shmctl() function. The thread also can use the
shmctl() function to change the data structure values associated with the shared memory ID or to retrieve
the data structure values associated with the shared memory ID. The following parameters are passed in:

Shared memory ID●

Command the thread wants to perform (remove ID, set data structure values, receive data structure
values)

●

Pointer to a buffer from which to set data structure values, or in which to receive data structure
values.

●

Shared Memory Differences and Restrictions

Shared memory segments are created as teraspace-shared memory segments or as nonteraspace-shared
memory segments. A teraspace shared memory segment is accessed by adding the shared memory segment
to a process's teraspace. A teraspace is a space that has a much larger capacity than other OS/400 spaces
and is addressable from only one process. A nonteraspace shared memory segment creates shared memory
using OS/400 space objects.

A teraspace shared memory segment is created if SHM_TS_NP is specified on the shmflag parameter of
shmget() or if a shared memory segment is created from a program that was compiled using the
TERASPACE(*YES *TSIFC) option of CRTBNDC or CRTCMOD. The following capabilities and
restrictions apply for teraspace shared memory segments.

Teraspace shared memory objects may be attached in read-only mode.●

The address specified by shmaddr is only used when shmat() is called from a program that uses
data model LLP64 and attaches to a teraspace shared memory segment. Otherwise it is not possible
to specify the address in teraspace at which the shared memory is to be mapped. The shmaddr
parameter on the shmat() function is ignored.

●

After a teraspace shared memory segment is detached, it cannot be addressed through a pointer
saved by the process.

●

The maximum size of a teraspace shared memory segment is 4 294 967 295 bytes (4 GB minus 1).●

The maximum number of shared memory segments that can be created (system-wide) is
2 147 483 646.

●

A teraspace shared memory segment may be created such that its size can be changed after it is
created. The maximum size of this type of shared memory segment is 268 435 456 bytes (256 MB).

●

The OS/400 nonteraspace shared memory differs from the shared memory definition in the Single UNIX
Specification in the following ways:

The nonteraspace shared memory segments are OS/400 space objects and can be attached only in
read/write mode, not in the read-only mode that the Single UNIX Specification allows. If the
SHM_RDONLY flag is specified in the shmflg parameter on a shmget() call, the call fails and the
errno variable is set to [EOPNOTSUPP].

●

A nonteraspace shared memory segment can be attached only at the actual address of the OS/400
space object, not at an address specified by the thread. The shmaddr parameter on the shmat()
function is ignored.

●

After a nonteraspace shared memory segment is detached from a process, it still can be addressed
through a pointer saved by the process. For nonteraspace shared memory segments, OS/400 does
not "map" and "unmap" regions of storage to the address space of a process.

●

The maximum size of a nonteraspace shared memory segment is 16 776 960 bytes. Although the
maximum size of a shared memory segment is 16 776 960 bytes, shared memory segments larger
than 16 773 120 bytes should be created as teraspace shared memory segments. When the operating
system accesses a nonteraspace shared memory segment that has a size larger than 16 773 120
bytes, a performance degradation may be observed.

●

The maximum number of shared memory segments that can be created (system-wide) is
2 147 483 646.

●

The size of a nonteraspace shared memory segment may be changed using the SHM_RESIZE
command of shmctl(), up to a maximum size of 16 773 120 bytes.

●

The shared memory functions are:

ftok() (Generate IPC Key from File Name) generates an IPC key based on the combination of path
and id.

●

QlgFtok() (Generate IPC Key from File Name (using NLS-enabled path name)) generates an IPC
key based on the combination of path and id.

●

shmat() (Attach Shared Memory Segment to Current Process) returns the address of the shared
memory segment associated with the specified shared memory identifier.

●

shmctl() (Perform Shared Memory Control Operations) provides shared memory control operations
as specified by cmd on the shared memory segment specified by shmid.

●

shmdt() (Detach Shared Memory Segment from Calling Process) detaches the shared memory
segment specified by shmaddr from the calling process.

●

shmget() (Get ID of Shared Memory Segment with Key) returns the shared memory ID associated
with the specified shared memory key.

●

Top | UNIX-Type APIs | APIs by category

Pointer Based Services
The pointer based services consist of named and unnamed semaphores. The named and unnamed
semaphores on OS/400 differ from the other IPC mechanisms in that they do not have an IPC identifier
associated with them. Instead, pointers to the semaphore are used to operate on the semaphore. Before
using a semaphore, a process must obtain a pointer to the semaphore. Unlike a semaphore set, a named or
unnamed semaphore refers to a single semaphore only. A semaphore contains a value, a maximum value,
and a title.

There are two types of semaphores: named semaphores and unnamed semaphores. Once a semaphore is
created and a pointer to the semaphore is obtained, the same operations are used to manipulate the values of
both types of semaphores. Like the semaphores in a semaphore set, a named or unnamed semaphore has a
nonzero value. A semaphore can be used as a resource counter or as a lock. A thread decrements a
semaphore to obtain one or more associated resources, and increments the semaphore to release the
resource. A semaphore also has a maximum value associated with it. An attempt to increment the value of a
semaphore above its maximum value results in an error.

Besides a value, named and unnamed semaphores contain a maximum value and a title. The maximum
value sets the highest value that the semaphore value may obtain. The title is a null-terminated string with a
maximum size of 16 characters that are associated with the semaphore and may be used to contain
debugging information. The titles associated with named and unnamed semaphores may be obtained by
using the QP0ZOLIP() API.

A process obtains a pointer to a named semaphore by calling the sem_open() or sem_open_np() functions.
These functions find the semaphore associated with a name. The name is a character string, interpreted in
the CCSID of the job. The name may be structured so that it looks like a pathname. This name, however,
has no relationship to any file system. If the semaphore exists and the process has permission to use the
semaphore, then the system allocates memory for the semaphore and returns a pointer to the caller. If the
semaphore does not exist, it will be created if the appropriate flags are set. When a new named semaphore
is created, the permissions of the semaphore are set using the information provided by the mode parameter.
These permissions are the same as those used by the identifier- based IPC services. The sem_open_np()
function permits the caller to set the maximum value and title of a semaphore when creating a named
semaphore. When a process is finished using a named semaphore, it should call sem_close() to close the
semaphore. The semaphore is also explicitly closed when a process terminates. When a named semaphore
will no longer be needed, it can be removed from the system using sem_unlink().

A process obtains a pointer to an unnamed semaphore calling the sem_init() or sem_init_np() functions.
These functions initialize a semaphore at the specified memory location. The sem_init_np() function
permits the caller to set the maximum value and title of a unnamed semaphore when it is created. When a
process is finished using an unnamed semaphore, it should call sem_destroy() to destroy the semaphore
and release system resources associated with that semaphore.

A process decrements by one the value of a semaphore using the sem_wait() and sem_wait_np() functions.
If the value of the semaphore is currently zero, then the thread is blocked until the value of the semaphore is
incremented or until the time specified on the sem_wait_np() has expired. The sem_trywait() call may be
used to decrement the value of the semaphore if it is greater than zero. If the current value of the semaphore
is zero, then sem_trywait() will return an error. The sem_post()and sem_post_np()functions are used to
increment the value of a semaphore. After the value of the semaphore is incremented, it may be
decremented immediately by threads that have blocked trying to decrement the semaphore.

Named and unnamed semaphore waits are visible from the Work with Active Jobs display. A thread
waiting on a named or unnamed semaphore will be in a semaphore wait state (SEMW).

The sem_getvalue()function returns the value of the semaphore if the value is greater than or equal to zero.
If there are threads waiting on the semaphore, sem_getvalue() returns a negative number whose absolute
value is the number of threads waiting on the semaphore.

For details on the semaphore functions, see the following:

QlgSem_open() (Open Named Semaphore (using NLS-enabled path name)) opens a named
semaphore and returns a semaphore pointer that may be used on subsequent calls to sem_post(),
sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

●

QlgSem_open_np() (Open Named Semaphore with Maximum Value (using NLS-enabled path
name)) opens a named semaphore and returns a semaphore pointer that may be used on subsequent
calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(),
and sem_close().

●

QlgSem_unlink() (Unlink Named Semaphore (using NLS-enabled path name)) unlinks a named
semaphore.

●

sem_close() (Close Named Semaphore) closes a named semaphore that was previously opened by a
thread of the current process using sem_open() or sem_open_np().

●

sem_destroy() (Destroy Unnamed Semaphore) destroys an unnamed semaphore that was previously
initialized using sem_init() or sem_init_np().

●

sem_getvalue() (Get Semaphore Value) retrieves the value of a named or unnamed semaphore.●

sem_init() (Initialize Unnamed Semaphore) initializes an unnamed semaphore and sets its initial
value.

●

sem_init_np() (Initialize Unnamed Semaphore with Maximum Value) initializes an unnamed
semaphore and sets its initial value.

●

sem_open() (Open Named Semaphore) opens a named semaphore, returning a semaphore pointer
that may be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(),
sem_trywait(), sem_getvalue(), and sem_close().

●

sem_open_np() (Open Named Semaphore with Maximum Value) opens a named semaphore,
returning a semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(),
sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

●

sem_post() (Post to Semaphore) posts to a semaphore, incrementing its value by one.●

sem_post_np() (Post Value to Semaphore) posts to a semaphore, incrementing its value by the
increment specified in the options parameter.

●

sem_trywait() (Try to Decrement Semaphore) attempts to decrement the value of the semaphore.●

sem_unlink() (Unlink Named Semaphore) unlinks a named semaphore.●

sem_wait() (Wait for Semaphore) decrements by one the value of the semaphore.●

sem_wait_np() (Wait for Semaphore with Timeout) attempts to decrement by one the value of the
semaphore.

●

Top | UNIX-Type APIs | APIs by category

Managing IPC Objects
Interprocess communication objects can be managed with the following APIs. The QP0ZOLIP API opens a
list of message queue, shared memory, semaphore set, named semaphore or unnamed semaphore objects by
type, by owner, by creator, or by key. The QP0ZOLSM API opens a list of semaphores in a semaphore set.
Both APIs return a handle that can be used to get list entries with the QGYGTLE API, find entries by
number with the QGYFNDE API, or close the list with the QGYCLST API.

The QP0ZRIPC API retrieves detailed information about message queue, shared memory, or semaphore set
objects. The QP0ZDIPC API deletes message queue, shared memory, or semaphore set objects.

The IPC object management APIs are:

QP0ZDIPC (Delete Interprocess Communication Objects) deletes one or more interprocess
communication (IPC) objects as specified by the delete control parameter.

●

QP0ZOLIP (Open List of Interprocess Communication Objects) lets you generate a list of
interprocess communication (IPC) objects and descriptive information based on the selection
parameters.

●

QP0ZOLSM (Open List of Semaphores) lets you generate a list of description information about
the semaphores within a semaphore set.

●

QP0ZRIPC (Retrieve an Interprocess Communication Object) lets you generate detailed
information about a single interprocess communication (IPC) object.

●

Top | UNIX-Type APIs | APIs by category

ftok()--Generate IPC Key from File Name

 Syntax

 #include <sys/ipc.h>

 key_t ftok(const char *path, int id);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The ftok() function generates an IPC key based on the combination of path and id.

Identifier-based interprocess communication facilities require you to supply a key to the msgget(),
semget(), shmget() subroutines to obtain interprocess communication identifiers. The ftok() function is one
mechanism to generate these keys.

If the values for path and id are the same as a previous call to ftok() and the file named by path was not
deleted and re-created in between calls to ftok(), ftok() will return the same key.

The ftok() function returns different keys if different values of path and id are used.

Only the low-order 8-bits of id are significant. The remaining bits are ignored by ftok().

Parameters

path

(Input) The path name of the file used in combination with id to generate the key.

See QlgFtok--Generate IPC Key from File Name (using NLS-enabled path name) for a description
and an example of supplying the path in any CCSID.

id

(Input) The integer identifier used in combination with path to generate the key. Only the low order
8-bits of id are significant. The remaining bits will be ignored.

Authorities

Authorization Required for ftok() (excluding QOPT)

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object None None

Authorization Required for ftok() in the QOPT File System

Object Referred to Authority Required errno

Volume containing directory or object *USE EACCES

Directory or object within volume None None

Return Value

value ftok() was successful.

(key_t)-1 ftok() was not successful. The errno variable is set to indicate the error.

Error Conditions

If ftok() is not successful, errno indicates one of the following errors.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB■

QOPT■

❍

1.

If the values for path and idare the same as a previous call to ftok() and if the file named by path
was deleted and re-created in between calls to ftok(), ftok() will return a different key.

2.

The ftok() function will return the same key for different values of path if the path names refer to
symbolic links or hard links whose target files are the same.

3.

The ftok() function may return the same key for different values of path if the target files are in
different file systems.

4.

The ftok() function may return the same key for different values of path if the target file is in a file
system that contains more than 224 files.

5.

Related Information

QlgFtok--Generate IPC Key from File Name (using NLS-enabled path name)●

msgget()-Get Message Queue●

semget()-Get Semaphore Set with Key●

shmget()-Get ID of Shared Memory Segment with Key●

Example

The following example uses ftok() and semget() functions.

#include <sys/ipc.h>
#include <sys/sem.h>
#include <errno.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 key_t myKey;
 int semid;

 /* Use ftok to generate a key associated with a file. */
 /* Every process will get the same key back if the */
 /* caller calls with the same parameters. */
 myKey = ftok("/myApplication/myFile", 42);
 if(myKey == -1) {
 printf("ftok failed with errno = %d\n", errno);
 return -1;
 }

 /* Call an xxxget() API, where xxx is sem, shm, or msg. */
 /* This will create or reference an existing IPC object */
 /* with the 'well known' key associated with the file */
 /* name used above. */
 semid = semget(myKey, 1, 0666 | IPC_CREAT);
 if(semid == -1) {
 printf("semget failed with errno = %d\n", errno);
 return -1;
 }

 /* ... Use the semaphore as required ... */
 return 0;
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

msgctl()-Perform Message Control Operations

 Syntax

 #include <sys/msg.h>

 int msgctl(int msqid, int cmd, struct msqid_ds *buf);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The msgctl() function provides message control operations as specified by cmd on the message queue
specified by msqid.

Parameters

msqid

(Input) Message queue identifier, a positive integer. It is created by the msgget() function and used
to identify the message queue on which to perform the control operation.

cmd

(Input) Command, the control operation to perform on the message queue.

buf

(I/O) Pointer to the message queue data structure to be used to get or set message queue
information.

The cmd parameter can have one of the following values:

IPC_STAT Put the current value of each member of the msqid_ds data structure associated with msqid
into the structure pointed to by buf.

IPC_SET Set the value of the following members of the msqid_ds data structure associated with
msqid to the corresponding value found in the structure pointed to by buf:

msg_perm.uid●

msg_perm.gid●

msg_perm.mode●

msg_qbytes●

IPC_SET can be run only by a thread with appropriate privileges or one that has an
effective user ID equal to the value of msg_perm.cuid or msg_perm.uid in the msqid_ds
data structure associated with msqid. Only a thread with appropriate privileges can raise
the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system and destroy the
message queue and msqid_ds data structure associated with it. IPC_RMID can be run only
by a thread with appropriate privileges or one that has an effective user ID equal to the
value of msg_perm.cuid or msg_perm.uid in the msqid_ds data structure associated with
msqid. The structure pointed to by buf is ignored and can be NULL.

Authorities

Figure 1-4. Authorization Required for msgctl()

Object Referred to Authority Required errno

Message queue for which state information is retrieved (cmd =
IPC_STAT)

Read EACCES

Message queue for which state information is set (cmd = IPC_SET) See Note EPERM

Message queue to be removed (cmd = IPC_RMID) See Note EPERM

Note: To set message queue information or to remove a message queue, the thread must be the owner or
creator of the queue, or have appropriate privileges. To raise the value of msg_qbytes, a thread must have
appropriate privileges.

Return Value

0 msgctl() was successful.

-1 msgctl() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgctl() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

The parameter cmd is IPC_STAT, but the calling thread does not have read permission.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The message queue has been damaged by a previous message queue operation.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:

The value of cmd is either IPC_SET or IPC_STAT and the value of buf is NULL.❍

The value of msqid is not a valid message queue identifier.❍

The value of cmd is not a valid command.❍

The value of cmd is IPC_SET and the value of msg_qbytes exceeds the system-imposed
limit.

❍

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The parameter cmd is equal to IPC_RMID or IPC_SET and both of the following are true:

the caller does not have the appropriate privileges.❍

the effective user ID of the caller is not equal to the value of msg_perm.cuid or
msg_perm.uid in the data structure associated with msgid.

❍

The parameter cmd is IPC_SET and an attempt is being made to increase the value of msg_qbytes,
but the the caller does not have appropriate privileges.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

"Appropriate privileges" is defined to be *ALLOBJ special authority. If the user profile under which the
thread is running does not have *ALLOBJ special authority, the caller does not have appropriate privileges.

