
UNIX-Type APIs (V5R2)

Integrated File System (IFS) APIs

Volume 2 -- QlgAccess() through writev() and Process a Path Name Exit Program

Table of Contents

The PDF for the Integrated File System (IFS) APIs is divided into two volumes. Volume 1 contains the
APIs from access() through prwrite64(); Volume 2 contains the APIs QlgAccess() through writev() and the
IFS exit programs. Both volumes contain information on time stamp updates, the Header Files for
UNIX-Type Functions, and Errno Values for UNIX-Type Functions.

Integrated File System APIs

QlgAccess() (Determine file accessibility (using NLS-enabled path name))●

QlgAccessx() (Determine File Accessibility for a Class of Users (using NLS-enabled path name))●

QlgChdir() (Change current directory (using NLS-enabled path name))●

QlgChmod() (Change file authorizations (using NLS-enabled path name))●

QlgChown() (Change owner and group of file (using NLS-enabled path name))●

QlgCreat() (Create or rewrite file (using NLS-enabled path name))●

QlgCreat64() (Create or rewrite a file (large file enabled and using NLS-enabled path name))●

QlgCvtPathToQSYSObjName() (Resolve integrated file system path name into QSYS object name
(using NLS-enabled path name))

●

QlgGetAttr() (Get attributes (using NLS-enabled path name))●

QlgGetcwd() (Get current directory (using NLS-enabled path name))●

QlgGetPathFromFileID() (Get path name of object from its file ID (using NLS-enabled path
name))

●

QlgGetpwnam() (Get user information for user name (using NLS-enabled path name))●

QlgGetpwnam_r() (Get user information for user name (using NLS-enabled path name))●

QlgGetpwuid() (Get user information for user ID (using NLS-enabled path name))●

QlgGetpwuid_r() (Get user information for user ID (using NLS-enabled path name))●

QlgLchown() (Change owner and group of symbolic link (using NLS-enabled path name))●

QlgLink() (Create link to file (using NLS-enabled path name))●

QlgLstat() (Get file or link information (using NLS-enabled path name))●

QlgLstat64() (Get file or link information (large file enabled and using NLS-enabled path name))●

QlgMkdir() (Make directory (using NLS-enabled path name))●

QlgMkfifo() (Make FIFO special file (using NLS-enabled path name))●

QlgOpen() (Open a file (using NLS-enabled path name))●

QlgOpen64() (Open file (large file enabled and using NLS-enabled path name))●

QlgOpendir() (Open directory (using NLS-enabled path name))●

QlgPathconf() (Get configurable path name variables (using NLS-enabled path name))●

QlgProcessSubtree() (Process a path name (using NLS-enabled path name))●

QlgReaddir() (Read directory entry (using NLS-enabled path name))●

QlgReaddir_r() (Read directory entry (using NLS-enabled path name))●

QlgReadlink() (Read value of symbolic link (using NLS-enabled path name))●

QlgRenameKeep() (Rename file or directory, keep "new" if it exists (using NLS-enabled path
name))

●

QlgRenameUnlink() (Rename file or directory, unlink "new" if it exists (using NLS-enabled path
name))

●

QlgRmdir() (Remove directory (using NLS-enabled path name))●

QlgSaveStgFree() (Save Storage Free (using NLS-enabled path name))●

QlgSetAttr() (Set attributes (using NLS-enabled path name))●

QlgStat() (Get file information (using NLS-enabled path name))●

QlgStat64() (Get file information (large file enabled and using NLS-enabled path name))●

QlgStatvfs() (Get file system information (using NLS-enabled path name))●

QlgStatvfs64() (Get file system information (64-bit enabled and using NLS-enabled path name))●

QlgSymlink() (Make symbolic link (using NLS-enabled path name))●

QlgUnlink() (Remove link to file (using NLS-enabled path name))●

QlgUtime() (Set file access and modification times (using NLS-enabled path name))●

QP0FPTOS (Perform Miscellaneous File System Functions)●

Qp0lCvtPathToQSYSObjName() (Resolve integrated file system path name into QSYS object
name)

●

QP0LFLOP (Perform file system operation)●

Qp0lGetAttr() (Get attributes)●

Qp0lGetPathFromFileID() (Get path name of object from its file ID)●

Qp0lOpen() (Open file)●

Qp0lProcessSubtree() (Process a path name)●

Qp0lRenameKeep() (Rename file or directory, keep new if it exists)●

Qp0lRenameUnlink() (Rename file or directory, unlink new if it exists)●

QP0LROR (Retrieve Object References)●

Qp0lSaveStgFree() (Save Storage Free)●

Qp0lSetAttr() (Set attributes)●

Qp0lUnlink() (Remove link to file)●

Qp0zPipe() (Create interprocess channel with sockets)●

qsygetgroups() (Get Supplemental Group IDs)●

qsysetegid() (Set effective group ID)●

qsyseteuid() (Set effective user ID)●

qsysetgid() (Set group ID)●

qsysetgroups() (Set Supplemental Group IDs)●

qsysetregid() (Set real and effective group IDs)●

qsysetreuid() (Set real and effective user IDs)●

qsysetuid() (Set user ID)●

QZNFRTVE (Retrieve network file system export entries)●

read() (Read from Descriptor)●

readdir() (Read directory entry)●

readdir_r() (Read directory entry)●

readdir_r_ts64() (Read directory entry)●

readlink() (Read value of symbolic link)●

readv() (Read from Descriptor Using Multiple Buffers)●

rename() (Rename file or directory)●

rewinddir() (Reset directory stream)●

rmdir() (Remove directory)●

stat() (Get file information)●

stat64() (Get file information (large file enabled))●

statvfs() (Get file system information)●

statvfs64() (Get file system information (large file enabled))●

symlink() (Make symbolic link)●

sysconf() (Get system configuration variables)●

umask() (Set authorization mask for job)●

unlink() (Remove link to file)●

utime() (Set file access and modification times)●

write() (Write to Descriptor)●

writev() (Write to Descriptor Using Multiple Buffers)●

Exit programs

Process a Path Name●

Save Storage Free●

Integrated File System APIs--Time Stamp Updates
Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Integrated File System APIs

QlgAccess() through writev() and Process a Path Name Exit
Program

The integrated file system APIs can perform operations on directories, files, and related objects in the file
systems accessed through the integrated file system interface.

The integrated file system APIs (QlgAccess() through writev() and Process a Path Name Exit Program) are:

QlgAccess() (Determine file accessibility (using NLS-enabled path name)) determines whether a
file can be accessed in a particular manner.

●

QlgAccessx() (Determine File Accessibility for a Class of Users (using NLS-enabled path name))
determines whether a file can be accessed in a particular manner by a specified class of users.

●

QlgChdir() (Change current directory (using NLS-enabled path name)) makes the directory named
by path the new current directory.

●

QlgChmod() (Change file authorizations (using NLS-enabled path name)) changes the mode of the
file or directory specified in path.

●

QlgChown() (Change owner and group of file (using NLS-enabled path name)) changes the owner
and group of a file.

●

QlgCreat() (Create or rewrite file (using NLS-enabled path name)) creates a new file or rewrites an
existing file so that it is truncated to zero length.

●

QlgCreat64() (Create or rewrite a file (large file enabled and using NLS-enabled path name))
creates a new file or rewrites an existing file so that it is truncated to zero length.

●

QlgCvtPathToQSYSObjName() (Resolve integrated file system path name into QSYS object name
(using NLS-enabled path name)) resolves a given integrated file system path name into the
three-part QSYS.LIB file system name: library, object, and member.

●

QlgGetAttr() (Get attributes (using NLS-enabled path name)) gets one or more attributes, on a
single call, for the object that is referred to by the input Path_Name.

●

QlgGetcwd() (Get current directory (using NLS-enabled path name)) determines the absolute path
name of the current directory and returns a pointer to it.

●

QlgGetPathFromFileID() (Get path name of object from its file ID (using NLS-enabled path
name)) determines an absolute path name of the file identified by fileid and stores it in buf.

●

QlgGetpwnam() (Get user information for user name (using NLS-enabled path name)) returns a
pointer to an object of type struct qplg_passwd containing an entry from the user database with a
matching name.

●

QlgGetpwnam_r() (Get user information for user name (using NLS-enabled path name)) updates
the qplg_passwd structure pointed to by pwd and stores a pointer to that structure in the location
pointed to by result.

●

QlgGetpwuid() (Get user information for user ID (using NLS-enabled path name)) returns a pointer
to an object of type struct qplg_passwd containing an entry from the user database with a matching
user ID (UID).

●

QlgGetpwuid_r() (Get user information for user ID (using NLS-enabled path name)) updates the
qplg_passwd structure pointed to by pwd and stores a pointer to that structure in the location
pointed to by result.

●

QlgLchown() (Change owner and group of symbolic link (using NLS-enabled path name)) changes●

the owner and group of a file.

QlgLink() (Create link to file (using NLS-enabled path name)) provides an alternative path name
for the existing file so that the file can be accessed by either the existing name or the new name.

●

QlgLstat() (Get file or link information (using NLS-enabled path name)) gets status information
about a specified file and places it in the area of memory pointed to by buf.

●

QlgLstat64() (Get file or link information (large file enabled and using NLS-enabled path name))
gets status information about a specified file and places it in the area of memory pointed to by buf.

●

QlgMkdir() (Make directory (using NLS-enabled path name)) creates a new, empty directory
whose name is defined by path.

●

QlgMkfifo() (Make FIFO special file (using NLS-enabled path name)) creates a new FIFO special
file whose name is defined by path.

●

QlgOpen() (Open a file (using NLS-enabled path name)) opens a file or creates a new, empty file
whose name is defined by path and returns a number called a file descriptor.

●

QlgOpen64() (Open file (large file enabled and using NLS-enabled path name)) opens a file and
returns a number called a file descriptor.

●

QlgOpendir() (Open directory (using NLS-enabled path name)) opens a directory so it can be read.●

QlgPathconf() (Get configurable path name variables (using NLS-enabled path name)) lets an
application determine the value of a configuration variable (name) associated with a particular file
or directory (path).

●

QlgProcessSubtree() (Process a path name (using NLS-enabled path name)) searches the directory
tree under a specific path name.

●

QlgReaddir() (Read directory entry (using NLS-enabled path name)) returns a pointer to a structure
describing the next directory entry in the directory stream associated with dirp.

●

QlgReaddir_r() (Read directory entry (using NLS-enabled path name)) initializes a structure that is
referenced by entry to represent the next directory entry in the directory stream that is associated
with dirp.

●

QlgReadlink() (Read value of symbolic link (using NLS-enabled path name)) places the contents of
the symboliclink path in the buffer buf.

●

QlgRenameKeep() (Rename file or directory, keep "new" if it exists (using NLS-enabled path
name)) renames a file or a directory specified by old to the name given by new.

●

QlgRenameUnlink() (Rename file or directory, unlink "new" if it exists (using NLS-enabled path
name)) renames a file or a directory specified by old to the name given by new.

●

QlgRmdir() (Remove directory (using NLS-enabled path name)) removes a directory, path,
provided that the directory is empty; that is, the directory contains no entries other than 'dot' (.) or
'dot-dot' (..).

●

QlgSaveStgFree() (Save Storage Free (using NLS-enabled path name)) calls a user-supplied exit
program to save an *STMF iSeries object type and, upon successful completion of the exit
program, frees the storage for the object and marks the object as storage freed.

●

QlgSetAttr() (Set attributes (using NLS-enabled path name)) sets one of a set of defined attributes,
on each call, for the object that is referred to by the input *Path_Name.

●

QlgStat() (Get file information (using NLS-enabled path name)) gets status information about a
specified file and places it in the area of memory pointed to by the buf argument.

●

QlgStat64() (Get file information (large file enabled and using NLS-enabled path name)) gets status
information about a specified file and places it in the area of memory pointed to by the buf
argument.

●

QlgStatvfs() (Get file system information (using NLS-enabled path name)) gets status information
about the file system that contains the file named by the path argument.

●

QlgStatvfs64() (Get file system information (64-bit enabled and using NLS-enabled path name))
gets status information about the file system that contains the file named by the path argument.

●

QlgSymlink() (Make symbolic link (using NLS-enabled path name)) creates the symbolic link
named by slink with the value specified by pname.

●

QlgUnlink() (Remove link to file (using NLS-enabled path name)) removes a directory entry that
refers to a file.

●

QlgUtime() (Set file access and modification times (using NLS-enabled path name)) sets the access
and modification times of path to the values in the utimbuf structure.

●

QP0FPTOS (Perform Miscellaneous File System Functions) performs a variety of file system
functions.

●

Qp0lCvtPathToQSYSObjName() (Resolve integrated file system path name into QSYS object
name) resolves a given integrated file system path name into the three-part QSYS.LIB file system
name: library, object, and member.

●

QP0LFLOP (Perform file system operation) performs miscellaneous file system operations.●

Qp0lGetAttr() (Get attributes) gets one or more attributes, on a single call, for the object that is
referred to by the input Path_Name.

●

Qp0lGetPathFromFileID() (Get path name of object from its file ID) determines an absolute path
name of the file identified by fileid and stores it in buf.

●

Qp0lOpen() (Open file) opens a file and returns a number called a file descriptor.●

Qp0lProcessSubtree() (Process a path name) searches the directory tree under a specific path name.
It selects and passes objects, one at a time, to an exit program that is identified on its call. The exit
program can be either a procedure or a program.

●

Qp0lRenameKeep() (Rename file or directory, keep new if it exists) renames a file or a directory
specified by old to the name given by new.

●

Qp0lRenameUnlink() (Rename file or directory, unlink new if it exists) renames a file or a
directory specified by old to the name given by new.

●

QP0LROR (Retrieve Object References) retrieves information about Integrated File System
references on an object.

●

Qp0lSaveStgFree() (Save Storage Free) calls a user-supplied exit program to save an *STMF
iSeries object type and, upon successful completion of the exit program, frees the storage for the
object and marks the object as storage freed.

●

Qp0lSetAttr() (Set attributes) renames a file or a directory specified by old to the name given by
new.

●

Qp0lUnlink() (Remove link to file) removes a directory entry that refers to a file.●

Qp0zPipe() (Create interprocess channel with sockets) creates a data pipe that can be used by two
processes.

●

qsygetgroups() (Get Supplemental Group IDs) returns the supplemental group IDs associated
with the calling thread.

●

qsysetegid() (Set effective group ID) sets the effective group ID to gid.●

qsyseteuid() (Set effective user ID) sets the effective user ID to uid.●

qsysetgid() (Set group ID) sets the real, effective and saved groups to gid.●

qsysetgroups() (Set Supplemental Group IDs) sets the supplementary group IDs of the calling
thread.

●

qsysetregid() (Set real and effective group IDs) is used to set the real and effective group IDs. The
real and effective group IDs may be set to different values in the same call.

●

qsysetreuid() (Set real and effective user IDs) sets the real and effective user IDs to the values
specified by ruid and euid.

●

qsysetuid() (Set user ID) sets the real, effective, and saved user ID to uid.●

QZNFRTVE (Retrieve network file system export entries) returns the list of Network File System
(NFS) export entries for objects currently exported to NFS clients or for objects referenced in the
/etc/exports file.

●

read() (Read from Descriptor) reads nbyte bytes of input into the memory area indicated by buf.●

readdir() (Read directory entry) returns a pointer to a dirent structure describing the next directory
entry in the directory stream associated with dirp.

●

readdir_r() (Read directory entry) initializes the dirent structure that is referenced by entry to
represent the next directory entry in the directory stream that is associated with dirp.

●

readdir_r_ts64() (Read directory entry) initializes the dirent structure that is referenced by entry to
represent the next directory entry in the directory stream that is associated with dirp.

●

readlink() (Read value of symbolic link) places the contents of the symbolic link path in the buffer
buf.

●

readv() (Read from Descriptor Using Multiple Buffers) is used to receive data from a file or socket
descriptor.

●

rename() (Rename file or directory) can be used to rename a file or directory with the semantics of
Qp0lRenameUnlink() or Qp0lRenameKeep().

●

rewinddir() (Reset directory stream) 'rewinds' the position of an open directory stream to the
beginning.

●

rmdir() (Remove directory) removes a directory, path, provided that the directory is empty; that is,
the directory contains no entries other than 'dot' (.) or 'dot-dot' (..).

●

stat() (Get file information) gets status information about a specified file and places it in the area of
memory pointed to by the buf argument.

●

stat64() (Get file information (large file enabled)) gets status information about a specified file and
places it in the area of memory pointed to by the buf argument.

●

statvfs() (Get file system information) gets status information about the file system that contains the
file named by the path argument.

●

statvfs64() (Get file system information (large file enabled)) gets status information about the file
system that contains the file named by the path argument.

●

symlink() (Make symbolic link) creates the symbolic link named by slink with the value specified
by pname.

●

sysconf() (Get system configuration variables) returns the value of a system configuration option.●

umask() (Set authorization mask for job) changes the value of the file creation mask for the current
job to the value specified in cmask.

●

unlink() (Remove link to file) removes a directory entry that refers to a file.●

utime() (Set file access and modification times) sets the access and modification times of path to
the values in the utimbuf structure.

●

write() (Write to Descriptor) writes nbyte bytes from buf to the file or socket associated with
file_descriptor.

●

writev() (Write to Descriptor Using Multiple Buffers) is used to write data to a file or socket
descriptor.

●

The integrated file system exit programs are:

Process a Path Name is called by the Qp0lProcessSubtree() API for each object in the API's search
that meets the caller's selection criteria. This exit program must be provided by the user.

●

Save Storage Free is called by the Qp0lSaveStgFree() API to save an *STMF iSeries object type.●

In addition to the functions above, the following functions, which are described in the Sockets APIs, also
can operate on files in the integrated file system.

Other Functions that Operate on Files

Function Description

givedescriptor() Give file access to another job
Give socket access to another job

select() Check I/O status of multiple file descriptors
Wait for events on multiple sockets

takedescriptor() Take file access from another job
Take socket access from another job

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. See Header Files for
UNIX-Type Functions) for the file and member name of each header file.

Many of the terms used in this chapter, such as current directory, file system, path name, and link, are
explained in the Integrated File System book. The API Examples also shows an example of using several
integrated file system functions.

To determine whether a particular function updates the access, change, and modification times of the object
on which it performs an operation, see Integrated File System APIs--Time Stamp Updates.

Top | UNIX-Type APIs | APIs by category

QlgAccess()--Determine File Accessibility
(using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgAccess(const Qlg_Path_Name_T *path, int amode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgAccess() function, like the access() function, determines whether a file can be accessed in a
particular manner. The difference is that the QlgAccess() function takes a pointer to a Qlg_Path_Name_T
structure, while access() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
access()--Determine File Accessibility.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name for the file to be checked for accessibility. For more information on the Qlg_Path_Name_T
structure, see Path name format.

Related Information

access()--Determine File Accessiblity●

accessx()--Determine File Accessibility for Class of Users ●

faccessx()--Determine File Accessibility for Class of Users ●

QlgAccessx()--Determine File Accessibility for Class of Users (using NLS-enabled path name)●

QlgChmod--Change File Authorizations (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

Example

The following example determines how a file is accessed:

#include <stdio.h>
#include <unistd.h>

main()
{

 /**/
 /* Defininitons */
 /**/
#define mypath "/"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /**/
 /* Initialize Qlg_Path_Name_T parameters */
 /**/
 memset((void*)path name, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (QlgAccess((Qlg_Path_Name_T *)&path, F_OK) != 0)
 printf("'%s' does not exist!\n", mypath);
 else {
 if (QlgAccess((Qlg_Path_Name_T *)&path, R_OK) == 0)
 printf("You have read access to '%s'\n", mypath);
 if (QlgAccess((Qlg_Path_Name_T *)&path, W_OK) == 0)
 printf("You have write access to '%s'\n", mypath);
 if (QlgAccess((Qlg_Path_Name_T *)&path, X_OK) == 0)
 printf("You have search access to '%s'\n", mypath);
 }
}

Output:

The output from a user with read and execute access is:

You have read access to '/'
You have write access to '/'
You have search access to '/'

Top | UNIX-Type APIs | APIs by category

QlgAccessx()--Determine File Accessibility for a
Class of Users (using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgAccessx(const Qlg_Path_Name_T *path, int amode, int who);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgAccessx() function, like the accessx() function, determines whether a file can be accessed in a particular
manner by a specified class of users. The difference is that the QlgAccessx() function takes a pointer to a
Qlg_Path_Name_T structure, while accessx() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
a discussion of other parameters, authorities required, return values, and related information, see
accessx()--Determine File Accessibility for a Class of Users.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path name
for the file to be checked for accessibility. For more information on the Qlg_Path_Name_T structure, see
Path name format.

Related Information

access()--Determine File Accessiblity●

accessx()--Determine File Accessibility for a Class of Users●

faccessx()--Determine File Accessibility for a Class of Users●

QlgAccess()--Determine File Accessibility (using NLS-enabled path name)●

QlgChmod()--Change File Authorizations (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

Example

The following example determines how a file is accessed:

#include <stdio.h>
#include <unistd.h>

main()
{

 /**/
 /* Defininitons */
 /**/
#define mypath "/myfile"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /**/
 /* Initialize Qlg_Path_Name_T parameters */
 /**/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (QlgAccessx((Qlg_Path_Name_T *)&path, R_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has read access to '%s'\n", mypath);
 if (QlgAccessx((Qlg_Path_Name_T *)&path, W_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has write access to '%s'\n",
mypath);
 if (QlgAccessx((Qlg_Path_Name_T *)&path, X_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has search access to '%s'\n",
mypath);
}

Output:

In this example QlgAccessx() was called on '/myfile'. The following would be the output if someone other than
the owner has *R authority, someone besides the owner has *W authority, and noone other than the owner has
*X authority.

Someone besides the owner has read access to '/'
Someone besides the owner has write access to '/'

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

QlgChdir()--Change Current Directory (using
NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgChdir(const Qlg_Path_Name_T *path);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgChdir() function, like the chdir() function, makes the directory named by path the new current
directory. The difference is that the QlgChdir() function takes a pointer to a Qlg_Path_Name_T structure,
while chdir() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
chdir()--Change Current Directory.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the directory that should become the current directory. For more information on the
Qlg_Path_Name_T structure, see Path name format.

Related Information

chdir()--Change Current Directory●

QlgGetcwd()--Get Current Directory (using NLS-enabled path name)●

fchdir()--Change Current Directory by Descriptor ●

Example

The following example uses QlgChdir():

#include <stdio.h>

#include <unistd.h>

main() {
#define mypath "/tmpXXX"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this */
 /* this be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (QlgChdir((Qlg_Path_Name_T *)&path) != 0)
 {
 printf("QlgChdir() to /tmpXXX failed.");
 }
 else
 {
 printf("QlgChdir() changed the current directory ");
 printf("to '%s'.\n", mypath);
 }
}

Output:

QlgChdir() changed the current directory to '/tmpxxx'.
(or if error, such as path not found: QlgChdir() to /tmpXXX failed.)

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgChmod()--Change File Authorizations (using
NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgChmod(Qlg_Path_Name_T *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgChmod() function, like the chmod() function, changes S_ISUID, S_ISGID, and the permission bits of
the file or directory specified in path to the corresponding bits specified in mode. The difference is that the
QlgChmod() function takes a pointer to a Qlg_Path_Name_T structure, while chmod() takes a pointer to a
character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
a discussion of other parameters, authorities required, return values, and related information, see
chmod()--Change File Authorizations.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains the path name or a pointer to the path
name of the file whose mode is being changed. For more information on the Qlg_Path_Name_T
structure, see Path name format.

Related Information

chmod()--Change File Authorizations●

QlgChown()--Change Owner and Group of File (using NLS-enabled path name)●

QlgMkdir()--Make Directory (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

Example

The following example changes the permissions for a file:

#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <Qp0lstdi.h>

main() {
 int file_descriptor;
 struct stat info;

 #define mypath "temp.file"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path, S_IWUSR)) == -1)
 perror("QlgCreat() error");
 else {
 close(file_descriptor);
 QlgStat((Qlg_Path_Name_T *)&path, &info);
 printf("original permissions were: %08o\n", info.st_mode);
 if (QlgChmod((Qlg_Path_Name_T *)&path, S_IRWXU|S_IRWXG) != 0)
 perror("QlgChmod() error");
 else {
 QlgStat((Qlg_Path_Name_T *)&path, &info);
 printf("after QlgChmod(), permissions are: %08o\n", info.st_mode);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path);
 }
}

Output:

original permissions were: 00100200

after QlgChmod(), permissions are: 00100770

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgChown()--Change Owner and Group of File
(using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgChown(Qlg_Path_Name_T *path, uid_t owner,gid_t
 group);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgChown() function, like the chown() function, changes the owner and group of a file. The difference is
that the QlgChown() function takes a pointer to a Qlg_Path_Name_T structure, while chown() takes a pointer to
a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
a discussion of other parameters, authorities required, return values, and related information, see
chown()--Change Owner and Group of File.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path name
of the file whose owner and group are being changed. For more information on the Qlg_Path_Name_T
structure, see Path name format.

Related Information

chown()--Change Owner and Group of File●

QlgChmod()--Change File Authorizations (using NLS-enabled path name)●

QlgLstatu()--Get File or Link Information (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

Example

The following example changes the owner and group of a file:

#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <Qp0lstdi.h>

main() {
 int file_descriptor;
 struct stat info;

 #define mypath "temp.file"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;
 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path, S_IRWXU)) == -1)
 perror("creat() error");
 else {
 close(file_descriptor);
 QlgStat((Qlg_Path_Name_T *)&path, &info);
 printf("original owner was %d and group was %d\n", info.st_uid,
 info.st_gid);
 if (QlgChown((Qlg_Path_Name_T *)&path, 152, 0) != 0)
 perror("QlgChown() error");
 else {
 QlgStat((Qlg_Path_Name_T *)&path, &info);
 printf("after QlgChown(), owner is %d and group is %d\n",
 info.st_uid, info.st_gid);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path);
 }
}

Output:

original owner was 137 and group was 0
after QlgChown(), owner is 152 and group is 0

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgCreat()--Create or Rewrite File (using
NLS-enabled path name)

 Syntax

 #include <fcntl.h>

 int QlgCreat(Qlg_Path_Name_T *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgCreat() function, like the creat() function, creates a new file or rewrites an existing file so that it is
truncated to zero length. The difference is that the QlgCreat() function takes a pointer to a
Qlg_Path_Name_T structure, while creat() takes a pointer to a character string. See open()--Open File for
more details on how the function call

 QlgCreat(path,mode);

is equivalent to the call

 QlgOpen(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
creat()--Create or Rewrite File or open()--Open File.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be created or rewritten. For more information on the Qlg_Path_Name_T
structure, see Path name format.

Related Information

creat()--Create or Rewrite File●

QlgCreat64()--Create or Rewrite a File (large file enabled and using NLS-enabled path name)●

Example

The following example creates a file:

#include <stdio.h>
#include <fcntl.h>
#include <Qp0lstdi.h>

main() {
 char text[]="This is a test";
 int file_descriptor;
 #define mypath "creat.file"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);
 if ((file_descriptor =
 QlgCreat((Qlg_Path_Name_T *)&path, S_IRUSR | S_IWUSR)) < 0)
 perror("QlgCreat() error");
 else {
 write(file_descriptor, text, strlen(text));
 close(file_descriptor);
 QlgUnlink((Qlg_Path_Name_T *)&path);
 }
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgCreat64()--Create or Rewrite a File (large file
enabled and using NLS-enabled path name)

 Syntax

 #include <fcntl.h>

 int QlgCreat64(Qlg_Path_Name_T *path,mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgCreat64() function, like the creat64() function, creates a new file or rewrites an existing file so
that it is truncated to zero length. The difference is that the QlgCreat64() function takes a pointer to a
Qlg_Path_Name_T structure, while creat64() takes a pointer to a character string. See creat64()--Create or
Rewrite a File (Large File Enabled) and open64()--Open File (Large File Enabled) for more details on how
the function call

 QlgCreat64(path,mode);

is equivalent to the call

 QlgOpen64(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
creat64()--Create or Rewrite a File (Large File Enabled) or open64()--Open File (Large File Enabled).

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be created or rewritten. For more information on the Qlg_Path_Name_T
structure, see Path name format.

Related Information

creat()--Create or Rewrite a File●

creat64()--Create or Rewrite a File (Large File Enabled)●

Example

The following example creates a file:

#define _LARGE_FILE_API

#include <stdio.h>
#include <fcntl.h>
#include <Qp0lstdi.h>

main()
{
 char text[]="This is a test";
 int fd;
#define mypath "creat.file"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if
 ((fd =
 QlgCreat64(
 (Qlg_Path_Name_T *)&path, S_IRUSR | S_IWUSR))
 < 0)
 {
 perror("QlgCreat64() error");
 }
 else {
 write(fd, text, strlen(text));
 close(fd);
 QlgUnlink((Qlg_Path_Name_T *)&path);
 }
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgCvtPathToQSYSObjName()-- Resolve
Integrated File System Path Name into QSYS
Object Name (using NLS-enabled path name)

 Syntax

 #include <qp0lstdi.h>

 void QlgCvtPathToQSYSObjName(
 Qlg_Path_Name_T *path_name,
 void *qsys_info,
 char format_name[8],
 uint bytes_provided,
 uint desired_CCSID,
 void *error_code);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, see
Qp0lCvtPathToQSYSObjName()-- Resolve Integrated File System Path Name into QSYS Object Name.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgGetAttr()--Get Attributes (using
NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h<
 int QlgGetAttr
 (Qlg_Path_Name_T *Path_Name,
 Qp0l_AttrTypes_List_t *Attr_Array_ptr,
 char *Buffer_ptr,
 uint Buffer_Size_Provided,
 uint *Buffer_Size_Needed_ptr,
 uint *Num_Bytes_Returned_ptr,
 uint Follow_Symlnk, ...);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, related information, and an example, see
Qp0lGetAttr()--Get Attributes.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgGetcwd()--Get Current Directory (using
NLS-enabled path name)

 Syntax

 #include <unistd.h>

 Qlg_Path_Name_T *QlgGetcwd(Qlg_Path_Name_T *buf,
 size_t size);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgGetcwd() function, like the getcwd() function, determines the absolute path name of the current
directory and returns a pointer to it. The difference is that the pointer returned by QlgGetcwd() is a pointer
to a Qlg_Path_Name_T structure that holds the absolute path name, while getcwd() returns a pointer to a
character string or buffer that contains the null-terminated absolute path name.

