UNIX-Type APIs (V5R2)

Integrated File System (IFS) APIs

Volume 2 -- QlgAccess() through writev() and Process a Path Name Exit Program

Table of Contents

The PDF for the Integrated File System (IFS) APIsis divided into two volumes. Volume 1 contains the
APIsfrom access() through prwrite64(); Volume 2 contains the APIs QIgAccess() through writev() and the
IFS exit programs. Both volumes contain information on time stamp updates, the Header Files for
UNIX-Type Functions, and Errno Values for UNIX-Type Functions.

Integrated File System APIs

QlgAccess() (Determine file accessibility (using NL S-enabled path name))

#QlgAccessx() (Determine File Accessibility for a Class of Users (using NL S-enabled path name))
L4
QlgChdir() (Change current directory (using NL S-enabled path name))

QlgChmod() (Change file authorizations (using NL S-enabled path name))

QlgChown() (Change owner and group of file (using NL S-enabled path name))

QlgCreat() (Create or rewrite file (using NL S-enabled path name))

QlgCreat64() (Create or rewrite afile (large file enabled and using NL S-enabled path name))

QlgCvtPathToQSY SObjName() (Resolve integrated file system path name into QSY S object name
(using NL S-enabled path name))

QlgGetAttr() (Get attributes (using NLS-enabled path name))
QlgGetcwd() (Get current directory (using NLS-enabled path name))

QlgGetPathFromFilel D() (Get path name of object from itsfile ID (using NL S-enabled path
name))

QlgGetpwnam() (Get user information for user name (using NL S-enabled path name))
QlgGetpwnam r() (Get user information for user name (using NL S-enabled path name))
QlgGetpwuid() (Get user information for user ID (using NLS-enabled path name))
QlgGetpwuid r() (Get user information for user ID (using NLS-enabled path name))

QlgL chown() (Change owner and group of symbolic link (using NLS-enabled path name))
QlgLink() (Create link to file (using NL S-enabled path name))

QlgL stat() (Get file or link information (using NL S-enabled path name))

QlgL stat64() (Get file or link information (large file enabled and using NL S-enabled path name))
QlgMkdir() (Make directory (using NL S-enabled path name))

QlgMkfifo() (Make FIFO special file (using NLS-enabled path name))

QlgOpen() (Open afile (using NLS-enabled path name))

QIgOpen64() (Open file (large file enabled and using NL S-enabled path name))
QlgOpendir() (Open directory (using NL S-enabled path name))

QlgPathconf() (Get configurable path name variables (using NL S-enabled path name))
QlgProcessSubtree() (Process a path name (using NL S-enabled path name))
QlgReaddir() (Read directory entry (using NL S-enabled path name))

QlgReaddir r() (Read directory entry (using NL S-enabled path name))

QlgReadlink() (Read value of symbolic link (using NLS-enabled path name))

QlgRenameK eep() (Rename file or directory, keep "new" if it exists (using NL S-enabled path
name))

QlgRenameUnlink() (Renamefile or directory, unlink "new" if it exists (using NL S-enabled path
name))

QIgRmdir() (Remove directory (using NL S-enabled path name))

QlgSaveStgFree() (Save Storage Free (using NL S-enabled path name))

QlgSetAttr() (Set attributes (using NL S-enabled path name))

QlgsStat() (Get fileinformation (using NL S-enabled path name))

QlgStat64() (Get file information (large file enabled and using NL S-enabled path name))
QlgStatvfs() (Get file system information (using NL S-enabled path name))
QlgStatvfsb4() (Get file system information (64-bit enabled and using NL S-enabled path name))
QlgSymlink() (Make symbolic link (using NLS-enabled path name))

QlguUnlink() (Remove link to file (using NL S-enabled path name))

Qlgutime() (Set file access and modification times (using NL S-enabled path name))
#QPOFPTOS (Perform Miscellaneous File System Functions)«

QpOlCvtPathToQSY SObjName() (Resolve integrated file system path name into QSY S object
name)

QPOLFL OP (Perform file system operation)

QpOIGetAttr() (Get attributes)

QpOlGetPathFromFilel D() (Get path name of object from itsfile ID)
QpOlOpen() (Open file)

QpOl ProcessSubtree() (Process a path name)

QpOlRenameK eep() (Rename file or directory, keep new if it exists)

QpOlRenameUnlink() (Rename file or directory, unlink new if it exists)
#»QPOL ROR (Retrieve Object References)%

QpOlSaveStgFree() (Save Storage Free)

QpOISetAttr() (Set attributes)

QpolUnlink() (Removelink tofile)
QpOzPipe() (Create interprocess channel with sockets)

#qsygetgroups() (Get Supplemental Group 1Ds)#

o Qgsysetegid() (Set effective group ID)

gsyseteuid() (Set effective user ID)

gsysetgid() (Set group D)

« 2qsysetgroups() (Set Supplemental Group |Ds)%

o gsysetregid() (Set real and effective group IDs)

« Qsysetreuid() (Set real and effective user 1Ds)

o Qsysetuid() (Set user ID)

« QZNFRTVE (Retrieve network file system export entries)
« read() (Read from Descriptor)

« readdir() (Read directory entry)

« readdir_r() (Read directory entry)

« readdir r ts64() (Read directory entry)

« readlink() (Read value of symbolic link)

« readv() (Read from Descriptor Using Multiple Buffers)
« rename() (Rename file or directory)

o rewinddir() (Reset directory stream)

« rmdir() (Remove directory)

« stat() (Get fileinformation)

o Stat64() (Get file information (large file enabled))

« statvfs() (Get file system information)

o statvfs64() (Get file system information (large file enabled))
o symlink() (Make symbolic link)

« sysconf() (Get system configuration variables)

» umask() (Set authorization mask for job)

« unlink() (Removelink tofile)

« utime() (Set file access and modification times)

o write() (Write to Descriptor)

« writev() (Write to Descriptor Using Multiple Buffers)

Exit programs
« Process aPath Name

o Save Storage Free

Integrated File System APIs--Time Stamp Updates
Header Filesfor UNIX-Type Functions
Errno Values for UNIX-Type Functions

Integrated File System APIs

QlgAccess() through writev() and Process a Path Name Exit
Program

The integrated file system APIs can perform operations on directories, files, and related objectsin thefile
systems accessed through the integrated file system interface.

The integrated file system APIs (QlgAccess() through writev() and Process a Path Name Exit Program) are:

QlgAccess() (Determine file accessibility (using NLS-enabled path name)) determines whether a
file can be accessed in a particular manner.

#QlgAccessx() (Determine File Accessibility for a Class of Users (using NL S-enabled path name))
determines whether afile can be accessed in a particular manner by a specified class of users.

QlgChdir() (Change current directory (using NL S-enabled path name)) makes the directory named
by path the new current directory.

QlgChmod() (Change file authorizations (using NL S-enabled path name)) changes the mode of the
file or directory specified in path.

QlgChown() (Change owner and group of file (using NL S-enabled path name)) changes the owner
and group of afile.

QlgCreat() (Create or rewrite file (using NLS-enabled path name)) creates a new file or rewrites an
existing file so that it is truncated to zero length.

QlgCreat64() (Create or rewrite afile (large file enabled and using NL S-enabled path name))
creates anew file or rewrites an existing file so that it istruncated to zero length.

QlgCvtPathToQSY SObjName() (Resolve integrated file system path name into QSY S object name

(using NL S-enabled path name)) resolves a given integrated file system path name into the
three-part QSY S.LIB file system name: library, object, and member.

QlgGetAttr() (Get attributes (using NL S-enabled path name)) gets one or more attributes, on a
single call, for the object that is referred to by the input Path_ Name.

QlgGetewd() (Get current directory (using NLS-enabled path name)) determines the absolute path
name of the current directory and returns a pointer to it.

QlgGetPathFromFilel D() (Get path name of object from itsfile ID (using NLS-enabled path
name)) determines an absolute path name of the file identified by fileid and storesit in buf.
QlgGetpwnam() (Get user information for user name (using NL S-enabled path name)) returns a
pointer to an object of type struct gplg_passwd containing an entry from the user database with a
matching name.

QlgGetpwnam r() (Get user information for user name (using NL S-enabled path name)) updates
the gplg_passwd structure pointed to by pwd and stores a pointer to that structure in the location
pointed to by result.

QlgGetpwuid() (Get user information for user ID (using NL S-enabled path name)) returns a pointer
to an object of type struct gplg_passwd containing an entry from the user database with a matching
user ID (UID).

QlgGetpwuid r() (Get user information for user ID (using NL S-enabled path name)) updates the
gplg_passwd structure pointed to by pwd and stores a pointer to that structure in the location
pointed to by result.

QlgL chown() (Change owner and group of symbolic link (using NL S-enabled path name)) changes

the owner and group of afile.

QlgLink() (Create link to file (using NL S-enabled path name)) provides an alternative path name
for the existing file so that the file can be accessed by either the existing name or the new name.

QlgL stat() (Get file or link information (using NL S-enabled path name)) gets status information
about a specified file and places it in the area of memory pointed to by buf.

QlgL stat64() (Get file or link information (large file enabled and using NL S-enabled path name))
gets status information about a specified file and placesit in the area of memory pointed to by buf.

QlgMkdir() (Make directory (using NL S-enabled path name)) creates a new, empty directory
whose name is defined by path.

QlgMkfifo() (Make FIFO special file (using NL S-enabled path name)) creates a new FIFO special
file whose name is defined by path.

QlgOpen() (Open afile (using NL S-enabled path name)) opens afile or creates a new, empty file
whose name is defined by path and returns a number called afile descriptor.

QlgOpen64() (Open file (large file enabled and using NL S-enabled path name)) opens afile and
returns a number called afile descriptor.

QlgOpendir() (Open directory (using NL S-enabled path name)) opens a directory so it can be read.

QlgPathconf() (Get configurable path name variables (using NLS-enabled path name)) lets an

application determine the value of a configuration variable (name) associated with a particular file
or directory (path).

QlgProcessSubtree() (Process a path name (using NL S-enabled path name)) searches the directory
tree under a specific path name.

QlgReaddir() (Read directory entry (using NL S-enabled path name)) returns a pointer to a structure
describing the next directory entry in the directory stream associated with dirp.

QlgReaddir_r() (Read directory entry (using NL S-enabled path name)) initializes a structure that is
referenced by entry to represent the next directory entry in the directory stream that is associated
with dirp.

IgReadlink() (Read value of symboalic link (using NL S-enabled path name)) places the contents of
the symboliclink path in the buffer buf.
QlgRenameK eep() (Rename file or directory, keep "new" if it exists (using NL S-enabled path
name)) renames afile or adirectory specified by old to the name given by new.
QlgRenameUnlink() (Rename file or directory, unlink "new" if it exists (using NL S-enabled path
name)) renames afile or adirectory specified by old to the name given by new.
QlgRmdir() (Remove directory (using NL S-enabled path name)) removes a directory, path,
provided that the directory is empty; that is, the directory contains no entries other than 'dot’ (.) or
'dot-dot’ (..).
QlgSaveStgFree() (Save Storage Free (using NL S-enabled path name)) calls a user-supplied exit
program to save an * STMF i Series object type and, upon successful completion of the exit
program, frees the storage for the object and marks the object as storage freed.

QlgSetAttr() (Set attributes (using NL S-enabled path name)) sets one of a set of defined attributes,
on each call, for the object that is referred to by the input * Path_Name.

QlgStat() (Get file information (using NL S-enabled path name)) gets status information about a
specified file and placesit in the area of memory pointed to by the buf argument.

QlgState4() (Get file information (large file enabled and using NL S-enabled path name)) gets status

information about a specified file and places it in the area of memory pointed to by the buf
argument.

QlgStatvfs() (Get file system information (using NL S-enabled path name)) gets status information
about the file system that contains the file named by the path argument.

QlgStatvistd() (Get file system information (64-bit enabled and using NL S-enabled path name))
gets status information about the file system that contains the file named by the path argument.
QlgSymlink() (Make symboalic link (using NL S-enabled path name)) creates the symbolic link
named by slink with the value specified by pname.

QlgUnlink() (Remove link to file (using NL S-enabled path name)) removes a directory entry that
refersto afile.

QlgUtime() (Set file access and modification times (using NL S-enabled path name)) sets the access
and modification times of path to the valuesin the utimbuf structure.

#QPOFPTOS (Perform Miscellaneous File System Functions) performs a variety of file system
functions. &

QpOICvtPathToQSY SObjName() (Resolve integrated file system path name into QSY S object

name) resolves a given integrated file system path name into the three-part QSY S.LIB file system
name: library, object, and member.

QPOLFLOP (Perform file system operation) performs miscellaneous file system operations.
QpOIGetAttr() (Get attributes) gets one or more attributes, on asingle call, for the object that is
referred to by the input Path_Name.

QpOl GetPathFromFilel D() (Get path name of object from itsfile D) determines an absol ute path
name of the file identified by fileild and stores it in buf.

QpOlOpen() (Open file) opens afile and returns a number called afile descriptor.

QpOIProcessSubtree() (Process a path name) searches the directory tree under a specific path name.

It selects and passes objects, one at atime, to an exit program that isidentified on its call. The exit
program can be either a procedure or a program.

QpOlRenameK eep() (Rename file or directory, keep new if it exists) renames afile or adirectory
specified by old to the name given by new.

QpOIRenameUnlink() (Rename file or directory, unlink new if it exists) renames afile or a
directory specified by old to the name given by new.

#rQPOLROR (Retrieve Object References) retrieves information about Integrated File System
references on an object. &

QpOlSaveStgFree() (Save Storage Free) calls a user-supplied exit program to save an *STMF

i Series object type and, upon successful completion of the exit program, frees the storage for the
object and marks the object as storage freed.

0l SetAttr() (Set attributes) renames afile or a directory specified by old to the name given by
new.

QpOlunlink() (Remove link to file) removes adirectory entry that refersto afile.

QpOzPipe() (Create interprocess channel with sockets) creates a data pipe that can be used by two
processes.

“Eqsygetgroups() (Get Supplemental Group 1Ds) returns the supplemental group | Ds associated
with the calling thread. <X

qsysetegid() (Set effective group 1D) sets the effective group ID to gid.
gsyseteuid() (Set effective user 1D) sets the effective user ID to uid.
qsysetgid() (Set group I1D) setsthe real, effective and saved groupsto gid.

#qsysetgroups() (Set Supplemental Group I1Ds) sets the supplementary group 1Ds of the calling
thread. <%

gsysetregid() (Set real and effective group IDs) is used to set the real and effective group IDs. The
real and effective group IDs may be set to different valuesin the same call.

gsysetreuid() (Set real and effective user I1Ds) sets the real and effective user IDs to the values
specified by ruid and euid.
gsysetuid() (Set user ID) setsthe real, effective, and saved user 1D to uid.

QZNFRTVE (Retrieve network file system export entries) returns the list of Network File System

(NFS) export entries for objects currently exported to NFS clients or for objects referenced in the
[etc/exportsfile.

read() (Read from Descriptor) reads nbyte bytes of input into the memory area indicated by buf.
readdir() (Read directory entry) returns a pointer to a dirent structure describing the next directory
entry in the directory stream associated with dirp.

readdir_r() (Read directory entry) initializes the dirent structure that is referenced by entry to
represent the next directory entry in the directory stream that is associated with dirp.

readdir r ts64() (Read directory entry) initializes the dirent structure that is referenced by entry to
represent the next directory entry in the directory stream that is associated with dirp.

readlink() (Read value of symbolic link) places the contents of the symbolic link path in the buffer
buf.

readv() (Read from Descriptor Using Multiple Buffers) is used to receive data from afile or socket
descriptor.

rename() (Rename file or directory) can be used to rename afile or directory with the semantics of
QpOIRenameUnlink() or QpOlRenameK eep().

rewinddir() (Reset directory stream) 'rewinds the position of an open directory stream to the
beginning.

rmdir() (Remove directory) removes a directory, path, provided that the directory is empty; that is,
the directory contains no entries other than 'dot’ (.) or ‘dot-dot’ (..).

stat() (Get file information) gets status information about a specified file and places it in the area of
memory pointed to by the buf argument.

statb4() (Get file information (large file enabled)) gets status information about a specified file and
placesit in the area of memory pointed to by the buf argument.

statvis() (Get file system information) gets status information about the file system that contains the
file named by the path argument.

statvist4() (Get file system information (large file enabled)) gets status information about the file
system that contains the file named by the path argument.

symlink() (Make symbolic link) creates the symbolic link named by slink with the value specified
by pname.

sysconf() (Get system configuration variables) returns the value of a system configuration option.
umask() (Set authorization mask for job) changes the value of the file creation mask for the current
job to the value specified in cmask.

unlink() (Remove link to file) removes a directory entry that refersto afile.

utime() (Set file access and modification times) sets the access and modification times of path to
the values in the utimbuf structure.

o write() (Write to Descriptor) writes nbyte bytes from buf to the file or socket associated with
file_descriptor.

« writev() (Write to Descriptor Using Multiple Buffers) is used to write datato afile or socket
descriptor.

The integrated file system exit programs are:

o Process aPath Nameis called by the QpOl ProcessSubtree() API for each object in the API's search
that meets the caller's selection criteria. This exit program must be provided by the user.

« Save Storage Freeis called by the QpOlSaveStgFree() API to save an * STMF i Series object type.

In addition to the functions above, the following functions, which are described in the Sockets APIs, also
can operate on files in the integrated file system.

|Other Functionsthat Operate on Files
|Function |Description
givedescriptor() Givefile access to another job
Give socket access to another job
select Check 1/0 status of multiple file descriptors
Wait for events on multiple sockets
takedescriptor() Take file access from another job
Take socket access from ancther job

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions. See Header Filesfor

UNIX-Type Functions) for the file and member name of each header file.

Many of the terms used in this chapter, such as current directory, file system, path name, and link, are
explained in the Integrated File System book. The APl Examples also shows an example of using several
integrated file system functions.

To determine whether a particular function updates the access, change, and modification times of the object
on which it performs an operation, see Integrated File System APIs--Time Stamp Updates.

Top | UNIX-Type APIs| APIs by category

QlgAccess()--Determine File Accessibility
(using NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

int QgAccess(const Qg Path Name T *path, int anode);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgAccess() function, like the access() function, determines whether afile can be accessed in a
particular manner. The differenceisthat the QlgAccess() function takes a pointer to aQlg_Path Name T
structure, while access() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
access()--Determine File Accessibility.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name for the file to be checked for accessibility. For more information on the Qlg_Path Name T
structure, see Path name format.

Related Information

access()--Determine File Accessiblity

#raccessx()--Determine File Accessibility for Class of Users 4%
o #faccessx()--Determine File Accessibility for Class of Users 4

#QlgA ccessx()--Determine File Accessibility for Class of Users (using NL S-enabled path name)
L4

QlgChmod--Change File Authorizations (using NL S-enabled path name)

QlgStat()--Get File Information (using NL S-enabled path name)

Example

The following example determines how afileis accessed:

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

mai n()

/**/

/[* Defi ni ni tons */

/**/
#define nypath "/"

const char US_const[3]= " uUs"

const char Language_const[4] ="ENU';

typedef struct pnstruct

Q g_Path_Nanme_T gl g_struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path nane or this must */
/* be a pointer to the path nane. */
b

struct pnstruct path;

/**/

/* Initialize Qg_Path_Name_T parameters */
/**/
menset ((voi d*) path nanme, 0x00, sizeof(struct pnstruct));

pat h. gl g_struct. CCSID = 37;
mencpy(path. gl g_struct. Country_I D, US_const, 2);

mencpy(pat h. gl g_struct. Language_I D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG _CHAR SI NGLE;

pat h. gl g_struct. Path_Length = S|zeof(nypath) 1;

path. gl g_struct.Path_Nane_Delimter[0] ="/";

mencpy(pat h. pn, nypath si zeof (nypat h) -1);

if (QgAccess((Q@ g _Path_Name T *)&path, F_OK) = 0)
printf("' %' does not exist!\n", nypath);
el se {
if (QgAccess((Q g _Path_Name T *)&path, R OK) == 0)
printf("You have read access to '%'\n", nypath);
if (QgAccess((Q g _Path_Name T *)&path, WOK) == 0)
printf("You have wite access to '9%'\n", nypath);
if (QgAccess((Q g _Path_Name T *)&path, X OK) == 0)
printf("You have search access to '%'\n", mypath);

Output:

The output from a user with read and execute accessis:

You have read access to '/’
You have wite access to '/
You have search access to '/

Top | UNIX-Type APIs | APIs by category

2

QlgAccessx()--Determine File Accessibility for a
Class of Users (using NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

int @ gAccessx(const Qg _Path_Nanme_T *path, int anode, int who);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgAccessx() function, like the accessx() function, determines whether afile can be accessed in a particular
manner by a specified class of users. The difference isthat the QIgAccessx() function takes a pointer to a
Qlg_Path_ Name T structure, while accessx() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
adiscussion of other parameters, authorities required, return values, and related information, see
accessx()--Determine File Accessibility for a Class of Users.

Parameters

path

(Input) A pointer to a Qlg_Path_Name T structure that contains a path name or a pointer to a path name
for the file to be checked for accessibility. For more information on the Qlg_Path Name_T structure, see
Path name format.

Related Information

» access()--Determine File Accessiblity

« accessx()--Determine File Accessibility for a Class of Users

« faccessx()--Determine File Accessibility for a Class of Users

o QlgAccess()--Determine File Accessibility (using NL S-enabled path name)
« QlgChmod()--Change File Authorizations (using NL S-enabled path name)

o QlgStat()--Get File Information (using NL S-enabled path name)

Example
The following example determines how afileis accessed:

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

mai n()
/**/
* 1 1 1 *
/ Defi ni ni tons /

/**/

#define nmypath "/myfile"
const char US const[3]= "US";
const char Language_const[4] ="ENU';
typedef struct pnstruct

Q@ g Path_Nane_T gl g_struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path nane or this nust */
/* be a pointer to the path nane. */
b

struct pnstruct pat h;

/**/

[* Initialize @ g_Path_Nane_T paraneters */
/**/
nmenset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

pat h. ql g_struct.CCSID = 37;

mencpy(pat h. gl g_struct. Country_I D, US_const, 2);

mencpy(pat h. gl g_struct. Language_I D, Language_const, 3);

pat h. gl g_struct.Path _Type = Q.G CHAR S| NGLE;

pat h. ql g_struct. Pat h_Length = sizeof (mypath) - 1;

pat h. ql g_struct.Path_Name_Delinmter[0] = "'/";

mencpy(pat h. pn, nypat h, si zeof (nypath)-1);

if (Q gAccessx((Q g _Path_Nanme T *)&path, R OK ACC OTHERS) == 0)
printf("Soneone besides the owner has read access to '%'\n", nypath);
if (Q gAccessx((Q g _Path_Nanme_ T *)&path, WOK ACC OTHERS) == 0)
printf("Sonmeone besides the owner has wite access to '%'\n",
nmypat h) ;
if (Q gAccessx((Q g _Path_Name_ T *)&path, X _OK ACC _OTHERS) == 0)
printf("Sonmeone besides the owner has search access to '%'\n",
nypat h) ;
}

Output:

In this example QlgAccessx() was called on '/myfile’. The following would be the output if someone other than
the owner has * R authority, someone besides the owner has *W authority, and noone other than the owner has
*X authority.

Soneone besi des the owner has read access to '/’
Soneone besi des the owner has wite access to '/’

&

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

QlgChdir()--Change Current Directory (using
NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

int QgChdir(const Qg Path Nane T *path);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgChdir () function, like the chdir () function, makes the directory named by path the new current
directory. The difference is that the QlgChdir () function takes a pointer to aQlg_Path_Name T structure,
while chdir () takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
chdir()--Change Current Directory.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the directory that should become the current directory. For more information on the
Qlg_Path_Name T structure, see Path name format.

Related Information

« chdir()--Change Current Directory
o QlgGetcwd()--Get Current Directory (using NL S-enabled path name)

« #fchdir()--Change Current Directory by Descriptor <

Example
The following example uses QlgChdir ():

#i ncl ude <stdi o. h>

#i ncl ude <uni std. h>

mai n() {

#define nmypath "/t nmpXXX"
const char US const[3]= "US";
const char Language const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path Name T gl g struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path name or this */
/* this be a pointer to the path name. */
b

struct pnstruct path;

/***/

/* Initialize Qg Path Name T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path. gl g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path.ql g _struct.Path _Length = sizeof (mypat h) 1;

path. gl g_struct.Path Nane Delinmter[0] ="'/";

mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;

if (QgChdir((Q g Path Nane T *)&path) != 0)
printf("QgChdir() to /tnmpXXX failed.");

el se

{
printf("Q gChdir() changed the current directory ");

printf("to '%'.\n", nypath);
}
}

Output:

Q gChdir() changed the current directory to '/t nmpxxx'.
(or if error, such as path not found: QgChdir() to /tnmpXXX failed.)

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgChmod()--Change File Authorizations (using
NLS-enabled path name)

Syntax

#i ncl ude <sys/stat.h>

int QgChnmod(Q g_Path_Name_T *path, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QIgChmaod () function, like the chmod() function, changes #S ISUID, S ISGID, and the permission bits of
the file or directory specified in path to the corresponding bits specified in mode. €The difference is that the
QlgChmod() function takes a pointer to a Qlg_Path_Name T structure, while chmod() takes a pointer to a
character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
adiscussion of other parameters, authorities required, return values, and related information, see
chmod()--Change File Authorizations.

Parameters

path

(Input) A pointer to a Qlg_Path_Name T structure that contains the path name or a pointer to the path
name of the file whose mode is being changed. For more information on the Qlg_Path Name T
structure, see Path name format.

Related Information

« chmod()--Change File Authorizations
« QlgChown()--Change Owner and Group of File (using NLS-enabled path name)
o QlgMkdir()--Make Directory (using NL S-enabled path name)

o QlgStat()--Get File Information (using NL S-enabled path name)

Example

The following example changes the permissions for afile:

#i ncl ude <stdi o. h>

#i ncl ude <sys/stat.h>
#i ncl ude <sys/types. h>
#i ncl ude <fcntl. h>

#i ncl ude <QOl stdi.h>

mai n() {
int file_descriptor;
struct stat info;

#define mypath "tenp.file"

const char US const[3]= "US";

const char Language_const[4] ="ENU';
typedef struct pnstruct

Qg Path_Nane_T ql g_struct;
char pn[100]; /* This array size nmust be >= the */
/* length of the path name or this nust */
/* be a pointer to the path name. */
1

struct pnstruct pat h;

/***/

[* Initialize Qg _Path_Nane_T paraneters */
/***/
nmenset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

pat h. gl g_struct. CCSID = 37;

mencpy(pat h. gl g_struct. Country_I D, US_const, 2);

mencpy(pat h. gl g_struct. Language_I D, Language_const, 3);

pat h. gl g_struct.Path _Type = Q.G CHAR S| NGLE;

pat h. ql g_struct. Pat h_Length = sizeof (mypath) - 1;

pat h. ql g_struct.Path_Name_Delinmter[0] = "'/";

mencpy(pat h. pn, nypat h, si zeof (nypath)-1);

if ((file_descriptor = QgCreat((Q g Path Nane T *)&path, S IWISR)) ==
perror("QgCreat() error");
el se {
close(file_descriptor);
QgStat ((Qg_Path Name T *)&path, & nfo);
printf("original permssions were: %98o\n", info.st_node);
if (QgChnod((Q g_Path_Nanme_T *)&path, S IRMKU S |IRWKG != 0)
perror("Q gChnod() error");
el se {
QgStat((Q g _Path Nane T *)&path, & nfo);
printf("after @ gChnod(), perm ssions are: %98o\n", info.st_node);

}
QgUnlink((Q g _Path_Nanme T *) &pat h);
}
}

Output:

original perm ssions were: 00100200

after Q gChnod(), pernissions are: 00100770

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgChown()--Change Owner and Group of File
(using NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

int QgChown(Q g _Path_Name_T *path, uid_t owner,gid_t
group);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgChown() function, like the chown() function, changes the owner and group of afile. The differenceis
that the QlgChown() function takes a pointer to aQlg_Path Name T structure, while chown() takes a pointer to
acharacter string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
adiscussion of other parameters, authorities required, return values, and related information, see
chown()--Change Owner and Group of File.

Parameters

path

(Input) A pointer to a Qlg_Path_Name T structure that contains a path name or a pointer to a path name
of the file whose owner and group are being changed. For more information on the Qlg_Path Name T
structure, see Path name format.

Related Information

« chown()--Change Owner and Group of File
« QlgChmod()--Change File Authorizations (using NL S-enabled path name)
o QlgL statu()--Get File or Link Information (using NL S-enabled path name)

o QlgStat()--Get File Information (using NL S-enabled path name)

Example
The following example changes the owner and group of afile:

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat.h>
#i ncl ude <sys/types. h>
#i ncl ude <fcntl. h>

#i ncl ude <QOl stdi.h>

mai n() {
int file_descriptor;
struct stat info;

#define mypath "tenp.file"

const char US const[3]= "US";

const char Language_const[4] ="ENU';
typedef struct pnstruct

Qg Path_Nane_T ql g_struct;
char pn[100]; /* This array size nmust be >= the */
/* length of the path name or this nust */
/* be a pointer to the path name. */
1
struct pnstruct path;

/***/

/* Initialize Qg_Path_Name_T paraneters */
/***/

menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

pat h. gl g_struct.CCSID = 37,

mencpy(pat h. gl g_struct. Country_I D, US_const, 2);

mencpy(pat h. ql g_struct. Language_I| D, Language_const, 3);

pat h. gl g_struct.Path _Type = Q.G CHAR S| NGLE;

pat h. gl g _struct.Path _Length = sizeof (nypath)-1;

pat h. ql g_struct.Path_Name_Delinmter[0] ="'/";

mencpy(pat h. pn, nypat h, si zeof (nypath)-1);

if ((file_ descriptor = QgCreat((Q g _Path Nane T *)&path, S IRWKU)) == -1)
perror(“"creat() error");
el se {

close(file_descriptor);
QgStat ((Qg_Path Name T *)&path, & nfo);
printf("original owner was %l and group was %d\n", info.st_uid,
info.st_gid);
if (QgChown((Q g_Path_Nane_T *)&path, 152, 0) !'= 0)
perror("Q gChown() error");
el se {
QgStat((Q g _Path Nane T *)&path, & nfo);
printf("after Q gChown(), owner is %l and group is %d\n",
info.st _uid, info.st_gid);

}
QgUnlink((Q g _Path_Nanme T *)&pat h);

Output:

ori gi nal owner was 137 and group was O
after Q gChown(), owner is 152 and group is O

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgCreat()--Create or Rewrite File (using
NLS-enabled path name)

Syntax

#i nclude <fcntl. h>

int QgCreat(Q g Path_Nanme T *path, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgCreat() function, like the creat() function, creates anew file or rewrites an existing file so that it is
truncated to zero length. The differenceis that the QIgCreat() function takes a pointer to a
Qlg_Path Name T structure, while creat() takes a pointer to a character string. See open()--Open File for

more details on how the function call

Q gCr eat (pat h, node) ;
isequivalent to the call

Q gOpen(pat h, O CREAT| O WRONLY| O TRUNC, node);

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
creat()--Create or Rewrite File or open()--Open File.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be created or rewritten. For more information on the Qlg_Path_Name T
structure, see Path name format.

Related Information

« creat()--Create or Rewrite File

« QlgCreat64()--Create or Rewrite aFile (large file enabled and using NL S-enabled path name)

Example
The following example creates afile:

#i ncl ude <stdio. h>
#i ncl ude <fcntl. h>
#i ncl ude <QOl stdi. h>

mai n() {
char text[]="This is a test";
int file_descriptor;
#define nypath "creat.file"
const char US const[3]= "US";
const char Language const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path Name T gl g struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path nanme or this nmust */
/* be a pointer to the path nane. */
1

struct pnstruct path;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));
path. gl g_struct.CCSID = 37;
mencpy(path.ql g struct. Country I D, US const, 2);
mencpy(path. ql g _struct. Language | D, Language_const, 3);
pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;
path. gl g struct.Path _Length = si zeof (mypat h) 1;
path. gl g_struct.Path Nane Delinmiter[0] ="'/";
mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;
if ((file_descriptor =
QgCreat ((Qg Path Name T *)&path, SIRUSR| S IWSR)) < 0)
perror("QgCreat() error");
el se {
wite(file descriptor, text, strlen(text));
close(fil e _descriptor);
QgUnlink((Q g _Path Nane T *)&path);

}
}

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgCreat64()--Create or Rewrite a File (large file
enabled and using NLS-enabled path name)

Syntax

#i nclude <fcntl. h>

int QgCreat64(Q g Path_Name T *pat h, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgCreat64() function, like the cr eat64() function, creates a new file or rewrites an existing file so
that it istruncated to zero length. The difference is that the QIgCreat64() function takes a pointer to a
Qlg_Path Name T structure, while creat64() takes a pointer to a character string. See creat64()--Create or

Rewrite a File (Large File Enabled) and open64()--Open File (Large File Enabled) for more details on how
the function call

Q gCr eat 64(pat h, node) ;
isequivalent to the call

Q gOpen64(path, O CREAT| O WRONLY| O TRUNC, node);

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
creat64()--Create or Rewrite a File (Large File Enabled) or open64()--Open File (Large File Enabled).

Parameters

path

(Input) A pointer to aQlg_Path_Name T structure that contains a path name or a pointer to a path
name of thefile to be created or rewritten. For more information on the Qlg_Path Name T
structure, see Path name format.

Related Information

« creat()--Create or Rewrite aFile

« creat64()--Create or Rewrite a File (Large File Enabled)

Example

The following example creates afile:

#define _LARGE_FI LE_API

#i ncl ude <stdio. h>
#i ncl ude <fcntl. h>
#i ncl ude <QOl stdi. h>

mai n()

char text[]="This is a test";
int fd;

#define nypath "creat.file"

}

const char US const[3]= "US";
const char Language _const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path Name T gl g struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path nanme or this nust */
/* be a pointer to the path nane. */
1

struct pnstruct path;

/***/

/* Initialize Qg Path Name T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path. ql g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path.ql g _struct.Path _Length = sizeof (mypat h) 1;

path. gl g_struct.Path Nane Delinmter[0] ="'/";

mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;

i f
((fd =
Q gCreat 64(
(Qg_Path_Name_ T *)&path, S IRUSR | S_|IWISR))
< 0)
{
perror("Q gCreat64() error");
el se {
wite(fd, text, strlen(text));
cl ose(fd);
QgUnlink((Q g _Path Nane T *)&path);
}

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgCvtPathToQSYSObjName()-- Resolve
Integrated File System Path Name into QSYS
Object Name (using NLS-enabled path name)

Syntax

#i ncl ude <qgpOIl stdi. h>

voi d Q gCvt Pat hToQSYSChj Name(
Q@ g_Path_Nane_T *pat h_nane,

voi d *qsys_info,

char f or mat _nane[8],
ui nt byt es_provi ded,
ui nt desi red_CCsSI D,
voi d *error_code);

Service Program Name: QPOLLIB2
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, see
QpOlCvtPathToQSY SObjName()-- Resolve Integrated File System Path Name into QSY S Object Name.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgGetAttr()--Get Attributes (using
NLS-enabled path name)

Syntax

#i ncl ude <QO0Il stdi. h<
int QgGetAttr

(Qg_Path Nane T *Pat h_Nane,
Ol _AttrTypes_List _t *Attr_Array _ptr,
char *Buf fer_ptr,
ui nt Buf fer _Si ze Provi ded,
ui nt *Buf fer _Si ze Needed ptr,
ui nt *Num Byt es_Returned ptr,
ui nt Fol I ow Sym nk, ...);

Service Program Name: QPOLLIB2
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, related information, and an example, see

QpOl GetAttr()--Get Attributes.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgGetcwd()--Get Current Directory (using
NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

Qg Path Name T *Q gGetcwd(Q g _Path_Name T *buf,
size t size);

Service Program Name: QPOLLIB2
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgGetcwd() function, like the getcwd() function, determines the absol ute path name of the current
directory and returns a pointer to it. The differenceis that the pointer returned by QlgGetcwd() is a pointer
toaQlg_Path_Name T structure that holds the absolute path name, while getcwd() returns a pointer to a
character string or buffer that contains the null-terminated absol ute path name.

Limited information on the buf parameter and on the size parameter is provided here. For more information
on the parameters and for a discussion on authorities required, return values, and related information, see
getcwd()--Get Current Directory.

Parameters

buf

(Output) A pointer to aQlg_Path_Name T structure that holds the absolute path name of the
current directory. The path name is not null-terminated within the structure. For more information
on the Qlg_Path_Name T structure, see Path name format.

Size
(Input) The number of bytes allocated for buf.

Related Information

« getcwd()--Get Current Directory

o QlgChdir()--Change Current Directory (using NL S-enabled path name)

Example
The following exampl e determines the current directory:

#i ncl ude <uni std. h>
#i ncl ude <stdio. h>

mai n()

{
#define nypath_cd "/t mp"

const char US const[3]=
const char Language_const[4] ="ENU';
typedef struct pnstruct

Qg Path Nanme T gl g _struct;
char pn[1024]; [/* This size nust be |arge enough */

/* to contain the path nane. */
1

struct pnstruct path_cd;
struct pnstruct path_cwd;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) path name_cd, 0x00, sizeof(struct pnstruct));
path_cd. gl g struct.CCSID = 37;

mencpy(path_cd. gl g _struct. Country I D, US const, 2);

mencpy(path_cd. gl g_struct. Language_| D, Language_const, 3);

path_cd. gl g struct.Path_Type = QLG_CHAR_SI NGLE;

path_cd.ql g_struct.Path _Length = sizeof (nypath_cd)-1;

pat h_cd. gl g _struct. Pat h_Nane Dellmter[O] ="'/

mencpy(pat h_cd. pn, nypat h_cd, si zeof (mypat h_cd)-1);

if (QgChdir((Q g Path Nane T *)path nanme_cd) != 0)
perror("QgChdir() error()");
el se

if (QgGetcwd(Q g Path Nane T *path_cwd,
si zeof (struct pnstruct)) == NULL)
perror("Q gGetcwd() error");
el se
printf("Successful change to new current working directory.");

}
}
Output:

Successful change to new current working directory.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgGetPathFromFilelD()--Get Path Name of
Object from Its File ID (using NLS-enabled path
name)

Syntax

#i ncl ude <Q@0OI stdi. h>

Q g _Path_Name T *Q gGet Pat hFronFil el D{Q g_Pat h_Name_T *buf,
size t size, QOIFIDt fileid);

Service Program Name: QPOLLIB2
Default Public Authority: *USE

Threadsafe: Yes

The QlgGetPathFromFilel D() function, like the QpOlGetPathFromFilel D() function, determines an
absolute path name of the file identified by fileid and storesit in buf. The difference is that the
QlgGetPathFromFilel D() function pointsto a Qlg_Path Name T structure, while
QpOIGetPathFromFilel D() pointsto anull-terminated character string.

Limited information on the buf parameter is provided here. For more information on the buf parameter and
for adiscussion of other parameters, authorities required, return values, and related information, see
QpOIGetPathFromFilel D()--Get Path Name of Object from ItsFile ID.

Parameters

buf

(Output) A pointer to aQIg_Path_Name T structure that will be used to hold an absolute path
name or a pointer to an absolute path name of the file identified by fileid. The path name is not
null-terminated within the structure. For more information on the Qlg_Path_Name_T structure, see
Path name format.

Size
(Input) The number of bytesin the buffer buf.
fileid

(Input) The identifier of the file whose path name isto be returned. Thisidentifier islogged in audit
journal entries to identify the file being audited. See the Parent File ID and Object File ID fields of

the audit journal entries described in the iSeries Security Reference @ book.

Related Information

o QpOlGetPathFromFilel D()--Get Path Name of Object from ItsFile ID

Example

The following exampl e determines the path name of afile, givenitsfile ID. In this example, thefileid is
hardcoded. More redlistically, the fileid is obtained from the audit journal entry and passed to
QlgGetPathFromFilel D().

#i ncl ude <Ol stdi. h>
#i ncl ude <stdi o. h>
#i ncl ude <qt gi conv. h>

void Path Print(Q g _Path Nanme T *);
mai n()

QOI FID_t
fileid = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, O0x00, 0x00, 0x00, 0x80, OxFF, OxCF, 0x00};

const char US const[3]= "US";
const char Language_const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path_Nanme T gl g _struct;
char pn[1024]; /* This size nmust be |arge enough */
/* to contain the path nane. */
1

struct pnstruct path;

/***/

/* Initialize Qg _Path _Nane T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));
mencpy(path. gl g _struct. Country_I D, US const, 2);

mencpy(path. ql g_struct. Language_| D, Language_const, 3);

if (QgCGetPathFronFilel D((Q g_Path_Nanme T *) &pat h,
si zeof (struct pnstruct), fileid) == NULL)
perror("Q gCGetPathFronFilel D) error");
el se
{
printf("Path retrieved successfully.\n");
Path Print((Q g_Path _Nane T *)&path);
}
}

void Path Print(Q g Path_Nanme T *path_to_print_pointer)

/**/

/[* Print a path name that

isinthe Qg Path Nane T format. */

/**/

#def i ne PATH TYPE PO NTER 0x00000001 /* If flag is on, */
/* input structure contains a pointer */
/* to the path nane, else the path */
nanme is in contiguous storage */
/* within the glg structure. */
typedef union pn_input_type /* Format of input path nane. */
char pn_char _type[256]; /* in contiguous storage */
char *pn_ptr_type; /* a pointer */
b
t ypedef struct pnstruct
Qg _Path Name T gl g struct;
uni on pn_i nput _type pn;
b
struct pnstruct *pns;
char *path_ptr;
size t insz;
size t outsz = 1000;
char out buf[1000];
char *outbuf _ptr;
i conv_t cd;
size t ret _iconv;
/* Indicates to convert fromccsid 13488 to 37. */

Q gCode_T t oCode
Q gCode T fronCode

{37,0,0,0,0,0};

{13488, 0,0, 1, 0, 0} ;

if (path_to_print_pointer

= NULL)

/***/

/* Point to and get the size of the path nane.

*/

/***/

pns = (struct pnstruct *)path_to _print_pointer;

if (path_to_print_pointer->Path_Type & PATH TYPE PO NTER)
path_ptr = pns->pn. pn_ptr_type;

el se path_ptr = (char *)(pns->pn.pn_char_type);

insz = pns->ql g struct.Path_Length; /* Get path |ength.*/

/***/

/* Initialize the print buffer. */
/***/
outbuf _ptr = (char *)outbuf;

menset (out buf _ptr, 0x00, insz);

/***/

/* Use iconv to convert the CCSID. */
/***/
cd = Q@ ql convOpen(& oCode,

&f r omCode) ;
if (cd.return_valu -1)
{ perror("Qpen conversion descriptor error");

/* Open a descriptor*/

return;

}
if (0 != ((iconv(cd,
(char **)&(path_ptr),
& nsz,
(char **)&(outbuf ptr),
&outsz))))
{
ret _iconv= iconv_close(cd);/* O ose conversion descriptor*/
perror (" Conversion error");

return;
/***/
/* Print the nane and cl ose the conversion descriptior. */

/***/
printf("The file's path is: %\n", out buf);
ret _iconv = iconv_close(cd);
} /* path_to _print_pointer !'= NULL */
} /* Path _Print */

Output:

Path retrieved successfully.
The file's path is: /nyfile

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgGetpwnam()--Get User Information for User
Name (using NLS-enabled path name)

Syntax

#i ncl ude <pwd. h>

struct qplg_passwd *Q gGet pwnanm(const char *nane);
Service Program Name: QSY PAPI

Default Public Authority: *USE

Threadsafe: No

The QlgGetpwnam() function returns a pointer to an object of type struct gplg_passwd containing an entry
from the user database with a matching name.

Parameters

name
(Input) User profile name.

The struct gplg_passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID
Qlg_Path_Name T* pw_dir Initial working directory
char * pw_shell Initial user program

See getpwnam()--Get User Information for User Name for more on the parameter.

Authorities

*READ authority is required to the user profile associated with the name.

Note: Adopted authority is not used.

Return Value

value

QlgGetpwnam was successful. The return value pointsto static data that is overwritten on each
call to thisfunction. This static storage areais also used by the QlgGetpwuid() function.

NULL pointer
QlgGetpwnam was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QlgGetpwnam() is not successful, errno usualy indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the name is currently locked by another process.

[EC2]
Detected pointer that is not valid.

[EINVAL]
Vaueisnot valid. Check the job log for messages.

[ENOENT]
The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate
memory.

[EPERM]
The calling job does not have * READ authority to the user profile associated with the name.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

The <pwd.h> file (see Header Filesfor UNIX-Type APIS)

getpwnam()--Get User Information for User Name Qlg getpwnam _r

getpwnam r()--Get User Information for User Name

QlgGetpwnam r()--Get User Information for User Name (using NL S-enabled path name)

Example

The following example gets the user database information for the user name of MYUSER. The UID is 22.
The GID is1012. Theinitial working directory is/home/MYUSER. Theinitia user program is
*LIBL/QCMD.

#i ncl ude <pwd. h>
mai n()
struct qpl g_passwd *pd;

if (NULL == (pd = Q gCet pwnan(" MYUSER")))
perror("Q gGet pwnam() error.");
el se
{
printf("The user nane is: 9%\n", pd->pw_nane);
printf("The user id is: %\n", pd->pw_uid);
printf("The group id is: %\n", pd->pw_gid);
printf("The initial working directory length is: %\ n",
pd- >pw_di r - >Pat h_Lengt h) ;
printf("The initial working directory CCSIDis : %l\n",
pd- >pw_di r - >CCSI D) ;
printf("The initial user programis: %\n", pd->pw_shell);

}
Output:

The user nane is: MYUSER

The user id is: 22

The group id is: 1012

The initial working directory length is: 24
The initial working directory CCSID is : 13488
The initial user programis: *LIBL/ QCVD

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgGetpwnam_r()--Get User Information for User
Name (using NLS-enabled path name)

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

int QgCGetpwnamr(const char *name,
struct qpl g_passwd *pwd,
char *buffer,

size_t bufsize,
struct qplg_passwd **result);

Service Program Name: QSY PAPI
Default Public Authority: * USE

Threadsafe: Yes

The QlgGetpwnam_r() function updates the gplg_passwd structure pointed to by pwd and stores a pointer to

that structure in the location pointed to by result. The structure contains an entry from the user database with a
matching name.

Parameters

name

(Input) A pointer to auser profile name.
pwd

(Input) A pointer to agplg_passwd structure.
buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by the
structure pwd.

bufsize
(Input) The size of buffer in bytes.
result

(Input) A pointer to alocation in which a pointer to the updated gplg_passwd structure is stored. If an
error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

The struct gplg_passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID

Qlg_Path Name T* pw_dir Initial working directory
char * pw_shell Initial user program

See getpwnam r()--Get User Information for User Name for more on the pwd, result and other parameters.

Authorities

*READ authority is required to the user profile associated with the name.

Return Value

0
QlgGetpwnam_r was successful.

Any other value
Failure: The return value contains an error number indicating the error.

Error Conditions

If QlgGetpwnam_r() is not successful, the return value usualy indicates one of the following errors. Under
some conditions, the value could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the name is currently locked by another process.

[EC2]
Detected pointer that is not valid.

[EINVAL]
Valueisnot valid. Check the job log for messages.

[ENOENT]
The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate
memory.

[EPERM]
The calling job does not have * READ authority to the user profile associated with the name.

[ERANGE]

Insufficient storage was supplied through buffer and bufsize to contain the data to be referenced by the
resulting group structure.

[EUNKNOWN]
Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify that

the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

« The<pwd.h> file (see Header Filesfor UNIX-Type APIS)

o getpwnam()--Get User Information for User Name

o getpwnam r()--Get User Information for User Name

o QlgGetpwnam()--Get User Information for User Name (using NL S-enabled path name)

Example

The following example gets the user database information for the user name of MYUSER. The uid is 22. The

gidis 1012. Theinitia working directory is/home/MY USER. Theinitial user programis*LIBL/QCMD.

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

mai n()
{
struct qpl g_passwd pd;
gpl g_passwd ** tenmpPwdPtr;
char pwdbuffer[200];
int pwdlinelen = sizeof (pwdbuffer);

if ((Q gGetpwnamr (" MYUSER", &pd, pwdbuf f er, pwdl i nel en, t enpPwdPtr))! =0

perror("Q gCGetpwnamr() error.");
el se

{

printf("\nThe user nane is: %\n", pd->pw _nane);

printf("The user id is: %\n", pd->pw_uid);
printf("The group id is: %\n", pd->pw. gid);

printf("The initial working directory length is:

pd- >pw_di r- >Pat h_Lengt h) ;

printf("The initial working directory CCSIDis :

pd- >pw_di r- >CCSI D) ;

printf("The initial user programis: %\n", pd->pw _shell);

}
Output:

The user name is: MYUSER

)

The user id is: 22

The group id is: O

The intial working directory length is: 24
The intial working directory CCSID is : 13488
The initial user programis: *LIBL/QCVD

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgGetpwuid()--Get User Information for User
ID (using NLS-enabled path name)

Syntax

#i ncl ude <pwd. h>

struct qplg_passwd *Q gGet pwui d(uid_t uid);
Service Program Name: QSY PAPI

Default Public Authority: *USE

Threadsafe: No

The QlgGetpwuid() function returns a pointer to an object of type struct gplg_passwd containing an entry
from the user database with a matching user ID (UID).