Related Information

The <sys/msg.h> file (see Header Files for UNIX-Type Functions)●

msgget()-Get Message Queue●

msgrcv()-Receive Message Operation●

msgsnd()-Send Message Operation●

Example

The following example performs a control operation on a message queue:

#include <sys/msg.h>

main() {
 int msqid;

 int rc;
 struct msqid_ds buf;

 rc = msgctl(msqid, IPC_STAT, &buf);
}

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

msgget()-Get Message Queue

 Syntax

 #include <sys/msg.h>
 #include <sys/stat.h>

 int msgget(key_t key, int msgflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The msgget() function returns the message queue identifier associated with the parameter key.

Parameters

key

(Input) Key associated with the message queue. Specifying a key of IPC_PRIVATE guarantees that
a unique message queue is created. A key also can be generated by the caller or by calling the
ftok() function.

msgflg

(Input) Operations and permissions flag.

The value of msgflg is either 0 or is obtained by performing an OR operation on one or more of the
following constants:

'0x0100' or S_IRUSR Permits the creator of the message queue to read it

'0x0080' or S_IWUSR Permits the creator of the message queue to write it

'0x0020' or S_IRGRP Permits the group associated with the message queue to read it

'0x0010' or S_IWGRP Permits the group associated with the message queue to write it

'0x0004' or S_IROTH Permits others to read the message queue

'0x0002' or S_IWOTH Permits others to write the message queue

'0x0200' or IPC_CREAT Creates the message queue if it does not exist already

'0x0400' or IPC_EXCL Causes msgget() to fail if IPC_CREAT is set and the message queue already
exists

Authorities

Figure 1-5. Authorization Required for msgget()

Object Referred to Authority Required errno

Message queue to be created None None

Existing message queue to be accessed See Note EACCES

Note: If the thread is accessing an existing message queue, the mode specified in the last 9 bits of msgflg
must be a subset of the mode of the existing message queue.

Return Value

value msgget() was successful. The value returned is the message queue ID associated with the key
parameter.

-1 msgget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgget() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

A message queue identifier exists for the parameter key, but operation permission as specified by
the low-order 9 bits of msgflg would not be granted.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The message queue has been damaged by a previous message queue operation.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

A message queue identifier exists for the parameter key, but ((msgflg & IPC_CREAT) && (msgflg
& IPC_EXCL)) is not zero. (& is a bitwise AND; && is a logical AND.)

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

A message queue identifier does not exist for the parameter key, and (msgflg & IPC_CREAT) is
zero. (& is a bitwise AND.)

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

A message queue identifier is to be created, but the system-imposed limit on the maximum number
of allowed message queue identifiers system-wide would be exceeded.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

A message queue identifier, associated message queue, and data structure (see the <sys/msg.h>
header file) are created for the parameter key if one of the following is true:

1.

The parameter key is equal to IPC_PRIVATE.❍

The parameter key does not already have a message queue identifier associated with it and
(msgflg & IPC_CREAT) is not zero.

❍

2.

On creation, the data structure associated with the new message queue identifier is initialized as3.

follows:

msg_perm.cuid and msg_perm.uid are set equal to the effective user ID of the calling
thread.

❍

msg_perm.cgid and msg_perm.gid are set equal to the effective group ID of the calling
thread.

❍

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg.❍

msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal to 0.❍

msg_ctime is set equal to the current time.❍

msg_qbytes is set equal to the system limit.❍

Related Information

The <sys/msg.h> file (see Header Files for UNIX-Type Functions)●

ftok()--Generate IPC Key from File Name●

msgctl()-Perform Message Control Operations●

msgrcv()-Receive Message Operation●

msgsnd()-Send Message Operation●

Example

The following example creates a message queue:

#include <sys/msg.h>
#include <sys/stat.h>

main() {
 int msgflg = 0;
 int msqid;

 msqid = msgget(IPC_PRIVATE, msgflg | IPC_CREAT | S_IRUSR | S_IWUSR);
}

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

msgrcv()--Receive Message Operation

 Syntax

 #include <sys/msg.h>

 int msgrcv(int msqid, void *msgp, size_t msgsz,
 long int msgtyp, int msgflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The msgrcv() function reads a message from the queue associated with the message queue identifier
specified by msqid and places it in the user-defined buffer pointed to by msgp.

Parameters

msqid

(Input) Message queue identifier from which the message will be received.

msgp

(Output) Pointer to a buffer in which the received message will be stored. See the details below on
the structure of the user-defined buffer.

msgsz

(Input) Length of the data portion of the buffer.

msgtyp

(Input) Type of message to be received.

msgflg

(Input) Action to be taken if a message of the desired type is not on the queue, or if the data portion
of the message to be received is larger than msgsz.

The parameter msgp points to a user-defined buffer that must contain the following:

A field of type long int that will specify the type of the message.1.

A data part that will hold the data bytes of the message.2.

The following structure is an example of what this user-defined buffer might look like:

 struct mymsg {

 long int mtype; /* message type */
 char mtext[1]; /* message text */
 }

The structure member mtype is the type of the received message, as specified by the sending thread. The
structure member mtext is the text of the message.

The parameter msgtyp specifies the type of message requested as follows:

If msgtyp is equal to zero, the first message on the queue is received.●

If msgtyp is greater than zero, the first message of type msgtyp is received.●

If msgtyp is less than zero, the first message of the lowest type that is less than or equal to the
absolute value of msgtyp is received.

●

The parameter msgsz should include any bytes inserted by the compiler for padding or alignment purposes.
These bytes are part of the message data and affect the total number of bytes in the message queue.

The following example shows pad data and how it affects the size of a message:

 struct mymsg {
 long int mtype; /* 12 bytes padding inserted after */
 char *pointer; /* the mtype field by the compiler.*/
 char c; /* 15 bytes padding inserted after */
 char *pointer2; /* the c field by the compiler. */
 } msg; /* After the mtype field, there are*/
 /* 33 bytes of user data, but 60 */
 /* bytes of data including padding.*/
 msgsz = sizeof(msg) - sizeof(long int); /* 60 bytes. */

Authorities

Figure 1-6. Authorization Required for msgrcv()

Object Referred to Authority Required errno

Message queue from which message is received Read EACCES

Return Value

value msgrcv() was successful. The value returned is the number of bytes of data placed in the buffer
mtext.

-1 msgrcv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgrcv() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[E2BIG]

Argument list too long.

The size in bytes of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is equal to zero.
(& is a bitwise AND.)

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

The calling thread does not have read permission.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The message queue has been damaged by a previous message queue operation.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EIDRM]

ID has been removed.

The message queue identifier msqid was removed from the system.

[EINTR]

Interrupted function call.

The function msgrcv() was interrupted by a signal.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:

The value of msgp is NULL.❍

The value of msqid is not a valid message queue identifier.❍

[ENOMSG]

Message does not exist.

The queue does not contain a message of the desired type and (msgflg & IPC_NOWAIT) is not
zero.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

The parameter msgsz specifies the size in bytes of mtext. The received message is truncated to
msgsz bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is not zero. The truncated
part of the message is lost and no indication of the truncation is given to the calling thread.

1.

The parameter msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These actions are as follows:

If (msgflg & IPC_NOWAIT) is not zero, the calling thread will return immediately with a
return value of -1 and errno set to [ENOMSG].

❍

If (msgflg & IPC_NOWAIT) is zero, the calling thread suspends processing until one of
the following occurs:

A message of the desired type is placed on the queue.■

The message queue identifier msqid is removed from the system. When this
occurs, errno is set to [EIDRM] and a value of -1 is returned.

■

The calling thread receives a signal that is to be caught. In this case, a message is
not received and the calling thread resumes processing in the manner prescribed in
sigaction().

■

❍

2.

The msgrcv() function does not tag message data with a CCSID (coded character set identifier)3.

value. If a CCSID value is required to correctly interpret the message data, it is the responsibility of
the caller to include the CCSID value as part of the data.

On successful completion, the following actions are taken with respect to the data structure
associated with msqid:

msg_qnum is decremented by 1.❍

msg_lrpid is set to the process ID of the calling thread.❍

msg_rtime is set to the current time.❍

4.

If the msgrcv() function does not complete successfully, the requested message is not removed
from the message queue.

5.

Related Information

The <sys/msg.h> file (see Header Files for UNIX-Type Functions)●

msgctl()-Perform Message Control Operations●

msgget()-Get Message Queue●

msgsnd()-Send Message Operation●

Example

The following example receives a message from a message queue:

#include <sys/msg.h>

main() {
 int msqid = 0;
 int msgflg = 0;
 int rc;
 size_t msgsz;
 long int msgtyp;
 struct mymsg {
 long int mtype;
 char mtext[256];
 };

 msgsz = 256;
 msgtyp = 1;
 rc = msgrcv(msqid, &mymsg, msgsz, msgtyp, msgflg | IPC_NOWAIT);
}

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

msgsnd()-Send Message Operation

 Syntax

 #include <sys/msg.h>

 int msgsnd(int msqid, const void *msgp,
 size_t msgsz, int msgflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The msgsnd() function is used to send a message to the queue associated with the message queue identifier
specified by msqid.

Parameters

msqid

(Input) Message queue identifier to which the message will be sent.

msgp

(Input) Pointer to the message to be sent.

msgsz

(Input) Length of the data part of the message to be sent.

msgflg

(Input) Action to be taken if the message cannot be immediately placed on the queue.

The parameter msgp points to a user-defined buffer that must contain the following:

A field of type long int that will specify the type of the message.1.

A data part that will hold the data bytes of the message.2.

The following structure is an example of what this user-defined buffer might look like:

 struct mymsg {
 long int mtype; /* message type */
 char mtext[1]; /* message text */
 }

The structure member mtype is a long int that is greater than zero. It can be used by the receiving thread for
message selection. The structure member mtext is any text of length msgsz bytes. The parameter msgsz can

range from zero to a system-imposed maximum.

The parameter msgsz should include any bytes inserted by the compiler for padding or alignment purposes.
These bytes are part of the message data and affect the total number of bytes in the message queue.

The following example shows pad data and how it affects the size of a message:

 struct mymsg {
 long int mtype; /* 12 bytes padding inserted after */
 char *pointer; /* the mtype field by the compiler.*/
 char c; /* 15 bytes padding inserted after */
 char *pointer2; /* the c field by the compiler. */
 } msg; /* After the mtype field, there are*/
 /* 33 bytes of user data, but 60 */
 /* bytes of data including padding.*/
 msgsz = sizeof(msg) - sizeof(long int); /* 60 bytes. */

Authorities

Figure 1-7. Authorization Required for msgsnd()

Object Referred to Authority Required errno

Message queue on which message is placed Write EACCES

Return Value

0 msgsnd() was successful.

-1 msgsnd() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgsnd() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)

command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

The calling thread does not have write permission.

[EAGAIN]

Operation would have caused the process to be suspended.

The message cannot be sent for one of the reasons cited above and (msgflg & IPC_NOWAIT) is
not zero. (& is a bitwise AND.)

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The message queue has been damaged by a previous message queue operation.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EIDRM]

ID has been removed.

The message queue identifier msqid was removed from the system.

[EINTR]

Interrupted function call.

The function msgsnd() was interrupted by a signal.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:

The value of msgp is NULL.❍

The value of msqid is not a valid message queue identifier.❍

The value of mtype is less than or equal to zero.❍

The value of msgsz is greater than the system-imposed limit.❍

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

The parameter msgflg specifies the action to be taken if the number of bytes already on the queue is
equal to msg_qbytes (see Message Queues or the <sys/msg.h> header file). The possible actions
are as follows:

If (msgflg & IPC_NOWAIT) is not zero, the message is not sent. The calling thread will
return immediately with a return value of -1 and errno set to [EAGAIN].

❍

If (msgflg & IPC_NOWAIT) is zero, the calling process suspends processing until one of
the following occurs:

The condition responsible for the suspension no longer exists, in which case the
message is sent.

■

The message queue identifier msqid is removed from the system. When this
occurs, errno is set to [EIDRM] and a value of -1 is returned.

■

The calling thread receives a signal that is to be caught. In this case, a message is
not sent and the calling thread resumes processing in the manner prescribed in
sigaction().

■

❍

1.

The msgsnd() function does not tag message data with a CCSID (coded character set identifier)
value. If a CCSID value is required to correctly interpret the message data, it is the responsibility of
the caller to include the CCSID value as part of the data.

2.

On successful completion, the following actions are taken with respect to the data structure
associated with msqid:

msg_qnum is incremented by 1.❍

msg_lspid is set to the process ID of the calling thread.❍

msg_stime is set to the current time.❍

3.

If the msgsnd() function does not complete successfully, the requested message is not placed on the
message queue.

4.

Related Information

The <sys/msg.h> file (see Header Files for UNIX-Type Functions)●

msgctl()-Perform Message Control Operations●

msgget()-Get Message Queue●

msgrcv()-Receive Message Operation●

Example

The following example sends a message to a message queue:

#include <sys/msg.h>

main() {
 int msqid = 0;
 int msgflg = 0;
 int rc;
 size_t msgsz;
 struct mymsg {
 long int mtype;
 char mtext[256];
 };

 msgsz = 256;
 mymsg.mtype = 1;
 rc = msgsnd(msqid, &mymsg, msgsz, msgflg | IPC_NOWAIT);
}

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

QlgFtok()--Generate IPC Key from File Name
(using NLS-enabled path name)

 Syntax

 #include <sys/ipc.h>
 #include <qlg.h>

 key_t QlgFtok(const Qlg_Path_Name_T *path, int id);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Conditional

The QlgFtok() function, like the ftok() function, generates an IPC key based on the combination of path
and id. The difference is that the QlgFtok() function takes a pointer to a Qlg_Path_Name_T structure,
while the ftok() function takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, returnvalues, and related information, see
ftok()--Generate IPC Key from File Name.

Parameters

path

(Input) The path name of the file used in combination with id to generate the key. For more
information on the Qlg_Path_Name_T structure, see Path name format.

Related Information

ftok()--Generate IPC Key from File Name

Example

The following example uses the QlgFtok() and semget() functions.

#include <sys/ipc.h>
#include <sys/sem.h>
#include <errno.h>
#include <stdio.h>

#include <qlg.h>

int main(int argc, char *argv[])
{
 key_t myKey;
 int semid;

 #define mypath "/myApplication/myFile"
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 const char Path_Name_Del_const[2]= "/";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char[100] pn; /* This size must be >= the path */
 /* name length or be a pointer */
 /* to the path name. */

 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)path name, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 memcpy(path.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);
 memcpy(path.pn,mypath,sizeof(mypath));

 /* Use QlgFtok to generate a key associated with a file. */
 /* Every process will get the same key back if the caller */
 /* calls with the same parameters. */
 myKey = QlgFtok((Qlg_Path_Name_T *)path name, 42);
 if(myKey == -1) {
 printf("QlgFtok failed with errno = %d\n", errno);
 return -1;
 }

 /* Call an xxxget() API, where xxx is sem, shm, or msg. */
 /* This will create or reference an existing IPC object */
 /* with the 'well known' key associated with the file */
 /* name used above. */
 semid = semget(myKey, 1, 0666 | IPC_CREAT);
 if(semid == -1) {
 printf("semget failed with errno = %d\n", errno);
 return -1;
 }

 /* ... Use the semaphore as required ... */
 return 0;
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgSem_open()--Open Named Semaphore
(using NLS-enabled path name)

 Syntax

 #include <semaphore.h>
 #include <qlg.h>

 sem_t * QlgSem_open(const Qlg_Path_Name_T *name,
 int oflag, ...);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgSem_open() function, like the sem_open() function, opens a named semaphore and returns a
semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(),
sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close(). The QlgSem_open() function takes a
pointer to a Qlg_Path_Name_T structure, while the sem_open() function takes a pointer to a character
string that is in the CCSID of the job.

Limited information on the name parameter is provided in this API. For additional information on the name
parameter and a discussion of other parameters, authorities required, return values, and related information,
see sem_open()--Open Named Semaphore.

Parameters

name

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the semaphore to be opened. For more information on the Qlg_Path_Name_T structure,
see Path name format.

Error Conditions

If QlgSem_open() is not successful, errno usually indicates the following error or one of the errors
identified in sem_open()--Open Named Semaphore.

[ECONVERT] A conversion error for the parameter name.

Related Information

The <qlg.h> file (see Header Files for UNIX-Type Functions)●

sem_open()--Open Named Semaphore●

QlgSem_open_np()--Open Named Semaphore with Maximum Value (using NLS-enabled path
name)

●

QlgSem_unlink()--Unlink Named Semaphore (using NLS-enabled path name)●

Note: All of the related information for sem_open() applies to QlgSem_open(). See Related Information in
sem_open().

Example

The following example opens the named semaphore "/mysemaphore" and creates the semaphore with an
initial value of 10 if it does not already exist. If the semaphore is created, the permissions are set such that
only the current user has access to the semaphore.