Limited information on the buf parameter and on the size parameter is provided here. For more information
on the parameters and for a discussion on authorities required, return values, and related information, see
getcwd()--Get Current Directory.

Parameters

buf

(Output) A pointer to a Qlg_Path_Name_T structure that holds the absolute path name of the
current directory. The path name is not null-terminated within the structure. For more information
on the Qlg_Path_Name_T structure, see Path name format.

size

(Input) The number of bytes allocated for buf.

Related Information

getcwd()--Get Current Directory●

QlgChdir()--Change Current Directory (using NLS-enabled path name)●

Example

The following example determines the current directory:

#include <unistd.h>
#include <stdio.h>

main()
{

 #define mypath_cd "/tmp"

 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[1024]; /* This size must be large enough */
 /* to contain the path name. */
 };

 struct pnstruct path_cd;
 struct pnstruct path_cwd;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)path name_cd, 0x00, sizeof(struct pnstruct));
 path_cd.qlg_struct.CCSID = 37;
 memcpy(path_cd.qlg_struct.Country_ID,US_const,2);
 memcpy(path_cd.qlg_struct.Language_ID,Language_const,3);
 path_cd.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_cd.qlg_struct.Path_Length = sizeof(mypath_cd)-1;
 path_cd.qlg_struct.Path_Name_Delimiter[0] = '/'
 memcpy(path_cd.pn,mypath_cd,sizeof(mypath_cd)-1);

 if (QlgChdir((Qlg_Path_Name_T *)path name_cd) != 0)
 perror("QlgChdir() error()");
 else
 {
 if (QlgGetcwd(Qlg_Path_Name_T *path_cwd,
 sizeof(struct pnstruct)) == NULL)
 perror("QlgGetcwd() error");
 else
 printf("Successful change to new current working directory.");
 }
}

Output:

Successful change to new current working directory.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgGetPathFromFileID()--Get Path Name of
Object from Its File ID (using NLS-enabled path
name)

 Syntax

 #include <Qp0lstdi.h>

 Qlg_Path_Name_T *QlgGetPathFromFileID(Qlg_Path_Name_T *buf,
 size_t size,Qp0lFID_t fileid);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgGetPathFromFileID() function, like the Qp0lGetPathFromFileID() function, determines an
absolute path name of the file identified by fileid and stores it in buf. The difference is that the
QlgGetPathFromFileID() function points to a Qlg_Path_Name_T structure, while
Qp0lGetPathFromFileID() points to a null-terminated character string.

Limited information on the buf parameter is provided here. For more information on the buf parameter and
for a discussion of other parameters, authorities required, return values, and related information, see
Qp0lGetPathFromFileID()--Get Path Name of Object from Its File ID.

Parameters

buf

(Output) A pointer to a Qlg_Path_Name_T structure that will be used to hold an absolute path
name or a pointer to an absolute path name of the file identified by fileid. The path name is not
null-terminated within the structure. For more information on the Qlg_Path_Name_T structure, see
Path name format.

size

(Input) The number of bytes in the buffer buf.

fileid

(Input) The identifier of the file whose path name is to be returned. This identifier is logged in audit
journal entries to identify the file being audited. See the Parent File ID and Object File ID fields of

the audit journal entries described in the iSeries Security Reference book.

Related Information

Qp0lGetPathFromFileID()--Get Path Name of Object from Its File ID●

Example

The following example determines the path name of a file, given its file ID. In this example, the fileid is
hardcoded. More realistically, the fileid is obtained from the audit journal entry and passed to
QlgGetPathFromFileID().

#include <Qp0lstdi.h>
#include <stdio.h>
#include <qtqiconv.h>

void Path_Print(Qlg_Path_Name_T *);

main()
{
 Qp0lFID_t
 fileid = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x80, 0xFF, 0xCF, 0x00};

 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[1024]; /* This size must be large enough */
 /* to contain the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 if (QlgGetPathFromFileID((Qlg_Path_Name_T *)&path,
 sizeof(struct pnstruct), fileid) == NULL)
 perror("QlgGetPathFromFileID() error");
 else
 {
 printf("Path retrieved successfully.\n");
 Path_Print((Qlg_Path_Name_T *)&path);
 }
}

void Path_Print(Qlg_Path_Name_T *path_to_print_pointer)
{
 /**/

 /* Print a path name that is in the Qlg_Path_Name_T format. */
 /**/

#define PATH_TYPE_POINTER 0x00000001 /* If flag is on, */
 /* input structure contains a pointer */
 /* to the path name, else the path */
 /* name is in contiguous storage */
 /* within the qlg structure. */

 typedef union pn_input_type /* Format of input path name. */
 {
 char pn_char_type[256]; /* in contiguous storage */
 char *pn_ptr_type; /* a pointer */
 };
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 union pn_input_type pn;
 };
 struct pnstruct *pns;
 char *path_ptr;

 size_t insz;
 size_t outsz = 1000;
 char outbuf[1000];
 char *outbuf_ptr;
 iconv_t cd;
 size_t ret_iconv;

 /* Indicates to convert from ccsid 13488 to 37. */
 QtqCode_T toCode = {37,0,0,0,0,0};
 QtqCode_T fromCode = {13488,0,0,1,0,0};

 if (path_to_print_pointer != NULL)
 {
 /***/
 /* Point to and get the size of the path name. */
 /***/
 pns = (struct pnstruct *)path_to_print_pointer;
 if (path_to_print_pointer->Path_Type & PATH_TYPE_POINTER)
 path_ptr = pns->pn.pn_ptr_type;
 else path_ptr = (char *)(pns->pn.pn_char_type);
 insz = pns->qlg_struct.Path_Length; /* Get path length.*/

 /***/
 /* Initialize the print buffer. */
 /***/
 outbuf_ptr = (char *)outbuf;
 memset(outbuf_ptr, 0x00, insz);

 /***/
 /* Use iconv to convert the CCSID. */
 /***/
 cd = QtqIconvOpen(&toCode,
 &fromCode); /* Open a descriptor*/
 if (cd.return_value == -1)
 { perror("Open conversion descriptor error");

 return;
 }
 if (0 != ((iconv(cd,
 (char **)&(path_ptr),
 &insz,
 (char **)&(outbuf_ptr),
 &outsz))))
 {
 ret_iconv= iconv_close(cd);/* Close conversion descriptor*/
 perror("Conversion error");
 return;
 }

 /***/
 /* Print the name and close the conversion descriptior. */
 /***/
 printf("The file's path is: %s\n",outbuf);
 ret_iconv = iconv_close(cd);
 } /* path_to_print_pointer != NULL */
} /* Path_Print */

Output:

Path retrieved successfully.
The file's path is: /myfile

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgGetpwnam()--Get User Information for User
Name (using NLS-enabled path name)

 Syntax

 #include <pwd.h>

 struct qplg_passwd *QlgGetpwnam(const char *name);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

The QlgGetpwnam() function returns a pointer to an object of type struct qplg_passwd containing an entry
from the user database with a matching name.

Parameters

name

(Input) User profile name.

The struct qplg_passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name
uid_t pw_uid User ID
uid_t pw_gid Group ID
Qlg_Path_Name_T* pw_dir Initial working directory
char * pw_shell Initial user program

See getpwnam()--Get User Information for User Name for more on the parameter.

Authorities

*READ authority is required to the user profile associated with the name.

Note: Adopted authority is not used.

Return Value

value

QlgGetpwnam was successful. The return value points to static data that is overwritten on each
call to this function. This static storage area is also used by the QlgGetpwuid() function.

NULL pointer

QlgGetpwnam was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QlgGetpwnam() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate
memory.

[EPERM]

The calling job does not have *READ authority to the user profile associated with the name.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

The <pwd.h> file (see Header Files for UNIX-Type APIs)●

getpwnam()--Get User Information for User Name Qlg getpwnam_r●

getpwnam_r()--Get User Information for User Name●

QlgGetpwnam_r()--Get User Information for User Name (using NLS-enabled path name)●

Example

The following example gets the user database information for the user name of MYUSER. The UID is 22.
The GID is 1012. The initial working directory is /home/MYUSER. The initial user program is
*LIBL/QCMD.

#include <pwd.h>

main()
{
 struct qplg_passwd *pd;

 if (NULL == (pd = QlgGetpwnam("MYUSER")))
 perror("QlgGetpwnam() error.");
 else
 {
 printf("The user name is: %s\n", pd->pw_name);
 printf("The user id is: %u\n", pd->pw_uid);
 printf("The group id is: %u\n", pd->pw_gid);
 printf("The initial working directory length is: %d\n",
 pd->pw_dir->Path_Length);
 printf("The initial working directory CCSID is : %d\n",
 pd->pw_dir->CCSID);
 printf("The initial user program is: %s\n", pd->pw_shell);
 }

}

Output:

 The user name is: MYUSER
 The user id is: 22
 The group id is: 1012
 The initial working directory length is: 24
 The initial working directory CCSID is : 13488
 The initial user program is: *LIBL/QCMD

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgGetpwnam_r()--Get User Information for User
Name (using NLS-enabled path name)

 Syntax

 #include <sys/types.h>
 #include <pwd.h>

 int QlgGetpwnam_r(const char *name,
 struct qplg_passwd *pwd,
 char *buffer,
 size_t bufsize,
 struct qplg_passwd **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgGetpwnam_r() function updates the qplg_passwd structure pointed to by pwd and stores a pointer to
that structure in the location pointed to by result. The structure contains an entry from the user database with a
matching name.

Parameters

name

(Input) A pointer to a user profile name.

pwd

(Input) A pointer to a qplg_passwd structure.

buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by the
structure pwd.

bufsize

(Input) The size of buffer in bytes.

result

(Input) A pointer to a location in which a pointer to the updated qplg_passwd structure is stored. If an
error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

The struct qplg_passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name
uid_t pw_uid User ID
uid_t pw_gid Group ID
Qlg_Path_Name_T* pw_dir Initial working directory
char * pw_shell Initial user program

See getpwnam_r()--Get User Information for User Name for more on the pwd, result and other parameters.

Authorities

*READ authority is required to the user profile associated with the name.

Return Value

0

QlgGetpwnam_r was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If QlgGetpwnam_r() is not successful, the return value usually indicates one of the following errors. Under
some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate
memory.

[EPERM]

The calling job does not have *READ authority to the user profile associated with the name.

[ERANGE]

Insufficient storage was supplied through buffer and bufsize to contain the data to be referenced by the
resulting group structure.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify that

the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

The <pwd.h> file (see Header Files for UNIX-Type APIs)●

getpwnam()--Get User Information for User Name●

getpwnam_r()--Get User Information for User Name●

QlgGetpwnam()--Get User Information for User Name (using NLS-enabled path name)●

Example

The following example gets the user database information for the user name of MYUSER. The uid is 22. The
gid is 1012. The initial working directory is /home/MYUSER. The initial user program is *LIBL/QCMD.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <errno.h>

main()
{
 struct qplg_passwd pd;
 qplg_passwd ** tempPwdPtr;
 char pwdbuffer[200];
 int pwdlinelen = sizeof(pwdbuffer);

 if ((QlgGetpwnam_r("MYUSER",&pd,pwdbuffer,pwdlinelen,tempPwdPtr))!=0)
 perror("QlgGetpwnam_r() error.");
 else
 {
 printf("\nThe user name is: %s\n", pd->pw_name);
 printf("The user id is: %u\n", pd->pw_uid);
 printf("The group id is: %u\n", pd->pw_gid);
 printf("The initial working directory length is: %d\n",
 pd->pw_dir->Path_Length);
 printf("The initial working directory CCSID is : %d\n",
 pd->pw_dir->CCSID);
 printf("The initial user program is: %s\n", pd->pw_shell);
 }

}

Output:

 The user name is: MYUSER

 The user id is: 22
 The group id is: 0
 The intial working directory length is: 24
 The intial working directory CCSID is : 13488
 The initial user program is: *LIBL/QCMD

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgGetpwuid()--Get User Information for User
ID (using NLS-enabled path name)

 Syntax

 #include <pwd.h>

 struct qplg_passwd *QlgGetpwuid(uid_t uid);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

The QlgGetpwuid() function returns a pointer to an object of type struct qplg_passwd containing an entry
from the user database with a matching user ID (UID).

Parameters

UID

(Input) User ID.

The struct qplg_passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name
uid_t pw_uid User ID
uid_t pw_gid Group ID
Qlg_Path_Name_T* pw_dir Initial working directory
char * pw_shell Initial user program

See getpwuid()--Get User Information for User ID for more on the parameter.

Authorities

*READ authority is required to the user profile associated with the UID.

Note: Adopted authority is not used.

Return Value

value

QlgGetpwuid() was successful. The return value points to static data that is overwritten on each
call to this function. This static storage area is also used by the QlgGetpwnam() function.

NULL pointer

QlgGetpwuid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QlgGetpwuid() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the uid is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with UID was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate
memory.

[ENOSPC]

Machine storage limit exceeded.

[EPERM]

The calling job does not have *READ authority to the user profile associated with the UID.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

Th path name is returned in the default IFS UNICODE CCSID

Related Information

The <pwd.h> file (see Header Files for UNIX-Type Functions)●

getpwuid()--Get User Information for User ID●

getpwuid_r()--Get User Information for User ID●

QlgGetpwuid_r()--Get User Information for User ID (using NLS-enabled path name)●

Example

The following example gets the user database information for the uid of 22. The user name is MYUSER.
The gid is 1012. The initial working directory is /home/MYUSER. The initial user program is
*LIBL/QCMD.

#include <pwd.h>

main()
{
 struct qplg_passwd *pd;

 if (NULL == (pd = QlgGetpwuid(22)))
 perror("QlgGetpwuid() error.");
 else
 {
 printf("The user name is: %s\n", pd->pw_name);
 printf("The user id is: %u\n", pd->pw_uid);
 printf("The group id is: %u\n", pd->pw_gid);
 printf("The initial working directory length is: %d\n",
 pd->pw_dir->Path_Length);
 printf("The initial working directory CCSID is : %d\n",
 pd->pw_dir->CCSID);
 printf("The initial user program is: %s\n", pd->pw_shell);
 }

}

Output:

 The user name is: MYUSER
 The user id is: 22
 The group id is: 1012
 The intial working directory length is: 24
 The intial working directory CCSID is : 13488
 The initial user program is: *LIBL/QCMD

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgGetpwuid_r()--Get User Information for User
ID (using NLS-enabled path name)

 Syntax

 #include <sys/types.h>
 #include <pwd.h>

 int QlgGetpwuid_r(uid_t uid,
 struct qplg_passwd *pwd,
 char *buffer,
 size_t bufsize,
 struct qplg_passwd **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgGetpwuid_r() function updates the qplg_passwd structure pointed to by pwd and stores a pointer
to that structure in the location pointed to by result. The structure contains an entry from the user database
with a matching UID.

Parameters

UID

(Input) A pointer to a user ID.

pwd

(Input) A pointer to a struct qplg_passwd.

buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the structure qplg_passwd.

bufsize

(Input) The size of buffer in bytes.

result

(Input) A pointer to a location in which a pointer to the updated qplg_passwd structure is stored. If
an error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

The struct qplg_passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name
uid_t pw_uid User ID
uid_t pw_gid Group ID
Qlg_Path_Name_T pw_dir Initial working directory
char * pw_shell Initial user program

See getpwuid_r()--Get User Information for User ID for more on the pwd, result and other parameters.

Authorities

*READ authority is required to the user profile associated with the UID.

Return Value

0

QlgGetpwuid_r() was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If QlgGetpwuid_r() is not successful, the error value usually indicates one of the following errors. Under
some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the uid is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with uid was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate
memory.

[ENOSPC]

Machine storage limit exceeded.

[EPERM]

The calling job does not have *READ authority to the user profile associated with the UID.

[ERANGE]

Insufficient storage was supplied using buffer and bufsize to contain the data to be referenced by the
resulting group structure.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

The <pwd.h> file (see Header Files for UNIX-Type Functions)●

getpwuid()--Get User Information for User ID●

getpwuid_r()--Get User Information for User ID●

QlgGetpwuid()--Get User Information for User ID (using NLS-enabled path name)●

Example

The following example gets the user database information for the uid of 22. The user name is MYUSER.
The GID is 1012. The intial working directory is /home/MYUSER. The initial user program is
*LIBL/QCMD.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <errno.h>

main()
{
 struct qplg_passwd pd;
 passwd ** tempPwdPtr;
 char pwdbuffer[200];
 int pwdlinelen = sizeof(pwdbuffer);

 if ((QlgGetpwuid_r(22,&pd,pwdbuffer,pwdlinelen,tempPwdPtr))!=0)
 perror("QlgGetpwuid_r() error.");
 else
 {
 printf("\nThe user name is: %s\n", pd->pw_name);
 printf("The user id is: %u\n", pd->pw_uid);
 printf("The group id is: %u\n", pd->pw_gid);
 printf("The initial working directory length is: %d\n",
 pd->pw_dir->Path_Length);
 printf("The initial working directory CCSID is : %d\n",

 pd->pw_dir->CCSID);
 printf("The initial user program is: %s\n", pd->pw_shell);
 }

}

Output:

 The user name is: MYUSER
 The user ID is: 22
 The group ID is: 0
 The initial working directory length is: 24
 The initial working directory CCSID is : 13488
 The initial user program is: *LIBL/QCMD

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgLchown()--Change Owner and Group of
Symbolic Link (using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgLchown(Qlg_Path_Name_T *path, uid_t owner,gid_t
 group);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgLchown() function, like the lchown() function, changes the owner and group of a file. The
difference is that the QlgLchown() function takes a pointer to a Qlg_Path_Name_T structure, while
lchown() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more on the path parameter and for a
discussion of other parameters, authorities required, return values, and related information, see
lchown()--Change Owner and Group of Symbolic Link.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file whose owner and group are being changed. For more information on the
Qlg_Path_Name_T structure, see Path name format.

Related Information

lchown()--Change Owner and Group of Symbolic Link●

QlgChmod()--Change File Authorizations●

QlgLstat()--Get File or Link Information●

QlgStat()--Get File Information●

Example

The following example changes the owner and group of a file:

#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <Qp0lstdi.h>

main() {

#define mypath_link_name "temp.link"
#define mypath_fn "temp.file"

 const char US_const]3[= "US";
 const char Language_const]4[="ENU";

 struct stat info;
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn]100[; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path_link;
 struct pnstruct path_fn;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path_link, 0x00, sizeof(struct pnstruct));
 path_link.qlg_struct.CCSID = 37;
 memcpy(path_link.qlg_struct.Country_ID,US_const,2);
 memcpy(path_link.qlg_struct.Language_ID,Language_const,3);
 path_link.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_link.qlg_struct.Path_Length = sizeof(mypath_link_name)-1;
 path_link.qlg_struct.Path_Name_Delimiter]0[= '/';
 memcpy(path_link.pn,mypath_link_name,sizeof(mypath_link_name)-1);

 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));
 path_fn.qlg_struct.CCSID = 37;
 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);
 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);
 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;
 path_fn.qlg_struct.Path_Name_Delimiter]0[= '/';
 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-1);

 if (QlgSymlink((Qlg_Path_Name_T *)&path_fn,
 (Qlg_Path_Name_T *)&path_link) == -1)
 perror("QlgSymlink() error");
 else {
 QlgLstat((Qlg_Path_Name_T *)&path_link, &info);
 printf("original owner was %d and group was %d\n", info.st_uid,

 info.st_gid);
 if (QlgLchown((Qlg_Path_Name_T *)&path_link, 152, 0) != 0)
 perror("QlgLchown() error");
 else {
 QlgLstat((Qlg_Path_Name_T *)&path_link, &info);
 printf("after QlgLchown(), owner is %d and group is %d\n",
 info.st_uid, info.st_gid);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path_link);
 }
}

Output:

original owner was 137 and group was 0
after QlgLchown(), owner is 152 and group is 0

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgLink()--Create Link to File (using
NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgLink(Qlg_Path_Name_T *existing, Qlg_Path_Name_T *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgLink() function, like the link() function, provides an alternative path name for the existing file so that
the file can be accessed by either the existing name or the new name. The difference is that the QlgLink()
function supports pointers to Qlg_Path_Name_T structures, while link() supports pointers to character strings.

Limited information on the existing and the new parameters is provided here. For more information on these
parameters and for a discussion of the authorities required, return values, and related information, see
link()--Create Link to File.

Parameters

existing

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of an existing file to which a new link is to be created. For more information on the
Qlg_Path_Name_T structure, see Path name format.

new

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name that is the name of the new link. For more information on the Qlg_Path_Name_T structure, see
Path name format.

Related Information

link()--Create Link to File●

Qp0lUnlink()--Remove Link to File (using NLS-enabled path name)●

Example

The following example uses QlgLink():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <Qp0lstdi.h>

main()
{
 int file_descriptor;
 struct stat info;
#define mypath_fn "link.example.file"
#define mypath_ln "link.example.link"

 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path_fn;
 struct pnstruct path_ln;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));
 path_fn.qlg_struct.CCSID = 37;
 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);
 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);
 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;
 path_fn.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-1);

 memset((void*)&path_ln, 0x00, sizeof(struct pnstruct));
 path_ln.qlg_struct.CCSID = 37;
 memcpy(path_ln.qlg_struct.Country_ID,US_const,2);
 memcpy(path_ln.qlg_struct.Language_ID,Language_const,3);
 path_ln.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_ln.qlg_struct.Path_Length = sizeof(mypath_ln)-1;
 path_ln.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_ln.pn,mypath_ln,sizeof(mypath_ln)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path_fn, S_IWUSR)) <
0)
 perror("QlgCreat() error");
 else {
 close(file_descriptor);

 puts("before QlgLink()");
 QlgStat((Qlg_Path_Name_T *)&path_fn,&info);
 printf(" number of links is %hu\n",info.st_nlink);
 if (QlgLink((Qlg_Path_Name_T *)&path_fn,
 (Qlg_Path_Name_T *)&path_ln) != 0) {
 perror("QlgLink() error");
 QlgUnlink((Qlg_Path_Name_T *)&path_fn);
 }
 else {
 puts("after QlgLink()");
 QlgStat((Qlg_Path_Name_T *)&path_fn,&info);
 printf(" number of links is %hu\n",info.st_nlink);
 QlgUnlink((Qlg_Path_Name_T *)&path_ln);
 puts("after first QlgUnlink()");
 QlgLstat((Qlg_Path_Name_T *)&path_fn,&info);
 printf(" number of links is %hu\n",info.st_nlink);
 QlgUnlink((Qlg_Path_Name_T *)&path_fn);
 }
 }
}

Output:

before QlgLink()
 number of links is 1
after QlgLink()
 number of links is 2
after first QlgUnlink()
 number of links is 1

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgLstat()--Get File or Link Information (using
NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgLstat(Qlg_Path_Name_T *path,struct stat *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgLstat() function, like the lstat() function, gets status information about a specified file and places it in
the area of memory pointed to by buf. The difference is that the QlgLstat() function takes a pointer to a
Qlg_Path_Name_T structure, while lstat() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
a discussion of other parameters, authorities required, return values, and related information, see lstat()--Get File
or Link Information.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path name
of the file. For more information on the Qlg_Path_Name_T structure, see Path name format.

Related Information

lstat()--Get File or Link Information●

QlgChmod()--Change File Authorizations (using NLS-enabled path name)●

QlgChown()--Change Owner and Group of File (using NLS-enabled path name)●

QlgCreat()--Create or Rewrite File (using NLS-enabled path name)●

QlgLink()--Create Link to File (using NLS-enabled path name)●

QlgMkdir()--Make Directory (using NLS-enabled path name)●

QlgReadlink()--Read Value of Symbolic Link (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

QlgSymlink()--Make Symbolic Link (using NLS-enabled path name)●

QlgUtime()--Set File Access and Modification Times (using NLS-enabled path name)●

Qp0lUnlink()--Remove Link to File (using NLS-enabled path name)●

Example

The following example provides status information for a file:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdio.h>
#include <Qp0lstdi.h>

main() {

 struct stat info;
 int file_descriptor;
 #define mypath_fn "temp.file"
 #define mypath_ln "temp.link"

 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path_fn;
 struct pnstruct path_ln;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));
 path_fn.qlg_struct.CCSID = 37;
 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);
 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);
 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;
 path_fn.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-1);

 memset((void*)&path_ln, 0x00, sizeof(struct pnstruct));
 path_ln.qlg_struct.CCSID = 37;
 memcpy(path_ln.qlg_struct.Country_ID,US_const,2);
 memcpy(path_ln.qlg_struct.Language_ID,Language_const,3);
 path_ln.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_ln.qlg_struct.Path_Length = sizeof(mypath_ln)-1;
 path_ln.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_ln.pn,mypath_ln,sizeof(mypath_ln)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path_fn, S_IWUSR)) < 0)
 perror("QlgCreat() error");
 else {
 close(file_descriptor);
 if (QlgLink((Qlg_Path_Name_T *)&path_fn,

 (Qlg_Path_Name_T *)&path_ln)
 !=0
 perror("QlgLink() error");
 else {
 if (QlgLstat((Qlg_Path_Name_T *)&path_ln, &info) != 0)
 perror("QlgLstat() error");
 else {
 puts("QlgLstat() returned:");
 printf(" inode: %d\n", (int) info.st_ino);
 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path_ln);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path_fn);
 }
}

Output:

QlgLstat() returned:
 inode: 8477
 dev id: 0
 mode: 00008080
 links: 2
 uid: 1782
 gid: 0

Top | UNIX-Type APIs | APIs by category

QlgLstat64()--Get File or Link Information (large
file enabled and using NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgLstat64(Qlg_Path_Name_T *path, struct stat64 *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgLstat64() function, like the lstat64() function, gets status information about a specified file and places it
in the area of memory pointed to by buf. The difference is that the QlgLstat64() function takes a pointer to a
Qlg_Path_Name_T structure, while lstat64() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and for
a discussion of other parameters, authorities required, return values, and related information, see lstat64()--Get
File or Link Information (Large File Enabled) or lstat()--Get File or Link Information.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path name
of the file. For more information on the Qlg_Path_Name_T structure, see Path name format.

Related Information

lstat64()--Get File or Link Information (large file enabled and using NLS-enabled path name)●

lstat()--Get File or Link Information (using NLS-enabled path name)●

QlgChmod()--Change File Authorizations (using NLS-enabled path name)●

QlgChown()--Change Owner and Group of File (using NLS-enabled path name)●

QlgCreat()--Create or Rewrite File (using NLS-enabled path name)●

QlgLink()--Create Link to File (using NLS-enabled path name)●

QlgMkdir()--Make Directory (using NLS-enabled path name)●

QlgReadlink()--Read Value of Symbolic Link (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

QlgSymlink()--Make Symbolic Link (using NLS-enabled path name)●

QlgUtime()--Set File Access and Modification Times (using NLS-enabled path name)●

Qp0lUnlink()--Remove Link to File (using NLS-enabled path name)●

Example

The following example provides status information for a file:

#define _LARGE_FILE_API
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <Qp0lstdi.h>

main() {
 struct stat64 info;
 int file_descriptor;
#define mypath_fn "temp.file"
#define mypath_ln "temp.link"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path_fn;
 struct pnstruct path_ln;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));
 path_fn.qlg_struct.CCSID = 37;
 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);
 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);
 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;
 path_fn.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-);

 memset((void*)&path_ln, 0x00, sizeof(struct pnstruct));
 path_ln.qlg_struct.CCSID = 37;
 memcpy(path_ln.qlg_struct.Country_ID,US_const,2);
 memcpy(path_ln.qlg_struct.Language_ID,Language_const,3);
 path_ln.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_ln.qlg_struct.Path_Length = sizeof(mypath_ln)-1;
 path_ln.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_ln.pn,mypath_ln,sizeof(mypath_ln)-);

 if ((file_descriptor = QlgCreat64((Qlg_Path_Name_T *)&path_fn, S_IWUSR)) <
 perror("QlgCreat64() error");
 else {
 close(file_descriptor);
 if (QlgLink((Qlg_Path_Name_T *)&path_fn,

 (Qlg_Path_Name_T *)&path_ln) != 0)
 perror("QlgLink() error");
 else {
 if (QlgLstat64((Qlg_Path_Name_T *)&path_ln, &info) != 0)
 perror("QlgLstat64() error");
 else {
 puts("QlgLstat64() returned:");
 printf(" inode: %d\n", (int) info.st_ino);
 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 printf(" size: %lld\n", (long long) info.st_size);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path_ln);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path_fn);
 }
}

Output:

QlgLstat() returned:
 inode: 258
 dev id: 1
 mode: 00008080
 links: 2
 uid: 137
 gid: 500
 size: 18

Top | UNIX-Type APIs | APIs by category

QlgMkdir()--Make Directory (using NLS-enabled
path name)

 Syntax

 #include <sys/stat.h>

 int QlgMkdir(Qlg_Path_Name_T *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgMkdir() function, like the mkdir() function, creates a new, empty directory whose name is defined
by path. The difference is that the QlgMkdir() function takes a pointer to a Qlg_Path_Name_T structure,
while mkdir() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
mkdir()--Make Directory.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the directory to be created. For more information on the Qlg_Path_Name_T structure, see
Path name format.