Parameters
uiD
(Input) User ID.
The struct gplg_passwd, which is defined in the pwd.h header file, has the following elements:
char * pw_name User name
uid_t pw_uid User ID
uid_t pw_gid Group ID
Qlg_Path_Name T* pw_dir Initial working directory
char * pw_shell Initial user program

See getpwuid()--Get User Information for User ID for more on the parameter.

Authorities

*READ authority is required to the user profile associated with the UID.

Note: Adopted authority is not used.

Return Value

value

QlgGetpwuid() was successful. The return value points to static data that is overwritten on each
call to thisfunction. This static storage areais also used by the QlgGetpwnam() function.

NULL pointer
QlgGetpwuid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QlgGetpwuid() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the uid is currently locked by another process.

[EC2]
Detected pointer that is not valid.
[EINVAL]
Vaueisnot valid. Check the job log for messages.
[ENOENT]
The user profile associated with UID was not found.
[ENOMEM]
The user profile associated with the UID has exceeded its storage limit or is unable to allocate
memory.
[ENOSPC]
Machine storage limit exceeded.
[EPERM]
The calling job does not have * READ authority to the user profile associated with the UID.
[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

Th path name is returned in the default IFS UNICODE CCSID

Related Information

The <pwd.h> file (see Header Files for UNIX-Type Functions)

getpwuid()--Get User Information for User ID

getpwuid r()--Get User Information for User ID
QlgGetpwuid r()--Get User Information for User ID (using NL S-enabled path name)

Example

The following example gets the user database information for the uid of 22. The user nameis MY USER.
The gidis1012. Theinitial working directory is/home/MY USER. Theinitial user programis
*LIBL/QCMD.

#i ncl ude <pwd. h>

mai n()

{
struct qpl g_passwd *pd;

if (NULL == (pd = Q gCet pwui d(22)))
perror("Q gGet pwid() error.");
el se
{
printf("The user nane is: 9%\n", pd->pw_nane);
printf("The user id is: %\n", pd->pw_uid);
printf("The group id is: %\n", pd->pw._gid);
printf("The initial working directory length is: %\ n",
pd- >pw_di r - >Pat h_Lengt h) ;
printf("The initial working directory CCSIDis : %l\n",
pd- >pw_di r - >CCSI D) ;
printf("The initial user programis: %\n", pd->pw_shell);

}
Output:

The user name is: MYUSER

The user id is: 22

The group id is: 1012

The intial working directory length is: 24
The intial working directory CCSID is : 13488
The initial user programis: *LIBL/ QCVD

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgGetpwuid_r()--Get User Information for User
ID (using NLS-enabled path name)

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

int QgGetpwuid r(uid_t uid,
struct qgplg_passwd *pwd,
char *buffer,
size_t bufsize,
struct qgplg_passwd **result);

Service Program Name: QSY PAPI
Default Public Authority: *USE

Threadsafe: Yes

The QlgGetpwuid_r() function updates the gplg_passwd structure pointed to by pwd and stores a pointer
to that structure in the location pointed to by result. The structure contains an entry from the user database
with amatching UID.

Parameters

ulD

(Input) A pointer to auser ID.
pwd

(Input) A pointer to a struct gplg_passwd.
buffer

(Input) A pointer to abuffer from which memory is allocated to hold storage areas referenced by
the structure gplg_passwd.

bufsize
(Input) The size of buffer in bytes.
result

(Input) A pointer to alocation in which a pointer to the updated gplg_passwd structure is stored. If
an error occurs or if the requested entry cannot be found, a NULL pointer is stored in thislocation.

The struct gplg_passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID

Qlg_Path Name T pw_dir Initial working directory

char * pw_shell Initial user program

See getpwuid r()--Get User Information for User ID for more on the pwd, result and other parameters.

Authorities

*READ authority isrequired to the user profile associated with the UID.

Return Value

0
QlgGetpwuid_r () was successful.

Any other value
Failure: The return value contains an error number indicating the error.

Error Conditions

If QlgGetpwuid_r() is not successful, the error value usualy indicates one of the following errors. Under
some conditions, the value could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the uid is currently locked by another process.

[EC2]
Detected pointer that is not valid.
[EINVAL]
Vaueisnot valid. Check the job log for messages.
[ENOENT]
The user profile associated with uid was not found.
[ENOMEM]
The user profile associated with the UID has exceeded its storage limit or is unable to allocate
memory.
[ENOSPC]
Machine storage limit exceeded.
[EPERM]

The calling job does not have *READ authority to the user profile associated with the UID.

[ERANGE]

Insufficient storage was supplied using buffer and bufsize to contain the data to be referenced by the
resulting group structure.

[EUNKNOWN]
Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

» The<pwd.h> file (see Header Files for UNIX-Type Functions)

o getpwuid()--Get User Information for User ID

o getpwuid r()--Get User Information for User ID
o OlgGetpwuid()--Get User Information for User ID (using NL S-enabled path name)

Example

The following example gets the user database information for the uid of 22. The user nameis MY USER.
The GID is 1012. Theintial working directory is/home/MYUSER. Theinitia user programis
*LIBL/QCMD.

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

mai n()
{
struct qplg_passwd pd;
passwd ** tenpPwdPtr;
char pwdbuffer[200];
int pwdlinelen = sizeof (pwdbuffer);

if ((QgGetpwiidr(22, &d, pwdbuffer, pwdlinel en,tenmpPwdPtr))! =0)
perror("Q gGetpwuid _r() error.");
el se
{
printf("\nThe user nane is: %\n", pd->pw _nane);
printf("The user id is: %\n", pd->pw_uid);
printf("The group id is: %\n", pd->pw gid);
printf("The initial working directory length is: %\n",
pd- >pw_di r - >Pat h_Lengt h) ;
printf("The initial working directory CCSIDis : %l\n",

pd- >pw _di r->CCSI D) ;
printf("The initial user programis: %\n", pd->pw shell);

}
Output:

The user nane is: MYUSER

The user ID is: 22

The group ID is: O

The initial working directory length is: 24
The initial working directory CCSID is : 13488
The initial user programis: *LIBL/ QCMD

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgLchown()--Change Owner and Group of
Symbolic Link (using NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

int QgLchown(Q g _Path Name T *path, uid_t owner,gid_t
group);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgL chown() function, like the Ichown() function, changes the owner and group of afile. The
differenceisthat the QlgL chown() function takes a pointer to a Qlg_Path_Name T structure, while
Ichown() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more on the path parameter and for a
discussion of other parameters, authorities required, return values, and related information, see
Ichown()--Change Owner and Group of Symboalic Link.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file whose owner and group are being changed. For more information on the
Qlg_Path_Name T structure, see Path name format.

Related Information

« |chown()--Change Owner and Group of Symbolic Link
» QlgChmod()--Change File Authorizations
o QlgLstat()--Get File or Link Information

o QlgStat()--Get File Information

Example

The following example changes the owner and group of afile:

#i ncl ude <stdi o. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>
#i ncl ude <QOl stdi. h>
mai n() {

#define nypath _|ink _name "tenp.!link"
#define nypath fn "tenp.file"

const char US_const] 3[=
const char Language_const] 4[="ENU';

struct

stat info;

t ypedef struct pnstruct

Qg Path Nane T ql g_struct;

char

i
st ruct
st ruct

pn]100[; /* This array size nmust be >= the */

/* length of the path name or this nust
/* be a pointer to the path nane.

pnstruct path_link;
pnstruct path_fn;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &at h_li nk, 0x00, sizeof(struct pnstruct));
path_link.qglg struct.CCSID = 37;

mencpy(path_link.qglg struct.Country ID, US const, 2);
mencpy(path_|ink.qgl g struct. Language_| D, Language_const, 3) ;
path_link.qglg struct.Path_Type = QLG_CHAR_SI NGLE;

path_link.ql g struct.Path Length = sizeof (mypath_ I|nk _name) - 1;
path_link. gl g struct. Pat h_Nane Dellmter]O[="'/

mencpy(pat h_|ink. pn, mypat h_I i nk_nane, si zeof(nypath link _nane)-1);

menset ((voi d*) &at h_fn, 0x00, sizeof(struct pnstruct));
path _fn.qglg struct.CCSID = 37;

mencpy(path _fn.glg struct. Country I D, US const, 2);
mencpy(path_fn. gl g struct. Language_| D, Language_const, 3) ;
path fn.glg struct.Path _Type = QLG_CHAR_SI NGLE;
path_fn.ql g_struct.Path_Length = sizeof (nypath_ fn) 1;
path_fn. gl g struct. Pat h_Nane Dellmter]O[="'/
mencpy(pat h_fn. pn, nypat h_fn, si zeof (mypat h_fn) - 1)

if (QgSymink((Qg Path Nane T *)&path fn,
(Qg_Path Nane T *)&path |ink) == -1)
perror("Q gSymink() error");
el se {
QgLstat((Q g Path Nanme T *)&path_link, & nfo);
printf("original owner was % and group was %d\n", info.st uid,

info.st _gid);
if (QgLchowmn((Q@ g Path Nanme T *)&path _link, 152, 0) !'= 0)
perror("Q gLchown() error");
el se {
QgLstat((Q g Path Nanme T *)&path_link, & nfo);
printf("after Q gLchown(), owner is %l and group is %d\n",
info.st _uid, info.st _gid);

}
QgUnlink((Qg_Path Nane T *)&path_|ink);

Output:

original owner was 137 and group was O
after QgLchown(), owner is 152 and group is O

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgLink()--Create Link to File (using
NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

int QgLink(Q g_Path_Nane_T *existing, Qg_Path_Nanme_T *new);
Service Program Name: QPOLLIB1

Default Public Authority: * USE

Threadsafe: Conditional; see Usage Notes.

The QlgLink() function, like the link() function, provides an aternative path name for the existing file so that
the file can be accessed by either the existing name or the new name. The differenceis that the QlgLink()
function supports pointersto Qlg_Path_Name T structures, while link() supports pointersto character strings.

Limited information on the existing and the new parametersis provided here. For more information on these
parameters and for a discussion of the authorities required, return values, and related information, see
link()--Create Link to File.

Parameters

existing
(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path

name of an existing file to which anew link isto be created. For more information on the
Qlg_Path_Name T structure, see Path name format.

new

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name that is the name of the new link. For more information on the Qlg_Path_Name T structure, see
Path name format.

Related Information

o link()--Create Link to File

o QpllUnlink()--Remove Link to File (using NL S-enabled path name)

Example

The following example uses QlgL ink():

#i
#i
#i
#i
#i
#i
#i

ncl ude <stdi o. h>
ncl ude <uni std. h>
ncl ude <sys/types. h>
ncl ude <sys/stat. h>
ncl ude <fcntl. h>
ncl ude <stdlib. h>
ncl ude <@Ol stdi. h>

mai n()

int file_descriptor;
struct stat info;

#define nypath_fn "link.exanple.file"
#define nypath_In "link.exanple.link"

0)

const char US const[3]= "US";
const char Language_const[4] ="ENU';
typedef struct pnstruct

Q g_Path_Nanme_T ql g_struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path nane or nust */
/* be a pointer to the path nane. */
b
struct pnstruct path_fn;
struct pnstruct path_In;

/***/

/* Initialize @g_Path_Name_T paraneters */
/***/
nenset ((voi d*) &at h_fn, 0x00, sizeof(struct pnstruct));
path_fn.qlg_struct.CCSID = 37;
mencpy(path_fn. gl g _struct.Country_I D, US const, 2);
mencpy(path_fn. gl g _struct. Language_I D, Language_const, 3);

path_fn.ql g_struct. Path_Type = QLG _CHAR SI NGLE;

path_fn.ql g_struct.Path_Length = sizeof (nypath_ fn) 1;

path_fn.ql g_struct.Path_Name_Delimter[0] = "'/"

nmencpy(pat h_fn. pn, nypath fn,sizeof (nypath_fn)- 1)

nmenset ((voi d*) &at h_I n, 0x00, sizeof(struct pnstruct));
path_In.ql g_struct.CCSID = 37;
mencpy(path_In. gl g struct. Country_ I D, US const, 2);
mencpy(path_I n. gl g _struct. Language_| D, Language_const, 3);
path_In.qgl g_struct. Path_Type = QLG CHAR SI NGLE;
path_In.ql g_struct.Path_Length = sizeof (nypath_ In) 1;
path_In.ql g_struct.Path_Name _Delimter[0] = "'/"'
nmencpy(pat h_| n. pn, nypath_I n, si zeof (nypath_I n) - 1)

if ((file_descriptor = QgCreat((Q g_Path_Name_ T *)&path _fn, S IWSR)) <

perror("QgCreat() error");
el se {
close(fil e_descriptor);

put s("before Q gLink()");
QgStat ((Qg_Path_Name_T *)&path_fn, & nfo);
printf (" nunber of links is %u\n",info.st_nlink);
if (QgLink((Qg_Path_Nanme_T *) &pat h_fn,
(Qg_Path_Name_T *)&path_In) = 0) {
perror("Q gLink() error");
Q gunlink((Q g_Path_Nane_T *)&pat h_fn);

el se {
puts("after Q gLink()");
QgStat ((Qg_Path_Name_T *)&path_fn, & nfo);
printf(" nunber of links is %u\n",info.st_nlink);
Q gunlink((Q g_Path_Nane_T *)&path_In);
puts("after first QgUnlink()");
QgLstat((Q g_Path_Name_T *)&pat h_fn, & nfo);
printf (" nunber of links is %u\n",info.st_nlink);
Q gunlink((Q g_Path_Nane_T *)&pat h_fn);

}

}
}

Output:

bef ore Q gLi nk()

nunber of links is 1
after Q gLink()

nunber of links is 2
after first Q guUnlink()

nunber of links is 1

APl introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgLstat()--Get File or Link Information (using
NLS-enabled path name)

Syntax

#i ncl ude <sys/stat.h>

int QgLstat(Q g_Path_Name_T *path, struct stat *buf);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgL stat() function, like the Istat() function, gets status information about a specified file and placesit in
the area of memory pointed to by buf. The differenceis that the QlgL stat() function takes a pointer to a
Qlg_Path_Name T structure, while Istat() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
adiscussion of other parameters, authorities required, return values, and related information, see Istat()--Get File
or Link Information.

Parameters

path

(Input) A pointer to a Qlg_Path_Name T structure that contains a path name or a pointer to a path name
of the file. For more information on the Qlg_Path_Name_T structure, see Path name format.

Related Information

« lstat()--Get File or Link Information

« QlgChmod()--Change File Authorizations (using NL S-enabled path name)

« QlgChown()--Change Owner and Group of File (using NL S-enabled path name)
« QlgCresat()--Create or Rewrite File (using NLS-enabled path name)

o QlgLink()--Create Link to File (using NL S-enabled path name)

o QlgMkdir()--Make Directory (using NL S-enabled path name)

« QlgReadlink()--Read Vaue of Symbolic Link (using NL S-enabled path name)

o QlgStat()--Get File Information (using NL S-enabled path name)

o QlgSymlink()--Make Symbolic Link (using NL S-enabled path name)

o QlgUtime()--Set File Access and Modification Times (using NL S-enabled path name)
o QpOlUnlink()--Remove Link to File (using NL S-enabled path name)

Example
The following example provides status information for afile:

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdio. h>

#i ncl ude <fcntl. h>

#i ncl ude <uni std. h>
#incl ude <tine. h>

#i ncl ude <stdio. h>

#i ncl ude <QOl stdi.h>

mai n() {

struct stat info;

int file descriptor;
#define nypath fn "tenp.file"
#define nypath_In "tenp.link"

const char US const[3]= "US";
const char Language_const[4] ="ENU';
typedef struct pnstruct

Q g Path_Name T gl g_struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path nane or this must */
/* be a pointer to the path nane. */
b
struct pnstruct path_fn;
struct pnstruct path_In;

/***/

/* Initialize Qg Path _Nane T parameters */
/**************-k**/
menset ((voi d*) &at h_fn, 0x00, sizeof(struct pnstruct));
path_fn.ql g _struct.CCSID = 37;
mencpy(path_fn.glg struct. Country I D, US const, 2);
mencpy(path_fn. gl g struct. Language_ | D, Language_const, 3);

path_fn.ql g_struct. Path_Type = QLG CHAR SI NGLE

path_fn.ql g_struct.Path_Length = sizeof (nypath_fn)-1

path_fn.ql g_struct.Path_Nane Delimter[0] ="'/";
mencpy(path_fn. pn, nypath_fn, sizeof (nmypath_fn)-1);

menset ((voi d*) &at h_I n, 0x00, sizeof(struct pnstruct));
path_In.qlg_struct.CCSID = 37;
mencpy(path_In.glg _struct. Country_I D, US const, 2);
mencpy(path_I n. gl g _struct. Language_I D, Language_const, 3);
path_In.ql g_struct. Path_Type = QLG CHAR SI NGLE
path_In.ql g_struct.Path_Length = sizeof (nypath_In)-1
path_In.ql g_struct.Path_Nanme Delimter[0] ="/";
mencpy(path_I n. pn, nypath_I n, si zeof (mypath_In)-1);

f ((file_descriptor = QgCreat((Q g_Path_Name T *)&path_fn, S IWSR)) < 0)
perror("QgCreat() error");

el se {
close(file_descriptor);
if (QgLink((Qg_Path_Nanme_T *)&path_fn

(Q g_Path_Name_T *)&path_I n)
1=0
perror("Q gLink() error");
el se {
if (QgLstat((Q g_Path_Nane T *)&path_In, & nfo) = 0)
perror("Q gLstat() error");

el se {
puts("Q gLstat() returned:");
printf(" inode: %\ n", (int) info.st_ino);
printf(" dev id: %\ n", (int) info.st_dev);
printf(" nmode: 298x\ n", i nf o. st_node);
printf(" [links: %\ n", i nfo.st_nlink);
printf(" ui d: %\ n", (int) info.st_uid);
printf(" gi d: %\ n", (int) info.st_gid);

}
Q gUnlink((Q g_Path_Nane_T *)&path_In);

Q@ guUnlink((Q g_Path_Nanme_T *)&path_fn);

Output:

Q gLstat () returned:
i node: 8477

dev id: 0
node: 00008080
i nks: 2
ui d: 1782
gid: 0

Top | UNIX-Type APIs | APIs by category

QlgLstat64()--Get File or Link Information (large
file enabled and using NLS-enabled path name)

Syntax

#i ncl ude <sys/stat.h>

int QglLstat64(Q g_Path_Name_T *path, struct stat64 *buf);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgL stat64() function, like the Istat64() function, gets status information about a specified file and places it
in the area of memory pointed to by buf. The difference is that the QIgL stat64() function takes a pointer to a
Qlg_Path_ Name T structure, while Istat64() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
adiscussion of other parameters, authorities required, return values, and related information, see Istat64()--Get

File or Link Information (Large File Enabled) or Istat()--Get File or Link Information.

Parameters

path

(Input) A pointer to a Qlg_Path_Name T structure that contains a path name or a pointer to a path name
of the file. For more information on the Qlg_Path_Name_T structure, see Path name format.

Related Information

o Istatb4()--Get File or Link Information (large file enabled and using NL S-enabled path name)
« lstat()--Get File or Link Information (using NL S-enabled path name)

« QlgChmod()--Change File Authorizations (using NL S-enabled path name)

« QlgChown()--Change Owner and Group of File (using NL S-enabled path name)

o QlgCreat()--Create or Rewrite File (using NL S-enabled path name)

o QlgLink()--Create Link to File (using NL S-enabled path name)

o QlgMKkdir()--Make Directory (using NL S-enabled path name)

« QlgReadlink()--Read Vaue of Symbolic Link (using NL S-enabled path name)

o QlgStat()--Get File Information (using NL S-enabled path name)

o QlgSymlink()--Make Symbolic Link (using NL S-enabled path name)

o QlgUtime()--Set File Access and Modification Times (using NL S-enabled path name)
o QpOlUnlink()--Remove Link to File (using NL S-enabled path name)

Example
The following example provides status information for afile:

#define LARGE FILE API
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <stdio. h>
#include <fcntl. h>

#i ncl ude <uni std. h>

#i ncl ude <tinme. h>

#i ncl ude <QOl stdi.h>

mai n() {
struct stat64 info;
int file descriptor;
#define nypath fn "tenp.file"
#define nypath _In "tenp.link"
const char US const[3]= "US";
const char Language_const[4] ="ENU';
typedef struct pnstruct

Qg Path _Name T ql g_struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path nane or nust */
/* be a pointer to the path nane. */
b
struct pnstruct path_fn;
struct pnstruct path_In;

/***/

/* Initialize Qg Path_Nanme T parameters */
/**************-k**/
nmenset ((voi d*) &at h_fn, 0x00, sizeof(struct pnstruct));
path_fn.ql g _struct.CCSID = 37;
mencpy(path_fn.glg struct. Country I D, US const, 2);
mencpy(path_fn. gl g struct. Language_I D, Language_const, 3);

path_fn.ql g_struct. Path_Type = QLG CHAR SI NGLE

path_fn.ql g_struct.Path_Length = sizeof (nypath _fn)-1

path_fn.ql g_struct.Path_Nane Delimter[0] ="'/";
mencpy(path_fn.pn, mypath_fn, sizeof (mypath_fn)-);

menset ((voi d*) &at h_I n, 0x00, sizeof(struct pnstruct));
path_In.qglg_struct.CCSID = 37;
mencpy(path_In. gl g _struct. Country_I D, US const, 2);
mencpy(path_I n. gl g_struct. Language_I D, Language_const, 3);
path_I n.ql g_struct. Path_Type = QLG CHAR SI NGLE
path_In.ql g_struct.Path_Length = sizeof (nypath_In)-1
path_In.ql g_struct.Path_Nanme Delimter[0] ="/";
mencpy(path_I n. pn, nypath_I n, si zeof (mypath_In)-);

if ((file_descriptor = QgCreat64((Q g _Path_Name T *)&path_fn, S IWISR)) <
perror("Q gCreat64() error");

el se {
close(fil e_descriptor);
if (QgLink((Qg_Path_Nanme_T *)&path_fn

(Qg_Path_Name T *)&path_In) !'= 0)
perror("Q gLink() error");
el se {
if (QgLstat64((Q g_Path_Name T *)&path_In, & nfo) = 0)
perror("Q gLstat64() error");

el se {
puts("Q gLstat 64() returned:");
printf(" inode: %\ n", (int) info.st_ino);
printf(" dev id: %\ n", (int) info.st_dev);
printf(" node: %98x\ n", i nf o. st_node);
printf(" [links: %\ n", i nfo.st_nlink);
printf(" ui d: %\ n", (int) info.st_uid);
printf(" gi d: %\ n", (int) info.st_gid);
printf(" si ze: %1d\n", (long long) info.st_size);

}
Q gUnlink((Q g_Path_Nane_T *)&path_In);

Q@ guUnlink((Q g_Path_Nanme_T *)&path_fn);

}
Output:
Q gLstat() returned:
i node: 258
dev id: 1
node: 00008080
links: 2
ui d: 137
gid: 500
si ze: 18

Top | UNIX-Type APIs | APIs by category

QlgMkdir()--Make Directory (using NLS-enabled
path name)

Syntax

#i ncl ude <sys/stat.h>

int QgWdir(Q g Path _Name T *path, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgMkdir () function, like the mkdir () function, creates a new, empty directory whose nameis defined
by path. The difference isthat the QlgMkdir () function takes a pointer to aQlg_Path_Name T structure,
while mkdir () takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
mkdir()--Make Directory.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the directory to be created. For more information on the Qlg_Path_Name T structure, see
Path name format.

Related Information

mkdir()--Make Directory

QlgChmod()--Change File Authorizations (using NL S-enabled path name)
QlgStat()--Get File Information (using NL S-enabled path name)

QlgPathconf()--Get Configurable Path Name Variables (using NL S-enabled path name)

Example
The following example creates a new directory:

#i ncl ude <sys/stat. h>

#i ncl ude <uni std. h>
#i ncl ude <stdio. h>
mai n() {

#define nypath "new dir"
const char US const[3]=
const char Language _const[4] ="ENU';
const char nypath _DOT_DOT[3] o

t ypedef struct pnstruct

Qg _Path Name T gl g struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path nanme or this nmust */
/* be a pointer to the path nane. */
1
struct pnstruct path;
struct pnstruct path_DOT_DOT;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path. ql g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path. gl g struct.Path _Length = sizeof (mypat h) 1;

path. gl g_struct.Path Nane Delinmter[0] ="'/";

mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;

menset ((voi d*) &at h_DOT_DOT, 0x00, sizeof (struct pnstruct));
pat h_DOT_DOT. gl g_struct.CCSID = 37;

mencpy(pa h_DOT_DOT. gl g_struct. Country | D, US const, 2);
mencpy(pat h_DOT_DOT. gl g_struct. Language | D, Language_const, 3);
pat h_DOT_DOT. gl g_struct. Path_Type = QLG CHAR SI NGLE;

pat h_DOT_DOT. ql g_struct.Path_Length = sizeof (nypath_ DOT ~ DOT) - 1;
pat h_DOT_DOT. gl g_struct. Pat h_Nane Dellmter[O] ="'/

mencpy(pat h_DOT_DOT. pn, nypat h_DOT_DOT, si zeof (nmypat h_ DOT ~DOn) -1);

if (QgMkdir((Q g Path Nane T *)&path,
S IRWKU S I RGRP| S_ | XGRP) = 0)

perror("Q gMkdir() error");

else if (QgChdir((Qg _Path Name T *)&path) != 0)
perror("first QgChdir() error");

else if (QgChdir((Qg _Path _Nanme T *)&path _DOT_DOT) != 0)
perror("second QgChdir() error");

else if (QgRmir((Q g _Path Name T *)&path) != 0)
perror("QgRndir() error");

el se
put s("success!");

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgMkfifo()--Make FIFO Special File (using
NLS-enabled path name)

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <d g. h>

int QgWfifo(const Qg Path Name T *path,
node_t node);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgMkfifo() function, like the mkfifo() function, creates a new FIFO special file whose nameis
defined by path. The difference is that the QlgM kfifo() function takes a pointer to aQlg_Path Name T
structure, while mkfifo() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for adiscussion of other parameters, authorities required, return values, and related information, see
mkfifo()--Make FIFO Special File.

Parameters
path
(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path

name of the FIFO to be created. For more information on the Qlg_Path Name_T structure, see Path
name format.

Related Information

« mkfifo()--Make FIFO Special File
o QlgChmod()--Change File Authorizations (using NL S-enabled path name)

o QlgStat()--Get File Information (using NL S-enabled path name)

Example
The following example creates a new FIFO:

#i ncl ude <sys/stat. h>
#i ncl ude <stdi o. h>

#i ncl ude <string. h>
#i ncl ude <Q g. h>

void nain()
typedef struct pnstruct

Qg Path Name T gl g struct;
char[100] pn; [/* This size nust be >= the path */
/* name length or a pointer to */
/* the path nane. */
1

struct pnstruct path;

char *mypath = "/ newFl FO';

/**/

/* Initialize Qg Path Nane T structure. */
/**/
menset ((voi d*) path nane, 0x00, sizeof (struct pnstruct));

pat h. gl g_struct. CCSID = 37;

mencpy(path. gl g _struct. Country ID, "US", 2);

mencpy(path. ql g _struct. Language I D, "ENU', 3);

pat h. gl g_struct.Path_Type = QG CHAR SI NGLE;

pat h. gl g_struct.Path_Length = strl en(nypat h) ;

pat h. gl g_struct.Path Nane Delimter ="'/";

nmencpy(path. pn, nypath, strlen(nypath));

if (QgWkfifo((Q g Path Name T *)path nane,
SIRV\XU|SIRV\XO) = 0)
perror("Q gWfifo() error");
el se
put s("success!");

return;

}

Top | UNIX-Type APIs| APIs by category

QlgOpen()--Open a File (using NLS-enabled
path name)

Syntax

#i nclude <fcntl. h>
#i ncl ude <stdi o. h>
#i ncl ude <QO0Il stdi. h>

int QgOpen(Q g _Path Nane T *Pat h_Nane,
int oflag, . . .);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes for open() API.

The QlgOpen() function, like the open() function, opens afile or creates a new, empty file whose nameis
defined by path and returns anumber called afile descriptor. The difference is that the QlgOpen()
function takes a pointer to aQlg_Path Name T structure, while open() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for adiscussion of other parameters, authorities required, usage notes, return values, and related
information, see open()--Open aFile.

Parameters
path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be opened. For more information on the Qlg_Path_Name T structure, see Path

name format.

Related Information

open()--Open aFile

o QlgCreat()--Create or Rewrite File (using NL S-enabled path name)

QlgOpen64()--Open File (large file enabled and using NL S-enabled path name)

QlgStat()>--Get File Information (using NL S-enabled path name)

Example

The following example creates and opens an output file for exclusive access. This program was stored in a
source file with CCSID 37, so the constant string "newfile" will be compiled in CCSID 37. Therefore, the
language and country or region specified are United States English, and the CCSID specified is 37.

#i ncl ude <fcntl. h>
#i ncl ude <stdio. h>
#i ncl ude <QOl stdi. h>

mai n()
int fildes;

const char US const[3]= "US";
const char Language_const[4] ="ENU';

struct pnstruct

Qg Path Name T glg struct;
char pn[7] ;

1
struct pnstruct pns;

struct pnstruct *pns_ptr = NULL,

char fn[]="newfile";

menset ((voi d*) &ns, 0x00, sizeof (struct pnstruct));
pns. gl g struct.CCSID = 37;

mencpy(pns. gl g_struct. Country | D, US const, 2);
mencpy(pns. gl g_struct. Language_| D, Language_const, 3);;
pns. gl g struct.Path_Type = O;

pns. gl g struct.Path_Length = sizeof(fn) - 1;

pns. gl g struct.Path Nanme Delimter[0] = "'/";
mencpy(pns. pn, fn, sizeof (fn)-1);

pns_ptr = &pns;

if(fildes = QgOpen((Q g Path Nanme T *)pns_ptr,
O WRONLY| O _CREAT| O EXCL, S IRWKU)) == -1)
{

}

perror("Q gOpen() error");

Top | UNIX-Type APIs| APIs by category

QlgOpen64()--Open File (large file enabled and
using NLS-enabled path name)

Syntax

#i nclude <fcntl. h>

int QgQOpen64(Q g _Path Nanme T *path, int oflag, . . .);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgOpen64() function, like the open64() and open() functions, opens afile and returns a number
called afile descriptor. QlgOpen64() differs from open64() in that the open64() function takes a pointer to
aQlg_Path Name T structure, while open64() takes a pointer to a character string. QlgOpen64() differs
from open() in that it automatically opens afile with the O_LARGEFILE flag set.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
open()--Open a File or QlgOpen64()--Open File (Large File Enabled).

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be opened. For more information on the Qlg_Path_Name_T structure, see Path

name format.
Related Information
» open()--Open aFile
o QlgCreat()--Create or Rewrite File (using NL S-enabled path name)

o QlgStat()--Get File Information (using NL S-enabled path name)

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgOpendir()--Open Directory (using NLS-enabled
path name)

Syntax

#i ncl ude <sys/types. h>
#i nclude <dirent. h>

DR *Q gOpendi r (Q g_Pat h_Name_T *di r nane) ;
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgOpendir () function, like the opendir () function, opens adirectory so it can be read. The differenceis
that the QlgOpendir () function takes a pointer to aQlg_Path Name T structure, while the opendir () function
takes a pointer to a character string. The QlgOpendir () function opens a directory so it can be read with the
QlgReaddir () function.

Names returned on callsto QlgReaddir () are returned in the coded character set identifier (CCSID) specified at
the time the directory is opened. QlgOpendir () allows the CCSID to be specified in the Qlg_Path_Name T
structure. opendir () uses the CCSID that isin effect for the current job at the time the opendir () function is
called. See opendir()--Open Directory for more on the job CCSID.

Limited information on the dirname parameter is provided here. For more information on the dirname parameter
and for adiscussion of authorities required, return values, and related information, see opendir()--Open Directory.

Parameters

dirname

(Input) A pointer to a Qlg_Path_Name T structure that contains a path name or a pointer to a path name
of the directory to be opened. For more information on the Qlg_Path_Name T structure, see Path name

format.
Related Information
« opendir()--Open Directory
« QlgReaddir()--Read Directory Entry (using NL S-enabled path name)
o QlgSpawn()--Spawn Process (using NL S-enabled path name)

o QlgSpawnp()--Spawn Process with Path (using NL S-enabled fileh name)

Example

The following example opens a directory:

#i
#i
#i
#i
#i
#i

ncl ude <sys/types. h>
ncl ude <dirent. h>
ncl ude <sys/stat. h>
ncl ude <sys/types. h>
ncl ude <errno. h>

ncl ude <stdi o. h>

void traverse(char *fn, int indent) {

DR *dir;
int count;
struct stat info;

typedef struct ny_dirent_Ig

struct dirent_Ig *entry;
char d_I g _nane[1];

}

struct ny_dirent_Ig | g_struct;
struct dirent_lg *entry;

const char US const[3]= "US";
const char Language_const[4] ="ENU';
typedef struct pnstruct

Q@ g _Path_Nane_T gl g_struct;

char pn[1025]; /* This array size nmust be >= */
/* the length of the path name or */
/* this nust be a pointer to the */
/* pat h nane. */

s

struct pnstruct path;
struct pnstruct path_to_stat;
char *tenp_char _pat h[1025];

/***/

/* Initialize Qg Path Name T structure, since the path name */
/* was not in the Qg Path Nane T format when this function */
/* was cal l ed. * [

/***/

menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));
pat h. gl g_struct. CCSID = 37;

mencpy(pat h. gl g_struct. Country_I D, US_const, 2);
mencpy(pat h. gl g_struct. Language_I D, Language_const, 3);
pat h. gl g _struct.Path _Type = Q.G CHAR SI NGLE

pat h. ql g_struct.Path_Name_Deliniter[0] ="'/’

pat h. ql g_struct.Path_Length = strlen(fn);
mencpy(pat h. pn, fn,strlen(fn));

for (count=0; count < indent; count++) printf(" ");
printf("%\n", fn);

if ((dir = QgOpendir((Q g Path Nane T *)&path)) == NULL)

perror("Q gOpendir() error");

el se

{

path_to_stat = path;

whi |
{

i f
{

}

e ((entry = QgReaddir(dir)) !'= NULL)

(entry->d_lg_nane[0] I=".")

/* Concat the conponents of the path nanme into a */
/* Q@ g_Path_Nanme_ T structure that is used on the */

/* next function that is called. Cear and */
/* use a tenporary buffer to ensure that only */
/* characters returned by Q gReaddir() are */
/* included in the concatenated path nane */
/* structure. */

strcpy(path_to_stat. pn, path. pn);
strcat(path_to_stat.pn, "/");
nenset (t enp_char _path, 0x00, 1025);
nmencpy(tenp_char _pat h,
entry->d_Il g_nanme, entry->d_| g_ql g. Pat h_Lengt h)

strcat(path_to_stat.pn, (char *)&t enp_char_path);

/* Calculate the size of the path, including the */
/* length of the path specified on the open, the */
/* length of the name returned by Q gReaddir(), */
/* and the delimter. */

path_to_stat.qglg_struct.Path_Length =

(path.qgl g_struct.Path_Length +
entry->d Ilg glg.Path Length + 1);

/* Call QgStat() to deternine if the path nane */

/* is a directory. */
if (QgStat((Q g Path _Name T *)&path_to_stat,
& nfo) = 0)

fprintf(stderr, "QgStat() error on %: 9%\n",
path_to_stat. pn,
strerror(errno));
}
else if (S_ISD R(info.st_node))

/* this a directory so loop to open its objects.*/
traverse(path_to_stat.pn, indent+1);

else printf(" %\n",path_to_stat.pn);

closedir(dir);

}
}

mai n() {

puts("Directory structure:");
traverse("/etc", 0);

}
Output:

Directory structure:
letc
[etc/sanpl es
[etc/ sanpl es/ | BM
letc/1BM

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgPathconf()--Get Configurable Path Name
Variables (using NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

| ong Q gPathconf(Q g Path_Name T *path, int nane);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgPathconf() function, like the pathconf() function, lets an application determine the value of a
configuration variable (name) associated with a particular file or directory (path). The difference isthat the
QlgPathconf() function takes a pointer to aQlg_Path_Name T structure, while pathconf() takes a pointer
to acharacter string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
pathconf()--Get Configurable Path Name Variables.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name for which the value of the configuration variable is requested. For more information on the
Qlg_Path_Name T structure, see Path name format.

Related Information

« 2fpathconf()--Get Confiqurable Path Name Variables by Descriptor %%

« pathconf()--Get Configurable Path Name Variables

« QlgChown()--Change Owner and Group of File (using NL S-enabled path name)

Example
The following exampl e determines the maximum number of bytesin afile name:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude <errno. h>

mai n() {
| ong result;

#define nypath "/"
const char US const[3]= "US";
const char Language _const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path Name T gl g struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path name or nust */
/* be a pointer to the path nane. */
1

struct pnstruct path;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path.ql g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path. gl g _struct.Path _Length = si zeof (mypat h) 1;

path. gl g_struct.Path Nane Delinmter[0] ="'/";

mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;

errno = O;
put s("exam ning NAME MAX |imt for root filesystent);
if ((result = Q@ gPathconf((Q g Path Nane T *) &pat h,
_PC_NAME_MAX)) == -1)
if (errno == 0)
puts("There is no limt to NAVE MAX. ");
el se perror("Q gPat hconf() error");
el se
printf("NAVE MAX is % d\n", result);

Output:

exam ning NAME_MAX linmit for root filesystem
NAME_MAX is 255

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgProcessSubtree()--Process a Path Name
(using NLS-enabled path name)

Syntax

#i ncl ude <QO0Il stdi. h>

int Q gProcessSubtree (

Qg Path Narme T *Pat h_Nane,

ui nt Subtree_| evel,

0Ol _Objtypes_List _t *Qbjtypes_array_ptr,

ui nt Local _renote_obj,

@Ol _IN EXclusion_ List_ t *I N EXclusion ptr,

ui nt Err _recovery_action,

0Ol User_ Function_t *User Function_ptr,

voi d *Function CtIBlk _ptr, ...);

Service Program Name: QPOLLIB2
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

For adescription of this function and information on its parameters, authorities required, return values,
error conditions, error messages, usage notes, and related information, see QpOl ProcessSubtree()--Process a

Path Name.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgReaddir()--Read Directory Entry (using
NLS-enabled path name)

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

struct dirent Ig *QgReaddir(DIR *dirp);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The QlgReaddir () function, like the readdir () function, returns a pointer to a structure describing the next
directory entry in the directory stream associated with dirp. The differenceis that the QlgReaddir ()
function takes a pointer to adirent_Ig structure, while readdir () takes a pointer to a dirent structure.

Limited information on the dirp parameter is provided here. For more information on the dirp parameter
and for adiscussion of authorities required, return values, and related information, see readdir()--Read
Directory Entry.

Parameters

dirp
(Input) A pointer to DIR that refersto the open directory stream to be read. This pointer is returned
by QIgOpendir ().

A dirent_|g structure has the following contents:

char d_reserved1[16] Reserved.

unsigned int d fileno_gen id The generation ID associated with the file ID.

ino_t d fileno Thefile ID of thefile. This number uniquely
identifies the object within afile system.

unsigned int d _reclen The length of the directory entry in bytes.

int d reserved3 Reserved.

char d_reserved4[6] Reserved.

char d_reserveds[2] Reserved.

Qlg_Path Name T d_Ig_name A Qlg_Path_Name T that givesthe name of a
filein the directory. The path nameis not
null-terminated within the structure. The
structure also provides Nationa Language
Support information, which includes ccsid,
country_id, and language _id. This structure has
amaximum length of
{ _QPOL_DIR NAME_LG} bytes. For more
information on the Qlg_Path_Name T structure,
see Path name format.

Related Information

« readdir()--Read Directory Entry
» QlgOpendir()--Open Directory (using NL S-enabled path name)

« QlgPathconf()--Get Configurable Path Name Variables (using NL S-enabled path name)

Example

The following exampl e reads the contents of aroot directory:

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

#i ncl ude <errno. h>

#i ncl ude <stdio. h>

mai n() {
typedef struct ny_dirent_Ig

struct dirent_Ig *entry;
char d_ |l g _nane[1];

}

struct ny_dirent_Ilg |l g_struct;
struct dirent_|lg *entry;

#define nypath "/"
const char US const[3]= "US";
const char Language_const[4] ="ENU';
typedef struct pnstruct

Qg Path_Nane_T ql g_struct;

char pn[100]; /* This array size must be >= */
/* the length of the path nane */
/* or this nust be a pointer */
/* to the path nane. */

struct pnstruct path;
D R *dir;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path. gl g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path. gl g_struct.Path _Length = sizeof (mypat h) 1;

path. gl g_struct.Path Nane Delimter[0] ="/";

mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;

if ((dir = QgOpendir((Q g Path Name T *)&path)) == NULL)
perror("Q gOpendir() error");
el se {
puts("contents of root:");
while ((entry = QgReaddir(dir)) != NULL)
printf(" %\n", entry->d_|g nane);
closedir(dir);

}

Output:

contents of root:

QSYS. LI B
QLS
QpensSys
QOPT

hone

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgReaddir_r()--Read Directory Entry (using
NLS-enabled path name)

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

int QgReaddir r(DIR *dirp, struct dirent _|g *entry,
struct dirent _Ig **result);

Service Program Name: QPOLLIBTS
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgReaddir_r() function, like the readdir_r() function, initializes a structure that is referenced by
entry to represent the next directory entry in the directory stream that is associated with dirp. The difference
isthat the QIgReaddir_r() dirp parameter pointsto adirent_Ig structure, while the readdir_r() dirp
parameter pointsto a dirent structure.

The QlgReaddir_r functions stores a pointer to the entry structure at the location referenced by result.

Limited information on the dirp parameter, the entry parameter, and the result parameter is provided here.
For more information on these parameters and for a discussion of authorities required, return values, and
related information, see readdir_r()--Read Directory Entry.

Parameters

dirp
(Input) A pointer to a DIR that refers to the open directory stream to be read. This pointer is
returned by QlgOpendir ().

entry
(Output) A pointer to adirent_|lg structure in which the directory entry isto be placed.

result

(Output) A pointer to apointer to adirent_lg structure. Upon successfully reading a directory entry,
thisdirent_lg pointer is set to the same value as entry. Upon reaching the end of the directory
stream, this pointer isset to NULL.

A dirent_lg structure has the following contents:

char d_reserved1[16] Reserved.
unsigned int d fileno_gen id The generation |D associated with the file ID.
ino_t d fileno ThefileID of thefile. This number uniquely

identifies the object within afile system.

unsigned int d_reclen

int d_reserved3
char d _reserved4[6]
char d_reserveds[2]

Qlg_Path_ Name T d_Ig name

Related Information

« readdir()--Read Directory Entry

The length of the directory entry in bytes.
Reserved.

Reserved.

Reserved.

A Qlg_Path_Name T structure that givesthe
name of afilein the directory. The path nameis
not null-terminated within the structure. The
structure also provides National Language
Support information, which includes ccsid,
country_id, and language_id. This structure has
amaximum length of

{_QPOL_DIR_NAME_L G} bytes. For more
information on the Qlg_Path_Name_T structure,
see Path name format.

o QlgOpendir()--Open Directory (using NL S-enabled path name)

« QlgPathconf()--Get Configurable Path Name Variables (using NL S-enabled path name)

Example

The following exampl e reads the contents of aroot directory:

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

#i ncl ude <errno. h>

#i ncl ude <stdio. h>

mai n() {
int return_code;
DIR *dir;
struct dirent I g entry;
struct dirent _|g *result;

typedef struct ny _dirent Ig

struct dirent _Ig *entry;
char d | g_nane[1];

struct ny_dirent_Ig | g_struct;

#define nypath "/"
const char US const[3]= "US";

const char Language_const[4] ="ENU';

t ypedef struct pnstruct

Qg _Path Narme T gl g struct;
char pn[100]; /* This array size nust be >= */
/* the length of the path nane or this */
/* must be a pointer to the path nanme. */
1

struct pnstruct path;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path. gl g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path.ql g struct.Path _Length = sizeof (mypat h) 1;

path. gl g_struct.Path Nanme Delimter[0] = "'/"'
mencpy(pat h. pn, mypat h, si zeof (nypath) - 1) ;

if ((dir = QgOpendir((Q g Path Name T *)&path)) == NULL)
perror("Q gOpendir() error");
el se {
puts("contents of root:");
for (return_code = QgReaddir _r(dir, &entry, &result);
result !'= NULL && return_code == 0;
return_code = QgReaddir _r(dir, &entry, &result))
printf(" %\n", entry.d | g_nane);
if (return_code !'= 0)
perror("Q gReaddir _r() error");
closedir(dir);
}
}

Output:

contents of root:

QSYS. LI B
QLS
QpensSys
QOPT

hone

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgReadlink()--Read Value of Symbolic Link
(using NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

int QgReadlink(Q g_Path_Nanme_T *path, Q g_Path_Name_T *buf,
size_t bufsiz);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgReadlink() function, like the readlink() function, places the contents of the symboliclink path in the
buffer buf. The difference isthat the QIgReadlink() function uses pointersto Qlg _Path Name T structures,
while readlink() uses pointers to character strings.

Limited information on the path parameter, the buf parameter, and the size parameter is provided here. For more
information on these parameters and for a discussion authorities required, return values, and related information,
see readlink()--Read Value of Symbolic Link.

Parameters

path

(Input) A pointer to a Qlg_Path_Name T structure that contains a path name or a pointer to a path name
of the symbolic link. For more information on the Qlg_Path_Name_T structure, see Path name format.

buf

(Output) A pointer to the area in which the contents of the link should be stored. For more information on
the Qlg_Path_Name T structure, see Path name format.

bufsiz
(Input) The size of buf in bytes.

Related Information

« readlink()--Read Value of Symbolic Link
o QlgL stat()--Get File or Link Information (using NL S-enabled path name)
o QlgStat()--Get File Information (using NL S-enabled path name)

o QlgSymlink()--Make Symbolic Link (using NL S-enabled path name)

o OQpOlUnlink()--Remove Link to File

Example
The following example uses QlgReadlink():

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

#i ncl ude <stdio. h>

#i ncl ude <QOl stdi.h>

mai n() {
int file_descriptor;

#define nmypath_fn "readlink.file"
#define mypat h_sl "readlink.synlink"

const char US const[3]= "US";
const char Language_const[4] ="ENU';
t ypedef struct pnstruct

Q g _Path_Nane_T ql g_struct;

char pn[100]; /* This array size nmust be >= the length */
/* of the path nanme or this must be a */
/* pointer to the path nane. */

b

struct pnstruct path_fn;
struct pnstruct path_sl;
struct pnstruct path_buf;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) path nane_fn, 0x00, sizeof(struct pnstruct));
path_fn.qlg_struct.CCSID = 37;
mencpy(path_fn.glg struct. Country I D, US const, 2);
mencpy(path_fn. gl g struct. Language_ | D, Language_const, 3);
path_fn. gl g_struct. Path_Type = QG _CHAR S| NGLE;

path _fn.ql g _struct.Path_Length = sizeof (nypath_ fn) 1;

path _fn.ql g struct.Path Name Delimter[0] = "/"'

nemcpy(pat h_fn. pn, nypat h_fn, si zeof (nypath_fn) - 1)

nmenmset ((voi d*) path nane_sl, 0x00, sizeof(struct pnstruct));
path_sl.qlg_struct.CCSID = 37;

mencpy(pat h_sl.qgl g_struct. Country_I D, US_const, 2);
mencpy(pat h_sl. gl g_struct. Language_I D, Language_const, 3);
pat h_sl.qgl g_struct. Path_Type = QG _CHAR S| NGLE;
path_sl.qgl g _struct.Path_Length = sizeof (nypath_ sI) 1;
path_sl.qlg_struct.Path_Name_Deliniter[0] ="'/"'
nemcpy(pat h_sl . pn, nypat h_sl, si zeof (nypath_sl) - 1)

if ((file_descriptor = QgCreat((Qg_Path_Nanme_T *)path nane_fn, S |IWSR))
< 0)
perror("QgCreat() error");
el se {
close(fil e_descriptor);
if (QgSymink((Q g_Path_Nane_T *)path name_fn,
(Qg_Path_Nane_ T *)path name_sl) !'= 0)
perror("Q gSymink() error");
el se {
if (QgReadlink((Q g_Path_Name_T *)path name_sl,
(Q g_Path_Nane_T *)pat h name_buf,
si zeof (path_buf)) < 0)
perror("Q gReadlink() error");
else printf("Q gReadlink() returned "%' for '%'\n",
pat h name_buf. pn,
pat h nanme_sl . pn);

QgUnlink((Q g_Path_Nane_T *)path nanme_sl);

Q gunlink((Q g_Path_Nane_T *)path nane_fn);

}
}

Output:

Q gReadl ink() returned 'readlink.file" for 'readlink.symink'

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgRenameKeep()--Rename File or Directory,
Keep "new" If It Exists (using NLS-enabled
path name)

Syntax

#i ncl ude <Q@0OI stdi. h>

int Q gRenanmeKeep(Q g_Path_Nane_ T *old, Qg _Path_Nane T *new);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgRenameK eep() function, like the QpOIRenameK eep() function, renames afile or a directory
specified by old to the name given by new. The differenceis that the QlgRenameK eep() function takes
pointersto Qlg_Path Name T structures, while QpOIRenameK eep() takes pointers to character strings.