#include <semaphore.h>
#include <qlg.h>
main() {

 sem_t * my_semaphore;
 int rc;

 #define mypath "/mysemaphore"
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 const char Path_Name_Del_const[2]= "/";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char[100] pn; /* This size must be >= the path */
 /* name length or be a pointer */
 /* to the path name. */

 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)path name, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 memcpy(path.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(path.pn,mypath,sizeof(mypath));

 my_semaphore = QlgSem_open((Qlg_Path_Name_T *)path name,
 O_CREAT, S_IRUSR | S_IWUSR, 10);

}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgSem_open_np()--Open Named Semaphore
with Maximum Value (using NLS-enabled path
name)

 Syntax

 #include <semaphore.h>
 #include <qlg.h>

 sem_t * QlgSem_open_np(const Qlg_Path_Name_T *name, int oflag
 mode_t mode, unsigned int value,
 sem_attr_np_t * attr);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgSem_open_np() function, like the sem_open_np() function, opens a named semaphore and returns
a semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(),
sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close(). The QlgSem_open_np() function takes
a pointer to a Qlg_Path_Name_T structure, while the sem_open_np() function takes a pointer to a character
string.

Limited information on the name parameter is provided in this API. For additional information on the name
parameter and a discussion of other parameters, authorities required, return values, and related information,
see sem_open_np()--Open Named Semaphore with Maximum Value.

Parameters

name

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the semaphore to be opened. For more information on the Qlg_Path_Name_T structure,
see Path name format.

Error Conditions

If QlgSem_open_np() is not successful, errno usually indicates the following error or one of the errors
identified in sem_open_np()--Open Named Semaphore with Maximum Value.

[ECONVERT]

A conversion error for the parameter name.

Related Information

The <qlg.h> file (see Header Files for UNIX-Type Functions)●

sem_open_np()--Open Named Semaphore with Maximum Value●

QlgSem_open()--Open Named Semaphore (using NLS-enabled path name)●

QlgSem_unlink()--Unlink Named Semaphore (using NLS-enabled path name)●

Note: All of the related information for sem_open_np() applies to QlgSem_open_np(). See Related
Information in sem_open().

Example

The following example opens the named semaphore "/mysemaphore" and creates the semaphore with an
initial value of 10 and a maxiumum value of 11. The permissions are set such that only the current user has
access to the semaphore.

#include <semaphore.h>
#include <qlg.h>
main() {

 sem_t * my_semaphore;
 int rc;
 sem_attr_np_t attr;

 #define mypath "/mysemaphore"
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 const char Path_Name_Del_const[2]= "/";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char[100] pn; /* This size must be >= the path */
 /* name length or be a pointer */
 /* to the path name. */

 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)path name, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 memcpy(path.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);
 memcpy(path.pn,mypath,sizeof(mypath));

 memset(&attr, 0, sizeof(attr));
 attr.maxvalue=11;
 my_semaphore = QlgSem_open_np((Qlg_Path_Name_T *)path name,
 O_CREAT|O_EXCL,
 S_IRUSR | S_IWUSR,
 10,
 &attr);
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgSem_unlink()--Unlink Named Semaphore
(using NLS-enabled path name)

 Syntax

 #include <semaphore.h>
 #include <qlg.h>

 int QlgSem_unlink(const Qlg_Path_Name_T *name);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgSem_unlink() function, like the sem_unlink() function, unlinks a named semaphore. The
QlgSem_unlink() function takes a pointer to a Qlg_Path_Name_T structure, while the sem_unlink()
function takes a pointer to a character string.

Limited information on the name parameter is provided in this API. For additional information on the name
parameter, authorities required, return values, and related information, see sem_unlink()--Unlink Named
Semaphore.

Parameters

name

(Input) A pointer a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the semaphore to be unlinked. For more information on the Qlg_Path_Name_T structure,
see Path name format.

Error Conditions

If QlgSem_unlink() is not successful, errno usually indicates the following error or one of the errors
identified in sem_unlink()--Unlink Named Semaphore.

[ECONVERT]

A conversion error for the parameter name.

Related Information

The <qlg.h> file (see Header Files for UNIX-Type Functions)●

sem_unlink()--Unlink Named Semaphore●

QlgSem_open()--Open Named Semaphore (using NLS-enabled path name)●

QlgSem_open_np()--Open Named Semaphore with Maximum Value (using NLS-enabled path
name)

●

Note: All of the related information for sem_unlink() applies to QlgSem_unlink(). See Related
Information in sem_unlink().

Example

The following example unlinks the named semaphore "/mysem".

#include <semaphore.h>
#include <qlg.h>

main() {
 int rc;

 #define mypath "/mysem"
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 const char Path_Name_Del_const[2]= "/";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char[100] pn; /* This size must be >= the path */
 /* name length or be a pointer */
 /* to the path name. */

 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)path name, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 memcpy(path.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);
 memcpy(path.pn,mypath,sizeof(mypath));

 rc = QlgSem_unlink((Qlg_Path_Name_T *)path name);

}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

Delete Interprocess Communication Objects
(QP0ZDIPC) API

 Required Parameter Group:

1 Delete control Input Char(*)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Delete Interprocess Communication Objects (QP0ZDIPC) API deletes one or more interprocess
communication (IPC) objects as specified by the delete control parameter.

Authorities and Locks

Job Authority

The calling thread must be the owner, must be the creator, or must have *ALLOBJ special
authority.

For additional information on these authorities, see the iSeries Security Reference book.

Required Parameter Group

Delete control

INPUT; CHAR(*)

Information about which IPC objects to delete. For the layout of this structure, see Delete Control
Format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Delete Control Format

The following shows the format of the delete control parameter. For detailed descriptions of the fields in the
table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of objects to delete.

These fields
repeat for each
object to delete.

CHAR(1) IPC type

CHAR(3) Reserved

BINARY(4) Identifier

Field Descriptions

Identifier. A unique IPC identifier that is used to specify which IPC object is to be deleted. The identifier is
obtained from calling the APIs semget(), shmget(), msgget(), or QP0ZOLIP.

IPC type. This value describes the type of IPC object to delete. Possible values follow:

1 Delete a semaphore set object.

2 Delete a shared memory object.

3 Delete a message queue object.

Number of objects to delete. The number of IPC objects in the delete control parameter.

Reserved. A reserved field. These characters must be set to '00'x.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPFA986 E &1 IPC objects deleted; &2 IPC object not deleted

CPDA981 D Not authorized to delete IPC object &1.

CPDA982 D IPC object &1 does not exist.

CPDA983 D IPC object &1 is marked as damaged.

CPFA987 E Delete control not valid.

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

Open List of Interprocess Communication
Objects (QP0ZOLIP) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 List information Output Char(80)
4 Number of records to return Input Binary(4)
5 Format name Input Char(8)
6 Filter information Input Char(*)
7 Filter format name Input Char(8)
8 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Open List of Interprocess Communication Objects (QP0ZOLIP) API lets you generate a list of
interprocess communication (IPC) objects and descriptive information based on the selection parameters.
The QP0ZOLIP API places the specified number of list entries in the receiver variable. You can access
additional records by using the Get List Entries (QGYGTLE) API. On successful completion of the
QP0ZOLIP API, a handle is returned in the list information parameter. You may use this handle on
subsequent calls to the following APIs:

Get List Entries (QGYGTLE)●

Find Entry Number in List (QGYFNDE)●

Close List (QGYCLST)●

You can use the QP0ZOLIP API to:

Open a list of all IPC objects of a specific type (semaphore sets, message queues, shared memory,
named semaphores, or unnamed semaphores).

●

Open a list of identifier-based IPC objects (semaphore sets, message queues, or shared memory) of
a specific type with a key in a specified range.

●

Open a list of identifier-based IPC objects of a specific type that are owned by one or more
specified users.

●

Open a list of IPC objects of a specific type (semaphore sets, message queues, shared memory, or
named semaphores) that were created by one or more specified users.

●

Only one IPC type (either semaphore sets, message queue, shared memory, named semaphores, or unnamed
semaphores) can be returned in one call to this API. The IPC type is determined by the format name
parameter.

The records returned by QP0ZOLIP include an information status field that describes the completeness and
validity of the information. Be sure to check the information status field before using any other information
returned.

Authorities and Locks

Job Authority

Service special authority (*SERVICE) is needed to call this API.

For additional information on this authority, see the iSeries Security Reference book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the IPC object information that you requested.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

List information

OUTPUT; CHAR(80)

Information about the list of IPC objects that were opened. For a description of the layout of this
parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

The format of the information to be returned in the receiver variable. This parameter will determine
the type of IPC mechanism to open the list for. You must use one of the following format names:

LSST0100 This format is described in LSST0100 Format.

LMSQ0100 This format is described in LMSQ0100 Format.

LSHM0100 This format is described in LSHM0100 Format.

LNSM0100 This format is described in LNSM0100 Format.

LUSM0100 This format is described in LUSM0100 Format.

Filter information

INPUT; CHAR(*)

The information in this parameter is used to filter the list of IPC objects. The format of this variable
depends on the filter format name.

Filter format name

INPUT; CHAR(8)

The name of the format that is used to filter the list of IPC objects. You must use one of the
following format names:

FIPC0100 This format is described in FIPC0100 Format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

FIPC0100 Format

The following shows the format of the filter information for the FIPC0100 format. For detailed descriptions
of the field in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Filter on key

1 1 CHAR(3) Reserved

4 4 BINARY(4) Minimum key

8 8 BINARY(4) Maximum key

12 C BINARY(4) Offset to owner profiles array

16 10 BINARY(4) Number of owner profiles specified

20 14 BINARY(4) Offset to creator profiles array

24 18 BINARY(4) Number of creator profiles specified

This field repeats
for each owner
profile name.

CHAR(10) Owner profile name

This field repeats
for each creator
profile name.

CHAR(10) Creator profile name

Field Descriptions

Creator profile name. The user profile names that created the IPC objects being returned. These values are
used only if the number of creator profiles specified field is greater than one. Possible special values follow:

*ALL IPC objects created by any user profile are added to the list. The rest of the user profiles in
the array are ignored.

*CURRENT IPC objects created by the current user profile are added to the list.

Filter on key. Whether filtering will be done based on the key value of the IPC object. Possible values
follow:

0 No filtering is done based on the key value. The values of minimum key field and maximum key
field are ignored.

1 Filtering is done based on the values of minimum key field and maximum key field.

Maximum key. The maximum IPC object's key value. Only the IPC objects with a key greater than or
equal to the minimum key and less than or equal to the maximum key will be added to the generated list.
This value is only used if the filter on key field is set to one.

Minimum key. The minimum IPC object's key value. Only the IPC objects with a key greater than or equal
to the minimum key and less than or equal to the maximum key will be added to the generated list. This
value is only used if the filter on key field is set to one.

Number of creator profiles specified. The number of creator profiles specified in the creator profile
names array. If this value is zero, no filtering is to be done for the creator user profile.

Number of owner profiles specified. The number of owner profiles specified in the owner profile names
array. If this value is zero, no filtering is to be done for the owner user profile.

Offset to creator profiles array. The offset in characters (bytes) from the beginning of the filter
information to the beginning of the array of creator profiles.

Offset to owner profiles array. The offset in characters (bytes) from the beginning of the filter
information to the beginning of the array of owner profiles.

Owner profile name. The user profile names that own the IPC objects being returned. These values are
used only if the number of owner profiles specified field is greater than one. Possible special values follow:

*ALL IPC objects that are owned by any user profile are added to the list. The rest of the user
profiles in the array are ignored.

*CURRENT IPC objects that are owned by the current user profile are added to the list.

Reserved.These characters must be set to '00'x.

LSST0100 Format

This format name is used to return list information for semaphore sets. The following table shows the
information returned in each record in the receiver variable for the LSST0100 format. For a detailed
description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Identifier

4 4 BINARY(4) Key

8 8 BINARY(4) Number of semaphores

12 C CHAR(1) Damaged

13 D CHAR(1) Owner read permission

14 E CHAR(1) Owner write permission

15 F CHAR(1) Group read permission

16 10 CHAR(1) Group write permission

17 11 CHAR(1) General read permission

18 12 CHAR(1) General write permission

19 13 CHAR(1) Authorized to delete

20 14 CHAR(16) Last semop() date and time

36 24 CHAR(16) Last administration change date and time

52 34 CHAR(10) Owner

62 3E CHAR(10) Group owner

72 48 CHAR(10) Creator

82 52 CHAR(10) Creator's group

LMSQ0100 Format

This format name is used to return list information for message queues. The following table shows the
information returned in each record in the receiver variable for the LMSQ0100 format. For a detailed
description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Identifier

4 4 BINARY(4) Key

8 8 CHAR(1) Damaged

9 9 CHAR(1) Owner read permission

10 A CHAR(1) Owner write permission

11 B CHAR(1) Group read permission

12 C CHAR(1) Group write permission

13 D CHAR(1) General read permission

14 E CHAR(1) General write permission

15 F CHAR(1) Authorized to delete

16 10 BINARY(4) Number of messages on queue

20 14 BINARY(4) Size of all messages on queue

24 18 BINARY(4) Maximum size of all messages on queue

28 1C BINARY(4) Number of threads to receive message

32 20 BINARY(4) Number of threads to send message

36 24 CHAR(16) Last msgrcv() date and time

52 34 CHAR(16) Last msgsnd() date and time

68 44 CHAR(16) Last administration change date and time

84 54 CHAR(10) Owner

94 5E CHAR(10) Group owner

104 68 CHAR(10) Creator

114 72 CHAR(10) Creator's group

LSHM0100 Format

This format name is used to return list information for shared memory. The following table shows the
information returned in each record in the receiver variable for the LSHM0100 format. For a detailed
description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Identifier

4 4 BINARY(4) Key

8 8 CHAR(1) Damaged

9 9 CHAR(1) Owner read permission

10 A CHAR(1) Owner write permission

11 B CHAR(1) Group read permission

12 C CHAR(1) Group write permission

13 D CHAR(1) General read permission

14 E CHAR(1) General write permission

15 F CHAR(1) Marked to be deleted

16 10 CHAR(1) Authorized to delete

17 11 CHAR(1) Teraspace

18 12 CHAR(1) Resize

19 13 CHAR(1) Reserved

20 14 BINARY(4) Segment size

24 18 BINARY(4) Number attached

28 1C CHAR(16) Last shmat() date and time

44 2C CHAR(16) Last detach date and time

60 3C CHAR(16) Last administration change date and time

76 4C CHAR(10) Owner

86 56 CHAR(10) Group owner

96 60 CHAR(10) Creator

106 6A CHAR(10) Creator's group

LNSM0100 Format

This format name is used to return list information for named semaphores. The following table shows the
information returned in each record in the receiver variable for the LNSM0100 format. For a detailed
description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Value

8 8 BINARY(4) Maximum value

12 C BINARY(4) Offset to waiting threads

16 10 BINARY(4) Number of waiting threads

20 14 BINARY(4) Offset to name

24 18 BINARY(4) Length of name

28 1C CHAR(16) Title

44 2C CHAR(1) Marked to be deleted

45 2D CHAR(1) Authorized to delete

46 2E CHAR(10) Creator

56 38 CHAR(10) Creator's group

66 42 CHAR(1) Owner read permission

67 43 CHAR(1) Owner write permission

68 44 CHAR(1) Group read permission

69 45 CHAR(1) Group write permission

70 46 CHAR(1) General read permission

71 47 CHAR(1) General write permission

72 48 CHAR(26) Last sem_post() qualified job identifier

98 62 CHAR(2) Reserved

100 64 CHAR(16) Last sem_post() thread identifier

116 74 CHAR(26) Last sem_wait() qualified job identifier

142 8e CHAR(2) Reserved

144 90 CHAR(16) Last sem_wait() thread identifier

These fields
repeat for each
thread waiting

on the
semaphore.

CHAR(26) Waiting qualified job identifier

CHAR(2) Reserved

CHAR(16) Waiting thread identifier

This field
follows the list

of threads
waiting on the

semaphore.

CHAR(*) Name of the semaphore

LUSM0100 Format

This format name is used to return list information for unnamed semaphores. The following table shows the
information returned in each record in the receiver variable for the LUSM0100 format. For a detailed
description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Value

8 8 BINARY(4) Maximum value

12 C BINARY(4) Offset to waiting threads

16 10 BINARY(4) Number of waiting threads

20 14 BINARY(4) Reserved

24 18 CHAR(16) Title

40 28 CHAR(26) Last sem_post() qualified job identifier

66 42 CHAR(2) Reserved

68 44 CHAR(16) Last sem_post() thread identifier

84 54 CHAR(26) Last sem_wait() qualified job identifier

110 6E CHAR(2) Reserved

112 70 CHAR(16) Last sem_wait() thread identifier

These fields
repeat for each
thread waiting

on the
semaphore.

CHAR(26) Waiting qualified job identifier

CHAR(2) Reserved

CHAR(16) Waiting thread identifier

Field Descriptions

Authorized to delete. This value determines if the caller has the authority to delete this IPC object.
Possible values follow:

0 The calling thread cannot delete the IPC object.

1 The calling thread can delete the IPC object.

Creator. The name of the user profile that created this IPC object.

Creator's group. The name of the group profile that created this IPC object. A special value can be
returned:

*NONE The creator does not have a group profile.