Related Information

mkdir()--Make Directory●

QlgChmod()--Change File Authorizations (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

QlgPathconf()--Get Configurable Path Name Variables (using NLS-enabled path name)●

Example

The following example creates a new directory:

#include <sys/stat.h>

#include <unistd.h>
#include <stdio.h>
main() {

 #define mypath "new_dir"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 const char mypath_DOT_DOT[3] = "..";

 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;
 struct pnstruct path_DOT_DOT;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 memset((void*)&path_DOT_DOT, 0x00, sizeof(struct pnstruct));
 path_DOT_DOT.qlg_struct.CCSID = 37;
 memcpy(path_DOT_DOT.qlg_struct.Country_ID,US_const,2);
 memcpy(path_DOT_DOT.qlg_struct.Language_ID,Language_const,3);
 path_DOT_DOT.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_DOT_DOT.qlg_struct.Path_Length = sizeof(mypath_DOT_DOT)-1;
 path_DOT_DOT.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_DOT_DOT.pn,mypath_DOT_DOT,sizeof(mypath_DOT_DOT)-1);

 if (QlgMkdir((Qlg_Path_Name_T *)&path,
 S_IRWXU|S_IRGRP|S_IXGRP) != 0)
 perror("QlgMkdir() error");
 else if (QlgChdir((Qlg_Path_Name_T *)&path) != 0)
 perror("first QlgChdir() error");
 else if (QlgChdir((Qlg_Path_Name_T *)&path_DOT_DOT) != 0)
 perror("second QlgChdir() error");
 else if (QlgRmdir((Qlg_Path_Name_T *)&path) != 0)
 perror("QlgRmdir() error");
 else
 puts("success!");
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgMkfifo()--Make FIFO Special File (using
NLS-enabled path name)

 Syntax

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <Qlg.h>

 int QlgMkfifo(const Qlg_Path_Name_T *path,
 mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgMkfifo() function, like the mkfifo() function, creates a new FIFO special file whose name is
defined by path. The difference is that the QlgMkfifo() function takes a pointer to a Qlg_Path_Name_T
structure, while mkfifo() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
mkfifo()--Make FIFO Special File.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the FIFO to be created. For more information on the Qlg_Path_Name_T structure, see Path
name format.

Related Information

mkfifo()--Make FIFO Special File●

QlgChmod()--Change File Authorizations (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

Example

The following example creates a new FIFO:

#include <sys/stat.h>
#include <stdio.h>
#include <string.h>
#include <Qlg.h>

void main()
{
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char[100] pn; /* This size must be >= the path */
 /* name length or a pointer to */
 /* the path name. */
 };
 struct pnstruct path;

 char *mypath = "/newFIFO";

 /**/
 /* Initialize Qlg_Path_Name_T structure. */
 /**/
 memset((void*)path name, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID, "US", 2);
 memcpy(path.qlg_struct.Language_ID, "ENU", 3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = strlen(mypath);
 path.qlg_struct.Path_Name_Delimiter = '/';
 memcpy(path.pn, mypath, strlen(mypath));

 if (QlgMkfifo((Qlg_Path_Name_T *)path name,
 S_IRWXU|S_IRWXO) != 0)
 perror("QlgMkfifo() error");
 else
 puts("success!");

 return;
}

Top | UNIX-Type APIs | APIs by category

QlgOpen()--Open a File (using NLS-enabled
path name)

 Syntax

 #include <fcntl.h>
 #include <stdio.h>
 #include <Qp0lstdi.h>

 int QlgOpen(Qlg_Path_Name_T *Path_Name,
 int oflag, . . .);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for open() API.

The QlgOpen() function, like the open() function, opens a file or creates a new, empty file whose name is
defined by path and returns a number called a file descriptor. The difference is that the QlgOpen()
function takes a pointer to a Qlg_Path_Name_T structure, while open() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, usage notes, return values, and related
information, see open()--Open a File.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be opened. For more information on the Qlg_Path_Name_T structure, see Path
name format.

Related Information

open()--Open a File●

QlgCreat()--Create or Rewrite File (using NLS-enabled path name)●

QlgOpen64()--Open File (large file enabled and using NLS-enabled path name)●

QlgStat()>--Get File Information (using NLS-enabled path name)●

Example

The following example creates and opens an output file for exclusive access. This program was stored in a
source file with CCSID 37, so the constant string "newfile" will be compiled in CCSID 37. Therefore, the
language and country or region specified are United States English, and the CCSID specified is 37.

#include <fcntl.h>
#include <stdio.h>
#include <Qp0lstdi.h>

main()
{
 int fildes;

 const char US_const[3]= "US";
 const char Language_const[4]="ENU";

 struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[7];
 };
 struct pnstruct pns;
 struct pnstruct *pns_ptr = NULL;

 char fn[]="newfile";

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));
 pns.qlg_struct.CCSID = 37;
 memcpy(pns.qlg_struct.Country_ID,US_const,2);
 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;
 pns.qlg_struct.Path_Type = 0;
 pns.qlg_struct.Path_Length = sizeof(fn) - 1;
 pns.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(pns.pn,fn,sizeof(fn)-1);

 pns_ptr = &pns;
 if(fildes = QlgOpen((Qlg_Path_Name_T *)pns_ptr,
 O_WRONLY|O_CREAT|O_EXCL, S_IRWXU)) == -1)
 {
 perror("QlgOpen() error");
 }

}

Top | UNIX-Type APIs | APIs by category

QlgOpen64()--Open File (large file enabled and
using NLS-enabled path name)

 Syntax

 #include <fcntl.h>

 int QlgOpen64(Qlg_Path_Name_T *path, int oflag, . . .);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgOpen64() function, like the open64() and open() functions, opens a file and returns a number
called a file descriptor. QlgOpen64() differs from open64() in that the open64() function takes a pointer to
a Qlg_Path_Name_T structure, while open64() takes a pointer to a character string. QlgOpen64() differs
from open() in that it automatically opens a file with the O_LARGEFILE flag set.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
open()--Open a File or QlgOpen64()--Open File (Large File Enabled).

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be opened. For more information on the Qlg_Path_Name_T structure, see Path
name format.

Related Information

open()--Open a File●

QlgCreat()--Create or Rewrite File (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgOpendir()--Open Directory (using NLS-enabled
path name)

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 DIR *QlgOpendir(Qlg_Path_Name_T *dirname);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgOpendir() function, like the opendir() function, opens a directory so it can be read. The difference is
that the QlgOpendir() function takes a pointer to a Qlg_Path_Name_T structure, while the opendir() function
takes a pointer to a character string. The QlgOpendir() function opens a directory so it can be read with the
QlgReaddir() function.

Names returned on calls to QlgReaddir() are returned in the coded character set identifier (CCSID) specified at
the time the directory is opened. QlgOpendir() allows the CCSID to be specified in the Qlg_Path_Name_T
structure. opendir() uses the CCSID that is in effect for the current job at the time the opendir() function is
called. See opendir()--Open Directory for more on the job CCSID.

Limited information on the dirname parameter is provided here. For more information on the dirname parameter
and for a discussion of authorities required, return values, and related information, see opendir()--Open Directory.

Parameters

dirname

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path name
of the directory to be opened. For more information on the Qlg_Path_Name_T structure, see Path name
format.

Related Information

opendir()--Open Directory●

QlgReaddir()--Read Directory Entry (using NLS-enabled path name)●

QlgSpawn()--Spawn Process (using NLS-enabled path name)●

QlgSpawnp()--Spawn Process with Path (using NLS-enabled fileh name)●

Example

The following example opens a directory:

#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <errno.h>
#include <stdio.h>

void traverse(char *fn, int indent) {
 DIR *dir;
 int count;
 struct stat info;

 typedef struct my_dirent_lg
 {
 struct dirent_lg *entry;
 char d_lg_name[1];
 };

 struct my_dirent_lg lg_struct;
 struct dirent_lg *entry;

 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[1025]; /* This array size must be >= */
 /* the length of the path name or */
 /* this must be a pointer to the */
 /* path name. */
 };

 struct pnstruct path;
 struct pnstruct path_to_stat;
 char *temp_char_path[1025];

 /***/
 /* Initialize Qlg_Path_Name_T structure, since the path name */
 /* was not in the Qlg_Path_Name_T format when this function */
 /* was called. */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 path.qlg_struct.Path_Length = strlen(fn);
 memcpy(path.pn,fn,strlen(fn));

 for (count=0; count < indent; count++) printf(" ");
 printf("%s\n", fn);

 if ((dir = QlgOpendir((Qlg_Path_Name_T *)&path)) == NULL)

 perror("QlgOpendir() error");
 else
 {
 path_to_stat = path;

 while ((entry = QlgReaddir(dir)) != NULL)
 {

 if
 (entry->d_lg_name[0] != '.')
 {
 /* Concat the components of the path name into a */
 /* Qlg_Path_Name_T structure that is used on the */
 /* next function that is called. Clear and */
 /* use a temporary buffer to ensure that only */
 /* characters returned by QlgReaddir() are */
 /* included in the concatenated path name */
 /* structure. */
 strcpy(path_to_stat.pn,path.pn);
 strcat(path_to_stat.pn, "/");
 memset(temp_char_path, 0x00,1025);
 memcpy(temp_char_path,
 entry->d_lg_name,entry->d_lg_qlg.Path_Length);

 strcat(path_to_stat.pn,(char *)&temp_char_path);

 /* Calculate the size of the path, including the */
 /* length of the path specified on the open, the */
 /* length of the name returned by QlgReaddir(), */
 /* and the delimiter. */

 path_to_stat.qlg_struct.Path_Length =
 (path.qlg_struct.Path_Length +
 entry->d_lg_qlg.Path_Length + 1);

 /* Call QlgStat() to determine if the path name */
 /* is a directory. */
 if (QlgStat((Qlg_Path_Name_T *)&path_to_stat,
 &info) != 0)
 {
 fprintf(stderr, "QlgStat() error on %s: %s\n",
 path_to_stat.pn,
 strerror(errno));
 }
 else if (S_ISDIR(info.st_mode))
 {
 /* this a directory so loop to open its objects.*/
 traverse(path_to_stat.pn, indent+1);
 }
 else printf(" %s\n",path_to_stat.pn);
 }
 }
 closedir(dir);
 }
}

main() {

 puts("Directory structure:");
 traverse("/etc", 0);
}

Output:

Directory structure:
/etc
 /etc/samples
 /etc/samples/IBM
 /etc/IBM

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgPathconf()--Get Configurable Path Name
Variables (using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 long QlgPathconf(Qlg_Path_Name_T *path, int name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgPathconf() function, like the pathconf() function, lets an application determine the value of a
configuration variable (name) associated with a particular file or directory (path). The difference is that the
QlgPathconf() function takes a pointer to a Qlg_Path_Name_T structure, while pathconf() takes a pointer
to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
pathconf()--Get Configurable Path Name Variables.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name for which the value of the configuration variable is requested. For more information on the
Qlg_Path_Name_T structure, see Path name format.

Related Information

fpathconf()--Get Configurable Path Name Variables by Descriptor ●

pathconf()--Get Configurable Path Name Variables●

QlgChown()--Change Owner and Group of File (using NLS-enabled path name)●

Example

The following example determines the maximum number of bytes in a file name:

#include <stdio.h>
#include <unistd.h>
#include <errno.h>

main() {
 long result;
#define mypath "/"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 errno = 0;
 puts("examining NAME_MAX limit for root filesystem");
 if ((result = QlgPathconf((Qlg_Path_Name_T *)&path,
 _PC_NAME_MAX)) == -1)
 if (errno == 0)
 puts("There is no limit to NAME_MAX.");
 else perror("QlgPathconf() error");
 else
 printf("NAME_MAX is %ld\n", result);
}

Output:

examining NAME_MAX limit for root filesystem
NAME_MAX is 255

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgProcessSubtree()--Process a Path Name
(using NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgProcessSubtree (
 Qlg_Path_Name_T *Path_Name,
 uint Subtree_level,
 Qp0l_Objtypes_List_t *Objtypes_array_ptr,
 uint Local_remote_obj,
 Qp0l_IN_EXclusion_List_t *IN_EXclusion_ptr,
 uint Err_recovery_action,
 Qp0l_User_Function_t *UserFunction_ptr,
 void *Function_CtlBlk_ptr, ...);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

For a description of this function and information on its parameters, authorities required, return values,
error conditions, error messages, usage notes, and related information, see Qp0lProcessSubtree()--Process a
Path Name.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgReaddir()--Read Directory Entry (using
NLS-enabled path name)

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 struct dirent_lg *QlgReaddir(DIR *dirp);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: No; see Usage Notes.

The QlgReaddir() function, like the readdir() function, returns a pointer to a structure describing the next
directory entry in the directory stream associated with dirp. The difference is that the QlgReaddir()
function takes a pointer to a dirent_lg structure, while readdir() takes a pointer to a dirent structure.

Limited information on the dirp parameter is provided here. For more information on the dirp parameter
and for a discussion of authorities required, return values, and related information, see readdir()--Read
Directory Entry.

Parameters

dirp

(Input) A pointer to DIR that refers to the open directory stream to be read. This pointer is returned
by QlgOpendir().

A dirent_lg structure has the following contents:

char d_reserved1[16] Reserved.
unsigned int d_fileno_gen_id The generation ID associated with the file ID.
ino_t d_fileno The file ID of the file. This number uniquely

identifies the object within a file system.
unsigned int d_reclen The length of the directory entry in bytes.
int d_reserved3 Reserved.
char d_reserved4[6] Reserved.
char d_reserved5[2] Reserved.

Qlg_Path_Name_T d_lg_name A Qlg_Path_Name_T that gives the name of a
file in the directory. The path name is not
null-terminated within the structure. The
structure also provides National Language
Support information, which includes ccsid,
country_id, and language_id. This structure has
a maximum length of
{_QP0L_DIR_NAME_LG} bytes. For more
information on the Qlg_Path_Name_T structure,
see Path name format.

Related Information

readdir()--Read Directory Entry●

QlgOpendir()--Open Directory (using NLS-enabled path name)●

QlgPathconf()--Get Configurable Path Name Variables (using NLS-enabled path name)●

Example

The following example reads the contents of a root directory:

#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>

main() {

 typedef struct my_dirent_lg
 {
 struct dirent_lg *entry;
 char d_lg_name[1];
 };

 struct my_dirent_lg lg_struct;
 struct dirent_lg *entry;
#define mypath "/"
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= */
 /* the length of the path name */
 /* or this must be a pointer */
 /* to the path name. */
 };

 struct pnstruct path;
 DIR *dir;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((dir = QlgOpendir((Qlg_Path_Name_T *)&path)) == NULL)
 perror("QlgOpendir() error");
 else {
 puts("contents of root:");
 while ((entry = QlgReaddir(dir)) != NULL)
 printf(" %s\n", entry->d_lg_name);
 closedir(dir);
 }
}

Output:

contents of root:
 .
 ..
 QSYS.LIB
 QDLS
 QOpenSys
 QOPT
 home

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgReaddir_r()--Read Directory Entry (using
NLS-enabled path name)

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 int QlgReaddir_r(DIR *dirp, struct dirent_lg *entry,
 struct dirent_lg **result);

 Service Program Name: QP0LLIBTS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgReaddir_r() function, like the readdir_r() function, initializes a structure that is referenced by
entry to represent the next directory entry in the directory stream that is associated with dirp. The difference
is that the QlgReaddir_r() dirp parameter points to a dirent_lg structure, while the readdir_r() dirp
parameter points to a dirent structure.

The QlgReaddir_r functions stores a pointer to the entry structure at the location referenced by result.

Limited information on the dirp parameter, the entry parameter, and the result parameter is provided here.
For more information on these parameters and for a discussion of authorities required, return values, and
related information, see readdir_r()--Read Directory Entry.

Parameters

dirp

(Input) A pointer to a DIR that refers to the open directory stream to be read. This pointer is
returned by QlgOpendir().

entry

(Output) A pointer to a dirent_lg structure in which the directory entry is to be placed.

result

(Output) A pointer to a pointer to a dirent_lg structure. Upon successfully reading a directory entry,
this dirent_lg pointer is set to the same value as entry. Upon reaching the end of the directory
stream, this pointer is set to NULL.

A dirent_lg structure has the following contents:

char d_reserved1[16] Reserved.
unsigned int d_fileno_gen_id The generation ID associated with the file ID.
ino_t d_fileno The file ID of the file. This number uniquely

identifies the object within a file system.

unsigned int d_reclen The length of the directory entry in bytes.
int d_reserved3 Reserved.
char d_reserved4[6] Reserved.
char d_reserved5[2] Reserved.
Qlg_Path_Name_T d_lg_name A Qlg_Path_Name_T structure that gives the

name of a file in the directory. The path name is
not null-terminated within the structure. The
structure also provides National Language
Support information, which includes ccsid,
country_id, and language_id. This structure has
a maximum length of
{_QP0L_DIR_NAME_LG} bytes. For more
information on the Qlg_Path_Name_T structure,
see Path name format.

Related Information

readdir()--Read Directory Entry●

QlgOpendir()--Open Directory (using NLS-enabled path name)●

QlgPathconf()--Get Configurable Path Name Variables (using NLS-enabled path name)●

Example

The following example reads the contents of a root directory:

#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>

main() {
 int return_code;
 DIR *dir;
 struct dirent_lg entry;
 struct dirent_lg *result;

 typedef struct my_dirent_lg
 {
 struct dirent_lg *entry;
 char d_lg_name[1];
 };
 struct my_dirent_lg lg_struct;

#define mypath "/"
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct

 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= */
 /* the length of the path name or this */
 /* must be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((dir = QlgOpendir((Qlg_Path_Name_T *)&path)) == NULL)
 perror("QlgOpendir() error");
 else {
 puts("contents of root:");
 for (return_code = QlgReaddir_r(dir, &entry, &result);
 result != NULL && return_code == 0;
 return_code = QlgReaddir_r(dir, &entry, &result))
 printf(" %s\n", entry.d_lg_name);
 if (return_code != 0)
 perror("QlgReaddir_r() error");
 closedir(dir);
 }
}

Output:

contents of root:
 .
 ..
 QSYS.LIB
 QDLS
 QOpenSys
 QOPT
 home

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgReadlink()--Read Value of Symbolic Link
(using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgReadlink(Qlg_Path_Name_T *path, Qlg_Path_Name_T *buf,
 size_t bufsiz);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgReadlink() function, like the readlink() function, places the contents of the symboliclink path in the
buffer buf. The difference is that the QlgReadlink() function uses pointers to Qlg_Path_Name_T structures,
while readlink() uses pointers to character strings.

Limited information on the path parameter, the buf parameter, and the size parameter is provided here. For more
information on these parameters and for a discussion authorities required, return values, and related information,
see readlink()--Read Value of Symbolic Link.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path name
of the symbolic link. For more information on the Qlg_Path_Name_T structure, see Path name format.

buf

(Output) A pointer to the area in which the contents of the link should be stored. For more information on
the Qlg_Path_Name_T structure, see Path name format.

bufsiz

(Input) The size of buf in bytes.

Related Information

readlink()--Read Value of Symbolic Link●

QlgLstat()--Get File or Link Information (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

QlgSymlink()--Make Symbolic Link (using NLS-enabled path name)●

Qp0lUnlink()--Remove Link to File●

Example

The following example uses QlgReadlink():

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <Qp0lstdi.h>

main() {
 int file_descriptor;

 #define mypath_fn "readlink.file"
 #define mypath_sl "readlink.symlink"

 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the length */
 /* of the path name or this must be a */
 /* pointer to the path name. */

 };

 struct pnstruct path_fn;
 struct pnstruct path_sl;
 struct pnstruct path_buf;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)path name_fn, 0x00, sizeof(struct pnstruct));
 path_fn.qlg_struct.CCSID = 37;
 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);
 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);
 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;
 path_fn.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-1);

 memset((void*)path name_sl, 0x00, sizeof(struct pnstruct));
 path_sl.qlg_struct.CCSID = 37;
 memcpy(path_sl.qlg_struct.Country_ID,US_const,2);
 memcpy(path_sl.qlg_struct.Language_ID,Language_const,3);
 path_sl.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_sl.qlg_struct.Path_Length = sizeof(mypath_sl)-1;
 path_sl.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_sl.pn,mypath_sl,sizeof(mypath_sl)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)path name_fn, S_IWUSR))
< 0)
 perror("QlgCreat() error");
 else {
 close(file_descriptor);
 if (QlgSymlink((Qlg_Path_Name_T *)path name_fn,
 (Qlg_Path_Name_T *)path name_sl) != 0)
 perror("QlgSymlink() error");
 else {
 if (QlgReadlink((Qlg_Path_Name_T *)path name_sl,
 (Qlg_Path_Name_T *)path name_buf,
 sizeof(path_buf)) < 0)
 perror("QlgReadlink() error");
 else printf("QlgReadlink() returned '%s' for '%s'\n",
 path name_buf.pn,
 path name_sl.pn);

 QlgUnlink((Qlg_Path_Name_T *)path name_sl);
 }
 QlgUnlink((Qlg_Path_Name_T *)path name_fn);
 }
}

Output:

QlgReadlink() returned 'readlink.file' for 'readlink.symlink'

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgRenameKeep()--Rename File or Directory,
Keep "new" If It Exists (using NLS-enabled
path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgRenameKeep(Qlg_Path_Name_T *old, Qlg_Path_Name_T *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgRenameKeep() function, like the Qp0lRenameKeep() function, renames a file or a directory
specified by old to the name given by new. The difference is that the QlgRenameKeep() function takes
pointers to Qlg_Path_Name_T structures, while Qp0lRenameKeep() takes pointers to character strings.

Limited information on the old and new parameters is provided here. For more information on these
parameters and for a discussion of the authorities required, return values, and related information, see
Qp0lRenameKeep()--Rename File or Directory, Keep "new" If It Exists.

Parameters

old

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to the
path name of the file to be renamed. For more information on the Qlg_Path_Name_T structure, see
Path name format.

new

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to the
path name of the new name for the file. For more information on the Qlg_Path_Name_T structure,
see Path name format.

Related Information

Qp0lRenameKeep()--Rename File or Directory, Keep "new" If It Exists●

QlgPathconf()--Get Configurable Path Name Variables (using NLS-enabled path name)●

QlgRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists (using NLS-enabled path
name)

●

Example

When you pass two file names to this example, it changes the first file name to the second file name using
QlgRenameKeep().

#include <Qp0lstdi.h>
#include <stdio.h>

int main(int argc, char **argv)
{

 if (argc != 3)
 {
 printf("Usage: %s old_fn new_fn\n", argv[0]);
 perror ("Could not rename file");
 }

 else
 {
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 /*** EXTRA STORAGE MAY BE NEEDED ***/
 char pn[1025]; /* This size must be >= the path */
 /* name length or a pointer to */
 /* the path name. */
 };
 struct pnstruct path_old;
 struct pnstruct path_new;

 struct pnstruct *path_old_ptr;
 struct pnstruct *path_new_ptr;

 memset((void*)&path_old, 0x00, sizeof(struct pnstruct));
 path_old_ptr = &path_old;

 path_old.qlg_struct.CCSID = 37;
 memcpy(path_old.qlg_struct.Country_ID,US_const,2);
 memcpy(path_old.qlg_struct.Language_ID,Language_const,3);;
 path_old.qlg_struct.Path_Type = 0;
 path_old.qlg_struct.Path_Length = strlen(argv[1]);
 path_old.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_old.pn,argv[1],sizeof(argv[1])-1);

 memset((void*)&path_new, 0x00, sizeof(struct pnstruct));
 path_new_ptr = &path_new;

 path_new.qlg_struct.CCSID = 37;
 memcpy(path_new.qlg_struct.Country_ID,US_const,2);

 memcpy(path_new.qlg_struct.Language_ID,Language_const,3);;
 path_new.qlg_struct.Path_Type = 0;
 path_new.qlg_struct.Path_Length = strlen(argv[2]);
 path_new.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_new.pn,argv[2],sizeof(argv[2])-1);

 if (QlgRenameKeep((Qlg_Path_Name_T *)path_old_ptr,
 (Qlg_Path_Name_T *)path_new_ptr) != 0)
 {perror ("Could not rename file."); }
 else {perror ("File renamed."); }
 }

}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgRenameUnlink()--Rename File or Directory,
Unlink "new" If It Exists (using NLS-enabled
path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgRenameUnlink(Qlg_Path_Name_T *old, Qlg_Path_Name_T *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgRenameUnlink() function, like the Qp0lRenameUnlink() function, renames a file or a directory
specified by old to the name given by new. The difference is that the QlgRenameUnlink() function takes a
pointer to a Qlg_Path_Name_T structure, while Qp0lRenameUnlink() takes a pointer to a character string.

Limited information on the old and old parameters is provided here. For more information on these
parameters and for a discussion of the authorities required, return values, and related information, see
Qp0lRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists.

Parameters

old

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file to be renamed. For more information on the Qlg_Path_Name_T structure, see Path
name format.

new

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the new name of the file. For more information on the Qlg_Path_Name_T structure, Path
name format.

Related Information

Qp0lRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists●

QlgPathconf()--Get Configurable Path Name Variables (using NLS-enabled path name)●

QlgRenameKeep()--Rename File or Directory, Keep "new" If It Exists (using NLS-enabled path●

name)

Example

When you pass two file names to this example, it tries to change the file name from the first name to the
second using QlgRenameUnlink().

#include <Qp0lstdi.h>
#include <stdio.h>

int main(int argc, char **argv)
{

 if (argc != 3)
 {
 printf("Usage: %s old_fn new_fn\n", argv[0]);
 perror ("Could not unlink the file");
 }

 else
 {
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 /*** EXTRA STORAGE MAY BE NEEDED ***/
 char pn[1025]; /* This size must be >= the path */
 /* name length or a pointer to */
 /* the path name. */
 };
 struct pnstruct path_old;
 struct pnstruct path_new;

 struct pnstruct *path_old_ptr;
 struct pnstruct *path_new_ptr;

 memset((void*)&path_old, 0x00, sizeof(struct pnstruct));
 path_old_ptr = &path_old;

 path_old.qlg_struct.CCSID = 37;
 memcpy(path_old.qlg_struct.Country_ID,US_const,2);
 memcpy(path_old.qlg_struct.Language_ID,Language_const,3);;
 path_old.qlg_struct.Path_Type = 0;
 path_old.qlg_struct.Path_Length = strlen(argv[1]);
 path_old.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_old.pn,argv[1],sizeof(argv[1]));

 memset((void*)&path_new, 0x00, sizeof(struct pnstruct));
 path_new_ptr = &path_new;

 path_new.qlg_struct.CCSID = 37;

 memcpy(path_new.qlg_struct.Country_ID,US_const,2);
 memcpy(path_new.qlg_struct.Language_ID,Language_const,3);;
 path_new.qlg_struct.Path_Type = 0;
 path_new.qlg_struct.Path_Length = strlen(argv[2]);
 path_new.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_new.pn,argv[2],sizeof(argv[2]));

 if (QlgRenameUnlink((Qlg_Path_Name_T *)path_old_ptr,
 (Qlg_Path_Name_T *)path_new_ptr) != 0)
 {perror ("Could not unlink the file."); }
 else {perror ("File unlinked."); }
 }

}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgRmdir()--Remove Directory (using
NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgRmdir(Qlg_Path_Name_T *path,);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgRmdir() function, like the rmdir() function, removes a directory, path, provided that the directory is
empty; that is, the directory contains no entries other than "dot" (.) or "dot-dot" (..). The difference is that the
QlgRmdir() function takes a pointer to a Qlg_Path_Name_T structure, while rmdir() takes a pointer to a
character string.

Limited information on the path parameter is provided here. For more information on the path parameter and
for a discussion of authorities required, return values, usage notes, and related information, see
rmdir()--Remove Directory.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path name
of the directory to be removed. For more information on the Qlg_Path_Name_T structure, see Path
name format.

Related Information

rmdir()--Remove Directory●

QlgMkdir()--Make Directory (using NLS-enabled path name)●

Qp0lUnlink()--Remove Link to File (using NLS-enabled path name)●

Example

The following example removes a directory:

#include <sys/stat.h>

#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <Qp0lstdi.h>

main() {

#define mypath_d "new_dir"
#define mypath_f "new_dir/new_file"

 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path_d;
 struct pnstruct path_f;

 int file_descriptor;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path_d, 0x00, sizeof(struct pnstruct));
 path_d.qlg_struct.CCSID = 37;
 memcpy(path_d.qlg_struct.Country_ID,US_const,2);
 memcpy(path_d.qlg_struct.Language_ID,Language_const,3);
 path_d.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_d.qlg_struct.Path_Length = sizeof(mypath_d)-1;
 path_d.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_d.pn,mypath_d,sizeof(mypath_d)-1);

 memset((void*)&path_f, 0x00, sizeof(struct pnstruct));
 path_f.qlg_struct.CCSID = 37;
 memcpy(path_f.qlg_struct.Country_ID,US_const,2);
 memcpy(path_f.qlg_struct.Language_ID,Language_const,3);
 path_f.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_f.qlg_struct.Path_Length = sizeof(mypath_f)-1;
 path_d.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_f.pn,mypath_f,sizeof(mypath_f)-1);

 if (QlgMkdir((Qlg_Path_Name_T *)&path_d,S_IRWXU|S_IRGRP|S_IXGRP) !
 perror("QlgMkdir() error");
 else if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path_f,S_IWUSR))
<
 perror("QlgCreat() error");
 else {
 close(file_descriptor);
 QlgUnlink((Qlg_Path_Name_T *)&path_f);
 }

 if (QlgRmdir((Qlg_Path_Name_T *)&path_d) != 0)
 perror("QlgRmdir() error");

 else
 puts("removed!");
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgSaveStgFree()--Save Storage Free (using
NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgSaveStgFree(
 Qlg_Path_Name_T *Path_Name,
 Qp0l_StgFree_Function_t *UserFunction_ptr,
 void *Function_CtlBlk_ptr);

 Service Program Name: QP0LLIB3

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, see Qp0lSaveStgFree()--Save
Storage Free.