Limited information on the old and new parametersis provided here. For more information on these
parameters and for a discussion of the authorities required, return values, and related information, see
QpOlRenameK eep()--Rename File or Directory, Keep "new" If It EXists.

Parameters

old

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to the
path name of the file to be renamed. For more information on the Qlg_Path_Name_T structure, see
Path name format.

new

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to the
path name of the new name for the file. For more information on the Qlg_Path_Name_T structure,
see Path name format.

Related Information

« QpOlRenameK eep()--Rename File or Directory, Keep "new" If It Exists

« QlgPathconf()--Get Configurable Path Name Variables (using NL S-enabled path name)

« QlgRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists (using NL S-enabled path
name)

Example

When you pass two file names to this example, it changes the first file name to the second file name using
QlgRenameK eep().

#i ncl ude <QOIl stdi. h>
#i ncl ude <stdio. h>

int main(int argc, char **argv)

{
if (argc !'=3)

printf("Usage: % old_fn new fn\n", argv[0]);
perror ("Could not rename file");

el se

{
const char US const[3]= "US"
const char Language_const[4] ="ENU';
typedef struct pnstruct

Q g_Path_Nanme_T gl g_struct;
[*** EXTRA STORAGE MAY BE NEEDED ***/
char pn[1025]; /* This size nust be >= the path */
/* name length or a pointer to */
/* the path name. */
1
struct pnstruct path_ol d;
struct pnstruct path_new,

struct pnstruct *path_old _ptr;
struct pnstruct *path_new ptr;

menset ((voi d*) &at h_ol d, 0x00, sizeof (struct pnstruct));
path_old_ptr = &path_ol d;

path_ol d. gl g_struct.CCSID = 37,
mencpy(path_ol d. gl g_struct. Country_I D, US const, 2);
mencpy(path_ol d. gl g_struct. Language_I D, Language_const, 3); ;
path_ol d. gl g_struct. Path_Type = 0;

path_ol d. gl g_struct.Path_Length = strlen(argv[1]);

path_ol d. gl g_struct.Path_Nane_Delinmter[0] ="/";
mencpy(pat h_ol d. pn, argv[1], si zeof (argv[1])-1);

menset ((voi d*) &at h_new, 0x00, sizeof(struct pnstruct));
pat h_new ptr = &path_new,

pat h_new. gl g_struct. CCSID = 37;
mencpy(pat h_new. gl g_struct. Country_I D, US_const, 2);

}

mencpy(path_new. ql g_struct. Language | D, Language_const, 3);;
pat h_new. gl g_struct. Path_Type = 0;

path_new. gl g_struct.Path Length = strlen(ar gv[2])
path_new. gl g_struct.Path Nane Delimter[0] ="'/";
mencpy(pat h_new. pn, argv[2], si zeof (argv[2])-1);

if (Q gRenaneKeep((Q g Path Name T *)path _old ptr,

(Q g _Path Nane T *)path_new ptr) !'= 0)
{perror ("Could not renane file."); }
el se {perror ("File renamed."); }

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgRenameUnlink()--Rename File or Directory,
Unlink "new" If It Exists (using NLS-enabled
path name)

Syntax

#i ncl ude <Q@0OI stdi. h>

int QgRenanmeUnlink(Q g _Path_Narme T *old, Qg_Path_Nane T *new);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgRenameUnlink() function, like the QpOIRenameUnlink() function, renames afile or adirectory
specified by old to the name given by new. The differenceis that the QlgRenameUnlink() function takes a
pointer to aQlg_Path Name_T structure, while QpOIRenameUnlink() takes a pointer to a character string.

Limited information on the old and old parameters is provided here. For more information on these
parameters and for a discussion of the authorities required, return values, and related information, see
QpOIRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists.

Parameters

old

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be renamed. For more information on the Qlg_Path Name_T structure, see Path

name format.

new

(Input) A pointer to aQlg_Path_Name T structure that contains a path name or a pointer to a path
name of the new name of the file. For more information on the Qlg_Path_Name T structure, Path

name format.

Related Information

o QpOIRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists

« QlgPathconf()--Get Configurable Path Name Variables (using NL S-enabled path name)

« QlgRenameK eep()--Rename File or Directory, Keep "new" If It Exists (using NLS-enabled path

name)

Example

When you pass two file names to this example, it tries to change the file name from the first name to the
second using QlgRenameUnlink().

#i ncl ude <Ol stdi. h>
#i ncl ude <stdi o. h>

int main(int argc, char **argv)

{
if (argc '=3)

printf("Usage: % old_fn new fn\n", argv[0]);
perror ("Could not unlink the file");

}

el se

{
const char US const[3]= "US"
const char Language_const[4] ="ENU';
typedef struct pnstruct

Q g_Path_Nanme_T gl g_struct;
[*** EXTRA STORAGE MAY BE NEEDED ***/

char pn[1025]; [* This size nust be >= the path */
/* nane length or a pointer to */
/* the path name. */

}
struct pnstruct path_ol d;
struct pnstruct path_new,

struct pnstruct *path_old_ptr;
struct pnstruct *path_new ptr;

menset ((voi d*) &at h_ol d, 0x00, sizeof (struct pnstruct));
path_ol d_ptr = &path_ol d;

path_ol d. gl g_struct.CCSID = 37,
mencpy(path_ol d. gl g_struct. Country_I D, US _const, 2);
mencpy(path_ol d. gl g_struct. Language_I D, Language_const, 3); ;
path_ol d. gl g_struct. Path_Type = 0;

path_ol d. gl g_struct.Path_Length = strlen(argv[1]);

path_ol d. gl g_struct.Path_Nane_Delimter[0] ="/";
mencpy(pat h_ol d. pn, argv[1], si zeof (argv[1]));

menset ((voi d*) &at h_new, 0x00, sizeof(struct pnstruct));
pat h_new ptr = &path_new,

pat h_new. gl g_struct.CCSID = 37,

mencpy(path_new. ql g_struct. Country | D, US const, 2);

mencpy(pat h_new. ql g_struct. Language | D, Language_const, 3);;
pat h_new. gl g_struct. Path_Type = 0;

path_new. gl g_struct.Path Length = strlen(argv[2]);
path_new. gl g_struct.Path Nane Delimter[0] ="'/";
mencpy(pat h_new. pn, argv|[2], si zeof (argv[2]));

if (QgRenaneUnlink((Q g Path Name T *)path _old ptr,

(Q g _Path Nane T *)path_new ptr) !'= 0)
{perror ("Could not unlink the file."); }
el se {perror ("File unlinked."); }

}

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgRmdir()--Remove Directory (using
NLS-enabled path name)

Syntax

#i ncl ude <uni std. h>

int QgRMir(Q g Path Nane T *path,);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QIlgRmdir () function, like the rmdir () function, removes a directory, path, provided that the directory is
empty; that is, the directory contains no entries other than "dot" (.) or "dot-dot" (..). The differenceisthat the
QlgRmdir () function takes a pointer to aQlg_Path_ Name_T structure, while rmdir () takes a pointer to a
character string.

Limited information on the path parameter is provided here. For more information on the path parameter and
for adiscussion of authorities required, return values, usage notes, and related information, see
rmdir()--Remove Directory.

Parameters

path

(Input) A pointer to aQlg_Path_Name T structure that contains a path name or a pointer to a path name
of the directory to be removed. For more information on the QIg_Path_Name T structure, see Path

name format.

Related Information

« rmdir()--Remove Directory
o QlgMkdir()--Make Directory (using NLS-enabled path name)

« QpOlUnlink()--Remove Link to File (using NL S-enabled path name)

Example
The following example removes a directory:

#i ncl ude <sys/stat. h>

#i ncl ude <uni std. h>
#i ncl ude <stdi o. h>

#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

#i ncl ude <QOIl stdi. h>

mai n() {

#define nypath_d "new. dir"
#define nypath f "new dir/new file"

const char US const[3]= "US";
const char Language_const[4] ="ENU';
t ypedef struct pnstruct

Qg Path Name T ql g_struct;
char pn[100]; /* This array size nmust be >= the */
/* length of the path nane or nust */
/* be a pointer to the path nane. */
1
struct pnstruct path_d,
struct pnstruct path_f;

int file_descriptor;

/***/

/* Initialize Qg _Path_Name_T paraneters */
/***/

menset ((voi d*) &at h_d, 0x00, sizeof(struct pnstruct));

path_d. gl g_struct. CCSID = 37;

mencpy(path_d. gl g _struct. Country I D, US const, 2);

mencpy(pat h_d. ql g_struct. Language_I D, Language_const, 3);

path_d. gl g struct.Path_Type = QLG CHAR S| NGLE;

path_d. gl g_struct.Path_Length = sizeof (nypath_d)-1;

path_d. gl g_struct.Path_Name_Delinmter[0] ="/";

nmencpy(pat h_d. pn, nypat h_d, si zeof (nypath_d)-1);

nmenset ((voi d*) &at h_f, 0x00, sizeof(struct pnstruct));
path_f.qgl g_struct.CCSID = 37,

mencpy(path_f.qgl g_struct. Country | D, US const, 2);
mencpy(path_f.ql g _struct. Language_I D, Language_const, 3);
path_f.qgl g_struct.Path_Type = Q.G CHAR SI NGLE;

path_f.qgl g_struct.Path_Length = sizeof (nypath_f)-1;
path_d. gl g_struct.Path_Nanme_Deliniter[0] ="/";
mencpy(path_f. pn, nypath_f, si zeof (nmypat h_f)-1);

if (Qgwkdir((Qg_Path_Nane_ T *)&path_d,S | RAKU| S_| RGRP| S_I XCRP) !
perror("Q ghkdir() error");
else if ((file_descriptor = QgCreat((Q g_Path_Nane T *)&path_f,S | WISR))

perror("QgCreat() error");
el se {
close(file_descriptor);
QgUnlink((Qg Path Nane T *)&path f);

if (QgRir((Q g_Path_Nane T *)&path_d) != 0)
perror("QgRmdir() error");

el se
puts("renoved!");

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgSaveStgFree()--Save Storage Free (using
NLS-enabled path name)

Syntax

#i ncl ude <QO0Il stdi. h>
int Q gSaveSt gFree(

Qg Path Name T *Pat h_Nane,
QO0l _StgFree Function_t *UserFunction_ptr,
voi d *Function CtIBIk ptr);

Service Program Name: QPOLLIB3
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, see Qp0l SaveStgFree()--Save

Storage Free.

API introduced: V5R1

Top | Backup and Recovery APIs| UNIX-Type APIs | APIs by category

QlgSetAttr()--Set Attributes (using NLS-enabled
path name)

Syntax

#i ncl ude <QO0Il stdi. h>
int QgSetAttr

(Qg_Path Name T *Pat h_Nane,
char *Buf fer_ptr,
ui nt Buf fer_Size,
ui nt Fol I ow Sym nk, ...);

Service Program Name: QPOLLIB3
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

For adescription of this function and information on its parameters, authorities required, return values,
error conditions, error messages, usage notes, and related information, see QpOI SetAttr()--Set Attributes.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgStat()--Get File Information (using
NLS-enabled path name)

Syntax

#i ncl ude <sys/stat.h>

int QgStat(Q g Path Nane T *path, struct stat *buf);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgStat() function, like the stat() function, gets status information about a specified file and places it
in the area of memory pointed to by the buf argument. The difference isthat the QlgStat() function takes a
pointer to aQlg_Path Name T structure, while stat() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
stat()--Get File Information.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file from which information is required. For more information on the
Qlg_Path_Name T structure, see Path name format.

Related Information

stat()--Get File Information

QlgStat64()--Get File Information (large file enabled and using NL S-enabled path name)
QlgChmod()--Change File Authorizations (using NL S-enabled path name)

o QlgChown()--Change Owner and Group of File (using NL S-enabled path name)

o QlgCreat()--Create or Rewrite File (using NL S-enabled path name)

QlgLink()--Create Link to File (using NL S-enabled path name)

QlgL stat()--Get File or Link Information (using NL S-enabled path name)

o QlgMkdir()--Make Directory (using NL S-enabled path name)

QlgReadlink()--Read Value of Symbolic Link (using NL S-enabled path name)

o QlgSymlink()--Make Symbolic Link (using NL S-enabled path name)
o QlgUtime()--Set File Access and Maodification Times (using NL S-enabled path name)
o QpOlunlink()--Remove Link to File

Example

The following example gets status information about afile:

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdi o. h>

#i nclude <tine. h>

mai n() {
struct stat info;
#define nypath "/"
const char US const[3]=
const char Language _const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path Name T gl g struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path name or nust */
/* be a pointer to the path nane. */
1

struct pnstruct path;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &at h, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path. ql g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path. gl g _struct.Path _Length = sizeof (mypat h) 1;

path. gl g_struct.Path Nane Delinmiter[0] ="'/";

mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;

if (QgStat((Qg_Path Name T *)&path, & nfo) != 0)
perror("QgStat() error");

el se {
puts("QgStat() returned the foll owing informati on about root f/s:")
printf(" inode: %\ n" (int) info.st_ino);
printf(" dev id: %\ n" (int) info.st_dev);
printf(" node: 20 8x\ n", i nfo.st_node);
printf(" ||inks: %\ n", i nfo.st_nlink);
printf(" ui d: %\ n", (int) info.st _uid);
printf(" gi d: %\ n", (int) info.st _gid);
}

}

Output: note that the following information will vary from system to system.

QgStat ()
i node:

dev id:
node:
i nks:
ui d:
gi d:

returned the follow ng informati on about

0

1
010001ed
3

137

500

root f/s:

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgStat64()--Get File Information (large file
enabled and using NLS-enabled path name)

Syntax

#i ncl ude <sys/stat. h>

int QgStat64(Q g_Path Nane T *path, struct stat64 *buf);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

TheQlgStat64() function, like the stat64() function, gets status information about a specified file and placesiit
in the area of memory pointed to by the buf argument. The differenceis that the QlgStat64() function takes a
pointer to aQlg_Path Name T structure, while stat64() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and
for adiscussion of other parameters, authorities required, return values, and related information, see
stat64()--Get File Information (Large File Enabled).

Parameters

path

(Input) A pointer to aQlg_Path Name T structure that contains a path name or a pointer to a path name
of the file from which information is required. For more information on the Qlg_Path Name T
structure, see Path name format.

Related Information

o stat()--Get File Information

» sStat64()--Get File Information (Large File Enabled)

Example
The following example gets status information about afile:

#define _LARGE FI LE_API

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdio. h>

#i ncl ude <tinme. h>

mai n() {
struct stat64 info;
#defi ne nypath "/"
const char US const[3]= "US";
const char Language_const[4] ="ENU';
typedef struct pnstruct

Q g_Path_Nanme T ql g_struct;
char pn[100]; /* This array size nmust be >= the */
/* length of the path nane or this nust */
/* be a pointer to the path nane. */
b

struct pnstruct path;

/***/

/* Initialize Qg _Path Nanme_T paraneters */
/***/
nmenset ((voi d*) &at h, 0x00, sizeof (struct pnstruct));

path. gl g_struct.CCSID = 37,

mencpy(path. gl g _struct. Country | D, US const, 2);

mencpy(pat h. gl g_struct. Language_| D, Language_const, 3);

path. gl g _struct.Path_Type = QLG CHAR SI NGLE;

path. gl g_struct.Path_Length = sizeof (nypath)-1;

path.qgl g struct.Path Nanme Delimter[0] ="'/";

mencpy(pat h. pn, nypat h, si zeof (mypat h));

if (QgStat64((Q g Path Nane T *)&path, & nfo) !'= 0)
perror("Q gStat64() error");

el se {
puts("q gSt at64() returned the followi ng i nformati on about root f/s:");
printf(" inode: %\ n", (int) info.st_ino);
printf(" dev id: %\ n", (int) info.st_dev);
printf(" node: %98x\ n", i nfo. st_node);
printf(" [Iinks: %\ n", i nfo.st_nlink);
printf(" ui d: %\ n", (int) info.st_uid);
printf(" gi d: %\ n", (int) info.st_gid);
}

Output: note that the following information will vary from system to system.

QgStat64() returned the follow ng information about root f/s:
0

i node:
dev id: 1
node: 010001ed
i nks: 3
ui d: 137
gi d: 500

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgStatvfs()--Get File System Information
(using NLS-enabled path name)

Syntax

#i ncl ude <sys/statvfs. h>

int QgStatvfs(Q g Path Name T *path, struct statvfs *buf);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgStatvfs() function, like the statvfs() function, gets status information about the file system that
contains the file named by the path argument. The difference is that the QlgStatvfs() function takes a
pointer to aQlg_Path Name T structure, while statvfs() takes a pointer to a character string.

Limited information on the path parameter is provided here. For moreinformation on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
statvis()--Get File System Information.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file from which file system information is required. For more information on the
Qlg_Path_Name T structure, see Path name format.

Related Information

statvfs()--Get File System Information

QlgStatvfst4()--Get File System Information (64-Bit Enabled and using NL S-enabled path name)
QlgChmod()--Change File Authorizations (using NL S-enabled path name)

o QlgChown()--Change Owner and Group of File (using NL S-enabled path name)

o QlgCreat()--Create or Rewrite File (using NL S-enabled path name)

QlgLink()--Create Link to File (using NL S-enabled path name)

QlgUtime()--Set File Access and Modification Times (using NL S-enabled path name)

o QpOlUnlink()--Remove Link to File

Example
The following exampl e gets status information about afile system:

#i ncl ude <sys/statvfs. h>
#i ncl ude <stdi o. h>
#i ncl ude <sys/types. h>

mai n() {

struct statvfs info;

#define nypath "/"

const char US const[3]=

const char Language _const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path Narme T gl g struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path name or nust */
/* be a pointer to the path nane. */
1

struct pnstruct path;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) path nanme, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path. ql g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path. gl g _struct.Path _Length = si zeof (mypat h) 1;

path. gl g_struct.Path Nane Delinmter[0] ="'/";

mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;

if (-1 == QgStatvfs((Q g _Path Nane T *)path nane, & nfo))
perror("QgStatvfs() error");
el se {
puts("Q gStatvfs() returned the follow ng information");
put s("about the Root ('/') file system");
printf(" f_bsize : %u\n", info.f_bsize);
printf(" f_blocks © %08X%08X\ n",
*((int *)& nfo.f_blocks[0]),
*((int *)& nfo.f_blocks[4]));
printf(" f _bfree © %08X%08X\ n",
*((int *)& nfo.f_bfree[0]),
*((int *)& nfo.f_bfree[4]));

printf(" f_pathmax : %\n"
printf(" f_basetype : %\n"

i nfo.f_pat hmax) ;
i nfo.f_basetype);

printf(" f _files %u\n", info.f _files);
printf(" f _ffree %u\n", info.f ffree);
printf(" f _fsid %u\n", info.f _fsid);
printf(" f_flag o X\n", info.f_flag);
printf(" f_nanmemax : %\n", info.f_ nanmenmax);
,
,

Output: The following information will vary from file system to file system.

QgStatvfs() returned the follow ng informtion
about the Root ('/') file system

f _bsize . 4096

f _bl ocks : 00000000002BF800
f_bfree : 0000000000091703
f files . 4294967295

f ffree . 4294967295

f fsid 0

f flag 1A

f _namemax : 255

f _pathmax : 4294967295
f _basetype : "root" (/)

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgStatvfs64()--Get File System Information
(64-Bit enabled and using NLS-enabled path
name)

Syntax

#i ncl ude <sys/statvfs. h>

int QgStatvfs64(Q g _Path_Nanme T *path,
struct statvfs64 *buf

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgStatvfs64() function, like the statvfsb4() function, gets status information about the file system that
contains the file named by the path argument. The difference is that the QlgStatvfs64() function takes a
pointer to aQlg_Path Name_T structure, while statvfsb4() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
statvis()--Get File System Information.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file from which file system information is required. For more information on the
Qlg_Path_Name T structure, see Path name format.

Related Information

o statvfs()--Get File System Information

« statvfs64()--Get File System Information (64-Bit Enabled)

Example

The following exampl e gets information about a file system.

#i ncl ude <sys/statvfs. h>

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>

mai n() {

struct statvfs info;
#define nypath "/"

const char
const char

US const[3] = ;
Language_const [4] ="ENU";
t ypedef struct pnstruct

Qg Path Nane T ql g_struct;
char pn[100];
/* This array size nust be >= the length */

b

struct pnstruct path;

/***/

/* of the path nane or nmust be a pointer */
/* to the path nane.

/* Initialize Qg Path Nane T paraneters

/***/

menset ((voi d*) &at h, 0x00,

si zeof (struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path.ql g struct. Country I D, US const, 2);
mencpy(path. ql g _struct. Language | D, Language_const, 3);
pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path. gl g struct.Path _Length = sizeof (mypat h) 1;

path. gl g_struct.Path Nane Delinmter[0] ="/";
mencpy(pat h. pn, mypat h, si zeof (nypath)-);

if (-

== (QgStatvfs64((Q g Path Nane T *) &pat h,
(struct statvfs64 *)& nfo)))

perror("Q gStatvfs64() error");

el se

{

put s("dQ gSt at vf s64()

returned the follow ng information");

put s("about the Root ('/') file system");

printf("
printf("

printf("

printf("
printf("
printf("

f _bsize
f bl ocks

f _bfree

f files
f ffree
f _fsid

%a\n", info.f _bsize);
%08X%O8X\ n"

*((int *)& nfo.f_blocks[0]),
*((int *)& nfo.f_blocks[4]));
208X%O8X\ n",

*((int *)& nfo.f_bfree[0]),
*((int *)& nfo.f_bfree[4]));
%a\n", info.f _files);

%a\n", info.f ffree);

%a\n", info.f fsid);

printf(" f_flag
printf(" f_nanmemax
printf(" f_pathmax

}

printf(" f_basetype :

}

o<\ n"
%\ n"
%\ n"
s\ n"

info.f _flag);

i nfo.f_nanmemax) ;

i nfo.f_pat hmax) ;

i nfo.f_basetype);

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgSymlink()--Make Symbolic Link (using
NLS-enabled path name)

Syntax
#i ncl ude <uni std. h>

int QgSymink(
Qg Path Narme T *pnane, Qg Path Nane T *slink);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgSymlink() function, like the symlink() function, creates the symbolic link named by dlink with the
value specified by pname. The differenceis that the QIgSymlink() function takes a pointer to a
Qlg_Path Name T structure, while symlink() takes a pointer to a character string.

Limited information on the * pname and the *dlink parameter is provided here. For more information on
these parameters and for a discussion of authorities required, return values, and related information, see
symlink()--Make Symbalic Link.

Parameters

pname

(Input) A pointer to aQlg_Path_Name_T structure that contains a value or a pointer to a value of
the symbolic link. For more information on the Qlg_Path_Name T structure, see Path name format.

dink

(Input) A pointer to aQlg_Path_Name_T structure that contains a name or a pointer to a name of
the symbolic link to be created. For more information on the Qlg_Path_Name T structure, see Path

name format.

Related Information

« symlink()--Make Symbolic Link

o QlgLink()--Create Link to File (using NL S-enabled path name)

o QlgReadlink()--Read Value of Symbolic Link (using NL S-enabled path name)
o QpOlunlink()--Remove Link to File

Example

The following example uses QlgSymlink():

#i
#i
#i
#i
#i
#i
#i

ncl ude <stdio. h>
ncl ude <unistd. h>
ncl ude <sys/types. h>
ncl ude <sys/stat. h>
ncl ude <fcntl. h>
ncl ude <stdlib. h>
ncl ude <@Ol stdi. h>

mai n() {

char buf[30];
int fd;

#define nypath fn "readlink.file"
#define nypath_sl "readlink.symink"

const char US const[3]=
const char Language_const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path Name T gl g struct;

char pn[100]; /* This array size nust be >= */
/* the length of the path name or */
/* this nmust be a pointer to the */
/* path nane. */

b

struct pnstruct path_fn;
struct pnstruct path_sl;
struct pnstruct path_buf;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &at h_fn, 0x00, sizeof(struct pnstruct));

path fn.glg struct.CCSID = 37

mencpy(path _fn.glg struct. Country I D, US const, 2);
mencpy(path_fn. gl g struct. Language_| D, Language_const, 3) ;

path _fn.glg struct.Path _Type = QLG CHAR S| NGLE;

path_fn.ql g_struct.Path_Length = sizeof (nypath_ fn) 1;

path fn.glg struct.Path Nanme Delimter[0] = "'/'

mencpy(pat h_fn. pn, nypat h_sl, si zeof (mypat h_fn) - 1)

menset ((voi d*) &oat h_sl, 0x00, sizeof(struct pnstruct));
path_sl.qglg struct.CCSID = 37
mencpy(path_sl.glg struct. Country I D, US const, 2);
mencpy(path_sl. gl g struct. Language_| D, Language_const, 3) ;
path_sl.qglg struct.Path _Type = QLG CHAR S| NGLE;
path_sl.ql g_struct.Path_Length = sizeof (nypath_ sI) 1;
path_sl.qglg struct.Path _Nanme Delimter[0] = "'/'
mencpy(path_sl . pn, nypat h_sl, si zeof (mypat h_sl) - 1)

if ((fd = QgCreat((Q g _Path Nanme T *)&path fn, S |WISR))
< 0)

perror("QgCreat() error");
el se {
close(fd);
if (QgSymink((Qg Path Nane T *)&path fn,
(Q g _Path Nane T *)&path_sl) = 0)
perror("Q gSymink() error");

el se {
if (QgReadlink((Q g Path Nanme T *)&path_sl,
(Q g _Path Nane T *) &pat h_buf,
si zeof (struct pnstruct))
< 0)
perror("Q gReadlink() error");

else printf("Q gReadlink() returned '%' for '%'\n",
(Q g _Path Nane T *)&pat h_buf. pn,
(Q g _Path Nane T *)&path_sl.pn);
QgUnlink((Qg_Path Nane T *)&path_sl);

QgUnlink((Qg_Path Nane T *)&path fn);

}
}

Output:

Q gReadlink() returned 'readlink.file" for 'readlink.symink'

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgUnlink()--Remove Link to File (using
NLS-enabled path name)

Syntax

#i ncl ude <QO0Il stdi. h>

int QgUnlink(Q g_Path _Nanme T *Path_Nane);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notesfor open() API.

The QlgUnlink() function, similar to the unlink() function, removes a directory entry that refersto afile.
QlguUnlink()differs from unlink() in that the Path_Name parameter is apointer to aQlg_Path Name T
structure instead of a pointer to a character string.

For more information on the * Path_Name parameter and a discussion of the authorities required, return
values, and related information, see unlink()--Remove Link to File.

Parameters

Path_Name

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the object to be unlinked. For more information on the Qlg_Path_ Name T structure, see
Path name format.

Related Information

o unlink()--Remove Link to File

o link()--Create Link to File

o QlgOpen()--Open aFile (using NL S-enabled path name)

o QlgRmdir()--Remove Directory (using NL S-enabled path name)

Example

The following example removes alink to afile. This program was stored in a source file with CCSID 37, so
the constant string "newfile" will be compiled in CCSID 37. Therefore, the country or region and language
specified are United States English, and the CCSID specified is 37.

#i ncl ude <fcntl. h>
#i ncl ude <stdio. h>
#i ncl ude <QOl stdi. h>

mai n() {
const char US const[3]= "US";
const char Language_const[4] ="ENU';

struct pnstruct

Qg Path Name T glg struct;
char pn[7];

1
struct pnstruct pns;

struct pnstruct *pns_ptr = NULL;

char fn[]="unlink.file";

menset ((voi d*) &ns, 0x00, sizeof (struct pnstruct));
pns. gl g struct.CCSID = 37,

mencpy(pns. gl g_struct. Country | D, US const, 2);
mencpy(pns. gl g_struct. Language_| D, Language_const, 3) ;;
pns. gl g struct.Path_Type = O;

pns. gl g struct.Path_Length = sizeof(fn)-1;
pns. gl g struct.Path Name Delimter[0] = "'/'
mencpy(pns. pn, fn, sizeof (fn)-1);

’

pns_ptr = &pns;
if (QguUnlink((Qg _Path Nanme T *)&pns) != 0)
perror("Q gunlink() error");

else printf("Q gUnlink() successful");
}

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgUtime()--Set File Access and Modification
Times (using NLS-enabled path name)

Syntax

#i ncl ude <utine. h>

int QgUtinme(Q@ g Path Name T *path, const struct utinbuf
*times);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgUtime() function, like the utime() function, sets the access and modification times of path to the
valuesin the utimbuf structure. The differenceis that the QlgUtime() function takes a pointer to a
Qlg_Path_ Name T structure, while utime() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for adiscussion of other parameters, authorities required, return values, and related information, see
utime()--Set File Access and Modification Times.

Parameters

path

(Input) A pointer to aQlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file for which the times should be changed. For more information on the
Qlg_Path_Name T structure, see Path name format.

Related Information

o utime()--Set File Access and Modification Times

Example
The following example uses QlgUtime():

#i ncl ude <uti nme. h>
#incl ude <tine. h>

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

#i ncl ude <fcntl. h>
#i ncl ude <QOl stdi. h>

mai n() {
int file_descriptor;
struct utinmbuf ubuf;
struct stat info;

#define nypath "utine.file"

const char US const[3]=
const char Language _const[4] ="ENU';
t ypedef struct pnstruct

Qg _Path Name T gl g struct;
char pn[100]; /* This array size nust be >= the */
/* length of the path name or nust */
/* be a pointer to the path nane. */
1

struct pnstruct path;

/***/

/* Initialize Qg Path Nane T paraneters */
/***/
menset ((voi d*) &vat h, 0x00, sizeof(struct pnstruct));

path. gl g_struct.CCSID = 37;

mencpy(path.ql g struct. Country I D, US const, 2);

mencpy(path. ql g _struct. Language | D, Language_const, 3);

pat h. gl g_struct. Path_Type = QLG CHAR SI NGLE;

path.ql g _struct.Path _Length = sizeof (mypat h) 1;

path. gl g_struct.Path Nane Delinmter[0] ="'/";

mencpy(pat h. pn, mypat h, si zeof (nypat h) - 1) ;

if ((file_descriptor =
QgCreat((Qg Path Name T *)&ath, S IWSR)) < 0)
perror(“"creat() error");
el se {
close(fil e _descriptor);
puts("before QgUinme()");
QgStat((Q g _Path Nane T *) &pat h, & nf o) ;
printf(" utine.file nodification tinme is %d\n",
info.st_ntine);
ubuf . nodti me = O; /* set nodification tinme to Epoch */
ti me(&ubuf. actinme);
if (QgUtine((Q g Path Nane T *)&path, &ubuf) !'= 0)
perror("QgUtine() error");
el se {
puts("after QgUtine()");
QgStat((Q g _Path Nane T *) &path, & nf o) ;
printf(" utine.file nodification tinme is %d\n",
info.st_ntine);

}
QgUnlink((Q g _Path Nane T *)&path);

Output:

before Q gUtime()

utime.file nodification tine is 749323571
after QgUtine()

utime.file nodification time is O

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

»Perform Miscellaneous File System Functions
(QPOFPTOS) API

Required Parameter Group:

1 Functiontype Input Char(*)
2 Function extension 1 Input Char(*)
3 Function extension 2 Input Char(*)

Default Public Authority: *USE

Threadsafe: No

The Perform Miscellaneous File System Function (QPOFPTOS) API is used to perform avariety of file
system functions. The first parameter defines the type of function that is requested. Other parameters are
optional, depending on the selected function. The output from this API varies, based on the selected
function. See the function descriptions for more details.

Authorities and Locks

To call this program you must have * SERVICE specia authority, or be authorized to the Service Dump
function of Operating System/400 through i Series Navigator's Application Administration support. The
Change Function Usage Information (QSY CHFUI) API, with afunction ID of QIBM_SERVICE _DUMP,

also can be used to change the list of users alowed to perform dump operations.

Note: Adopted authority is not used.

Required Parameter Group

Required parameters vary according to the selected function. The selected function isidentified by the first
parameter on the call to the API.

Function Type
INPUT; CHAR(*)

The desired file system function to perform. Valid values follow:
(1) *DUMP

Creates ageneral file system dump in a spooled file with file name "QSY SPRT" and with
"QPOFDUMP" in the User Datafield. No other parameters are required or supported when
*DUMP is specified.

(2) *DUMPALL

Creates avariety of file system dumpsin a single spooled file with file name "QSY SPRT"
and with "QPOFDUMP" in the User Datafield. The following table describes the optional

parameter when * DUMPALL is specified.

IFunction |Function extension 1 |Function extension 2 |Description

*DUMPALL |Job number (CHAR 6) [(Not supported) Specifiesthejob that is
dumped. If ajob isnot
specified, the datais
dumped for all jobs. If there
are multiple jobs with the
same number, the first one
encountered will be
dumped.

(3) *DUMPLFS

Creates adump of logical file system datain a spooled file with file name "QSY SPRT" and
with "QPOFDUMP" in the User Data field. The following table describes the optional
parameter when *DUMPLFS is specified.

|Function |[Function extension 1 [Function extension 2 |Description

*DUMPLFS [Job number (CHAR 6) |(Not supported) Specifiesthe job that is
dumped. If ajob isnot
specified, the datais
dumped for all jobs. If there
are multiple jobs with the
same number, the first one
encountered will be
dumped.

(4) *NFSFORCE

Sets various values and modes for the network file system. The following table describes
the required parameters when * NFSFORCE is specified.

Function extension |Function extension
Function 1 2 Description

*NFSFORCE |V2 ON or OFF If ON, indicates version 2
mounts only by the client. If
QNFSMNTD is started
afterwards, then server will
permit version 2 mounts
only.

(5) *REBUILDDEVNULL

Attempts to create the /dev/null and dev/zero character special files. If an existing dev/null
or dev/zero object exists that is not a character specia file, then the object is renamed to
/dev/null.prv or dev/zero.prv. If /dev/null.prv or /dev/zero.prv exists, then it it renamed to
/dev/null.prv.001 or /dev/zero.prv.001, /dev/null.prv.002 or /dev/zero.prv.002, and so on,
until anameisfound for the object. If 999 is exceeded and the rename cannot be done, the
object is not renamed and an informational message is issued and the QPOFPTOS program
completes successfully. No other parameters are required or supported when
*REBUILDDEVNULL is specified.

(6) * TRACEGON or * TRACEGOFF

*TRACEBON starts the logging of trace messagesin the user job log for some network file
system functions. * TRA CE60FF stops the logging of these messages.

(7) *TRACESON or * TRACE8SOFF

*TRACEBON starts the logging of trace messages to the QSY SOPR message queue for
some network file system functions. * TRACE8SOFF stops the logging of these messages.

(8) * TRACE9ON or * TRACE9OFF

*TRACE9ON starts the collection of some network file system statistics and resets the
statistics. * TRACEQOFF stops the collection of these statistics.

(9) *DUMPNFSSTATS

Creates afile system dump of network file system (NFS) statistics (both client and server)
in aspooled file with file name "QSY SPRT" and with "QPOFDUMP" in the User Data
field. The information dumped comes from awindow of time specified with the
*TRACE9ON/OFF function. No other parameters are required or supported when
*DUMPNFSSTATS is specified.

Function extension 1
INPUT; CHAR(*)
Function extension 1 is optional or required, based on the first parameter. Whenever itisvalid,

function extension 1 is described above along with afirst parameter description. Function extension
lisvalid when the first parameter is listed below:

(1) *DUMPALL
(2) *DUMPLFS
(3) *NFSFORCE

Function extension 2
INPUT; CHAR(*)
Function extension 2 is optional or required, based on the first parameter. Whenever it isvalid,

function extension 2 is described above along with afirst parameter description. Function extension
2 isvalid when the first parameter islisted below:

(1) *NFSFORCE

Usage Notes

If this APl is called without the first parameter that is required, then message CPFBC53 isissued to the
caller. This message specifies a parameter that is not valid. To recover, the caller is pointed to the API
documentation.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.
CPFAOAOE Object name already exists.

CPFAOD4 E File system error occurred. Error number & 1.

CPDAOFF E Program not called. Y ou need * SERVICE authority to call this program.
CPFBC53 E Invalid parameter.

CPFBC54 E Not authorized to call program.

Examples

CALL QPOFPTOS*DUMP

CALL QPOFPTOS (*DUMPALL '055229)
CALL QPOFPTOS (* DUMPLFS '055229)
CALL QPOFPTOS (*NFSFORCE V2 ON)
CALL QPOFPTOS *REBUILDDEVNULL
CALL QPOFPTOS * TRACE6ON

CALL QPOFPTOS * TRACEBOFF

CALL QPOFPTOS *TRACESON

CALL QPOFPTOS * TRACESOFF

CALL QPOFPTOS * TRACE9ON

CALL QPOFPTOS * TRACE9OFF

CALL QPOFPTOS *DUMPNFSSTATS

&

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

QpOICvtPathToQSYSODbjName()-- Resolve
Integrated File System Path Name into QSYS
Object Name

Syntax

#i ncl ude <qgpOIl stdi. h>

voi d QoOl Cvt Pat hToQSYSOhj Narre(
Q@ g_Path_Nane_T *pat h_nane,

voi d *qsys_info,

char f or mat _nane[8],
ui nt byt es_provi ded,
ui nt desi red_CCsSI D,
voi d *error_code);

Threadsafe: Conditional; see Usage Notes.

#The QpOICvtPathT 0QSY SObjName() function resolves a given integrated file system path name into
the four-part QSY S.LIB or independent ASP QSY S.LIB file system name. The primary three parts of the
path name are the following components: library, object, and member. The fourth part of the path nameisa
character representation of the ASP associated with the object, or the independent ASP name. This depends
on whether the path refersto an object in the QSY S.LIB file system or and object in an independent ASP
QSYS.LIB file system. If the path contains symbolic links, they will be resolved. If, after symbolic links
have been resolved, the path does not refer to an object that could be in either the QSY S.LIB file system or
an independent ASP QSY S.LIB file system, the API will return with the error message CPFAODB
indicated in the error_code structure. Note that the APl does not verify that the object exists. <

The API also handles wildcard (*) characters in the path name. If the name or type of alibrary, object, or
member isjust an asterisk, *ALL isreturned as the name or the type. If an asterisk is part of alibrary,
object, or member name, a name containing an asterisk is returned. For example if the following path name
ispassed in:

Iqsyslibltest* file/* *

the APl will return:
o Library name: QSYS
o Library type: *LIB
o Object name: TEST*
« Object type: *FILE
o Member name: *ALL
o Member type: *ALL
o #ASPname: *SYSBASH

Note that path name components that follow one containing a wildcard character are ignored.

If less than 8 bytes are supplied for the error_code structure, errors will cause an exception to be returned to
the caller.

Parameters

path_name

(Input) The path name that refers to the QSY S.LIB #*or independent ASP QSY S.LIB file system
“object. The path name must refer to an object on the local file system; this API does not
recognize file system objects accessed remotely. This path nameisin the Qlg_Path Name T
format. For more information on this structure, see Path name format. If the path_name parameter

isNULL or pointsto invalid storage, a CPFAOCE error message is returned.
gsys info
(Output) A pointer of type void * that refersto astructure that contains the object name. The format

of the data returned is specified by the format_name parameter. If the gsys info parameter isNULL
or pointsto invalid storage, a CPF24B4 error message is returned.

format_name

(Input) An 8-byte character array that indicates how the data will be formatted in the gsys_info
parameter that is returned. The format is as follows:

QSYS0100
For the format of this structure, see the section Returned Data Format.

If the format_name parameter is NULL or pointsto invalid storage, a CPF24B4 error message is
returned.

bytes provided

(Input) The number of bytes of data provided in the structure referred to by the gsys_info
parameter. Thisvalue must be at least 8, or a CPF3C24 error message will be returned.

desired CCSID

(Input) The CCSID the returned object names and types should be converted to. If the value of this
parameter is 0, the object names and types will be returned in the job CCSID.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Authorities

Note: Adopted authority is not used.
Authorization Required for the QpOICvtPathT 0QSY SObjName() API

Authority
Object Referred to Required Message ID
|Each directory, preceding the last component, in the path name. | *X |CPFA09C

Object in the QSY S.LIB **or independent ASP QSYS.LIB “file systemthat the | None |None
path name refers to.

Returned Data Format

The following table describes the format of the data returned in the gsys_info parameter if the QSY S0100
format is specified. For details on the fields of the structure, see the section Field Descriptions.

Offset
Dec Hex ’Type ’Field
0 0 |[BINARY(4) [Bytes Returned
4 4 [BINARY(4) |Bytes Available
8 8 |BINARY(4) |CCSID_Out
12 C |CHAR(28) |Lib_Name

|

| |
| |
| |
| |
| |
| 40 | 28 |CHAR(20) |Lib_Type
| |
| |
| |
| |
| |

60 | 3C |CHAR(28) |Obj_Name
88 58 |CHAR(20) |Obj_Type
108 6C |CHAR(29) IMbr_Name
136 | 88 |CHAR(0) |Mbr_Type
%156 | 9C |CHAR(28) |Asp_Name<&

Field Descriptions

#ASP Name. The path name component that represents the ASP name, if part of the path, or the ASP that
the path is associated with. For paths that refer to objects in independent ASP QSY S.LIB file systems, this
will be the name of the A SP device description object. For paths that refer to objectsin the QSYS.LIB file
system, the value of ASP Name will be * SY SBAS.4

Bytes Available. Thetotal number of bytes required to hold all of the data available in the gsys info
parameter.

Bytes Returned. The number of bytes actually returned in the caller's buffer for the gsys_info parameter.

CCSID_Out. The CCSID that the returned text isin. Thismay be different than the desired_CC3D if
conversion failed. The text isinternally normalized, then converted to the desired CCSID. If this conversion
from the normalized form does not succeed, the text will be returned in the CCSID of the normalized form.

Lib_Name. The name of the library that the path name refersto. Thisfield isNULL terminated.

Lib_Type. The type of the object, beginning with an * (asterisk). Thisfield will return either *LIB or
*ALL. ThisfieldisNULL terminated.

Mbr_Name. The name of the member that the path name refersto. Thisfield is NULL terminated, and
could beall NULL (all x'00").

Mbr_Type. Thetype of the member that the path name refersto. Thisfield isNULL terminated. Thisfield
will contain *MBR, *ALL, or all NULL (al x'00).

Obj_Name. The name of the object that the path name refersto. Thisfield is NULL terminated, and could
beall NULL (al x'00").

Obj_Type. Thetype of the object that the path name refersto. Thisfield isNULL terminated. Thisfield
could contain an object type (for example *FILE), *ALL, or be NULL (all x'00).

TheLib_Name, Lib_Type, Obj_Name, Obj_Type, Mbr_Name, and Mbr_Type fields of the
QpOl_QSYS Info_t structure will be filled in as appropriate.

If the object that the path name refersto isalibrary (*LI1B), then the lib_name and lib_type fields will
contain that library name and *L 1B, respectively, and the Obj_Name and Mbr_Name fields will be NULL
(al x'00).

If the object name is not an *FILE object with members, then the Mbr_Name field is NULL (all x'00').

If the abject name contains quoted strings, the characters within the strings will not be converted to
uppercase.

Error Conditions

None.

Error Messages

CPE3101 E 1/0O exception non-recoverable error.

CPE3101 E 1/0O exception non-recoverable error.

CPE3418 E Possible APAR condition or hardware failure.
CPE3474 E Unknown system state.

CPF24B4E Severeerror while addressing parameter list.
CPF3BF6 E Path type value not valid.

CPF3C24 E Length of the receiver variableis not valid.
CPF3CFLE Error code parameter not valid.

CPFO872 E Program &1 in library & 2 ended. Reason codeis & 3.
CPFAQ92E Path name not converted.

CPFAO9CE Not authorized to object. Object is& 1.
CPFAOOEE Object in use. Object is&1.

CPFAO9FE Object damaged. Object is& 1.

CPFAOAL1E Aninput or output error occurred.

CPFAOA2E Information passed to this operation was not valid.
CPFAOA3E Path name resolution causes looping.

CPFAOA7E Path nametoo long.

CPFAOABE Operation not allowed in ajob running multiple threads.
CPFAOA9E Ohbject not found. Object is& 1.

CPFAOAA E Error occurred while attempting to obtain space.
CPFAOAD E Function not supported by file system.
CPFAOBL1E Requested operation not allowed. Access problem.
CPFAOCOE Buffer overflow occurred.

CPFAOCLE CCSID &1 not valid.

CPFAOCE E Error occurred with path name parameter specified.
CPFAOD4E File system error occurred. Error number &1.
CPFAOD9E Character string not converted.

CPFAODB E Object not aQSY S.LIB object. Objectis & 1.
CPFAODD E Function was interrupted.

CPFAOEOE FilelID conversion of adirectory failed.

CPFAOE1E ThefilelD tableis damaged.

CPFAOE2E System unableto establish a communications connection to afile server.
CPFAOE4E The communications connection with the file server was abnormally ended.
CPFAOE5E The communications connection with the file server was abnormally ended.
CPFAOE6 E Object handlerejected by file server.

CPFAOE7E System cannot establish a communications connection with afile server.
CPFA1IC5E Objectisaread only object. Object is& 1.

Usage Notes

1. This APl will fail and return the error message CPFAOA8 when all the following conditions are
true:

o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root

QOpenSys

User-defined file system

= QSYS.LIB

#ndependent ASP QSYS.LIB 4

2. #This API ignorestrailing blank spaces at the end of a path name.

For example, if the path nameis

"/gsys.lib/fred.lib/foo.filelabc. nbr "
thetrailing blank spaces will be ignored. Thus, the above path name is equivalent to

"/gsys.lib/fred.lib/foo.filelabc.nbr"
L4

Related Information

» The<qgpOlstdi.h> file (see Header Files for UNIX-Type Functions)

o QlgOp0lCvtPathToQSY SObjName()-- Resolve Integrated File System Path Name into QSY S
Object Name

Example

The following example program gets the three-part QSY S name from an integrated file system path name
passed to it.

#i ncl ude <qpOl stdi. h> [* For @Ol Cvt Pat hToQSYSOhj Nane */
/* type Ol _QSYS Info t */
/* type Qg Path Name T */
#i ncl ude <qusec. h> /* For type Qus_ EC T */

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

int main ()

{

/***/

/* Declaration of path_name paraneter */

/***/

char pat h_info_array[500];

Q g _Path_Narme T *pat h_nane;

const char fname[] =
"/gsys.libl/jerold.lib/qcsrc.filel/testconv.nbr”;

const char US const[] = "US";

const char Language _const[] = "ENU';

const char Pat h_Nanme_Del const[] = "/";

/***/

/* Declaration of gsys_info paraneter */

/***/

Q0O0lI _QSsYS Info_t gsys_info;

/***/

/* Declaration of format_nanme paraneter */
/***/
char format _nane[8] = "QSYS0100"

/***/

/* Declaration of bytes provided paraneter */

/***/

ui nt bytes_provided;

/***/

/* Declaration of desired CCSID paraneter. */

/***/

ui nt desired_CCSID

/***/

/* Declarations for error_code paraneter */

/***/

Qus_EC_ t error_code;
char error_string[8];

/***/

/* Initialize path_nane paraneter */
/***/
menset (path_info_array, 0, sizeof(path_info array));

path_ name = (Q g Path Name T *) path_info_array;

pat h_nanme->CCSI D = 37
mencpy(pat h_nane->Country I D, US const, 2);
mencpy(pat h_nane- >Language_| D, Language const, 3);
pat h_nane->Path_Type = O0;
pat h_nanme->Path_Length = strlen(fnane);
mencpy(path_nane->Path_Nane Delimter, Path Nane Del const, 1);
mencpy(&(((char *) path_nane)[sizeof (Q g Path Name T)]),
f nanme,
strlen(fnane));

/***/

/* Initialize gsys_info paraneter */

/***/

/* No initialization requirenents for this paraneter. */

/***/

/* Initialize format _nanme paraneter */

/***/

/* No additional initialization required. */

/***/

/* Initialize bytes_provi ded paraneter. */

/***/

byt es_provi ded = sizeof (QOl _QSYS Info_t);

/***/

/* Initialize desired CCSID paraneter. */

/***/

desired _CCsID = 37;

/***/

/* Initialize error_code param */
/***/
menset (&error _code, 0, sizeof(error_code));

error_code. Bytes_Provi ded = si zeof (error_code);

/***/

/[* Call API */
/***/
QO0I Cvt Pat hToQSYSChj Nane(pat h_nane,
@QSYS. LI B_i nf o,
format _nane,
byt es_provi ded,
desi red_CCsl D
&error_code);

if (error_code.Bytes Available > 0)

{

/***/

/* Error occurred. */

/***/

}

printf ("Error occurred: ");

mencpy (error_string, error_code. Exception_ld, 7);
error_string[7] = '\0";

printf ("%\n", error_string);

printf ("Bytes available in error code structure:
error_code. Bytes_Avail abl e);

exit(1l);

%l. \ n",

/***/

/* APl returned successfully. */
/***/
printf ("Library name: %\n", gsys_info.Lib Nane);
printf ("Library type: %\n", gsys_info.Lib Type);
printf ("Cbject name: %\n", gsys_info.Cbj Nane);
printf ("Cbject type: %\n", gsys_info.Chj Type);
printf ("Menber name: %\n", gsys_info.Mir_ Nane);
printf ("Menber type: %\n", gsys_info.Mr_ Type);
g printf ("Asp name: %\ n", qgsys_info.Asp_Nane);
L4 exit(0);
}
Output:
Li brary nanme: JEROLD
Li brary type: *LIB
bj ect nane: QCSRC
bj ect type: *FILE
Menber name: TESTCONV
Menber type: *MBR
#Asp name: * SYSBAS
&

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

Perform File System Operation (QPOLFLOP)
API

Required Parameter Group:

1 File System Operation Input Binary(4)
2 Input Buffer Input Char(*)
3 Length of input buffer Input Binary(4)
4 Output Buffer Output Char(*)
5 Length of output buffer Input Binary(4)
6 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Perform File System Operation (QPOLFLOP) API performs miscellaneous file system operations.