Damaged. Whether the IPC object has suffered internal damage. Possible values follow:

0 The IPC object is not damaged.

1 The IPC object is damaged.

General read permission. Whether any user other than the owner and group owner has read authority to
the IPC object. Possible values follow:

0 General read authority is not allowed to the IPC object.

1 General read authority is allowed for the IPC object.

General write permission. Whether if any user other than the owner and group owner has write authority
to the IPC object. Possible values follow:

0 General write authority is not allowed to the IPC object.

1 General write authority is allowed to the IPC object.

Group owner. The name of the group profile that owns this IPC object. A special value can be returned:

*NONE The IPC object does not have a group owner.

Group read permission. Whether the group owner has read authority to the IPC object. Possible values
follow:

0 The group owner does not have read authority to the IPC object.

1 The group owner has read authority to the IPC object.

Group write permission. Whether the group owner has write authority to the IPC object. Possible values
follow:

0 The group owner does not have write authority to the IPC object.

1 The group owner has write authority to the IPC object.

Identifier. The unique IPC object identifier.

Key. The key of the IPC object. If this value is zero, this IPC object has no key associated with it.

Last administration change date and time. The date and time of the last change to the IPC object for the
owner, group owner, or permissions. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last detach date and time. The date and time of the last detachment from the shared memory segment. If
no thread has performed a successful detachment, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgrcv() date and time. The date and time of the last successful msgrcv() call. If no thread has
performed a successful msgrcv() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgsnd() date and time. The date and time of the last successful msgsnd() call. If no thread has
performed a successful msgsnd() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last sem_post() qualified job identifier. The job name, the job user profile, and the job number of the last
thread that successfully called sem_post() or sem_post_np() if the job has not ended. The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

If the thread has ended, then the first 16 characters contain 16 characters that uniquely identify the ended
job, followed by 10 spaces. If no thread has used sem_post() to post to the semaphore, then the 26
characters will contain spaces.

Last sem_post() thread identifier. The thread ID of the last thread that successfully called sem_post() or
sem_post_np() if the thread has not ended.

Last sem_wait() qualified job identifier. The job name, the job user profile, and the job number of the last
thread that returned from a sem_wait(), sem_wait_np(), or sem_wait() call, if the job has not ended. The 26
characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

If the thread has ended, then the first 16 characters contain 16 characters that uniquely identify the ended
job, followed by 10 spaces. If no job has used sem_wait() to wait on the semaphore, then the 26 characters
will contain spaces.

Last sem_wait() thread identifier. The thread ID of the last thread that returned from a sem_wait(),
sem_wait_np(), or sem_wait() call, if the thread has not ended.

Last semop() date and time. The date and time of the last successful semop() call. If no thread has
performed a successful semop() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last shmat() date and time. The date and time of the last successful shmat(). If no thread has performed a
successful shmat() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Length of entry. The length of this record in the list.

Length of name. The number of bytes in the name of the semaphore, not including the terminating null
character.

Marked to be deleted. Whether the shared memory is marked to be deleted when the number attached
becomes zero. Possible values follow:

0 The shared memory segment is not marked for deletion.

1 The shared memory segment is marked for deletion.

Maximum size of all messages on queue. The maximum byte size of all messages that can be on the
queue at one time.

Maximum value. The maximum value of the semaphore.

Name of the semaphore. The null-terminated name of the semaphore.

Number attached. The number of times any thread has done a shmat() without doing a detach.

Number of messages on queue. The number of messages that are currently on the message queue.

Number of semaphores. The number of semaphores in the semaphore set.

Number of threads to receive message. The number of threads that are currently waiting to receive a
message.

Number of threads to send message. The number of threads that are currently waiting to send a message.

Number of waiting threads. The total number of threads that are waiting for this semaphore to reach a
certain value.

Offset to name. The offset to where the name field begins.

Offset to waiting threads. The offset to where the fields containing waiting threads begin.

Owner. The name of the user profile that owns this IPC object.

Owner read permission. Whether the owner has read authority to the IPC object. Possible values follow:

0 The owner does not have read authority to the IPC object.

1 The owner has read authority to the IPC object.

Owner write permission. Whether the owner has write authority to the IPC object. Possible values follow:

0 The owner does not have write authority to the IPC object.

1 The owner has write authority to the IPC object.

Reserved. An ignored field.

Resize. Whether the shared memory object may be resized. Possible values follow:

0 The shared memory object may not be resized.

1 The shared memory object may be resized.

Segment size. The size of the shared memory segment.

Size of all messages on queue. The byte size of all of the messages that are currently on the queue.

Teraspace. Whether the shared memory object is attachable only to a process's teraspace. Possible values
follow:

0 The shared memory object is not attachable to a process's teraspace.

1 The shared memory object is attachable to a process's teraspace.

Title. The title of the semaphore. The title contains the 16 characters that are associated with the semaphore
when it is created.

Value. The value of the semaphore.

Waiting qualified job identifier. The job name, the job user profile, and the job number of a thread
waiting on the semaphore. The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

Waiting thread identifier. The thread ID of a thread waiting on the semaphore.

Error Messages

Message ID Error Message Text

CPF0F01 E *SERVICE authority is required to run this program.

CPF2204 E User profile &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

GUI0115 E The list has been marked in error. See the previous messages.

GUI0118 E Starting record cannot be 0 when records have been requested.

GUI0135 E Filter key information is not valid.

GUI0136 E Filter information is not valid.

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

Open List of Semaphores (QP0ZOLSM) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 List information Output Char(80)
4 Number of records to return Input Binary(4)
5 Format name Input Char(8)
6 Semaphore set identifier Input BINARY(4)
7 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Open List of Semaphores (QP0ZOLSM) API lets you generate a list of description information about
the semaphores within a semaphore set.

The QP0ZOLSM API places the specified number of list entries in the receiver variable. You can access
additional records by using the Get List Entries (QGYGTLE) API. On successful completion of the
QP0ZOLSM API, a handle is returned in the list information parameter. You may use this handle on
subsequent calls to the following APIs:

Get List Entries (QGYGTLE)●

Find Entry Number in List (QGYFNDE)●

Close List (QGYCLST)●

The records returned by QP0ZOLSM include an information status field that describes the completeness
and validity of the information. Be sure to check the information status field before using any other
information returned.

Authorities and Locks

Job Authority

Service special authority (*SERVICE) is needed to call this API.

For additional information on this authority, see the iSeries Security Reference book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the semaphore information that you requested.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

List information

OUTPUT; CHAR(80)

Information about the list of semaphores that were opened. For a description of the layout of this
parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

The format of the information to be returned in the receiver variable. You must use the following
format name:

LSEM0100 This format is described in LSEM0100 Format.

Semaphore set identifier

INPUT; BINARY(4)

The semaphore set identifier of the semaphore set whose semaphores you would like the
information about. The semaphore set identifier can be obtained from calling either the semget(), or
QP0ZOLIP API.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

LSEM0100 Format

This format name is used to return list information for the semaphores in a semaphore set. The following
table shows the information returned in each record in the receiver variable for the LSEM0100 format. For
a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Number

8 8 BINARY(4) Value

12 C BINARY(4) Displacement to wait values

16 10 BINARY(4) Number of waiters

20 14 BINARY(4) Size of waiting information

24 18 BINARY(4) Waiting for zero

28 1C BINARY(4) Waiting for positive value

32 20 CHAR(26) Last changed qualified job identifier

58 3A CHAR(2) Reserved

60 3C BINARY(4) Process identifier

These fields
repeat for each
waiter on the
semaphore
value.

BINARY(4) Wait value

CHAR(26) Waiting qualified job identifier

CHAR(2) Reserved

Field Descriptions

Displacement to wait values. The offset in characters (bytes) from the beginning of the semaphore record
to the beginning of the array of wait values.

Last changed qualified job identifier. The job name, the job user profile, and the job number of the thread
that last changed the value of the semaphore. The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

These fields will be all blanks if any of the following are true:

No thread has changed the semaphore value.●

The process that changed the semaphore has ended.●

The process that changed the semaphore has not been initialized for signals.●

Length of entry. The length of this semaphore record in the list.

Number. The semaphore number in the semaphore set.

Number of waiters. The total number of threads that are waiting for this semaphore to reach a certain
value.

Process identifier The process identifier of the last thread to change the value of the semaphore. If no
thread has changed the semaphore value, this field will be zero.

Reserved. An ignored field.

Size of waiting information. The size, in bytes, of the record that is used to store information about a
thread that is waiting for a semaphore value.

Value. The current value of the semaphore.

Wait value. The value that a thread is waiting for the semaphore to reach. If the value is zero, the thread is
waiting for the semaphore value to equal zero. If the value is a positive number, the thread is waiting for the
semaphore value to be greater than or equal to this value.

Waiting for positive value. The number of threads that are currently waiting for a semaphore value to
reach a positive number.

Waiting for zero. The number of threads that are currently waiting for the semaphore value to reach zero.

Waiting qualified job identifier. The job name, the job user profile, and the job number of the thread that
is currently waiting for the semaphore. The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

Error Messages

Message ID Error Message Text

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

GUI0115 E The list has been marked in error. See the previous messages.

GUI0118 E Starting record cannot be 0 when records have been requested.

CPF0F01 E *SERVICE authority is required to run this program.

CPF2204 E User profile &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPFA988 E IPC object &1 does not exist.

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

Retrieve an Interprocess Communication
Object (QP0ZRIPC) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Identifier Input Binary(4)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve an Interprocess Communication Object (QP0ZRIPC) API lets you generate detailed
information about a single interprocess communication (IPC) object. The object is identified by the format
name and the identifier that is passed in.

The QP0ZRIPC API places the information about the object in the receiver variable. The information that is
written to the receiver variable is dependent on the format name parameter.

Authorities and Locks

Job Authority

Service special authority (*SERVICE) is needed to call this API.

For additional information on this authority, see the iSeries Security Reference book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the IPC object information that you requested.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The format of the information to be returned in the receiver variable. This parameter will determine

the object type (either message queues, semaphore sets, or shared memory) to retrieve the list for.
You must use one of the following format names:

RSST0100 This format is described in RSST0100 Format.

RMSQ0100 This format is described in RMSQ0100 Format.

RSHM0100 This format is described in RSHM0100 Format.

Identifier

INPUT; BINARY(4)

The identifier of the IPC object that you would like to retrieve information about. This identifier is
returned from the APIs semget(), shmget(), msgget(), or QP0ZOLIP.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RSST0100 Format

This format name is used to return information for a single semaphore set. The following table shows the
information returned in the receiver variable for the RSST0100 format. For a detailed description of each
field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Identifier

12 C BINARY(4) Key

16 10 BINARY(4) Number of semaphores

20 14 CHAR(1) Damaged

21 15 CHAR(1) Owner read permission

22 16 CHAR(1) Owner write permission

23 17 CHAR(1) Group read permission

24 18 CHAR(1) Group write permission

25 19 CHAR(1) General read permission

26 1A CHAR(1) General write permission

27 1B CHAR(1) Authorized to delete

28 1C CHAR(16) Last semop() date and time

44 2C CHAR(16) Last administration change date and time

60 3C CHAR(10) Owner

70 46 CHAR(10) Group owner

80 50 CHAR(10) Creator

90 5A CHAR(10) Creator's group

RMSQ0100 Format

This format name is used to return information about a single message queue. The following table shows
the information returned in the receiver variable for the RMSQ0100 format. For a detailed description of
each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Identifier

12 C BINARY(4) Key

16 10 CHAR(1) Damaged

17 11 CHAR(1) Owner read permission

18 12 CHAR(1) Owner write permission

19 13 CHAR(1) Group read permission

20 14 CHAR(1) Group write permission

21 15 CHAR(1) General read permission

22 16 CHAR(1) General write permission

23 17 CHAR(1) Authorized to delete

24 18 BINARY(4) Number of messages on queue

28 1C BINARY(4) Size of all messages on queue

32 20 BINARY(4) Maximum size of all messages on queue

36 24 BINARY(4) Number of threads to receive message

40 28 BINARY(4) Number of threads to send message

44 2C CHAR(16) Last msgrcv() date and time

60 3C CHAR(16) Last msgsnd() date and time

76 4C CHAR(16) Last administration change date and time

92 5C CHAR(10) Owner

102 66 CHAR(10) Group owner

112 70 CHAR(10) Creator

122 7A CHAR(10) Creator's group

132 84 CHAR(26) Last msgsnd() qualified job identifier

158 9E CHAR(2) Reserved

160 A0 BINARY(4) Last msgsnd() process identifier

164 A4 CHAR(26) Last msgrcv() qualified job identifier

190 BE CHAR(2) Reserved

192 C0 BINARY(4) Last msgrcv() process identifier

196 C4 BINARY(4) Offset to message type

200 C8 BINARY(4) Size of message information record

204 CC BINARY(4) Offset to wait type

208 D0 BINARY(4) Size of message receive record

212 D4 BINARY(4) Offset to wait size

216 D8 BINARY(4) Size of message send record

These fields
repeat for each
message on
queue.

BINARY(4) Message type

BINARY(4) Message size

These fields
repeat for each
thread waiting to
receive a
message.

BINARY(4) Message wait type

CHAR(26) Message receive qualified job identifier

CHAR(2) Reserved

These fields
repeat for each
thread waiting to
send a message.

BINARY(4) Message wait size

CHAR(26) Message send qualified job identifier

CHAR(2) Reserved

RSHM0100 Format

This format name is used to return information for a single shared memory object. The following table
shows the information returned in the receiver variable for the RSHM0100 format. For a detailed
description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Identifier

12 C BINARY(4) Key

16 10 CHAR(1) Damaged

17 11 CHAR(1) Owner read permission

18 12 CHAR(1) Owner write permission

19 13 CHAR(1) Group read permission

20 14 CHAR(1) Group write permission

21 15 CHAR(1) General read permission

22 16 CHAR(1) General write permission

23 17 CHAR(1) Marked to be deleted

24 18 CHAR(1) Authorized to delete

25 19 CHAR(1) Teraspace

26 1A CHAR(1) Resize

27 1B CHAR(1) Reserved

28 1C BINARY(4) Segment size

32 20 BINARY(4) Number attached

36 24 CHAR(16) Last shmat() date and time

52 34 CHAR(16) Last detach date and time

68 44 CHAR(16) Last administration change date and time

84 54 CHAR(10) Owner

94 5E CHAR(10) Group owner

104 68 CHAR(10) Creator

114 72 CHAR(10) Creator's group

124 7C CHAR(26) Last attach or detach qualified job identifier

150 96 CHAR(2) Reserved

152 98 BINARY(4) Last attach or detach process identifier

156 9C BINARY(4) Offset to times attached

160 A0 BINARY(4) Number of attach entries

164 A4 BINARY(4) Size of attach entry

These fields
repeat for the
number of attach
entries.

BINARY(4) Times attached

CHAR(26) Attached qualified job identifier

CHAR(2) Reserved

Field Descriptions

Attached qualified job identifier. The job name, the job user profile, and the job number of a job that is
attached to the shared memory segment. The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

Authorized to delete. This value determines if the caller has the authority to delete this IPC object.
Possible values follow:

0 The current thread cannot delete the IPC object.

1 The current thread can delete the IPC object.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Creator. The name of the user profile that created this IPC object.

Creator's group. The name of the group profile that created this IPC object. A special value can be
returned:

*NONE The creator does not have a group profile.

Damaged. Whether the IPC object has suffered internal damage. Possible values follow:

0 The IPC object is not damaged.

1 The IPC object is damaged.

General read permission. Whether any user other than the owner and group owner has read authority to
the IPC object. Possible values follow:

0 General read authority is not allowed to the IPC object.

1 General read authority is allowed to the IPC object.

General write permission. Whether any user other than the owner and group owner has write authority to
the IPC object. Possible values follow:

0 General write authority is not allowed to the IPC object.

1 General write authority is allowed to the IPC object.

Group owner. The name of the group profile that owns this IPC object. A special value can be returned:

*NONE The IPC object does not have a group owner.

Group read permission. Whether the group owner has read authority to the IPC object. Possible values
follow:

0 The group owner does not have read authority to the IPC object.

1 The group owner has read authority to the IPC object.

Group write permission. Whether the group owner has write authority to the IPC object. Possible values
follow:

0 The group owner does not have write authority to the IPC object.

1 The group owner has write authority to the IPC object.

Identifier. The unique IPC object identifier.

Key. The key of the IPC object. If this value is zero, this IPC object has no key associated with it.

Last administration change date and time. The date and time of the last change to the IPC object for the
owner, group owner, or permissions. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last attach or detach process identifier. The process identifier of the thread that performed the last
successful attachment or detachment from the shared memory segment. If no thread has attached or
detached from the shared memory segment, this field will be zero.

Last attach or detach qualified job identifier. The job name, the job user profile, and the job number of
the thread that performed the last successful attachment or detachment from the shared memory segment.
The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

These fields will be all blanks if any of the following are true:

No thread has performed an attachment or detachment on the shared memory.●

The last process that did an attachment or detachment on the shared memory has ended.●

The last process that did an attachment or detachment on the shared memory is not initialized for
signals.