API introduced: V5R1

Top | Backup and Recovery APIs | UNIX-Type APIs | APIs by category

QlgSetAttr()--Set Attributes (using NLS-enabled
path name)

 Syntax

 #include <Qp0lstdi.h>
 int QlgSetAttr
 (Qlg_Path_Name_T *Path_Name,
 char *Buffer_ptr,
 uint Buffer_Size,
 uint Follow_Symlnk, ...);

 Service Program Name: QP0LLIB3

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

For a description of this function and information on its parameters, authorities required, return values,
error conditions, error messages, usage notes, and related information, see Qp0lSetAttr()--Set Attributes.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgStat()--Get File Information (using
NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgStat(Qlg_Path_Name_T *path,struct stat *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgStat() function, like the stat() function, gets status information about a specified file and places it
in the area of memory pointed to by the buf argument. The difference is that the QlgStat() function takes a
pointer to a Qlg_Path_Name_T structure, while stat() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
stat()--Get File Information.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file from which information is required. For more information on the
Qlg_Path_Name_T structure, see Path name format.

Related Information

stat()--Get File Information●

QlgStat64()--Get File Information (large file enabled and using NLS-enabled path name)●

QlgChmod()--Change File Authorizations (using NLS-enabled path name)●

QlgChown()--Change Owner and Group of File (using NLS-enabled path name)●

QlgCreat()--Create or Rewrite File (using NLS-enabled path name)●

QlgLink()--Create Link to File (using NLS-enabled path name)●

QlgLstat()--Get File or Link Information (using NLS-enabled path name)●

QlgMkdir()--Make Directory (using NLS-enabled path name)●

QlgReadlink()--Read Value of Symbolic Link (using NLS-enabled path name)●

QlgSymlink()--Make Symbolic Link (using NLS-enabled path name)●

QlgUtime()--Set File Access and Modification Times (using NLS-enabled path name)●

Qp0lUnlink()--Remove Link to File●

Example

The following example gets status information about a file:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <time.h>

main() {
 struct stat info;
 #define mypath "/"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (QlgStat((Qlg_Path_Name_T *)&path, &info) != 0)
 perror("QlgStat() error");
 else {
 puts("QlgStat() returned the following information about root f/s:")
 printf(" inode: %d\n", (int) info.st_ino);
 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 }
}

Output: note that the following information will vary from system to system.

QlgStat() returned the following information about root f/s:
 inode: 0
 dev id: 1
 mode: 010001ed
 links: 3
 uid: 137
 gid: 500

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgStat64()--Get File Information (large file
enabled and using NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgStat64(Qlg_Path_Name_T *path, struct stat64 *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

TheQlgStat64() function, like the stat64() function, gets status information about a specified file and places it
in the area of memory pointed to by the buf argument. The difference is that the QlgStat64() function takes a
pointer to a Qlg_Path_Name_T structure, while stat64() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter and
for a discussion of other parameters, authorities required, return values, and related information, see
stat64()--Get File Information (Large File Enabled).

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path name
of the file from which information is required. For more information on the Qlg_Path_Name_T
structure, see Path name format.

Related Information

stat()--Get File Information●

stat64()--Get File Information (Large File Enabled)●

Example

The following example gets status information about a file:

#define _LARGE_FILE_API

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

#include <time.h>

main() {
 struct stat64 info;
 #define mypath "/"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or this must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath));

 if (QlgStat64((Qlg_Path_Name_T *)&path, &info) != 0)
 perror("QlgStat64() error");
 else {
 puts("QlgStat64() returned the following information about root f/s:");
 printf(" inode: %d\n", (int) info.st_ino);
 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 }
}

Output: note that the following information will vary from system to system.

QlgStat64() returned the following information about root f/s:
 inode: 0
 dev id: 1
 mode: 010001ed
 links: 3
 uid: 137
 gid: 500

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgStatvfs()--Get File System Information
(using NLS-enabled path name)

 Syntax

 #include <sys/statvfs.h>

 int QlgStatvfs(Qlg_Path_Name_T *path, struct statvfs *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgStatvfs() function, like the statvfs() function, gets status information about the file system that
contains the file named by the path argument. The difference is that the QlgStatvfs() function takes a
pointer to a Qlg_Path_Name_T structure, while statvfs() takes a pointer to a character string.

Limited information on the path parameter is provided here. For moreinformation on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
statvfs()--Get File System Information.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file from which file system information is required. For more information on the
Qlg_Path_Name_T structure, see Path name format.

Related Information

statvfs()--Get File System Information●

QlgStatvfs64()--Get File System Information (64-Bit Enabled and using NLS-enabled path name)●

QlgChmod()--Change File Authorizations (using NLS-enabled path name)●

QlgChown()--Change Owner and Group of File (using NLS-enabled path name)●

QlgCreat()--Create or Rewrite File (using NLS-enabled path name)●

QlgLink()--Create Link to File (using NLS-enabled path name)●

QlgUtime()--Set File Access and Modification Times (using NLS-enabled path name)●

Qp0lUnlink()--Remove Link to File●

Example

The following example gets status information about a file system:

#include <sys/statvfs.h>
#include <stdio.h>
#include <sys/types.h>

main() {

 struct statvfs info;
 #define mypath "/"
 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)path name, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (-1 == QlgStatvfs((Qlg_Path_Name_T *)path name, &info))
 perror("QlgStatvfs() error");
 else {
 puts("QlgStatvfs() returned the following information");
 puts("about the Root ('/') file system:");
 printf(" f_bsize : %u\n", info.f_bsize);
 printf(" f_blocks : %08X%08X\n",
 *((int *)&info.f_blocks[0]),
 *((int *)&info.f_blocks[4]));
 printf(" f_bfree : %08X%08X\n",
 *((int *)&info.f_bfree[0]),
 *((int *)&info.f_bfree[4]));
 printf(" f_files : %u\n", info.f_files);
 printf(" f_ffree : %u\n", info.f_ffree);
 printf(" f_fsid : %u\n", info.f_fsid);
 printf(" f_flag : %X\n", info.f_flag);
 printf(" f_namemax : %u\n", info.f_namemax);
 printf(" f_pathmax : %u\n", info.f_pathmax);
 printf(" f_basetype : %s\n", info.f_basetype);
 }
}

Output: The following information will vary from file system to file system.

QlgStatvfs() returned the following information
about the Root ('/') file system:
 f_bsize : 4096
 f_blocks : 00000000002BF800
 f_bfree : 0000000000091703
 f_files : 4294967295
 f_ffree : 4294967295
 f_fsid : 0
 f_flag : 1A
 f_namemax : 255
 f_pathmax : 4294967295
 f_basetype : "root" (/)

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgStatvfs64()--Get File System Information
(64-Bit enabled and using NLS-enabled path
name)

 Syntax

 #include <sys/statvfs.h>

 int QlgStatvfs64(Qlg_Path_Name_T *path,
 struct statvfs64 *buf

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgStatvfs64() function, like the statvfs64() function, gets status information about the file system that
contains the file named by the path argument. The difference is that the QlgStatvfs64() function takes a
pointer to a Qlg_Path_Name_T structure, while statvfs64() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
statvfs()--Get File System Information.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file from which file system information is required. For more information on the
Qlg_Path_Name_T structure, see Path name format.

Related Information

statvfs()--Get File System Information●

statvfs64()--Get File System Information (64-Bit Enabled)●

Example

The following example gets information about a file system.

#include <sys/statvfs.h>
#include <stdio.h>
#include <sys/types.h>

main() {

 struct statvfs info;
 #define mypath "/"

 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100];
 /* This array size must be >= the length */
 /* of the path name or must be a pointer */
 /* to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-);

 if (-1 == (QlgStatvfs64((Qlg_Path_Name_T *)&path,
 (struct statvfs64 *)&info)))
 {
 perror("QlgStatvfs64() error");
 }
 else
 {
 puts("QlgStatvfs64() returned the following information");
 puts("about the Root ('/') file system:");
 printf(" f_bsize : %u\n", info.f_bsize);
 printf(" f_blocks : %08X%08X\n",
 *((int *)&info.f_blocks[0]),
 *((int *)&info.f_blocks[4]));
 printf(" f_bfree : %08X%08X\n",
 *((int *)&info.f_bfree[0]),
 *((int *)&info.f_bfree[4]));
 printf(" f_files : %u\n", info.f_files);
 printf(" f_ffree : %u\n", info.f_ffree);
 printf(" f_fsid : %u\n", info.f_fsid);

 printf(" f_flag : %X\n", info.f_flag);
 printf(" f_namemax : %u\n", info.f_namemax);
 printf(" f_pathmax : %u\n", info.f_pathmax);
 printf(" f_basetype : %s\n", info.f_basetype);
 }
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgSymlink()--Make Symbolic Link (using
NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgSymlink(
 Qlg_Path_Name_T *pname, Qlg_Path_Name_T *slink);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgSymlink() function, like the symlink() function, creates the symbolic link named by slink with the
value specified by pname. The difference is that the QlgSymlink() function takes a pointer to a
Qlg_Path_Name_T structure, while symlink() takes a pointer to a character string.

Limited information on the *pname and the *slink parameter is provided here. For more information on
these parameters and for a discussion of authorities required, return values, and related information, see
symlink()--Make Symbolic Link.

Parameters

pname

(Input) A pointer to a Qlg_Path_Name_T structure that contains a value or a pointer to a value of
the symbolic link. For more information on the Qlg_Path_Name_T structure, see Path name format.

slink

(Input) A pointer to a Qlg_Path_Name_T structure that contains a name or a pointer to a name of
the symbolic link to be created. For more information on the Qlg_Path_Name_T structure, see Path
name format.

Related Information

symlink()--Make Symbolic Link●

QlgLink()--Create Link to File (using NLS-enabled path name)●

QlgReadlink()--Read Value of Symbolic Link (using NLS-enabled path name)●

Qp0lUnlink()--Remove Link to File●

Example

The following example uses QlgSymlink():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <Qp0lstdi.h>

main() {
 char buf[30];
 int fd;
 #define mypath_fn "readlink.file"
 #define mypath_sl "readlink.symlink"

 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= */
 /* the length of the path name or */
 /* this must be a pointer to the */
 /* path name. */
 };

 struct pnstruct path_fn;
 struct pnstruct path_sl;
 struct pnstruct path_buf;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));
 path_fn.qlg_struct.CCSID = 37;
 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);
 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);
 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;
 path_fn.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_fn.pn,mypath_sl,sizeof(mypath_fn)-1);

 memset((void*)&path_sl, 0x00, sizeof(struct pnstruct));
 path_sl.qlg_struct.CCSID = 37;
 memcpy(path_sl.qlg_struct.Country_ID,US_const,2);
 memcpy(path_sl.qlg_struct.Language_ID,Language_const,3);
 path_sl.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path_sl.qlg_struct.Path_Length = sizeof(mypath_sl)-1;
 path_sl.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path_sl.pn,mypath_sl,sizeof(mypath_sl)-1);

 if ((fd = QlgCreat((Qlg_Path_Name_T *)&path_fn, S_IWUSR))
 < 0)

 perror("QlgCreat() error");
 else {
 close(fd);
 if (QlgSymlink((Qlg_Path_Name_T *)&path_fn,
 (Qlg_Path_Name_T *)&path_sl) != 0)
 perror("QlgSymlink() error");

 else {
 if (QlgReadlink((Qlg_Path_Name_T *)&path_sl,
 (Qlg_Path_Name_T *)&path_buf,
 sizeof(struct pnstruct))
 < 0)
 perror("QlgReadlink() error");

 else printf("QlgReadlink() returned '%s' for '%s'\n",
 (Qlg_Path_Name_T *)&path_buf.pn,
 (Qlg_Path_Name_T *)&path_sl.pn);

 QlgUnlink((Qlg_Path_Name_T *)&path_sl);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path_fn);
 }
}

Output:

QlgReadlink() returned 'readlink.file' for 'readlink.symlink'

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgUnlink()--Remove Link to File (using
NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgUnlink(Qlg_Path_Name_T *Path_Name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for open() API.

The QlgUnlink() function, similar to the unlink() function, removes a directory entry that refers to a file.
QlgUnlink()differs from unlink() in that the Path_Name parameter is a pointer to a Qlg_Path_Name_T
structure instead of a pointer to a character string.

For more information on the *Path_Name parameter and a discussion of the authorities required, return
values, and related information, see unlink()--Remove Link to File.

Parameters

Path_Name

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the object to be unlinked. For more information on the Qlg_Path_Name_T structure, see
Path name format.

Related Information

unlink()--Remove Link to File●

link()--Create Link to File●

QlgOpen()--Open a File (using NLS-enabled path name)●

QlgRmdir()--Remove Directory (using NLS-enabled path name)●

Example

The following example removes a link to a file. This program was stored in a source file with CCSID 37, so
the constant string "newfile" will be compiled in CCSID 37. Therefore, the country or region and language
specified are United States English, and the CCSID specified is 37.

#include <fcntl.h>
#include <stdio.h>
#include <Qp0lstdi.h>

main() {
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";

 struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[7];
 };
 struct pnstruct pns;
 struct pnstruct *pns_ptr = NULL;

 char fn[]="unlink.file";

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));
 pns.qlg_struct.CCSID = 37;
 memcpy(pns.qlg_struct.Country_ID,US_const,2);
 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;
 pns.qlg_struct.Path_Type = 0;
 pns.qlg_struct.Path_Length = sizeof(fn)-1;
 pns.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(pns.pn,fn,sizeof(fn)-1);

 pns_ptr = &pns;

 if (QlgUnlink((Qlg_Path_Name_T *)&pns) != 0)
 {
 perror("QlgUnlink() error");
 }
 else printf("QlgUnlink() successful");
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgUtime()--Set File Access and Modification
Times (using NLS-enabled path name)

 Syntax

 #include <utime.h>

 int QlgUtime(Qlg_Path_Name_T *path, const struct utimbuf
 *times);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgUtime() function, like the utime() function, sets the access and modification times of path to the
values in the utimbuf structure. The difference is that the QlgUtime() function takes a pointer to a
Qlg_Path_Name_T structure, while utime() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter
and for a discussion of other parameters, authorities required, return values, and related information, see
utime()--Set File Access and Modification Times.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a path
name of the file for which the times should be changed. For more information on the
Qlg_Path_Name_T structure, see Path name format.

Related Information

utime()--Set File Access and Modification Times●

Example

The following example uses QlgUtime():

#include <utime.h>
#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>
#include <Qp0lstdi.h>

main() {
 int file_descriptor;
 struct utimbuf ubuf;
 struct stat info;

 #define mypath "utime.file"

 const char US_const[3]= "US";
 const char Language_const[4] ="ENU";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This array size must be >= the */
 /* length of the path name or must */
 /* be a pointer to the path name. */
 };
 struct pnstruct path;

 /***/
 /* Initialize Qlg_Path_Name_T parameters */
 /***/
 memset((void*)&path, 0x00, sizeof(struct pnstruct));
 path.qlg_struct.CCSID = 37;
 memcpy(path.qlg_struct.Country_ID,US_const,2);
 memcpy(path.qlg_struct.Language_ID,Language_const,3);
 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 path.qlg_struct.Path_Length = sizeof(mypath)-1;
 path.qlg_struct.Path_Name_Delimiter[0] = '/';
 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((file_descriptor =
 QlgCreat((Qlg_Path_Name_T *)&path, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 close(file_descriptor);
 puts("before QlgUtime()");
 QlgStat((Qlg_Path_Name_T *)&path,&info);
 printf(" utime.file modification time is %ld\n",
 info.st_mtime);
 ubuf.modtime = 0; /* set modification time to Epoch */
 time(&ubuf.actime);
 if (QlgUtime((Qlg_Path_Name_T *)&path, &ubuf) != 0)
 perror("QlgUtime() error");
 else {
 puts("after QlgUtime()");
 QlgStat((Qlg_Path_Name_T *)&path,&info);
 printf(" utime.file modification time is %ld\n",
 info.st_mtime);
 }
 QlgUnlink((Qlg_Path_Name_T *)&path);
 }
}

Output:

before QlgUtime()
 utime.file modification time is 749323571
after QlgUtime()
 utime.file modification time is 0

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

Perform Miscellaneous File System Functions
(QP0FPTOS) API

 Required Parameter Group:

1 Function type Input Char(*)
2 Function extension 1 Input Char(*)
3 Function extension 2 Input Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Perform Miscellaneous File System Function (QP0FPTOS) API is used to perform a variety of file
system functions. The first parameter defines the type of function that is requested. Other parameters are
optional, depending on the selected function. The output from this API varies, based on the selected
function. See the function descriptions for more details.

Authorities and Locks

To call this program you must have *SERVICE special authority, or be authorized to the Service Dump
function of Operating System/400 through iSeries Navigator's Application Administration support. The
Change Function Usage Information (QSYCHFUI) API, with a function ID of QIBM_SERVICE_DUMP,
also can be used to change the list of users allowed to perform dump operations.

Note: Adopted authority is not used.

Required Parameter Group

Required parameters vary according to the selected function. The selected function is identified by the first
parameter on the call to the API.

Function Type

INPUT; CHAR(*)

The desired file system function to perform. Valid values follow:

(1) *DUMP

Creates a general file system dump in a spooled file with file name "QSYSPRT" and with
"QP0FDUMP" in the User Data field. No other parameters are required or supported when
*DUMP is specified.

(2) *DUMPALL

Creates a variety of file system dumps in a single spooled file with file name "QSYSPRT"
and with "QP0FDUMP" in the User Data field. The following table describes the optional

parameter when *DUMPALL is specified.

Function Function extension 1 Function extension 2 Description

*DUMPALL Job number (CHAR 6) (Not supported) Specifies the job that is
dumped. If a job is not
specified, the data is
dumped for all jobs. If there
are multiple jobs with the
same number, the first one
encountered will be
dumped.

(3) *DUMPLFS

Creates a dump of logical file system data in a spooled file with file name "QSYSPRT" and
with "QP0FDUMP" in the User Data field. The following table describes the optional
parameter when *DUMPLFS is specified.

Function Function extension 1 Function extension 2 Description

*DUMPLFS Job number (CHAR 6) (Not supported) Specifies the job that is
dumped. If a job is not
specified, the data is
dumped for all jobs. If there
are multiple jobs with the
same number, the first one
encountered will be
dumped.

(4) *NFSFORCE

Sets various values and modes for the network file system. The following table describes
the required parameters when *NFSFORCE is specified.

Function
Function extension
1

Function extension
2 Description

*NFSFORCE V2 ON or OFF If ON, indicates version 2
mounts only by the client. If
QNFSMNTD is started
afterwards, then server will
permit version 2 mounts
only.

(5) *REBUILDDEVNULL

Attempts to create the /dev/null and dev/zero character special files. If an existing dev/null
or dev/zero object exists that is not a character special file, then the object is renamed to
/dev/null.prv or dev/zero.prv. If /dev/null.prv or /dev/zero.prv exists, then it it renamed to
/dev/null.prv.001 or /dev/zero.prv.001, /dev/null.prv.002 or /dev/zero.prv.002, and so on,
until a name is found for the object. If 999 is exceeded and the rename cannot be done, the
object is not renamed and an informational message is issued and the QP0FPTOS program
completes successfully. No other parameters are required or supported when
*REBUILDDEVNULL is specified.

(6) *TRACE6ON or *TRACE6OFF

*TRACE6ON starts the logging of trace messages in the user job log for some network file
system functions. *TRACE6OFF stops the logging of these messages.

(7) *TRACE8ON or *TRACE8OFF

*TRACE8ON starts the logging of trace messages to the QSYSOPR message queue for
some network file system functions. *TRACE8OFF stops the logging of these messages.

(8) *TRACE9ON or *TRACE9OFF

*TRACE9ON starts the collection of some network file system statistics and resets the
statistics. *TRACE9OFF stops the collection of these statistics.

(9) *DUMPNFSSTATS

Creates a file system dump of network file system (NFS) statistics (both client and server)
in a spooled file with file name "QSYSPRT" and with "QP0FDUMP" in the User Data
field. The information dumped comes from a window of time specified with the
*TRACE9ON/OFF function. No other parameters are required or supported when
*DUMPNFSSTATS is specified.

Function extension 1

INPUT; CHAR(*)

Function extension 1 is optional or required, based on the first parameter. Whenever it is valid,
function extension 1 is described above along with a first parameter description. Function extension
1 is valid when the first parameter is listed below:

(1) *DUMPALL

(2) *DUMPLFS

(3) *NFSFORCE

Function extension 2

INPUT; CHAR(*)

Function extension 2 is optional or required, based on the first parameter. Whenever it is valid,
function extension 2 is described above along with a first parameter description. Function extension
2 is valid when the first parameter is listed below:

(1) *NFSFORCE

Usage Notes

If this API is called without the first parameter that is required, then message CPFBC53 is issued to the
caller. This message specifies a parameter that is not valid. To recover, the caller is pointed to the API
documentation.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA0A0 E Object name already exists.

CPFA0D4 E File system error occurred. Error number &1.

CPDA0FF E Program not called. You need *SERVICE authority to call this program.

CPFBC53 E Invalid parameter.

CPFBC54 E Not authorized to call program.

Examples

CALL QP0FPTOS *DUMP

CALL QP0FPTOS (*DUMPALL '055229')

CALL QP0FPTOS (*DUMPLFS '055229')

CALL QP0FPTOS (*NFSFORCE V2 ON)

CALL QP0FPTOS *REBUILDDEVNULL

CALL QP0FPTOS *TRACE6ON

CALL QP0FPTOS *TRACE6OFF

CALL QP0FPTOS *TRACE8ON

CALL QP0FPTOS *TRACE8OFF

CALL QP0FPTOS *TRACE9ON

CALL QP0FPTOS *TRACE9OFF

CALL QP0FPTOS *DUMPNFSSTATS

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

Qp0lCvtPathToQSYSObjName()-- Resolve
Integrated File System Path Name into QSYS
Object Name

 Syntax

 #include <qp0lstdi.h>

 void Qp0lCvtPathToQSYSObjName(
 Qlg_Path_Name_T *path_name,
 void *qsys_info,
 char format_name[8],
 uint bytes_provided,
 uint desired_CCSID,
 void *error_code);

 Threadsafe: Conditional; see Usage Notes.

The Qp0lCvtPathToQSYSObjName() function resolves a given integrated file system path name into
the four-part QSYS.LIB or independent ASP QSYS.LIB file system name. The primary three parts of the
path name are the following components: library, object, and member. The fourth part of the path name is a
character representation of the ASP associated with the object, or the independent ASP name. This depends
on whether the path refers to an object in the QSYS.LIB file system or and object in an independent ASP
QSYS.LIB file system. If the path contains symbolic links, they will be resolved. If, after symbolic links
have been resolved, the path does not refer to an object that could be in either the QSYS.LIB file system or
an independent ASP QSYS.LIB file system, the API will return with the error message CPFA0DB
indicated in the error_code structure. Note that the API does not verify that the object exists.

The API also handles wildcard (*) characters in the path name. If the name or type of a library, object, or
member is just an asterisk, *ALL is returned as the name or the type. If an asterisk is part of a library,
object, or member name, a name containing an asterisk is returned. For example if the following path name
is passed in:

/qsys.lib/test*.file/*.*

the API will return:

Library name: QSYS●

Library type: *LIB●

Object name: TEST*●

Object type: *FILE●

Member name: *ALL●

Member type: *ALL●

ASP name: *SYSBAS●

Note that path name components that follow one containing a wildcard character are ignored.

If less than 8 bytes are supplied for the error_code structure, errors will cause an exception to be returned to
the caller.

Parameters

path_name

(Input) The path name that refers to the QSYS.LIB or independent ASP QSYS.LIB file system
object. The path name must refer to an object on the local file system; this API does not

recognize file system objects accessed remotely. This path name is in the Qlg_Path_Name_T
format. For more information on this structure, see Path name format. If the path_name parameter
is NULL or points to invalid storage, a CPFA0CE error message is returned.

qsys_info

(Output) A pointer of type void * that refers to a structure that contains the object name. The format
of the data returned is specified by the format_name parameter. If the qsys_info parameter is NULL
or points to invalid storage, a CPF24B4 error message is returned.

format_name

(Input) An 8-byte character array that indicates how the data will be formatted in the qsys_info
parameter that is returned. The format is as follows:

QSYS0100

For the format of this structure, see the section Returned Data Format.

If the format_name parameter is NULL or points to invalid storage, a CPF24B4 error message is
returned.

bytes_provided

(Input) The number of bytes of data provided in the structure referred to by the qsys_info
parameter. This value must be at least 8, or a CPF3C24 error message will be returned.

desired_CCSID

(Input) The CCSID the returned object names and types should be converted to. If the value of this
parameter is 0, the object names and types will be returned in the job CCSID.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Authorities

Note: Adopted authority is not used.

Authorization Required for the Qp0lCvtPathToQSYSObjName() API

Object Referred to
Authority
Required Message ID

Each directory, preceding the last component, in the path name. *X CPFA09C

Object in the QSYS.LIB or independent ASP QSYS.LIB file system that the
path name refers to.

None None

Returned Data Format

The following table describes the format of the data returned in the qsys_info parameter if the QSYS0100
format is specified. For details on the fields of the structure, see the section Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes_Returned

4 4 BINARY(4) Bytes_Available

8 8 BINARY(4) CCSID_Out

12 C CHAR(28) Lib_Name

40 28 CHAR(20) Lib_Type

60 3C CHAR(28) Obj_Name

88 58 CHAR(20) Obj_Type

108 6C CHAR(28) Mbr_Name

136 88 CHAR(20) Mbr_Type

 156 9C CHAR(28) Asp_Name

Field Descriptions

ASP Name. The path name component that represents the ASP name, if part of the path, or the ASP that
the path is associated with. For paths that refer to objects in independent ASP QSYS.LIB file systems, this
will be the name of the ASP device description object. For paths that refer to objects in the QSYS.LIB file
system, the value of ASP Name will be *SYSBAS.

Bytes_Available. The total number of bytes required to hold all of the data available in the qsys_info
parameter.

Bytes_Returned. The number of bytes actually returned in the caller's buffer for the qsys_info parameter.

CCSID_Out. The CCSID that the returned text is in. This may be different than the desired_CCSID if
conversion failed. The text is internally normalized, then converted to the desired CCSID. If this conversion
from the normalized form does not succeed, the text will be returned in the CCSID of the normalized form.

Lib_Name. The name of the library that the path name refers to. This field is NULL terminated.

Lib_Type. The type of the object, beginning with an * (asterisk). This field will return either *LIB or
*ALL. This field is NULL terminated.

Mbr_Name. The name of the member that the path name refers to. This field is NULL terminated, and
could be all NULL (all x'00').

Mbr_Type. The type of the member that the path name refers to. This field is NULL terminated. This field
will contain *MBR, *ALL, or all NULL (all x'00').

Obj_Name. The name of the object that the path name refers to. This field is NULL terminated, and could
be all NULL (all x'00').

Obj_Type. The type of the object that the path name refers to. This field is NULL terminated. This field
could contain an object type (for example *FILE), *ALL, or be NULL (all x'00').

The Lib_Name, Lib_Type, Obj_Name, Obj_Type, Mbr_Name, and Mbr_Type fields of the
Qp0l_QSYS_Info_t structure will be filled in as appropriate.

If the object that the path name refers to is a library (*LIB), then the lib_name and lib_type fields will
contain that library name and *LIB, respectively, and the Obj_Name and Mbr_Name fields will be NULL
(all x'00').

If the object name is not an *FILE object with members, then the Mbr_Name field is NULL (all x'00').

If the object name contains quoted strings, the characters within the strings will not be converted to
uppercase.

Error Conditions

None.

Error Messages

CPE3101 E I/O exception non-recoverable error.
CPE3101 E I/O exception non-recoverable error.
CPE3418 E Possible APAR condition or hardware failure.
CPE3474 E Unknown system state.
CPF24B4 E Severe error while addressing parameter list.
CPF3BF6 E Path type value not valid.
CPF3C24 E Length of the receiver variable is not valid.
CPF3CF1 E Error code parameter not valid.
CPF9872 E Program &1 in library &2 ended. Reason code is &3.
CPFA092 E Path name not converted.
CPFA09C E Not authorized to object. Object is &1.
CPFA09E E Object in use. Object is &1.
CPFA09F E Object damaged. Object is &1.
CPFA0A1 E An input or output error occurred.
CPFA0A2 E Information passed to this operation was not valid.
CPFA0A3 E Path name resolution causes looping.
CPFA0A7 E Path name too long.
CPFA0A8 E Operation not allowed in a job running multiple threads.
CPFA0A9 E Object not found. Object is &1.
CPFA0AA E Error occurred while attempting to obtain space.
CPFA0AD E Function not supported by file system.
CPFA0B1 E Requested operation not allowed. Access problem.
CPFA0C0 E Buffer overflow occurred.
CPFA0C1 E CCSID &1 not valid.
CPFA0CE E Error occurred with path name parameter specified.
CPFA0D4 E File system error occurred. Error number &1.
CPFA0D9 E Character string not converted.
CPFA0DB E Object not a QSYS.LIB object. Object is &1.
CPFA0DD E Function was interrupted.

CPFA0E0 E File ID conversion of a directory failed.
CPFA0E1 E The file ID table is damaged.
CPFA0E2 E System unable to establish a communications connection to a file server.
CPFA0E4 E The communications connection with the file server was abnormally ended.
CPFA0E5 E The communications connection with the file server was abnormally ended.
CPFA0E6 E Object handle rejected by file server.
CPFA0E7 E System cannot establish a communications connection with a file server.
CPFA1C5 E Object is a read only object. Object is &1.

Usage Notes

This API will fail and return the error message CPFA0A8 when all the following conditions are
true:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined file system■

QSYS.LIB■

Independent ASP QSYS.LIB ■

❍

1.

This API ignores trailing blank spaces at the end of a path name.

For example, if the path name is

"/qsys.lib/fred.lib/foo.file/abc.mbr "

the trailing blank spaces will be ignored. Thus, the above path name is equivalent to

"/qsys.lib/fred.lib/foo.file/abc.mbr"

2.

Related Information

The <qp0lstdi.h> file (see Header Files for UNIX-Type Functions)●

QlgQp0lCvtPathToQSYSObjName()-- Resolve Integrated File System Path Name into QSYS
Object Name

●

Example

The following example program gets the three-part QSYS name from an integrated file system path name
passed to it.