Authorities and Locks

The authorities required vary for each operation:

(1) QPOL_RETRIEVE_NETGROUP_FILE_ENTRIES
o The user must have execute (* X) data authority to the /etc directory (if it exists).
o Theuser must have read (*R) data authority to the /etc/netgroup file (if it exists).

(2) QPOL_WRITE_NETGROUP_FILE_ENTRIES

o The user must have write and execute (*WX) data authority to the /etc directory (if it
exists).

o The user must have read and write (* RW) data authority to the /etc/netgroup file (if it
exists).

Note: Adopted authority is not used.

Required Parameter Group

The following parameters are required.
File system operation
INPUT; BINARY (4)

The desired file system operation to perform.

Y ou can specify one of the following operations:

(1) QPOL_RETRIEVE_NETGROUP_FILE_ENTRIES

Returns information about all netgroup definitions currently defined in the /etc/netgroup

file.

(2) QPOL_WRITE_NETGROUP_FILE_ENTRIES

Input buffer

Recreates the /etc/netgroup file with only the entries provided.

INPUT; CHAR(*)

Information that is required for a given file system operation. The input buffer parameter should be
set as follows:

(1) QPOL_RETRIEVE_NETGROUP_FILE_ENTRIES

NULL (no input buffer is required).

(2) QPOL_WRITE_NETGROUP_FILE_ENTRIES

FL OP0200 structure containing the new netgroup entries. For a detailed description of this
structure, see Format of FL OP0200 Structure.

Length of input buffer
INPUT;BINARY (4)

The length of the input buffer provided. The length of the input buffer parameter may be specified
up to the size of the input buffer area specified by the user program. The length of the input buffer
should be 0 when the input buffer isNULL.

Output buffer

OUTPUT; CHAR(*)

Information that is provided by a given file system operation. The output buffer parameter should
be set asfollows:

(1) QPOL_RETRIEVE_NETGROUP_FILE_ENTRIES

FL OP0100 structure containing enough space to hold all netgroup entriesin the
/etc/netgroup file. For a detailed description of this structure, see FLOP0100 Structure

Description. No partial entries will be returned. To determineif all of the entries were
returned, the following semantics will be used:

= |f the/etc/netgroup file has no entries defined, bytes available and bytes returned
will both be set to 12.

= If the/etc/netgroup file has at |east one entry defined, then the bytes available will
be greater than 12.

= |If al of the defined entries in the /etc/netgroup file could not be returned, then the
bytes available will not have the same value as bytes returned.

For example, if the /etc/netgroup file is empty, then bytes avail able and bytes returned
would both be equal to 12. For a different example, if the /etc/netgroup file is not empty,
but the length of the output buffer isless than what isrequired to hold all entriesin the
/etc/netgroup file, then bytes available would be greater than 12 and bytes returned would
be set to 12.

(2) QPOL_WRITE_NETGROUP_FILE_ENTRIES
NULL (no output buffer is required).

Length of output buffer
INPUT; BINARY (4)

The length of the output buffer provided. The length of the output buffer parameter may be
specified up to the size of the output buffer area specified by the user program. The length of the

output buffer should be 0 when the output buffer is NULL.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Output Buffer Description

The following table describes the order and format of the data returned in the output buffer. For a detailed

description of each field, see Field Descriptions.

FLOPO100 Structure Description

This structure is used to return netgroup definitions taken from the /etc/netgroup file.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Number of netgroup entries

These fields IBINARY(4) |Length of netgroup entry

L‘{gef‘é lfjor e?]??h [BINARY(4) [Length of netgroup name

group entry. IBINARY(4) |Displacement to member names

IBINARY(4) |Number of member names
ICHAR(*) |Netgroup name

These fields IBINARY(4) |Length of member name entry

repeat for éach [BNARY(4) [Member name status

member namein

thenetgroup |BINARY(4) [Length of member name

entry. |ICHAR(*) |Member name

Input Buffer Description

The following table describes the order and format of the data given in the input buffer parameter. For a
detailed description of each field, see Field Descriptions.

Format of FLOP0200 Structure

| Offset
| Dec | Hex ’Type ’Field
| 0 | 0 |BINARY(4) |Number of netgroup entries
These fields IBINARY(4) |Length of netgroup entry
gﬁ&gﬁ? IBINARY(4) |Length of netgroup name
" |BINARY(4) |Displacement to member names
IBINARY(4) [Number of member names
|ICHAR(*) |Netgroup name
Thesefields IBINARY(4) |Length of member name entry
repeat for ech [BINARY(4) _[Member name status
thenetgroup |BINARY(4) |Length of member name
entry. |ICHAR(*) |Member name

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user in the output buffer. If all
dataisreturned, bytes available is the same as the number of bytes returned. If the receiver variable was not
large enough to contain all of the data, thisvalueis set based on the total number of entriesin the
/etc/netgroup file.

Bytesreturned. The number of bytes of data returned to the user in the output buffer.

Displacement to member names. The offset (in bytes) from the beginning of the netgroup entry to the
member names in the netgroup entry.

Length of entry. The length (in bytes) of the current netgroup entry. The length can be used to access the
next entry.

Length of member name. The length (in bytes) of the member name.

Length of member name entry. The length (in bytes) of this member name entry.
Length of netgroup name. The length (in bytes) of the netgroup name.

Member name. The member name. Thisis assumed to be in the CCSID of the job.

Member name status. Describes the type of member name. Possible values follow:
(1) QPOL_MEMBER_IS A HOST_NAME
The member name refers to an individual host name.

(2) QPOL_MEMBER IS A NETGROUP_NAME
The member name refers to a netgroup name.

(3) QPOL_MEMBER_IS AN_IP_ADDRESS
The member name refers to an IP address in the form xxx.xxx.xxx.xxx (for example 123.4.56.78).

Netgroup name. The netgroup name. Thisis assumed to be in the CCSID of thejob.
Number of member names. The number of member names in the netgroup entry.

Number of netgroup entries. The number of complete entries. A value of zero is used if there are no valid
entries for the /etc/netgroup file or if the file does not exist.

Usage Notes

Theincludefilefor thisAPI is QPOLFLOP.

If none of the required parameters are passed to this API, then message CPFB41F will be issued to the
caller. This message lists al of the file operations currently available to the QPOLFLOP API.

WARNING - When the (2) QPOL_WRITE_NETGROUP_FILE_ENTRIES file system operation is

regquested, the existing /etc/netgroup file will be completely rewritten resulting in aloss of the previous
contents of the file.

A netgroup isaway of defining one name (the netgroup name) to represent many other names. The names
contained within a netgroup definition are called 'members’ of that netgroup. A netgroup member can be
either the name of a host system, the name of another netgroup, or an | P address. Netgroup definitions are
stored in the /etc/netgroup file and are commonly used by the Network File System (NFS) support when a
large group of host systems require common NFS access semantics.

Error Messages

CPFAOD4E Filesystem error occurred.

CPE3418 E Possible APAR condition or hardware failure.

CPF3C90 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

QpOlGetAttr()--Get Attributes

Syntax

#i ncl ude <Q@OI stdi. h<
int QOl CetAttr

(Qg_Path_Nane_ T *Pat h_Narre,
Ol _AttrTypes_List _t *Attr_Array_ptr,
char *Buffer_ptr,
ui nt Buf f er _Si ze Provi ded,
ui nt *Buf fer _Si ze_Needed_ptr,
ui nt *Num Byt es_Returned_ptr,
ui nt Fol ow_Sym nk, ...);

Service Program Name: QPOLLIB2
Default Public Authority: * USE

Threadsafe: Conditional; see Usage Notes.

The QpOlGetAttr () function gets one or more attributes, on asingle call, for the object that is referred to by
the input Path_Name. The object must exist, the user must have authority to it, and the requested attributes
must be supported by the specific file system. For each requested attribute that is not supported by the file
system, QpOIGetAttr () returns zero in the Size of attribute data field, pointed to by the Buffer_ptr parameter,
for that attribute.

QpOIGetAttr() either returns the attributes of the symbolic link, or returns the attributes of the object that the
symbolic link names. This depends upon the value of the Follow_Symink parameter.

QpOIGetAttr() returns all timesin seconds since the Epoch so that they are consistent with UNIX-type APIs.
The Epoch is the time 0 hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated Universal Time. If the
0S/400 date is set prior to 1970, al time values are zero.

Parameters

Path_Name

(Input) The path name of the object for which attribute information is returned. This path nameisin
the Qlg_Path_Name T format. For more information on this structure, see Path name format.

Attr_Array_ptr

(Input) A pointer to a structure listing the requested attributes returned for the object identified by the
Path_Name parameter. Each entry in the array identifies an attribute, by a constant value, that
QpOIGetAttr() returns. The number of requested attributes field must equal the total number of
constants. If the Attr_Array_ptr isNULL or if the Number of requested attributes field is zero,
QpOIGetAttr() returns all the attributes that the API supports that are available for the object. The
format of this parameter follows.

|Attribute array pointer
| Offset |

| Dec | Hex |Type |Fie|d

| 0 | 0 [BINARY(4) |Number of requested attributes
4 4 |ARRAY(*) of |Array of attribute constants
BINARY (4)

Array of attribute constants. A list of predefined constants, each identifying a requested attribute.
QpOIGetattr () also returns one of these constants in the Attribute identification field, pointed to by
the Buffer_ptr parameter. The constant must be used to identify the returned attribute because the
attributes are returned in any order. Note that the Size of attribute data field, pointed to by the
Buffer_ptr parameter, contains the total size of data that QpOlGetattr () returns for the constants in this
array. Valid values, and sizes of the returned attributes, follow:

0 QPOL_ATTR_OBJTYPE: (CHAR(10)) The object type. See Control Language (CL)
information in the i Series Information center for descriptions of all i Series object types.

1 QPOL_ATTR_DATA_SIZE: (UNSIGNED BINARY (4)) The size in bytes of the datain this
object. This size does not include object headers or the size of extended attributes associated
with the object. If this attribute is requested and the size cannot be represented in a
BINARY (4) datatype, QpOlGetAttr() failswith errno [EOVERFLOW]. Refer to
QPOL_ATTR_DATA_SIZE_64 for objects whose data sizes are greater than BINARY (4).

2 QPOL_ATTR_ALLOC_SIZE: (UNSIGNED BINARY (4)) The number of bytes that have
been allocated for this object. If this size cannot be represented in a BINARY (4) data type,
QpOIGetAttr () fails with errno [EOVERFLOW]. Refer to QPOL_ATTR_ALLOC_SIZE 64
for objects whose allocated sizes are greater than BINARY (4).

3 QPOL_ATTR_EXTENDED_ATTR_SIZE: (UNSIGNED BINARY (4)) The total number of
extended attribute bytes.

4 QPOL_ATTR_CREATE_TIME: (UNSIGNED BINARY (4)) The time the object was
created.

5 QPOL_ATTR_ACCESS TIME: (UNSIGNED BINARY (4)) The time that the object's data
was last accessed.

6 QPOL_ATTR_CHANGE_TIME: (UNSIGNED BINARY (4)) The time that the object's data
or attributes were last changed.

7 QPOL_ATTR_MODIFY_TIME: (UNSIGNED BINARY (4)) The time that the object's data
was last changed.

8 QPOL_ATTR_STG_FREE: (CHAR(1)) Whether the object's data has been moved offline,
freeing its online storage. Valid values are:

X00'" QPOL_SYS NOT_STG_FREE: The object's datais not offline.
x01' QPOL_SYS STG _FREE: The object'sdatais offline.

10

11

QPOL_ATTR_CHECKED_OUT: Whether an object is checked out or not. When an object
is checked out, other users can read and copy the object. Only the user who has the object
checked out can change the object. The checkout format is defined in the QpOlstdi.h header
file as data type QpOl_Checkout_t, and is described in the following table.

|Checkout Format
| Offset

| Dec | Hex |Type Field

’ 0 ’ 0 |[CHAR(1) Flag indicating whether an object is
checked out

| 1 | 1 |CHAR(10) |User towhom checked out

[11 [B [CHAR(1) |Reserved

[12 [C [BINARY(4) [Timechecked out

Flag. Anindicator asto whether an object is checked out. Valid values are:
X00" QPOL_NOT_CHECKED_OUT: The object is not checked out.
x01' QPOL_CHECKED_OUT: The object is checked out.

Reserved. A reserved field. Thisfield must be set to binary zero.

Time checked out. The time the object was checked out. This field represents the number of
seconds since the Epaoch.

User to whom checked out. The user who has the object checked out. Thisfield is blank if
it isnot checked out.

QPOL_ATTR_LOCAL_REMOTE: (CHAR(1)) Whether an object is stored locally or stored
on aremote system. The decision of whether afileislocal or remote varies according to the
respective file system rules. Objectsin file systems that do not carry either alocal or remote
indicator are treated as remote. Valid values are:

x01' QPOL_LOCAL_OBJ: The object's datais stored locally.
x02° QPOL_REMOTE_OBJ The object's datais on aremote system.

QPOL_ATTR_AUTH: The public and private authorities associated with the object.

When the QPOL_ATTR_AUTH attribute is requested, the attribute datais returned in the
buffer in the following format. Thisformat is defined in header file QpOlstdi.h as data type
QpOl_Authority Genera _t.

|General Authority Format
Offset

|
| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |Objectowner

| 10 | OA |CHAR(10) |Primary group

| 20 | 14 |CHAR(10) |Authorization list name
[30 [1E [CHAR(10) |Reserved

| 40 | 28 |[BINARY(4) |Offsettoarray of users
| 44 | 2C |[BINARY(4) |Number of users

| 48 | 30 |[BINARY(4) |Sizeof user entry field entry
| 52 | 34 |CHAR(12) |Reserved
| | |JARRAY (*) |Array of users

Array of users. The names and authorities of the users who are authorized to use the object.

Authorization list name. The name of the authorization list that is used to secure the named
object. The value * NONE indicates that no authorization list is used in determining
authority to the object.

Number of users. The number of usersthat are authorized to the abject. Thisis the number
of usersreturned in the array of users.

The QFileSvr.400 file system returns zero for the Number of users and zero for the Offset to
array of users. If aprimary group is specified, the Network File System (NFS) returns one
for the Number of users.

Object owner. The name of the user profile that isthe owner of the object or the following
special vaue:

*NOUSRPRF This special valueis used by the Network File System to indicate that
there is no user profile on the local iSeries server with auser ID (UID)
matching the UID of the remote object.

Offset to array of users. The offset to the names and authorities of the users who are
authorized to use the object. This offset isrelative to the offset of the QPOL_ATTR_AUTH
attribute within the buffer pointed to by the Buffer_ptr parameter.

Primary group. The name of the user profile that is the primary group of the object or the
following special values:

*NONE The object does not have a primary group.

*NOUSRPRF This special valueis used by the Network File System to indicate that
there is no user profile on the local server with agroup ID (GID)
matching the GID of the remote object.

Reserved. A reserved field. Thisfield must be set to binary zero.
Size of user entry field entry. The number of bytes returned for each user.

When the QPOL_ATTR_AUTH attribute is requested, the array of usersisreturned in the
buffer in the following format. Thisformat is defined in header file QpOlstdi.h as data type
QpOl_Authority_Users t.

|Data and Object Authority Format
| Offset

| Dec [Hex |Type Field

| 0 | 0 |CHAR(10) |User name

| 10 | OA |CHAR(10) |User dataauthority
|Object rights

| 20 | 14 |CHAR(1) |Object management
| 21 | 15 |CHAR(1) |Object existence

| 22 | 16 |CHAR(1) |Object alter

| 23
| 24
|Datarigh
| 34 22 |CHAR(1) |Object operational

| ICHAR(1) |Object reference
|
19
|

35 | 23 |CHAR(1) |Read
|
|
|
|
|
|

17
18 |CHAR(10) |Reserved
ts

I 36 | 24 [CHAR() |[Add

| 37 | 25 |CHAR(1) |Update
| 38 | 26 |CHAR(1) |Delete
| 39 | 27 [CHAR(1) [Execute
| 40 | 28 |CHAR(1) |Exclude
| 41 | 29 |CHAR(7) |Reserved

Add (*ADD). Authority to add entries to the object. Valid values are:
0 The user does not have add datarights.

1 The user does have add datarights.

Delete (*DELETE). Authority to remove entries from the object. Valid values are:
0 The user does not have delete data rights.

1 The user does have delete datarights.

Execute (*EXECUTE). Authority to run aprogram or search alibrary or directory. Valid
values are;

0 The user does not have execute data rights.

1 The user does have execute data rights.

Exclude (*EXCLUDE). The user is prevented from accessing the object. Valid values are:
0 The user does not have exclude datarights.

1 The user does have exclude datarights.

Object alter (*OBJALTER). Authority to change the attributes of an object, such as
adding or removing triggers for adatabase file. Valid values are:

0 The user does not have alter object rights.

1 The user does have ater object rights.

Object existence (*OBJEXIST). Authority to control the object's existence and ownership.
Valid values are:

0 The user does not have object existence rights.

1 The user does have object existence rights.

Object management (*OBJMGT). Authority to specify security, to move or rename the
object, and to add membersiif the object is adatabase file. Valid values are:

0 The user does not have object management rights.

1 The user does have object management rights.

Object operational (*OBJOPR). Authority to look at the object's attributes and to use the
object as specified by the data authorities that the user has to the object. Valid values are:

0 The user does not have object operational rights.

1 The user does have object operational rights.

Object reference (*OBJREF). Authority to specify the object asthefirst level ina
referential constraint. Valid values are:

0 The user does not have object reference rights.

1 The user does have object reference rights.

Read (*READ). Authority to access the contents of the object. Valid values are:
0 The user does not have read data rights.
1 The user does have read datarights.

Reserved. A reserved field. Thisfield must be set to binary zero.

Update (*UPDATE). Authority to change the content of existing entriesin the object. Valid
values are:

0 The user does not have update data rights.

1 The user does have update data rights.

User data authority. The operation, use, or access that the user has to an object. Valid
valuesfollow:

*RWX Allows all operations on the object except those that are limited to the
owner or controlled by the object rights.

*RwW Allows access to the object attributes and allows the object to be changed.
The user cannot use the object.

*WX Allows use of the object and allows the object to be changed. The user
cannot access the object attributes.

*R Allows access to the object attributes.

*W Allows the object to be changed.

*X Allows the use of the object.

*EXCLUDE All operations on the object are prohibited.
*NONE Displayed by the system when the user does not have any data authorities.

USERDEF Displayed by the system when the specific data authorities do not match
any of the predefined data authority levels above.

12

13
14

15

16

User name. The name of a user authorized to use the object. This may be the name of the
user profile or one of the following special values:

*NOUSRPRF The authorities of either the owner or the primary group of the object for
which the profile name could not be determined. This value is used by
the Network File System only. It indicates that the user ID (UID) or the
group ID (GID) for the remote object does not match any profile on the
local iSeries server with that UID or GID.

*NTWIRF The authorities of the NetWare |nherited Rights Filter for the object. This
valueis only used by the QNetWare file system.

*NTWEFF The NetWare effective rights to the object. Thisvalueis only used by the
ONetWarefile system.

*PUBLIC The authorities of users who are not specifically named and who are not
in the object's authorization list.

QPOL_ATTR_FILE ID: (CHAR(16)) Anidentifier associated with the referred to object. A
file ID can be used with QpOl GetPathFromFilel D() to retrieve an object's path name. The

file ID is defined in header file QpOlstdi.h as data type QpOIFID _t.

QPOL_ATTR_ASP: (BINARY (2)) The auxiliary storage pool in which the object is stored.

QPOL_ATTR_DATA_SIZE _64: (UNSIGNED BINARY (8)) Thesizein bytes of the datain
this object. This size does not include object headers or the size of extended attributes
associated with the object. QPOL_ATTR_DATA_SIZE may be used for objects whose data
size can be represented in aBINARY (4) datatype.

QPOL_ATTR_ALLOC_SIZE_64: (UNSIGNED BINARY (8)) The number of bytes that
have been allocated for this object. QPOL_ATTR_ALLOC_SIZE may be used for objects
whose allocated size can be represented in a BINARY (4) data type.

QPOL_ATTR_USAGE_INFORMATION: Fields indicating how often an object is used.
Usage has different meanings according to the specific file system and according to the
individual object types supported within afile system. Usage can indicate the opening or
closing of afile or can refer to adding links, renaming, restoring, or checking out an object.
The usage information format is defined in the QpOlstdi.h header file as data type
QpOl_Usage t and is shown in the following table.

|QpOI_Usage t
| Offset

| Dec | Hex |Type ’Field

[0 [0 [BINARY(4) |Resetdate

| 4 | 4 |[BINARY(4) |Lastused date
| 8 | 8 |[BINARY(4) |Days used count
| 12 | C |CHAR(4) |Reserved

Days used count. The number of days an object has been used. Usage has different
meanings according to the specific file system and according to the individual object types
supported within afile system. Usage can indicate the opening or closing of afile or can
refer to adding links, renaming, restoring, or checking out an object. This count is
incremented once each day that an object is used and is reset to zero by calling the
QpOISetAttr() API.

L ast used date. The number of seconds since the Epoch that corresponds to the date the

17

18

19

20

21

22

object was last used. Thisfield is zero when the object is created. |f usage datais not
maintained for the OS/400 type or the file system to which an object belongs, thisfield is
zero.

Reserved. A reserved field set to binary zeros.

Reset date. The number of seconds since the Epoch that corresponds to the date the days
used count was last reset to zero (0). This date is set to the current date when the
QpOISetAttr() API iscalled to reset the Days used count to zero.

QPOL_ATTR_PC _READ_ONLY: (CHAR(1)) Whether the object can be written to or
deleted, have its extended attributes changed or deleted, or have its size changed. Valid
values are;

X00" QPOL_PC NOT_READONLY: The object can be changed.
x01' QPOL_PC _READONLY: The object cannot be changed.

QPOL_ATTR_PC_HIDDEN: (CHAR(1)) Whether the object can be displayed using an
ordinary directory listing.

x00'" QPOL_PC NOT_HIDDEN: The object is not hidden.
x01' QPOL_PC HIDDEN: The object is hidden.

QPOL_ATTR_PC_SYSTEM: (CHAR(1)) Whether the objectisasystem fileand is
excluded from normal directory searches.

X00' QPOL_PC NOT_SYSTEM: The object is not asystem file.
x01' QPOL_PC SYSTEM: The object isasystem file.

QPOL_ATTR_PC_ARCHIVE: (CHAR(1)) Whether the object has changed since the last
time the file was examined.

x00' QPOL_PC NOT_CHANGED: The object has not changed.
x01' QPOL_PC CHANGED: The object has changed.

QPOL_ATTR_SYSTEM_ARCHIVE: (CHAR(1)) Whether the object has changed and
needs to be saved. It is set on when an object's change time is updated, and set off when the
object has been saved.

x00" QPOL_SYSTEM_NOT_CHANGED: The abject has not changed and does not
need to be saved.

X'01' QPOL_SYSTEM_CHANGED: The object has changed and does need to be saved.

QPOL_ATTR_CODEPAGE: (BINARY (4)) The code page derived from the coded character
set identifier (CCSID) used for the datain the file or the extended attributes of the directory.
If the returned value of thisfield is zero (0), there is more than one code page associated
with the st_ccsid. If the st_ccsid is not a supported system CCSID, the st_codepage is set
equal to the st_ccsid.

23

24

25

QPOL_ATTR_FILE_FORMAT: (CHAR(1)) The format of the stream file (*STMF). Vadlid
values are;

X00'" QPOL_FILE_FORMAT_TYPEL: The object has the same format as* STMF
objects created on releases prior to Version 4 Release 4. It will be saved faster than
a*TYPE2 *STMF to releases prior to Version 4 Release 4 of OS/400. It hasa
mimimum object size of 4096 bytes.

x01' QPOL_FILE FORMAT_TYPE2: The object has high performance file access and
isanew *STMF object format in Version 4 Release 4 of OS/400. It will be saved
slower than a*TYPEL * STMF to releases prior to Version 4 Release 4 of OS/400.
It has a minimum object size of 8192 bytes.

QPOL_ATTR_UDFS DEFAULT_FORMAT: (CHAR(1)) The default file format of stream
files (*STMF) created in the user-defined file system. Valid values are:

x00" QPOL_UDFS DEFAULT_TYPEL: The stream file (* STMF) has the same format
as* STMFs created on releases prior to Version 4 Release 4 of OS/400. It will be
saved faster than a* TYPE2 * STMF to releases prior to Version 4 Release 4 of
0S/400. It has a mimimum object size of 4096 bytes.

x01' QPOL_UDFS DEFAULT_TYPE2: The object has high performance file access
andisanew *STMF object format in Version 4 Release 4 of OS/400. It will be
saved slower than a* TYPEL *STMF to releases prior to Version 4 Release 4 of
0S/400. It has a minimum object size of 8192 bytes.

QPOL_ATTR_JOURNAL_INFORMATION: Journaling information for this object. The
journaling information format is defined in the QpOlstdi.h header file as data type
QpOl_Journal_Info_t and is shown in the following table:

|QpOI_Journal_Info_t

| Offset

| Dec [Hex |Type ’Field

| 0 | 0 |CHAR(1) [|Journaling status

| 1 | 1 |CHAR(1) |Options

[2 [2 [CHAR(0) [Journd identifier (D)

| 12 | 0B |CHAR(10) |Current or last journal name
| |

| |

22 16 |CHAR(10) |Current or last journal library name
32 20 |BINARY(4) |Lastjournaling start time

Current or last journal library name. If the value of the journaling statusis
QPOL_JOURNALED, then this field contains the name of the library containing the
currently used journal. If the value of the journaling statusis QPOL_NOT_JOURNALED,
then this field contains the name of the library containing the last used journal. All bytesin
this field will be set to binary zero if this object has never been journaled.

Current or last journal name. If the value of the journaling status is QPOL_JOURNALED,
then this field contains the name of the journal currently being used. If the value of the
journaling statusis QPOL_NOT_JOURNALED, then this field contains the name of the
journal last used for this object. All bytesin thisfield will be set to binary zero if this object
has never been journaled.

Journal identifier (JID). Thisfield associates the object being journaled with an identifier
that can be used on various journaling-related commands and APIs. Thisfield will be all

26

27

28

binary zeros for recorded byte-stream files.

Journaling status. Current journaling status of the object. This field will be one of the
following values:

X00" QPOL_NOT_JOURNALED: The object is currently not being journal ed.
x01' QPOL_JOURNALED: The object is currently being journaled.

Last journaling start time. The number of seconds since the Epoch that correspondsto the
last date and time for which the object had journaling started for it. Thisfield will be set to
binary zero if this object has never been journaled.

Options. Thisfield describes the current journaling options. Thisfield is composed of
several bit flags and contains one or more of the following bit values:

x08 QPOL_JOURNAL_SUBTREE: When thisflag isreturned, this object isa
directory with IFS journaling subtree semantics. New objects created within this
directory's subtree will inherit the journaling attributes and options from this
directory.

x08 QPOL_ JOURNAL_OPTIONAL_ENTRIES: When journaling is active, entries
that are considered optional are journaled. The list of optional journal entries
varies for each object type. See the Integrated file system topic for information

regarding these optional entries for various objects.

x20'" QPOL_JOURNAL_AFTER IMAGES: When journaling is active, the image of the
object after achangeisjournaled.

x40 QPOL_JOURNAL_BEFORE IMAGES: When journaling is active, the image of
the object prior to a change isjournaled.

QPOL_ATTR_ALWCKPWRT: (CHAR(1)) Whether a stream file (* STMF) can be shared
with readers and writers during the save-while-active checkpoint processing. Valid values
are:

x00' QPOL_NOT_ALWCKPWRT: The object can be shared with readers only.
x01' QPOL_ALWCKPWRT: The object can be shared with readers and writers.

QPOL_ATTR_CCSID: (BINARY (4)) The CCSID of the data and extended attributes of the
object.

QPOL_ATTR_SIGNED: (CHAR(1)) Whether an object has an OS/400 digital signature.
This attribute is only returned for * STMF objects. Valid values are:

X'00" QPOL_NOT_SIGNED: The object does not have an OS/400 digital signature.
X01' QPOL_SIGNED: The object does have an OS/400 digital signature.

29 QPOL_ATTR_SYS SIGNED: (CHAR(1)) Whether the object was signed by a source that is

30

31

trusted by the system. This attribute is only returned for * STMF objects. Note: this attribute
isnot returned if the QPOL_ATTR_SIGNED attribute has the value QPOL_NOT_SIGNED.
Valid vaues are:

X00" QPOL_SYSTEM_SIGNED_NO: (CHAR(1)) None of the signatures came from a
source that is trusted by the system.

x01' QPOL_SYSTEM_SIGNED_YES: The object was signed by a source that is
trusted by the system. If the object has multiple signatures, at least one of the
signatures came from a source that is trusted by the system.

QPOL_ATTR_MULT_SIGS: (CHAR(1)) Whether an object has more than one OS/400
digital signature. This attribute is only returned for * STMF objects. Note: this attribute is not
returned if the QPOL_ATTR_SIGNED attribute has the value QPOL_NOT_SIGNED. Valid
values are:

X00" QPOL_MULT_SIGS NO: The object has only one digital signature.

x01' QPOL_MULT_SIGS YES: The abject has more than one digital signature. If the
QPOL_ATTR_SYS SIGNED attribute has the value QPOL_SYS_SIGNED, at
least one of the signaturesis from a source trusted by the system.

QPOL_ATTR _DISK_STG_OPT (CHAR(1)) This option should be used to determine how
auxiliary storage is alocated by the system for the specified object. This option can only be
specified for stream filesin the root (/), QOpenSys and user-defined file systems. This
option will beignored for *TY PEL byte stream files. Valid values are;

X00" QPOL_STG NORMAL: The auxiliary storage will be allocated normally. That is,
as additional auxiliary storageis required, it will be alocated in logically sized
extents to accomodate the current space requirement, and anticipated future
reguirements, while minimizing the number of disk I/O operations.

x01' QPOL_STG _MINIMIZE: The auxiliary storage will be allocated to minimize the
space used by the object. That is, as additional auxiliary storageis required, it will
be alocated in small sized extents to accomodate the current space requirement.
Accessing an object composed of many small extents may increase the number of
disk 1/0O operations for that object.

x02 QPOL_STG _DYNAMIC: The system will dynamically determine the optimum
auxiliary storage allocation for the object, balancing space used versus disk 1/0
operations. For example, if afile has many small extents, yet is frequently being
read and written, then future auxiliary storage allocations will be larger extentsto
minimize the number of disk 1/O operations. Or, if afileisfrequently truncated,
then future auxiliary storage allocations will be small extents to minimize the
space used. Additionally, information will be maintained on the stream file sizes
for this system and its activity. Thisfile size information will also be used to help
determine the optimum auxiliary storage allocations for this object asit relates to
the other objects sizes.

32

33

34

QPOL_ATTR_MAIN_STG_OPT: (CHAR(1)) This option should be used to determine how
main storage is alocated and used by the system for the specified object. This option can
only be specified for stream filesin the root (/), QOpenSys and user-defined file systems.
Valid values are:

X'00'

x0T

x02'

QPOL_STG_NORMAL: The main storage will be allocated normally. That is, as
much main storage as possible will be alocated and used. This minimizes the
number of disk I/O operations since the information is cached in main storage.

QPOL_STG_MINIMIZE: The main storage will be allocated to minimize the
space used by the object. That is, aslittle main storage as possible will be alocated
and used. This minimizes main storage usage while increasing the number of disk
1/O operations since less information is cached in main storage.

QPOL_STG_DYNAMIC: The system will dynamically determine the optimum
main storage allocation for the object depending on other system activity and main
storage contention. That is, when there islittle main storage contention, as much
storage as possible will be allocated and used to minimize the number of disk 1/0
operations. And when there is significant main storage contention, less main
storage will be allocated and used to minimize the main storage contention. This
option only has an effect when the storage pool's paging option is* CALC. When
the storage pool's paging option is * FIXED, the behavior is the same as
QPOL_STG_NORMAL. When the object is accessed thru afile server, this option
has no effect. Instead, its behavior isthe same as QPOL_STG_NORMAL.

QPOL_ATTR_DIR_FORMAT: (CHAR(1)) The format of the specified directory object.
Valid values are:

X'00'

x'01'

QPOL_DIR_FORMAT _TYPEL: The directory of type * DIR hasthe original
directory format. The Convert Directory (CVTDIR) command may be used to
convert from the * TY PEL format to the * TY PE2 format.

QPOL_DIR_FORMAT _TYPE2: The directory of type *DIR is optimized for
performance, size, and reliability compared to directories having the * TY PEL
format.

QPOL_ATTR_AUDIT: (CHAR(10)) The auditing value associated with the object. Valid
values are:

*NONE No auditing occurs for this object when it isread or changed regardless of

the user who is accessing the object.

*USRPRF Audit this object only if the current user is being audited. The current user is

tested to determine if auditing should be done for this object. The user
profile can specify if only change accessis audited or if both read and
change accesses are audited for this object.

*CHANGE Audit al change accessto this object by all users on the system.

*ALL

Audit al accessto this object by all users on the system. All accessis
defined as aread or change operation.

300 QPOL_ATTR_SUID: (CHAR(1)) Set effective user ID (UID) at execution time. This value
isignored if the specified object isadirectory. Valid values are;

x00" QPOL_SUID_OFF: Theuser ID (UID) is not set at execution time.

x01' QPOL_SUID_ON: The object owner isthe effective user ID (UID) at execution
time.

301 QPOL_ATTR_SGID: (CHAR(1)) Set effective group ID (GID) at execution time. Valid
values are:

X00" QPOL_SGID_OFF: If the object isafile, the group ID (GID) is not set at
execution time. If the object isa directory in the root ('/'), QOpenSys, and
user-defined file systems, the group 1D (GID) of objects created in the directory is
set to the effective GID of the thread creating the object. This value cannot be set
for other file systems.

x01' QPOL_SGID_ON: If the object isafile, the group ID (GID) is set at execution
time. If the object is adirectory, the group ID (GID) of objects created in the
directory is set to the GID of the parent directory. 4

Number of requested attributes. The total number of requested attributes that QpOIGetAttr ()
returns. Thisfield isrequired when the Attr_Array_ptr parameter isnot NULL and must equal the
number of constants in the array to which it points. When thisfield is zero, QpOIGetAttr () returns all
the attributes that are supported by the API and that are available for the object.

Buffer_ptr

(Input) A pointer to a buffer that the caller allocates for QpOlGetAttr () to return the requested data.
The caller also sets the Buffer_Size Provided parameter to the number of bytesthat are allocated for
this buffer.

If the buffer provided is not large enough to hold all of the requested data, QpOlGetAttr () fillsthe
buffer with as much data as possible and sets the value pointed to by the Buffer Sze Needed ptr
parameter equal to the number of bytes required for all of the requested datato be returned.

When the Buffer _ptr isNULL, QpOIGetAttr () returns the total number of bytes needed to hold all of
the requested attributes and sets the Buffer_Size Needed ptr parameter to point to this value.

QpOIGetAttr() identifies each entry that it returnsin the buffer with the constant that the user
supplied in the input structure pointed to by the Attr_Array_ptr parameter. QpOlGetAttr () returnsthis
constant in the Attribute identification field. The constant must be used to identify the returned
attribute because the attributes are returned in any order.

QpOIGetAttr() fills the buffer with an entry for each requested attribute in the following format:

|Buffer Pointer

| Offset ’ ’

| Dec | Hex |[Type Field

| 0 | 0 |[BINARY(4) |Offset tonext attribute entry
| 4 | 4 |BINARY(4) [Attributeidentification

| 8 | 8 |[BINARY(4) |Sizeof attribute data

| 12 | C |[CHAR() |Reserved

| 16 | 10 [CHAR(*) |Attribute data

Attribute data. The attribute data that was requested.

Attribute identification. The constant that identifies the returned attribute. Valid values follow and
are the same constants as provided by the caller of QpOlGetAttr (), pointed to by the Attr_Array_ptr
parameter.

Seethe Attr_Array ptr parameter for descriptions of each of these attribute values.

0 QPOL_ATTR_OBJTYPE
1 QPOL_ATTR_DATA_SIZE

2 QPOL_ATTR_ALLOC SIZE

3 QPOL_ATTR_EXTENDED_ATTR_SIZE
4 QPOL_ATTR_CREATE_TIME

5 QPOL_ATTR_ACCESS TIME

6 QPOL_ATTR_CHANGE_TIME

7 QPOL_ATTR_MODIFY_TIME

8 QPOL_ATTR_STG_FREE

9 QPOL_ATTR_CHECKED_OUT

10 QPOL_ATTR LOCAL_REMOTE

11 QPOL_ATTR_AUTH

12 QPOL_ATTR_FILE_ID

13 QPOL_ATTR ASP

14 QPOL_ATTR_DATA_SIZE 64

15 QPOL_ATTR ALLOC SIZE 64

16 QPOL_ATTR_USAGE_INFORMATION
17 QPOL_ATTR_PC_READ ONLY

18 QPOL_ATTR_PC_HIDDEN

19 QPOL_ATTR_PC_SYSTEM

20 QPOL_ATTR PC_ARCHIVE

21 QPOL_ATTR_SYSTEM_ARCHIVE

22 QPOL_ATTR CODEPAGE

23 QPOL_ATTR FILE FORMAT

24 QPOL_ATTR UDFS DEFAULT FORMAT
25 QPOL_ATTR JOURNAL_INFORMATION
26 QPOL_ATTR_ALWCKPWRT

27 QPOL_ATTR_ CCSID

28 QPOL_ATTR_SIGNED

%29 QPOL_ATTR SYS SIGNED

30 QPOL_ATTR MULT SIGS

31 QPOL_ATTR DISK_STG_OPT
32 QPOL_ATTR_MAIN_STG OPT
33 QPOL_ATTR DIR FORMAT
34 QPOL_ATTR _AUDIT

300 QPOL_ATTR SUID

301 QPOL_ATTR_SGID%

Offset to next attribute entry. The offset to the next attribute entry in the buffer. This offset is
relative to the start of the buffer. An offset of zero means that no more attribute entries follow.

Reserved. A reserved field set to binary zero.

Size of attribute data. The total size of al the data for this attribute. The special value of Ointhis
field indicates that the attribute is not supported by the file system in which the object is stored. The
attribute data is padded with hexadecimal zeros. The size indicated in this field does not include the
padding bytes.

Buffer_Size Provided

(Input) The number of bytes the caller allocates in a buffer for the return of requested data. The buffer
is pointed to by the Buffer_ptr parameter.

If thissize is set to zero or is hot large enough to hold all of the requested data, QpOIGetAttr () fills
the buffer with as much data as possible and sets the value pointed to by the Buffer_Sze Needed ptr
parameter equal to the number of bytes required for al of the requested datato be returned.

Buffer_Size Needed ptr

(Output) A pointer to the number of bytes that the caller needs to allocate for QpOlGetAttr () to return
all of the requested data.

Num_Bytes Returned ptr

(Output) A pointer to the actual number of bytes of data returned in the user buffer. Thisfield is zero
if the Buffer_ptr parameter isSNULL.

Follow_Symlnk
(Input) If the last component in the Path_Name is a symbolic link, this parameter determinesif the
symboalic link or the path contained in the symbolic link is acted upon: Valid values are:

0 QPOL_DONOT_FOLLOW_SYMLNK: A symbolic link in the last component is not followed.
Attributes of the symbolic link object are returned.

1 QPOL_FOLLOW_SYMLNK: A symbolic link in the last component is followed. The attributes
of the object contained in the symbolic link are returned.

Authorities

Note: Adopted authority is not used.

|Authorization Required for QpOIGetAttr()

|Object Referred to |Authority Required |errno
|Each directory, preceding the last component, in the Path_Name *X |EACCES
|Object, when retrieving the QPOL_ATTR_AUTH attribute |*OBJM GT |EACCES

Note: If the file system supports * ALLOBJ specia authority and if you have * ALLOBJ specia authority,
you do not need the listed object authority.

Return Value

0 QpOlGetAttr() was successful.

-1 QpOlGetAttr() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If QpOIGetAttr() isnot successful, errno indicates one of the following errors:
[EACCES
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to data that is stored locally by the
Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.
Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[ECANCEL]
Operation canceled.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that is
not valid.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.
A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.
An argument value is not valid, out of range, or NULL.
[EIQ]
Input/output error.

A physical 1/O error occurred.

A referenced object may be damaged.
[ELOOP]
A loop exists in the symbolic links.

Thiserror isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header fil€). Symbolic links are encountered during resolution of the directory
or path name.

[ENAMETOOLONG]
A path name istoo long.

A path name islonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile_POSIX_NO_TRUNC isin effect. For symbolic links, the length of
the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.
[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This could
also be caused by exceeding the user profile storage limit when creating or transferring ownership of
an object.
Insufficient space remains to hold the intended file, directory, or link.
[ENOTAVAIL]
Independent auxiliary storage pool (ASP) isnot available.
The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.
To recover from this error, wait until processing has completed for the independent ASP.
[ENOTDIR]
Not adirectory.
A component of the specified path name existed, but it was not a directory when a directory was
expected.
Some component of the path nameis not adirectory, or is an empty string.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the requested
arguments.

[EOFFLINE]
Object is suspended.
Y ou have attempted to use an object that has had its data saved and the storage associated with it
freed. An attempt to retrieve the object's data failed. The object's data cannot be used until itis

successfully restored. The object's data was saved and freed either by saving the object with the
STG(* FREE) parameter, or by calling an API.

[EOVERFLOW]
Object istoo large to process.

The object's data size exceeds the limit allowed by this function.
[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct
any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could also indicate one of the following
errors:

[EADDRNOTAVAIL]
Address not available.

[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.

[EHOSTDOWN]
A remote host is not available.

[EHOSTUNREACH]
A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.

[ENETUNREACH]
Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted at
the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
Message I D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPFAOD4 E File system error occurred. Error number &1
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= ZIndependent ASP QSYS.LIB 4
= QOPT

2. QSYS.LIB #+and Independent ASP QSY S.LIB #File System Differences

QpOIGetAttr() could return zero for the QPOL_ATTR_ACCESS TIME value (in the buffer area)
under some conditions.

Refer to the CL Programmi nq@l book for more information regarding which object types maintain

usage information that is returned for the QPOL_ATTR_USAGE_INFORMATION attribute.

When QpOlGetAttr() is performed on a physical file member, the
QPOL_ATTR_JOURNAL_INFORMATION attribute will contain journaling information applicable
to the physical file that contains the member.

Related Information

o The <QpOlstdi.h> file (see Header Files for UNIX-Type Functions)

» The<glg.h> file (see Header Filesfor UNIX-Type Functions)

« #rchmod()--Change File Authorizations 4

« fstat()--Get File Information by Descriptor

« |stat()--Get File or Link Information

o QlgGetAttr()--Get Attributes (using NL S-enabled path name)

o QlgStat()--Get File Information (using NL S-enabled path name)

o QlgLstat()--Get File or Link Information (using NL S-enabled path name)
o AQpOISetAttr()--Set Attributes®

o stat()--Get File Information

Example

Following is an example showing a call to QpOlGetAttr (). The example also showsacal to
QpOlSaveStgFres().

See Code disclaimer information for information pertaining to code examples.

/***/

#i ncl ude " @Ol stdi.h"
#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/types. h>
#i ncl ude <qusec. h>

#i ncl ude <time. h>

int Save(QOl _Pat hnanmes_t *Path_nane_ptr)

/**/

/* No function here in the exanple */

/**/

b

voi d SaveAnObj ect (QoOl _Pat hnanmes_t *Pat h_nane_ptr,
i nt *Return_code_ptr,
i nt *Return_val ue_ptr,
voi d *Function_Ctl Bl k_ptr)

{ /**/
/* This function saves a file and its hard links to tape. */
/**************************************-k***********************/
int rc;
if ((Path_nanme_ptr == (Ol _Pat hnanmes_t *)NULL) ||

(Pat h_nane_ptr->Nunber _Of _Nanmes == 0))
printf("In User Exit Programw th null Path \n");
el se
{ . .
[* This exanple calls a function (Save) that could call the */
[* Save (bject ((srSave) API. The QsrSave APl is designed to */
/* save a copy of one or nore objects that can be used in the */
[* integrated file system For details on using QsrSave, see */
/* the Backup and Recovery APl part. */
rc = (Save(Path_nane_ptr));
*Return_code_ptr = rgc;
*Return_val ue_ptr = errno;
if (rc == 0)
/* Other processing for a successfully saved object. */
}
el se
{ . . o .
/* Optional processing such as storing information */
/* to be returned to the caller in the function */
/* control block area, or building a list of the */
[* files whose save attenpts failed, or other. */
}
}
return;
} /* end SaveAnObj ect exit program */

int main (int argc, char *argv[])

{

#define MYPN " ADI R/ ASTMF"
const char US const[3]= "US";
const char Language_const[4] ="ENU';
const char Path_Nane_Del const[2] = "/";

struct pnstruct

Qg _Path_Name T qlg_struct;
char pn[1];

}s
struct an'[I’UCt pns;
struct pnstruct *pns_ptr = NULL;

struct attrStruct

QOl _AttrTypes_List_t attr_struct;
uint AttrTypes[10];
}
struct attrStruct Attr_types_ptr,;
Ol _Attr_Header_t *attrPtr;
char *attrVal p;

QO0l _StgFree_Function_t User_function;

struct
{

ui nt AnyDat a_t o_t he_exi t program

ui nt AnyDat a_not _processed_by_t he API;
} C | Bl kAr eaNane;

time_t nytine;

char BufferAreal 250];

unsi gned int buff_size_provided;
unsi gned int buff_size needed = 0;
unsi gned int numbytes returned = O;
unsigned int follow sym

i nt done=0;

int rc;

int returned _data_index = O;

/**/

[* Initialize Get Attributes Paraneters */
/**/
nmenset ((voi d*) &ns, 0x00, sizeof (struct pnstruct));

pns. gl g_struct.CCSID = 37,

mencpy(pns. gl g_struct. Country_I D, US const, 2);

nmencpy(pns. gl g_struct. Language_I D, Language_const, 3);

pns. gl g_struct.Path_Type = 0;

pns. gl g_struct.Path_Length = sizeof (MYPN) - 1;

mencpy(pns. gl g_struct. Path_Nanme_Del i m ter, Pat h_Nane_Del const, 1);
nmencpy(pns. pn, MYPN, si zeof (MYPN)) ;

menset ((void *)&Attr_types_ptr, 0x00, sizeof (struct attrStruct));
pns_ptr = &pns;

Attr_types_ptr.attr_struct. Nunmber O _ReqAttrs = 2;
Attr_types ptr.AttrTypes[0] = QPOL_ATTR_ACCESS TI ME;
Attr_types ptr.AttrTypes[1l] = QPOL_ATTR _STG FREE;
buff _size_provided = 250;

foll ow sym = QPOL_FOLLOW SYM_NK;

/**/

[* Call the QOl GetAttr() APl to retrieve attributes to */
/* determine if selection criteria can be nmet for calling */
[* the Ol SaveSt gFree() API. */

/**/

rc = QOl GetAttr((Q g_Path_Nane_T *) &pns,
(QpOI _AttrTypes_List_t *)&Attr_types_ptr,
Buf f er Ar ea,
buff _si ze_provi ded,
&uf f _si ze needed,
&num byt es_ret ur ned,
foll ow_syn;
if (rc == 0) /* check APl return code */

[* Must first check if any data was returned. */
if (numbytes returned > 0)

attrPtr = (QOl _Attr_Header _t *)BufferArea,;
whi | e(! done)
{

attrvValp = (char *)attrPtr +
si zeof (QpOI _Attr_Header t); /* Point to attr value */

/****************************'k*************************/

/* The follow ng code prints the two attributes that */

/* were returned. Add nore code here, for example, */
/* to determine if the returned attributes neet */
/* the criteria or policies for storage freeing. */

/**/
H n n .
prlntf (**\n),

printf ("Attr ID#% = % - ",
returned_data_index,
attrPtr->Attr_ID);

if(attrPtr->Attr_Si ze > 0)

switch (attrPtr->Attr_I D)
{
case QPOL_ATTR_ACCESS TI ME:
printf("QPOL_ATTR_ACCESS TIME\Nn");
mencpy((void *)&myti ne,
(void *)attrVvalp,
attrPtr->Attr_Size);
printf ("9%", ctinme(&ytine));
br eak;
case QPOL_ATTR _STG _FREE:
printf ("QPOL_ATTR STG FREE\n");
switch (attrVal p[0])

{
case QPOL_SYS STG FREE:
printf ("--1s storage freed--\n");
br eak;
case QPOL_SYS NOT_STG FREE:
printf ("--1s not storage freed--\n");
br eak;
def aul t:
printf ("lInvalid data: %d.\n",
attrval p[0]);
br eak;
}
br eak;
def aul t:
printf ("Undefined return type (attr id unknown.)\n");
br eak;

} /* end switch */

}

el se
printf("Attribute has no val ue\n");
printf("***Size of this attr's data: %\ n",
attrPtr->Attr_Si ze);
printf("***Cffset to next attr: %\ n",
attrPtr->Next _Attr_Ofset);
++r et ur ned_dat a_i ndex;

if(attrPtr->Next_Attr_Ofset > 0) /* If nore data */

attrPtr = (QOl _Attr_Header _t *) /* Set attribute */

& BufferArea[attrPtr->Next Attr_Ofset]); /* pointer */

el se /* No nore data */

done = 1, /* End the | oop */

}

/***********-k-k-k-k-k****************-k-k-k***********************/
[* Initialize Save Storage Free Paraneters. The path */
/[* name paranmeter was already initialized as part of the */
[* call to Ol GetAttr() APl and is assuned, in this */
[* exanple, to be the sane pathname. Both APIs require */
[* the sane path nanme format. */

/**/

menset ((voi d *)&User _function, 0x00, si zeof (Ol _St gFree_Function_t));
User _function. Mtthdacn[0] = QPOL_M.TTHDACN_NOMVSG

User _function. Function_Type = QPOL_USER FUNCTI ON_PTR;

User _function. Procedure = &SaveAn(bj ect;

rc = Ol SaveStgFree((Q g_Path_Nane_T *) &ns,
&User functi on,
&Ct | Bl kAr eaNarne) ;

if(rc == 0)
printf (" QOl SaveSt gFree() Successful!");
el se

{/* Unsuccessful return from QOl SaveStgFree() APlI. */
[* The follow ng code prints the errno val ue nessage. */
rc = errno;
printf("ERROR on QOI SaveStgFree(): error = %\n", rc);
perror("Error nessage");

}
} /* if (num.bytes_returned > 0) */
el se
rc = EUNKNOWN;
} /* end rcGA == 0, QOI GetAttr() was successful */
el se
{

rc = errno;
printf("ERROR on QOIl GetAttr(): error = %\ n", rc);
perror("Error nessage");

return(rc);
} /* end main */

APl introduced: V4R3

Top | UNIX-Type APIs | APIs by category

QpOlGetPathFromFilelD()--Get Path Name of
Object from Its File ID

Syntax

#i ncl ude <QO0Il stdi. h>

char *QOIl Get Pat hFronti |l el D(char *buf, size t size,
QOIFIDt fileid);

Threadsafe: Yes

The QpOlGetPathFromFilel D() function determines an absolute path name of the file identified by fileid
and stores it in buf. The components of the returned path name are not symbolic links. If the file has more
than one path name, only oneis returned.