●

Last detach date and time. The date and time of the last detachment from the shared memory segment. If
no thread has performed a successful detachment, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgrcv() date and time. The date and time of the last successful msgrcv() call. If no thread has
performed a successful msgrcv() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgrcv() process identifier. The process identifier of the thread that performed the last successful
msgrcv(). If no thread has done a msgrcv(), this field will be zero.

Last msgrcv() qualified job identifier. The job name, the job user profile, and the job number of the
thread that performed the last successful msgrcv(). The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

These fields will be all blanks if any of the following are true:

No thread has received a message on this message queue.●

The last process to receive a message has ended.●

The last process to receive a message has not been initialized for signals.●

Last msgsnd() date and time. The date and time of the last successful msgsnd() call. If no thread has
performed a successful msgsnd() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgsnd() process identifier. The process identifier of the thread that performed the last successful
msgsnd(). If no thread has done a msgsnd(), this field will be zero.

Last msgsnd() qualified job identifier. The job name, the job user profile, and the job number of the
thread that performed the last successful msgsnd(). The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

These fields will be all blanks if any of the following are true:

No thread has sent a message to this message queue.●

The last process to send a message has ended.●

The last process to send a message has not been initialized for signals.●

Last semop() date and time. The date and time of the last successful semop() call. If no thread has
performed a successful semop() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last shmat() date and time. The date and time of the last successful shmat(). If no thread has performed a
successful shmat() call, this value will be set to all zeros. The 16 characters are:

1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Marked to be deleted. Whether the shared memory is marked to be deleted when the number attached
becomes zero. Possible values follow:

0 The shared memory segment is not marked for deletion.

1 The shared memory segment is marked for deletion.

Maximum size of all messages on queue. The maximum byte size of all messages that can be on the
queue at one time.

Message receive qualified job identifier. The job name, the job user profile, and the job number of the
thread that is waiting to receive a message. The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

Message send qualified job identifier. The job name, the job user profile, and the job number of the
thread that is waiting to send a message. The 26 characters are:

1-10 The job name

11-20 The user profile

21-26 The job number

Message size. The message size of a message that is currently on the queue.

Message type. The message type of a message that is currently on the queue.

Message wait size. The message size of a message that a thread is currently waiting to put on the queue.

Message wait type. The message type that a thread is currently waiting to receive.

Number attached. The number of times any thread has done a shmat() without doing a detach. One
process can be attached multiple times to the same shared memory segment.

Number of attach entries. The number of entries in the variable length section of RSHM0100.

Number of threads to receive message. The number of threads that are currently waiting to receive a
message.

Number of threads to send message. The number of threads that are currently waiting to send a message.

Number of messages on queue. The number of messages that are currently on the message queue.

Number of semaphores. The number of semaphores in the semaphore set.

Offset to message type. The offset in characters (bytes) from the beginning of the RMSQ0100 record to
the message type field.

Offset to times attached. The offset in characters (bytes) from the beginning of the RSHM0100 record to
the times attached field.

Offset to wait size. The offset in characters (bytes) from the beginning of the RMSQ0100 record to the
wait size field.

Offset to wait type. The offset in characters (bytes) from the beginning of the RMSQ0100 record to the
wait type field.

Owner. The name of the user profile that owns this IPC object.

Owner read permission. Whether the owner has read authority to the IPC object. Possible values follow:

0 The owner does not have read authority to the IPC object.

1 The owner has read authority to the IPC object.

Owner write permission. Whether the owner has write authority to the IPC object. Possible values follow:

0 The owner does not have write authority to the IPC object.

1 The owner has write authority to the IPC object.

Reserved. An ignored field.

Resize. Whether the shared memory object may be resized. Possible values follow:

0 The shared memory object may not be resized.

1 The shared memory object may be resized.

Segment size. The size of the shared memory segment.

Size of all messages on queue. The size, in bytes, of all of the messages that are currently on the queue.

Size of attach entry. The size, in bytes, of each attach entry in the array of attach entries.

Size of message information record. The size, in bytes, of each message information record.

Size of message receive record. The size, in bytes, of the record that is used to store information about a
thread waiting to receive a message.

Size of message send record. The size, in bytes, of the record that is used to store information about a
thread waiting to send a message.

Teraspace. Whether the shared memory object is attachable only to a process's teraspace. Possible values
follow:

0 The shared memory object is not attachable to a process's teraspace.

1 The shared memory object is attachable to a process's teraspace.

Times attached. The number of times that this process is attached to the shared memory.

Error Messages

GUI0002 E &2 is not valid for length of receiver variable.

CPF0F01 E *SERVICE authority is required to run this program.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPFA988 E IPC object &1 does not exist.

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

semctl()-Perform Semaphore Control
Operations

 Syntax

 #include <sys/sem.h>

 int semctl(int semid, int semnum, int cmd, ...);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The semctl() function provides semaphore control operations as specified by cmd on the semaphore
specified by semnum in the semaphore set specified by semid.

Parameters

semid

(Input) Semaphore set identifier, a positive integer. It is created by the semget() function and used
to identify the semaphore set on which to perform the control operation.

semnum

(Input) Semaphore number, a non-negative integer. It identifies a semaphore within the semaphore
set on which to perform the control operation.

cmd

(Input) Command, the control operation to perform on the semaphore. See below for details.

...

(Input/output) An optional fourth parameter whose type depends on the value of cmd. For a cmd
value of SETVAL, this parameter must be an integer. For a cmd value of IPC_STAT or IPC_SET,
this parameter must be a pointer to a semid_ds structure. For a cmd value of GETALL or SETALL,
this parameter must be a pointer to an array of type unsigned short. For all other values of cmd, this
parameter is not required.

Note: Before Version 3 Release 6 of OS/400, the Common Programming APIs (CPA) Toolkit/400
support for semctl() required the use of the semun structure for this fourth parameter. With support
for semaphores in OS/400, use of semun is not required and is not recommended when passing an
integer value. If the optional fourth parameter is an integer, IPC expects it to directly follow the
third parameter in storage. However, if the semun structure is used to pass the integer value, the
value is aligned on a 16-byte boundary, which might not directly follow the third parameter.
Therefore, the value used by IPC for the fourth parameter might not be the value intended by the
caller, and unexpected results could occur.

The cmd parameter can have one of the following values:

GETVAL Return the semval value in the semaphore_t data structure associated with the specified
semaphore. This command requires read permission.

SETVAL Set the semval value in the semaphore_t data structure associated with the specified
semaphore to the integer value found in the fourth parameter and clear the associated
per-thread semaphore adjustment value. This command requires write permission.

GETPID Return the sempid value in the semaphore_t data structure associated with the specified
semaphore. This value is the process ID of the last thread to operate on the specified
semaphore. This command requires read permission.

GETNCNT Return the semncnt value in the semaphore_t data structure associated with the specified
semaphore. This value is the number of threads waiting for the specified semaphore's value
to increase. This command requires read permission.

GETZCNT Return the semzcnt value in the semaphore_t data structure associated with the specified
semaphore. This value is the number of threads waiting for the specified semaphore's value
to reach zero. This command requires read permission.

GETALL Return the semval value in the semaphore_t data structure associated with each semaphore
in the specified semaphore set. The semval values will be returned in the array pointed to
by the fourth parameter, which will be a pointer to an array of type unsigned short. This
command requires read permission.

SETALL Set the semval value in the semaphore_t data structure associated with each semaphore in
the specified semaphore set and clear all associated per-thread semaphore-adjustment
values. The semval values are set to the values contained in the array pointed to by the
fourth parameter, which is a pointer to an array of type unsigned short. This command
requires write permission.

IPC_STAT Place the current value of each member of the semid_ds data structure associated with
semid into the structure pointed to by the fourth parameter, which is a pointer to a
semid_ds structure. This command requires read permission.

IPC_SET Set the value of the following members of the semid_ds data structure associated with
semid to the corresponding value found in the structure pointed to by the fourth parameter,
which is a pointer to a semid_ds structure:

sem_perm.uid●

sem_perm.gid●

sem_perm.mode●

IPC_SET can be performed only by a thread with appropriate privileges or one that has an
effective user ID equal to the value of sem_perm.cuid or sem_perm.uid in the semid_ds
data structure associated with semid.

IPC_RMID Remove the semaphore identifier specified by semid from the system and destroy the set of
semaphores and semid_ds data structure associated with it. IPC_RMID can be performed
only by a thread with appropriate privileges or one that has an effective user ID equal to
the value of sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated
with semid.

Authorities

Figure 1-11. Authorization Required for semctl()

Object Referred to Authority Required errno

Semaphore, get the value of (cmd = GETVAL) Read EACCES

Semaphore, set the value of (cmd = SETVAL) Write EACCES

Semaphore, get last process to operate on (cmd = GETPID) Read EACCES

Semaphore, get number of threads waiting for value to increase
(cmd = GETNCNT)

Read EACCES

Semaphore, get number of threads waiting for value to reach zero
(cmd = GETZCNT)

Read EACCES

Semaphore set, get value of each semaphore (cmd = GETALL) Read EACCES

Semaphore set, set value of each semaphore (cmd = SETALL) Write EACCES

Semaphore set, retrieve state information (cmd = IPC_STAT) Read EACCES

Semaphore set, set state information (cmd = IPC_SET) See Note EPERM

Semaphore set, remove (cmd = IPC_RMID) See Note EPERM

Note: To set semaphore set information or to remove a semaphore set, the thread must be the owner or
creator of the semaphore set, or have appropriate privileges.

Return Value

value semctl() was successful. Depending on the control operation specified in cmd, semctl() returns
the following values:

GETVAL The value of the specified semaphore.

GETPID The process ID of the last thread that performed a semaphore
operation on the specified semaphore.

GETNCNT The number of threads waiting for the value of the specified
semaphore to increase.

GETZCNT The number of threads waiting for the value of the specified
semaphore to reach zero.

For all other values of cmd: The value is 0.

-1 semctl() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semctl() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

Operation permission is denied to the calling thread.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The value of semid corresponds to a semaphore set that has been marked as damaged by a previous
semaphore operation.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:

The value of semid is not a valid semaphore identifier.❍

The value of semnum is less than zero or greater than or equal to sem_nsems.❍

The value of cmd is not a valid command.❍

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The parameter cmd is equal to IPC_RMID or IPC_SET and both of the following are true:

the calling thread does not have appropriate privileges.❍

the effective user ID of the calling thread is not equal to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with semid.

❍

[ERANGE]

A range error occurred.

The value of an argument is too small, or a result too large.

The parameter cmd is equal to SETVAL, and the value to which semval is to be set is greater than
the system-imposed maximum.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

"Appropriate privileges" is defined to be *ALLOBJ special authority. If the user profile under which the
thread is running does not have *ALLOBJ special authority, the thread does not have appropriate
privileges.

Related Information

The <sys/sem.h> file (see Header Files for UNIX-Type Functions)●

semget()-Get Semaphore Set with Key●

semop()-Perform Semaphore Operations on Semaphore Set●

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

semget()-Get Semaphore Set with Key

 Syntax

 #include <sys/sem.h>
 #include <sys/stat.h>

 int semget (key_t key, int nsems, int semflg);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

Threadsafe: Yes

The semget() function returns the semaphore ID associated with the specified semaphore key.

Parameters

key

(Input) Key associated with the semaphore set. Specifying a key of IPC_PRIVATE guarantees that
a unique semaphore set is created. A key also can be generated by the caller or by calling the ftok()
function.

nsems

(Input) Number of semaphores in the semaphore set. The number of semaphores in the set cannot
be changed after the semaphore set is created. If an existing semaphore set is being accessed, nsems
can be zero.

semflg

(Input) Operations and permission flags.

The semflg parameter value is either 0, or is obtained by performing an OR operation on one or more of the
following constants:

S_IRUSR Permits the creator of the semaphore set to read it.

S_IWUSR Permits the creator of the semaphore set to write it.

S_IRGRP Permits the group associated with the semaphore set to read it.

S_IWGRP Permits the group associated with the semaphore set to write it.

S_IROTH Permits others to read the semaphore set.

S_IWOTH Permits others to write the semaphore set.

IPC_CREAT Creates the semaphore set if it does not already exist.

IPC_EXCL Causes semget() to fail if IPC_CREAT is also set and the semaphore set already exists.

Authorities

Figure 1-12. Authorization Required for semget()

Object Referred to Authority Required errno

Semaphore set to be created None None

Existing semaphore set to be accessed See Note EACCES

Note: If the thread is accessing a semaphore set that already exists, the mode specified in the last 9 bits of
semflg must be a subset of the mode of the existing semaphore set.

Return Value

value semget() was successful. The value returned is the semaphore ID associated with the key
parameter.

-1 semget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semget() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

A semaphore identifier exists for the parameter key, but operation permission as specified by the
low-order 9 bits of semflg would not be granted.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The value of key corresponds to a semaphore set that has been marked as damaged by a previous
semaphore operation.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

A semaphore identifier exists for the parameter key, but ((semflg & IPC_CREAT) && (semflg &
IPC_EXCL)) is not zero. (& is a bitwise AND; && is a logical AND.)

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

One of the following has occurred:

The value of nsems is either less than or equal to zero or greater than the system-imposed
limit.

❍

A semaphore identifier exists for the parameter key, but the number of semaphores in the
set associated with it is less than nsems and nsems is not zero.

❍

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

A semaphore identifier does not exist for the parameter key, and (semflg & IPC_CREAT) is equal
to zero.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

A semaphore identifier is to be created but the system-imposed limit on the maximum number of
allowed semaphores system-wide would be exceeded.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

semget() creates a semaphore set and its associated semid_ds data structure if one of the following
is true:

The semaphore key is IPC_PRIVATE.❍

A semaphore set is not already associated with the semaphore key, and the IPC_CREAT
flag is set.

❍

1.

When the semaphore set is created, the semid_ds data structure associated with the semaphore set is
initialized as follows:

The sem_perm.cuid and sem_perm.uid values are set to the current user ID (uid) of the
thread.

❍

The sem_perm.cgid and sem_perm.gid values are set to the current group ID (gid) of the
thread.

❍

The sem_perm.mode is set according to the permissions specified in semflg.❍

The number of semaphores, sem_nsems, is set to the nsems parameter.❍

sem_otime is set to zero and sem_ctime is set to the current time.❍

2.

A semctl() call specifying a cmd parameter of SETALL should be used to initialize the semaphore
values after the semaphore set is created.

3.

Related Information

The <sys/sem.h> file (see Header Files for UNIX-Type Functions)●

ftok()--Generate IPC Key from File Name●

semctl()-Perform Semaphore Control Operations●

semop()-Perform Semaphore Operations on Semaphore Set●

Example

For an example of using this function, see Using Semaphores and Shared Memory in Appendix A,
Examples.

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

semop()-Perform Semaphore Operations on
Semaphore Set

 Syntax

 #include <sys/sem.h>

 int semop(int semid, struct sembuf *sops,
 size_t nsops);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The semop() function performs operations on semaphores in a semaphore set. These operations are
supplied in a user-defined array of operations.

Parameters

semid

(Input) Semaphore set identifier.

sops

(Input) Pointer to array of semaphore operation (sembuf) structures.

nsops

(Input) Number of sembuf structures in sops array.

Following is an example of what one of the sembuf structures should look like:

struct sembuf { /* semaphore operation structure */
 unsigned short sem_num; /* semaphore number */
 short sem_op; /* semaphore operation */
 short sem_flg; /* operation flags SEM_UNDO and IPC_NOWAIT */
}

Authorities

Figure 1-13. Authorization Required for semop()

Object Referred to Authority Required errno

Semaphore, sem_op is negative Write EACCES

Semaphore, sem_op is positive Write EACCES

Semaphore, sem_op is zero Read EACCES

Return Value

0 semop() was successful.

-1 semop() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semop() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

Operation permission is denied to the calling thread.

[EAGAIN]

Operation would have caused the process to be suspended.

The operation would result in suspension of the calling thread but (sem_flg & IPC_NOWAIT) is
not zero. (& is a bitwise AND.)

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The value of semid corresponds to a semaphore set that has been marked as damaged by a previous
semaphore operation.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that

is not valid.

[EFBIG]

Object is too large.

The size of the object would exceed the system allowed maximum size.

The value of sem_num is less than 0 or greater than or equal to the number of semaphores in the set
associated with semid.

[EIDRM]

ID has been removed.

The semaphore identifier semid has been removed from the system.

[EINTR]

Interrupted function call.

The semop() function was interrupted by a signal while the thread was in a wait state.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

The value of semid is not a valid semaphore identifier.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

The limit on the number of individual threads requesting a SEM_UNDO would be exceeded.

[ERANGE]

A range error occurred.

The value of an argument is too small, or a result too large.

An operation would cause a semval to overflow the system-imposed limit, or an operation would
cause a semaphore adjustment value to overflow the system-imposed limit.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

Each semaphore operation specified by the sops array is performed on the semaphore set specified
by semid. The entire array of operations is performed atomically; no other thread will operate on
the semaphore set until all of the operations are done or it is determined that they cannot be done. If
the entire set of operations cannot be performed, none of the operations are done, and the thread
waits until all of the operations can be done.