#include <qp0lstdi.h> /* For Qp0lCvtPathToQSYSObjName */
 /* type Qp0l_QSYS_Info_t */
 /* type Qlg_Path_Name_T */
#include <qusec.h> /* For type Qus_EC_T */
#include <stdlib.h>
#include <stdio.h>

int main ()
{
 /***/
 /* Declaration of path_name parameter */
 /***/
 char path_info_array[500];
 Qlg_Path_Name_T *path_name;
 const char fname[] =
 "/qsys.lib/jerold.lib/qcsrc.file/testconv.mbr";
 const char US_const[] = "US";
 const char Language_const[] = "ENU";
 const char Path_Name_Del_const[] = "/";

 /***/
 /* Declaration of qsys_info parameter */
 /***/
 Qp0l_QSYS_Info_t qsys_info;

 /***/
 /* Declaration of format_name parameter */
 /***/
 char format_name[8] = "QSYS0100";

 /***/
 /* Declaration of bytes_provided parameter */
 /***/
 uint bytes_provided;

 /***/
 /* Declaration of desired_CCSID parameter. */
 /***/
 uint desired_CCSID;

 /***/
 /* Declarations for error_code parameter */
 /***/
 Qus_EC_t error_code;
 char error_string[8];

 /***/
 /* Initialize path_name parameter */
 /***/
 memset(path_info_array, 0, sizeof(path_info_array));
 path_name = (Qlg_Path_Name_T *) path_info_array;

 path_name->CCSID = 37;
 memcpy(path_name->Country_ID, US_const, 2);
 memcpy(path_name->Language_ID, Language_const, 3);
 path_name->Path_Type = 0;
 path_name->Path_Length = strlen(fname);
 memcpy(path_name->Path_Name_Delimiter, Path_Name_Del_const, 1);
 memcpy(&(((char *) path_name)[sizeof(Qlg_Path_Name_T)]),
 fname,
 strlen(fname));

 /***/
 /* Initialize qsys_info parameter */
 /***/

 /* No initialization requirements for this parameter. */

 /***/
 /* Initialize format_name parameter */
 /***/

 /* No additional initialization required. */

 /***/
 /* Initialize bytes_provided parameter. */
 /***/
 bytes_provided = sizeof(Qp0l_QSYS_Info_t);

 /***/
 /* Initialize desired_CCSID parameter. */
 /***/
 desired_CCSID = 37;

 /***/
 /* Initialize error_code param */
 /***/
 memset(&error_code, 0, sizeof(error_code));
 error_code.Bytes_Provided = sizeof(error_code);

 /***/
 /* Call API */
 /***/
 Qp0lCvtPathToQSYSObjName(path_name,
 QSYS.LIB_info,
 format_name,
 bytes_provided,
 desired_CCSID,
 &error_code);

 if (error_code.Bytes_Available > 0)
 {
 /***/
 /* Error occurred. */
 /***/

 printf ("Error occurred: ");
 memcpy (error_string, error_code.Exception_Id, 7);
 error_string[7] = '\0';
 printf ("%s\n", error_string);
 printf ("Bytes available in error code structure: %d.\n",
 error_code.Bytes_Available);
 exit(1);
 }

 /***/
 /* API returned successfully. */
 /***/

 printf ("Library name: %s\n", qsys_info.Lib_Name);
 printf ("Library type: %s\n", qsys_info.Lib_Type);
 printf ("Object name: %s\n", qsys_info.Obj_Name);
 printf ("Object type: %s\n", qsys_info.Obj_Type);
 printf ("Member name: %s\n", qsys_info.Mbr_Name);
 printf ("Member type: %s\n", qsys_info.Mbr_Type);
 printf ("Asp name: %s\n", qsys_info.Asp_Name);
 exit(0);

}

Output:

Library name: JEROLD
Library type: *LIB
Object name: QCSRC
Object type: *FILE
Member name: TESTCONV
Member type: *MBR
Asp name: *SYSBAS

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

Perform File System Operation (QP0LFLOP)
API

 Required Parameter Group:

1 File System Operation Input Binary(4)
2 Input Buffer Input Char(*)
3 Length of input buffer Input Binary(4)
4 Output Buffer Output Char(*)
5 Length of output buffer Input Binary(4)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Perform File System Operation (QP0LFLOP) API performs miscellaneous file system operations.

Authorities and Locks

The authorities required vary for each operation:

(1) QP0L_RETRIEVE_NETGROUP_FILE_ENTRIES

The user must have execute (*X) data authority to the /etc directory (if it exists).❍

The user must have read (*R) data authority to the /etc/netgroup file (if it exists).❍

(2) QP0L_WRITE_NETGROUP_FILE_ENTRIES

The user must have write and execute (*WX) data authority to the /etc directory (if it
exists).

❍

The user must have read and write (*RW) data authority to the /etc/netgroup file (if it
exists).

❍

Note: Adopted authority is not used.

Required Parameter Group

The following parameters are required.

File system operation

INPUT; BINARY(4)

The desired file system operation to perform.

You can specify one of the following operations:

(1) QP0L_RETRIEVE_NETGROUP_FILE_ENTRIES

Returns information about all netgroup definitions currently defined in the /etc/netgroup
file.

(2) QP0L_WRITE_NETGROUP_FILE_ENTRIES

Recreates the /etc/netgroup file with only the entries provided.

Input buffer

INPUT; CHAR(*)

Information that is required for a given file system operation. The input buffer parameter should be
set as follows:

(1) QP0L_RETRIEVE_NETGROUP_FILE_ENTRIES

NULL (no input buffer is required).

(2) QP0L_WRITE_NETGROUP_FILE_ENTRIES

FLOP0200 structure containing the new netgroup entries. For a detailed description of this
structure, see Format of FLOP0200 Structure.

Length of input buffer

INPUT;BINARY(4)

The length of the input buffer provided. The length of the input buffer parameter may be specified
up to the size of the input buffer area specified by the user program. The length of the input buffer
should be 0 when the input buffer is NULL.

Output buffer

OUTPUT; CHAR(*)

Information that is provided by a given file system operation. The output buffer parameter should
be set as follows:

(1) QP0L_RETRIEVE_NETGROUP_FILE_ENTRIES

FLOP0100 structure containing enough space to hold all netgroup entries in the
/etc/netgroup file. For a detailed description of this structure, see FLOP0100 Structure
Description. No partial entries will be returned. To determine if all of the entries were
returned, the following semantics will be used:

If the /etc/netgroup file has no entries defined, bytes available and bytes returned
will both be set to 12.

■

If the /etc/netgroup file has at least one entry defined, then the bytes available will
be greater than 12.

■

If all of the defined entries in the /etc/netgroup file could not be returned, then the
bytes available will not have the same value as bytes returned.

■

For example, if the /etc/netgroup file is empty, then bytes available and bytes returned
would both be equal to 12. For a different example, if the /etc/netgroup file is not empty,
but the length of the output buffer is less than what is required to hold all entries in the
/etc/netgroup file, then bytes available would be greater than 12 and bytes returned would
be set to 12.

(2) QP0L_WRITE_NETGROUP_FILE_ENTRIES

NULL (no output buffer is required).

Length of output buffer

INPUT; BINARY(4)

The length of the output buffer provided. The length of the output buffer parameter may be
specified up to the size of the output buffer area specified by the user program. The length of the
output buffer should be 0 when the output buffer is NULL.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Output Buffer Description

The following table describes the order and format of the data returned in the output buffer. For a detailed
description of each field, see Field Descriptions.

FLOP0100 Structure Description

This structure is used to return netgroup definitions taken from the /etc/netgroup file.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of netgroup entries

These fields
repeat for each
netgroup entry.

BINARY(4) Length of netgroup entry

BINARY(4) Length of netgroup name

BINARY(4) Displacement to member names

BINARY(4) Number of member names

CHAR(*) Netgroup name

These fields
repeat for each
member name in
the netgroup
entry.

BINARY(4) Length of member name entry

BINARY(4) Member name status

BINARY(4) Length of member name

CHAR(*) Member name

Input Buffer Description

The following table describes the order and format of the data given in the input buffer parameter. For a
detailed description of each field, see Field Descriptions.

Format of FLOP0200 Structure

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of netgroup entries

These fields
repeat for each
netgroup entry.

BINARY(4) Length of netgroup entry

BINARY(4) Length of netgroup name

BINARY(4) Displacement to member names

BINARY(4) Number of member names

CHAR(*) Netgroup name

These fields
repeat for each
member name in
the netgroup
entry.

BINARY(4) Length of member name entry

BINARY(4) Member name status

BINARY(4) Length of member name

CHAR(*) Member name

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user in the output buffer. If all
data is returned, bytes available is the same as the number of bytes returned. If the receiver variable was not
large enough to contain all of the data, this value is set based on the total number of entries in the
/etc/netgroup file.

Bytes returned. The number of bytes of data returned to the user in the output buffer.

Displacement to member names. The offset (in bytes) from the beginning of the netgroup entry to the
member names in the netgroup entry.

Length of entry. The length (in bytes) of the current netgroup entry. The length can be used to access the
next entry.

Length of member name. The length (in bytes) of the member name.

Length of member name entry. The length (in bytes) of this member name entry.

Length of netgroup name. The length (in bytes) of the netgroup name.

Member name. The member name. This is assumed to be in the CCSID of the job.

Member name status. Describes the type of member name. Possible values follow:

(1) QP0L_MEMBER_IS_A_HOST_NAME

The member name refers to an individual host name.

(2) QP0L_MEMBER_IS_A_NETGROUP_NAME

The member name refers to a netgroup name.

(3) QP0L_MEMBER_IS_AN_IP_ADDRESS

The member name refers to an IP address in the form xxx.xxx.xxx.xxx (for example 123.4.56.78).

Netgroup name. The netgroup name. This is assumed to be in the CCSID of the job.

Number of member names. The number of member names in the netgroup entry.

Number of netgroup entries. The number of complete entries. A value of zero is used if there are no valid
entries for the /etc/netgroup file or if the file does not exist.

Usage Notes

The include file for this API is QP0LFLOP.

If none of the required parameters are passed to this API, then message CPFB41F will be issued to the
caller. This message lists all of the file operations currently available to the QP0LFLOP API.

WARNING - When the (2) QP0L_WRITE_NETGROUP_FILE_ENTRIES file system operation is
requested, the existing /etc/netgroup file will be completely rewritten resulting in a loss of the previous
contents of the file.

A netgroup is a way of defining one name (the netgroup name) to represent many other names. The names
contained within a netgroup definition are called 'members' of that netgroup. A netgroup member can be
either the name of a host system, the name of another netgroup, or an IP address. Netgroup definitions are
stored in the /etc/netgroup file and are commonly used by the Network File System (NFS) support when a
large group of host systems require common NFS access semantics.

Error Messages

CPFA0D4 E File system error occurred.
CPE3418 E Possible APAR condition or hardware failure.
CPF3C90 E Literal value cannot be changed.
CPF3CF1 E Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

Qp0lGetAttr()--Get Attributes

 Syntax

 #include <Qp0lstdi.h<
 int Qp0lGetAttr
 (Qlg_Path_Name_T *Path_Name,
 Qp0l_AttrTypes_List_t *Attr_Array_ptr,
 char *Buffer_ptr,
 uint Buffer_Size_Provided,
 uint *Buffer_Size_Needed_ptr,
 uint *Num_Bytes_Returned_ptr,
 uint Follow_Symlnk, ...);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Qp0lGetAttr() function gets one or more attributes, on a single call, for the object that is referred to by
the input Path_Name. The object must exist, the user must have authority to it, and the requested attributes
must be supported by the specific file system. For each requested attribute that is not supported by the file
system, Qp0lGetAttr() returns zero in the Size of attribute data field, pointed to by the Buffer_ptr parameter,
for that attribute.

Qp0lGetAttr() either returns the attributes of the symbolic link, or returns the attributes of the object that the
symbolic link names. This depends upon the value of the Follow_Symlnk parameter.

Qp0lGetAttr() returns all times in seconds since the Epoch so that they are consistent with UNIX-type APIs.
The Epoch is the time 0 hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated Universal Time. If the
OS/400 date is set prior to 1970, all time values are zero.

Parameters

Path_Name

(Input) The path name of the object for which attribute information is returned. This path name is in
the Qlg_Path_Name_T format. For more information on this structure, see Path name format.

Attr_Array_ptr

(Input) A pointer to a structure listing the requested attributes returned for the object identified by the
Path_Name parameter. Each entry in the array identifies an attribute, by a constant value, that
Qp0lGetAttr() returns. The number of requested attributes field must equal the total number of
constants. If the Attr_Array_ptr is NULL or if the Number of requested attributes field is zero,
Qp0lGetAttr() returns all the attributes that the API supports that are available for the object. The
format of this parameter follows.

Attribute array pointer

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of requested attributes

4 4 ARRAY(*) of
BINARY(4)

Array of attribute constants

Array of attribute constants. A list of predefined constants, each identifying a requested attribute.
Qp0lGetattr() also returns one of these constants in the Attribute identification field, pointed to by
the Buffer_ptr parameter. The constant must be used to identify the returned attribute because the
attributes are returned in any order. Note that the Size of attribute data field, pointed to by the
Buffer_ptr parameter, contains the total size of data that Qp0lGetattr() returns for the constants in this
array. Valid values, and sizes of the returned attributes, follow:

0 QP0L_ATTR_OBJTYPE: (CHAR(10)) The object type. See Control Language (CL)
information in the iSeries Information center for descriptions of all iSeries object types.

1 QP0L_ATTR_DATA_SIZE: (UNSIGNED BINARY(4)) The size in bytes of the data in this
object. This size does not include object headers or the size of extended attributes associated
with the object. If this attribute is requested and the size cannot be represented in a
BINARY(4) data type, Qp0lGetAttr() fails with errno [EOVERFLOW]. Refer to
QP0L_ATTR_DATA_SIZE_64 for objects whose data sizes are greater than BINARY(4).

2 QP0L_ATTR_ALLOC_SIZE: (UNSIGNED BINARY(4)) The number of bytes that have
been allocated for this object. If this size cannot be represented in a BINARY(4) data type,
Qp0lGetAttr() fails with errno [EOVERFLOW]. Refer to QP0L_ATTR_ALLOC_SIZE_64
for objects whose allocated sizes are greater than BINARY(4).

3 QP0L_ATTR_EXTENDED_ATTR_SIZE: (UNSIGNED BINARY(4)) The total number of
extended attribute bytes.

4 QP0L_ATTR_CREATE_TIME: (UNSIGNED BINARY(4)) The time the object was
created.

5 QP0L_ATTR_ACCESS_TIME: (UNSIGNED BINARY(4)) The time that the object's data
was last accessed.

6 QP0L_ATTR_CHANGE_TIME: (UNSIGNED BINARY(4)) The time that the object's data
or attributes were last changed.

7 QP0L_ATTR_MODIFY_TIME: (UNSIGNED BINARY(4)) The time that the object's data
was last changed.

8 QP0L_ATTR_STG_FREE: (CHAR(1)) Whether the object's data has been moved offline,
freeing its online storage. Valid values are:

x'00' QP0L_SYS_NOT_STG_FREE: The object's data is not offline.

x'01' QP0L_SYS_STG_FREE: The object's data is offline.

9 QP0L_ATTR_CHECKED_OUT: Whether an object is checked out or not. When an object
is checked out, other users can read and copy the object. Only the user who has the object
checked out can change the object. The checkout format is defined in the Qp0lstdi.h header
file as data type Qp0l_Checkout_t, and is described in the following table.

Checkout Format

Offset

Type FieldDec Hex

0 0 CHAR(1) Flag indicating whether an object is
checked out

1 1 CHAR(10) User to whom checked out

11 B CHAR(1) Reserved

12 C BINARY(4) Time checked out

Flag. An indicator as to whether an object is checked out. Valid values are:

x'00' QP0L_NOT_CHECKED_OUT: The object is not checked out.

x'01' QP0L_CHECKED_OUT: The object is checked out.

Reserved. A reserved field. This field must be set to binary zero.

Time checked out. The time the object was checked out. This field represents the number of
seconds since the Epoch.

User to whom checked out. The user who has the object checked out. This field is blank if
it is not checked out.

10 QP0L_ATTR_LOCAL_REMOTE: (CHAR(1)) Whether an object is stored locally or stored
on a remote system. The decision of whether a file is local or remote varies according to the
respective file system rules. Objects in file systems that do not carry either a local or remote
indicator are treated as remote. Valid values are:

x'01' QP0L_LOCAL_OBJ: The object's data is stored locally.

x'02' QP0L_REMOTE_OBJ: The object's data is on a remote system.

11 QP0L_ATTR_AUTH: The public and private authorities associated with the object.

When the QP0L_ATTR_AUTH attribute is requested, the attribute data is returned in the
buffer in the following format. This format is defined in header file Qp0lstdi.h as data type
Qp0l_Authority_General_t.

General Authority Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Object owner

10 0A CHAR(10) Primary group

20 14 CHAR(10) Authorization list name

30 1E CHAR(10) Reserved

40 28 BINARY(4) Offset to array of users

44 2C BINARY(4) Number of users

48 30 BINARY(4) Size of user entry field entry

52 34 CHAR(12) Reserved

 ARRAY(*) Array of users

Array of users. The names and authorities of the users who are authorized to use the object.

Authorization list name. The name of the authorization list that is used to secure the named
object. The value *NONE indicates that no authorization list is used in determining
authority to the object.

Number of users. The number of users that are authorized to the object. This is the number
of users returned in the array of users.

The QFileSvr.400 file system returns zero for the Number of users and zero for the Offset to
array of users. If a primary group is specified, the Network File System (NFS) returns one
for the Number of users.

Object owner. The name of the user profile that is the owner of the object or the following
special value:

*NOUSRPRF This special value is used by the Network File System to indicate that
there is no user profile on the local iSeries server with a user ID (UID)
matching the UID of the remote object.

Offset to array of users. The offset to the names and authorities of the users who are
authorized to use the object. This offset is relative to the offset of the QP0L_ATTR_AUTH
attribute within the buffer pointed to by the Buffer_ptr parameter.

Primary group. The name of the user profile that is the primary group of the object or the
following special values:

*NONE The object does not have a primary group.

*NOUSRPRF This special value is used by the Network File System to indicate that
there is no user profile on the local server with a group ID (GID)
matching the GID of the remote object.

Reserved. A reserved field. This field must be set to binary zero.

Size of user entry field entry. The number of bytes returned for each user.

When the QP0L_ATTR_AUTH attribute is requested, the array of users is returned in the
buffer in the following format. This format is defined in header file Qp0lstdi.h as data type
Qp0l_Authority_Users_t.

Data and Object Authority Format

Offset

Type FieldDec Hex

0 0 CHAR(10) User name

10 0A CHAR(10) User data authority

Object rights

20 14 CHAR(1) Object management

21 15 CHAR(1) Object existence

22 16 CHAR(1) Object alter

23 17 CHAR(1) Object reference

24 18 CHAR(10) Reserved

Data rights

34 22 CHAR(1) Object operational

35 23 CHAR(1) Read

36 24 CHAR(1) Add

37 25 CHAR(1) Update

38 26 CHAR(1) Delete

39 27 CHAR(1) Execute

40 28 CHAR(1) Exclude

41 29 CHAR(7) Reserved

Add (*ADD). Authority to add entries to the object. Valid values are:

0 The user does not have add data rights.

1 The user does have add data rights.

Delete (*DELETE). Authority to remove entries from the object. Valid values are:

0 The user does not have delete data rights.

1 The user does have delete data rights.

Execute (*EXECUTE). Authority to run a program or search a library or directory. Valid
values are:

0 The user does not have execute data rights.

1 The user does have execute data rights.

Exclude (*EXCLUDE). The user is prevented from accessing the object. Valid values are:

0 The user does not have exclude data rights.

1 The user does have exclude data rights.

Object alter (*OBJALTER). Authority to change the attributes of an object, such as
adding or removing triggers for a database file. Valid values are:

0 The user does not have alter object rights.

1 The user does have alter object rights.

Object existence (*OBJEXIST). Authority to control the object's existence and ownership.
Valid values are:

0 The user does not have object existence rights.

1 The user does have object existence rights.

Object management (*OBJMGT). Authority to specify security, to move or rename the
object, and to add members if the object is a database file. Valid values are:

0 The user does not have object management rights.

1 The user does have object management rights.

Object operational (*OBJOPR). Authority to look at the object's attributes and to use the
object as specified by the data authorities that the user has to the object. Valid values are:

0 The user does not have object operational rights.

1 The user does have object operational rights.

Object reference (*OBJREF). Authority to specify the object as the first level in a
referential constraint. Valid values are:

0 The user does not have object reference rights.

1 The user does have object reference rights.

Read (*READ). Authority to access the contents of the object. Valid values are:

0 The user does not have read data rights.

1 The user does have read data rights.

Reserved. A reserved field. This field must be set to binary zero.

Update (*UPDATE). Authority to change the content of existing entries in the object. Valid
values are:

0 The user does not have update data rights.

1 The user does have update data rights.

User data authority. The operation, use, or access that the user has to an object. Valid
values follow:

*RWX Allows all operations on the object except those that are limited to the
owner or controlled by the object rights.

*RW Allows access to the object attributes and allows the object to be changed.
The user cannot use the object.

*WX Allows use of the object and allows the object to be changed. The user
cannot access the object attributes.

*R Allows access to the object attributes.

*W Allows the object to be changed.

*X Allows the use of the object.

*EXCLUDE All operations on the object are prohibited.

*NONE Displayed by the system when the user does not have any data authorities.

USER DEF Displayed by the system when the specific data authorities do not match
any of the predefined data authority levels above.

User name. The name of a user authorized to use the object. This may be the name of the
user profile or one of the following special values:

*NOUSRPRF The authorities of either the owner or the primary group of the object for
which the profile name could not be determined. This value is used by
the Network File System only. It indicates that the user ID (UID) or the
group ID (GID) for the remote object does not match any profile on the
local iSeries server with that UID or GID.

*NTWIRF The authorities of the NetWare Inherited Rights Filter for the object. This
value is only used by the QNetWare file system.

*NTWEFF The NetWare effective rights to the object. This value is only used by the
QNetWare file system.

*PUBLIC The authorities of users who are not specifically named and who are not
in the object's authorization list.

12 QP0L_ATTR_FILE_ID: (CHAR(16)) An identifier associated with the referred to object. A
file ID can be used with Qp0lGetPathFromFileID() to retrieve an object's path name. The
file ID is defined in header file Qp0lstdi.h as data type Qp0lFID_t.

13 QP0L_ATTR_ASP: (BINARY(2)) The auxiliary storage pool in which the object is stored.

14 QP0L_ATTR_DATA_SIZE_64: (UNSIGNED BINARY(8)) The size in bytes of the data in
this object. This size does not include object headers or the size of extended attributes
associated with the object. QP0L_ATTR_DATA_SIZE may be used for objects whose data
size can be represented in a BINARY(4) data type.

15 QP0L_ATTR_ALLOC_SIZE_64: (UNSIGNED BINARY(8)) The number of bytes that
have been allocated for this object. QP0L_ATTR_ALLOC_SIZE may be used for objects
whose allocated size can be represented in a BINARY(4) data type.

16 QP0L_ATTR_USAGE_INFORMATION: Fields indicating how often an object is used.
Usage has different meanings according to the specific file system and according to the
individual object types supported within a file system. Usage can indicate the opening or
closing of a file or can refer to adding links, renaming, restoring, or checking out an object.
The usage information format is defined in the Qp0lstdi.h header file as data type
Qp0l_Usage_t and is shown in the following table.

Qp0l_Usage_t

Offset

Type FieldDec Hex

0 0 BINARY(4) Reset date

4 4 BINARY(4) Last used date

8 8 BINARY(4) Days used count

12 C CHAR(4) Reserved

Days used count. The number of days an object has been used. Usage has different
meanings according to the specific file system and according to the individual object types
supported within a file system. Usage can indicate the opening or closing of a file or can
refer to adding links, renaming, restoring, or checking out an object. This count is
incremented once each day that an object is used and is reset to zero by calling the
Qp0lSetAttr() API.

Last used date. The number of seconds since the Epoch that corresponds to the date the

object was last used. This field is zero when the object is created. If usage data is not
maintained for the OS/400 type or the file system to which an object belongs, this field is
zero.

Reserved. A reserved field set to binary zeros.

Reset date. The number of seconds since the Epoch that corresponds to the date the days
used count was last reset to zero (0). This date is set to the current date when the
Qp0lSetAttr() API is called to reset the Days used count to zero.

17 QP0L_ATTR_PC_READ_ONLY: (CHAR(1)) Whether the object can be written to or
deleted, have its extended attributes changed or deleted, or have its size changed. Valid
values are:

x'00' QP0L_PC_NOT_READONLY: The object can be changed.

x'01' QP0L_PC_READONLY: The object cannot be changed.

18 QP0L_ATTR_PC_HIDDEN: (CHAR(1)) Whether the object can be displayed using an
ordinary directory listing.

x'00' QP0L_PC_NOT_HIDDEN: The object is not hidden.

x'01' QP0L_PC_HIDDEN: The object is hidden.

19 QP0L_ATTR_PC_SYSTEM: (CHAR(1)) Whether the object is a system file and is
excluded from normal directory searches.

x'00' QP0L_PC_NOT_SYSTEM: The object is not a system file.

x'01' QP0L_PC_SYSTEM: The object is a system file.

20 QP0L_ATTR_PC_ARCHIVE: (CHAR(1)) Whether the object has changed since the last
time the file was examined.

x'00' QP0L_PC_NOT_CHANGED: The object has not changed.

x'01' QP0L_PC_CHANGED: The object has changed.

21 QP0L_ATTR_SYSTEM_ARCHIVE: (CHAR(1)) Whether the object has changed and
needs to be saved. It is set on when an object's change time is updated, and set off when the
object has been saved.

x'00' QP0L_SYSTEM_NOT_CHANGED: The object has not changed and does not
need to be saved.

x'01' QP0L_SYSTEM_CHANGED: The object has changed and does need to be saved.

22 QP0L_ATTR_CODEPAGE: (BINARY(4)) The code page derived from the coded character
set identifier (CCSID) used for the data in the file or the extended attributes of the directory.
If the returned value of this field is zero (0), there is more than one code page associated
with the st_ccsid. If the st_ccsid is not a supported system CCSID, the st_codepage is set
equal to the st_ccsid.

23 QP0L_ATTR_FILE_FORMAT: (CHAR(1)) The format of the stream file (*STMF). Valid
values are:

x'00' QP0L_FILE_FORMAT_TYPE1: The object has the same format as *STMF
objects created on releases prior to Version 4 Release 4. It will be saved faster than
a *TYPE2 *STMF to releases prior to Version 4 Release 4 of OS/400. It has a
mimimum object size of 4096 bytes.

x'01' QP0L_FILE_FORMAT_TYPE2: The object has high performance file access and
is a new *STMF object format in Version 4 Release 4 of OS/400. It will be saved
slower than a *TYPE1 *STMF to releases prior to Version 4 Release 4 of OS/400.
It has a minimum object size of 8192 bytes.

24 QP0L_ATTR_UDFS_DEFAULT_FORMAT: (CHAR(1)) The default file format of stream
files (*STMF) created in the user-defined file system. Valid values are:

x'00' QP0L_UDFS_DEFAULT_TYPE1: The stream file (*STMF) has the same format
as *STMFs created on releases prior to Version 4 Release 4 of OS/400. It will be
saved faster than a *TYPE2 *STMF to releases prior to Version 4 Release 4 of
OS/400. It has a mimimum object size of 4096 bytes.

x'01' QP0L_UDFS_DEFAULT_TYPE2: The object has high performance file access
and is a new *STMF object format in Version 4 Release 4 of OS/400. It will be
saved slower than a *TYPE1 *STMF to releases prior to Version 4 Release 4 of
OS/400. It has a minimum object size of 8192 bytes.

25 QP0L_ATTR_JOURNAL_INFORMATION: Journaling information for this object. The
journaling information format is defined in the Qp0lstdi.h header file as data type
Qp0l_Journal_Info_t and is shown in the following table:

Qp0l_Journal_Info_t

Offset

Type FieldDec Hex

0 0 CHAR(1) Journaling status

1 1 CHAR(1) Options

2 2 CHAR(10) Journal identifier (JID)

12 0B CHAR(10) Current or last journal name

22 16 CHAR(10) Current or last journal library name

32 20 BINARY(4) Last journaling start time

Current or last journal library name. If the value of the journaling status is
QP0L_JOURNALED, then this field contains the name of the library containing the
currently used journal. If the value of the journaling status is QP0L_NOT_JOURNALED,
then this field contains the name of the library containing the last used journal. All bytes in
this field will be set to binary zero if this object has never been journaled.

Current or last journal name. If the value of the journaling status is QP0L_JOURNALED,
then this field contains the name of the journal currently being used. If the value of the
journaling status is QP0L_NOT_JOURNALED, then this field contains the name of the
journal last used for this object. All bytes in this field will be set to binary zero if this object
has never been journaled.

Journal identifier (JID). This field associates the object being journaled with an identifier
that can be used on various journaling-related commands and APIs. This field will be all

binary zeros for recorded byte-stream files.

Journaling status. Current journaling status of the object. This field will be one of the
following values:

x'00' QP0L_NOT_JOURNALED: The object is currently not being journaled.

x'01' QP0L_JOURNALED: The object is currently being journaled.

Last journaling start time. The number of seconds since the Epoch that corresponds to the
last date and time for which the object had journaling started for it. This field will be set to
binary zero if this object has never been journaled.

Options. This field describes the current journaling options. This field is composed of
several bit flags and contains one or more of the following bit values:

x'08' QP0L_JOURNAL_SUBTREE: When this flag is returned, this object is a
directory with IFS journaling subtree semantics. New objects created within this
directory's subtree will inherit the journaling attributes and options from this
directory.

x'08' QP0L_JOURNAL_OPTIONAL_ENTRIES: When journaling is active, entries
that are considered optional are journaled. The list of optional journal entries
varies for each object type. See the Integrated file system topic for information
regarding these optional entries for various objects.

x'20' QP0L_JOURNAL_AFTER_IMAGES: When journaling is active, the image of the
object after a change is journaled.

x'40' QP0L_JOURNAL_BEFORE_IMAGES: When journaling is active, the image of
the object prior to a change is journaled.