The access time of each directory in the absolute path name of the file (excluding the file itself) is updated.
If buf isaNULL pointer, QpOlGetPathFromFilel D() returnsa NULL pointer and the EINVAL error.
The contents of buf after an error are not defined.

QpOIGetPathFromFilel D() is supported in the root (/), QOpenSys, and user-defined file systems.

Parameters

buf

(Output) A pointer to abuffer that will be used to hold an absolute path name of the file identified
by fileid. The buffer must be large enough to contain the full path name including the terminating
NULL character.

The path name is returned in the CCSID (coded character set identifier) currently in effect for the
job. If the CCSID of the job is 65535, this parameter is assumed to be represented in the default
CCSID of thejob.

See QlgGetPathFromFilel D()--Get Path Name of Object from Its File ID (using NL S-enabled path
name) for a description and an example of supplying the buf in any CCSID.

Size
(Input) The number of bytes in the buffer buf.
fileid

(Input) The identifier of the file whose path name isto be returned. Thisidentifier islogged in audit
journal entriesto identify the file being audited. See the Parent File ID and Object File ID fields of

the audit journal entries described in the i Series Security Reference @ book.

Authorities

Note: Adopted authority is not used.
Authorization required for QpOlGetPathFromFilel D()

|Object Referred to |Authority Required [errno
|Each directory in the path name preceding the file | *RX |EACCES
[The fileitsalf | "R [EACCES

Return Value

value
QpOlGetPathFromFilel D() was successful. The value returned is a pointer to buf.
NULL

QpOIGetPathFromFilel D() was not successful. The errno global variable is set to indicate the
error. After an error, the contents of buf are not defined.

Error Conditions

If QpOlGetPathFromFilelD() is not successful, errno usually indicates one of the following errors. Under
some conditions, errno could indicate an error other than those listed here.

[EACCES
Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.
If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may

also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

No path names were found for thisfileid or the user is not authorized to any of the paths.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ERANGE]
A range error occurred.

The vaue of an argument istoo small, or aresult too large.

The size argument istoo small. It is greater than zero but smaller than the length of the path name
plusaNULL character.

[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E Filesystem error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. File System Differences

The following file systems do not support QpOlGetPathFromFilel D():

o Network File System

o QSYS.LIB

o #Independent ASP QSYS.LIB 4
o QDLS

o QOPT

o QFileSvr.400

o QNetWare

o QNTC

Related Information

o The<QpOlstdi.h> file (see Header Files for UNIX-Type Functions)

o QlgGetPathFromFilel D()--Get Path Name of Object from Its File ID (using NL S-enabled path
name

Example

The following example determines the path name of afile, givenitsfile ID. In this example, thefileid is
hardcoded. More redlitically, the fileid is obtained from the audit journal entry and passed to
QpOlGetPathFromFilel D().

#i ncl ude <QOl stdi. h>
#i ncl ude <stdio. h>

mai n()

char pat h[1024] ;
QOIFIDt fileid = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x80, OxFF, OxCF, 0x00};

i f (QOl Get Pat hFronFil el D(path, sizeof(path), fileid) == NULL)
perror (" QOl Get Pat hFronFil el D() error");
el se
printf("The file's path is: %\n", path);
}

Output:

The file's path is: /nyfile

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

QpOIlOpen()--Open File

Syntax

#i ncl ude <QO0Il stdi. h>

int Ol Open(Q@ g Path_Nanme T *Pat h_Nane,
int oflag, . . .);

Theadsafe: Conditional; see Usage Notes on open() API.

The QpOlOpen() function, similar to the open() function, opens afile and returns a number called afile
descriptor. QpOlOpen()differs from open() in that the Path_Name parameter is a pointer to a
Qlg_Path_Name T structure instead of a pointer to a character string.

Only the Path_Name parameter is described here. For a discussion of the other parameters, authorities
required, return values, and related information, see open()--Open File.

Note: To usethis API with large file APIs, you must specify the O_LARGEFILE flag on the oflag
parameter.

Parameters

Path_Name

(Input) The path name of the file to be opened. This path nameisin the Qlg_Path Name T format.
For more information on this structure, see Path Name Format.

Related Information

o The<fentl.h> file (see Header Files for UNIX-Type Functions)

« open()--Open File
o close()--Close File or Socket Descriptor

Example

The following example creates and opens an output file for exclusive access. This program was stored in a
source file with CCSID 37, so the constant string "newfile" will be compiled in coded character set
identifier (CCSID) 37. Therefore, the country or region and language specified are United States English,
and the CCSID specified is 37.

#i ncl ude <fcntl. h>
#i ncl ude <stdi o. h>
#i ncl ude <QOl stdi. h>

mai n()
int fildes;

const char US const[3]= "US";
const char Language_const[4] ="ENU';
const char Path_Nane Del const[2] = "/";

struct pnstruct

Qg Path Name T glg struct;
char pn[7];

1
struct pnstruct pns;

struct pnstruct *pns_ptr = NULL;

char fn[]="newfile";

menset ((voi d*) &ns, 0x00, sizeof (struct pnstruct));
pns. gl g struct.CCSID = 37,
mencpy(pns. gl g_struct. Country | D, US const, 2);
mencpy(pns. gl g_struct. Language_| D, Language_const, 3) ;;
pns. gl g struct.Path_Type = O;
pns. gl g struct.Path _Length = sizeof(fn) - 1;
mencpy(pns. gl g _struct. Path Nane Deliniter,

Pat h_Nanme_Del const, 1);
mencpy(pns. pn, fn, si zeof (fn));

pns_ptr = &pns;
if(fildes = Ol Open((Q g_Path Nanme T *)pns_ptr,

O VWRONLY| O_CREAT| O EXCL, S IRWKU)) == -1)
{

perror (" QOl Open() error");
}

API introduced:; V4R4

Top | UNIX-Type APIs| APIs by category

QpOIProcessSubtree()--Process a Path Name

Syntax

#i ncl ude <QOI stdi. h>

i nt QoOl ProcessSubtree (

Qg _Path_Name T *Pat h_Nane,

ui nt Subtree_I evel,

QOl _Cbjtypes_List_t *Qbjtypes_array_ptr,

ui nt Local _renote_obj,

QOIl _IN EXclusion_List_t *IN_EXclusion_ptr,

ui nt Err_recovery_action,

QOIl _User _Function_t *User Function_ptr,

voi d *Function_CtI Bl k_ptr, ...);

Service Program Name: QPOLLIB2
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QpOIProcessSubtree() function searches the directory tree under a specific path name. It selects and
passes objects, one at atime, to an exit program that isidentified on its call. The exit program can be either
aprocedure or a program.

QpOIProcessSubtree() performs recursive read operations to access any object in any file system. The
order in which objects are selected and passed to the exit program can vary within a given file system and
within a given directory, dependent on file system rules. The only guaranteed ordering is that all selected
objects within agiven directory are passed to the exit program before the parent directory is passed to the
exit program.

Parameters

Path_Name

(Input) The path name where QpOIProcessSubtr eg() starts its search. All relative path names are
relative to the current directory at the time of the call to QpOIProcessSubtree(). This path nameis
in the Qlg_Path_Name T format. For more information on this structure, see Path Name Format.
The Path_Name parameter must be NULL to use the IN_EXclusion_ptr parameter to enter multiple
path names for inclusion on a single call to QpOlProcessSubtreg().

Subtree level

(Input) An unsigned integer that tells QpOIProcessSubtreeg() whether or not to open subdirectories
in the path being processed. Valid values follow:

0

QPOL_SUBTREE_YES: All subdirectories are opened by QpOIProcessSubtree() so that
the objects they contain are sent to the exit program if they meet the caller's selection

criteria.

QPOL_SUBTREE_NO: Only first-level objects are processed. The names of
subdirectories, which meet the selection criteria, are passed to the exit program, but they
are not opened by QpOIProcessSubtree(). Thus, the objects the subdirectories contain are
not matched against selection criteria and therefore are not sent to the exit program.

Objtypes array_ptr

(Input) A pointer to an array of object types. Each entry in the array identifies an object type that
QpOIProcessSubtree() 2 uses to determine what will be passed to the exit program. The <&
Number of object types field contains the total number of object typesin the array. A NULL
pointer means that there is no filtering according to object type and that all object types that meet
other selection criteria are passed to the exit program.

The structure for this parameter follows.

Object Types ArrayPointer

| Offset
IDec [Hex |Type Field
| 0 | 0 |BINARY(4) |Number of object types
4 4 |[ARRAY(*) of [Array of object types structure
’ ’ CHAR(11)

Array of object types structure

An array identifying each object type #* used to determine what will be passed to the exit
program X when processing a path. Each entry islimited to 11 characters, including a
NULL terminator, and is padded with blanks. Object types must be entered in standard
0OS/400 abject type format whichis all capital letters, preceded by an asterisk (*). For a
complete list of the available object types, see Object Typesin the CL topic.

QpOIProcessSubtree() verifies that valid OS/400 object types are entered and returns the
errno EINVAL when an object type that is not valid is entered. Although some object types
are scoped to a specific file system, QpOIProcessSubtree() does not validate object types
according to file systems.

Valid special valuesfor this parameter follow:
*ALLDIR:

Select all directory object types. Thisincludes*LIB, *DIR, *FLR, *FILE, and
*DDIR object types.

3+ ALLQSYS:

Select all QSY S.LIB object types. Thisincludes all objectsin the QSYS.LIB file
system and all independent ASP QSY S.LIB file systems which are available when
the APl isfirst called.

Note: IN_EXclusion _ptr must also be specified as an inclusion array. If *NOQSY S
is specified, *ALLQSY S cannot also be specified. &

*ALLSTMF:

Select all OS/400 stream file object types. Thisincludes*MBR, *DOC, * STMF,
*DSTMF, and * USRSPC object types.

*MBR:
Select all OS/400 database file member types.

B*NOQSYS:

Exclude al QSY S.LIB object types. Thisincludes al objectsin the QSYS.LIB file
system and all independent ASP QSY S.LIB file systems which are available when
the API isfirst called.

Note: This special value only has meaning if '/* or '/asp_name' is specified for the
Path_Name parameter (where asp_name is the name of an independent ASP which
isavailable when the APl isfirst called). Additionally, if IN_EXclusion_ptr is
specified, it must only be as an exclusion array. If *ALLQSY Sis specified,
*NOQSY S cannot also be specified. &

Number of object types
The number of typesincluded in the search.

Local_remote_obj

(Input) An unsigned integer that tells QpOl ProcessSubtreg() whether to select only local objects,
only remote objects, or both. Note that the decision of whether afileislocal or remote varies
according to the respective file system rules. Objectsin file systemsthat do not carry either alocal
or remote indicator are treated as remote. Valid values follow:

0
QPOL_LOCAL_REMOTE_OBJ: Both local and remate objects are passed to the exit
program.

1
QPOL_LOCAL_OBJ: Only local objects are passed to the exit program.

2

QPOL_REMOTE_OBJ: Only remote objects are passed to the exit program.

IN_EXclusion_ptr

(Input) A pointer to an array of pointers. Each pointer in the array points to a specific path name
that identifies a directory, and all of its subdirectories, that QpOlProcessSubtree() either includes
or excludesin its search to find objects that meet the caller's input criteria. If this pointer is not
NULL, the IN_EXclusion pointer type must indicate whether the list is an inclusive or exclusive
list. The Number of pointers field must contain the number of path names for inclusion or exclusion
on the search.

Use an inclusive list to specify multiple path names for searches on asingle call to
QpOIProcessSubtree() versus using the Path_Name parameter, which searches only one path per
call. The Path_Name parameter and an inclusive list are mutually exclusive. EINVAL isreturned if
both parameters are specified. The IN_EXclusion_ptr must be NULL if not used. All of therules
that apply to asingle Path_Name entry apply to each inclusive list entry.

While aninclusion list allows the caller of QpOIProcessSubtreg() to identify multiple path names

for processing, QpOIProcessSubtree() does not perform any verification to ensure uniqueness of
path names or to verify any other relationship between path names entered in the inclusion array.
For example, if the path names entered represent nested directories, QpOlProcessSubtree() calls
the exit program multiple times without any error message or other natification of this nesting.

Specify the root directory for a given file system as an exclusive list entry to eliminate that file
system from a search.

All relative path names are relative to the current directory of the job that calls
QpOIProcessSubtree().

The structure for this parameter follows.

IN_EXclusion Pointer.

This pointsto alist of path namesto either include or exclude from a search.

| Offset

IDec [Hex |Type Field

| 0 | 0 |BINARY(4) |IN_EXclusion pointer type
| 4 | 4 |BINARY(4) |Number of pointers

[8 [8 [CHAR® |Reserved

| 16 | 10 |ARRAY(*) |Path name pointers

IN_EXclusion pointer type

Whether a path name array contains directories that are included or contains directories that
are excluded. Valid values follow:

0
QPOL_INCLUSION_TYPE: Aninclusion array isidentified.

QPOL_EXCLUSION_TYPE: An exclusion array isidentified.
Number of pointers
The number of path name pointers that are in the inclusion or exclusion array.
Path name pointers

An array of pointers. Each pointer points to a path name that isincluded or excluded. Each
path name must follow the Qlg_Path Name_T structure. For more information on this
structure, see Path Name Format.

Reserved
A reserved field. Thisfield must be set to binary zero.

Err_recovery_action

(Input) An unsigned integer that describes how QpOIProcessSubtreg() handles errors that are not
severe enough to force the API to end processing. Valid values follow:

0
QPOL_PASS WITH_ERRORID: Cdlsthe exit program and specifies the name (when

the name is available) of the object being accessed when an error occurs. This value also
sends avalid errno to the exit program.

QPOL_BYPASS NO_ERRORID: Bypasses the object being accessed when an error
occurs, and moves to process the next object in the tree without notification to the calling
program or to the exit program that an error has occurred.

QPOL_JOBLOG_NO_ERRORID: Sends message CPDA1CO to thejob log to identify
the object being accessed when an error occurs. This value returns to process the next
object without notification to the calling program or to the exit program that an error has
occurred.

QPOL_NULLNAME_ERRORID: Callsthe exit program with aNULL object name and
avaliderrno.

QPOL_END_PROCESS SUBTREE: Quits QpOIProcessSubtree() when an error occurs,
and returns to the calling program, regardless of the error type. Note that the exit program
isstill given acall but cannot override the caller's decision to end processing. Calling the
exit program allows the exit program to perform other tasks before the API returnsto the
caller. For example, the exit program can put information in the function control block that
can be processed by the caller when the caller regains control.

UserFunction_ptr

(Input) A pointer to the name of an exit program that the caller wants QpOI Pr ocessSubtreg() to call
upon finding an object that matches the selection criteria. This exit program can be either a
procedure or a program. See #* Process a Path Name Exit Program % for the syntax of the user exit

program.

The structure for this parameter follows.

User Function Pointer.

This points to the user exit program. The exit program can be a procedure or a program.

| Offset ’

IDec [Hex |Type Field

| 0 | 0 |BINARY(4) |Functiontypeflag

| 4 | 4 |CHAR(10) |Program library

| 14 | E |CHAR(10) |Program name

| 24 | 18 |CHAR() IMultithreaded job action

[25 [19 [CHAR() |Reserved

| 32 | 20 |PP(*) |Procedure pointer to the exit procedure

Function type flag

An unsigned integer that indicates whether the user-supplied exit program that is called by

QpOIProcessSubtree() is aprocedure or aprogram. Valid values follow:

0

QPOL_USER_FUNCTION_PTR: A user procedureiscalled.

QPOL_USER_FUNCTION_PGM: A user programis called.

Multithreaded job action

(Input) A CHAR(L) value that indicates the action to take in a multithreaded job. The
default valueis QPOL_MLTTHDACN_SY SVAL. For release compatibility and for
processing this parameter against the QMLTTHDACN system vaue, x'00, x'01', x'02', &
x'03" are treated as X'FO', X'F1', X'F2', and x'F3'. Valid values follow:

X'00'

x01

x02'

X'03'

QPOL_MLTTHDACN_SYSVAL: The API evaluates the QMLTTHDACN system
value to determine the action to take in amultithreaded job. Although the API can
make repetitive callsto an exit program, the system value is evaluated once before
QpOIProcessSubtree() issuesits first exit program call. Thisvalueis used on
subsequent calls until the API returns control toits caller. Valid QMLTTHDACN
system values follow:

lll
Cdll the exit program. Do not send an informational message.

l2|
Call the exit program. Send informational message CPI3C80.
QpOIProcessSubtree() may call the exit program multiple times; however,
this message is sent only once for each call to QpOl ProcessSubtree().

l3l

The exit program is not called when the API determinesthat it is running
in amultithreaded job. ENOTSAFE is returned.

QPOL_MLTTHDACN_NOMSG: Call the exit program. Do not send an
informational message.

QPOL_MLTTHDACN_MSG: Cal the exit program. Send informational message
CPI3C80. QpOIProcessSubtree() may call the exit program multiple times;
however, this message is sent only once for each call to QpOl ProcessSubtree().

QPOL_MLTTHDACN_NO: The exit program is not called when the API
determines that it is running in a multithreaded job. ENOTSAFE is returned.

Procedure pointer to the exit procedure

A procedure pointer to the procedure that QpOIProcessSubtree() calls. Thisfield must be
NULL if aprogramiscalled instead of a procedure.

Program library

Thelibrary in which the called program, identified by Program name, islocated. Thisfield
must be blank if aprocedureis called instead of a program.

Program name

The name of the program that is called. The program islocated in the library identified by
Program library. Thisfield must be blank if a procedureis called instead of a program.

Reserved
A reserved field. Thisfield must be set to binary zero.

Function_CtIBIk_ptr

(Input) A pointer that QpOIProcessSubtree() passes to the user-defined exit program that is called.
QpOIProcessSubtree() does not process this pointer or what is referred to by the pointer. It passes
the pointer as a parameter to the user-defined exit program that was specified. Thisis a means for
the caller of QpOIProcessSubtreg() to pass information to and from the Process a Path Name exit
program.

Authorities

Note: Adopted authority is not used.

Authorization Required for

QpOIProcessSubtree()
Object Referred to Authority Required errno
Each directory, preceding the last component, in a Path Name *X EACCES
The Path Name directory and all subdirectories of the Path Name *RX EACCES
that are included in the search.
Each directory, preceding the last component, in any path name *X EACCES
pointed to by the IN_EXclusion ptr
The Path Name directory and al subdirectories of any path name *RX EACCES
pointed to by an inclusive list
Any called program pointed to by the User Function_ptr parameter *X EACCES
Any library that contains the called program pointed to by the *X EACCES

UserFunction_ptr parameter

Return Value

0
QpOIProcessSubtree() was successful.
-1
QpOIProcessSubtree() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOIProcessSubtree() is not successful, the errno indicates one of the following errors:
[EACCES

Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may
also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.
In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]

[EIO]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[EISDIR]
Specified target is adirectory.

The path specified named a directory where afile or object name was expected.

The path name given is adirectory.
[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symbolic links encountered is more than POSIX_SY MLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]
Too many open files for this process.
An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.
The process has more than OPEN_MAX descriptors aready open (see the sysconf() function).
[ENAMETOOLONG]
A path name istoo long.
A path name islonger than PATH_MAX characters or some component of the name islonger than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENFILE]
Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.
[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.
[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.
[ENOSYSRSC]
System resources not available to complete request.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.
[ENOTDIR]
Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

The following message may be sent from this function:
Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPFAOD4 E File system error occurred. Error number & 1.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root

QOpenSys

User-defined

QNTC

QSYS.LIB

#* Independent ASP QSYS.LIB 4
QOPT

2. If the exit program called by QpOIProcessSubtreg() is hot threadsafe or uses a function that is not
threadsafe, then QpOIProcessSubtreg() is not threadsafe.

3. If the exit program called by QpOIProcessSubtreg() uses afunction that fails when there are
secondary threads active in the job, QpOIProcessSubtree() may fail as aresult.

4. Basic function and usage considerations

o0 QpOIProcessSubtree() does not perform the following tasks but is designed to work with
the user exit function and other APIsto be useful in accomplishing the following and other

tasks:

Retrieve object attributes (like authorities, dates, or sizes).

Build lists from selected objects.

Delete directories.

Identify multiple occurrences of an object within or across directories.
Count the number of objectsin adirectory.

o DosSetRelMaxFHY() is called to increase to the maximum the number of file descriptors
that can be opened during processing such that QpOIProcessSubtreg() is not likely to fall
dueto alack of descriptors. Thisvalueis not reset when QpOIlProcessSubtreeg() ends
because the API could be running in a multithreaded job.

5. Object locking

QpOIProcessSubtree() does not perform any object locking, other than what is done when opening
adirectory to read the objectsit contains, so that the exit program does not encounter or need to
manage locks held by QpOIProcessSubtreg(). Once QpOlProcessSubtree() has started searching a
path, the addition, deletion, or removal of mounted directories or objects may not have any effect

on the results of the search.

If QpOIProcessSubtree() encounters a directory that is locked, QpOIProcessSubtree() uses the
defined Err_recovery_action to determine how to handle the locked condition. Locks on objects
that are not directories have no effect on QpOIProcessSubtree().

6. Design considerations for parameters

1. Symboalic links

When the last component of the path name supplied on the initial call of
QpOIProcessSubtree() isasymbolic link, QpOIProcessSubtreg() resolves and follows the
initial link to its target and performs its normal functions on the target. All other symbolic
links that are encountered in the same search are not resolved to their targets.

If the path name supplied on the initial call of QpOIProcessSubtree() isasymbolic link
that points to another file system or that points to a remote file system, the API resolves
and processes the initial link only. It does not resolve other symbolic links that are
encountered in the same search. However, if the caller specified that remote objects are not
processed, but the initial path name (whether a symbolic link or not) pointsto aremotefile
system, the link is not resolved. QpOIPr ocessSubtree() calls the exit program with a
NULL path name and an indicator that QpOIProcessSubtreg() has completed successfully
without any error indicators to the exit program.

When * SYMLNK is specified as part of the selection criteria, QpOIProcessSubtr eg() does
not resolve the selected names.

2. Recovery Actions

There are three separate parameters that control error recovery during a search. The caller
of the API determines how an error should be reported to the exit program by setting the
Err_recovery_actions parameter. The API sets the Selection status pointer and sends it to
the exit program to indicate one of four conditions. the API search statusis OK, the last
object has been processed, the APl has encountered recoverable errors, or the search cannot
continue. For error conditionsit also sends avalid errno. The exit program returns an
indicator back to the API either to continue or to end the search by setting the Return value
pointer. For error conditions, it also returns avalid errno, pointed to by the Return value
pointer. Each time QpOIProcessSubtr eg() regains control from the exit program, it
determines whether the search should continue or end by evaluating the
Err_recovery_actions parameter, its Selection status pointer, and the Return value pointer.
Upon ending, QpOIProcessSubtree() returns O to indicate a successful search, or a-1 and
an errno to indicate the error condition. This errno may have been set by the exit program
(Return value pointer).

Thiserror recovery design alowsfor flexibility in handling errors between the caller, the
API, and the exit program. Whenever an unrecoverable error occurs, if possible, the exit
programis given afinal cal; this call allows the exit program to do such tasks as cleanup
or to put information in the function control block, or to record information about the error.
However, the exit program cannot decide that the search should continue. The API will
return to its caller when it regains control. There are only two specific instances in which
the API determines that the exit program is not called:

= When the API cannot resolve the exit program name or its authorization.

= When input parameters are missing or specified incorrectly. (The API returns
EINVAL to the caller before any other processing.)

Following is adiagram showing the flow and relationship of these parameters.

Process a
FPath Mame
Fecay ery selection
Ations status
and
BrIMO
[MPLUT
QLUTPUT
BIFN0 f— Return walue
Fointer

(0,-1, orvalid errno)

Scenarios

Following are scenarios showing calls and the results of calls to QpOIProcessSubtreg(). Directory
Structure A and Directory Structure B define the input directory structure for these scenarios.

Figure: Directory Structure A

]
_a]
HI:- \ C
(x) (t)
(v) ()

This directory structure represents three subdirectories (a, b, c), three objects (x, y, z), and a symbolic link

(0).

Figure: Directory Structure B

J

C

(t 4\\ \
~ A

d]| e (v) _f
FN N

(u) v) (W) (2)

Thisdirectory structure represents six subdirectories (a, b, ¢, d, €, f) and seven objects (t, u, v, w, X, y, 2).

Scenario 1

This scenario assumes processing a directory as shown by Directory Sructure A in Figure above.

This scenario shows acall to the APl without any criteriato filter the selection of objectsin the path being
searched. If the API call were coded with the parameter values as shown by Input value in Scenario 1 AP

Input, the exit program would be called nine times and would pass the object names as shown by the Object
Name Pointer in Results of acall. Because QPOL_SUBTREE_YESis specified, all of the directoriesin the

path will be opened and the name of all the objects that they contain will be passed to the exit program.
Note that the only guaranteed order is that parent directories are passed to the exit program after all of their
children.

Figure: Scenario 1 API Input

Input Parameter Input value

*Path_Name 'I' (I' processes every directory on the system and is not recommended if
performance is a consideration)

Subtree |evel QPOL_SUBTREE_YES

*Objtypes array_ptr | NULL

Local_remote_obj QPOL_LOCAL_REMOTE_OBJ

*IN_EXclusion_ptr NULL

Err_recovery_action QPOL_PASS WITH_ERRORID

*UserFunction_ptr | QPOL_USER_FUNCTION_PTR

*Function_CtIBIk ptr | NULL

Figure: Results of a call

Exit Program Call Count | Object Name Pointer

1 lalbly

2 lalb

3 falx

4 falt

5 lalclz

6 lalc

7 la

8 /

9 NULL path name (indicates the APl compl eted)
Scenario 2

This scenario assumes processing a directory as shown by Directory Sructure A in the Figure above.

This shows a call to the API with the Subtree level parameter set to retrieve only one level, without any
object filtering. Since QPOL_SUBTREE_NO is specified, the names of all objectsin the path will be
passed to the exit program, however, none of the directories will be opened. Thisallows acaller to perform
tasks such asidentifying all of the root objects for afile system. For example, thiswould identify al of the
first level folders, when processing against the QDL S file system. Then the API can be called recursively
from within the exit program, with each of these folders specified as the path to be searched.

If the API call were coded with the parameter values as shown by Input value in Scenario 2 API Input, the
exit program would be called six times and would pass the object names as shown by the Object Name

Pointer in Results of acall.

Figure: Scenario 2 API Input

Input Parameter Input value
*Path_ Name ‘fa
Subtree level QPOL_SUBTREE_NO

*QObjtypes_array_ptr | NULL

Loca_remote_obj QPOL_LOCAL_REMOTE_OBJ

*IN_EXclusion_ptr NULL

Err_recovery action QPOL_PASS WITH_ERRORID

*UserFunction_ptr | QPOL_USER_FUNCTION_PTR

*Function_CtIBIk_ptr | NULL

Figure: Results of a call

Exit Program Call Count | Object Name Pointer

1 lalb

2 lalx

3 /alt

4 lalc

5 la

6 NULL path name (indicates the APl completed)
Scenario 3

This scenario assumes processing a directory as shown by Directory Sructure B in the Figure above.

This scenario represents acall to the API with an inclusion list. Note that the Path Name parameter is not
used as the starting directory since each entry in an inclusion list istreated as a starting directory.

If the API call were coded with the parameter values as shown by Input value in Scenario 3 API Input, the
exit program would be called six times and would pass the object names as shown by the Object Name

Pointer in Results of acall.
Note that /a/b/c/d/v could be returned before /alb/c/d/u, as shown in this scenario, since childrenin a

directory can be returned in any order. The only guaranteed order is that the exit program is called with all
children objects before being called with the parent to allow the exit program to delete directoriesif desired.

Figure: Scenario 3 API Input

Input Parameter Input value
*Path_Name NULL (not used with aninclusion list)
Subtree level QPOL_SUBTREE_YES

*Objtypes array ptr | *DIR'*STMF'

Loca_remote_obj QPOL_LOCAL_OBJ

*IN_EXclusion_ptr | QPOL_INCLUSION_TY PE, "/alblc/d/" ‘/alblclel

Err_recovery_action QPOL_PASS WITH_ERRORID

*UserFunction_ptr QPOL_USER_FUNCTION_PTR

*Function_CtIBIk_ptr | NULL

Figure: Results of a call

Exit Program Call Count | Object Name Pointer

1 lalblc/div

2 lalblc/diu

3 lalblc/d

4 lalblclelw

5 lalblclel

6 NULL path name (indicates the APl completed)
Scenario 4

This scenario assumes processing a directory as shown by Directory Sructure B in the Figure above.

This scenario represents a call to the APl with an exclusion list. Note that each relative entry in the
exclusion list isresolved relative to the current working directory at the time the API is called. This
scenario assumes that the current working directory is/alb/.

If the API call were coded with the parameter values as shown by Input value in Scenario 4 API Input, the

exit program would be called eight times and would pass the object names as shown by the Object Name
Pointer in Results of acall.

This scenario also shows that children in adirectory can be returned in any order. The only guaranteed
order isthat the exit program is called with al children objects before being called with the parent to allow
the exit program to delete directories if desired.

Figure: Scenario 4 API Input

Input Parameter Input value
*Path_Name ‘falbl'
Subtree level QPOL_SUBTREE_YES

*Objtypes array_ptr | *DIR'*STMF'

Local_remote_obj QPOL_LOCAL_OBJ

*IN_EXclusion_ptr QPOL_EXCLUSION_TYPE, 'c/d/' 'clef!

Err_recovery_action QPOL_PASS WITH_ERRORID

*UserFunction_ptr QPOL_USER_FUNCTION_PTR

*Function_CtIBIk_ptr | NULL

Figure: Results of a call

Exit Program Call Count | Object Name Pointer
1 lalblt

2 lalblcly

3 lalblclflz

4 lalblclf

5 lalblc/x

6 lalblc

7 lalb

8 NULL path name (indicates the APl completed)

Related Information

o The<QpOlstdi.h> file (see Header Files for UNIX-Type Functions)

The <qlg.h> file (see Header Files for UNIX-Type Functions)

QlgProcessSubtree()--Process a Path Name (using NL S-enabled path name)

o #* Process a Path Name Exit Program 4%

Example

See Code disclaimer information for information pertaining to code examples.

Following is a code example showing a call to the QpOIProcessSubtree() APl with a procedure as the exit
program:

/***/
/***/

#i ncl ude <Ol stdi. h>
#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <qt gi conv. h>

void Obj Print_Function

(ui nt *Sel ection_stat us_pointer,

ui nt *Error_val ue_pointer,

ui nt *Ret ur n_val ue_poi nter,

Q g Path_Nanme T *Qbj ect _name_poi nter,

voi d *Function_control bl ock _pointer)
{/**/
/* This exit program exanple prints the nanes, one at a tine, */
/* of each entry in a directory structure that it receives on */
/* each call from QOI ProcessSubtree(). */

/**/

#defi ne PATH TYPE PO NTER 0x00000001 /* If this flag is on, */
/* the glg structure contains a */
/* pointer to the path nane. */
/* Otherwise, the path nane is in */
/* contiguous storage within the */
/* glg structure. */

typedef union pn_input _type

H

char pn_char _type[256]; [* path name is in */
/* contiguous storage */
char *pn_ptr_type; /* path name is a pointer */

t ypedef struct pnstruct

b

Qg Path Nane T ql g_struct;
uni on pn_i nput _type pn;

struct pnstruct *pns;
char *path_ptr;

size t insz;
size_t outsz = 1000;

char
char

out buf [1000] ;
*out buf _ptr;

i conv_t cd;
size t ret _iconv;

Q@ gCode_T t oCode
Q@ gCode T fronmCode

if

i f
{

pat

{37,0,0,0,0,0};
{61952, 0,0, 1, 0, 0} ;

*Sel ection_status_pointer == QPOL_SELECT (K)

(Obj ect _nane_pointer != NULL)

/**/

/* Point to the pathname and get the size of the pathnane */
/* that was sent fromthe Ol ProcessSubtree() API. The */
/* format of the pathnane nust be deternined by evaluating */
/* Path_Type in the glg structure. */

/**/
pns = (struct pnstruct *)Cbject_nane_pointer;
if (Object _name_pointer->Path _Type & PATH TYPE PO NTER)

{
h_ptr = pns->pn.pn_ptr_type;
}

el se

path_ptr = (char *)(pns->pn.pn_char _type);
}

insz = pns->ql g_struct. Path_Lengt h;

/**/

/[* Initialize the print buffer. */
/**/
out buf _ptr = (char *)out buf;

menset (out buf _ptr, 0x00, insz);

/**/

/* Use iconv to convert from 61952 to the job CCSID. */
/* REMEMBER iconv will change the data that it receives. */

/**/

cd = /* Open the conversion descriptor.*/
Q gl convOpen(& oCode,
&f r omCode) ;
if (cd.return_value == -1)

{

/***/

/* 1f conversion descriptor was not opened successfully, */
/* return an error and errno (ECONVERT) to the API. */

/***/

*Ret urn_val ue_poi nter = errno;

return;
}
ret _iconv = /* Performthe conversion.*/
(iconv(cd,
(char **)&(path_ptr),
& nsz,
(char **)&(outbuf ptr),
&out sz));
if (ret_iconv !'= 0)
{/***/
/* |If the conversion failed, close the conversion */
/* descriptor and return an error and errno (ECONVERT) */
/* to the API. */

/***/

ret _iconv= iconv_close(cd);
*Ret urn_val ue_poi nter = errno;
return;

}

/**/

/* Print the nane of the object being processed and cl ose */
/* the conversion descriptor. */

/**/

printf("In User Exit Program Path is %.\n", outbuf);
ret _iconv = iconv_close(cd);

} /* end Qbject _nanme_pointer != NULL */
el se

printf"ln User Exit Programwith a null Pathname \n");

}
} /* end *Sel ection_status_pointer == QPOL_SELECT K */

*Ret urn_val ue_pointer = 0;

} /* end Exit program */

int main (int argc, char *argv[])
{
#define MYPN "/ TestDir"
const int zero = O;
const char US const[3]= "US";
const char Language_const[4] ="ENU";

const char Path_Nane Del const[2]= "/";
const char LibGObj const[12]= "*LIB "
typedef struct pnstruct

Qg Path Nane T qlg_struct;

char pn[50]; /* Must be greater than */
/* or equal the length */
/* of the path nane. */
b

struct pnstruct pns;
0Ol _Objtypes List t MyQbj _types;
QO0l User_Function_t User function;

struct
t .
ui nt AnyData_to_the_exitprogram
ui nt AnyDat a_not _processed by the API;

} Ctl Bl kAreaNane;

int rc;

/***/
/* In this exanple, the pathnane is defined by MYPN as TestDir */
/* and it is assuned that the TestDir directory exists on the */
/* system Various other functions or other routines could be */

/* included here to (for exanple): */
/* 1) determ ne the begi nning search directory. */
/* 2) construct the path name in the correct format. */
/* 3) others... */

/***/

/***/
/***/
/* Initialize Ol ProcessSubtree() APl Paraneters */
/***/
menset ((voi d*) &ns, 0x00, sizeof (struct pnstruct));

pns. gl g struct.CCSID = 37;

mencpy(pns. gl g _struct. Country | D, US const, 2);

mencpy(pns. gl g_struct. Language_| D, Language_const, 3);

pns. gl g struct.Path_Type = zero;

pns. gl g struct.Path_Length = sizeof (MYPN)-1;

mencpy(pns. gl g _struct. Path Nane Deliniter, Pat h_Name Del const, 1);
mencpy(pns. pn, MYPN, si zeof (MYPN)) ;

MyQbj types. Number OF _Chjtypes = zero;

menset ((void *)&User function, 0x00, sizeof (@Ol _User Function t));
User function. Function_Type = QPOL_USER FUNCTI ON _PTR;

User function. Mtthdacn[0] = QPOL_M.TTHDACN NOVEG

User function. Procedure = & bj Print_Function;

if (rc = QOIl ProcessSubtree((Q g Path Nane T *)&pns,
QPOL_SUBTREE_YES,
(QpOlI _Ohjtypes List t *)NULL,
QPOL_LOCAL_REMOTE_OBJ,
(QpOI _I'N EXcl usion_List_t *)NULL,
QPOL_PASS W TH_ERRORI D,
&User function,
&Ct | Bl kAr eaNanme) == 0)

printf("QOl ProcessSubtree() Successful : error = %\ n", errno);

}

el se
{/*unsuccessful return from QOI ProcessSubtree() APl */
printf("ERROR on QOI ProcessSubtree(): error = %\ n", errno);
perror("Error nessage");

}

} /* end main */

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

QpOIRenameKeep()--Rename File or Directory,
Keep "new" If It EXists

Syntax

#i ncl ude <QO0Il stdi. h>

i nt Ol RenaneKeep(const char *old, const char *new);
Threadsafe: Conditional; see Usage Notes.

The QpOlRenameK eep() function renames afile or adirectory specified by old to the name given by new.
The old pointer must specify the name of an existing file or directory. Both old and new must be of the
same type; that is, both directories or both files. old and new must not end in "dot" (.) or "dot-dot" (..).

If new already exists, QpOlRenameK eep() fails with the [EEXIST] error.

If the old argument points to a symboalic link, the symbolic link is renamed. QpOlRenameK eep() does not
affect any file or directory named by the contents of the symbolic link. *See Usage Notes for more

information. <

When QpOlRenameK eep() is successful, it updates the change and modification times for the parent
directories of old and new.

If the old object is checked out, QpOlRenameK eep() fails with the [EBUSY] error.

Parameters

old
(Input) A pointer to the null-terminated path name of the file to be renamed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

See QlgRenameK eep()--Rename File or Directory, Keep "new" If It Exists (using NL S-enabled
path name) for a description and an example of supplying the old in any CCSID.

new
(Input) A pointer to the null-terminated path name of the new name of thefile.
This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job.

The new file name is assumed to be represented in the language and country or region currently in
effect for the jaob.

See QlgRenameK eep()--Rename File or Directory, Keep "new" If 1t Exists (using NLS-enabled

path name) for a description and an example of supplying the new in any CCSID.

Authorities

Note: Adopted authority is not used.

Figure 1-57. Authorization Required for QpOlRenameK eep() (excluding QSY S.LIB, Zrindependent

ASP QSYS.LIB,% QDLS, and QOPT)

’ Authority

Object Referred to Required |errno
|Each directory in old path name preceding the object to be renamed * X |[EACCES
|Parent directory of old object *WX |[EACCES
’old object if it is adirectory *OBIMGT ’EACCES

+XW

|old object if it isnot adirectory |*OBIMGT |EACCES
|Each directory in new path name preceding the object *X |EACCES
|Parent directory of new object *WX |EACCES

Figure 1-58. Authorization Required for QpOIRenamekK eep() in the QSYS.LIB and #independent

ASP QSYS.LIB File Systems#

Authority
Object Referred to Required |errno
|Each directory in old path name preceding the object to be renamed [*X |EACCES
|Parent directory of old object if the object is a database file member |*OBIMGT [EACCES
Parent directory of the parent directory of old object if the object is adatabase file |*UPD EACCES
member
Parent directory of old object if the object is not a database file member Seethe EACCES
QLIRNMO
AP for
details
|old object if it is a database file member |None |None
old object if it is not a database file member Seethe EACCES
QLIRNMO
API for
details
|Each directory in new path name preceding the object [*X |EACCES
Parent directory of new object Seethe EACCES
QLIRNMO
AP for
details

Figure 1-59. Authorization Required for QpOlRenameK eep() in the QDL S File System

Authority

Object Referred to Required |errno

|Each directory in old path name preceding the object to be renamed *X |EACCES
|Parent directory of old object |* CHANGE [EACCES
[old object [FALL [EACCES
|Each directory in new path name preceding the object *X |EACCES

|Parent directory of new object

[*CHANGE [EACCES

Figure 1-60. Authorization Required for QpOlRenameK eep() in the QOPT File System

Authority
Object Referred to Required |errno
|Volume authorization list for volume to be renamed in a medialibrary device [*ALL |EACCES

|Vo|ume authorization list for volume to be renamed in a stand alone device

[*CHANGE [EACCES

|Vo| ume authorization list for volume containing object to be renamed

[*CHANGE [EACCES

Root directory (/) of volume to be renamed if volume mediaformat is Universal
Disk Format (UDF)

*RWX EACCES

(UDF)

Each directory in old path name preceding the object to be renamed if volume *X EACCES
mediaformat is Universal Disk Format (UDF)

Parent directory of old object if volume mediaformat is Universal Disk Format ~ |*WX EACCES
(UDF)

|OId object if volume mediaformat is Universal Disk Format (UDF) *W EACCES
Each directory in new path name preceding the object if volume mediaformatis [*X EACCES
Universal Disk Format (UDF)

Parent directory of new abject if volume mediaformat is Universal Disk format ~ |*WX EACCES

Object and parent directoriesif volume mediaformat is not Universal Disk format

(UDF)

None None

Return Value

0
QpOIRenameK eep() was successful.
-1

QpOIRenameK eep() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QpOIRenameK eep() is not successful, errno usualy indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.
[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote

systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.
The file specified already exists and the specified operation requiresthat it not exist.

The named file, directory, or path already exists.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EFILECVT]

File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

[EIO]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. May be returned if the directories

preceding the object to be renamed in the old path name are part of new, or if either name refersto
dot or dot-dot.

Input/output error.
A physical I/O error occurred.
A referenced object may be damaged.

[EISDIR]

Specified target isadirectory.
The path specified named a directory where afile or object name was expected.

The path name given is adirectory. New is adirectory, but old is not adirectory.

[EJRNDAMAGE]

Journal damaged.

A journa or al of the journa's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.

This error isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.

A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile_POSIX_NO_TRUNC isin effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJIRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal &

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EMLINK]
Maximum link count for afile was exceeded.

An attempt was made to have the link count of asingle file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

oldisadirectory and the link count of the parent directory of new would exceed LINK_MAX.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

[EXDEV]
Improper link.

A link to afile on another file system was attempted.

old and new identify files or directoriesin different file systems. Links between different file
systems are not allowed.

If interaction with afile server isrequired to access the object, errno could also indicate one of the
following errors:
[EADDRNOTAVAIL]

Address not available.
[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]
A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is nhot available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

= ZIndependent ASP QSYS.LIB 4
= QOPT

2. About the Rename Functions

The integrated file system provides two functions that rename afile or directory. Both rename the
old path name to a new path name. The difference is determined by what happens when new
aready exists:

o If new already exists when using QpOIRenameK eep(), the rename fails with the [EEXIST]
error.

o If new aready exists when using QpOIRenameUnlink(), the existing path name is
unlinked (removed) before old is renamed to new.

These functions are defined in the <QpOlstdi.h> header file. When <Qp0Olstdi.h> isincluded, the
rename() function is defined to be either QpOIRenameUnlink() or QpOlRenameK eep(),
depending on the definitions of the _POSIX_SOURCE and _POSIX1_SOURCE macros:

o When POSIX SOURCE and POSIX1 SOURCE are not defined, rename() is defined to
be QpOIRenameK eep(). Either rename() or QpOlRenamekK egp() can be used to rename a
file or directory with the semantics of QpOlRenameK eep().

o When POSIX_ SOURCE or POSIX1 SOURCE isdefined, rename() is defined to be
QpOIRenameUnlink(). Either rename() or QpOIRenameUnlink() can be used to rename a
file or directory with the semantics of QpOIRenameUnlink().

When the <QpOlstdi.h> header fileis not included, rename() operates only on database filesin the
QSYS.LIB and #* independent ASP QSY S.LIB file systems, €asiit did before the introduction of
the integrated file system.

. QSYS.LIB and #*Independent ASP QSY S.LIB “File System Differences

o When adatabase member is being renamed, the part of the new path name preceding the
object must be the same as that of the old path name. That is, the sequence of "directories’
(library and file) preceding the object in the new path name must be the same as the
sequence of directories preceding the object in the old path name.

o The following object types cannot be renamed when there are secondary threads active in
thejob: *CFGL, *CNNL, *CTLD, *DEVD, *LIND, *NWID. The operation will fail with
error code [ENOTSAFE].

o #*When alibrary is being renamed, the part of the new path name preceding the object
must be the same as that of the old path name. That is, the sequence of "directories’
(/QSYS.LIB or /asp_name/QSY S.LIB, where asp_name is the independent Auxiliary
Storage Pool name) preceding the object in the new path name must be the same as the
sequence of directories preceding the object in the old path name [EINVAL].4

. QDLSFile System Differences

When afolder is being renamed, the part of the new path name preceding the object must be the

same asthat of the old path name. That is, afolder must remain in the same parent folder.

. QOPT File System Differences

Y ou can rename only avolume or afile, not adirectory.

. QFileSvr.400 File System Differences
Y ou cannot rename the first-level directory. For example, you cannot rename Dirl in the path name

/QFileSvr.400/Dir1/Dir2/Object. The first-level directory identifies the target systemin a
communications connection.

. QNetWare File System Differences

The new and old files or directories must exist on the sasme NetWare server. This function cannot
be used to move data from one server to another.

8. ONTC File System Differences

The new and the old files or directories must exist on the same Windows NT server. This function
cannot be used to move data from one server to another.

9. #Root (/) and User-defined File System Differences

If the file being renamed isin the root file system or in a monocase user-defined file system, and
the file system has the * TY PE2 directory format, and both old and new refer to the same link, but
their case is different (eg. /ABC and /Abc), QpOlRenameUnlink() changes the link name to the new
name.<%

Related Information

» The<stdio.h> file (see Header Files for UNIX-Type Functions)
o The<QpOlstdi.h> file (see Header Files for UNIX-Type Functions)
« pathconf()--Get Configurable Path Name Variables

« rename()--Rename File or Directory

« OlgRenameKeep()--Rename File or Directory, Keep "new" If 1t Exists (using NL S-enabled path
name

o OpOlRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists

Example

When you pass two file names to this example, it will try to change the file name from the first name to the
second using QpOlRenamekK eep().

#i ncl ude <QOIl stdi. h>
int main(int argc, char ** argv) {

if (argc !'=3)
printf("Usage: % old_fn new fn\n", argv[O0]);
else if (Ol RenaneKeep(argv[1l], argv[2]) '=0
perror ("Could not renanme file");

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

QpOIRenameUnlink()--Rename File or Directory,
Unlink "new" If It Exists

Syntax

#i ncl ude <QO0Il stdi. h>

i nt Ol RenaneUnl i nk(const char *old, const char *new);
Threadsafe: Conditional; see Usage Notes.

The QpOlRenameUnlink() function renames afile or a directory specified by old to the name given by
new. The old pointer must specify the name of an existing file or directory. Both old and new must be of the
same type; that is, both directories or both files. old and new must not end in "dot" (.) or "dot-dot" (..).

If new already exists, it is removed before old is renamed to new. Therefore, if new specifies the name of an
existing directory, the directory must be empty.