1.

semop() changes each semaphore specified by sem_num according to the value of sem_op:

If sem_op is positive, semop() increments the value of the semaphore and awakens any
threads waiting for the semaphore to increase. This corresponds to releasing resources
controlled by the semaphore.

❍

If sem_op is negative, semop() attempts to decrement the value of the semaphore. If the
result would be negative, it waits for the semaphore value to increase. If the result would be
positive, it decrements the semaphore. If the result would be zero, it decrements the
semaphore and awakens any threads waiting for the semaphore to be zero. This
corresponds to the allocation of resources.

❍

If sem_op is zero, the thread waits for the semaphore's value to be zero.❍

2.

If IPC_NOWAIT is set and the operation cannot be completed, semop() returns an [EAGAIN]
error instead of causing the thread to wait.

3.

If SEM_UNDO is set, semop() causes IPC to reverse the effect of this semaphore operation when
the thread ends, effectively releasing the resources or request for resources controlled by the
semaphore. This value is known as the semaphore adjustment value.

4.

A semop() is interruptible by an asynchronous signal when the thread is waiting for a semaphore to
reach a value.

5.

Related Information

The <sys/sem.h> file (see Header Files for UNIX-Type Functions)●

semget()-Get Semaphore Set with Key●

semctl()-Perform Semaphore Control Operations●

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

sem_close()-Close Named Semaphore

 Syntax

 #include <semaphore.h>

 int sem_close(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_close() function closes a named semaphore that was previously opened by a thread of the current
process using sem_open() or sem_open_np(). The sem_close() function frees system resources associated
with the semaphore on behalf of the process. Using a semaphore after it has been closed will result in an
error. A semaphore should be closed when it is no longer used. If a sem_unlink() was performed
previously for the semaphore and the current process holds the last reference to the semaphore, then the
named semaphore will be deleted and removed from the system.

Parameters

sem

(Input) A pointer to an opened named semaphore. This semaphore is closed for this process.

Authorities

No authorization is required. Authorization is verified during sem_open().

Return Value

0 sem_close() was successful.

-1 sem_close() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_close() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The sem parameter is not a valid semaphore.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_getvalue()-Get Semaphore Value●

sem_open()-Open Named Semaphore●

sem_open_np()-Open Named Semaphore with Maximum Value●

sem_post()-Post to Semaphore●

sem_post_np()-Post Value to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_unlink()-Unlink Named Semaphore●

sem_wait()-Wait for Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example opens a named semaphore with an initial value of 10 and then closes it.

#include <semaphore.h>
main() {
 sem_t * my_semaphore;
 int rc;

 my_semaphore = sem_open("/mysemaphore",
 O_CREAT, S_IRUSR | S_IWUSR,
 10);

 sem_close(my_semaphore);

}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_destroy()-Destroy Unnamed Semaphore

 Syntax

 #include <semaphore.h>

 int sem_destroy(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_destroy() function destroys an unnamed semaphore that was previously initialized using
sem_init() or sem_init_np(). Any threads that have blocked from calling sem_wait() or sem_wait_np() on
the semaphore will unblock and return an [EINVAL] or [EDESTROYED] error.

Parameters

sem

(Input) A pointer to an initialized unnamed semaphore. The semaphore is destroyed.

Authorities

None

Return Value

0 sem_destroy() was successful.

-1 sem_destroy() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_destroy() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

The semaphore is being destroyed by another thread.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The sem parameter is not a valid semaphore.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_getvalue()-Get Semaphore Value●

sem_init()-Initialize Unnamed Semaphore●

sem_init_np()-Initialize Unnamed Semaphore with Maximum Value●

sem_post()-Post to Semaphore●

sem_post_np()-Post Value to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_unlink()-Unlink Named Semaphore●

sem_wait()-Wait for Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of
the current process and sets its value to 10. The semaphore is then destroyed using sem_destroy().

#include <semaphore.h>
main() {
 sem_t my_semaphore;
 int rc;

 rc = sem_init(&my_semaphore, 0, 10);
 rc = sem_destroy(&my_semaphore);
}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_getvalue()-Get Semaphore Value

 Syntax

 #include <semaphore.h>

 int sem_getvalue(sem_t * sem, int * value);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_getvalue() function retrieves the value of a named or unnamed semaphore. If the current value of
the semaphore is zero and there are threads waiting on the semaphore, a negative value is returned. The
absolute value of this negative value is the number of threads waiting on the semaphore.

Parameters

sem

(Input) A pointer to an initialized unnamed semaphore or an opened named semaphore.

value

(Output) A pointer to the integer that contains the value of the semaphore.

Authorities

None

Return Value

0 sem_getvalue() was successful.

-1 sem_getvalue() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_getvalue() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_close()-Close Named Semaphore●

sem_destroy()-Destroy Unnamed Semaphore●

sem_init()-Initialize Unnamed Semaphore●

sem_init_np()-Initialize Unnamed Semaphore with Maximum Value●

sem_open()-Open Named Semaphore●

sem_open_np()-Open Named Semaphore with Maximum Value●

sem_post()-Post to Semaphore●

sem_post_np()-Post Value to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_unlink()-Unlink Named Semaphore●

sem_wait()-Wait for Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example retrieves the value of a semaphore before and after it is decremented by
sem_wait().

#include <stdio.h>
#include <semaphore.h>
main() {
 sem_t my_semaphore;
 int value;

 sem_init(&my_semaphore, 0, 10);
 sem_getvalue(&my_semaphore, &value);
 printf("The initial value of the semaphore is %d\n", value);
 sem_wait(&my_semaphore);
 sem_getvalue(&my_semaphore, &value);
 printf("The value of the semaphore after the wait is %d\n", value);

}

Output:

The initial value of the semaphore is 10
The value of the semaphore after the wait is 9

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_init()-Initialize Unnamed Semaphore

 Syntax

 #include <semaphore.h>

 int sem_init(sem_t * sem, int shared,
 unsigned int value);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_init() function initializes an unnamed semaphore and sets its initial value. The maximum value of
the semaphore is set to SEM_VALUE_MAX. The title for the semaphore is set to the character
representation of the address of the semaphore. If an unnamed semaphore already exists at sem, then it will
be destroyed and a new semaphore will be initialized.

Parameters

sem

(Input) A pointer to the storage of an uninitialized unnamed semaphore. The pointer must be
aligned on a 16-byte boundary. This semaphore is initialized.

shared

(Input) An indication to the system of how the semaphore is going to be used. A value of zero
indicates that the semaphore will be used only by threads within the current process. A nonzero
value indicates that the semaphore may be used by threads from other processes.

value

(Input) The value used to initialize the value of the semaphore.

Authorities

None

Return Value

0 sem_init() was successful.

-1 sem_init() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_init() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value parameter is greater than SEM_VALUE_MAX.

[ENOSPC]

No space available.

System semaphore resources have been exhausted.

Error Messages

None.

Related Information

The <semaphore.h> file (see)●

sem_destroy()-Destroy Unnamed Semaphore●

sem_getvalue()-Get Semaphore Value●

sem_init_np()-Initialize Unnamed Semaphore with Maximum Value●

sem_post()-Post to Semaphore●

sem_post_np()-Post Value to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_wait()-Wait for Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of
the current process. Its value is set to 10.

#include <semaphore.h>
main() {
 sem_t my_semaphore;
 int rc;

 rc = sem_init(&my_semaphore, 0, 10);

}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_init_np()-Initialize Unnamed Semaphore
with Maximum Value

 Syntax

 #include <semaphore.h>

 int sem_init_np(sem_t * sem, int shared,
 unsigned int value,
 sem_attr_np_t * attr);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_init_np() function initializes an unnamed semaphore and sets its initial value. The sem_init_np()
function uses the attr parameter to set the maximum value and title of the semaphore. If an unnamed
semaphore already exists at sem, then it will be destroyed and a new semaphore will be initialized.

Parameters

sem

(Input) A pointer to the storage of an uninitialized unnamed semaphore. The pointer must be
aligned on a 16-byte boundary. This semaphore is initialized.

shared

(Input) An indication to the system of how the semaphore is going to be used. A value of zero
indicates that the semaphore will be used only by threads within the current process. A nonzero
value indicates that the semaphore may be used by threads from other processes.

value

(Input) The value used to initialize the value of the semaphore.

attr

(Input) Attributes for the semaphore.

The members of the sem_attr_np_t structure are as follows.

unsigned int reserved1[1] A reserved field that must be set to zero.

unsigned int maxvalue The maximum value that the semaphore may obtain. maxvalue must
be greater than zero. If a sem_post() or sem_post_np() operation
would cause the value of a semaphore to exceed its maximum value,
the operation will fail, returning EINVAL.

unsigned int reserved2[2] A reserved field that must be set to zero.

char title[16] The title of the semaphore. The title is a null-terminated string that
contains up to 16 bytes. Any bytes after the null character are
ignored. The title is retrieved using the Open List of Interprocess
Communication Objects (QP0ZOLIP) API.

void * reserved3[2] A reserved field that must be set to zero.

Authorities

None

Return Value

0 sem_init_np() was successful.

-1 sem_init_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_init_np() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value parameter is greater than the maxvalue field of the attr parameter.

The maxvalue field of the attr parameter is greater than SEM_VALUE_MAX.

The maxvalue field of the attr parameter is equal to zero.

The reserved fields of the attr argument are not set to zero.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

System semaphore resources have been exhausted.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_destroy()-Destroy Unnamed Semaphore●

sem_getvalue()-Get Semaphore Value●

sem_init()-Initialize Unnamed Semaphore●

sem_post()-Post to Semaphore●

sem_post_np()-Post Value to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_wait()-Wait for Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of
the current process and sets its value to 10. The maximum value and title of the semaphore are set to 10 and
"MYSEM".

#include <semaphore.h>
main() {
 sem_t my_semaphore;
 sem_attr_np_t attr;
 int rc;

 memset(&attr, 0, sizeof(attr));
 attr.maxvalue = 10;
 strcpy(attr.title, "MYSEM");
 rc = sem_init_np(&my_semaphore, 0, 10, &attr);

}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_open()--Open Named Semaphore

 Syntax

 #include <semaphore.h>

 sem_t * sem_open(const char *name, int oflag, ...);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_open() function opens a named semaphore, returning a semaphore pointer that may be used on
subsequent calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(),
sem_getvalue(), and sem_close(). When a semaphore is being created, the parameters mode and value must
be specified on the call to sem_open(). If a semaphore is created, then the maximum value of the
semaphore is set to SEM_VALUE_MAX and the title of the semaphore is set to the last 16 characters of
the name.

If sem_open() is called multiple times within the same process using the same name, sem_open() will
return a pointer to the same semaphore, as long as another process has not used sem_unlink() to unlink the
semaphore.

If sem_open() is called from a program using data model LLP64, the returned semaphore pointer must be
declared as a sem_t *__ptr128.

Parameters

name

(Input) A pointer to the null-terminated name of the semaphore to be opened. The name should
begin with a slash ('/') character. If the name does not begin with a slash ('/') character, the system
adds a slash to the beginning of the name.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

The name is added to a set of names that is used only by named semaphores. The name has no
relationship to any file system path names. The maximum length of the name is
SEM_NAME_MAX.

See QlgSem_open()--Open Named Semaphore (using NLS-enabled path name) for a description
and an example of supplying the name in any CCSID.

oflag

(Input) Option flags.

The oflag parameter value is either zero or is obtained by performing an OR operation on one or
more of the following constants:

'0x0008' or O_CREAT Creates the named semaphore if it does not already exist.

'0x0010' or O_EXCL Causes sem_open() to fail if O_CREAT is also set and the named
semaphore already exists.

mode

(input) Permission flags.

The mode parameter value is either zero or is obtained by performing an OR operation on one or
more of the following list of constants. For another process to open the semaphore, the process's
effective UIDd must be able to open the semaphore in both read and write mode.

'0x0100' or S_IRUSR Permits the creator of the named semaphore to open the semaphore in
read mode.

'0x0080' or S_IWUSR Permits the creator of the named semaphore to open the semaphore in
write mode.

'0x0020' or S_IRGRP Permits the group associated with the named semaphore to open the
semaphore in read mode.

'0x0010' or S_IWGRP Permits the group associated with the named semaphore to open the
semaphore in write mode.

'0x0004' or S_IROTH Permits others to open the named semaphore in read mode.

'0x0002' or S_IWOTH Permits others to open the named semaphore in write mode.

value

(Input) Initial value of the named semaphore.

Authorities

Authorization required for sem_open()

Object Referred to Authority Required errno

Named semaphore to be created None None

Existing named semaphore to be accessed *RW EACCES

Return Value

value sem_open() was successful. The value returned is a pointer to the open named
semaphore.

SEM_FAILED sem_open() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_open() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

[EEXIST]

Semaphore exists.

A named semaphore exists for the parameter name, but O_CREAT and O_EXCL are both set in
oflag.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value parameter is greater than SEM_VALUE_MAX.

[ENAMETOOLONG]

The name is too long. The name is longer than the SEM_NAME_MAX characters.

[ENOENT]

No such path or directory.

The name specified on the sem_open() call does not refer to an existing named semaphore and
O_CREAT was not set in oflag.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
also could be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

System semaphore resources have been exhausted.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

QlgSem_open() Open Named Semaphore (using NLS-enabled path name)●

sem_close()--Close Named Semaphore●

sem_getvalue()--Get Semaphore Value●

sem_open_np()--Open Named Semaphore with Maximum Value●

sem_post()--Post to Semaphore●

sem_post_np()--Post Value to Semaphore●

sem_trywait()--Try to Decrement Semaphore●

sem_unlink()--Unlink Named Semaphore●

sem_wait()--Wait for Semaphore●

sem_wait_np()--Wait for Semaphore with Timeout●

Example

The following example opens the named semaphore "/mysemaphore" and creates the semaphore with an
initial value of 10 if it does not already exist. If the semaphore is created, the permissions are set such that
only the current user has access to the semaphore.

#include <semaphore.h>
main() {
 sem_t * my_semaphore;
 int rc;

 my_semaphore = sem_open("/mysemaphore",
 O_CREAT, S_IRUSR | S_IWUSR, 10);

}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_open_np()--Open Named Semaphore with
Maximum Value

 Syntax

 #include <semaphore.h>

 sem_t * sem_open_np(const char *name, int oflag,
 mode_t mode, unsigned int value,
 sem_attr_np_t * attr);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_open_np() function opens a named semaphore, returning a semaphore pointer that may be used
on subsequent calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(),
sem_getvalue(), and sem_close(). If a named semaphore is being created, the parameters mode, value, and
attr are used to set the permissions, value, and maximum value of the created semaphore.

If sem_open_np() is called multiple times within the same process using the same name, sem_open_np()
will return a pointer to the same semaphore, as long as another process has not used sem_unlink() to unlink
the semaphore.

If sem_open_np() is called from a program using data model LLP64, the returned semaphore pointer must
be declared as a sem_t *__ptr128.

Parameters

name

(Input) A pointer to the null-terminated name of the semaphore to be opened. The name should
begin with a slash ('/') character. If the name does not begin with a slash ('/') character, the system
adds a slash to the beginning of the name.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

The name is added to a set of names used by named semaphores only. The name has no
relationship to any file system path names. The maximum length of the name is
SEM_NAME_MAX.

See QlgSem_open_np()--Open Named Semaphore with Maximum Value (using NLS-enabled path
name) for a description and an example of supplying the name in any CCSID.

oflag

(Input) Option flags.

The oflag parameter value is either zero or is obtained by performing an OR operation on one or
more of the following constants:

'0x0008' or O_CREAT Creates the named semaphore if it does not already exist.

'0x0010' or O_EXCL Causes sem_open_np() to fail if O_CREAT is also set and the named
semaphore already exists.

mode

(input) Permission flags.

The mode parameter value is either zero or is obtained by performing an OR operation on one or
more of the list of constants. For another process to open the semaphore, the process's effective
UID must be able to open the semaphore in both read and write mode.

'0x0100' or S_IRUSR Permits the creator of the named semaphore to open the semaphore in
read mode.

'0x0080' or S_IWUSR Permits the creator of the named semaphore to open the semaphore in
write mode.

'0x0020' or S_IRGRP Permits the group associated with the named semaphore to open the
semaphore in read mode.

'0x0010' or S_IWGRP Permits the group associated with the named semaphore to open the
semaphore in write mode.

'0x0004' or S_IROTH Permits others to open the named semaphore in read mode.

'0x0002' or S_IWOTH Permits others to open the named semaphore in write mode.

value

(Input) The initial value of the named semaphore.

attr

(Input) Attributes for the semaphore.

The members of the sem_attr_np_t structure are as follows:

unsigned int reserved1[1] A reserved field that must be set to zero.

unsigned int maxvalue The maximum value that the semaphore may obtain. maxvalue must
be greater than zero. If a sem_post() or sem_post_np() operation
would cause the value of a semaphore to exceed its maximum value,
the operation will fail, returning EINVAL.

unsigned int reserved2[1] A reserved field that must be set to zero.

char title[16] The title of the semaphore. The title is a null-terminated string that
has a maximum length of 16 bytes. The string is associated with the
semaphore. If the first byte is zero, then the system assigns a title to
the semaphore that is based on the semaphore name. The title is
retrieved using the Open List of Interprocess Communication
Objects (QP0ZOLIP) API.

void * reserved3[2] A reserved field that must be set to zero.