26 QP0L_ATTR_ALWCKPWRT: (CHAR(1)) Whether a stream file (*STMF) can be shared
with readers and writers during the save-while-active checkpoint processing. Valid values
are:

x'00' QP0L_NOT_ALWCKPWRT: The object can be shared with readers only.

x'01' QP0L_ALWCKPWRT: The object can be shared with readers and writers.

27 QP0L_ATTR_CCSID: (BINARY(4)) The CCSID of the data and extended attributes of the
object.

28 QP0L_ATTR_SIGNED: (CHAR(1)) Whether an object has an OS/400 digital signature.
This attribute is only returned for *STMF objects. Valid values are:

x'00' QP0L_NOT_SIGNED: The object does not have an OS/400 digital signature.

x'01' QP0L_SIGNED: The object does have an OS/400 digital signature.

29 QP0L_ATTR_SYS_SIGNED: (CHAR(1)) Whether the object was signed by a source that is
trusted by the system. This attribute is only returned for *STMF objects. Note: this attribute
is not returned if the QP0L_ATTR_SIGNED attribute has the value QP0L_NOT_SIGNED.
Valid values are:

x'00' QP0L_SYSTEM_SIGNED_NO: (CHAR(1)) None of the signatures came from a
source that is trusted by the system.

x'01' QP0L_SYSTEM_SIGNED_YES: The object was signed by a source that is
trusted by the system. If the object has multiple signatures, at least one of the
signatures came from a source that is trusted by the system.

30 QP0L_ATTR_MULT_SIGS: (CHAR(1)) Whether an object has more than one OS/400
digital signature. This attribute is only returned for *STMF objects. Note: this attribute is not
returned if the QP0L_ATTR_SIGNED attribute has the value QP0L_NOT_SIGNED. Valid
values are:

x'00' QP0L_MULT_SIGS_NO: The object has only one digital signature.

x'01' QP0L_MULT_SIGS_YES: The object has more than one digital signature. If the
QP0L_ATTR_SYS_SIGNED attribute has the value QP0L_SYS_SIGNED, at
least one of the signatures is from a source trusted by the system.

31 QP0L_ATTR_DISK_STG_OPT (CHAR(1)) This option should be used to determine how
auxiliary storage is allocated by the system for the specified object. This option can only be
specified for stream files in the root (/), QOpenSys and user-defined file systems. This
option will be ignored for *TYPE1 byte stream files. Valid values are:

x'00' QP0L_STG_NORMAL: The auxiliary storage will be allocated normally. That is,
as additional auxiliary storage is required, it will be allocated in logically sized
extents to accomodate the current space requirement, and anticipated future
requirements, while minimizing the number of disk I/O operations.

x'01' QP0L_STG_MINIMIZE: The auxiliary storage will be allocated to minimize the
space used by the object. That is, as additional auxiliary storage is required, it will
be allocated in small sized extents to accomodate the current space requirement.
Accessing an object composed of many small extents may increase the number of
disk I/O operations for that object.

x'02' QP0L_STG_DYNAMIC: The system will dynamically determine the optimum
auxiliary storage allocation for the object, balancing space used versus disk I/O
operations. For example, if a file has many small extents, yet is frequently being
read and written, then future auxiliary storage allocations will be larger extents to
minimize the number of disk I/O operations. Or, if a file is frequently truncated,
then future auxiliary storage allocations will be small extents to minimize the
space used. Additionally, information will be maintained on the stream file sizes
for this system and its activity. This file size information will also be used to help
determine the optimum auxiliary storage allocations for this object as it relates to
the other objects sizes.

32 QP0L_ATTR_MAIN_STG_OPT: (CHAR(1)) This option should be used to determine how
main storage is allocated and used by the system for the specified object. This option can
only be specified for stream files in the root (/), QOpenSys and user-defined file systems.
Valid values are:

x'00' QP0L_STG_NORMAL: The main storage will be allocated normally. That is, as
much main storage as possible will be allocated and used. This minimizes the
number of disk I/O operations since the information is cached in main storage.

x'01' QP0L_STG_MINIMIZE: The main storage will be allocated to minimize the
space used by the object. That is, as little main storage as possible will be allocated
and used. This minimizes main storage usage while increasing the number of disk
I/O operations since less information is cached in main storage.

x'02' QP0L_STG_DYNAMIC: The system will dynamically determine the optimum
main storage allocation for the object depending on other system activity and main
storage contention. That is, when there is little main storage contention, as much
storage as possible will be allocated and used to minimize the number of disk I/O
operations. And when there is significant main storage contention, less main
storage will be allocated and used to minimize the main storage contention. This
option only has an effect when the storage pool's paging option is *CALC. When
the storage pool's paging option is *FIXED, the behavior is the same as
QP0L_STG_NORMAL. When the object is accessed thru a file server, this option
has no effect. Instead, its behavior is the same as QP0L_STG_NORMAL.

33 QP0L_ATTR_DIR_FORMAT: (CHAR(1)) The format of the specified directory object.
Valid values are:

x'00' QP0L_DIR_FORMAT_TYPE1: The directory of type *DIR has the original
directory format. The Convert Directory (CVTDIR) command may be used to
convert from the *TYPE1 format to the *TYPE2 format.

x'01' QP0L_DIR_FORMAT_TYPE2: The directory of type *DIR is optimized for
performance, size, and reliability compared to directories having the *TYPE1
format.

34 QP0L_ATTR_AUDIT: (CHAR(10)) The auditing value associated with the object. Valid
values are:

*NONE No auditing occurs for this object when it is read or changed regardless of
the user who is accessing the object.

*USRPRF Audit this object only if the current user is being audited. The current user is
tested to determine if auditing should be done for this object. The user
profile can specify if only change access is audited or if both read and
change accesses are audited for this object.

*CHANGE Audit all change access to this object by all users on the system.

*ALL Audit all access to this object by all users on the system. All access is
defined as a read or change operation.

300 QP0L_ATTR_SUID: (CHAR(1)) Set effective user ID (UID) at execution time. This value
is ignored if the specified object is a directory. Valid values are:

x'00' QP0L_SUID_OFF: The user ID (UID) is not set at execution time.

x'01' QP0L_SUID_ON: The object owner is the effective user ID (UID) at execution
time.

301 QP0L_ATTR_SGID: (CHAR(1)) Set effective group ID (GID) at execution time. Valid
values are:

x'00' QP0L_SGID_OFF: If the object is a file, the group ID (GID) is not set at
execution time. If the object is a directory in the root ('/'), QOpenSys, and
user-defined file systems, the group ID (GID) of objects created in the directory is
set to the effective GID of the thread creating the object. This value cannot be set
for other file systems.

x'01' QP0L_SGID_ON: If the object is a file, the group ID (GID) is set at execution
time. If the object is a directory, the group ID (GID) of objects created in the
directory is set to the GID of the parent directory.

Number of requested attributes. The total number of requested attributes that Qp0lGetAttr()
returns. This field is required when the Attr_Array_ptr parameter is not NULL and must equal the
number of constants in the array to which it points. When this field is zero, Qp0lGetAttr() returns all
the attributes that are supported by the API and that are available for the object.

Buffer_ptr

(Input) A pointer to a buffer that the caller allocates for Qp0lGetAttr() to return the requested data.
The caller also sets the Buffer_Size_Provided parameter to the number of bytes that are allocated for
this buffer.

If the buffer provided is not large enough to hold all of the requested data, Qp0lGetAttr() fills the
buffer with as much data as possible and sets the value pointed to by the Buffer_Size_Needed_ptr
parameter equal to the number of bytes required for all of the requested data to be returned.

When the Buffer_ptr is NULL, Qp0lGetAttr() returns the total number of bytes needed to hold all of
the requested attributes and sets the Buffer_Size_Needed_ptr parameter to point to this value.

Qp0lGetAttr() identifies each entry that it returns in the buffer with the constant that the user
supplied in the input structure pointed to by the Attr_Array_ptr parameter. Qp0lGetAttr() returns this
constant in the Attribute identification field. The constant must be used to identify the returned
attribute because the attributes are returned in any order.

Qp0lGetAttr() fills the buffer with an entry for each requested attribute in the following format:

Buffer Pointer

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to next attribute entry

4 4 BINARY(4) Attribute identification

8 8 BINARY(4) Size of attribute data

12 C CHAR(4) Reserved

16 10 CHAR(*) Attribute data

Attribute data. The attribute data that was requested.

Attribute identification. The constant that identifies the returned attribute. Valid values follow and
are the same constants as provided by the caller of Qp0lGetAttr(), pointed to by the Attr_Array_ptr
parameter.

See the Attr_Array_ptr parameter for descriptions of each of these attribute values.

0 QP0L_ATTR_OBJTYPE

1 QP0L_ATTR_DATA_SIZE

2 QP0L_ATTR_ALLOC_SIZE

3 QP0L_ATTR_EXTENDED_ATTR_SIZE

4 QP0L_ATTR_CREATE_TIME

5 QP0L_ATTR_ACCESS_TIME

6 QP0L_ATTR_CHANGE_TIME

7 QP0L_ATTR_MODIFY_TIME

8 QP0L_ATTR_STG_FREE

9 QP0L_ATTR_CHECKED_OUT

10 QP0L_ATTR_LOCAL_REMOTE

11 QP0L_ATTR_AUTH

12 QP0L_ATTR_FILE_ID

13 QP0L_ATTR_ASP

14 QP0L_ATTR_DATA_SIZE_64

15 QP0L_ATTR_ALLOC_SIZE_64

16 QP0L_ATTR_USAGE_INFORMATION

17 QP0L_ATTR_PC_READ_ONLY

18 QP0L_ATTR_PC_HIDDEN

19 QP0L_ATTR_PC_SYSTEM

20 QP0L_ATTR_PC_ARCHIVE

21 QP0L_ATTR_SYSTEM_ARCHIVE

22 QP0L_ATTR_CODEPAGE

23 QP0L_ATTR_FILE_FORMAT

24 QP0L_ATTR_UDFS_DEFAULT_FORMAT

25 QP0L_ATTR_JOURNAL_INFORMATION

26 QP0L_ATTR_ALWCKPWRT

27 QP0L_ATTR_CCSID

28 QP0L_ATTR_SIGNED

 29 QP0L_ATTR_SYS_SIGNED

30 QP0L_ATTR_MULT_SIGS

31 QP0L_ATTR_DISK_STG_OPT

32 QP0L_ATTR_MAIN_STG_OPT

33 QP0L_ATTR_DIR_FORMAT

34 QP0L_ATTR_AUDIT

300 QP0L_ATTR_SUID

301 QP0L_ATTR_SGID

Offset to next attribute entry. The offset to the next attribute entry in the buffer. This offset is
relative to the start of the buffer. An offset of zero means that no more attribute entries follow.

Reserved. A reserved field set to binary zero.

Size of attribute data. The total size of all the data for this attribute. The special value of 0 in this
field indicates that the attribute is not supported by the file system in which the object is stored. The
attribute data is padded with hexadecimal zeros. The size indicated in this field does not include the
padding bytes.

Buffer_Size_Provided

(Input) The number of bytes the caller allocates in a buffer for the return of requested data. The buffer
is pointed to by the Buffer_ptr parameter.

If this size is set to zero or is not large enough to hold all of the requested data, Qp0lGetAttr() fills
the buffer with as much data as possible and sets the value pointed to by the Buffer_Size_Needed_ptr
parameter equal to the number of bytes required for all of the requested data to be returned.

Buffer_Size_Needed_ptr

(Output) A pointer to the number of bytes that the caller needs to allocate for Qp0lGetAttr() to return
all of the requested data.

Num_Bytes_Returned_ptr

(Output) A pointer to the actual number of bytes of data returned in the user buffer. This field is zero
if the Buffer_ptr parameter is NULL.

Follow_Symlnk

(Input) If the last component in the Path_Name is a symbolic link, this parameter determines if the
symbolic link or the path contained in the symbolic link is acted upon: Valid values are:

0 QP0L_DONOT_FOLLOW_SYMLNK: A symbolic link in the last component is not followed.
Attributes of the symbolic link object are returned.

1 QP0L_FOLLOW_SYMLNK: A symbolic link in the last component is followed. The attributes
of the object contained in the symbolic link are returned.

Authorities

Note: Adopted authority is not used.

Authorization Required for Qp0lGetAttr()

Object Referred to Authority Required errno

Each directory, preceding the last component, in the Path_Name *X EACCES

Object, when retrieving the QP0L_ATTR_AUTH attribute *OBJMGT EACCES

Note: If the file system supports *ALLOBJ special authority and if you have *ALLOBJ special authority,
you do not need the listed object authority.

Return Value

0 Qp0lGetAttr() was successful.

-1 Qp0lGetAttr() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If Qp0lGetAttr() is not successful, errno indicates one of the following errors:

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by the
Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECANCEL]

Operation canceled.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is
not valid.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the directory
or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length of
the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This could
also be caused by exceeding the user profile storage limit when creating or transferring ownership of
an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent auxiliary storage pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the requested
arguments.

[EOFFLINE]

Object is suspended.

You have attempted to use an object that has had its data saved and the storage associated with it
freed. An attempt to retrieve the object's data failed. The object's data cannot be used until it is
successfully restored. The object's data was saved and freed either by saving the object with the
STG(*FREE) parameter, or by calling an API.

[EOVERFLOW]

Object is too large to process.

The object's data size exceeds the limit allowed by this function.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct
any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

Qp0lGetAttr() could return zero for the QP0L_ATTR_ACCESS_TIME value (in the buffer area)
under some conditions.

Refer to the CL Programming book for more information regarding which object types maintain

2.

usage information that is returned for the QP0L_ATTR_USAGE_INFORMATION attribute.

When Qp0lGetAttr() is performed on a physical file member, the
QP0L_ATTR_JOURNAL_INFORMATION attribute will contain journaling information applicable
to the physical file that contains the member.

Related Information

The <Qp0lstdi.h> file (see Header Files for UNIX-Type Functions)●

The <qlg.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations ●

fstat()--Get File Information by Descriptor●

lstat()--Get File or Link Information●

QlgGetAttr()--Get Attributes (using NLS-enabled path name)●

QlgStat()--Get File Information (using NLS-enabled path name)●

QlgLstat()--Get File or Link Information (using NLS-enabled path name)●

Qp0lSetAttr()--Set Attributes●

stat()--Get File Information●

Example

Following is an example showing a call to Qp0lGetAttr(). The example also shows a call to
Qp0lSaveStgFree().

See Code disclaimer information for information pertaining to code examples.

/***/
#include "Qp0lstdi.h"
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/types.h>
#include <qusec.h>
#include <time.h>

int Save(Qp0l_Pathnames_t *Path_name_ptr)
{
 /**/

 /* No function here in the example */
 /**/
};

void SaveAnObject(Qp0l_Pathnames_t *Path_name_ptr,
 int *Return_code_ptr,
 int *Return_value_ptr,
 void *Function_CtlBlk_ptr)
{
 /**/
 /* This function saves a file and its hard links to tape. */
 /**/
 int rc;

 if ((Path_name_ptr == (Qp0l_Pathnames_t *)NULL) ||
 (Path_name_ptr->Number_Of_Names == 0))
 {
 printf("In User Exit Program with null Path \n");
 }
 else
 {
 /* This example calls a function (Save) that could call the */
 /* Save Object (QsrSave) API. The QsrSave API is designed to */
 /* save a copy of one or more objects that can be used in the */
 /* integrated file system. For details on using QsrSave, see */
 /* the Backup and Recovery API part. */

 rc = (Save(Path_name_ptr));

 *Return_code_ptr = rc;
 *Return_value_ptr = errno;

 if (rc == 0)
 {
 /* Other processing for a successfully saved object. */
 }
 else
 {
 /* Optional processing such as storing information */
 /* to be returned to the caller in the function */
 /* control block area, or building a list of the */
 /* files whose save attempts failed, or other. */
 }
 }
 return;
} /* end SaveAnObject exit program */

int main (int argc, char *argv[])
{
#define MYPN "ADIR/ASTMF"
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 const char Path_Name_Del_const[2] = "/";

 struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[1];

 };
 struct pnstruct pns;
 struct pnstruct *pns_ptr = NULL;

 struct attrStruct
 {
 Qp0l_AttrTypes_List_t attr_struct;
 uint AttrTypes[10];
 };
 struct attrStruct Attr_types_ptr;
 Qp0l_Attr_Header_t *attrPtr;
 char *attrValp;

 Qp0l_StgFree_Function_t User_function;

 struct
 {
 uint AnyData_to_the_exitprogram;
 uint AnyData_not_processed_by_the_API;
 } CtlBlkAreaName;

 time_t mytime;
 char BufferArea[250];
 unsigned int buff_size_provided;
 unsigned int buff_size_needed = 0;
 unsigned int num_bytes_returned = 0;
 unsigned int follow_sym;
 int done=0;
 int rc;
 int returned_data_index = 0;

 /**/
 /* Initialize Get Attributes Parameters */
 /**/
 memset((void*)&pns, 0x00, sizeof(struct pnstruct));
 pns.qlg_struct.CCSID = 37;
 memcpy(pns.qlg_struct.Country_ID,US_const,2);
 memcpy(pns.qlg_struct.Language_ID,Language_const,3);
 pns.qlg_struct.Path_Type = 0;
 pns.qlg_struct.Path_Length = sizeof(MYPN)-1;
 memcpy(pns.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);
 memcpy(pns.pn,MYPN,sizeof(MYPN));
 memset((void *)&Attr_types_ptr, 0x00,sizeof(struct attrStruct));
 pns_ptr = &pns;

 Attr_types_ptr.attr_struct.Number_Of_ReqAttrs = 2;
 Attr_types_ptr.AttrTypes[0] = QP0L_ATTR_ACCESS_TIME;
 Attr_types_ptr.AttrTypes[1] = QP0L_ATTR_STG_FREE;

 buff_size_provided = 250;

 follow_sym = QP0L_FOLLOW_SYMLNK;

 /**/
 /* Call the Qp0lGetAttr() API to retrieve attributes to */
 /* determine if selection criteria can be met for calling */
 /* the Qp0lSaveStgFree() API. */
 /**/

 rc = Qp0lGetAttr((Qlg_Path_Name_T *)&pns,
 (Qp0l_AttrTypes_List_t *)&Attr_types_ptr,
 BufferArea,
 buff_size_provided,
 &buff_size_needed,
 &num_bytes_returned,
 follow_sym);
 if (rc == 0) /* check API return code */
 {
 /* Must first check if any data was returned. */
 if (num_bytes_returned > 0)
 {
 attrPtr = (Qp0l_Attr_Header_t *)BufferArea;
 while(!done)
 {
 attrValp = (char *)attrPtr +
 sizeof(Qp0l_Attr_Header_t); /* Point to attr value */
 /**/
 /* The following code prints the two attributes that */
 /* were returned. Add more code here, for example, */
 /* to determine if the returned attributes meet */
 /* the criteria or policies for storage freeing. */
 /**/
 printf ("**\n");
 printf ("Attr ID #%d = %d - ",
 returned_data_index,
 attrPtr->Attr_ID);
 if(attrPtr->Attr_Size > 0)
 {
 switch (attrPtr->Attr_ID)
 {
 case QP0L_ATTR_ACCESS_TIME:
 printf("QP0L_ATTR_ACCESS_TIME\n");
 memcpy((void *)&mytime,
 (void *)attrValp,
 attrPtr->Attr_Size);
 printf ("%s", ctime(&mytime));
 break;
 case QP0L_ATTR_STG_FREE:
 printf ("QP0L_ATTR_STG_FREE\n");
 switch (attrValp[0])
 {
 case QP0L_SYS_STG_FREE:
 printf ("--Is storage freed--\n");
 break;
 case QP0L_SYS_NOT_STG_FREE:
 printf ("--Is not storage freed--\n");
 break;
 default:
 printf ("Invalid data: %d.\n",
 attrValp[0]);
 break;
 }
 break;
 default:
 printf ("Undefined return type (attr id unknown.)\n");
 break;
 } /* end switch */

 }
 else
 printf("Attribute has no value\n");
 printf("***Size of this attr's data: %d\n",
 attrPtr->Attr_Size);
 printf("***Offset to next attr: %d\n",
 attrPtr->Next_Attr_Offset);
 ++returned_data_index;
 if(attrPtr->Next_Attr_Offset > 0) /* If more data */
 attrPtr = (Qp0l_Attr_Header_t *) /* Set attribute */
 &(BufferArea[attrPtr->Next_Attr_Offset]); /* pointer */
 else /* No more data */
 done = 1; /* End the loop */
 }

 /**/
 /* Initialize Save Storage Free Parameters. The path */
 /* name parameter was already initialized as part of the */
 /* call to Qp0lGetAttr() API and is assumed, in this */
 /* example, to be the same pathname. Both APIs require */
 /* the same path name format. */
 /**/
 memset((void *)&User_function,0x00,sizeof(Qp0l_StgFree_Function_t));
 User_function.Mltthdacn[0] = QP0L_MLTTHDACN_NOMSG;
 User_function.Function_Type = QP0L_USER_FUNCTION_PTR;
 User_function.Procedure = &SaveAnObject;

 rc = Qp0lSaveStgFree((Qlg_Path_Name_T *)&pns,
 &User_function,
 &CtlBlkAreaName);
 if(rc == 0)
 printf("Qp0lSaveStgFree() Successful!");
 else
 {/* Unsuccessful return from Qp0lSaveStgFree() API. */
 /* The following code prints the errno value message. */
 rc = errno;
 printf("ERROR on Qp0lSaveStgFree(): error = %d\n", rc);
 perror("Error message");
 }
 } /* if (num_bytes_returned > 0) */
 else
 rc = EUNKNOWN;
 } /* end rcGA == 0, Qp0lGetAttr() was successful */
 else
 {
 rc = errno;
 printf("ERROR on Qp0lGetAttr(): error = %d\n", rc);
 perror("Error message");
 }
 return(rc);
} /* end main */

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

Qp0lGetPathFromFileID()--Get Path Name of
Object from Its File ID

 Syntax

 #include <Qp0lstdi.h>

 char *Qp0lGetPathFromFileID(char *buf, size_t size,
 Qp0lFID_t fileid);

 Threadsafe: Yes

The Qp0lGetPathFromFileID() function determines an absolute path name of the file identified by fileid
and stores it in buf. The components of the returned path name are not symbolic links. If the file has more
than one path name, only one is returned.

The access time of each directory in the absolute path name of the file (excluding the file itself) is updated.

If buf is a NULL pointer, Qp0lGetPathFromFileID() returns a NULL pointer and the EINVAL error.

The contents of buf after an error are not defined.

Qp0lGetPathFromFileID() is supported in the root (/), QOpenSys, and user-defined file systems.

Parameters

buf

(Output) A pointer to a buffer that will be used to hold an absolute path name of the file identified
by fileid. The buffer must be large enough to contain the full path name including the terminating
NULL character.

The path name is returned in the CCSID (coded character set identifier) currently in effect for the
job. If the CCSID of the job is 65535, this parameter is assumed to be represented in the default
CCSID of the job.

See QlgGetPathFromFileID()--Get Path Name of Object from Its File ID (using NLS-enabled path
name) for a description and an example of supplying the buf in any CCSID.

size

(Input) The number of bytes in the buffer buf.

fileid

(Input) The identifier of the file whose path name is to be returned. This identifier is logged in audit
journal entries to identify the file being audited. See the Parent File ID and Object File ID fields of

the audit journal entries described in the iSeries Security Reference book.

Authorities

Note: Adopted authority is not used.

Authorization required for Qp0lGetPathFromFileID()

Object Referred to Authority Required errno

Each directory in the path name preceding the file *RX EACCES

The file itself *R EACCES

Return Value

value

Qp0lGetPathFromFileID() was successful. The value returned is a pointer to buf.

NULL

Qp0lGetPathFromFileID() was not successful. The errno global variable is set to indicate the
error. After an error, the contents of buf are not defined.

Error Conditions

If Qp0lGetPathFromFileID() is not successful, errno usually indicates one of the following errors. Under
some conditions, errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

No path names were found for this fileid or the user is not authorized to any of the paths.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ERANGE]

A range error occurred.

The value of an argument is too small, or a result too large.

The size argument is too small. It is greater than zero but smaller than the length of the path name
plus a NULL character.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

File System Differences

The following file systems do not support Qp0lGetPathFromFileID():

Network File System❍

QSYS.LIB❍

Independent ASP QSYS.LIB ❍

QDLS❍

QOPT❍

QFileSvr.400❍

QNetWare❍

QNTC❍

1.

Related Information

The <Qp0lstdi.h> file (see Header Files for UNIX-Type Functions)●

QlgGetPathFromFileID()--Get Path Name of Object from Its File ID (using NLS-enabled path
name)

●

Example

The following example determines the path name of a file, given its file ID. In this example, the fileid is
hardcoded. More realistically, the fileid is obtained from the audit journal entry and passed to
Qp0lGetPathFromFileID().

#include <Qp0lstdi.h>
#include <stdio.h>

main()
{
 char path[1024];
 Qp0lFID_t fileid = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x80, 0xFF, 0xCF, 0x00};

 if (Qp0lGetPathFromFileID(path, sizeof(path), fileid) == NULL)
 perror("Qp0lGetPathFromFileID() error");
 else
 printf("The file's path is: %s\n", path);
}

Output:

The file's path is: /myfile

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

Qp0lOpen()--Open File

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lOpen(Qlg_Path_Name_T *Path_Name,
 int oflag, . . .);

 Theadsafe: Conditional; see Usage Notes on open() API.

The Qp0lOpen() function, similar to the open() function, opens a file and returns a number called a file
descriptor. Qp0lOpen()differs from open() in that the Path_Name parameter is a pointer to a
Qlg_Path_Name_T structure instead of a pointer to a character string.

Only the Path_Name parameter is described here. For a discussion of the other parameters, authorities
required, return values, and related information, see open()--Open File.

Note: To use this API with large file APIs, you must specify the O_LARGEFILE flag on the oflag
parameter.

Parameters

Path_Name

(Input) The path name of the file to be opened. This path name is in the Qlg_Path_Name_T format.
For more information on this structure, see Path Name Format.

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

open()--Open File●

close()--Close File or Socket Descriptor●

Example

The following example creates and opens an output file for exclusive access. This program was stored in a
source file with CCSID 37, so the constant string "newfile" will be compiled in coded character set
identifier (CCSID) 37. Therefore, the country or region and language specified are United States English,
and the CCSID specified is 37.

#include <fcntl.h>
#include <stdio.h>
#include <Qp0lstdi.h>

main()
{
 int fildes;

 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 const char Path_Name_Del_const[2] = "/";

 struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[7];
 };
 struct pnstruct pns;
 struct pnstruct *pns_ptr = NULL;

 char fn[]="newfile";

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));
 pns.qlg_struct.CCSID = 37;
 memcpy(pns.qlg_struct.Country_ID,US_const,2);
 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;
 pns.qlg_struct.Path_Type = 0;
 pns.qlg_struct.Path_Length = sizeof(fn) - 1;
 memcpy(pns.qlg_struct.Path_Name_Delimiter,
 Path_Name_Del_const,1);
 memcpy(pns.pn,fn,sizeof(fn));

 pns_ptr = &pns;
 if(fildes = Qp0lOpen((Qlg_Path_Name_T *)pns_ptr,
 O_WRONLY|O_CREAT|O_EXCL, S_IRWXU)) == -1)
 {
 perror("Qp0lOpen() error");
 }

}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

Qp0lProcessSubtree()--Process a Path Name

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lProcessSubtree (
 Qlg_Path_Name_T *Path_Name,
 uint Subtree_level,
 Qp0l_Objtypes_List_t *Objtypes_array_ptr,
 uint Local_remote_obj,
 Qp0l_IN_EXclusion_List_t *IN_EXclusion_ptr,
 uint Err_recovery_action,
 Qp0l_User_Function_t *UserFunction_ptr,
 void *Function_CtlBlk_ptr, ...);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Qp0lProcessSubtree() function searches the directory tree under a specific path name. It selects and
passes objects, one at a time, to an exit program that is identified on its call. The exit program can be either
a procedure or a program.

Qp0lProcessSubtree() performs recursive read operations to access any object in any file system. The
order in which objects are selected and passed to the exit program can vary within a given file system and
within a given directory, dependent on file system rules. The only guaranteed ordering is that all selected
objects within a given directory are passed to the exit program before the parent directory is passed to the
exit program.

Parameters

Path_Name

(Input) The path name where Qp0lProcessSubtree() starts its search. All relative path names are
relative to the current directory at the time of the call to Qp0lProcessSubtree(). This path name is
in the Qlg_Path_Name_T format. For more information on this structure, see Path Name Format.
The Path_Name parameter must be NULL to use the IN_EXclusion_ptr parameter to enter multiple
path names for inclusion on a single call to Qp0lProcessSubtree().

Subtree_level

(Input) An unsigned integer that tells Qp0lProcessSubtree() whether or not to open subdirectories
in the path being processed. Valid values follow:

0

QP0L_SUBTREE_YES: All subdirectories are opened by Qp0lProcessSubtree() so that
the objects they contain are sent to the exit program if they meet the caller's selection

criteria.

1

QP0L_SUBTREE_NO: Only first-level objects are processed. The names of
subdirectories, which meet the selection criteria, are passed to the exit program, but they
are not opened by Qp0lProcessSubtree(). Thus, the objects the subdirectories contain are
not matched against selection criteria and therefore are not sent to the exit program.

Objtypes_array_ptr

(Input) A pointer to an array of object types. Each entry in the array identifies an object type that
Qp0lProcessSubtree() uses to determine what will be passed to the exit program. The
Number of object types field contains the total number of object types in the array. A NULL
pointer means that there is no filtering according to object type and that all object types that meet
other selection criteria are passed to the exit program.

The structure for this parameter follows.