If the old argument points to a symboalic link, the symbolic link is renamed. If the new argument pointsto a
symbolic link, the link is removed and old is renamed to new. QpOlRenameUnlink() does not affect any
file or directory named by the contents of the symbolic link.

If old and new both refer to the same file, QpOIRenameUnlink() returns successfully and performs no
other action. #*See Usage Notes for more information. &

When QpOlRenameUnlink() is successful, it updates the change and modification times for the parent
directories of old and new.

If the old object is checked out, QpOlRenameUnlink() fails with the [EBUSY] error.

Parameters

old
(Input) A pointer to the null-terminated path name of the file to be renamed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

See QlgRenameUnlink()--Rename File or Directory, Unlink "new" If 1t Exists (using NLS-enabled
path name) for a description and an example of supplying the old in any CCSID.

new
(Input) A pointer to the null-terminated path name of the new name of thefile.
This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
jab.

The new file nameis assumed to be represented in the language and country or region currently in

effect for the process.

See QlgRenameUnlink()--Rename File or Directory, Unlink "new" If 1t Exists (using NL S-enabled

path name) for a description and an example of supplying the new in any CCSID.

Authorities

Note: Adopted authority is not used.

Figure 1-61. Authorization Required for QpOIRenameUnlink() (excluding QSYS.L 1B, #*independent

ASP QSYS.LIB, €QDLS, and QOPT)

’ Authority

Object Referred to Required |errno
|Each directory in old path name preceding the object to be renamed *X |[EACCES
|Parent directory of old object *WX |EACCES
old object if it isadirectory *OBIMGT ’EACCES

+xW

|old object if it is not a directory |*OBJMGT [EACCES
|Each directory in new path name preceding the object *X |EACCES
|Parent directory of new object *WX |[EACCES
|New object, if it exists |* OBJEXIST [EACCES

Figure 1-62. Authorization Required for QpOIRenameUnlink() in the QSYS.LIB and #*independent

ASP QSYS.LIB File Systems X

Authority
Object Referred to Required |errno
|Each directory in old path name preceding the object to be renamed [*X |EACCES
|Parent directory of old object if the object is a database file member [*OBIMGT [EACCES
Parent directory of the parent directory of old object if the object is adatabase file |*UPD EACCES
member
Parent directory of old object if the abject is not a database file member Seethe EACCES
QLIRNMO
API for
details
|old object if it is a database file member |None |None
old object if it is not a database file member Seethe EACCES
QLIRNMO
API for
details
|Each directory in new path name preceding the object *X |EACCES
Parent directory of new object Seethe EACCES
QLIRNMO
AP for
details

Figure 1-63. Authorization Required for QpOlIRenameUnlink() in the QDL S File System

Authority
Object Referred to Required |errno
|Each directory in old path name preceding the object to be renamed [*X |EACCES
|Parent directory of old object |* CHANGE |EACCES
[old object [FALL [EACCES
|Each directory in new path name preceding the object [*X |EACCES
|Parent directory of new object |* CHANGE |EACCES
Figure 1-64. Authorization Required for QpOlRenameUnlink() in the QOPT File System

Authority
Object Referred to Required |errno
|Volume to be renamed [*ALL |EACCES
|Volume containing object to be renamed |* CHANGE |EACCES
|Object within volume |None |None

Return Value

0
QpOIRenameUnlink() was successful.
-1
QpOIRenameUnlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QpOIRenameUnlink() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.
Thefile D table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.
Thefile specified aready exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is ot valid, out of range, or NULL. May be returned if the directories

preceding the object to be renamed in the old path name are part of new, or if either name refersto
dot or dot-dot.

[EIO]
Input/output error.

A physical I/O error occurred.
A referenced object may be damaged.

[EISDIR]
Specified target is adirectory.

The path specified named a directory where afile or object name was expected.

The path name given isadirectory. New isadirectory, but old is not adirectory.

[EJRNDAMAGE]
Journal damaged.
A journal or all of the journal's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value alowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.
The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.

Thiserror isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.

A path name islonger than PATH_MAX characters or some component of the name islonger than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

Z[ENEWJIRN]
New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal &

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.
[ENOTEMPTY]
Directory not empty.

Y ou tried to remove a directory that is not empty. A directory cannot contain objectswhen it is
being removed.

The specified directory is not empty.

[ENOENT]

No such path or directory.
The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTDIR]
Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EMLINK]
Maximum link count for afile was exceeded.

An attempt was made to have the link count of asingle file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

old isadirectory and the link count of the parent directory of new would exceed LINK_MAX.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

[EXDEV]
Improper link.

A link to afile on another file system was attempted.

old and new identify files or directories on different file systems. Links between different file
systems are not allowed.

If interaction with afile server isrequired to access the object, errno could also indicate one of the
following errors:
[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]
Connection ended abnormally.
[ECONNREFUSED]
The destination socket refused an attempted connect operation.
[ECONNRESET]
A connection with aremote socket was reset by that socket.
[EHOSTDOWN]
A remote host is not available.
[EHOSTUNREACH]
A route to the remote host is not available.
[ENETDOWN]
The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2E
Error(s) occurred during running of &1 API.
CPFO872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:
o Where multiple threads exist in the job.

o The object on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYS.LIB

= #Independent ASP QSYS.LIB 4
= QOPT

2. About the Rename Functions

The integrated file system provides two functions that rename afile or directory. Both rename the
old path name to a new path name. The difference is determined by what happens when new
aready exists:

o If new already exists when using QpOlRenameUnlink(), the existing path nameis
unlinked (removed) before old is renamed to new.

o If new already exists when using QpOlRenameK eep(), the rename fails with the [EEXIST]
error.

These functions are defined in the <Qp0OIstdi.h> header file. When <Qp0Olstdi.h> isincluded, the
rename() function is defined to be either QpOIRenameUnlink() or QpOlRenameK eep(),
depending on the definitions of the_POSIX_SOURCE and _POSIX1 SOURCE macros:

o When _POSIX_SOURCE or _POSIX1 SOURCE isdefined, rename() is defined to be
QpOIRenameUnlink(). Either rename() or QpOIRenameUnlink() can be used to rename a
file or directory with the semantics of QpOlRenameUnlink().

o When _POSIX_SOURCE and _POSIX1 SOURCE are not defined, rename() is defined to
be QpOlRenameK eep(). Either rename() or QpOlRenameK eep() can be used to rename a
file or directory with the semantics of QpOIRenameK eep().

When the <Qp0Olstdi.h> header fileis not included, rename() operates only on database filesin the
QSYS.LIB and ** independent ASP QSY S.LIB file systems, “asiit did before the introduction of
the integrated file system.

. QSYS.LIB and #*Independent ASP QSY S.LIB #File System Differences

o When adatabase member is being renamed, the part of the new path name preceding the
object must be the same as that of the old path name. That is, the sequence of "directories’
(library and file) preceding the object in the new path name must be the same as the
sequence of directories preceding the object in the old path name. If new already exists,
A[EEXIST] isreturned. &

o The following object types cannot be renamed when there are secondary threads active in
thejob: *CFGL, *CNNL, *CTLD, *DEVD, *LIND, *NWID. The operation will fail with
error code [ENOTSAFE].

o #*When alibrary is being renamed, the part of the new path name preceding the object
must be the same as that of the old path name. That is, the sequence of "directories’
(/QSYS.LIB or /asp_name/QSY S.LIB, where asp_name is the independent Auxiliary
Storage Pool name) preceding the object in the new path name must be the same as the
sequence of directories preceding the object in the old path name. &

. QDLSFile System Differences

When afolder is being renamed, the part of the new path name preceding the object must be the
same asthat of the old path name. That is, afolder must remain in the same parent folder.

If the abject identified by the new path name exists, QDL S returns the [EEXIST] error.

. QOPT File System Differences
Y ou can rename only avolume or afile, not adirectory.

If the object identified by the new path name exists, QOPT returns the [EEXIST] error.

. QFileSvr.400 File System Differences

Y ou cannot rename the first-level directory. For example, you cannot rename Dirl in the path name
/QFileSvr.400/Dirl/Dir2/Object. The first-level directory identifies the target systemin a
communications connection.

7. QNetWare File System Differences

The new and old files or directories must exist on the same NetWare server. This function cannot
be used to move data from one server to another.

8. QNTC File System Differences

The new and the old files or directories must exist on the same Windows NT server. This function
cannot be used to move data from one server to another.

9. #Root (/) and User-defined File System Differences

If the file being renamed isin the root file system or in a monocase user-defined file system, and
the file system has the * TY PE2 directory format, and both old and new refer to the same link, but
their case is different (eg. /ABC and /Abc), QpOlRenameUnlink() changes the link name to the new
name.<%

Related Information

» The<stdio.h> file (see Header Files for UNIX-Type Functions)
o The<QpOlstdi.h> file (see Header Files for UNIX-Type Functions)
« pathconf()--Get Configurable Path Name Variables

« rename()--Rename File or Directory

« OpOlRenameK eep()--Rename File or Directory, Keep "new" If It EXists

o OQlgRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists (using NL S-enabled path
name

Example

When you pass two file names to this example, it will try to change the file name from the first name to the
second using QpOlRenameUnlink().

#i ncl ude <QOIl stdi . h>
int main(int argc, char ** argv) {

if (argc !'=3)
printf("Usage: % old fn new fn\n", argv[O0]);
else if (Ol RenanmeUnlink(argv[1], argv[2]) !'=0
perror ("Could not renanme file");

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

»Retrieve Object References (QPOLROR) API

Syntax

#i ncl ude <qgpOl ror. h>
voi d QPOLROR(

void * Recei ver Ptr,

unsi gned int Recei ver _Lengt h,

char * Format Ptr,

Qg Path Name T * Path Ptr,

void * Error _Code Ptr
)

Default Public Authority: *USE

Threadsafe: Yes

The QPOLROR() API isused to retrieve information about Integrated File System references on an object.

A referenceis an individual type of access or lock obtained on the object when using Integrated File System
interfaces. An object may have multiple references concurrently held, provided that the reference types do
not conflict with one another.

This API will not return information about byte range locks that may currently be held on an object.

Parameters

Receiver Ptr
(Output)

The variable that is to receive the information requested. Y ou can specify the size of thisareato be
smaller than the format requested as long as you specify the length parameter correctly. As aresult,
the API returns only the data that the area can hold.

The format of the output is described by either the ROR0O0100 output format or the RORO0200
output format. See ROR0O0100 Output Format Description or the RORO0200 Output Format

Description for a detailed description of these output formats.

Receiver _L ength
(Input)

The length of the receiver variable. If the length islarger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Format_Ptr
(Input)

Pointer to an 8-byte character string that identifies the desired output format. It must be one of the
following values:

RORO0100 The reference type output will be formatted in a RORO0100 format. See
RORO0100 Output Format Description. Thisformat givesthe caller aquick view
of the object's references.

RORO0200 The reference type output will be formatted in a RORO0200 format. See
RORO0200 Output Format Description. Specifying this format may cause
QPOLROR to be along running operation. The length of timeit will taketo
complete depends on the number of jobs active on the system, and the number of
jobs currently using objects through Integrated File System interfaces.

Path_Ptr
(Input)

Pointer to the path name to the object whose reference information is to be obtained. The path name
must be specified in an NLS-enabled format specified by the Qlg_Path_Name structure. For more
information on the Qlg_Path_Name_T structure, see Path name format.

If the last element of the path is a symboalic link, the QpOIROR() function does not resolve the
contents of the symbolic link. The reference information will be obtained for the symbolic link
itself.

Error_Code Ptr
(Input/Output)

Pointer to an error code structure to receive error information. See Error code parameter for more
information.

Authorities and Locks
Directory Authority
The user must have execute (* X) data authority to each directory preceding the object whose

references are to be obtained.

Object Authority
The user must have read (* R) data authority to the object whose references are to be obtained.

Output Structure Formats

ROROO0100 Output Format Description (Qp0Ol_RORO0100_Output)

This structure is used to return object reference information.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |[BINARY(4),UNSIGNED |Bytesreturned

| 4 | 4 |BINARY(4),UNSIGNED |Bytesavailable

| 8 | 8 |BINARY(4),UNSIGNED |Offset tosimple reference types

12 oC BINARY (4), UNSIGNED Length of simple reference types
g p yp

I 16 | 10 |BINARY(4), UNSIGNED |Reference count

| 20 | 14 |[BINARY(4),UNSIGNED |In-useindicator

Offset determined QpOl_Sim_Ref_Types Output (Simple reference types structure. See Simple
from Offset to Smple |Structure object reference types structure description for a

Reference Types field description of this structure.

RORO0200 Output Format Description (Qp0l_RORO0200_Output)

This output format is used to return object reference information, including alist of jobs known to be
referencing the object. This includes everything from the RORO0100 structure plus additional information.

Offset
Dec | Hex |Type Field
0 0 [BINARY(4), UNSIGNED |Bytesreturned
4 4 [BINARY(4), UNSIGNED |Bytesavailable
8 8 |B|NARY(4), UNSIGNED |Referencecount
12 0C |BINARY(4), UNSIGNED |In-useindicator
10 |B| NARY (4), UNSIGNED |Offset to simple reference types

|
|
|
|
|
|
| 16
|
|
|
|
|
|

|
|
|
|
|
20 | 14 [BINARY(4), UNSIGNED |Length of simple reference types
|
|
|
|
|

24 18 |BINARY(4), UNSIGNED |Offset to extended reference types
28 1C |B| NARY (4), UNSIGNED |Length of extended reference types
32 20 |BINARY(4), UNSIGNED |Offset tojob list

36 24 |BI NARY (4), UNSIGNED |Jobs returned

40 28 [BINARY(4), UNSIGNED [Jobsavailable

Offset determi n_ed QpOl_Sim Ref Types Output |Simple reference types structure. See Simple
from Offset to simple |Structure object reference types structure description for a
reference types field description of this structure.

Offset determined QpOl_Ext Ref Types Output |Extended reference types structure. See Extended
from the Offset to Structure object reference types structure description for a
Extended Reference description of this structure. The reference counts

Typesfield contained within this structure represent the
number of referencesfor al jobsin the job list.

Offset determined QpOl_Job_Using_Object Referencing job list. The Job using object structure

from Offset toJob |Structure will be repeated for each job.

List field

Job Using Object Structure Description (Qp0Ol_Job_Using_Object)

This structure isimbedded within the RORO0200 format. It is used to return information about ajob that is
known to be holding a reference on the object.

| Offset | |

i Dec | Hex |Type |Fie|d

| 0 | 0 |[BINARY(4),UNSIGNED |Displacement to simple reference types

| 4 | 4 |BINARY(4),UNSIGNED |Length of simple reference types

| 8 | 8 |BINARY(4),UNSIGNED |Displacement to extended reference types
| 12 | 0C |[BINARY(4),UNSIGNED |Length of extended reference types

| 16 | 10 |[BINARY(4), UNSIGNED |Displacement to next job entry

| 20 | 14 |CHAR(10) |Job name

[30 [1E [CHAR(0 [Job user

| 40 | 28 |CHAR(6) |Job number

Offset determined
from the
Displacement to
Smple Reference
Typesfield

QpOl_Sim_Ref_Types Output
Structure

Simple reference types structure. See Simple
object reference types structure description for a
description of this structure.

Offset determined
from the
Displacement to
Extended Reference
Typesfield

QpOl_Ext_Ref Types Output
Structure

Extended reference types structure. See Extended
object reference types structure description for a

description of this structure. The reference counts
contained within this structure represent the
number of references for this specific job.

Simple Object Reference Types Structure Description
(QpOl_Sim_Ref Types_Output)

This structure isimbedded within the RORO0100 and RORO0200 formats. It is used to return object
reference type information.

Each binary field reference type will be set to either 0 or a positive value that represents the number of
references for that type. This number will have different meanings depending on the structure it is
imbedded within. When this structure is imbedded within a RORO0100 output, or imbedded within the
header portion of the RORO0200 output, then these values represent the number of known references of
this type. When this structure isimbedded within a specific job list entry, then these values represent the
number of references for that specific type within that specific job itself.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4), UNSIGNED |Read only

| 4 | 4 |BINARY(4),UNSIGNED |Writeonly

| 8 | 8 |BINARY(4),UNSIGNED |Read/write

| 12 | 0C |[BINARY(4), UNSIGNED |Execute

| 16 | 10 |BINARY(4), UNSIGNED |Sharewith readersonly

| 20 | 14 |BINARY(4),UNSIGNED |Sharewith writersonly

| 24 | 18 |BINARY(4),UNSIGNED |Sharewith readersand writers
| 28 | 1C |[BINARY(4),UNSIGNED |Sharewith neither readers nor writers
| 32 | 20 |BINARY(4),UNSIGNED |Attributelock

| 36 | 24 |BINARY(4),UNSIGNED |Savelock

| 40 [28 |BINARY(4),UNSIGNED [internal savelock

| 44 | 2C |BINARY(4),UNSIGNED |Link changeslock

| 48 | 30 |BINARY(4), UNSIGNED |Checked out

| 52 | 34 |CHAR(10) |Checked out user name
| 62 | 3E |CHAR(2 |Reserved (Binary 0)

Extended Object Reference Types Structure Description
(QpOl_Ext_Ref Types_Output)

This structure isimbedded within the RORO0200 format. It is used to return object reference type
information.

Each binary field reference type will be set to either 0 or a positive value that represents the number of
references for that type. This number will have different meanings depending on the structure it is
imbedded within. When this structure is imbedded within the header portion of the RORO0200 output, then
these values represent the number of jobsin thejob list that contains a reference of thistype. When this
structure isimbedded within a specific job list entry, then these values represent the number of references

for that specific type within that specific job itself.

| Offset

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4), UNSIGNED |Read only, share with readers only

| 4 | 4 |[BINARY(4),UNSIGNED |Read only, sharewith writers only

| 8 | 8 |BINARY(4),UNSIGNED |Read only, share with readers and writers

| 12 | 0C |[BINARY(4), UNSIGNED |Read only, share with neither readers nor writers

| 16 | 10 |[BINARY(4),UNSIGNED |Writeonly, sharewith readers only

| 20 | 14 |BINARY(4),UNSIGNED |Writeonly, sharewith writers only

| 24 | 18 |BINARY(4),UNSIGNED |Writeonly, share with readers and writers

| 28 | 1C |[BINARY(4),UNSIGNED |Writeonly, sharewith neither readers nor writers

| 32 | 20 |BINARY(4),UNSIGNED |Read/write, sharewith readers only

| 36 | 24 |BINARY(4),UNSIGNED |Read/write, sharewith writers only

| 40 | 28 |BI NARY (4), UNSIGNED |Read/write, share with readers and writers

| 4 | 2C |BINARY(4),UNSIGNED |Read/write, sharewith neither readers nor writers

| 48 | 30 |BINARY(4), UNSIGNED |Execute, share with readersonly

| 52 | 34 |[BINARY(4),UNSIGNED |Execute, sharewith writersonly

| 56 | 38 |BINARY(4), UNSIGNED |Execute, share with readers and writers

| 60 | 3C |BINARY(4), UNSIGNED |Execute, share with neither readers nor writers

| 64 | 40 |[BINARY(4),UNSIGNED |Executeread, Share with readers only

| 68 | 44 |BINARY(4), UNSIGNED |Execute/read, share with writers only

| 72 | 48 |BINARY(4), UNSIGNED |Executelread, share with readers and writers

’ 76 ’ 4C ’BI NARY (4), UNSIGNED Execute/read, share with neither readers nor
writers

[8 | 50 |[BINARY(4), UNSIGNED |Attributelock

| 8 | 54 |BINARY(4),UNSIGNED |Savelock

| 8 | 58 |[BINARY(4),UNSIGNED |Internal savelock

| 92 | 5C |[BINARY(4), UNSIGNED |Link changeslock

| 9 | 60 |BINARY(4), UNSIGNED |Current directory

| 100 | 64 [BINARY(4),UNSIGNED |Root directory

| 104 | 68 |[BINARY(4), UNSIGNED |Fileserver reference

| 108 | 6C [BINARY(4), UNSIGNED |Fileserver working directory
| 112 | 70 |[BINARY(4), UNSIGNED |Checked out

| 116 | 74 |CHAR(10) |Checked out user name

| 126 | 7E |CHAR(2 |Reserved (Binary 0)

Field Descriptions for ROR0O0100 and RORO0200 Output
Structures and their Imbedded Structures

Attribute lock. Attribute changes are prevented.
Bytes available. Number of bytes of output data that was available to be returned.
Bytesreturned. Number of bytes returned in the output buffer.

Checked out. Indicates whether the object is currently checked out. If it is checked out, then the Checked
Out User Name contains the name of the user who has it checked out.

Checked out user name. Contains the name of the user who has the abject checked out, when the Checked
Out field indicates that it is currently checked out. Thisfield is set to blanks (x'40) if the object is not
checked out.

Current directory. The object isadirectory that is being used as the current directory of the job.

Displacement to extended reference types. Displacement from the beginning of the structure containing
thisfield to the beginning of the Extended Reference Types structure. If thisfield is 0, then no extended
reference types were available to be returned, or not enough space was provided to include any portion of
the Extended Reference Types structure.

Displacement to next job entry. Displacement from the beginning of the structure containing thisfield to
the beginning of the next Job Using Object structure. If thisfield is O, then there are no more jobs in the list,
or not enough space was provided to include any more Job Using Object structures.

Displacement to simplereference types. Displacement from the beginning of the structure containing this
field to the beginning of the Simple Reference Type structure. If thisfield is O, then no simple reference
types were available to be returned, or not enough space was provided to include any portion of the Simple
Reference Types structure.

Execute. Execute only access.

Execute, share with readers only. Execute only access. The sharing mode allows sharing with read and
execute access intents only.

Execute, sharewith readersand writers. Execute only access. The sharing mode allows sharing with
read, execute, and write access intents.

Execute, sharewith writers only. Execute only access. The sharing mode alows sharing with write access

intents only.

Execute, share with neither readersnor writers. Execute only access. The sharing mode allows sharing
with no other access intents.

Execute/read, share with readers only. Execute and read access. The sharing mode allows sharing with
read and execute access intents only.

Execute/read, sharewith readersand writers. Execute and read access. The sharing mode allows sharing
with read, execute, and write access intents.

Executelread, share with writers only. Execute and read access. The sharing mode allows sharing with
write access intents only.

Execute/read, share with neither readersnor writers. Execute and read access. The sharing mode allows
sharing with no other access intents.

Extended referencetypes structure. ThisisaQpOl_Ext_Ref_Types Output structure containing fields
that indicate different types of references that may be held on an object. Some of these are actually a
grouping of multiple Simple Refer ence Types that were known to have been specified by the referring

instance. These are not additional references; they are aredefinition of the same references described in the
Simple Reference Types structure.

File server reference. The File Server is holding a generic reference on the object on behalf of a client.

File server working directory. The object isadirectory, and the File Server is holding a working directory
reference on it on behalf of aclient.

In-useindicator The object is currently in-use. NOTE: Thisindicator will be set to one of the following
values.

QPOL_OBJECT_NOT_IN_USE (0)
The object isnot in use and al of the reference type fields returned are O.

QPOL_OBJECT IN_USE (1)

The abject isin use. At least one of the reference type fields is greater than 0. This condition may
occur even if the Reference Count field'svalueisO.

Internal save lock. The object is being referenced internally during a save operation on a different object.
Job name. Name of thejob.

Job number. Number associated with the job.

Job user. User profile associated with the job.

Jobs available. Number of referencing jobs available. This may be greater than the Jobs Returned field
when the caller did not provide enough space to receive all of the job information.

Jobsreturned. Number of referencing jobs returned in the job list.

Length of extended reference types. Length of the Extended Reference Types information.
Length of simplereference types. Length of the Simple Reference Types information.
Link changeslock. Changesto links in the directory are prevented.

Offset to extended reference types. Offset from the beginning of the Receiver Ptr to the beginning of the

Extended Reference Types structure. If thisfield is 0, then no extended reference types were available to be
returned, or not enough space was provided to include any portion of the Extended Reference Types
structure.

Offset tojob list. Offset from the beginning of the Receiver_Ptr to the beginning of the first Job Using
Object structure. If thisfield is O, then there are no jobsin the list.

Offset to ssimplereference types. Offset from the beginning of the Receiver_Ptr to the beginning of the
Simple Reference Type structure. I thisfield is 0, then no simple reference types were available to be
returned, or not enough space was provided to include any portion of the Simple Reference Types structure.
Read only. Read only access.

Read only, sharewith readers only. Read only access. The sharing mode allows sharing with read and
execute access intents only.

Read only, sharewith readersand writers. Read only access. The sharing mode allows sharing with
read, execute, and write access intents.

Read only, share with writersonly. Read only access. The sharing mode allows sharing with write access
intents only.

Read only, sharewith neither readersnor writers. Read only access. The sharing mode allows sharing
with no other access intents.

Read/write. Read and write access.

Read/write, sharewith readers only. Read and write access. The sharing mode allows sharing with read
and execute access intents only.

Read/write, sharewith readersand writers. Read and write access. The sharing mode allows sharing
with read, execute, and write access intents.

Read/write, sharewith writersonly. Read and write access. The sharing mode allows sharing with write
access intents only.

Read/write, sharewith neither readersnor writers. Read and write access. The sharing mode allows
sharing with no other access intents.

Reference count. Current number of references on the object. NOTE: This may be 0 even though the
In-Use Indicator indicates that the object isin use.

Referencing job list. Variable length list of QpOl_Job_Using_Object structures for jobs that are currently
referencing the object.

Root directory. The object isadirectory that is being used as the root directory of the job.
Save lock. The object is being referenced by an object save operation.
Share with readers only. The sharing mode allows sharing with read and execute access intents only.

Sharewith readers and writers. The sharing mode allows sharing with read, execute, and write access
intents.

Sharewith writers only. The sharing mode allows sharing with write access intents only.

Sharewith neither readersnor writers. The sharing mode allows sharing with no other access intents.

Simplereferencetypesstructure. ThisisaQpOl_Sim_Ref Types Output structure containing fields that
indicate different types of references that may be held on an object.

Write only. Write only access.

Write only, sharewith readersonly. Write only access. The sharing mode allows sharing with read and
execute access intents only.

Write only, sharewith readersand writers. Write only access. The sharing mode allows sharing with
read, execute, and write access intents.

Write only, share with writers only. Write only access. The sharing mode allows sharing with write
access intents only.

Write only, share with neither readers nor writers. Write only access. The sharing mode allows sharing
with no other access intents.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name & 1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, & 1, entered for this APl was not valid.
CPF3CF1E Error code parameter not valid.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Since both available formats are variable length, following are the recommended minimum lengths
pertaining to their corresponding formats:

o ROROO0100: The size of a RORO0100 Output structure plus the size of a Smple Reference
Types structure.

o ROROO0200: This structure varies dynamically, and therefore there is no formulathat can
yield asize large enough to always retrieve al of the available information. However,
programs may consider first calling QPOLROR with the RORO0100 format. Thiswill
quickly return the number of references currently on the object. Then the program could
alocate a buffer equal in size to: size of a Job Using Object structure (including the size of
both the Simple and Extended Reference Type structures) multiplied by the number of
references, and then add the sizes of a RORO0100 output, RORO0200 output, and Simple
Reference Types structures. Now the program could call QPOL ROR with the ROR0O0200
format requested and the computed size.

If the RORO0200 format was specified, but there was not enough space provided to

receive acomplete list of job information, then only those job entries that completely fit in
the buffer will be returned. The RORO0200 output structure contains afield called
JobsAvailable that will always contain the total number of referencing jobs that were
available for returning to the caller at that instance in time.

Notes

o There are no locks obtained on the object while this API isrunning. Therefore, when this
APl isused on an object that is actively in use (for example, itslock and reference stateis
changing while this API isrunning), some fields in the returned information may be
inconsistent with other fields returned on the same invocation of QPOLROR.

o The number of references on the object may change between multiple callsto this API.
Therefore, the above formulafor calculating output buffer size for a RORO0200 format
may not be enough space under all conditions.

o There are some reference types that are obtained on the object without incrementing the
object's reference count. This could result in areference count of zero while the object
contains reference types. In thisinstance, the above formulafor calculating output buffer
size for aRORO0200 format may not be enough space.

. Thelist of ssimple object reference typesin the base portions of the ROR00100 and ROR00200
output structures may not contain complete information for objectsresiding in file systems other
than the Root ('/'), QOpenSys, and User-defined file systems. The simple reference types will,

however, be set in the job array elements in the RORO0200 output structure for any file system.

. Thelist of object reference types in the RORO0200 output formats may be an incomplete list of
references for objects residing in file systems other than the Root ('/), QOpenSys, and User-defined
file systems. Objectsin some of the other file systems can be locked with interfaces that do not use
the Integrated File System. Therefore, references returned by this API will only be references that
were obtained as part of an Integrated File System operation, or an operation that cause the
Integrated File System operation to occur.

. Under some circumstances, the list of jobs that are referencing the object may be incompl ete.
However, jobs not listed in the job list may still have their references listed in the RORO0100
output. This occurs when system programs obtain references directly on an object without
obtaining an open descriptor for the object.

. At some instances during the save or restore of an Integrated File System object, the object may
have references held by the job even though its reference count is 0.

. File systems that access remote objects, such as Network File System (NFS) and the QFileSvr.400
file systems, will only be returning references that are locally obtained on the object. Any
references that the remote system may have on the remote object are not returned by this API.

. Thistype of reference information is also viewable through the i Series Navigator application. The
terminology, however, differsin that iSeries Navigator refers to this type of information as "Usage"
information instead of "Reference” information.

Related Information

o The<qgpOlror.h> file (see Header Files for UNIX-Type Functions)

Example

The following is an example use of this API.

See Code disclaimer information for information pertaining to code examples.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<qpOl ror. h>
<stdi 0. h>
<string. h>
<stdlib. h>

void nain()

{

struct Pat hNaneStruct

{
Q g_Path_Nanme T header;
char p[50];

struct Pat hNanmeStruct pat h;

char

pat hNane[] = "/ CustonerData";

Qus_EC t errorCode;

/* Define a constant for the nunber of output buffer bytes

provi ded for the RORC0100 format.
#defi ne OUTPUT_BYTES RORC0100

(sizeof (Ol _RORO0100 _CQutput T) +

si zeof (Ol _Sim Ref _Types Qutput _T) +

100) /* Pad space for potential
the 2 structures.

/* Declare sone space for the ROROC0100 out put.

char

out put 100Buf [OUTPUT_BYTES_RORC0100] ;

/* Declare a pointer for retrieving the RORO0100

/
\
\

\
gap between
*/

*/

format. */

Q0 RORC0D100_Qut put _T *out put 100P;
/* Declare a pointer to retrieve the RORO0200 fornmat. */
Q0l _RORCD200_Qut put _T *out put 200P;

/* Declare a job using object pointer.

QOI _

Job_Using Qoject T *jobP;

unsi gned out put Buf Si ze;

/* Set output buffer pointer and length for retr
RORO0100 f ormat.

*/

i eving the
*/

out put 100P = (@Ol RORO0100_Cut put T *) out put 100Buf ;

/* Setup the object's path nanme structure. */
menset (&pat h, 0, sizeof(path));

pat h. header. CCSI D = 37;

mencpy(pat h. header. Country_ I D, "US", 2);

mencpy(pat h. header. Language_| D, "ENU", 3);

pat h. header. Pat h_Type = QLG _CHAR SI NGLE;

pat h. header. Path_Length = strl en(pat hNane) ;

pat h. header. Path_Name Delimter[0] = "'/";

mencpy(pat h. p, pathNanme, path. header. Path_Length);

/* Setup the error code structure to cause the error to be
returned within the error structure. */

error Code. Byt es_Provi ded = si zeof (error Code);

error Code. Bytes_Avail abl e = 0;

/* First call QPOLROR to get the short format. W will
use that information about references to conditionally
al | ocate nore space and then get the | onger
running format's information. */

QPOLROR(out put 100P,

OUTPUT_BYTES_ROR(0100,

QPOLROR_RORC0100_FORIVAT,

(Qg_Path Nane T *) &path,

&error Code) ;

/* Check if an error occurred. */
if (errorCode.Bytes Available !'= 0)

{
printf("Error occurred for RORC0100.\n");

return;
}
/* Check if we received any references that mght be
associated with a job. If not, return. */

i f (output100P->Count == Q)

printf("QPOLROR returned a reference count of % d\n",
out put 100P- >Count) ;

return;
}
/* If we get here, then we have at least 1 reference that
may be identifiable to a job. W wll call the

QPOLROR APl to get the RORO0200 format. First we

compute a buffer size to use. Note: this calculation

sunms up the sizes of all structures contained within

the RORCD200 format, but doesn't consider gaps between

each of the structure. To attenpt to cover potenti al

gaps between structures, an extra 1000 bytes is being

all ocated and room for 10 additional jobs. */
out put Buf Si ze =

si zeof (@Ol _RORC0200_Qut put _T) +

si zeof (Ol _Sim Ref _Types Qutput _T) +

si zeof (Ol _Ext Ref Types Qutput T) +

((out put 100P- >Count + 10) *

(sizeof (Ol _Job _Using Object T) +
si zeof (Ol _Sim Ref _Types Qutput T) +
si zeof (Ol _Ext Ref Types_ CQutput T)
) + 1000

);

i f (NULL == (output200P =
(QpO0l _RORCO200 _Qut put _T *) mal | oc(out put Buf Si ze)))

printf("No space available.\n");
return;

}

/* Retrieve object references. */
QPOLROR(out put 200P,

out put Buf Si ze,

QPOLROR_RORC0200_FORIVAT,

(Qg_Path Nane T *) &path,

&error Code) ;

/* Check if an error occurred. */
if (errorCode.Bytes Available !'= 0)

{
free(out put 200P)
printf("Error occurred for RORC0200.\n");

return;
}
/* 1If there was nore information avail able than we had
provi ded receiver space for, then we will allocate a

| arger buffer and try once again. This could potentially

keep reoccurring, but this exanple will stop after this

second retry. */
i f (output200P->Byt esRet ur ned < out put 200P- >Byt esAvai | abl e)

/* Use the bytes avail abl e value to determ ne how nmuch

nore buffer size is needed. W wll pad it with an
extra 1000 bytes to try and handl e nore jobs obtaining
references between calls to QPOLROR */

out put Buf Si ze = out put 200P- >Byt esAvai | abl e + 1000;

i f (NULL == (output 200P = (@Ol _ROROC0200_Qutput_T *)
real l oc((void *)output 200P
out put Buf Si ze)))

printf("No space available.\n");
return;

}

QPOLROR(out put 200P

out put Buf Si ze,
QPOLROR_RORC0200_FORNAT,
(Q g _Path Nane T *) &path,
&er r or Code) ;

/* Check if an error occurred. */
if (errorCode.Bytes Available != 0)

free(out put 200P) ;
printf("Error occurred for RORC0200 (2nd call).\n");
return;

}

/* Print sone output.
printf("Reference count: %\ n", out put 200P->Count);
printf("Jobs returned: %\ n", out put 200P- >JobsRet ur ned) ;

i f (output200P->JobsReturned > 0)

{
jobP = (@Ol Job Using Ohject T *)
((char *)out put 200P + out put 200P- >JobsO f set) ;
printf("First job's nanme: 9d0.10s 9%10. 10s %b. 6s",
j obP- >Nan®e,
j obP->User,
j obP->Nunber) ;
}

free(out put 200P) ;

return;

}
Example Output:

Ref erence count: 1

Jobs returned: 1
First job's nanme: JOBNAME123 JOBUSER123 123456
&

*/

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

QpOlSaveStgFree()--Save Storage Free

Syntax

#i ncl ude <QO0Il stdi. h>

i nt @Ol SaveSt gFreeg(

Qg Path Name T *Pat h_Nane,
0Ol _StgFree Function_t *UserFunction _ptr,
voi d *Function CtIBIk ptr);

Service Program Name: QPOLLIB3
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QpOlSaveStgFree() function calls a user-supplied exit program to save OS/400 objects of type *STMF
and, upon successful completion of the exit program, frees the storage for the object and marks the object as
storage freed. The * STMF object and its attributes remain on the system, but the storage occupied by the
*STMF object'sdatais deleted. The * STMF object cannot be used until it isrestored to the system. Thisis
accomplished by either of the following:

« Restoring the object using the RST command.

« Requesting an operation on the object, requiring one of the following, which will dynamically
retrieve (restore) the * STMF object:

0 Accessing the object's data (open(), creat(), MOV, CPY, CPY FRMSTMF, or
CPYTOSTMF).

o Adding a new name to the object (RNM, ADDLNK, link(), rename(),
QpOIRenameK eep(), or QpOIRenameUnlink()).

o Checking out the object (CHKOUT).
The restore operation is done by calling a user-provided exit program registered against the Storage

Extension exit point QIBM_QTA_STOR_EX400. For information on this exit point, see the Storage
Extension Exit Program.

QpOlSsaveStgFree() returns EOFFLINE for an object that is already storage freed or returns EBUSY for an
object that is checked out.

The user exit program can be either a procedure or a program.

Parameters

Path_Name

(Input) A pointer to a path name whose last component is the object that is saved and whose storage
isfreed. This path nameisin the Qlg_Path_Name T format. For more information on this
structure, see Path name format.

If the last component of the path name supplied on the call to QpOlSaveStgFree() isasymbolic
link, then QpOlSaveStgFree() resolves and follows the link to its target and performs its normal
QpOlSaveStgFree() functions on that target. If the symbolic link refers to an object in aremote file
system, QpOl SaveStgFree() returns ENOTSUP to the calling program.

UserFunction_ptr

(Input) A pointer to a structure that contains information about the user exit program that the caller
wants QpO0l SaveStgFree() to call to save an * STMF object. This user exit program can be either a
procedure or a program. If this pointer is NULL, QpOlSaveStgFree() does not call an exit program
to save the object but does free the object's storage and marksiit as storage freed.

|User Function Pointer

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Functiontypeflag

| 14 | E |CHAR(10) |Program library

| 4 | 4 |CHAR(10) |Program name

| 24 | 18 |CHAR(1) IMultithreaded job action

| 25 | 19 |CHAR(7) |Reserved

| 32 | 20 |PP(*) |Procedure pointer to exit procedure

Function typeflag. A flag that indicates whether the Save Storage Free exit program called by
QpOlSaveStgFree() is aprocedure or a program. If the exit program is a procedure, thisflag is set
to 0, and the procedure pointer to exit procedure field points to the procedure called by
QpOlSaveStgFree(). If the exit program is a program, thisflag is set to 1 and a program name and
program library are provided, respectively, in the program name and program library fields. Valid
valuesfollow:

0 QPOL_USER FUNCTION_PTR: A user procedureiscalled.

1 QPOL_USER_FUNCTION_PGM: A user program is called.
Multithreaded job action. (Input) A CHAR(1) vaue that indicates the action to takein a
multithreaded job. The default value is QPOL_MLTTHDACN_SY SVAL. For release compatibility

and for processing this parameter against the QML TTHDACN system value, x'00, x'01', x'02', &
x'03" are treated as X'FO', X'F1', xX'F2', and X'F3'".

X00" QPOL_MLTTHDACN_SYSVAL: The APl evaluatesthe QMLTTHDACN system value
to determine the action to take in a multithreaded job. Valid QMLTTHDACN system
valuesfollow:

'1' Call the exit program. Do not send an informational message.
2" Cadll the exit program and send informational message CPI3C80.

'3 Theexit program is not called when the API determinesthat it isrunning in a
multithreaded job. ENOTSAFE is returned.

x01' QPOL_MLTTHDACN_NOMSG: Call the exit program. Do not send an informational
message.

x02 QPOL_MLTTHDACN_MSG: Call the exit program and send informational message
CPI3C80.

X03 QPOL_MLTTHDACN_NO: The exit program is not called when the API determines that
itisrunning in amultithreaded job. ENOTSAFE isreturned.

Procedure pointer to exit procedure. If the function type flag is 0, which indicates that a
procedureis called instead of a program, this field contains a procedure pointer to the procedure
that QpOlSaveStgFree() calls. Thisfield must be NULL if the function type flag is 1.

Program library. If the function typeflagis 1, indicating a program is called, thisfield contains
the library in which the program being called (identified by the program name field) is located.
Thisfield must be blank if the function type flag is O.

Program name. If thefunction typeflagis 1, indicating a program is called, thisfield contains
the name of the program that is called. The program should be located in the library identified by
the program library field. Thisfield must be blank if the function type flag is 0.

Reserved. A reserved field. Thisfield must be set to binary zero.

Function_CtIBIk_ptr

(Input) A pointer to any data that the caller of QpOlSaveStgFree() wants to have passed to the
user-defined Save Storage Free exit program that QpOl SaveStgFreg() callsto save an * STMF
object. QpOlSaveStgFree() does not process the data that is referred to by this pointer. The AP
passes this pointer as a parameter to the user-defined Save Storage Free exit program that was
specified onits call. Thisisameansfor the caller of QpOlSaveStgFreg() to passinformation to and
from the Save Storage Free exit program.

Authorities

The following table shows the authorization required for the QpOl SaveStgFree() API.

’ ’ Authority ’

Object Referred to Required errno

|Each directory, preceding the last component, in a path name | *RX | EACCES

[Object [*SAVSYSor*RW | EACCES

|Any called program pointed to by the UserFunction_ptr parameter | *X | EACCES
’ EACCES

Any library containing the called program pointed to by the *X
UserFunction_ptr parameter

Return Value

0 QpOlsaveStgFree() was successful.
-1 QpOlSaveStgFree() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QpOlSaveStgFree() is not successful, errno indicates one of the following errors:
[EACCES
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may
also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.
[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[EISDIR]
Specified target is adirectory.

The path specified named a directory where afile or object name was expected.

The path name given is adirectory.
[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]
Too many open files for this process.
An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.
The process has more than OPEN_MAX descriptors aready open (see the sysconf() function).
[ENAMETOOLONG]
A path name istoo long.
A path name islonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENFILE]
Too many open filesin the system.

A system limit has been reached for the number of files that are allowed to be concurrently openin
the system.

The entire system has too many other file descriptors already open.
[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.
[ENOTDIR]
Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.
[ENOSYSRSC]
System resources not available to complete request.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOFFLINE]
Object is suspended.

Y ou have attempted to use an object that has had its data saved and the storage associated with it
freed. An attempt to retrieve the object's data failed. The object's data cannot be used until itis
successfully restored. The object's data was saved and freed either by saving the object with the
STG(* FREE) parameter, or by calling an API.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:
Message|D Error Message Text
CPI3C80 | An exit program has been called for which the threadsafety status was not known.
CPFAOD4E Filesystem error occurred.
CPE3418E Possible APAR condition or hardware failure.
CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

« Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:
o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in afile system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root
QOpenSys
User-defined
= ONTC
QSYS.LIB
= QOPT

« If the Save Storage Free exit program calls the SAV command or the Qsr Save function or any
other function that is not threadsafe, and there are secondary threads active in the jaob,
QpOlSaveStgFree() may fail asaresult.

« If the Save Storage Free exit program is not threadsafe or uses a function that is not threadsafe, then
QpOlSaveStgFree() is not threadsafe.

Related Information
» The<QpOlstdi.h> file

o QlgSaveStgFree()--Save Storage Free (using NL S-enabled path name)

« Save Storage Free Exit Program

Example

See QpOIGetAttr () description for a code example that shows a call to QpOlSaveStgFree() by using a
procedure as the exit program. This API also shows an example of acall to QpOlGetAttr ().

API introduced: V4R3

Top | Backup and Recovery APIs| UNIX-Type APIs| APIs by category

QpOlISetAttr()--Set Attributes

Syntax

#i ncl ude <QO0Il stdi. h>
int Ol SetAttr

(Qg_Path Nane T *Pat h_Nane,
char *Buf fer_ptr,
ui nt Buf fer_Size,
ui nt Fol | ow Sym nk, ...);

Service Program Name: QPOLLIB3
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QpOISetAttr () function sets one of a set of defined attributes, on each call, for the object that is
referred to by the input *Path_Name. The object must exist, the user must have authority to it, and the
attribute must be supported by the file system to which the object belongs. When an attribute is not

supported by the file system, QpOISetAttr () will fail with ENOTSUP. See the Usage Notes section for
more information.

If the last component of the Path_Name parameter is a symboalic link, the QpOISetAttr () either setsthe
attribute of the symbolic link or sets the attribute of the object that the symbolic link names. This depends
on the value of the Follow_Symink parameter.

All timesthat are set by QpOISetAttr() are in seconds since the Epoch so that they are consistent with
UNIX-type APIs. The Epoch isthe time 0 hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated
Universal Time. If the OS/400 date is set prior to 1970, all time values will be zero.

Parameters

Path_Name

(Input) The path name of the object for which attribute information is set. This path nameisin the
Qlg_Path_Name T format. For more information on this structure, see Path name format.

Buffer_ptr

(Input) A pointer to a buffer containing a constant that identifies the attribute and the value for the

attribute that QpOlSetAttr () sets. The number of bytes allocated for this buffer isin the Buffer_Sze
parameter.

The following table describes the format of the entry in the buffer.

|Buffer Pointer
| Offset

[Dec[Hex|Type Field

| 0 [0O [BINARY(4) |Offset to next attribute entry

[4 [4 [BINARY(®) [Attribute identification

| 8 | 8 |BINARY(4) |Size of attribute data
|12 | C [CHAR(Y) |Reserved
| 16 | 10 [CHAR(*) |Attribute data

Attribute data. The value to which the attribute is set.

Attribute identification. The constant identifying the attribute being set. Valid values are:

4

17

18

19

20

QPOL_ATTR_CREATE_TIME: (UNSIGNED (BINARY (4)) The time the object was
created.

QPOL_ATTR_ACCESS TIME: (UNSIGNED (BINARY (4)) The time the object's data
was last accessed.

QPOL_ATTR_MODIFY_TIME: (UNSIGNED (BINARY (4)) The time the object's data
was last changed.

QPOL_ATTR_PC_READ_ONLY: (CHAR(1)) Whether the object can be written to or
deleted, have its extended attributes changed or deleted, or have its size changed. Valid
values are:

X00" QPOL_PC_NOT_READONLY': The object can be changed.
x01' QPOL_PC READONLY: The object cannot be changed.

QPOL_ATTR_PC_HIDDEN: (CHAR(1)) Whether the object can be displayed using an
ordinary directory listing.

X00" QPOL_PC NOT_HIDDEN: The object is not hidden.
X01' QPOL_PC_HIDDEN: The object is hidden.

QPOL_ATTR_PC_SYSTEM: (CHAR(L1)) Whether the object isasystem fileand is
excluded from normal directory searches.

X00" QPOL_PC _NOT_SYSTEM: The object is not a system file.
x01' QPOL_PC_SYSTEM: The aobject isasystem file.

QPOL_ATTR_PC ARCHIVE: (CHAR(1)) Whether the object has changed since the
last time the file was saved or reset by aPC client.

X00" QPOL_PC NOT_CHANGED: The object has not changed.
x01' QPOL_PC_CHANGED: The object has changed.

21

22

26

27

231

QPOL_ATTR_SYSTEM_ARCHIVE: (CHAR(1)) Whether the object has changed and
needs to be saved. It is set on when an object's change time is updated, and set off when
the object has been saved.

X00" QPOL_SYSTEM_NOT_CHANGED: The object has not changed and does not
need to be saved.

x01' QPOL_SYSTEM_CHANGED: The object has changed and does need to be
saved.

QPOL_ATTR_CODEPAGE: (BINARY (4)) The code page used to derive a coded
character set identifier (CCSID) used for the datain the file or the extended attributes of
the directory.

QPOL_ATTR_ALWCKPWRT: (CHAR(1)) Whether a stream file (* STMF) can be
shared with readers and writers during the save-while-active checkpoint processing.
Setting this attribute may cause unexpected results. Please refer to the Backup and

Recovery@ book for details on this attribute.

X000 QPOL_NOT_ALWCKPWRT: The object can be shared with readers only.
X0l QPOL_ALWCKPWRT: The object can be shared with readers and writers.

QPOL_ATTR_CCSID: (BINARY (4)) The CCSID of the data and extended attributes of
the object.

QPOL_ATTR DISK_STG_OPT (CHAR(1)) Which option should be used to determine
how auxiliary storage is allocated by the system for the specified abject. The option will
take effect immediately and be part of the next auxiliary storage allocation for the
object. Thisoption can only be specified for byte stream files in the Root (/), QOpensys
and User-defined file systems. This option will be ignored for * TY PEL byte stream files.
Valid values are:

X00" QPOL_STG NORMAL: The auxiliary storage will be allocated normally.
That is, as additional auxiliary storageisrequired, it will be allocated in
logically sized extents to accomodate the current space requirement, and
anticipated future requirements, while minimizing the number of disk I/0
operations. If the QPOL_ATTR_DISK_STG_OPT attribute has not been
specified for an object, this value is the default.

xX01' QPOL_STG_MINIMIZE: The auxiliary storage will be alocated to minimize
the space used by the object. That is, as additional auxiliary storageis
required, it will be allocated in small sized extents to accomodate the current
space requirement. Accessing an object composed of many small extents may
increase the number of disk |/O operations for that object.

x02 QPOL_STG_DYNAMIC: The system will dynamically determine the
optimum auxiliary storage allocation for the object, balancing space used
versus disk I/O operations. For example, if afile has many small extents, yet is
frequently being read and written, then future auxiliary storage allocations will
be larger extents to minimize the number of disk I/O operations. Or, if afileis
frequently truncated, then future auxiliary storage allocations will be small
extents to minimize the space used. Additionally, information will be
maintained on the byte stream file sizes for this system and its activity. This
file size information will also be used to help determine the optimum auxiliary
storage allocations for this object as it relates to the other objects sizes.