Authorities

Authorization required for sem_open_np()

Object Referred to Authority Required errno

Named semaphore to be created None None

Existing named semaphore to be accessed *RW EACCES

Return Value

value sem_open_np() was successful. The value returned is a pointer to the opened named
semaphore.

SEM_FAILED sem_open_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_open_np() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

[EEXIST]

A named semaphore exists for the parameter name, but O_CREAT and O_EXCL are both set in
oflag.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The maxvalue field of the attr argument is greater than SEM_VALUE_MAX.

The maxvalue field of the attr argument is equal to zero.

The value argument is greater than the maxvalue field of the attr argument.

The reserved fields of the attr argument are not set to zero.

[ENAMETOOLONG]

The name is too long. The name is longer than the SEM_NAME_MAX characters.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

The name specified on the sem_open_np() call does not refer to an existing named semaphore and
O_CREAT was not set in oflag.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
also could be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

System semaphore resources have been exhausted.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

QlgSem_open_np()--Open Named Semaphore with Maximum Value (using NLS-enabled path
name)

●

sem_close()--Close Named Semaphore●

sem_getvalue()--Get Semaphore Value●

sem_open()--Open Named Semaphore●

sem_post()--Post to Semaphore●

sem_post_np()--Post Value to Semaphore●

sem_trywait()--Try to Decrement Semaphore●

sem_unlink()--Unlink Named Semaphore●

sem_wait()--Wait for Semaphore●

sem_wait_np()--Wait for Semaphore with Timeout>●

Example

The following example opens the named semaphore "/mysemaphore" and creates the semaphore with an
initial value of 10 and a maxiumum value of 11. The permissions are set such that only the current user has
access to the semaphore.

#include <semaphore.h>
main() {
 sem_t * my_semaphore;
 int rc;
 sem_attr_np_t attr;

 memset(&attr, 0, sizeof(attr));
 attr.maxvalue=11;
 my_semaphore = sem_open_np("/mysemaphore",
 O_CREAT|O_EXCL,
 S_IRUSR | S_IWUSR,

 10,
 &attr);
}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_post()-Post to Semaphore

 Syntax

 #include <semaphore.h>

 int sem_post(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_post() function posts to a semaphore, incrementing its value by one. If the resulting value is
greater than zero and if there is a thread waiting on the semaphore, the waiting thread decrements the
semaphore value by one and continues running.

Parameters

sem

(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

0 sem_post() was successful.

-1 sem_post() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_post() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and

the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Posting to the semaphore would cause its value to exceed its maximum value. The maximum value
is SEM_VALUE_MAX or was set using sem_open_np() or sem_init_np().

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_close()-Close Named Semaphore●

sem_destroy()-Destroy Unnamed Semaphore●

sem_getvalue()-Get Semaphore Value●

sem_init()-Initialize Unnamed Semaphore●

sem_open()-Open Named Semaphore●

sem_open_np()-Open Named Semaphore with Maximum Value●

sem_post_np()-Post Value to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_unlink()-Unlink Named Semaphore●

sem_wait()-Wait for Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example initializes an unnamed semaphore and posts to it, incrementing its value by 1.

#include <stdio.h>
#include <semaphore.h>

main() {
 sem_t my_semaphore;
 int value;

 sem_init(&my_semaphore, 0, 10);
 sem_getvalue(&my_semaphore, &value);
 printf("The initial value of the semaphore is %d\n", value);
 sem_post(&my_semaphore);
 sem_getvalue(&my_semaphore, &value);
 printf("The value of the semaphore after the post is %d\n", value);

}

Output:

The initial value of the semaphore is 10
The value of the semaphore after the post is 11

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_post_np()-Post Value to Semaphore

 Syntax

 #include <semaphore.h>

 int sem_post_np(sem_t * sem,
 sem_post_options_np_t *options);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_post_np() function posts to a semaphore, incrementing its value by the increment specified in the
options parameter. If the resulting value is greater than zero and if there are threads waiting on the
semaphore, the waiting threads decrement the semaphore and continue running.

Parameters

sem

(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

options

(Input) Post options.

The members of the sem_post_options_np_t structure are as follows.

unsigned int reserved1[1] A reserved field that must be set to zero.

unsigned int increment The value, greater than zero, used to increment the semaphore. If the
value specified causes the value of a semaphore to exceed its
maximum value, sem_post_np() will fail by returning [EINVAL].

unsigned int reserved2[2] A reserved field that must be set to zero.

Authorities

None

Return Value

0 sem_post_np() was successful.

-1 sem_post_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_post_np() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EOVERFLOW]

Maximum value exceeded.

Posting to the semaphore would cause its value to exceed its maximum value. The maximum value
is SEM_VALUE_MAX or was set using sem_open_np() or sem_init_np().

The reserved fields of the attr argument are not set to zero.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_close()-Close Named Semaphore●

sem_destroy()-Destroy Unnamed Semaphore●

sem_getvalue()-Get Semaphore Value●

sem_init()-Initialize Unnamed Semaphore●

sem_init_np()-Initialize Unnamed Semaphore with Maximum Value●

sem_open()-Open Named Semaphore●

sem_open_np()-Open Named Semaphore with Maximum Value●

sem_post()-Post to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_unlink()-Unlink Named Semaphore●

sem_wait()-Wait for Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example initializes an unnamed semaphore and posts to it, incrementing its value by 2.

#include <stdio.h>
#include <semaphore.h>
main() {
 sem_t my_semaphore;
 sem_post_options_np_t options;
 int value;

 sem_init(&my_semaphore, 0, 10);
 sem_getvalue(&my_semaphore, &value);
 printf("The initial value of the semaphore is %d.\n", value);
 memset(&options, 0, sizeof(options));
 options.increment=2;
 sem_post_np(&my_semaphore,&options);
 sem_getvalue(&my_semaphore, &value);
 printf("The value of the semaphore after the post is %d.\n", value);

}

Output:

The initial value of the semaphore is 10.
The value of the semaphore after the post is 12.

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_trywait()-Try to Decrement Semaphore

 Syntax

 #include <semaphore.h>

 int sem_trywait(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_trywait() function attempts to decrement the value of the semaphore. The semaphore will be
decremented if its value is greater than zero. If the value of the semaphore is zero, then sem_trywait() will
return -1 and set errno to EAGAIN.

Parameters

sem

(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

0 sem_trywait() was successful.

-1 sem_trywait() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_trywait() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]

Operation would have caused the process to be suspended.

The value of the semaphore is currently zero and cannot be decremented.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_close()-Close Named Semaphore●

sem_destroy()-Destroy Unnamed Semaphore●

sem_getvalue()-Get Semaphore Value●

sem_init()-Initialize Unnamed Semaphore●

sem_init_np()-Initialize Unnamed Semaphore with Maximum Value●

sem_open()-Open Named Semaphore●

sem_open_np()-Open Named Semaphore with Maximum Value●

sem_post()-Post to Semaphore●

sem_post_np()-Post Value to Semaphore●

sem_unlink()-Unlink Named Semaphore●

sem_wait()-Wait for Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example attempts to decrement a semaphore with a current value of zero.

#include <stdio.h>
#include <errno.h>
#include <semaphore.h>
main() {
 sem_t my_semaphore;
 int value;
 int rc;

 sem_init(&my_semaphore, 0, 1);
 sem_getvalue(&my_semaphore, &value);
 printf("The initial value of the semaphore is %d\n", value);
 sem_wait(&my_semaphore);
 sem_getvalue(&my_semaphore, &value);
 printf("The value of the semaphore after the wait is %d\n", value);
 rc = sem_trywait(&my_semaphore);
 if ((rc == -1) && (errno == EAGAIN)) {
 printf("sem_trywait did not decrement the semaphore\n");
 }

}

Output:

The initial value of the semaphore is 1
The value of the semaphore after the wait is 0
sem_trywait did not decrement the semaphore

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_unlink()--Unlink Named Semaphore

 Syntax

 #include <semaphore.h>

 int sem_unlink(const char *name);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_unlink() function unlinks a named semaphore. The name of the semaphore is removed from the
set of names used by named semaphores. If the semaphore is still in use, the semaphore is not deleted until
all processes using the semaphore have ended or have called sem_close(). Using the name of an unlinked
semaphore in subsequent calls to sem_open() or sem_open_np() will result in the creation of a new
semaphore with the same name if the O_CREAT flag of the oflag parameter has been set.

Parameters

name

(Input) A pointer to the null-terminated name of the semaphore to be unlinked. The name should
begin with a slash ('/') character. If the name does not begin with a slash ('/') character, the system
adds a slash to the beginning of the name.

This parameter is assumed to be represented in the coded character set identifier (CCSID) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

The name is present in a set of names used only by named semaphores. The name has no relation to
any file system path names. The maximum length of the name is SEM_NAME_MAX.

See QlgSem_unlink()--Unlink Named Semaphore (using NLS-enabled path name) for a description
and an example of supplying the name in any CCSID.

Authorities

Authorization required for sem_unlink()

Object Referred to Authority Required errno

Named semaphore to be deleted See note EACCES

Note: To unlink a named semaphore, the effective UID of the process must be the creator of the semaphore

or the process must have *ALLOBJ authority.

Return Value

0 sem_unlink() was successful.

-1 sem_unlink() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_unlink() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

[ENOENT]

No such path or directory.

The specified name doesnot refer to an existing named semaphore.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[ENAMETOOLONG]

The name is too long. The name is longer than the SEM_NAME_MAX characters.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

QlgSem_unlink()--Unlink Named Semaphore (using NLS-enabled path name)●

sem_open()--Open Named Semaphore●

sem_open_np()--Open Named Semaphore with Maximum Value●

Example

The following example unlinks the named semaphore "/mysem".

#include <semaphore.h>
main() {
 int rc;

 rc = sem_unlink("/mysem");

}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_wait()-Wait for Semaphore

 Syntax

 #include <semaphore.h>

 int sem_wait(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_wait() function decrements by one the value of the semaphore. The semaphore will be
decremented when its value is greater than zero. If the value of the semaphore is zero, then the current
thread will block until the semaphore's value becomes greater than zero.

Parameters

sem

(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

0 sem_wait() was successful.

-1 sem_wait() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_wait() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_close()-Close Named Semaphore●

sem_destroy()-Destroy Unnamed Semaphore●

sem_getvalue()-Get Semaphore Value●

sem_init()-Initialize Unnamed Semaphore●

sem_init_np()-Initialize Unnamed Semaphore with Maximum Value●

sem_open()-Open Named Semaphore●

sem_open_np()-Open Named Semaphore with Maximum Value●

sem_post()-Post to Semaphore●

sem_post_np()-Post Value to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_unlink()-Unlink Named Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example creates a semaphore with an initial value of 10. The value is decremented by calling
sem_wait().

#include <stdio.h>
#include <semaphore.h>
main() {
 sem_t my_semaphore;
 int value;

 sem_init(&my_semaphore, 0, 1);
 sem_getvalue(&my_semaphore, &value);
 printf("The initial value of the semaphore is %d\n", value);
 sem_wait(&my_semaphore);
 sem_getvalue(&my_semaphore, &value);
 printf("The value of the semaphore after the wait is %d\n", value);
}

Output:

The initial value of the semaphore is 1
The value of the semaphore after the wait is 0

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

sem_wait_np()-Wait for Semaphore with
Timeout

 Syntax

 #include <semaphore.h>

 int sem_wait_np(sem_t * sem,
 sem_wait_options_np_t * options);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_wait_np() function attempts to decrement by one the value of the semaphore. The semaphore will
be decremented by one when its value is greater than zero. If the value of the semaphore is zero, then the
current thread will block until the semaphore's value becomes greater than zero or until the timeout period
specified on the options parameter has ended. If the semaphore is not decremented before the timeout ends,
sem_wait_np() will return with an error, setting errno to [ETIMEDOUT].

Parameters

sem

(Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

options

(Input) A pointer to a semaphore wait (sem_wait_options_np_t) structure. The members of the
sem_wait_options_np_t structure are as follows:

unsigned int reserved1[2] A reserved field that must be set to zero.

struct sem_timeout_t timeout The time, in MI time, that sem_wait_np() should wait for the
semaphore. If the timeout is zero, sem_wait_np() will return
immediately with errno set to [ETIMEDOUT] if the semaphore
cannot be decremented. If a timeout value of
0xFFFFFFFF FFFFFFFF is specified, then sem_wait_np() will
wait indefinitely. The maximum timeout that may be specified is
281 272 976 710 655 (2 ** 48 -1) microseconds. Any value
larger than this, other than 0xFFFFFFFF FFFFFFFF, will cause
sem_wait_np() to wait for the maximum timeout
(281 272 976 710 655 microseconds). The Qp0zCvtToMITime()
may be used to convert a timeval structure to the corresponding
MI time.

Authorities

None

Return Value

0 sem_wait_np() was successful.

-1 sem_wait_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_wait_np() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[ECANCEL]

Operation canceled.

[EDESTROYED]

The semaphore was destroyed.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

Error Messages

None.

Related Information

The <semaphore.h> file (see Header Files for UNIX-Type Functions)●

sem_close()-Close Named Semaphore●

sem_destroy()-Destroy Unnamed Semaphore●

sem_getvalue()-Get Semaphore Value●

sem_init()-Initialize Unnamed Semaphore●

sem_init_np()-Initialize Unnamed Semaphore with Maximum Value●

sem_open()-Open Named Semaphore●

sem_open_np()-Open Named Semaphore with Maximum Value●

sem_post()-Post to Semaphore●

sem_post_np()-Post Value to Semaphore●

sem_trywait()-Try to Decrement Semaphore●

sem_unlink()-Unlink Named Semaphore●

sem_wait_np()-Wait for Semaphore with Timeout●

Example

The following example creates a semaphore with an initial value of 1. The value is decremented using
sem_wait(). The program then attempts to decrement the semaphore using sem_wait_np() with a timeout of
2 seconds. This will fail with ETIMEDOUT because the semaphore's value is currently zero.

#include <stdio.h>
#include <errno.h>
#include <semaphore.h>
#include <time.h>
#include <qp0z1170.h>

main() {
 sem_t my_semaphore;
 int value;
 sem_wait_options_np_t options;
 int rc;
 struct timeval waittime;

 time_t start_time;
 time_t end_time;

 sem_init(&my_semaphore, 0, 1);
 sem_getvalue(&my_semaphore, &value);
 printf("The initial value of the semaphore is %d\n", value);
 sem_wait(&my_semaphore);
 sem_getvalue(&my_semaphore, &value);
 printf("The value of the semaphore after the wait is %d\n", value);
 memset(&options, 0, sizeof(options));
 waittime.tv_sec = 2;
 waittime.tv_usec = 0;
 Qp0zCvtToMITime((unsigned char *) &options.timeout,
 wait_time,
 QP0Z_CVTTIME_TO_OFFSET);
 time(&start_time);
 rc = sem_wait_np(&my_semaphore, &options);
 time(&end_time);
 if ((rc == -1) && (errno == ETIMEDOUT)) {
 printf("sem_wait_np timed out after %d seconds\n",
 end_time - start_time);
 }
}

Output:

The initial value of the semaphore is 1
The value of the semaphore after the wait is 0
sem_wait_np timed out after 2 seconds

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

shmat()-Attach Shared Memory Segment to
Current Process

 Syntax

 #include <sys/shm.h>

 void *shmat(int shmid, const void *shmaddr,
 int shmflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The shmat() function returns the address of the shared memory segment associated with the specified
shared memory identifier.

Parameters

shmid

(Input) Shared memory identifier.

shmaddr

(Input) Shared memory address. The address at which the calling thread would like the shared
memory segment attached.

shmflg

(Input) Operations flags.

The value of the shmflg parameter is either zero or the following constant:

'0x1000' or SHM_RDONLY Places the shared memory segment in read-only memory. This flag is valid
only for teraspace shared memory segments.

Authorities

Figure 1-14. Authorization Required for shmat()

Object Referred to Authority Required errno

Shared memory segment to be attached in read/write memory Read and Write EACCES

Shared memory segment to be attached in read-only memory in a
process's teraspace.

Read EACCES

Return Value

value shmat() was successful. The value returned is a pointer to the shared memory segment
associated with the specified identifier.

NULL shmat() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmat() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

Operation permission is denied to the calling thread.

Shared memory operations are not permitted because the QSHRMEMCTL system value is set to 0.

[EADDRINUSE]

A damaged object was encountered.

Address already in use.

An attempt was made to attach to a SHM_MAP_FIXED_NP teraspace shared memory segment,
but the address range is not available in the teraspace of the current process.

[EDAMAGE]

A damaged object was encountered.

The value of shmid corresponds to a shared memory ID that has been marked as damaged by a
previous shared memory operation.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and

the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value of shmid is not a valid shared memory identifier.