Object Types ArrayPointer

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of object types

4 4 ARRAY(*) of
CHAR(11)

Array of object types structure

Array of object types structure

An array identifying each object type used to determine what will be passed to the exit
program when processing a path. Each entry is limited to 11 characters, including a
NULL terminator, and is padded with blanks. Object types must be entered in standard
OS/400 object type format which is all capital letters, preceded by an asterisk (*). For a
complete list of the available object types, see Object Types in the CL topic.

Qp0lProcessSubtree() verifies that valid OS/400 object types are entered and returns the
errno EINVAL when an object type that is not valid is entered. Although some object types
are scoped to a specific file system, Qp0lProcessSubtree() does not validate object types
according to file systems.

Valid special values for this parameter follow:

*ALLDIR:

Select all directory object types. This includes *LIB, *DIR, *FLR, *FILE, and
*DDIR object types.

*ALLQSYS:

Select all QSYS.LIB object types. This includes all objects in the QSYS.LIB file
system and all independent ASP QSYS.LIB file systems which are available when
the API is first called.

Note: IN_EXclusion_ptr must also be specified as an inclusion array. If *NOQSYS
is specified, *ALLQSYS cannot also be specified.

*ALLSTMF:

Select all OS/400 stream file object types. This includes *MBR, *DOC, *STMF,
*DSTMF, and *USRSPC object types.

*MBR:

Select all OS/400 database file member types.

*NOQSYS:

Exclude all QSYS.LIB object types. This includes all objects in the QSYS.LIB file
system and all independent ASP QSYS.LIB file systems which are available when
the API is first called.

Note: This special value only has meaning if '/' or '/asp_name' is specified for the
Path_Name parameter (where asp_name is the name of an independent ASP which
is available when the API is first called). Additionally, if IN_EXclusion_ptr is
specified, it must only be as an exclusion array. If *ALLQSYS is specified,
*NOQSYS cannot also be specified.

Number of object types

The number of types included in the search.

Local_remote_obj

(Input) An unsigned integer that tells Qp0lProcessSubtree() whether to select only local objects,
only remote objects, or both. Note that the decision of whether a file is local or remote varies
according to the respective file system rules. Objects in file systems that do not carry either a local
or remote indicator are treated as remote. Valid values follow:

0

QP0L_LOCAL_REMOTE_OBJ: Both local and remote objects are passed to the exit
program.

1

QP0L_LOCAL_OBJ: Only local objects are passed to the exit program.

2

QP0L_REMOTE_OBJ: Only remote objects are passed to the exit program.

IN_EXclusion_ptr

(Input) A pointer to an array of pointers. Each pointer in the array points to a specific path name
that identifies a directory, and all of its subdirectories, that Qp0lProcessSubtree() either includes
or excludes in its search to find objects that meet the caller's input criteria. If this pointer is not
NULL, the IN_EXclusion pointer type must indicate whether the list is an inclusive or exclusive
list. The Number of pointers field must contain the number of path names for inclusion or exclusion
on the search.

Use an inclusive list to specify multiple path names for searches on a single call to
Qp0lProcessSubtree() versus using the Path_Name parameter, which searches only one path per
call. The Path_Name parameter and an inclusive list are mutually exclusive. EINVAL is returned if
both parameters are specified. The IN_EXclusion_ptr must be NULL if not used. All of the rules
that apply to a single Path_Name entry apply to each inclusive list entry.

While an inclusion list allows the caller of Qp0lProcessSubtree() to identify multiple path names

for processing, Qp0lProcessSubtree() does not perform any verification to ensure uniqueness of
path names or to verify any other relationship between path names entered in the inclusion array.
For example, if the path names entered represent nested directories, Qp0lProcessSubtree() calls
the exit program multiple times without any error message or other notification of this nesting.

Specify the root directory for a given file system as an exclusive list entry to eliminate that file
system from a search.

All relative path names are relative to the current directory of the job that calls
Qp0lProcessSubtree().

The structure for this parameter follows.

IN_EXclusion Pointer.

This points to a list of path names to either include or exclude from a search.

Offset

Type FieldDec Hex

0 0 BINARY(4) IN_EXclusion pointer type

4 4 BINARY(4) Number of pointers

8 8 CHAR(8) Reserved

16 10 ARRAY(*) Path name pointers

IN_EXclusion pointer type

Whether a path name array contains directories that are included or contains directories that
are excluded. Valid values follow:

0

QP0L_INCLUSION_TYPE: An inclusion array is identified.

1

QP0L_EXCLUSION_TYPE: An exclusion array is identified.

Number of pointers

The number of path name pointers that are in the inclusion or exclusion array.

Path name pointers

An array of pointers. Each pointer points to a path name that is included or excluded. Each
path name must follow the Qlg_Path_Name_T structure. For more information on this
structure, see Path Name Format.

Reserved

A reserved field. This field must be set to binary zero.

Err_recovery_action

(Input) An unsigned integer that describes how Qp0lProcessSubtree() handles errors that are not
severe enough to force the API to end processing. Valid values follow:

0

QP0L_PASS_WITH_ERRORID: Calls the exit program and specifies the name (when

the name is available) of the object being accessed when an error occurs. This value also
sends a valid errno to the exit program.

1

QP0L_BYPASS_NO_ERRORID: Bypasses the object being accessed when an error
occurs, and moves to process the next object in the tree without notification to the calling
program or to the exit program that an error has occurred.

2

QP0L_JOBLOG_NO_ERRORID: Sends message CPDA1C0 to the job log to identify
the object being accessed when an error occurs. This value returns to process the next
object without notification to the calling program or to the exit program that an error has
occurred.

3

QP0L_NULLNAME_ERRORID: Calls the exit program with a NULL object name and
a valid errno.

4

QP0L_END_PROCESS_SUBTREE: Quits Qp0lProcessSubtree() when an error occurs,
and returns to the calling program, regardless of the error type. Note that the exit program
is still given a call but cannot override the caller's decision to end processing. Calling the
exit program allows the exit program to perform other tasks before the API returns to the
caller. For example, the exit program can put information in the function control block that
can be processed by the caller when the caller regains control.

UserFunction_ptr

(Input) A pointer to the name of an exit program that the caller wants Qp0lProcessSubtree() to call
upon finding an object that matches the selection criteria. This exit program can be either a
procedure or a program. See Process a Path Name Exit Program for the syntax of the user exit
program.

The structure for this parameter follows.

User Function Pointer.

This points to the user exit program. The exit program can be a procedure or a program.

Offset

Type FieldDec Hex

0 0 BINARY(4) Function type flag

4 4 CHAR(10) Program library

14 E CHAR(10) Program name

24 18 CHAR(1) Multithreaded job action

25 19 CHAR(7) Reserved

32 20 PP(*) Procedure pointer to the exit procedure

Function type flag

An unsigned integer that indicates whether the user-supplied exit program that is called by

Qp0lProcessSubtree() is a procedure or a program. Valid values follow:

0

QP0L_USER_FUNCTION_PTR: A user procedure is called.

1

QP0L_USER_FUNCTION_PGM: A user program is called.

Multithreaded job action

(Input) A CHAR(1) value that indicates the action to take in a multithreaded job. The
default value is QP0L_MLTTHDACN_SYSVAL. For release compatibility and for
processing this parameter against the QMLTTHDACN system value, x'00, x'01', x'02', &
x'03' are treated as x'F0', x'F1', x'F2', and x'F3'. Valid values follow:

x'00'

QP0L_MLTTHDACN_SYSVAL: The API evaluates the QMLTTHDACN system
value to determine the action to take in a multithreaded job. Although the API can
make repetitive calls to an exit program, the system value is evaluated once before
Qp0lProcessSubtree() issues its first exit program call. This value is used on
subsequent calls until the API returns control to its caller. Valid QMLTTHDACN
system values follow:

'1'

Call the exit program. Do not send an informational message.

'2'

Call the exit program. Send informational message CPI3C80.
Qp0lProcessSubtree() may call the exit program multiple times; however,
this message is sent only once for each call to Qp0lProcessSubtree().

'3'

The exit program is not called when the API determines that it is running
in a multithreaded job. ENOTSAFE is returned.

x'01'

QP0L_MLTTHDACN_NOMSG: Call the exit program. Do not send an
informational message.

x'02'

QP0L_MLTTHDACN_MSG: Call the exit program. Send informational message
CPI3C80. Qp0lProcessSubtree() may call the exit program multiple times;
however, this message is sent only once for each call to Qp0lProcessSubtree().

x'03'

QP0L_MLTTHDACN_NO: The exit program is not called when the API
determines that it is running in a multithreaded job. ENOTSAFE is returned.

Procedure pointer to the exit procedure

A procedure pointer to the procedure that Qp0lProcessSubtree() calls. This field must be
NULL if a program is called instead of a procedure.

Program library

The library in which the called program, identified by Program name, is located. This field
must be blank if a procedure is called instead of a program.

Program name

The name of the program that is called. The program is located in the library identified by
Program library. This field must be blank if a procedure is called instead of a program.

Reserved

A reserved field. This field must be set to binary zero.

Function_CtlBlk_ptr

(Input) A pointer that Qp0lProcessSubtree() passes to the user-defined exit program that is called.
Qp0lProcessSubtree() does not process this pointer or what is referred to by the pointer. It passes
the pointer as a parameter to the user-defined exit program that was specified. This is a means for
the caller of Qp0lProcessSubtree() to pass information to and from the Process a Path Name exit
program.

Authorities

Note: Adopted authority is not used.

Authorization Required for

Qp0lProcessSubtree()

Object Referred to Authority Required errno

Each directory, preceding the last component, in a Path Name *X EACCES

The Path Name directory and all subdirectories of the Path Name
that are included in the search.

*RX EACCES

Each directory, preceding the last component, in any path name
pointed to by the IN_EXclusion ptr

*X EACCES

The Path Name directory and all subdirectories of any path name
pointed to by an inclusive list

*RX EACCES

Any called program pointed to by the UserFunction_ptr parameter *X EACCES

Any library that contains the called program pointed to by the
UserFunction_ptr parameter

*X EACCES

Return Value

0

Qp0lProcessSubtree() was successful.

-1

Qp0lProcessSubtree() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0lProcessSubtree() is not successful, the errno indicates one of the following errors:

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following message may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA0D4 E File system error occurred. Error number &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

 Independent ASP QSYS.LIB ■

QOPT■

❍

1.

If the exit program called by Qp0lProcessSubtree() is not threadsafe or uses a function that is not
threadsafe, then Qp0lProcessSubtree() is not threadsafe.

2.

If the exit program called by Qp0lProcessSubtree() uses a function that fails when there are
secondary threads active in the job, Qp0lProcessSubtree() may fail as a result.

3.

Basic function and usage considerations

Qp0lProcessSubtree() does not perform the following tasks but is designed to work with
the user exit function and other APIs to be useful in accomplishing the following and other
tasks:

Retrieve object attributes (like authorities, dates, or sizes).■

Build lists from selected objects.■

Delete directories.■

Identify multiple occurrences of an object within or across directories.■

Count the number of objects in a directory.■

❍

DosSetRelMaxFH() is called to increase to the maximum the number of file descriptors
that can be opened during processing such that Qp0lProcessSubtree() is not likely to fail
due to a lack of descriptors. This value is not reset when Qp0lProcessSubtree() ends
because the API could be running in a multithreaded job.

❍

4.

Object locking

Qp0lProcessSubtree() does not perform any object locking, other than what is done when opening
a directory to read the objects it contains, so that the exit program does not encounter or need to
manage locks held by Qp0lProcessSubtree(). Once Qp0lProcessSubtree() has started searching a
path, the addition, deletion, or removal of mounted directories or objects may not have any effect

5.

on the results of the search.

If Qp0lProcessSubtree() encounters a directory that is locked, Qp0lProcessSubtree() uses the
defined Err_recovery_action to determine how to handle the locked condition. Locks on objects
that are not directories have no effect on Qp0lProcessSubtree().

Design considerations for parameters

Symbolic links

When the last component of the path name supplied on the initial call of
Qp0lProcessSubtree() is a symbolic link, Qp0lProcessSubtree() resolves and follows the
initial link to its target and performs its normal functions on the target. All other symbolic
links that are encountered in the same search are not resolved to their targets.

If the path name supplied on the initial call of Qp0lProcessSubtree() is a symbolic link
that points to another file system or that points to a remote file system, the API resolves
and processes the initial link only. It does not resolve other symbolic links that are
encountered in the same search. However, if the caller specified that remote objects are not
processed, but the initial path name (whether a symbolic link or not) points to a remote file
system, the link is not resolved. Qp0lProcessSubtree() calls the exit program with a
NULL path name and an indicator that Qp0lProcessSubtree() has completed successfully
without any error indicators to the exit program.

When *SYMLNK is specified as part of the selection criteria, Qp0lProcessSubtree() does
not resolve the selected names.

1.

Recovery Actions

There are three separate parameters that control error recovery during a search. The caller
of the API determines how an error should be reported to the exit program by setting the
Err_recovery_actions parameter. The API sets the Selection status pointer and sends it to
the exit program to indicate one of four conditions: the API search status is OK, the last
object has been processed, the API has encountered recoverable errors, or the search cannot
continue. For error conditions it also sends a valid errno. The exit program returns an
indicator back to the API either to continue or to end the search by setting the Return value
pointer. For error conditions, it also returns a valid errno, pointed to by the Return value
pointer. Each time Qp0lProcessSubtree() regains control from the exit program, it
determines whether the search should continue or end by evaluating the
Err_recovery_actions parameter, its Selection status pointer, and the Return value pointer.
Upon ending, Qp0lProcessSubtree() returns 0 to indicate a successful search, or a -1 and
an errno to indicate the error condition. This errno may have been set by the exit program
(Return value pointer).

This error recovery design allows for flexibility in handling errors between the caller, the
API, and the exit program. Whenever an unrecoverable error occurs, if possible, the exit
program is given a final call; this call allows the exit program to do such tasks as cleanup
or to put information in the function control block, or to record information about the error.
However, the exit program cannot decide that the search should continue. The API will
return to its caller when it regains control. There are only two specific instances in which
the API determines that the exit program is not called:

When the API cannot resolve the exit program name or its authorization.■

When input parameters are missing or specified incorrectly. (The API returns
EINVAL to the caller before any other processing.)

■

2.

6.

Following is a diagram showing the flow and relationship of these parameters.

Scenarios

Following are scenarios showing calls and the results of calls to Qp0lProcessSubtree(). Directory
Structure A and Directory Structure B define the input directory structure for these scenarios.

Figure: Directory Structure A

This directory structure represents three subdirectories (a, b, c), three objects (x, y, z), and a symbolic link
(t).

Figure: Directory Structure B

This directory structure represents six subdirectories (a, b, c, d, e, f) and seven objects (t, u, v, w, x, y, z).

Scenario 1

This scenario assumes processing a directory as shown by Directory Structure A in Figure above.

This scenario shows a call to the API without any criteria to filter the selection of objects in the path being
searched. If the API call were coded with the parameter values as shown by Input value in Scenario 1 API
Input, the exit program would be called nine times and would pass the object names as shown by the Object
Name Pointer in Results of a call. Because QP0L_SUBTREE_YES is specified, all of the directories in the
path will be opened and the name of all the objects that they contain will be passed to the exit program.
Note that the only guaranteed order is that parent directories are passed to the exit program after all of their
children.

Figure: Scenario 1 API Input

Input Parameter Input value

*Path_Name '/' ('/' processes every directory on the system and is not recommended if
performance is a consideration)

Subtree_level QP0L_SUBTREE_YES

*Objtypes_array_ptr NULL

Local_remote_obj QP0L_LOCAL_REMOTE_OBJ

*IN_EXclusion_ptr NULL

Err_recovery_action QP0L_PASS_WITH_ERRORID

*UserFunction_ptr QP0L_USER_FUNCTION_PTR

*Function_CtlBlk_ptr NULL

Figure: Results of a call

Exit Program Call Count Object Name Pointer

1 /a/b/y

2 /a/b

3 /a/x

4 /a/t

5 /a/c/z

6 /a/c

7 /a

8 /

9 NULL path name (indicates the API completed)

Scenario 2

This scenario assumes processing a directory as shown by Directory Structure A in the Figure above.

This shows a call to the API with the Subtree level parameter set to retrieve only one level, without any
object filtering. Since QP0L_SUBTREE_NO is specified, the names of all objects in the path will be
passed to the exit program, however, none of the directories will be opened. This allows a caller to perform
tasks such as identifying all of the root objects for a file system. For example, this would identify all of the
first level folders, when processing against the QDLS file system. Then the API can be called recursively
from within the exit program, with each of these folders specified as the path to be searched.

If the API call were coded with the parameter values as shown by Input value in Scenario 2 API Input, the
exit program would be called six times and would pass the object names as shown by the Object Name

Pointer in Results of a call.

Figure: Scenario 2 API Input

Input Parameter Input value

*Path_Name '/a'

Subtree_level QP0L_SUBTREE_NO

*Objtypes_array_ptr NULL

Local_remote_obj QP0L_LOCAL_REMOTE_OBJ

*IN_EXclusion_ptr NULL

Err_recovery_action QP0L_PASS_WITH_ERRORID

*UserFunction_ptr QP0L_USER_FUNCTION_PTR

*Function_CtlBlk_ptr NULL

Figure: Results of a call

Exit Program Call Count Object Name Pointer

1 /a/b

2 /a/x

3 /a/t

4 /a/c

5 /a

6 NULL path name (indicates the API completed)

Scenario 3

This scenario assumes processing a directory as shown by Directory Structure B in the Figure above.

This scenario represents a call to the API with an inclusion list. Note that the Path Name parameter is not
used as the starting directory since each entry in an inclusion list is treated as a starting directory.

If the API call were coded with the parameter values as shown by Input value in Scenario 3 API Input, the
exit program would be called six times and would pass the object names as shown by the Object Name

Pointer in Results of a call.

Note that /a/b/c/d/v could be returned before /a/b/c/d/u, as shown in this scenario, since children in a
directory can be returned in any order. The only guaranteed order is that the exit program is called with all
children objects before being called with the parent to allow the exit program to delete directories if desired.

Figure: Scenario 3 API Input

Input Parameter Input value

*Path_Name NULL (not used with an inclusion list)

Subtree_level QP0L_SUBTREE_YES

*Objtypes_array_ptr '*DIR ' '*STMF '

Local_remote_obj QP0L_LOCAL_OBJ

*IN_EXclusion_ptr QP0L_INCLUSION_TYPE, '/a/b/c/d/' '/a/b/c/e/'

Err_recovery_action QP0L_PASS_WITH_ERRORID

*UserFunction_ptr QP0L_USER_FUNCTION_PTR

*Function_CtlBlk_ptr NULL

Figure: Results of a call

Exit Program Call Count Object Name Pointer

1 /a/b/c/d/v

2 /a/b/c/d/u

3 /a/b/c/d

4 /a/b/c/e/w

5 /a/b/c/e/

6 NULL path name (indicates the API completed)

Scenario 4

This scenario assumes processing a directory as shown by Directory Structure B in the Figure above.

This scenario represents a call to the API with an exclusion list. Note that each relative entry in the
exclusion list is resolved relative to the current working directory at the time the API is called. This
scenario assumes that the current working directory is /a/b/.

If the API call were coded with the parameter values as shown by Input value in Scenario 4 API Input, the
exit program would be called eight times and would pass the object names as shown by the Object Name
Pointer in Results of a call.

This scenario also shows that children in a directory can be returned in any order. The only guaranteed
order is that the exit program is called with all children objects before being called with the parent to allow
the exit program to delete directories if desired.

Figure: Scenario 4 API Input

Input Parameter Input value

*Path_Name '/a/b/'

Subtree_level QP0L_SUBTREE_YES

*Objtypes_array_ptr '*DIR ' '*STMF '

Local_remote_obj QP0L_LOCAL_OBJ

*IN_EXclusion_ptr QP0L_EXCLUSION_TYPE, 'c/d/' 'c/e/'

Err_recovery_action QP0L_PASS_WITH_ERRORID

*UserFunction_ptr QP0L_USER_FUNCTION_PTR

*Function_CtlBlk_ptr NULL

Figure: Results of a call

Exit Program Call Count Object Name Pointer

1 /a/b/t

2 /a/b/c/y

3 /a/b/c/f/z

4 /a/b/c/f

5 /a/b/c/x

6 /a/b/c

7 /a/b

8 NULL path name (indicates the API completed)

Related Information

The <Qp0lstdi.h> file (see Header Files for UNIX-Type Functions)●

The <qlg.h> file (see Header Files for UNIX-Type Functions)●

QlgProcessSubtree()--Process a Path Name (using NLS-enabled path name)●

 Process a Path Name Exit Program ●

Example

See Code disclaimer information for information pertaining to code examples.

Following is a code example showing a call to the Qp0lProcessSubtree() API with a procedure as the exit
program:

/***/
/***/

#include <Qp0lstdi.h>
#include <stdio.h>
#include <errno.h>
#include <qtqiconv.h>

void Obj_Print_Function
 (uint *Selection_status_pointer,
 uint *Error_value_pointer,
 uint *Return_value_pointer,
 Qlg_Path_Name_T *Object_name_pointer,
 void *Function_control_block_pointer)
{
 /**/
 /* This exit program example prints the names, one at a time, */
 /* of each entry in a directory structure that it receives on */
 /* each call from Qp0lProcessSubtree(). */
 /**/

 #define PATH_TYPE_POINTER 0x00000001 /* If this flag is on, */
 /* the qlg structure contains a */
 /* pointer to the path name. */
 /* Otherwise, the path name is in */
 /* contiguous storage within the */
 /* qlg structure. */

 typedef union pn_input_type
 {
 char pn_char_type[256]; /* path name is in */
 /* contiguous storage */
 char *pn_ptr_type; /* path name is a pointer */
 };
typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 union pn_input_type pn;
 };
 struct pnstruct *pns;
 char *path_ptr;

 size_t insz;
 size_t outsz = 1000;
 char outbuf[1000];
 char *outbuf_ptr;
 iconv_t cd;
 size_t ret_iconv;

 QtqCode_T toCode = {37,0,0,0,0,0};
 QtqCode_T fromCode = {61952,0,0,1,0,0};

 if (*Selection_status_pointer == QP0L_SELECT_OK)
 {
 if (Object_name_pointer != NULL)
 {
 /**/
 /* Point to the pathname and get the size of the pathname */
 /* that was sent from the Qp0lProcessSubtree() API. The */
 /* format of the pathname must be determined by evaluating */
 /* Path_Type in the qlg structure. */
 /**/
 pns = (struct pnstruct *)Object_name_pointer;
 if (Object_name_pointer->Path_Type & PATH_TYPE_POINTER)
 {
 path_ptr = pns->pn.pn_ptr_type;
 }
 else
 {
 path_ptr = (char *)(pns->pn.pn_char_type);
 }
 insz = pns->qlg_struct.Path_Length;

 /**/
 /* Initialize the print buffer. */
 /**/
 outbuf_ptr = (char *)outbuf;
 memset(outbuf_ptr, 0x00, insz);

 /**/
 /* Use iconv to convert from 61952 to the job CCSID. */
 /* REMEMBER iconv will change the data that it receives. */
 /**/

 cd = /* Open the conversion descriptor.*/
 QtqIconvOpen(&toCode,
 &fromCode);
 if (cd.return_value == -1)
 {
 /***/
 /* If conversion descriptor was not opened successfully, */
 /* return an error and errno (ECONVERT) to the API. */
 /***/
 *Return_value_pointer = errno;
 return;
 }

 ret_iconv = /* Perform the conversion.*/
 (iconv(cd,
 (char **)&(path_ptr),
 &insz,
 (char **)&(outbuf_ptr),
 &outsz));
 if (ret_iconv != 0)
 {
 /***/
 /* If the conversion failed, close the conversion */
 /* descriptor and return an error and errno (ECONVERT) */
 /* to the API. */
 /***/
 ret_iconv= iconv_close(cd);
 *Return_value_pointer = errno;
 return;
 }

 /**/
 /* Print the name of the object being processed and close */
 /* the conversion descriptor. */
 /**/
 printf("In User Exit Program. Path is %s.\n", outbuf);
 ret_iconv = iconv_close(cd);

 } /* end Object_name_pointer != NULL */
 else
 {
 printf"In User Exit Program with a null Pathname \n");
 }
 } /* end *Selection_status_pointer == QP0L_SELECT_OK */

 *Return_value_pointer = 0;

} /* end Exit program */

int main (int argc, char *argv[])
 {
 #define MYPN "/TestDir"
 const int zero = 0;
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2]= "/";
 const char LibObj_const[12]= "*LIB ";
 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[50]; /* Must be greater than */
 /* or equal the length */
 /* of the path name. */
 };
 struct pnstruct pns;
 Qp0l_Objtypes_List_t MyObj_types;
 Qp0l_User_Function_t User_function;
 struct
 {
 uint AnyData_to_the_exitprogram;
 uint AnyData_not_processed_by_the_API;
 } CtlBlkAreaName;

 int rc;
 /***/
 /* In this example, the pathname is defined by MYPN as TestDir */
 /* and it is assumed that the TestDir directory exists on the */
 /* system. Various other functions or other routines could be */
 /* included here to (for example): */
 /* 1) determine the beginning search directory. */
 /* 2) construct the path name in the correct format. */
 /* 3) others... */
 /***/

 /***/
 /***/
 /* Initialize Qp0lProcessSubtree() API Parameters */
 /***/
 memset((void*)&pns, 0x00, sizeof(struct pnstruct));
 pns.qlg_struct.CCSID = 37;
 memcpy(pns.qlg_struct.Country_ID,US_const,2);
 memcpy(pns.qlg_struct.Language_ID,Language_const,3);
 pns.qlg_struct.Path_Type = zero;
 pns.qlg_struct.Path_Length = sizeof(MYPN)-1;
 memcpy(pns.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);
 memcpy(pns.pn,MYPN,sizeof(MYPN));
 MyObj_types.Number_Of_Objtypes = zero;
 memset((void *)&User_function, 0x00, sizeof(Qp0l_User_Function_t));
 User_function.Function_Type = QP0L_USER_FUNCTION_PTR;
 User_function.Mltthdacn[0] = QP0L_MLTTHDACN_NOMSG;
 User_function.Procedure = &Obj_Print_Function;

 if (rc = Qp0lProcessSubtree((Qlg_Path_Name_T *)&pns,
 QP0L_SUBTREE_YES,
 (Qp0l_Objtypes_List_t *)NULL,
 QP0L_LOCAL_REMOTE_OBJ,
 (Qp0l_IN_EXclusion_List_t *)NULL,
 QP0L_PASS_WITH_ERRORID,
 &User_function,
 &CtlBlkAreaName) == 0)
 {
 printf("Qp0lProcessSubtree() Successful : error = %d\n", errno);

 }
 else
 {/*unsuccessful return from Qp0lProcessSubtree() API */
 printf("ERROR on Qp0lProcessSubtree(): error = %d\n", errno);
 perror("Error message");
 }
 } /* end main */

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

Qp0lRenameKeep()--Rename File or Directory,
Keep "new" If It Exists

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lRenameKeep(const char *old, const char *new);

 Threadsafe: Conditional; see Usage Notes.

The Qp0lRenameKeep() function renames a file or a directory specified by old to the name given by new.
The old pointer must specify the name of an existing file or directory. Both old and new must be of the
same type; that is, both directories or both files. old and new must not end in "dot" (.) or "dot-dot" (..).

If new already exists, Qp0lRenameKeep() fails with the [EEXIST] error.

If the old argument points to a symbolic link, the symbolic link is renamed. Qp0lRenameKeep() does not
affect any file or directory named by the contents of the symbolic link. See Usage Notes for more
information.

When Qp0lRenameKeep() is successful, it updates the change and modification times for the parent
directories of old and new.

If the old object is checked out, Qp0lRenameKeep() fails with the [EBUSY] error.

Parameters

old

(Input) A pointer to the null-terminated path name of the file to be renamed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgRenameKeep()--Rename File or Directory, Keep "new" If It Exists (using NLS-enabled
path name) for a description and an example of supplying the old in any CCSID.

new

(Input) A pointer to the null-terminated path name of the new name of the file.

This parameter is assumed to be represented in the CCSID currently in effect for the job. If the
CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job.

The new file name is assumed to be represented in the language and country or region currently in
effect for the job.

See QlgRenameKeep()--Rename File or Directory, Keep "new" If It Exists (using NLS-enabled
path name) for a description and an example of supplying the new in any CCSID.

Authorities

Note: Adopted authority is not used.

Figure 1-57. Authorization Required for Qp0lRenameKeep() (excluding QSYS.LIB, independent
ASP QSYS.LIB, QDLS, and QOPT)

Object Referred to
Authority
Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object *WX EACCES

old object if it is a directory *OBJMGT
+ *W

EACCES

old object if it is not a directory *OBJMGT EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object *WX EACCES

Figure 1-58. Authorization Required for Qp0lRenameKeep() in the QSYS.LIB and independent
ASP QSYS.LIB File Systems

Object Referred to
Authority
Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object if the object is a database file member *OBJMGT EACCES

Parent directory of the parent directory of old object if the object is a database file
member

*UPD EACCES

Parent directory of old object if the object is not a database file member See the
QLIRNMO
API for
details

EACCES

old object if it is a database file member None None

old object if it is not a database file member See the
QLIRNMO
API for
details

EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object See the
QLIRNMO
API for
details

EACCES

Figure 1-59. Authorization Required for Qp0lRenameKeep() in the QDLS File System

Object Referred to
Authority
Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object *CHANGE EACCES

old object *ALL EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object *CHANGE EACCES

Figure 1-60. Authorization Required for Qp0lRenameKeep() in the QOPT File System

Object Referred to
Authority
Required errno

Volume authorization list for volume to be renamed in a media library device *ALL EACCES

Volume authorization list for volume to be renamed in a stand alone device *CHANGE EACCES

Volume authorization list for volume containing object to be renamed *CHANGE EACCES

Root directory (/) of volume to be renamed if volume media format is Universal
Disk Format (UDF)

*RWX EACCES

Each directory in old path name preceding the object to be renamed if volume
media format is Universal Disk Format (UDF)

*X EACCES

Parent directory of old object if volume media format is Universal Disk Format
(UDF)

*WX EACCES

Old object if volume media format is Universal Disk Format (UDF) *W EACCES

Each directory in new path name preceding the object if volume media format is
Universal Disk Format (UDF)

*X EACCES

Parent directory of new object if volume media format is Universal Disk format
(UDF)

*WX EACCES

Object and parent directories if volume media format is not Universal Disk format
(UDF)

None None

Return Value

0

Qp0lRenameKeep() was successful.