32

200

£300

QPOL_ATTR_MAIN_STG_OPT: (CHAR(1)) Which option should be used to
determine how main storage is allocated and used by the system for the specified object.
The option will take effect the next time the specified object is opened. This option can
only be specified for byte stream filesin the Root (/), QOpensys and User-defined file
systems. Valid values are:

X'00'" QPOL_STG_NORMAL: The main storage will be allocated normally. That is,
as much main storage as possible will be alocated and used. This minimizes
the number of disk I/O operations since the information is cached in main
storage. If the QPOL_ATTR_MAIN_STG_OPT attribute has not been
specified for an object, this value is the default.

X01' QPOL_STG_MINIMIZE: The main storage will be alocated to minimize the
space used by the object. That is, aslittle main storage as possible will be
allocated and used. This minimizes main storage usage while increasing the
number of disk 1/0O operations since less information is cached in main
storage.

x02 QPOL_STG _DYNAMIC: The system will dynamically determine the
optimum main storage allocation for the object depending on other system
activity and main storage contention. That is, when there is little main storage
contention, as much storage as possible will be allocated and used to minimize
the number of disk 1/O operations. And when there is significant main storage
contention, less main storage will be alocated and used to minimize the main
storage contention. <

QPOL_ATTR_RESET DATE: (UNSIGNED (BINARY (2)) The count of the number of
days an object has been used. Usage has different meanings according to the file system
and according to the individual object types supported within afile system. Usage can
indicate the opening or closing of afile or can refer to adding links, renaming, restoring,
or checking out an abject. The usage information format is defined in the QpOlstdi.h
header file as data type QpOl_Usage t and is shown in the following table. This attribute
can be set to zero only. An attempt to set to any other value will result in errno
[EINVAL].

When this attribute is set, the date use count reset for the object is set to the current date.

QPOL_ATTR _SUID: (CHAR(L)) Set effective user ID (UID) at execution time. This
valueisignored if the specified object isadirectory. Valid values are:

X'00' QPOL_SUID_OFF: Theuser ID (UID) is hot set at execution time.

x'01' QPOL_SUID_ON: The object owner isthe effective user ID (UID) at
execution time.

301 QPOL_ATTR_SGID: (CHAR(L)) Set effective group ID (GID) at execution time. Valid
values are:

X00" QPOL_SGID_OFF: If the object isafile, the group ID (GID) is not set at
execution time. If the object isadirectory in the Root (/*), QOpensys, and
user-defined file systems, the group 1D (GID) of objects created in the
directory is set to the effective GID of the thread creating the object. This
value cannot be set for other file systems.

x01' QPOL_SGID_ON: If the object isafile, the group ID (GID) is set at execution
time. If the object is adirectory, the group ID (GID) of objects created in the
directory is set to the GID of the parent directory. <

Offset to next attribute entry. (Output) Thisfield is nhot used by the QpOISetAttr () function. It is
provided for alignment so that the same buffer format returned from the QpOIGetAttr () function
can be used as input to the QpOI SetAttr () function.

Reserved. A reserved field. Thisfield must be set to binary zero.

Size of attribute data. The exact size of the data for this attribute. If this size does not match the
Size that the system stores for this attribute, [EINVAL] isreturned.

Buffer_Size
(Input) The size in bytes of the buffer pointed to by the Buffer_ptr parameter.

Follow_Symink

(Input) If the last component in the * Path_ Nameis a symbolic link, QpOISetAttr () either acts upon
the symbolic link or the path contained in the symbolic link. This depends on the value of the
Follow_Symlnk parameter. Valid values are;

0 QPOL_DONOT_FOLLOW_SYMLNK: A symboalic link in the last component is not
followed. Attributes of the symbolic link object are set.

1 QPOL_FOLLOW_SYMLNK: A symbolic link in the last component is followed. The
attributes of the object contained in the symbolic link are set.

Authorities

Note: Adopted authority is not used.

|Authorizati on Required for QpOlSetAttr() (excluding QSYS.LIB #*and independent ASP QSYS.LIB)%
Authority

Object Referred to Required errno

|Each directory, preceding the last component, in the path name ~ |*X |EACCES

Object, when setting the QPOL_ATTR_DAYS USED_COUNT, [*OBIMGT EACCES

% QPOL_ATTR_ALWCKPWRT, QPOL_ATTR_DIST_STG_OPT

or QPOL_ATTR_MAIN_STG_OPT attribute

Object, when setting the QPOL_ATTR_CREATE_TIME, Owner or *W (See |EACCES

QPOL_ATTR_ACCESS TIME, or Note)

QPOL_ATTR_MODIFY_TIME attribute to the current time

Object, when setting the QPOL_ATTR_SUID or Owner (SeeNote) |[EACCES#%
QPOl_ATTR_SGID values

Object, when setting the QPOL_ATTR_CREATE_TIME, *W EPERM
QPOL_ATTR_ACCESS TIME, or
QPOL_ATTR_MODIFY_TIME attribute to a specific time

|Object, when setting any other attribute "W |EACCES

Note: If the file system supports * ALLOBJ special authority and if you have * ALLOBJ special authority,
you do not need the listed object authority.

|Auth0rizati on Required for QpOlSetAttr() (QSYS.LIB #*and independent ASP QSYS.LIB)#

Authority
Object Referred to Required errno
|Each directory, preceding the last component, in the path name |*X |EACCES
Object, when setting the QPOL_ATTR_DAYS USED _COUNT _ [*OBJOPR and EACCES
attribute and the object typeis*FILE *OBIMGT

Object, when setting the QPOL_ATTR_DAYS USED_COUNT [*X and*OBIMGT |EACCES
attribute and the object is a database file member

Object, when setting the QPOL_ATTR_DAYS USED_COUNT |[*OBIMGT EACCES
attribute and the object is neither a* FILE object type nor a
database file member

Return Value

0 TheQpOlSetAttr() APl was successful.

-1 The QpOISetAttr() API was not successful. The errno global variable is set to indicate the error.

Error Conditions

If the QpOISetAttr () API isnot successful, errno indicates one of the following errors:
[EACCES

Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may

aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assighed when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[ECANCEL]
Operation canceled.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
[EIQ]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[EJRNDAMAGE]
Journal damaged.

A journa or al of the journa's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.
[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]
A loop existsin the symbolic links.

This error isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path nameistoo long.

A path nameislonger than PATH_MAX characters or some component of the name islonger than
NAME_MAX characterswhile _POSIX_NO _TRUNC isin effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]
New journal is needed.
The journa was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJIRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.
[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.
Insufficient space remains to hold the intended file, directory, or link.
[ENOTAVAIL]
Independent auxiliary storage pool (ASP) isnot available.
The independent ASP isin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.
To recover from this error, wait until processing has completed for the independent ASP.
[ENOTDIR]
Not adirectory.
A component of the specified path name existed, but it was not a directory when a directory was
expected.
Some component of the path name is not a directory, or is an empty string.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOFFLINE]
Object is suspended.
Y ou have attempted to use an object that has had its data saved and the storage associated with it
freed. An attempt to retrieve the object's data failed. The object's data cannot be used until itis

successfully restored. The object's data was saved and freed either by saving the object with the
STG(* FREE) parameter, or by calling an API.

[EPERM]
Operation not permitted.
Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

[EROOBJ]

Object isread only.

Y ou have attempted to update an object that can be read only.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]
Address not available.

[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.

[EHOSTDOWN]
A remote host is not available.

[EHOSTUNREACH]
A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.

[ENETUNREACH]
Cannot reach the destination network.

[ESTALE]
File or object handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is nhot available at thistime.

Error Messages

The following messages may be sent from this function:
Message I D Error Message Text
CPFAOD4 E File system error occurred. Error number & 1.
CPF3CF2E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPE3418 E Possible APAR condition or hardware failure.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. Root, QOpenSys, and User-Defined File System Differences

The QPOL_ATTR_CREATE_TIME and QPOL_ATTR _DAYS USED COUNT attributes are
supported for objects of type * STMF only. Attemptsto set them on other objects will result in the
operation failing with errno set to [ENOTSUP].

3. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

The following attribute may be set on objectsin these file system:
0 QPOL_ATTR_DAYS USED_COUNT

Attempting to set any other attribute will result in the operation failing with errno set to

[ENOTSUP].

When you set the QPOL_ATTR_DAYS USED_COUNT attribute of a database file, all members
in that file will have their days used count reset to 0 also.

Network File System Differences

When you set the following attributes on objectsin the Network File System, the operation will fall
with the errno set to [ENOTSURP] if the attribute is not set to the following attribute value.

o If set, QPOL_ATTR_PC _READ_ONLY must be set to an attribute value of
QPOL_PC_NOT_READ_ONLY.

o If set, QPOL_ATTR_PC HIDDEN must be set to an attribute value of
QPOL_PC_NOT_HIDDEN.

o If set, QPOL_ATTR_PC_SYSTEM must be set to an attribute value of
QPOL_PC_NOT_SYSTEM.

o If set, QPOL_ATTR_PC_ARCHIVE must be set to an attribute value of
QPOL_PC _NOT_CHANGED; however, if the object is of type * STMF, the attribute value
must be QPOL_PC CHANGED.

0 If set, QPOL_ATTR_SYSTEM_ARCHIVE must be set to an attribute value of
QPOL_SYSTEM_NOT_CHANGED.

The QPOL_ATTR_CREATE_TIME, QPOL_ATTR_DAYS USED_COUNT,
QPOL_ATTR_CODEPAGE, and QPOL_ATTR_CCSID attributes cannot be set on objects within
the Network File System or they will result in the operation failing with errno set to [ENOTSUP].

. QNetWare File System Differences

The QNetWare File System does not support setting QPOL_ATTR_SYSTEM_ARCHIVE or
QPOL_ATTR _DAYS USED_COUNT. If you set any attribute on a NetWare Directory Services
(NDS) object, the operation will fail with errno set to [ENOTSUP].

Related Information

The <QpOlstdi.h> file (see Header Files for UNIX-Type Functions)

The <qglg.h> file (see Header Files for UNIX-Type Functions)

#rchmod()--Change File Authorizations®
QlgSetAttr()--Set Attributes (using NL S-enabled path name)

#£Qp0I GetAttr()--Get Attributest®

Example

The following is an example showing a call to the QpOISetAttr () and the QpOIGetAttr() APIs.

See Code disclaimer information for information pertaining to code examples.

/*-k***********************/

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

"QOIl stdi.h"
<stdi 0. h>
<errno. h>
<stdlib. h>
<sys/types. h>

int GetAttrQbject(
Q g Path_Nane T *Pat hname_ptr,
char *Buf fer_ptr,
unsi gned i nt Buf f er _si ze)

/-k*-k*-k*******-k*-k*-k*-k*-k*******-k*-k*-k*-k*-k*************************/

/* Local vari abl es */

/-k*-k*-k*******-k*-k*-k*-k*-k*******-k*-k*-k*-k*-k*************************/

struct attrStruct

QO _AttrTypes List t attr_struct;

ui nt AttrTypes[10];
}
struct attrStruct Attr_types _ptr;

unsi gned int buff_size needed;
unsi gned int num bytes returned;
unsigned int follow sym

i nt rc;

/-k*-k*-k*******-k*-k*-k*-k*-k*******-k*-k*-k*-k*-k*************************/

/* Start of executable code */

/-k*-k*-k*******-k*-k*-k*-k*-k*******-k*-k*-k*-k*-k*************************/

/-k*-k*-k*******-k*-k*-k*-k*-k*******-k*-k*-k*-k*-k*************************/

/* Initialize Get Attributes Paraneters */
/-k***********************/
menset ((void *)&Attr _types ptr, 0x00, sizeof(struct attrStruct));
Attr _types ptr.attr_struct. Nunmber O RegAttrs = 3;
Attr _types ptr. AttrTypes|[0] QPOL_ATTR_PC READ ONLY;
Attr _types ptr. AttrTypes[1] QPOL_ATTR_PC_HI DDEN;
Attr _types ptr. AttrTypes| 2] QPOL_ATTR_CODEPAGE;
buff _size needed = 0;
foll ow_sym = QPOL_FOLLOW SYM_NK;

/-k*-k*-k*******-k*-k*-k*-k*-k*******-k*-k*-k*-k*-k*************************/

/* Call QOl GetAttr() to retrieve attributes. */
/-k***********************/
rc = QoOl Get Attr(Pat hnane_ptr,

(Ol _AttrTypes List t *)&Attr _types ptr,

Buffer ptr,

Buf f er _si ze,

&uf f _si ze needed,
&num byt es_ret ur ned,

foll ow sym;
if((rc == 0) && /* 1f successful, but */
(num bytes returned <= 0)) /* Incorrect bytes returned */
rc = EUNKNOMN; /* Unknown error */
return(rc);
} /* End Get Attr Qbject() */

int Set Attrbject(
Q g Path_Nanme T *Pat hnane_ptr,

char *Buf fer_ptr,

unsi gned int Buf f er _si ze)
/**/
/* Local vari abl es */

/**/

unsi gned int foll ow sym
i nt rc;

i nt done = O;
unsi gned int attrSi ze;

Ol _Attr_ Header_ t *attrPtr;

/**/

/* Start of executable code */

/**/

/**/

/* Initialize Set Attributes Paraneters */

/**/

foll ow sym = QPOL_FOLLOW SYM.NK;

/**/

/* Ol Set Attr() only sets one attribute at a tinme. The */
/* buffer from Ol GetAttr may contain nore than one */
/* attribute to set. W may have to call Ol SetAttr() */
/* multiple times. The Next Attr O fset value is the key. */
/* 1f it is greater than zero, then there is another */
/* attribute in the buffer. Also, it is inportant to note */
/* that the value stored there is the offset fromthe start */
/* of the buffer, not the offset fromthe start of the */
/* current entry. */

/**/

attrPtr = (QoOl _Attr_ Header t *)Buffer ptr;
whi | e(! done)
{

attrSize = attrPtr->Attr_Si ze +
si zeof (Ol _Attr_ Header t); [/* Calculate attr size */

/***/

/[* Call QOl SetAttr() to set the attribute */

/***/

rc=Qp0l Set Attr (Pat hnane_ptr,

(char *)attrbtr,

attrSi ze,

foll ow sym;
if(rc 1= 0) /* 1If the function failed */
done = 1; /* End the | oop */
else if(attrPtr->Next Attr Ofset >0) /* If nmore data */
attrPtr = (QoOl _Attr_ Header t *) /* Set attribute */
(Buffer _ptr + attrPtr->Next Attr Offset); /* pointer */
el se /* No nore data */
done = 1; /* End the | oop */

return(rc);

} /* End Set Attr Qbject () */

int main (int argc, char *argv[])

#defi ne MYPN " FRED'
#defi ne MYPN2 " FRED2"

/**/

/* Local vari abl es */
/**/
const char US const[3] = "US";
const char Language _const[4] = "ENU';
const char Path_Nane Del const[2] = "/";

typedef struct pnstruct

Qg Path Nane T gl g struct;
char pn[si zeof (MYPN)] ;
b

typedef struct pnstruct?2

Qg Path Nane T gl g _struct;
char pn[si zeof (MYPN2)] ;
b

struct pnstruct pns;
struct pnstruct2 pns2;
int rc;

char BufferArea 250];
unsigned int buffer_size = 250;

/**/

/* Start of executable code */

/**/

/**/

/* Initialize Pathname for original object */
/**/
menset ((void *)&pns, 0, sizeof(struct pnstruct));
pns.glg struct.CCSID = 37;
mencpy(pns. gl g struct. Country_ I D, US const, 2);
mencpy(pns. gl g _struct. Language_| D, Language_const, 3);;
pns. gl g struct.Path _Type = 0;

pns. gl g struct.Path_Length = sizeof (MYPN) - 1;
mencpy(pns. gl g_struct. Path_Name_Del i mi ter, Pat h_Name_Del _const, 1);
mencpy(pns. pn, MYPN, si zeof (MYPN)) ;

/**/

/* Call GetAttrChject to retrieve attributes fromthe source */
/* object. */
/**/
rc = GetAttrObject ((Qg_Path _Name T *) &pns,

Buf f er Ar ea,

buffer_size);
if (rc == 0) /* If GetAttr succeeded */

/**/

/* Initialize Pathnanme for target object */
/**/
menset ((void *)&pns2, 0, sizeof(struct pnstruct2));
pns2.qgl g_struct. CCSID = 37;
mencpy(pns2.ql g _struct. Country_ I D, US const, 2);
mencpy(pns2. ql g_struct. Language_I| D, Language_const, 3);;
pns2. gl g_struct.Path Type = 0;
pns2. gl g_struct.Path _Length = sizeof (MYPN2)-1;
mencpy(pns2.ql g _struct. Path _Name Delimter, Path _Nanme_ Del const, 1);
mencpy(pns2. pn, MYPN2, si zeof (MYPN2)) ;

/**/

/* Call SetAttrChject to set attributes on the target */
/* object. */
/**/
rc=Set AttrObject((Q g_Path Name T *) &pns2,

Buf f er Ar ea,

buf fer _si ze);

if (rc !'=0)
{
Frc = errno; /* return errno from Set AttrQoject */
printf("QOl SetAttr() for % failed with %.\n", pns2.pn,rc);
}
} /* end check Get AttrCbhject rc */
el se /* GetAttrCbhject failed */
{
Frc = errno; /* return errno fromGet Attroject */

printf("QOl GetAttr() for % failed with %.\n", pns.pn,rc);

return(rc);
} /* end main */

API introduced:; V4R4

Top | UNIX-Type APIs| APIs by category

QpOlUnlink()--Remove Link to File

Syntax
#i ncl ude <QO0Il stdi. h>
int QOlUnlink(Q g Path Nanme T *Pat h_Nane);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes on open() API.

The QpOlUnlink() function, similar to the unlink() function, removes a directory entry that refersto afile.
QpOlUnlink()differs from unlink() in that the Path_Name parameter is a pointer to aQlg_Path_ Name T
structure instead of a pointer to a character string.

For adiscussion of the authorities required, return values, and related information, see unlink()--Remove
Link to File.

Parameters

Path_Name

(Input) The path name of the abject to be unlinked. This path name isin the Qlg_Path_Name T
format. For more information on this structure, see Path Name Format.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

« unlink()--Remove Link to File

o link()--Create Link to File

« open()--Open File

o close()--Close File or Socket Descriptor

« rmdir()--Remove Directory

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes alink to afile: This program was stored in a source file with CCSID 37, so
the constant string "newfile" will be compiled in coded character set identifier (CCSID) 37. Therefore, the
country or region and language specified are United States English, and the CCSID specified is 37.

#i ncl ude <fcntl. h>
#i ncl ude <stdi o. h>
#i ncl ude <Q@Ol stdi. h>

mai n() {
const char US const[3]= "US";
const char Language_const[4] ="ENU';
const char Path_Name_ Del const[2] = "/";

struct pnstruct

Qg Path Nane T qlg struct;
char pn[7] ;

1
struct pnstruct pns;

struct pnstruct *pns_ptr = NULL;

char fn[]="unlink.file";

nmenset ((voi d*) &ns, 0x00, sizeof (struct pnstruct));
pns.ql g struct.CCSID = 37;
mencpy(pns. gl g _struct. Country_ I D, US const, 2);
mencpy(pns. gl g_struct. Language_ | D, Language_const, 3); ;
pns. gl g _struct. Path _Type = 0;
pns.ql g struct.Path _Length = sizeof (fn)-1;
mencpy(pns. gl g struct. Path_Nane Delimter,

Pat h_Nane_Del const, 1);
mencpy(pns. pn, fn, si zeof (fn));
menmset ((void *)&Attr _types ptr, 0x00,

si zeof (struct attrStruct));
pns_ptr = &pns;

if (QOlUnlink((Qg _Path Name T *)&pns) != 0)
perror (" QOlunlink() error");

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

QpO0zPipe()--Create Interprocess Channel with
Sockets

Syntax

#i ncl ude <spawn. h>

int QOzPipe(int fildes[2]);
Service Program Name: QPOZSPWN

Default Public Authority: *USE

Threadsafe: Yes

The Qp0zPipe() function creates a data pipe that can be used by two processes. One end of the pipeis
represented by the file descriptor returned in fildes[0] . The other end of the pipe is represented by the file
descriptor returned in fildeg[1] . Data that is written to one end of the pipe can be read from the other end of
the pipein afirst-in-first-out basis. Both ends of the pipe are open for reading and writing.

The Qp0zPipe() function is often used with the spawn() function to allow the parent and child processes to
send data to each other.

Parameters

fildeq[2]
(Input) An integer array of size 2 that will contain the pipe descriptors.

Authorities

None.

Return Value

0 QpO0zPipe() was successful.

-1 Qp0zPipeg() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOzPipe() isnot successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected
an address that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is hot valid, out of range, or NULL.
[EIQ] Input/output error.

A physical 1/0 error occurred.

A referenced object may be damaged.
[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf()
function).

[ENFILE] Too many open filesin the system.

A system limit has been reached for the number of filesthat are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

[ENOBUFY There is not enough buffer space for the requested operation.

[EOPNOTSUPP] Operation not supported.

The operation, though supported in general, is not supported for the requested object
or the requested arguments.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

Usage Notes

The 0S/400 implementation of the Qp0zPipe()function is based on sockets rather than pipes and, therefore,
uses socket descriptors. There are several differences:

1. After caling the fstat() function using one of the file descriptors returned on a QpOzPipe() cal,
when the st_mode from the stat structure is passed to the S_|SFIFO() macro, the return value
indicates FAL SE. When the st_mode from the stat structureis passed to S_|SSOCK(), the return
value indicates TRUE.

2. Thefile descriptors returned on a Qp0zPipe() call can be used with the send(), recv(), sendto(),
recvfrom(), sendmsg(), and recvmsg() functions.

If you want to use the traditional implementation of pipes, in which the descriptors returned are pipe
descriptors instead of socket descriptors, use the pipe() function.

Related Information

« The<spawn.h> file (see Header Filesfor UNIX-Type Functions)

o fstat()--Get File Information by Descriptor

« pipe()--Create an Interprocess Channel

o spawn()--Spawn Process

o socketpair()--Create a Pair of Sockets

o stat()--Get File Information

API introduced: V4R1

Top | UNIX-Type APIs| APIs by category

»qsygetgroups()--Get Supplemental Group IDs

Syntax

#i ncl ude <qgsysetid. h>

i nt gsygetgroups(int gidsetsize, gid t grouplist[])

Threadsafe: No

If the gidsetsize argument is zero, gsygetgr oups() returns the number of supplemental group IDs associated
with the calling thread without modifying the array pointed to by the grouplist argument. Otherwise,
gsygetgroups() fillsin the array grouplist with the supplementary group I1Ds of the calling thread and
returns the actual number of group IDs stored. The values of array entries with indexes larger than or equal
to the returned value are undefined.

Parameters

gidsetsize
(Input) The number of elementsin the supplied array grouplist.

grouplist
(Output) The supplementary group IDs.

Authorities

No authorization is required.

Return Value

Oor >0 qgsygetgroups() was successful. If the gidsetsize argument is 0, the number of supplementary
group IDs s returned. If gidsetsize is greater than O, the array grouplist isfilled with the
supplementary group 1Ds of the calling thread and the return value represents the actual
number of group 1Ds stored.

-1 gsygetgroups() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If qsygetgroups() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EINVAL] The gidsetsize argument is not equal to zero and is less than the number of group IDs.

&«

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

gsysetegid()--Set Effective Group ID

Syntax

#i ncl ude <qgsysetid. h>

int gsysetegid(gid t gid);
Threadsafe: Yes

If gid isequal to either the real, effective, saved group ID, or one of the groups in the supplemental group
list, gsysetegid() setsthe effective group ID to gid.

If gid is not equal to any of the current groups, but the thread has * USE authority to the user profile
associated with the gid, gsysetegid() sets the effective group ID to gid.

Job scoped locks with alock state of * SHRRD are held on the user profiles associated with the real user 1D,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

gid
(Input) Group ID.
Thisfield must contain one of the following values:
0
Thereis no effective group ID.
1to 4294967294
The group ID value for the set operation.

Authorities and Locks

User profile associated with uid authority

*USE authority is required to the user profile associated with gid if gid is not equal to thereal,
effective, saved group IDs or one of the groups in the supplemental group list.

User profile associated with uid lock
*SHRRD

Return Value

0
gsysetegid() was successful.
-1
gsysetegid() was not successful. errno is set to indicate the error.

Error Conditions

If gsysetegid() is not successful, errno indicates one of the following errors.
[EAGAIN]
User profile associated with the gid islocked. Try again.
[EINVAL]
The value of the gid argument isinvalid. Following are possible reasons:
o Out of range.
o Not associated with a user profile.

[EDAMAGE]
The user profile associated with the gid or an internal system object is damaged.
[ENOTSUP]

Operation not supported. The current effective user profile specifies OWNER(* GRPPRF), but the
group profile associated with this gid is not equal to the user profile's first group and the user's first
group isnot in the list of supplemental groups.

[EPERM]
Operation not permitted. Following are possible reasons:

o Thethread does not have * USE authority to the user profile associated with the gid and the
gid to be set is not the same as the real, effective, saved group IDs or any of the
supplemental groups.

o gid cannot be set to O if there are supplemental groups.

[EUNKNOWN]
An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs| APIs by category

gsyseteuid()--Set Effective User ID

Syntax

#i ncl ude <qgsysetid. h>

int gsyseteuid(uid t uid);
Threadsafe: Yes

If uid is equal to the real, effective, or saved user ID, qsyseteuid() sets the effective user 1D to uid.

If uid is not equal to the real, effective, or saved user ID, but the thread has * USE authority to the user
profile associated with uid, qsyseteuid() sets the effective user ID to uid.

Job scoped locks with alock state of * SHRRD are held on the user profiles associated with the real user 1D,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

uid
(Input) User ID.
Thisfield must contain one of the following values:

0 to 4294967294
The user ID value for the set operation.

Authorities and Locks

User profile associated with uid authority

*USE authority isrequired to the user profile associated with uid if uid is not equal to the real,
effective or saved user I1Ds.

User profile associated with uid lock
*SHRRD

Return Value

0
gsyseteuid() was successful.
-1
gsyseteuid() was not successful. errno is set to indicate the error.

Error Conditions

If gsyseteuid() is not successful, errno indicates one of the following errors.
[EAGAIN]
User profile associated with the uid is locked. Try again.
[EDAMAGE]
The user profile associated with the uid or an internal system object is damaged.
[EINVAL]
The value of the uid argument isinvalid. Following are possible reasons:
o Out of range.
o Not associated with a user profile.

[ENOTSUP]

Operation not supported. The user profile associated with this uid specifies OWNER(* GRPPRF),
but the user profile's first group is not the current effective group, nor isit in thelist of
supplemental groups.

[EPERM]

Operation not permitted. The thread does not have * USE authority to the user profile and the uid to
be set is not the same as the real, effective, or saved user IDs.

[EUNKNOWN]
An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs| APIs by category

gsysetgid()--Set Group ID

Syntax

#i ncl ude <qgsysetid. h>

int gsysetgid(gid t gid);
Threadsafe: Yes

If the thread has * ALLOBJ special authority, gsysetgid() setsthe real, effective and saved groups to gid.

If the thread does not have * ALLOBJ specia authority, but gid is equal to the real, effective or saved group
IDs, the gsysetgid() function sets the effective group ID to gid. The real group and saved group IDs remain
unchanged.

Any supplementary group 1Ds of the calling thread remain unchanged.

Job scoped locks with alock state of * SHRRD are held on the user profiles associated with the real user ID,
effective user 1D, saved user ID, real group ID, effective group 1D, saved group ID, and all of the
supplemental groups.

Parameters

gid
(Input) Group ID.
Thisfield must contain one of the following values:

0

Thereisno group ID. The effective group 1D can be set to 0 only if there are no
supplemental groups.

1t0 4294967294
The group ID vaue for the set operation.

Authorities and Locks

*ALL OBJ special authority

*ALLOBJ special authority isrequired if gid is not equal to the real, effective or saved group ID.
User profile associated with gid lock

*SHRRD

Return Value

0
gsysetgid() was successful.
-1
gsysetgid() was not successful. errno is set to indicate the error.

Error Conditions

If gsysetgid() is not successful, errno indicates one of the following errors.
[EAGAIN]
User profile associated with the gid islocked. Try again.
[EDAMAGE]
The user profile associated with the gid or an internal system object is damaged.
[EINVAL]
The value of the gid argument isinvalid. Following are possible reasons:
o Out of range.
o Not associated with a user profile.

[ENOTSUP]

Operation not supported. The current effective user profile specifies OWNER(* GRPPRF), but the
group profile associated with this gid is not equal to the user profile's first group and the user's first
group isnot in the list of supplemental groups.

[EPERM]
Operation not permitted. Following are possible reasons:

o Thethread does not have * ALLOBJ specia authority and gid is not the same as the real,
effective or saved group ID.

o Tried to set effective group ID to O when there are supplemental groups.

[EUNKNOWN]
An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs| APIs by category

»qsysetgroups()--Set Supplemental Group IDs

Syntax

#i ncl ude <qgsysetid. h>

int gsysetgroups(int gidsetsize, gid t grouplist[])

Threadsafe: No

The gsysetgroups API sets the supplementary group IDs of the calling thread. The gsysetgroups API cannot
set more than (NGROUPS_MAX-1) groupsin the group set.

Parameters

gidsetsize
(Input) The number of elementsin the supplied array grouplist.

grouplist
(Input) The supplementary group IDs.

Authorities and locks

User profile associated with gid Authority

*USE authority isrequired to the user profile associated with each gid in the group list if the gid is
not equal to the current thread's real, effective, or saved group 1Ds or one of the groupsin the
current thread's supplemental group list.

User profile associated with each gid L ock
*SHRRD

Return Value

0 gsysetgroups() was successful.

-1 qgsysetgroups() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If gsysetgroups() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]
User profile associated with agid islocked. Try again.

[EDAMAGE]
The user profile associated with agid or an internal system object is damaged.

[EINVAL]
One of the GID valuesin the grouplist argument is not valid. Following are possible reasons:
o Out of range.
o Not associated with a user profile.
0 gidsetsize too large.

[ENOTSUP]

Operation not supported. The current effective user profile specifies OWNER(* GRPPRF), but the
user'sfirst group is not equal to the current effective group profile and the user's first group isnot in
thislist of supplemental groups.

[EPERM]
Operation not permitted. Following are possible reasons:

o Thethread does not have * USE authority to the user profile associated with the GID and
the GID to be set is hot the same asthe real, effective, saved group IDs or any of the
supplemental groups.

o Supplemental groups cannot be set if effective GID isO.

[EUNKNOWN]
An unknown error has occurred. Check the joblog for error messages.

%
API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

gsysetregid()--Set Real and Effective Group IDs

Syntax

#i ncl ude <qgsysetids. h>

int gsysetregid(gid t rgid, gidt egid);
Threadsafe: Yes

The gsysetregid() function is used to set the real and effective group I1Ds. The real and effective group IDs
may be set to different valuesin the same call.

A thread with * ALLOBJ special authority can set the real group 1D and the effective group ID to any valid
value.

A thread without * ALLOBJ specia authority can only set the real group ID to the saved group ID. A thread
without * ALLOBJ specia authority can only set the effective group I1D to the saved group ID or the real
group ID.

Any supplemental group IDs remain unchanged.
Job scoped locks with alock state of * SHRRD are held on the user profiles associated with the real user ID,

effective user ID, saved user 1D, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

real gid
(Input) Group ID.

Thisfield must contain one of the following values:

0
Thereisnoreal group ID.

1t0 4294967294
The group 1D value for the set operation.

4294967295
Therea group ID does not change. Thisvalueisthe same as X'FFFFFFFF or -1 in
languages that do not support unsigned integers.

effective gid

(Input) Group ID.

Thisfield must contain one of the following values:
0
Thereis no effective group ID.

1to 4294967294
The group ID value for the set operation.
4294967295

The effective group 1D does not change. This value is the same as X'FFFFFFFF or -1 in
languages that do not support unsigned integers.

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority isrequired to change the real group ID if rgid is not equal to the saved
group ID. * ALLOBJ specia authority is required to set the effective group ID if the egid is not
equal to the real group ID or the saved group ID.

User profile associated with rgid lock
*SHRRD

User profile associated with egid lock
*SHRRD

Return Value

0
gsysetregid() was successful.
-1
gsysetregid() was not successful. The errno is set to indicate the error.

Error Conditions

If gsysetregid() is not successful, errno indicates one of the following errors.
[EAGAIN]
User profile associated with thergid or rgid is locked. Try again.
[EDAMAGE]
The user profile associated with one of the gids or an internal system object is damaged.
[EINVAL]
The value of the gid argument isinvalid. Following are possible reasons:
o Out of range.
o Not associated with a user profile.

[ENOTSUP]

Operation not supported. The current effective user profile specifies OWNER(* GRPPRF), but the
group profile associated with this gid is not equal to the user profile's first group and the user'sfirst
group isnot in the list of supplemental groups.

[EPERM]
Operation not permitted. Following are possible reasons:

o Thethread does not have * ALLOBJ specia authority and a change other than changing the
real group ID to the saved group ID, or changing the effective group ID to the real group
ID or the saved group 1D was requested.

o Tried to set effective group ID to O when there are supplemental groups.

[EUNKNOWN]
An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs| APIs by category

gsysetreuid()--Set Real and Effective User IDs

Syntax

int gsysetreuid(uid_t ruid, uid_t euid);
Threadsafe: Yes

The gsysetreuid() function setsthe real and effective user IDs to the values specified by ruid and euid.
A thread with * ALLOBJ special authority can set either ID to any value.

A thread without * ALLOBJ special authority can only set the effective user 1D if the euid argument is equal
to thereal, effective, or saved user ID.

Job scoped locks with alock state of * SHRRD are held on the user profiles associated with the real user ID,
effective user 1D, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

real uid
(Input) User ID.

Thisfield must contain one of the following values:
010 4294967294

The user ID value for the set operation.
4294967295

The real user ID does not change. This value isthe same as X'FFFFFFFF or -1 in
languages that do not support unsigned integers.

effective uid
(Input) User ID.

Thisfield must contain one of the following values:
0t0 4294967294

The user ID value for the set operation.
4294967295

The effective user 1D does not change. Thisvaue isthe same as X'FFFFFFFF or -1 in
languages that do not support unsigned integers.

Authorities and Locks

*ALLOBJ special authority

* ALLOBJ special authority isrequired to change thereal user ID. * ALLOBJ specia authorty is
required to change the effective user 1D if the euid is not equal to the real, effective, or saved user
ID.

User profile associated with euid lock
*SHRRD

User profile associated with ruid lock
*SHRRD

Return Value

0
gsysetreuid() was successful.
-1
gsysetreuid() was not successful. The errno variable is set to indicate the error.

Error Conditions

If gsysetreuid() is not successful, errno indicates one of the following errors.
[EAGAIN]
User profile associated with ruid or euid islocked. Try again.
[EDAMAGE]
The user profile associated with ruid or euid or an internal system object is damaged.
[EINVAL]
The value of the ruid or euid argument isinvalid. Following are possible reasons:
o Out of range.
o Not associated with a user profile.

[ENOTSUP]

Operation not supported. The user profile associated with this uid specifies OWNER(* GRPPRF),
but the user profile's first group is not the current effective group, nor isit in thelist of
supplemental groups.

[EPERM]

Operation not permitted. The current thread does not have * ALLOBJ special authority, and either
an attempt was made to change the effective user 1D to a value other than the real user ID or the
saved set-user-1D or an an attempt was made to change the real user ID.

[EUNKNOWN]
An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs| APIs by category

gsysetuid()--Set User ID

Syntax

#i ncl ude <qgsysetid. h>

int gsysetuid(uid_ t uid);
Threadsafe: Yes

If the thread has * ALLOBJ special authority, gsysetuid() setsthe real, effective, and saved user ID to uid.

If the thread does not have * ALLOBJ special authority, but uid is equal to the real, effective or saved user
ID, gsysetuid() setsthe effective user ID to uid. Thereal and saved user 1Ds remain unchanged.

Job scoped locks with alock state of * SHRRD are held on the user profiles associated with the real user 1D,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

uid
(Input) User ID.
Thisfield must contain one of the following values:

0 to 4294967294
The user ID value for the set operation.

Authorities and Locks

*ALLOBJ special authority

* ALLOBJ special authority isrequired if uid is not equal to the real, effective, or saved user ID.
User profile associated with uid lock

*SHRRD

Return Value

0
gsysetuid() was successful.
-1
gsysetuid() was not successful. errno is set to indicate the error.

Error Conditions

If gsysetuid() is not successful, errno indicates one of the following errors.
[EAGAIN]
User profile associated with the uid is locked. Try again.
[EDAMAGE]
The user profile associated with the uid or an internal system object is damaged.
[EINVAL]
The value of the uid isinvalid. Following are possible reasons:
o Out of range.
o Not associated with a user profile.

[ENOTSUP]

Operation not supported. The user profile associated with this uid specifies OWNER(* GRPPRF),
but the user profile'sfirst group is not the current effective group, nor isit in the list of
supplemental groups.

[EPERM]

Operation not permitted. The thread does not have * ALLOBJ specia authority and uid is not the
same as the real, effective or saved user ID.

[EUNKNOWN]
An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs| APIs by category

Retrieve Network File System Export Entries
(QZNFRTVE) API

Required Parameter Group:
1 Receiver variable Output Char(*)
2 Length of receiver variable in bytes Input Binary(4)
3 Returned records feedback information Output Char(16)
4 Format name Input Char(8)
5 Object path name Input Char(*)
6 Length of object path namein bytes Input Binary(4)
7 CCSID of object path name given Input Binary(4)
8 Desired CCSID of the object path Input Binary(4)
names returned
9 Handle Input Binary(4)
10 Error code 1/0 Char(*)
Threadsafe: No

The Retrieve Network File System Export Entries (QZNFRTVE) API returnsthe list of Network File
System (NFS) export entries for objects currently exported to NFS clients or for objects referenced in the
letclexportsfile.

Authorities and Locks

« The user must have execute (* X) data authority to the /etc directory (if it exists).
o Theuser must have read (* R) data authority to the /etc/exportsfile (if it exists).

Note: Adopted authority is not used.

Usage Notes

If none of the required parameters are passed to this API, then all of the entries that are currently exported
will be returned to the joblog by messages (CPIB41A). If there are no entries currently exported, then
message CPIB41B will be returned.

Required Parameter Group

The following parameters are required.
Receiver variable
OUTPUT; CHAR(*)

The receiver variable that receives the information requested. The API returns only data that the
area can hold.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable provided. The length of the receiver variable parameter may be
specified up to the size of the receiver variable area specified by the user program.

No partial entrieswill be returned. If the length of the receiver variable islessthan what is required

by the format selected, then an error is returned (CPFB419) and the size required will be indicated
in the feedback structure.

Returned records feedback information
OUTPUT; CHAR(16)

Information about the entries that are returned in the receiver variable.

For a detailed description of thisformat, see Format of Returned Records Feedback Information.

Format name
INPUT; CHAR(8)

The name of the format that is used to retrieve NFS export entries.

Y ou can specify one of the following formats:
EXPE0100

Returns information about export entries that are currently exported. These are sometimes
called temporary exports. For a detailed description of this format, see EXPE0100 and

EXPE0200 format.

EXPEO0200

Returns information about export entriesthat are in the /etc/exports file. These are
sometimes called permanent exports. For a detailed description of this format, see
EXPEO100 and EXPE0200 format.

Object path name
INPUT; CHAR(*)

The aobject path name at which to start listing NFS export entries. Possible values follow:
*FIRST

NFS export entries are returned starting with the first object path name in the NFS export
entry list.

*HANDLE

NFS export entries are returned starting with the object path name that corresponds to the
specified handle.

When the receiver variable is not large enough to hold al of the entries in the NFS export
entry list, the API returns a non-zero handle in the returned records feedback information
parameter. This handle can be used on a subsequent call to the API to continue retrieving
NFS export entries with the next object path name in the NFS export entry list.

Thereisno implied order to the export entries that are returned. While no sorting or

sequencing has been done on the returned entries, a complete list will eventually be
returned if the* HANDLE option is used.

Object path name
The NFS export entry for the specified object path nameis returned.

Length of object path name
INPUT; BINARY (4)

The length of the object path name in bytes. If one of the special valuesis given for the object path
name, then the length should be given for that special value.

CCSID of object path name given
INPUT; BINARY (4)

The CCSID of the object path name given as an input parameter. Possible values follow:
0

The current Default Job CCSID should be used.
value

A vaid CCSID number.

Desired CCSID of object the path names returned.
INPUT; BINARY (4)
The Desired CCSID of the object path names returned. The output structure will contain the actual

CCSID of the returned object path names. Thiswill match the Desired CCSID given asinput, if
possible. Possible values follow:

0

The current Default Job CCSID should be used.
value

A valid CCSID number.

Handle of starting object path name
INPUT; BINARY (4)

The handle returned from a previous call to the QZNFRTVE API.

This parameter should be O if *HANDLE was NOT specified for the object path name parameter.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see.

Receiver Variable Description

The following table describes the order and format of the data returned in the receiver variable. For a

detailed description of each field, see Field Descriptions.

EXPEO0100 and EXPE0200 format

This structure is used to return NFS export information for a single object path name for both the

EXPE0100 and the EXPE0200 formats.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Lengthof entry

| 4 | 4 |BINARY(4) |Displacement to object path name
| 8 | 8 |BINARY(4) |Length of object path name

| 12 | C |BINARY(4) |CCSID of object path name
[16 [10 [BINARY(4) |Read-only flag

| 20 | 14 |BINARY(4) |NOSUID flag

| 24 | 18 |BINARY(4) |Displacement to read-write host names
| 28 |1C IBINARY(4) |Number of read-write host names
| 32 | 20 |BINARY(4) |Displacement to root host names

| 36 | 24 |BINARY(4) |Number of root host names

| 40 | 28 |BINARY(4) |Displacement to access host names
| 44 | 2C |BINARY(4) |Number of access host names

| 48 | 30 |BINARY(4) |Displacement to host options

| 52 | 34 |BINARY(4) |Number of host options

| 56 | 38 |BINARY(4) |Anonymoususer ID

| 60 | 3C |CHAR(10) |Anonymous User Profile

| * | * |CHAR() |Object path name

Thesefields BINARY (4) Length of host name entry

repeat for each

host namein the |BINARY (4)
read-write access

Length of host name

host namein the

list CHAR(*) Host name
Thesefields |BI NARY (4) |Length of host name entry
repeat for ech [BINARY(4) |Length of host name

root access list. |CHAR(*)

|Host name

host namein the

These fields |BI NARY (4) |Length of host name entry

repeat for each

hodt name in the |BINARY(4) |Length of host name

accesslist. |CHAR(*) |Host name

These fields IBINARY(4) |Length of host name options entry
repeat for ech [B|NARY(4) [Network datafile CCSID

host optionslist. |B| NARY (4)

INetwork path name CCSID

IBINARY (4)

|Write mode flag

[BINARY ()

|Length of host name

| [CHAR() [Host name |

Returned Records Feedback Information Description

The following table describes the order and format of the data returned in the returned records feedback
information parameter. For a detailed description of each field, see Field Descriptions.

Format of Returned Records Feedback Information

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |Number of NFS export entries
[12 [C |[BINARY(4) |Handle

Field Descriptions

Anonymous User ID. The user ID used as the effective user ID for requests from unknown users. Hex
value OXFFFFFFFF (avalue of -1 if thiswere asigned integer) indicates requests from unknown users are
not allowed.

Anonymous User Profile. Thisisthe OS/400 User Profile name that is associated with the Anonymous
User ID returned. If the Anonymous User ID has the specia value of hex value OxFFFFFFFF (avalue of -1
if thiswere a signed integer), then the Anonymous User Profile will be set to the specia value of *NONE.

Bytes available. The number of bytes of data available to be returned to the user in the receiver variable. If

al datais returned, bytes available is the same as the number of bytes returned. If the receiver variable was

not large enough to contain al of the data, this value is estimated based on the total humber of entriesin the
NFS export entry list that could be returned.

Bytesreturned. The number of bytes of data returned to the user in the receiver variable.

CCSID of abject path name. The CCSID of the object path name.

Object path name. The path name of the object for which export information isto be returned.

Displacement to access host names. The offset (in bytes) from the beginning of the NFS export entry to
the host names in the accesslist.

Displacement to host options. The offset (in bytes) from the beginning of the NFS export entry to the host
optionslist.

Displacement to object path name. The offset (in bytes) from the beginning of the NFS export entry to
the object path name.

Displacement to read-write host names. The offset (in bytes) from the beginning of the NFS export entry
to the host names in the read-write access list.

Displacement to root host names. The offset (in bytes) from the beginning of the NFS export entry to the
host namesin the root access list.

Handle. The handle to be used on a subsequent call to the API to continue retrieving NFS export entries
with the next object path name in the NFS export entry list. O indicates all remaining NFS export entries
have been returned.

Host name. The host name.

Length of entry. The length (in bytes) of the current NFS export entry. The length can be used to access
the next entry.

Length of host name. The length (in bytes) of the host name.

L ength of host name entry. The length (in bytes) of this host name entry.

Length of host name options entry. The length (in bytes) of this host name options entry.
L ength of object path name. The length (in bytes) of the object path name.

Network data file CCSID. The CCSID used for data of the files sent to and received from the specified
host name.

Network path name CCSID. The CCSID used for path name components of the files sent to and received
from the specified host name.

NOSUID flag. Whether an attempt by the client to enable bits other than the permission bits will be
ignored. Possible values follow:

0
An attempt to set bits other than the permission bits will be carried out.

An attempt to set bits other than the permission bits will be ignored.
Number of access host names. The number of host namesin the access list.
Number of host options. The number of entries in the host options list.

Number of NFS export entries. The number of complete entries returned in the list of NFS export entries.
A value of zeroisreturned if the list is empty relative to the requested starting position.

Number of read-write host names. The number of host names in the read-write accesslist.
Number of root host names. The number of host names in the root access list.

Read-only flag. Whether the object is exported allowing only read access. Possible values follow:
0

The abject is exported allowing read-write access for al client hosts that are not specifically
indicated to have read-only access.

The abject is exported allowing read-only access for all client hosts that are not specifically
indicated to have read-write access.

Write mode flag. Whether write requests are handled synchronously or asynchronously. Synchronously
means that data will be written to disk immediately. Asynchronously does not guarantee that datais written

to disk immediately, and can be used to improve server performance. Possible values follow:
0
Write reguests are performed synchronously.

Write requests are performed asynchronously.

Error Messages

CPE3418 E
Possible APAR condition or hardware failure.
CPF3C90 E
Literal value cannot be changed.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPFO872 E
Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAOD4 E
File system error occurred.

Top | UNIX-Type APIs| APIs by category

read()--Read from Descriptor

Syntax

#i ncl ude <uni std. h>

ssize t read(int file_descriptor,
void *buf, size t nbyte);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

From thefile or socket indicated by file_descriptor, the read() function reads nbyte bytes of input into the
memory areaindicated by buf. If nbyteis zero, read() returns a value of zero without attempting any other
action.

If file_descriptor refersto a"regular file" (a stream file that can support positioning the file offset) or any
other type of file on which the job can do an Iseek() operation, read() begins reading at the file offset
associated with file_descriptor. A successful read() changes the file offset by the number of bytes read.

If read() is successful and nbyte is greater than zero, the access time for the file is updated.
read() is not supported for directories.

If file_descriptor refersto a descriptor obtained using the open() function with O_TEXTDATA specified,
the datais read from the file assuming it isin textual form. The maximum number of bytes on a single read
that can be supported for text datais 2,147,483,408 (2GB - 240) bytes. The datais converted from the code
page of the file to the code page of the application, job, or system as follows:

« When reading from atrue stream file, any line-formatting characters (such as carriage return, tab,
and end-of-file) are just converted from one code page to another.

« When reading from record files that are being used as stream files, end-of-line characters are added
to the end of the datain each record.

There are some important considerations when the file is open for text conversion and the CCSIDsinvolved
are not gtrictly single-byte:

o Theread() will return the exact number of bytes requested. For some CCSIDs, this may mean that
partial characters are returned at the end of the user buffer. In this case, the remainder of the
character has been read from the file and internally buffered. The next consecutive read() will begin
with the remainder of the partial character. However, if an Iseek() is performed, the buffered data
will be discarded. See |seek()--Set File Read/Write Offset for more information.

« Because of the above consideration and because of the possible expansion or contraction of
converted data, applications using the O_CCSID flag should avoid assumptions about data size and
the current file offset. For example, afile might have a physical size of 100 bytes, but after an
application has read 100 bytes from the file, the current file offset may be 50. In order to read the
wholefile, the application might have to read 200 bytes or more, depending on the CCSIDs
involved.

If O_TEXTDATA was not specified on the open(), the datais read from the file without conversion. The
application is responsible for handling the data.

In the QSY S.LIB #*and independent ASP QSY S.LIB file systems, “&most end-of-file characters are
symbolic; that is, they are stored outside the member. When reading:

« If O_TEXTDATA is specified, both symbolic and nonsymbolic end-of-file characters can be seen.
o If O TEXTDATA isnot specified (binary mode), only nonsymbolic end-of-file characters can be
seen.

See the Usage Notes for write()--Write to Descriptor.