[EOPNOTSUPP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

The value of (shmflg & SHM_RDONLY) is not zero. (& is a bitwise AND.) Read-only shared
memory segments are not supported for nonteraspace shared memory segments. Read-only shared
memory segments are not supported for shared memory segments created using the
SHM_MAP_FIXED_NP option of shmget().

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

The available data space is not large enough to accommodate the shared memory segment.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

The IPC implementation has the following restrictions over the X/Open single UNIX specification
(formerly Spec 1170) definition:

The address specified by shmaddr is only used when shmat() is called from a program that uses
data model LLP64 and attaches to a teraspace shared memory segment. Otherwise the address
specified by shmaddr is ignored and the actual shared memory segment address is returned
regardless of the value of shmaddr.

1.

The only supported operation flag is SHM_READONLY. This operation flag is supported only
when you attach to a teraspace shared memory segment. If shmflg specifies SHM_RDONLY for a
nonteraspace shared memory segment, then an [EOPNOTSUPP] error is returned. All other values
for shmflg are ignored.

2.

A module that was not created with teraspace memory enabled should not attach to a teraspace
shared memory segment. The call to shmat() will succeed and return a pointer. Any attempt,
however, by a module not created with teraspace memory enabled to use the returned pointer will
result in an MCH3601 (Pointer not set for location referenced) exception.

3.

When a process attaches to a shared memory segment that was created using
SHM_MAP_FIXED_NP, an address range within the process's teraspace is used for the shared
memory mapping. When a subsequent process attaches to the shared memory segment, the same
address range within its teraspace must be available. If the address range is not available, the call to
shmat() will fail with an [EADDRINUSE] error.

4.

The storage for a shared memory segment is allocated when the first process attaches to the shared
memory segment. The storage is charged against the process's temporary storage limit. If the
process does not have enough temporary storage to satisfy the request, the call to shmat() will fail
with an [ENOMEM] error.

5.

Related Information

The <sys/shm.h> file (see Header Files for UNIX-Type Functions)●

shmctl()-Perform Shared Memory Control Operations●

shmget()-Get ID of Shared Memory Segment with Key●

shmdt()-Detach Shared Memory Segment from Calling Process●

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

shmctl()-Perform Shared Memory Control
Operations

 Syntax

 #include <sys/shm.h>

 int shmctl(int shmid, int cmd, struct shmid_ds *buf);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The shmctl() function provides shared memory control operations as specified by cmd on the shared
memory segment specified by shmid.

Parameters

shmid

(Input) Shared memory identifier, a positive integer. It is created by the shmget() function and used
to identify the shared memory segment on which to perform the control operation.

cmd

(Input) Command, the control operation to perform on the shared memory segment.

buf

(I/O) Pointer to the shmid_ds structure to be used to get or set shared memory information.

The cmd parameter can have one of the following values:

'0x0002' or IPC_STAT Place the current value of each member of the shmid_ds data structure
associated with shmid into the structure pointed to by buf. This command
requires read permission.

'0x0001' or IPC_SET Set the value of the following members of the shmid_ds data structure
associated with shmid to the corresponding value found in the structure pointed
to by buf:

shm_perm.uid●

shm_perm.gid●

shm_perm.mode●

IPC_SET can be performed only by a thread with appropriate privileges or one
that has an effective user ID equal to the value of shm_perm.cuid or
shm_perm.uid in the shmid_ds data structure associated with shmid.

'0x0000' or IPC_RMID Remove the shared memory identifier specified by shmid from the system and
destroy the shared memory segment and the shmid_ds data structure associated
with it. IPC_RMID can be performed only by a thread with appropriate
privileges or one that has an effective user ID equal to the value of
shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated
with shmid. The structure pointed to by buf is ignored and a NULL pointer is
valid.

'0x0006' or SHM_SIZE Set the size of the shared memory segment using the shm_segsz member of the
shmid_ds data structure pointed to by buf. This value may be larger or smaller
than the current size. This function is valid for nonteraspace shared memory
segments and for teraspace shared memory segments created using the
SHM_RESIZE_NP option of shmget(). The maximum size to which a
nonteraspace shared memory segment may be expanded is 16 773 120 bytes
(16 MB minus 4096 bytes). The maximum size of a resizeable teraspace shared
memory segment is 268 435 456 bytes (256 MB). SHM_SIZE can be
performed only by a thread with appropriate privileges or a thread that has an
effective user ID equal to the value of shm_perm.cuid or shm_perm.uid in the
shmid_ds data structure associated with shmid.

If a shared memory segment is resized to a smaller size, other threads using the
shared memory that is being removed from the shared memory segment may
experience memory exceptions when accessing that memory.

Authorities

Figure 1-15. Authorization Required for shmctl()

Object Referred to Authority Required errno

Shared memory segment for which state information is retrieved
(cmd = IPC_STAT)

Read EACCES

Shared memory segment for which state information is set (cmd =
IPC_SET)

See Note EPERM

Shared memory segment to be removed (cmd = IPC_RMID) See Note EPERM

Shared memory segment to be resized (cmd = SHM_SIZE) See Note EPERM

Note: To set shared memory segment information, to remove a shared memory segment, or to resize a
shared memory segment, the thread must be the owner or creator of the shared memory segment or have
appropriate privileges.

Return Value

0 shmctl() was successful.

-1 shmctl() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmctl() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

The parameter cmd is equal to IPC_STAT and the calling thread does not have read permission.

[EDAMAGE]

A damaged object was encountered.

The value of shmid corresponds to a shared memory ID that has been marked as damaged by a
previous shared memory operation.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

One of the following has occurred:

The value of shmid is not a valid shared memory identifier.❍

The value of cmd is not a valid command.❍

The value of cmd is equal to SHM_SIZE, and the shared memory segment cannot be
resized because it was not created by specifying SHM_RESIZE_NP on the shmflg
parameter of shmget().

❍

The value of cmd is equal to SHM_SIZE, and the new size is not valid for the shared
memory segment.

❍

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

A shared memory identifier segment is to be resized, but the amount of available physical memory
is not sufficient to fulfill the request.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The parameter cmd is equal to IPC_RMID or IPC_SET and both of the following are true:

the calling thread does not have the appropriate privileges.❍

the effective user ID of the calling thread is not equal to the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid.

❍

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

"Appropriate privileges" is defined to be *ALLOBJ special authority. If the user profile under which the
thread is running does not have *ALLOBJ special authority, the thread does not have appropriate
privileges.

Related Information

The <sys/shm.h> file (see Header Files for UNIX-Type Functions)●

shmat()-Attach Shared Memory Segment to Current Process●

shmdt()-Detach Shared Memory Segment from Calling Process●

shmget()-Get ID of Shared Memory Segment with Key●

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

shmdt()-Detach Shared Memory Segment from
Calling Process

 Syntax

 #include <sys/shm.h>

 int shmdt(const void *shmaddr);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The shmdt() function detaches the shared memory segment specified by shmaddr from the calling process.

Parameters

shmaddr

(Input) Address of the shared memory segment to be detached.

Authorities

Figure 1-16. Authorization Required for shmdt()

Object Referred to Authority Required errno

Shared memory segment to be detached None None

Return Value

0 shmdt() was successful.

-1 shmdt() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmdt() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EDAMAGE]

A damaged object was encountered.

The value of shmid corresponds to a shared memory ID that has been marked as damaged by a
previous shared memory operation.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value of shmaddr is not the data segment start address of a shared memory segment.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The function is not implemented.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

This function does not delete the shared memory segment. To delete a shared memory segment, a shmctl()
call specifying a cmd parameter of IPC_RMID must be used.

Related Information

The <sys/shm.h> file (see Header Files for UNIX-Type Functions)●

shmat()-Attach Shared Memory Segment to Current Process●

shmctl()-Perform Shared Memory Control Operations●

shmget()-Get ID of Shared Memory Segment with Key●

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

shmget()-Get ID of Shared Memory Segment
with Key

 Syntax

 #include <sys/shm.h>
 #include <sys/stat.h>

 int shmget(key_t key,size_t size, int shmflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The shmget() function returns the shared memory ID associated with the specified shared memory key.

Parameters

key

(Input) The key associated with the shared memory ID. Specifying a key of IPC_PRIVATE
guarantees that a unique shared memory ID and shared memory segment are created. A key may
also be generated by the caller or by calling the ftok() function.

size

(Input) The size of the shared memory segment being created. The size of the segment may be
changed using the shmctl() API if it is nonteraspace shared memory segment or if it was created by
specifying SHM_RESIZE_NP on the shmflg parameter of shmget(). If an existing shared memory
ID is being accessed, the size may be zero.

shmflg

(Input) Operation and permission flags

The value of the shmflg parameter is either zero or is obtained by performing an OR operation on one or
more of the constants listed below. If an existing shared memory ID is being accessed, then the permissions
specified must be a subset of the existing permissions of the shared memory segment. If an existing shared
memory ID is being accessed, then the SHM_TS_NP and SHM_MAP_FIXED_NP flags must match the
existing attributes of the shared memory segment.

'0x0100' or S_IRUSR Permits the creator of the shared memory ID to attach to it in
read mode.

'0x0080' or S_IWUSR Permits the creator of the shared memory ID to attach to it in
write mode.

'0x0020' or S_IRGRP Permits the group associated with the shared memory ID to
attach to it in read mode

'0x0010' or S_IWGRP Permits the group associated with the shared memory ID to
attach to it in write mode

'0x0004' or S_IROTH Permits others to attach to the shared memory ID in read mode.

'0x0002' or S_IWOTH Permits others to attach to the shared memory ID in write
mode.

'0x0200' or IPC_CREAT Creates the shared memory segment ID if it does not exist
already.

'0x0400' or IPC_EXCL Causes shmget() to fail if IPC_CREAT is also set and the
shared memory ID already exists.

'0x10000' or SHM_TS_NP If shmget() creates a new shared memory segment, then the
new shared memory segment will be created as a teraspace
shared memory segment. When a process attaches to this
shared memory segment, the shared memory segment will be
added to the process's teraspace. Some compilers permit the
user to indicate that the teraspace versions of storage functions
should be used. For example, if a C module is compiled using
CRTCMOD TERASPACE(*YES *TSIFC), this flag will be set
automatically.

'0x40000' or SHM_RESIZE_NP If shmget() creates a new teraspace shared memory segment,
then the size of the shared memory segment may be changed
using the shmctl() API. The maximum size of this teraspace
shared memory segment is 268 435 456 bytes (256 MB). This
flag is ignored for nonteraspace shared memory segments. A
nonteraspace shared memory segment may always be resized
up to 16 773 120 bytes (16 MB - 4096 bytes).

'0x100000' or SHM_MAP_FIXED_NP If shmget() creates a new teraspace shared memory segment,
then all processes that successfully attach to the shared memory
segment will attach to the shared memory segment at the same
address. The shared memory segment may not be attached in
read-only mode. This flag is ignored for nonteraspace shared
memory segments.

Authorities

Figure 1-17. Authorization Required for shmget()

Object Referred to Authority Required errno

Shared memory segment to be created None None

Existing shared memory segment to be accessed See Note EACCES

Note: If the thread is accessing a shared memory segment that already exists, the mode specified in the last
9 bits of shmflg must be a subset of the mode of the existing shared memory segment.

Return Value

value shmget()was successful. The value returned is the shared memory ID associated with the key
parameter.

-1 shmget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmget() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

A shared memory identifier exists for the parameter key, but operation permission as specified by
the low-order 9 bits of shmflg would not be granted.

Shared memory operations are not permitted because the QSHRMEMCTL system value is set to 0.

[EDAMAGE]

A damaged object was encountered.

The value of key corresponds to shared memory that has been marked as damaged by a previous
shared memory operation.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

A shared memory identifier exists for the parameter key, but ((shmflg & IPC_CREAT) && (shmflg
& IPC_EXCL)) is not zero. (& is a bitwise AND; && is a logical AND.)

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

One of the following has occurred:

The value of the parameter size is less than the system-imposed minimum or greater than
the system-imposed maximum.

❍

A shared memory identifier exists for the parameter key, but the size of the segment
associated with it is less than size and size is not zero.

❍

A shared memory identifier exists for the parameter key, but the SHM_MAP_FIXED_NP
or SHM_TS_NP attributes of the shared memory segment do not match the attributes
specified by the parameter shmflg.

❍

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

A shared memory identifier does not exist for the parameter key, and (shmflg & IPC_CREAT) is
zero.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

A shared memory identifier and associated shared memory segment are to be created, but the
amount of available physical memory is not sufficient to fulfill the request.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

A shared memory identifier is to be created, but the system-imposed limit on the maximum number
of allowed shared memory identifiers system-wide would be exceeded.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

shmget() creates a shared memory ID, its associated shmid_ds data structure, and a shared memory
segment of at least size bytes if one of the following is true:

The shared memory key is IPC_PRIVATE❍

There is no shared memory ID already associated with the shared memory key and the
IPC_CREAT flag is set.

❍

1.

When the shared memory ID is created, the shmid_ds structure (defined in the <sys/shm.h> header
file) that is associated with the shared memory ID is initialized as follows:

The shm_perm.cuid and shm_perm.uid values are set equal to the effective user ID (uid) of
the calling thread.

❍

The shm_perm.cgid and shm_perm.gid values are set equal to the effective group ID (gid)
of the calling thread.

❍

The low-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of shmflg.❍

shm_segsz is set to the value specified in size.❍

shm_lpid, shm_nattch, shm_atime, and shm_dtime are set to zero.❍

shm_ctime is set to the current time.❍

2.

shmat() should be used to set or gain pointer addressability to the shared memory segment
associated with the shared memory ID after the shared memory ID is obtained.

3.

The maximum size of a teraspace shared memory segment is 4 294 967 295 bytes (4GB - 1). The
maximum size of a resizeable teraspace shared memory segment is 268 435 456 bytes (256 MB).
The maximum shared memory segment size for nonteraspace shared memory segments is
16 776 960 bytes (16 MB - 256 bytes).

4.

The storage for a shared memory segment is not allocated until it is attached to a process. A process
will not be able to attach to a shared memory segment that is larger than the amount of storage
available on the system.

5.

Processes cannot attach a nonteraspace shared memory segment in read-only or write-only mode.
Consequently, permissions that specify read-only or write-only will always result in shmat()
failure. Processes are permitted to attach a teraspace shared memory segment in read-only mode.

6.

Shared memory segments larger than 16 773 120 bytes (16 MB minus 4096 bytes) should be
created as teraspace shared memory segments. When the operating system accesses a nonteraspace
shared memory segment that has a size in the range 16 773 120 bytes (16 MB minus 4096 bytes) to
16 776 960 bytes (16 MB minus 256 bytes), a performance degradation may be observed.

7.

Related Information

The <sys/shm.h> file (see Header Files for UNIX-Type Functions)●

ftok()--Generate IPC Key from File Name●

shmat()-Attach Shared Memory Segment to Current Process●

shmctl()-Perform Shared Memory Control Operations●

shmdt()-Detach Shared Memory Segment from Calling Process●

Example

For an example of using this function, see Using Semaphores and Shared Memory in Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Interprocess Communication (IPC) APIs (V5R2)
	Table of Contents
	Interprocess Communication (IPC) APIs
	Identifier Based Services
	Pointer Based Services
	Managing IPC Objects
	APIs
	ftok()--Generate IPC Key from File Name
	msgctl()-Perform Message Control Operations
	msgget()-Get Message Queue
	msgrcv()-Receive Message Operation
	msgsnd()-Send Message Operation
	QlgFtok()--Generate IPC Key from File Name (using NLS-enabled path name)
	QlgSem_open()--Open Named Semaphore (using NLS-enabled path name)
	QlgSem_open_np()--Open Named Semaphore with Maximum Value (using NLS-enabled path name)
	QlgSem_unlink()--Unlink Named Semaphore (using NLS-enabled path name)
	Delete Interprocess Communication Objects (QP0ZDIPC) API
	Open List of Interprocess Communication Objects (QP0ZOLIP) API
	Open List of Semaphores (QP0ZOLSM) API
	Retrieve an Interprocess Communication Object (QP0ZRIPC) API
	semctl()-Perform Semaphore Control Operations
	semget()-Get Semaphore Set with Key
	semop()-Perform Semaphore Operations on Semaphore Set
	sem_close()-Close Named Semaphore
	sem_destroy()-Destroy Unnamed Semaphore
	sem_getvalue()-Get Semaphore Value
	sem_init()-Initialize Unnamed Semaphore
	sem_init_np()-Initialize Unnamed Semaphore with Maximum Value
	sem_open()--Open Named Semaphore
	sem_open_np()--Open Named Semaphore with Maximum Value
	sem_post()-Post to Semaphore
	sem_post_np()-Post Value to Semaphore
	sem_trywait()-Try to Decrement Semaphore
	sem_unlink()--Unlink Named Semaphore
	sem_wait()-Wait for Semaphore
	sem_wait_np()-Wait for Semaphore with Timeout
	shmat()-Attach Shared Memory Segment to Current Process
	shmctl()-Perform Shared Memory Control Operations
	shmdt()-Detach Shared Memory Segment from Calling Process
	shmget()-Get ID of Shared Memory Segment with Key

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