When file_descriptor refersto a socket, the read() function reads from the socket identified by the socket
descriptor.

When attempting to read from an empty pipe or FIFO:
« If nojob has the pipe or FIFO open for writing, read() return O to indicate end-of-file.

« |f some job has the pipe or FIFO open for writing and O_NONBLOCK was specified, read() will
fail and errno will be set to [EAGAIN].

« |f some job has the pipe or FIFO open for writing and O_NONBLOCK was not specified, read()
will block the calling thread until some data is written or until the pipe or FIFO is closed by all jobs
that had the pipe or FIFO open for writing.

Parameters

file descriptor

(Input) The descriptor to be read.
buf

(Output) A pointer to abuffer in which the bytes read are placed.
nbyte

(Input) The number of bytes to be read.

Authorities

No authorization is required.

Return Value

value

read() was successful. The value returned is the number of bytes actually read and placed in buf.
This number islessthan or equal to nbyte. It islessthan nbyte only if read() reached the end of the
file before reading the requested number of bytes. If read() isreading aregular file and encounters
apart of the file that has not been written (but before the end of the file), read() places bytes
containing zeros into buf in place of the unwritten bytes.

read() was not successful. The errno global variable is set to indicate the error. If the value of nbyte
is greater than SSIZE_MAX, read() setserrno to [EINVAL].

Error Conditions

If read() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES

[EAGAIN]

[EBADF]

[EBADFID]

[EBUSY]

[EDAMAGE]

Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Accessto aremote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

This may occur if file_descriptor refersto a socket and the socket isusing a
connection-oriented transport service, and a connect() was previously completed. The
thread, however, does not have the appropriate privileges to the objects that were
needed to establish a connection. For example, the connect() required the use of an
APPC device that the thread was not authorized to.

Operation would have caused the process to be suspended.

If file_descriptor refersto a pipe or FIFO that hasits O_NONBLOCK flag set, this
error occursif the read() would have blocked the calling thread.

Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or a
read or write request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The
specified descriptor isincorrect, or does not refer to an open file. Or, thisread request
was made to afile that was only open for writing.

A file ID could not be assigned when linking an object to a directory.
Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as
possible.

Resource busy.
An attempt was made to use a system resource that is not available at thistime.
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

B{EINTR]

[EINVAL]

[EI0]

[ENOMEM]

[ENOTAVAIL]

[ENOTSAFE]

H{ENXIO]

[EOVERFLOW]

3 ERESTART]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

Interrupted function call .4

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.

This may occur if file_descriptor refersto a socket that is using a connectionless
transport service, is not a socket of type SOCK_RAW, and is not bound to an address.

Thefileresidesin afile system that does not support large files, and the starting
offset of the file exceeds 2GB minus 2 bytes.

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

Storage alocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

Function is not allowed in ajob that is running with multiple threads.

No such device or address.#

Object istoo large to process.
The object's data size exceeds the limit allowed by this function.

Thefileisaregular file, nbyte is greater than 0, the starting offset is before the
end-of-file, and the starting offset is greater than or equal to 2GB minus 2 bytes.

A system call was interrupted and may be restarted. <

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

When the descriptor refers to a socket, errno could indicate one of the following errors:
[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

« Theretransmission limit has been reached for data that was being sent on
the socket.

« A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.
[EINTR] Interrupted function call.
[ENOTCONN] Requested operation requires a connection.

Thiserror code is returned only on sockets that use a connection-oriented
transport service.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A non-blocking connect() was previously completed that resulted in the
connection timing out. No connection is established. This error code is returned
only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED]

[ECONNRESET]

[EHOSTDOWN]

[EHOSTUNREACH]

[ENETDOWN]

[ENETRESET]

[ENETUNREACH]

[ESTALE]

[ETIMEDOUT]

[EUNATCH]

Error Messages

The destination socket refused an attempted connect operation.

A connection with aremote socket was reset by that socket.

A remote host is not available.

A route to the remote host is not available.

The network is not currently available.

A socket is connected to a host that is no longer available.

Cannot reach the destination network.

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

A remote host did not respond within the timeout period.

The protocol required to support the specified address family is not available at
thistime.

The following messages may be sent from this function:

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAQ81 E Unable to set return value or error code.

CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is
operation is a save file and multiple threads exist in the job.

This function will fail with error code [EIO] if the file specified is a save file and the file does not
contain complete save file data.

The file access time for a database member is updated using the normal rules that apply to database
files. At most, the access time is updated once per day.

If you previously used the integrated file system interface to manipul ate a member that contains an
end-of-file character, you should avoid using other interfaces (such as the Source Entry Utility or
database reads and writes) to manipulate the member. If you use other interfaces after using the
integrated file system interface, the end-of-file information will be lost.

3. QOPT File System Differences
Thefile accesstime is not updated on aread() operation.

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being read are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or thefile is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when thelocal Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

Reading and writing to files with the Network File System relies on byte-range locking to
guarantee data integrity. To prevent data inconsistency, use the fentl() API to get and release these
locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If alarger buffer is passed, the error EINVAL will
be received.

6. For sockets that use a connection-oriented transport service (for example, sockets with atype of
SOCK_STREAM), areturn value of zero indicates one of the following:

o The partner program has issued a close() for the socket.

o The partner program has issued a shutdown() to disable writing to the socket.

o The connection is broken and the error was returned on a previously issued socket function.
o A shutdown() to disable reading was previously done on the socket.

7. Thefollowing appliesto sockets that use a connectionless transport service (for example, a socket
with atype of SOCK_DGRAM).

o If aconnect() has been issued previously, then data can be received only from the address
specified in the previous connect().

o The address from which dataisreceived is discarded, since the read() has no address
parameter.

o The entire message must be read in asingle read operation. If the size of the message is too
large to fit in the user supplied buffer, the remaining bytes of the message are discarded.

0 A returned value of zero indicates one of the following:
= The partner program has sent aNULL message (a datagram with no user data).
= A shutdown() to disable reading was previously done on the socket.
= The buffer length specified was zero.

8. For file systemsthat do not support large files, read() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do
support largefiles, read() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2
bytes and the file was not opened for large file access.

9. Using this function successfully on the £*/dev/null or /dev/zero “character special fileresultsin a
return value of zero. In addition, the access time for the file is updated.

Related Information

» The<limits.h> file (see Header Filesfor UNIX-Type Functions)
» The<unistd.h> file (see Header Filesfor UNIX-Type Functions)
« creat()--Create or Rewrite File

o dup()--Duplicate Open File Descriptor

o dup2()--Duplicate Open File Descriptor to Another Descriptor

« fentl()--Perform File Control Command

« ioctl()--Perform 1/0O Control Request

o Iseek()--Set File Read/Write Offset

» open()--Open File

o #*pread()--Read from Descriptor with Offset %%

o #*pread64()--Read from Descriptor with Offset (large file enabled) <%
o Zpwrite()--Write to Descriptor with Offset <X

o Zrpwrite64()--Write to Descriptor with Offset (large file enabled) €
« readv()--Read from Descriptor Using Multiple Buffers

o recv()--Receive Data

o recvfrom()--Receive Data

« recvmsg()--Receive Data or Descriptors or Both

o write()--Write to Descriptor

« writev()--Write to Descriptor Using Multiple Buffers

Example
The following example opens afile and reads input:

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

mai n() {
int ret, file_descriptor, rc;
char buf[]="Test text";

if ((file_descriptor = creat("test.output”, S IWSR))!= 0)
perror("creat() error");
el se {
if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))
perror("wite() error");
if (close(file _descriptor)!= 0)
perror("close() error");
}

if ((file_descriptor = open("test.output”, O RDONLY)) < 0)
perror("open() error");
el se {
ret = read(file_descriptor, buf, sizeof(buf)-1));
buf[ret] = 0x00;
printf("block read: \n<%>\", buf);
if (close(file _descriptor)!= 0)
perror("close() error");

if (unlink("test.output")!= 0)
perror("unlink() error");

Output:

bl ock read:
<Test text>

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

readdir()--Read Directory Entry

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

struct dirent *readdir(D R *dirp);
Threadsafe: No; see Usage Notes.

The readdir () function returns a pointer to a dirent structure describing the next directory entry in the
directory stream associated with dirp.

A call to readdir () overwrites data produced by a previous call to readdir () on the same directory stream.
Callsfor different directory streams do not overwrite the data of each other.

If the call to readdir() actually reads the directory, the access time of the directory is updated.

readdir () performs tranglation if necessary to convert the directory entry name into the CCSID (coded
character set identifier) of the job at the time of the call to opendir ().

Parameters
dirp

(Input) A pointer to a DIR that refers to theopen directory stream to be read. This pointer is
returned by opendir () (see opendir()--Open Directory).

See QlgReaddir()--Read Directory Entry for a description and an example of supplying thedirpin
any CCSID, using adirent_|lg structure.

A dirent structure has the following contents:

char d_reserved1[16] Reserved.

unsigned int d_fileno_gen id The generation I1D associated with the file ID.

ino_t d_fileno Thefile ID of thefile. This number uniquely identifies the
object within afile system.

unsigned int d_reclen The length of the directory entry in bytes.

int d_reserved3 Reserved.

char d_reserved4[6] Reserved.

char d_reserved5[2] Reserved.

glg nis t d_nlsinfo National language information about d_name. The following
fields are defined:

int ccsid
CCSID of the charactersin the d_namefield.
char country_id[2]

Country or region identifier associated with the
d_namefidd.

char language _id[3]
Language identifier associated with the d_name field.
char nls _reserved| 3]

Reserved.
unsigned int d_namelen The length of the name in bytes, excluding the null terminator.
char d_name[640] A string that givesthe name of afilein the directory. This

string ends in aterminating null, and has a maximum length of
{NAME_MAX} bytes, not including the terminating NUL L
(see pathconf()--Get Configurable Path Name Variabl es).

Authorities

No authorization is required. Authorization is verified during opendir ().

Return Value

value

readdir () was successful. The value returned is a pointer to adirent structure describing the next
directory entry in the directory stream.

NULL pointer
One of the following has occurred:

o readdir () reached the end of the directory stream. The errno global variable is not
changed.

o readdir() was not successful. Theerrnois set.

Error Conditions

If readdir () is not successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.
Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
request was madeto afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and

the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]
Input/output error.

A physical I/O error occurred.
A referenced object may be damaged.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP isin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E Filesystem error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thereaddir_r() API should be used to read a directory when running in a multithreaded job.

2. Savethe datafrom readdir (), if required, before calling closedir (), because closedir () freesthe
data.

3. If the dirp argument passed to readdir () does not refer to an open directory stream, readdir ()
returns the [EBADF] error.

4. readdir() buffers multiple directory entries to improve performance. This means the directory is
not actually read on each call to readdir (). Asaresult, files that are added to the directory after

opendir () or rewinddir () may not be returned on callsto readdir (), and files that are removed may
still be returned on callsto readdir ().

5. readdir() aso returns directory entries for dot (.) and dot-dot (..) subdirectories.
6. QSYS.LIB #*and Independent ASP QSY S.LIB “File System Differences

Callsto readdir () that update the access time of the directory use the normal rules that apply to
libraries and database files. At most, the access time is updated once per day.
7. QDLS File System Differences

The access time of the directory is updated on opendir (). The accesstimeis not affected by
readdir ().

When aobjectsin QDLS are accessed, the country or region ID and language ID of the directory
entry name are always set to the country or region 1D and language ID of the system.

When areaddir () operation specifies the /QDLS directory, the user must have * USE authority to
each child object of the /QDL S directory (that is, * USE authority to each object immediately below
QDLS inthedirectory hierarchy). A directory entry is returned only for those objects for which the
user has * USE authority. If the readdir () operation specifies a directory below QDLS, a directory
entry isreturned for al objects, even if the user does not have * USE authority for some of the
objects.

8. QOPT File System Differences

The access time of the directory is not updated on areaddir () operation.

Related Information

« The<sys/types.h> file (see Header Filesfor UNIX-Type Functions)

« The<dirent.h> file see Header Files for UNIX-Type Functions)

« opendir()--Open Directory
o OlgReaddir()--Read Directory Entry
o rewinddir()--Reset Directory Stream to Beginning

o closedir()--Close Directory
o pathconf()--Get Configurable Path Name V ariables

Example
The following exampl e reads the contents of aroot directory:

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

#i ncl ude <errno. h>

#i ncl ude <stdio. h>

mai n() {
DR *dir;
struct dirent *entry;

if ((dir = opendir("/")) == NULL)
perror("opendir() error");

el se {
puts("contents of root:");
while ((entry = readdir(dir)) != NULL)

printf(" %\n", entry->d_nane);

closedir(dir);

}

}

Output:

contents of root:

QSYS. LI B
QLS
QpensSys
QOPT

hone

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

readdir_r()--Read Directory Entry

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

int readdir _r(DIR *dirp, struct dirent *entry,
struct dirent **result);

Threadsafe: Conditional; see Usage Notes.

Thereaddir_r() function initializes the dirent structure that is referenced by entry to represent the next
directory entry in the directory stream that is associated with dirp. The readdir_r() function then storesa
pointer to the entry structure at the location referenced by result.

The storage pointed to by entry must be large enough for a dirent structure.

If the call to readdir_r() actually reads the directory, the access time of the directory is updated.

Thereaddir_r() function performstrandation, if necessary, to convert the directory entry name into the
coded character set identifier (CCSID) of the job at the time of the call to opendir ().

Parameters
dirp

(Input) A pointer to a DIR that refers to the open directory stream to be read. This pointer is
returned by opendir () (see opendir()--Open Directory).

See QlgReaddir()--Read Directory Entry for a description and an example of supplying thedirpin
any CCSID.

entry
(Output) A pointer to adirent structure in which the directory entry isto be placed.
result

(Output) A pointer to apointer to adirent structure. Upon successfully reading a directory entry,
thisdirent pointer is set to the same value as entry. Upon reaching the end of the directory stream,
this pointer will be set to NULL.

A dirent structure has the following contents:

char d_reserved1[16] Reserved.

unsigned int d_fileno_gen id The generation ID associated with the file ID.

ino_t d_fileno ThefileID of thefile. This number uniquely identifies the
object within afile system.

unsigned int d_reclen The length of the directory entry in bytes.

int d_reserved3 Reserved.

char d_reserved4[6] Reserved.

char d_reserved5[2] Reserved.

glg_nis t d_nlsinfo National language information about d_name. The following
fields are defined:

int ccsid
CCSID of the charactersin thed_namefield.
char country id[2]

Country or region identifier that is associated with the
d_namefield.

char language id[3]

Language identifier that is associated with thed_name
field.

char nls_reserved[3]

Reserved.
unsigned int d_namelen The length of the name in bytes, excluding the null terminator.
char d_name[640] A string that gives the name of afilein the directory. This

string ends in aterminating null, and has a maximum length of
{NAME_MAX} bytes, not including the terminating NULL
(see pathconf()--Get Configurable Path Name Variables).

Authorities

No authorization is required. Authorization is verified during opendir ().

Return Value

0
readdir_r () was successful. The result parameter points to one of the following:
o A pointer to adirent structure that describes the next directory entry in the directory stream.
Thiswill be the same value as the entry parameter.
o A NULL pointer. readdir_r() reached the end of the directory stream. The errno global
variable is not changed.
error code

readdir_r() was not successful. Thisvalueis set to the same value as the errno global variable.

Error Conditions

If readdir_r() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFES)
command determine the time between refresh operations of local data.) Accessto aremote file may

also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
regquest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= ONTC

= QSYS.LIB

= #ZIndependent ASP QSYS.LIB 4
= QOPT

2. readdir_r() isthreadsafe only when directed to adirectory in athreadsafe file system.

3. If thedirp argument that is passed to readdir_r() does not refer to an open directory stream,
readdir_r() returnsthe [EBADF] error.

4. readdir_r() caches multiple directory entriesto improve performance. This means the directory is
not actually read on each call to readdir_r(). Asaresult, files that are added to the directory after
opendir () or rewinddir () may not be returned on callsto readdir_r (), and files that are removed
may still be returned on callsto readdir_r().

5. readdir_r() also returns directory entries for dot (.) and dot-dot (..) subdirectories.
6. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

Callstoreaddir_r() that update the access time of the directory use the normal rules that apply to
libraries and database files. At mogt, the access time is updated once per day.
7. QDLSFile System Differences

The access time of the directory is updated on opendir (). The accesstimeis not affected by
readdir_r().

When objectsin QDLS are accessed, the country or region ID and language ID of the directory
entry name are always set to the country or region ID and language ID of the system.

When areaddir_r() operation specifies the /QDLS directory, the user must have * USE authority to
each object in the /QDLS directory (that is, * USE authority to each object immediately below
QDLS inthedirectory hierarchy). A directory entry is returned only for those objects for which the
user has * USE authority. If the readdir_r() operation specifies adirectory below QDLS, a
directory entry is returned for all objects, even if the user does not have * USE authority for some of
the objects.

8. QOPT File System Differences

The access time of the directory is not updated on areaddir_r () operation.

Related Information

« The<sys/types.h> file (see Header Files for UNIX-Type Functions) >
» The<dirent.h> file (see Header Files for UNIX-Type Functions)

« opendir()--Open Directory
o OlgReaddir()--Read Directory Entry

o readdir r ts64()--Read Directory Entry
o rewinddir()--Reset Directory Stream to Beginning

o closedir()--Close Directory
« pathconf()--Get Configurable Path Name Variables

Example

The following example reads the contents of aroot directory:

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

#i ncl ude <errno. h>

#i ncl ude <stdio. h>

mai n() {
int return_code;
DIR *dir;
struct dirent entry;
struct dirent *result;

if ((dir = opendir("/")) == NULL)
perror("opendir() error");
el se {
puts("contents of root:");
for (return_code = readdir _r(dir, &entry,
result '= NULL && return_code == 0;
return_code = readdir_r(dir, &entry,
printf(" 9%\n", entry.d _nane);
if (return_code !'= 0)
perror(“"readdir_r() error");
closedir(dir);
}
}

Output:

contents of root:

QsYS. LI B

&result);

&result))

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

readdir_r_ts64()--Read Directory Entry

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

int readdir _r ts64(DIR * _ ptr64 dirp,

struct dirent * _ ptr64 entry,
struct dirent * _ptr64 * ptr64 result);

Service Program Name: QPOLLIBTS
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

Thereaddir_r_ts64() function initializes the dirent structure that is referenced by entry to represent the
next directory entry in the directory stream that is associated with dirp. readdir_r_ts64() differsfrom

readdir_r() inthat it accepts 8-byte process|ocal pointers.

For adiscussion of the parameters, authorities required, return values, related information, usage notes, and

an example for thereaddir_r() API, seereaddir_r()--Read Directory Entry.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

readlink()--Read Value of Symbolic Link

Syntax

#i ncl ude <uni std. h>

int readlink(const char *path, char *buf, size t bufsiz);
Threadsafe: Conditional; see Usage Notes.

The readlink() function places the contents of the symbolic link path in the buffer buf. The size of the
buffer is set by bufsiz. The contents of the returned buffer do not include aterminating NULL. When bufsiz
is 0, the number of bytes contained in the symbolic link is returned and the buffer is unchanged.

If the buffer istoo small to contain the contents of the symbolic link, the contents are truncated to the size
of the buffer (bufsiz).

A successful readlink(), where bufsiz is greater than zero, sets the access time of the symbolic link.

Parameters

path
(Input) A pointer to the null-terminated path name of the symbolic link.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

See QlgReadlink()--Read Vaue of Symbolic Link for a description and an example of supplying
the path in any CCSID.

buf
(Output) A pointer to the areain which the contents of the link should be stored.

This parameter will be returned in the CCSID currently in effect for the job. If the CCSID of the
job is 65535, this parameter is assumed to be represented in the default CCSID of the job.

bufsiz
(Input) The size of buf in bytes.

Authorities

Note: Adopted authority is not used.
Authorization required for readlink()

Authority

Object Referred to Required errno
|Each directory in the path name preceding the object | *X |EACCES
|Object | None |None

Return Value

value
readlink() was successful.
When bufsiz is greater than zero, the value returned is the number of bytes placed in the buffer.

When bufsizis zero, the value returned is the number of bytes contained in the symbolic link. The
buffer is not changed.

If the return value is equal to bufsiz, the entire contents of the symbolic link may not have been
returned. Y ou can determine the size of the contents of the symbolic link by using either Istat() or
readlink() with azero value for bufsiz

readlink() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If readlink() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The named fileis not asymbolic link.

[EIO]
Input/output error.

A physical I/O error occurred.
A referenced object may be damaged.

[EISDIR]
Specified target is adirectory.

The path specified named a directory where afile or object name was expected.

The path name given is adirectory.

[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symbolic links encountered is more than POSIX_SY MLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name istoo long.
A path nameislonger than PATH_MAX characters or some component of the name islonger than
NAME_MAX characterswhile _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.
The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with a remote socket was reset by that socket.
[EHOSTDOWN]
A remote host is not available.
[EHOSTUNREACH]
A route to the remote host is not available.
[ENETDOWN]
The network is not currently available.
[ENETRESET]
A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is nhot available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E Filesystem error occurred. Error number &1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Usage Notes
1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.
o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.

Only the following file systems are threadsafe for this function:

= Root

QOpenSys

User-defined

QNTC

QSYS.LIB

= ZIndependent ASP QSYS.LIB 4
= QOPT

2. File System Differences

The following file systems do not support readlink().
o QSYSLIB
o ZIndependent ASP QSYS.LIB 4
o QDLS
o QOPT
o ONetWare
o QNTC

Related Information

» The<unistd.h> file (see Header Files for UNIX-Type Functions)
o |stat()--Get File or Link Information

o OlgReadlink()--Read Value of Symbolic Link

« dtat()--Get File Information

« symlink()--Make Symbolic Link

« unlink()--Remove Link to File

Example
The following example uses readlink():

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

mai n() {
char fn[]="readlink.file";
char sl[]="readlink.symink";
char buf[30];
int file_descriptor;

if ((file_descriptor = creat(fn, S IWSR)) < 0)
perror(“"creat() error");

el se {
close(fil e _descriptor);
if (symink(fn, sl) I'=0)
perror("symink() error");
el se {
if (readlink(sl, buf, sizeof(buf)) < 0)
perror("readlink() error");
else printf("readlink() returned '%"' for "%'\n", buf, sl);

unlink(sl);
unlink(fn);

}
}

Output:

readlink() returned 'readlink.file" for 'readlink.symink'

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

readv()--Read from Descriptor Using Multiple
Buffers

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ ui o. h>

int readv(int descriptor,
struct iovec *io_vector[],
i nt vector_| ength)

Threadsafe: Conditional; see Usage Notes.

The readv() function is used to receive data from afile or socket descriptor. readv() provides away for data
to be stored in several different buffers (scatter/gather 1/0).

See read()--Read from Descriptor for more information related to reading from a descriptor.

Parameters

descriptor
(Input) The descriptor to be read. The descriptor refersto afile or a socket.

io_vector(]

(I/0) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointers to
buffersin which the datato be read is stored. The structure pointed to by theio_vector parameter is
defined in <sys/uio.h>.

struct iovec {
voi d *j ov_base;
size_t i ov_len;

}

iov_baseandiov_len arethe only fieldsin iovec used by sockets. iov_base contains the pointer to a
buffer and iov_len contains the buffer length. The rest of the fields are reserved.

vector_length
(Input) The number of entriesinio_vector.

Authorities

No authorization is required.

Return Value

readv() returns an integer. Possible values are:
o -1 (unsuccessful)
N (successful), where nisthe number of bytes read.

Error Conditions

If readv() is not successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES

[EAGAIN]

[EBADF]

[EBADFID]

[EBUSY]

Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Accessto aremote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

This may occur if file_descriptor refersto a socket and the socket isusing a
connection-oriented transport service, and a connect() was previously completed. The
thread, however, does not have the appropriate privileges to the objects that were
needed to establish a connection. For example, the connect() required the use of an
APPC device that the thread was not authorized to.

Operation would have caused the process to be suspended.

Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or a
read or write request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The
specified descriptor isincorrect, or does not refer to an open file. Or, thisreadv
request was made to afile that was only open for writing.

A file ID could not be assigned when linking an object to a directory.
Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as
possible.

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EDAMAGE] A damaged object was encountered.
A referenced object is damaged. The object cannot be used.
[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

Z[EINTR] Interrupted function call .4

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

This may occur if file_descriptor refersto a socket that is using a connectionless
transport service, is not a socket of type SOCK _RAW and is not bound to an address.

Thefileresidesin afile system that does not support large files, and the starting
offset of the file exceeds 2 GB minus 2 bytes.

[EIO] Input/output error.
A physical I/O error occurred.
A referenced object may be damaged.
[ENOMEM] Storage allocation request failed.
A function needed to allocate storage, but no storage is available.
Thereis not enough memory to perform the requested function.
[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) isnot available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

[ENOTSAFE] Function is not alowed in ajob that is running with multiple threads.

[EOVERFLOW] Object istoo large to process.
The object's data size exceeds the limit allowed by this function.

Thefileisaregular file, nbyteis greater than 0O, the starting offset is before the
end-of-file and is greater than or equal to 2GB minus 2 bytes.

#[ERESTART] A system call was interrupted and may be restarted. &

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

When the descriptor refersto a socket, errno could indicate one of the following errors:
[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

« Theretransmission limit has been reached for data that was being sent on
the socket.

« A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.
[EINTR] Interrupted function call.
[ENOTCONN] Requested operation requires a connection.

Thiserror code is returned only on sockets that use a connection-oriented
transport service.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A non-blocking connect() was previously completed that resulted in the
connection timing out. No connection is established. This error code is returned
only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED]

[ECONNRESET]

[EHOSTDOWN]

[EHOSTUNREACH]

[ENETDOWN]

[ENETRESET]

[ENETUNREACH]

[ESTALE]

[ETIMEDOUT]

[EUNATCH]

Error Messages

The destination socket refused an attempted connect operation.

A connection with aremote socket was reset by that socket.

A remote host is not available.

A route to the remote host is not available.

The network is not currently available.

A socket is connected to a host that is no longer available.

Cannot reach the destination network.

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

A remote host did not respond within the timeout period.

The protocol required to support the specified address family is not available at
thistime.

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

CPFAO081 E Unable to set return value or error code.

CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. Theio_vector[] parameter is an array of struct iovec structures. When areadv() isissued, the
system processes the array elements one at atime, starting with io_vector[Q]. For each element,
iov_len bytes of received data are placed in storage pointed to by iov_base. Datais placed in
storage until all buffers are full, or until there is no more datato receive. Only the storage pointed
to by iov_base is updated. No change is made to theiov_len fields. To determine the end of the
data, the application program must use the following:

o The function return value (the total number of bytes received).
o Thelengths of the buffers pointed to by iov_base.

3. For sockets that use a connection-oriented transport service (for example, sockets with atype of
SOCK_STREAM), areturned value of zero indicates one of the following:

The partner program hasissued a close() for the socket.

The partner program has issued a shutdown() to disable writing to the socket.

o The connection is broken and the error was returned on a previously issued socket function.
A shutdown() to disable reading was previously done on the socket.

O

(]

[}

4. The following applies to sockets that use a connectionless transport service (for example, a socket
with atype of SOCK_DGRAM):

o If aconnect() has been issued previoudly, then data can be received only from the address
specified in the previous connect().

o The address from which datais received is discarded, because the readv() has no address
parameter.

o The entire message must be read in asingle read operation. If the size of the messageistoo
large to fit in the user-supplied buffers, the remaining bytes of the message are discarded.

o A returned value of zero indicates one of the following:
= The partner program has sent aNULL message (a datagram with no user data).
= A shutdown() to disable reading was previously done on the socket.

= The buffer length specified by the application was zero.

5. For thefile systems that do not support large files, readv() will return [EINVAL] if the starting
offset exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that
do support large files, readv() will return [EOVERFLOW] if the starting offset exceeds 2GB minus
2 bytes and file was not opened for large file access.

6. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If alarger buffer is passed, the error EINVAL will
be received.

7. QOPT File System Differences

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being read are ignored.

8. Using this function successfully on the /dev/null Zror /dev/zero “character special fileresultsin a
return value of 0. In addition, the access time for the file is updated.

Related Information

o The<limits.h> file (see Header Files for UNIX-Type Functions)
o The<unistd.h> file (see Header Files for UNIX-Type Functions)
« creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor

« dup2()--Duplicate Open File Descriptor to Another Descriptor

« fentl()--Perform File Control Command
« ioctl()--Perform I/O Control Request

o Iseek()--Set File Read/Write Offset

« open()--Open File

« read()--Read from Descriptor

« recv()--Receive Data

o recvfrom()--Receive Data

« recvmsg()--Receive Data or Descriptors or Both

o write()--Write to Descriptor

« writev()--Write to Descriptor Using Multiple Buffers

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

rename()--Rename File or Directory

Syntax

#i ncl ude <QO0Il stdi. h>

i nt renane(const char *old, const char *new);
Threadsafe: Conditional; see Usage Notes.

The rename() function can be defined to be either QpOlRenameUnlink() or QpOlRenameK eep(),
depending upon the definitions of the POSIX SOURCE and _POSIX1 SOURCE macrosin the
<QpOlstdi.h> header file:

o« When POSIX_SOURCE or POSIX1 SOURCE is defined, rename() is defined to be
QpOIRenameUnlink(). Either rename() or QpOlRenameUnlink() can be used to rename afile or
directory with the semantics of QpOIRenameUnlink().

« When POSIX_SOURCE and _POSIX1 SOURCE are not defined, rename() is defined to be
QpOIRenameK eep(). Either rename() or QpOlRenamekK egp() can be used to rename afile or
directory with the semantics of QpOIRenameK eep().

When the <Qp0Olstdi.h> header file is not included, rename() operates only on database files in the
QSY S.LIB #or independent ASP QSY S.LIB “file system, asit did before the introduction of the
integrated file system.

For details on the use of rename(), see the QpOIRenameUnlink() and QpOlRenamekK eep() functions.

Parameters

old
(Input) A pointer to the null-terminated path name of the file to be renamed.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

new
(Input) A painter to the null-terminated path name of the new name of thefile.
This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job.

The new file name is assumed to be represented in the language and country or region currently in
effect for the process.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root

QOpenSys

User-defined

QNTC

QSYS.LIB

#¥Independent ASP QSYS.LIB 4%
QOPT

Related Information

» The<stdio.h> file (see Header Files for UNIX-Type Functions)
o The<QpOlstdi.h> file (see Header Files for UNIX-Type Functions)

pathconf()--Get Configurable Path Name V ariables

« OpOlRenameKeep()--Rename File or Directory, Keep "new" If It Exists

Op0lRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

rewinddir()--Reset Directory Stream to
Beginning

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

void rewinddir (DR *dirp);
Threadsafe: Yes

The rewinddir () function "rewinds' the position of an open directory stream to the beginning. dirp points
to a DIR associated with an open directory stream.

The next call to readdir() reads the first entry in the directory. If the contents of the directory have changed
since the directory was opened and rewinddir () is called, subsequent calls to readdir () read the changed
contents.

Parameters

dirp
(Input) A pointer to a DIR that refers to the open directory stream to be rewound. This pointer is
returned by the opendir() function.

Authorities

No authorization is required. Authorization is verified during opendir ().

Return Value

None.

Error Conditions

None.

Error Messages

The following messages may be sent from this function:
CPE3418 E

Possible APAR condition or hardware failure.
CPF1FOS5 E

Directory handle not valid.
CPF3CF2 E

Error(s) occurred during running of &1 API.

Usage Notes

1. If the dirp argument passed to rewinddir () does not refer to an open directory, unexpected results
could occur.

2. Filesthat are added to the directory after opendir () or rewinddir () may not be returned on callsto
readdir ().

Related Information

« The <syd/types.h> file (see Header Files for UNIX-Type Functions)
o The<dirent.h> file (see Header Files for UNIX-Type Functions)

« opendir()--Open Directory
« readdir()--Read Directory Entry
o closedir()--Close Directory

Example

The following example produces the contents of a directory by opening it, rewinding it, and closing it:

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

#i ncl ude <errno. h>

#i ncl ude <stdio. h>

mai n() {
DIR *dir;
struct dirent *entry;

if ((dir = opendir("/")) == NULL)
perror("opendir() error");

el se {
puts("contents of root:");
while ((entry = readdir(dir)) != NULL)

printf("% ", entry->d _nane);
rewi nddir(dir);

puts("");

while ((entry = readdir(dir)) != NULL)
printf("% ", entry->d _nane);
closedir(dir);
puts("");
}
}
Output:

contents of root:
QSYS. LI B QDLS QOpenSys QOPT hone
QSYS. LI B QDLS QOpenSys QOPT home newdi r

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

rmdir()--Remove Directory

Syntax

#i ncl ude <uni std. h>

int rndir(const char *path);
Threadsafe: Conditional; see Usage Notes.

The rmdir () function removes a directory, path, provided that the directory is empty; that is, the directory
contains no entries other than "dot" (.) or "dot-dot" (..). path must not end in dot (.) or dot-dot (..).

If no job currently has the directory open, rmdir () deletes the directory itself. The space occupied by the
directory isfreed for new use. If one or more jobs have the directory open, rmdir () removes the link and
the dot (.) or dot-dot (..). entries. The directory itself is not removed until the last job closes the directory.
New files cannot be created under a directory after the last link is removed, even if the directory is still
open.

rmdir () does not remove a directory that till contains files or subdirectories. If path refersto adirectory
that is not empty, the [ENOTEMPTY] error isreturned. If path refersto the current directory of the current
job, to theroot (/) directory, or to adirectory that cannot be removed, the [EBUSY] error is returned.

If path refers to a symbolic link, rmdir () does not affect any file or directory named by the contents of the
symbolic link.

If rmdir () is successful, the change and modification times for the parent directory are updated.

Parameters

path
(Input) A pointer to the null-terminated path name of the directory to be removed.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

See QlgRmdir()--Remove Directory (using NL S-enabled path name) for a description and an
example of supplying the path in any CCSID.

Authorities

Note: Adopted authority is not used.

Figure 1-70. Authorization Required for rmdir() (excluding QSYS.LIB, #*independent ASP
QSYS.LIB, €and QDLYS)

|Authority

Object Referred to Required |errno ‘

IEach directory in the path name preceding the directory to be removed |*X IEACCES
|Parent directory of the directory to be removed *WX |EACCES
|Directory to be removed |* OBJEXIST |[EACCES

Figure 1-71. Authorization Required for rmdir() in the QSYS.LIB #*and independent ASP

QSYSLIB File Systems#

Authority
Object Referred to Required errno
|Each directory in the path name preceding the directory to be removed *X |EACCES
|Parent directory of the directory to be removed *X |EACCES
Directory to be removed, if it isalibrary *OBJEXIST, |EACCES
*RX
Directory to be removed, if it is adatabase file *OBJEXIST, |EACCES
*OBJOPR
Figure 1-72. Authorization Required for rmdir() in the QDL S File System
Authority
Object Referred to Required |errno
|Each directory in the path name preceding the directory to be removed *X |EACCES
|Parent directory of the directory to be removed *X |[EACCES
Directory to be removed *OBJEXIST, |EACCES
*X
Figure 1-73. Authorization Required for rmdir() in the QOPT File System
Authority
Object Referred to Required |errno
|Volume authorization list |* CHANGE [EACCES
Each directory in the path name preceding the directory to be removed if volume |*X EACCES
mediaformat is Universal Disk Format (UDF)
Parent directory of the directory to be removed if volume mediaformat is *WX EACCES
Universal Disk Format (UDF)
|Directory to be removed if volume media format is Universal Disk Format (UDF) [*W |[EACCES
Directory and parent directoriesif volume mediaformat is not Universal Disk None None
Format (UDF)

Return Value

0
rmdir () was successful.
-1

rmdir () was not successful. The errno global variable is set to indicate the error.

Error Conditions

If rmdir () is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES
Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.
If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may

also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.
An attempt was made to use a system resource that is not available at thistime.
The path cannot be removed because it is the current working directory of the current process, or it

is currently being used by the system.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. The last component of path is'dot' or
‘dot-dot'.

[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[EJRNDAMAGE]
Journal damaged.
A journa or al of the journa's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value alowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.

This error isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symboalic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.

A path name s longer than PATH_MAX characters or some component of the nameis longer than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbalic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

Z[ENEWJIRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJIRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string. The last component of the path name

is dot or dot-dot.

[ENOMEM]

Storage alocation request failed.
A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTEMPTY]
Directory not empty.

You tried to remove a directory that is not empty. A directory cannot contain objectswhen it is
being removed.

The specified directory is not empty.

[ENOTSAFE]
Function is not alowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
reguested operation.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors.
[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPFI872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= #*Independent ASP QSYS.LIB 4
= QOPT

2. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences
If one or more jobs have the library or file open, rmdir () returns [EBUSY].

If rmdir () is successful, the change and modification times for the parent library are updated only
if the "directory” being removed is a database file.

3. QDLSFile System Differences

If one or more jobs have the folder open, or are using the folder as their current directory, rmdir ()
returns [EBUSY].

4. QOPT File System Differences
The change and modification times of the parent directory are not updated.

If path refersto adirectory that any job has open, the [EBUSY] error is returned.

5. QNTC File System Differences

The change and modification times of the parent directory are not updated.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)
o mkdir()--Make Directory
« OlgRmdir()--Remove Directory (using NL S-enabled path name)

unlink()--Remove Link to File

Example
The following example removes a directory:

#i ncl ude <sys/stat. h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>

#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

mai n() {
char new dir[]="new dir";
char new file[]="new. dir/newfile";
int file_descriptor;

if (nkdir(new dir, S IRWU S IRGRP|S | XGRP) != 0)
perror("nkdir() error");

else if ((file_descriptor = creat(newfile, S IWSR)) < 0)
perror(“"creat() error");

el se {
close(file_descriptor);
unl i nk(new file);

}

if (rondir(new.dir) !'= 0)
perror("rmdir() error");
el se
put s("renoved!");

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

stat()--Get File Information

Syntax

#i ncl ude <sys/stat.h>

int stat(const char *path, struct stat *buf);
Threadsafe: Conditional; see Usage Notes.

The stat() function gets status information about a specified file and placesit in the area of memory pointed
to by the buf argument.

If the named fileisasymbolic link, stat() resolves the symbolic link. It also returns information about the
resulting file.

Parameters

path
(Input) A pointer to the null-terminated path name of the file from which information is required.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgStat()--Get File Information (using NL S-enabled path name) for a description and an
example of supplying the path in any CCSID.

buf
(Output) A pointer to the area to which the information should be written.

The information is returned in the following stat structure, as defined in the <sys/stat.h> header file:

mode _t st mode A bit string indicating the permissions and privileges of the
file. Symbols are defined in the <sys/stat.h> header file to refer
to bitsin amode _t value; these symbols arelisted in
chmod()--Change File Authorizations.

ino_t st_ino Thefile ID for the object. This number uniquely identifies the
object within afile system. When st_ino and st_dev are used
together, they uniquely identify the object on the system.

nlink_t st_nlink The number of linksto the file. £ This field will be 65,535 if
the value could not fit in the specified nlink_t field. The
complete value will bein the st_nlink32 field. <

#runsigned short st_reserved? Reserved %

uid_t
gid_t

off t

time t
time_t
time t

dev t

size t
unsigned long

gpOl_objtype t

unsigned short

unsigned short

st uid
st _gid

st size

st _atime
st mtime
st ctime

st dev

st _blksize
st alocsize

st_objtype

st_codepage

st ccsid

The numeric user ID (uid) of the owner of thefile.
The numeric group ID (gid) for thefile.

Defined as follows for each file type:
Regular File
The number of data bytesin thefile.
Directory
The number of bytes alocated to the directory.
Symbolic Link

The number of bytesin the path name stored in the
symbolic link.

Local Socket
Always zero.
0OS400 Native Object

This value is dependent on the object type.
The most recent time the file was accessed.

The most recent time the contents of the file were changed.
The most recent time the status of the file was changed.

The file system ID to which the object belongs. This humber
uniquely identifies the file system to which the object belongs.
When st_ino and st_dev are used together, they uniquely
identify the object on the system. & This field will be
4,294,967,295 if the value could not fit in the specified dev_t
field. The complete value will bein the st_dev64 field. €

The block size of thefilein bytes.

The number of bytes allocated to thefile.

The iSeries object type; for example, * STMF or *DIR. Refer
toCL Proqramminq@‘for alist of the iSeries object types.

The code page derived from the CCSID used for the datain the
file or the extended attributes of the directory. If the returned
value of thisfield is zero (0), there is more than one code page
associated with the st_ccsid. If the st_ccsid is not a supported
iSeries CCSID, the st_codepage is set equal to the st_ccsid.

The CCSID used for the data in the file or the extended
attributes of the directory.

2 dev _t st_rdev The device ID of the object if the object is a character special
file or block specia file. This number uniquely identifies the
file device. Thisfield will be 4,294,967,295 if the value could
not fit in the specified dev_t field. The complete value will be
inthe st_rdev64 field. &

2 nlink32_t st_nlink32 The number of linksto the file.%%

2 devb4 t st_rdev64 The device ID of the object in 64 bit format. See st_rdev for
more information.<

2 devb4 t st_dev64 The file system ID to which the object belongs in 64 bit
format. See st_dev for more information.<%

& char st_reserved1[36] Reserved .4

unsigned int st_ino_gen_id The generation I1D associated with the file ID.

Values of time_t are given in terms of seconds since afixed point in time called the Epoch.
Y ou can examine properties of amode_t value from the st_mode field using a collection of macros defined
in the <sys/stat.h> header file. If mode isamode_t value, then:
S ISBLK(mode)
Is nonzero for block special files
S ISCHR(mode)
Is nonzero for character special files
S ISDIR(mode)
Isnonzero for directories
S ISFIFO(mode)
Is nonzero for pipes and FIFO special files
S ISREG(mode)
Is nonzero for regular files
S ISLNK(mode) >
Is nonzero for symbolic links
S ISSOCK(mode)
Is nonzero for local sockets
S ISNATIVE(mode)
Is nonzero for OS/400 native objects

Authorities

Note: Adopted authority is not used.
Figure 1-74. Authorization Required for stat()>

|Object Referred to |Authority Required [errno
|Each directory in the path name preceding the object [*X |[EACCES

|Object None None |

Return Value

0
stat() was successful. Theinformation is returned in buf.
-1
stat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If stat() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[ELOOP]
A loop existsin the symbolic links.
This error isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name istoo long.
A path name islonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.

The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP isin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOVERFLOW]
Object istoo large to process.

The object's data size exceeds the limit allowed by this function.

Thefile size in bytes cannot be represented correctly in the structure pointed to by buf (thefileis
larger than 2GB minus 1 byte).

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors.
[EADDRNOTAVAIL]

Address not available.
[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH)]
A route to the remote host is not available.
[ENETDOWN]
The network is not currently available.
[ENETRESET]
A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ESTALE]
File or object handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:

o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in afile system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root
= QOpenSys
= User-defined

= ONTC
QSYSLIB

= HIndependent ASP QSYS.LIB &
= QOPT

2. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

The stat() function could return zero for the st_atime value (in the stat structure) under some
conditions.

3. QDLSFile System Differences

If the date corresponding to the st_atime, st mtime, or st_ctime value precedes 1970, stat() returns
zero for that value. Also, if the specified path is/QDLS, stat() returns zero for all three values
st _atime, st mtime, and st_ctime.

4. QOPT File System Differences

Thevauefor st_atime will always be zero. The value for st_ctime will always be the creation date
and time of thefile or directory.

The user, group, and other mode bits are always on for an object that exists on a volume not
formatted in Universal Disk Format (UDF).

If the object exists on avolume formatted in Universal Disk Format (UDF), the authorization that is
checked for the object and preceding directories in the path name follows the rules described in
Figure 1-74, "Authorization Required for stat()." If the object exists on a volume formatted in some
other media format, no authorization checks are made on the object or on each directory in the path
name. The volume authorization list is checked for * USE authority regardless of the media format
of the volume.

stat on /QOPT will always return 2,147,483,647 for sizefields.
stat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

5. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or thefile is unlinked or made unavail able by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFYS)
command determine the time between refresh operations of local data.)

6. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See Netware on iSeriesin the iSeries
Information Center for more information.

7. Thisfunction will fail with the[EOVERFLOW)] error if the file size in bytes cannot be represented
correctly in the structure pointed to by buf (the fileis larger than 2GB minus 1 byte).

8. When you develop in C-based languages and this function is compiled with _LARGE_FILES
defined, it will be mapped to fstat64(). Note that the type of the buf parameter, struct stat *, also
will be mapped to type struct stat64 *.

Related Information

o The<sydstat.h> file (see Header Files for UNIX-Type Functions)
« The<sys/types.h> file (see Header Filesfor UNIX-Type Functions)

« chmod()--Change File Authorizations

« chown()--Change Owner and Group of File
o creat()--Create or Rewrite File

o dup()--Duplicate Open File Descriptor

« fentl()--Perform File Control Command

« fstat()--Get File Information by Descriptor

o link()--Create Link to File

o |stat()--Get File or Link Information

» mkdir()--Make Directory

« open()--Open File

o QlgStat()--Get File Information (using NL S-enabled path name)
« read()--Read from Descriptor

« readlink()--Read Value of Symbolic Link

o stat64()--Get File Information (Large File Enabled)
« symlink()--Make Symbolic Link

« unlink()--Remove Link to File

« utime()--Set File Access and Modification Times

o write()--Write to Descriptor

Example
The following example gets status information about afile:

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdio. h>

#i ncl ude <tine. h>

mai n() {
struct stat info;

if (stat("/", & nfo) !'= 0)
perror("stat() error");
el se {

puts("stat()
ntf("
ntf("
ntf("
ntf("
ntf("
ntf("

pri
pri
pri
pri
pri
pri
}
}

i node: %@\ n",

dev id: %@\ n",
node: %®98x\ n",

i nks: %@\ n",

ui d: %@\ n",

gi d: %@\ n",

(int)
(int)

(int)
(int)

nf o.
nf o.
nf o.
nf o.
nf o.
nf o.

returned the follow ng informati on about

st _ino);
st _dev);
st _node);
st_nlink);
st_uid);
st _gid);

Output: note that the following information will vary from system to system.

stat ()

returned the follow ng informati on about

i node:
dev id:
node:
i nks:
ui d:

gi d:

0

1
010001ed
3

137

500

root f/s:

root f/s:");

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

stat64()--Get File Information (Large File
Enabled)

Syntax

#i ncl ude <sys/stat.h>

int stat64(const char *path, struct stat64 *buf);
Threadsafe: Conditional; see Usage Notes.

The stat64() function gets status information about a specified file and placesit in the area of memory
pointed to by the buf argument.

If the named fileisasymbolic link, stat64() resolves the symboalic link. It also returns information about
the resulting file.

stat64() is enabled for largefiles. It is capable of operating on files larger than 2GB minus 1 byte and
returning correct sizes.

For additional information about authorities required, error conditions, and examples, see stat()--Get File
Information.

Parameters

path
(Input) A pointer to the null-terminated path name of the file from which information is required.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgStat64()--Get File Information (large file enabled and using NL S-enabled path name) for a
description and an example of supplying the path in any CCSID.

buf
(Output) A pointer to the areato which the information should be written.

The information is returned in the following stat64 structure, as defined in the <sys/stat.h> header file:

mode _t st mode A bit string indicating the permissions and privileges of the
file. Symbols are defined in the <sys/stat.h> header file to refer
to bitsin amode t value; these symbols arelisted in
chmod()--Change File Authorizations.

ino_t

uid_t
gid t

off64 t

time_t
time t
time t

dev_t

size t

nlink_t

unsigned short

unsigned long long

unsigned int

st ino

st uid
st gid

st size

st _atime
st mtime
st _ctime

st dev

st_blksize

st nlink

st_codepage

st alocsize

st ino_gen_id

Thefile ID for the object. This number uniquely identifies the
object within afile system. When st_ino and st_dev are used
together, they uniquely identify the object on the system.

The numeric user 1D (uid) of the owner of thefile.
The numeric group ID (gid) for thefile.

Defined as follows for each file type:
Regular File
The number of data bytesin thefile.
Directory
The number of bytes allocated to the directory.
Symbolic Link

The number of bytesin the path name stored in the
symboalic link.

Local Socket
Always zero.
05400 Native Object

Thisvaue is dependent on the object type.
The most recent time the file was accessed.

The most recent time the contents of the file were changed.
The most recent time the status of the file was changed.

Thefile system ID to which the object belongs. This humber
uniquely identifies the file system to which the object belongs.
When st_ino and st_dev are used together, they uniquely
identify the object on the system. 2 This field will be
4,294,967,295 if the value could not fit in the specified dev_t
field. The complete value will be in the st_dev64 field.4%

The block size of thefilein bytes.

The number of links to the file. 2 This field will be 65,535 if
the value could not fit in the specified nlink_t field. The
complete value will bein the st_nlink32 field.%

The code page derived from the CCSID used for the datain the
file or the extended attributes of the directory. If the returned
value of thisfield is 0, a code page could not be derived.

The number of bytes allocated to thefile.

The generation ID associated with thefile ID.

gpOl_objtype t st objtype The iSeriesO object type; for example, * STMF or *DIR. Refer
toCL Proqramminq@for alist of the i Series object types.

& char st_reserved2[5] Reserved <

2 dev-t st_rdev The device ID of the object if the object is a character specia
file or block special file. This number uniquely identifies the
file device. Thisfield will be 4,294,967,295