-1

Qp0lRenameKeep() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If Qp0lRenameKeep() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. May be returned if the directories
preceding the object to be renamed in the old path name are part of new, or if either name refers to
dot or dot-dot.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory. New is a directory, but old is not a directory.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EMLINK]

Maximum link count for a file was exceeded.

An attempt was made to have the link count of a single file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

old is a directory and the link count of the parent directory of new would exceed LINK_MAX.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

[EXDEV]

Improper link.

A link to a file on another file system was attempted.

old and new identify files or directories in different file systems. Links between different file
systems are not allowed.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

About the Rename Functions

The integrated file system provides two functions that rename a file or directory. Both rename the
old path name to a new path name. The difference is determined by what happens when new
already exists:

2.

If new already exists when using Qp0lRenameKeep(), the rename fails with the [EEXIST]
error.

❍

If new already exists when using Qp0lRenameUnlink(), the existing path name is
unlinked (removed) before old is renamed to new.

❍

These functions are defined in the <Qp0lstdi.h> header file. When <Qp0lstdi.h> is included, the
rename() function is defined to be either Qp0lRenameUnlink() or Qp0lRenameKeep(),
depending on the definitions of the _POSIX_SOURCE and _POSIX1_SOURCE macros:

When _POSIX_SOURCE and _POSIX1_SOURCE are not defined, rename() is defined to
be Qp0lRenameKeep(). Either rename() or Qp0lRenameKeep() can be used to rename a
file or directory with the semantics of Qp0lRenameKeep().

❍

When _POSIX_SOURCE or _POSIX1_SOURCE is defined, rename() is defined to be
Qp0lRenameUnlink(). Either rename() or Qp0lRenameUnlink() can be used to rename a
file or directory with the semantics of Qp0lRenameUnlink().

❍

When the <Qp0lstdi.h> header file is not included, rename() operates only on database files in the
QSYS.LIB and independent ASP QSYS.LIB file systems, as it did before the introduction of
the integrated file system.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

When a database member is being renamed, the part of the new path name preceding the
object must be the same as that of the old path name. That is, the sequence of "directories"
(library and file) preceding the object in the new path name must be the same as the
sequence of directories preceding the object in the old path name.

❍

The following object types cannot be renamed when there are secondary threads active in
the job: *CFGL, *CNNL, *CTLD, *DEVD, *LIND, *NWID. The operation will fail with
error code [ENOTSAFE].

❍

When a library is being renamed, the part of the new path name preceding the object
must be the same as that of the old path name. That is, the sequence of "directories"
(/QSYS.LIB or /asp_name/QSYS.LIB, where asp_name is the independent Auxiliary
Storage Pool name) preceding the object in the new path name must be the same as the
sequence of directories preceding the object in the old path name [EINVAL].

❍

3.

QDLS File System Differences

When a folder is being renamed, the part of the new path name preceding the object must be the
same as that of the old path name. That is, a folder must remain in the same parent folder.

4.

QOPT File System Differences

You can rename only a volume or a file, not a directory.

5.

QFileSvr.400 File System Differences

You cannot rename the first-level directory. For example, you cannot rename Dir1 in the path name
/QFileSvr.400/Dir1/Dir2/Object. The first-level directory identifies the target system in a
communications connection.

6.

QNetWare File System Differences7.

The new and old files or directories must exist on the same NetWare server. This function cannot
be used to move data from one server to another.

QNTC File System Differences

The new and the old files or directories must exist on the same Windows NT server. This function
cannot be used to move data from one server to another.

8.

Root (/) and User-defined File System Differences

If the file being renamed is in the root file system or in a monocase user-defined file system, and
the file system has the *TYPE2 directory format, and both old and new refer to the same link, but
their case is different (eg. /ABC and /Abc), Qp0lRenameUnlink() changes the link name to the new
name.

9.

Related Information

The <stdio.h> file (see Header Files for UNIX-Type Functions)●

The <Qp0lstdi.h> file (see Header Files for UNIX-Type Functions)●

pathconf()--Get Configurable Path Name Variables●

rename()--Rename File or Directory●

QlgRenameKeep()--Rename File or Directory, Keep "new" If It Exists (using NLS-enabled path
name)

●

Qp0lRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists●

Example

When you pass two file names to this example, it will try to change the file name from the first name to the
second using Qp0lRenameKeep().

#include <Qp0lstdi.h>

int main(int argc, char ** argv) {

 if (argc != 3)
 printf("Usage: %s old_fn new_fn\n", argv[0]);
 else if (Qp0lRenameKeep(argv[1], argv[2]) != 0
 perror ("Could not rename file");
}

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

Qp0lRenameUnlink()--Rename File or Directory,
Unlink "new" If It Exists

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lRenameUnlink(const char *old, const char *new);

 Threadsafe: Conditional; see Usage Notes.

The Qp0lRenameUnlink() function renames a file or a directory specified by old to the name given by
new. The old pointer must specify the name of an existing file or directory. Both old and new must be of the
same type; that is, both directories or both files. old and new must not end in "dot" (.) or "dot-dot" (..).

If new already exists, it is removed before old is renamed to new. Therefore, if new specifies the name of an
existing directory, the directory must be empty.

If the old argument points to a symbolic link, the symbolic link is renamed. If the new argument points to a
symbolic link, the link is removed and old is renamed to new. Qp0lRenameUnlink() does not affect any
file or directory named by the contents of the symbolic link.

If old and new both refer to the same file, Qp0lRenameUnlink() returns successfully and performs no
other action. See Usage Notes for more information.

When Qp0lRenameUnlink() is successful, it updates the change and modification times for the parent
directories of old and new.

If the old object is checked out, Qp0lRenameUnlink() fails with the [EBUSY] error.

Parameters

old

(Input) A pointer to the null-terminated path name of the file to be renamed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists (using NLS-enabled
path name) for a description and an example of supplying the old in any CCSID.

new

(Input) A pointer to the null-terminated path name of the new name of the file.

This parameter is assumed to be represented in the CCSID currently in effect for the job. If the
CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job.

The new file name is assumed to be represented in the language and country or region currently in
effect for the process.

See QlgRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists (using NLS-enabled
path name) for a description and an example of supplying the new in any CCSID.

Authorities

Note: Adopted authority is not used.

Figure 1-61. Authorization Required for Qp0lRenameUnlink() (excluding QSYS.LIB, independent
ASP QSYS.LIB, QDLS, and QOPT)

Object Referred to
Authority
Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object *WX EACCES

old object if it is a directory *OBJMGT
+ *W

EACCES

old object if it is not a directory *OBJMGT EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object *WX EACCES

New object, if it exists *OBJEXIST EACCES

Figure 1-62. Authorization Required for Qp0lRenameUnlink() in the QSYS.LIB and independent
ASP QSYS.LIB File Systems

Object Referred to
Authority
Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object if the object is a database file member *OBJMGT EACCES

Parent directory of the parent directory of old object if the object is a database file
member

*UPD EACCES

Parent directory of old object if the object is not a database file member See the
QLIRNMO
API for
details

EACCES

old object if it is a database file member None None

old object if it is not a database file member See the
QLIRNMO
API for
details

EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object See the
QLIRNMO
API for
details

EACCES

Figure 1-63. Authorization Required for Qp0lRenameUnlink() in the QDLS File System

Object Referred to
Authority
Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object *CHANGE EACCES

old object *ALL EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object *CHANGE EACCES

Figure 1-64. Authorization Required for Qp0lRenameUnlink() in the QOPT File System

Object Referred to
Authority
Required errno

Volume to be renamed *ALL EACCES

Volume containing object to be renamed *CHANGE EACCES

Object within volume None None

Return Value

0

Qp0lRenameUnlink() was successful.

-1

Qp0lRenameUnlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If Qp0lRenameUnlink() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. May be returned if the directories
preceding the object to be renamed in the old path name are part of new, or if either name refers to
dot or dot-dot.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory. New is a directory, but old is not a directory.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTEMPTY]

Directory not empty.

You tried to remove a directory that is not empty. A directory cannot contain objects when it is
being removed.

The specified directory is not empty.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EMLINK]

Maximum link count for a file was exceeded.

An attempt was made to have the link count of a single file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

old is a directory and the link count of the parent directory of new would exceed LINK_MAX.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

[EXDEV]

Improper link.

A link to a file on another file system was attempted.

old and new identify files or directories on different file systems. Links between different file
systems are not allowed.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

About the Rename Functions

The integrated file system provides two functions that rename a file or directory. Both rename the
old path name to a new path name. The difference is determined by what happens when new
already exists:

If new already exists when using Qp0lRenameUnlink(), the existing path name is
unlinked (removed) before old is renamed to new.

❍

2.

If new already exists when using Qp0lRenameKeep(), the rename fails with the [EEXIST]
error.

❍

These functions are defined in the <Qp0lstdi.h> header file. When <Qp0lstdi.h> is included, the
rename() function is defined to be either Qp0lRenameUnlink() or Qp0lRenameKeep(),
depending on the definitions of the _POSIX_SOURCE and _POSIX1_SOURCE macros:

When _POSIX_SOURCE or _POSIX1_SOURCE is defined, rename() is defined to be
Qp0lRenameUnlink(). Either rename() or Qp0lRenameUnlink() can be used to rename a
file or directory with the semantics of Qp0lRenameUnlink().

❍

When _POSIX_SOURCE and _POSIX1_SOURCE are not defined, rename() is defined to
be Qp0lRenameKeep(). Either rename() or Qp0lRenameKeep() can be used to rename a
file or directory with the semantics of Qp0lRenameKeep().

❍

When the <Qp0lstdi.h> header file is not included, rename() operates only on database files in the
QSYS.LIB and independent ASP QSYS.LIB file systems, as it did before the introduction of
the integrated file system.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

When a database member is being renamed, the part of the new path name preceding the
object must be the same as that of the old path name. That is, the sequence of "directories"
(library and file) preceding the object in the new path name must be the same as the
sequence of directories preceding the object in the old path name. If new already exists,

[EEXIST] is returned.

❍

The following object types cannot be renamed when there are secondary threads active in
the job: *CFGL, *CNNL, *CTLD, *DEVD, *LIND, *NWID. The operation will fail with
error code [ENOTSAFE].

❍

When a library is being renamed, the part of the new path name preceding the object
must be the same as that of the old path name. That is, the sequence of "directories"
(/QSYS.LIB or /asp_name/QSYS.LIB, where asp_name is the independent Auxiliary
Storage Pool name) preceding the object in the new path name must be the same as the
sequence of directories preceding the object in the old path name.

❍

3.

QDLS File System Differences

When a folder is being renamed, the part of the new path name preceding the object must be the
same as that of the old path name. That is, a folder must remain in the same parent folder.

If the object identified by the new path name exists, QDLS returns the [EEXIST] error.

4.

QOPT File System Differences

You can rename only a volume or a file, not a directory.

If the object identified by the new path name exists, QOPT returns the [EEXIST] error.

5.

QFileSvr.400 File System Differences

You cannot rename the first-level directory. For example, you cannot rename Dir1 in the path name
/QFileSvr.400/Dir1/Dir2/Object. The first-level directory identifies the target system in a
communications connection.

6.

QNetWare File System Differences

The new and old files or directories must exist on the same NetWare server. This function cannot
be used to move data from one server to another.

7.

QNTC File System Differences

The new and the old files or directories must exist on the same Windows NT server. This function
cannot be used to move data from one server to another.

8.

Root (/) and User-defined File System Differences

If the file being renamed is in the root file system or in a monocase user-defined file system, and
the file system has the *TYPE2 directory format, and both old and new refer to the same link, but
their case is different (eg. /ABC and /Abc), Qp0lRenameUnlink() changes the link name to the new
name.

9.

Related Information

The <stdio.h> file (see Header Files for UNIX-Type Functions)●

The <Qp0lstdi.h> file (see Header Files for UNIX-Type Functions)●

pathconf()--Get Configurable Path Name Variables●

rename()--Rename File or Directory●

Qp0lRenameKeep()--Rename File or Directory, Keep "new" If It Exists●

QlgRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists (using NLS-enabled path
name)

●

Example

When you pass two file names to this example, it will try to change the file name from the first name to the
second using Qp0lRenameUnlink().

#include <Qp0lstdi.h>

int main(int argc, char ** argv) {

 if (argc != 3)
 printf("Usage: %s old_fn new_fn\n", argv[0]);
 else if (Qp0lRenameUnlink(argv[1], argv[2]) != 0
 perror ("Could not rename file");
}

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

Retrieve Object References (QP0LROR) API

 Syntax

 #include <qp0lror.h>
 void QP0LROR(
 void * Receiver_Ptr,
 unsigned int Receiver_Length,
 char * Format_Ptr,
 Qlg_Path_Name_T * Path_Ptr,
 void * Error_Code_Ptr
);

 Default Public Authority: *USE

 Threadsafe: Yes

The QP0LROR() API is used to retrieve information about Integrated File System references on an object.

A reference is an individual type of access or lock obtained on the object when using Integrated File System
interfaces. An object may have multiple references concurrently held, provided that the reference types do
not conflict with one another.

This API will not return information about byte range locks that may currently be held on an object.

Parameters

Receiver_Ptr

(Output)

The variable that is to receive the information requested. You can specify the size of this area to be
smaller than the format requested as long as you specify the length parameter correctly. As a result,
the API returns only the data that the area can hold.

The format of the output is described by either the RORO0100 output format or the RORO0200
output format. See RORO0100 Output Format Description or the RORO0200 Output Format
Description for a detailed description of these output formats.

Receiver_Length

(Input)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Format_Ptr

(Input)

Pointer to an 8-byte character string that identifies the desired output format. It must be one of the
following values:

RORO0100 The reference type output will be formatted in a RORO0100 format. See
RORO0100 Output Format Description. This format gives the caller a quick view
of the object's references.

RORO0200 The reference type output will be formatted in a RORO0200 format. See
RORO0200 Output Format Description. Specifying this format may cause
QP0LROR to be a long running operation. The length of time it will take to
complete depends on the number of jobs active on the system, and the number of
jobs currently using objects through Integrated File System interfaces.

Path_Ptr

(Input)

Pointer to the path name to the object whose reference information is to be obtained. The path name
must be specified in an NLS-enabled format specified by the Qlg_Path_Name structure. For more
information on the Qlg_Path_Name_T structure, see Path name format.

If the last element of the path is a symbolic link, the Qp0lROR() function does not resolve the
contents of the symbolic link. The reference information will be obtained for the symbolic link
itself.

Error_Code_Ptr

(Input/Output)

Pointer to an error code structure to receive error information. See Error code parameter for more
information.

Authorities and Locks

Directory Authority

The user must have execute (*X) data authority to each directory preceding the object whose
references are to be obtained.

Object Authority

The user must have read (*R) data authority to the object whose references are to be obtained.

Output Structure Formats

RORO0100 Output Format Description (Qp0l_RORO0100_Output)

This structure is used to return object reference information.

Offset

Type FieldDec Hex

0 0 BINARY(4), UNSIGNED Bytes returned

4 4 BINARY(4), UNSIGNED Bytes available

8 8 BINARY(4), UNSIGNED Offset to simple reference types

12 0C BINARY(4), UNSIGNED Length of simple reference types

16 10 BINARY(4), UNSIGNED Reference count

20 14 BINARY(4), UNSIGNED In-use indicator

Offset determined
from Offset to Simple
Reference Types field

Qp0l_Sim_Ref_Types_Output
Structure

Simple reference types structure. See Simple
object reference types structure description for a
description of this structure.

RORO0200 Output Format Description (Qp0l_RORO0200_Output)

This output format is used to return object reference information, including a list of jobs known to be
referencing the object. This includes everything from the RORO0100 structure plus additional information.

Offset

Type FieldDec Hex

0 0 BINARY(4), UNSIGNED Bytes returned

4 4 BINARY(4), UNSIGNED Bytes available

8 8 BINARY(4), UNSIGNED Reference count

12 0C BINARY(4), UNSIGNED In-use indicator

16 10 BINARY(4), UNSIGNED Offset to simple reference types

20 14 BINARY(4), UNSIGNED Length of simple reference types

24 18 BINARY(4), UNSIGNED Offset to extended reference types

28 1C BINARY(4), UNSIGNED Length of extended reference types

32 20 BINARY(4), UNSIGNED Offset to job list

36 24 BINARY(4), UNSIGNED Jobs returned

40 28 BINARY(4), UNSIGNED Jobs available

Offset determined
from Offset to simple
reference types field

Qp0l_Sim_Ref_Types_Output
Structure

Simple reference types structure. See Simple
object reference types structure description for a
description of this structure.

Offset determined
from the Offset to
Extended Reference
Types field

Qp0l_Ext_Ref_Types_Output
Structure

Extended reference types structure. See Extended
object reference types structure description for a
description of this structure. The reference counts
contained within this structure represent the
number of references for all jobs in the job list.

Offset determined
from Offset to Job
List field

Qp0l_Job_Using_Object
Structure

Referencing job list. The Job using object structure
will be repeated for each job.

Job Using Object Structure Description (Qp0l_Job_Using_Object)

This structure is imbedded within the RORO0200 format. It is used to return information about a job that is
known to be holding a reference on the object.

Offset

Type FieldDec Hex

0 0 BINARY(4), UNSIGNED Displacement to simple reference types

4 4 BINARY(4), UNSIGNED Length of simple reference types

8 8 BINARY(4), UNSIGNED Displacement to extended reference types

12 0C BINARY(4), UNSIGNED Length of extended reference types

16 10 BINARY(4), UNSIGNED Displacement to next job entry

20 14 CHAR(10) Job name

30 1E CHAR(10) Job user

40 28 CHAR(6) Job number

Offset determined
from the
Displacement to
Simple Reference
Types field

Qp0l_Sim_Ref_Types_Output
Structure

Simple reference types structure. See Simple
object reference types structure description for a
description of this structure.

Offset determined
from the
Displacement to
Extended Reference
Types field

Qp0l_Ext_Ref_Types_Output
Structure

Extended reference types structure. See Extended
object reference types structure description for a
description of this structure. The reference counts
contained within this structure represent the
number of references for this specific job.

Simple Object Reference Types Structure Description
(Qp0l_Sim_Ref_Types_Output)

This structure is imbedded within the RORO0100 and RORO0200 formats. It is used to return object
reference type information.

Each binary field reference type will be set to either 0 or a positive value that represents the number of
references for that type. This number will have different meanings depending on the structure it is
imbedded within. When this structure is imbedded within a RORO0100 output, or imbedded within the
header portion of the RORO0200 output, then these values represent the number of known references of
this type. When this structure is imbedded within a specific job list entry, then these values represent the
number of references for that specific type within that specific job itself.

Offset

Type FieldDec Hex

0 0 BINARY(4), UNSIGNED Read only

4 4 BINARY(4), UNSIGNED Write only

8 8 BINARY(4), UNSIGNED Read/write

12 0C BINARY(4), UNSIGNED Execute

16 10 BINARY(4), UNSIGNED Share with readers only

20 14 BINARY(4), UNSIGNED Share with writers only

24 18 BINARY(4), UNSIGNED Share with readers and writers

28 1C BINARY(4), UNSIGNED Share with neither readers nor writers

32 20 BINARY(4), UNSIGNED Attribute lock

36 24 BINARY(4), UNSIGNED Save lock

40 28 BINARY(4), UNSIGNED Internal save lock

44 2C BINARY(4), UNSIGNED Link changes lock

48 30 BINARY(4), UNSIGNED Checked out

52 34 CHAR(10) Checked out user name

62 3E CHAR(2) Reserved (Binary 0)

Extended Object Reference Types Structure Description
(Qp0l_Ext_Ref_Types_Output)

This structure is imbedded within the RORO0200 format. It is used to return object reference type
information.

Each binary field reference type will be set to either 0 or a positive value that represents the number of
references for that type. This number will have different meanings depending on the structure it is
imbedded within. When this structure is imbedded within the header portion of the RORO0200 output, then
these values represent the number of jobs in the job list that contains a reference of this type. When this
structure is imbedded within a specific job list entry, then these values represent the number of references
for that specific type within that specific job itself.

Offset

Type FieldDec Hex

0 0 BINARY(4), UNSIGNED Read only, share with readers only

4 4 BINARY(4), UNSIGNED Read only, share with writers only

8 8 BINARY(4), UNSIGNED Read only, share with readers and writers

12 0C BINARY(4), UNSIGNED Read only, share with neither readers nor writers

16 10 BINARY(4), UNSIGNED Write only, share with readers only

20 14 BINARY(4), UNSIGNED Write only, share with writers only

24 18 BINARY(4), UNSIGNED Write only, share with readers and writers

28 1C BINARY(4), UNSIGNED Write only, share with neither readers nor writers

32 20 BINARY(4), UNSIGNED Read/write, share with readers only

36 24 BINARY(4), UNSIGNED Read/write, share with writers only

40 28 BINARY(4), UNSIGNED Read/write, share with readers and writers

44 2C BINARY(4), UNSIGNED Read/write, share with neither readers nor writers

48 30 BINARY(4), UNSIGNED Execute, share with readers only

52 34 BINARY(4), UNSIGNED Execute, share with writers only

56 38 BINARY(4), UNSIGNED Execute, share with readers and writers

60 3C BINARY(4), UNSIGNED Execute, share with neither readers nor writers

64 40 BINARY(4), UNSIGNED Execute/read, Share with readers only

68 44 BINARY(4), UNSIGNED Execute/read, share with writers only

72 48 BINARY(4), UNSIGNED Execute/read, share with readers and writers

76 4C BINARY(4), UNSIGNED Execute/read, share with neither readers nor
writers

80 50 BINARY(4), UNSIGNED Attribute lock

84 54 BINARY(4), UNSIGNED Save lock

88 58 BINARY(4), UNSIGNED Internal save lock

92 5C BINARY(4), UNSIGNED Link changes lock

96 60 BINARY(4), UNSIGNED Current directory

100 64 BINARY(4), UNSIGNED Root directory

104 68 BINARY(4), UNSIGNED File server reference

108 6C BINARY(4), UNSIGNED File server working directory

112 70 BINARY(4), UNSIGNED Checked out

116 74 CHAR(10) Checked out user name

126 7E CHAR(2) Reserved (Binary 0)

Field Descriptions for RORO0100 and RORO0200 Output
Structures and their Imbedded Structures

Attribute lock. Attribute changes are prevented.

Bytes available. Number of bytes of output data that was available to be returned.

Bytes returned. Number of bytes returned in the output buffer.

Checked out. Indicates whether the object is currently checked out. If it is checked out, then the Checked
Out User Name contains the name of the user who has it checked out.

Checked out user name. Contains the name of the user who has the object checked out, when the Checked
Out field indicates that it is currently checked out. This field is set to blanks (x'40) if the object is not
checked out.

Current directory. The object is a directory that is being used as the current directory of the job.

Displacement to extended reference types. Displacement from the beginning of the structure containing
this field to the beginning of the Extended Reference Types structure. If this field is 0, then no extended
reference types were available to be returned, or not enough space was provided to include any portion of
the Extended Reference Types structure.

Displacement to next job entry. Displacement from the beginning of the structure containing this field to
the beginning of the next Job Using Object structure. If this field is 0, then there are no more jobs in the list,
or not enough space was provided to include any more Job Using Object structures.

Displacement to simple reference types. Displacement from the beginning of the structure containing this
field to the beginning of the Simple Reference Type structure. If this field is 0, then no simple reference
types were available to be returned, or not enough space was provided to include any portion of the Simple
Reference Types structure.

Execute. Execute only access.

Execute, share with readers only. Execute only access. The sharing mode allows sharing with read and
execute access intents only.

Execute, share with readers and writers. Execute only access. The sharing mode allows sharing with
read, execute, and write access intents.

Execute, share with writers only. Execute only access. The sharing mode allows sharing with write access

intents only.

Execute, share with neither readers nor writers. Execute only access. The sharing mode allows sharing
with no other access intents.

Execute/read, share with readers only. Execute and read access. The sharing mode allows sharing with
read and execute access intents only.

Execute/read, share with readers and writers. Execute and read access. The sharing mode allows sharing
with read, execute, and write access intents.

Execute/read, share with writers only. Execute and read access. The sharing mode allows sharing with
write access intents only.

Execute/read, share with neither readers nor writers. Execute and read access. The sharing mode allows
sharing with no other access intents.

Extended reference types structure. This is a Qp0l_Ext_Ref_Types_Output structure containing fields
that indicate different types of references that may be held on an object. Some of these are actually a
grouping of multiple Simple Reference Types that were known to have been specified by the referring
instance. These are not additional references; they are a redefinition of the same references described in the
Simple Reference Types structure.

File server reference. The File Server is holding a generic reference on the object on behalf of a client.

File server working directory. The object is a directory, and the File Server is holding a working directory
reference on it on behalf of a client.

In-use indicator The object is currently in-use. NOTE: This indicator will be set to one of the following
values:

QP0L_OBJECT_NOT_IN_USE (0)

The object is not in use and all of the reference type fields returned are 0.

QP0L_OBJECT_IN_USE (1)

The object is in use. At least one of the reference type fields is greater than 0. This condition may
occur even if the Reference Count field's value is 0.

Internal save lock. The object is being referenced internally during a save operation on a different object.

Job name. Name of the job.

Job number. Number associated with the job.

Job user. User profile associated with the job.

Jobs available. Number of referencing jobs available. This may be greater than the Jobs Returned field
when the caller did not provide enough space to receive all of the job information.

Jobs returned. Number of referencing jobs returned in the job list.

Length of extended reference types. Length of the Extended Reference Types information.

Length of simple reference types. Length of the Simple Reference Types information.

Link changes lock. Changes to links in the directory are prevented.

Offset to extended reference types. Offset from the beginning of the Receiver_Ptr to the beginning of the

Extended Reference Types structure. If this field is 0, then no extended reference types were available to be
returned, or not enough space was provided to include any portion of the Extended Reference Types
structure.

Offset to job list. Offset from the beginning of the Receiver_Ptr to the beginning of the first Job Using
Object structure. If this field is 0, then there are no jobs in the list.

Offset to simple reference types. Offset from the beginning of the Receiver_Ptr to the beginning of the
Simple Reference Type structure. If this field is 0, then no simple reference types were available to be
returned, or not enough space was provided to include any portion of the Simple Reference Types structure.

Read only. Read only access.

Read only, share with readers only. Read only access. The sharing mode allows sharing with read and
execute access intents only.

Read only, share with readers and writers. Read only access. The sharing mode allows sharing with
read, execute, and write access intents.

Read only, share with writers only. Read only access. The sharing mode allows sharing with write access
intents only.

Read only, share with neither readers nor writers. Read only access. The sharing mode allows sharing
with no other access intents.

Read/write. Read and write access.

Read/write, share with readers only. Read and write access. The sharing mode allows sharing with read
and execute access intents only.

Read/write, share with readers and writers. Read and write access. The sharing mode allows sharing
with read, execute, and write access intents.

Read/write, share with writers only. Read and write access. The sharing mode allows sharing with write
access intents only.

Read/write, share with neither readers nor writers. Read and write access. The sharing mode allows
sharing with no other access intents.

Reference count. Current number of references on the object. NOTE: This may be 0 even though the
In-Use Indicator indicates that the object is in use.

Referencing job list. Variable length list of Qp0l_Job_Using_Object structures for jobs that are currently
referencing the object.

Root directory. The object is a directory that is being used as the root directory of the job.

Save lock. The object is being referenced by an object save operation.

Share with readers only. The sharing mode allows sharing with read and execute access intents only.

Share with readers and writers. The sharing mode allows sharing with read, execute, and write access
intents.

Share with writers only. The sharing mode allows sharing with write access intents only.

Share with neither readers nor writers. The sharing mode allows sharing with no other access intents.

Simple reference types structure. This is a Qp0l_Sim_Ref_Types_Output structure containing fields that
indicate different types of references that may be held on an object.

Write only. Write only access.

Write only, share with readers only. Write only access. The sharing mode allows sharing with read and
execute access intents only.

Write only, share with readers and writers. Write only access. The sharing mode allows sharing with
read, execute, and write access intents.

Write only, share with writers only. Write only access. The sharing mode allows sharing with write
access intents only.

Write only, share with neither readers nor writers. Write only access. The sharing mode allows sharing
with no other access intents.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

Since both available formats are variable length, following are the recommended minimum lengths
pertaining to their corresponding formats:

RORO0100: The size of a RORO0100 Output structure plus the size of a Simple Reference
Types structure.

❍

RORO0200: This structure varies dynamically, and therefore there is no formula that can
yield a size large enough to always retrieve all of the available information. However,
programs may consider first calling QP0LROR with the RORO0100 format. This will
quickly return the number of references currently on the object. Then the program could
allocate a buffer equal in size to: size of a Job Using Object structure (including the size of
both the Simple and Extended Reference Type structures) multiplied by the number of
references, and then add the sizes of a RORO0100 output, RORO0200 output, and Simple
Reference Types structures. Now the program could call QP0LROR with the RORO0200
format requested and the computed size.

If the RORO0200 format was specified, but there was not enough space provided to

❍

1.

receive a complete list of job information, then only those job entries that completely fit in
the buffer will be returned. The RORO0200 output structure contains a field called
JobsAvailable that will always contain the total number of referencing jobs that were
available for returning to the caller at that instance in time.

Notes

There are no locks obtained on the object while this API is running. Therefore, when this
API is used on an object that is actively in use (for example, its lock and reference state is
changing while this API is running), some fields in the returned information may be
inconsistent with other fields returned on the same invocation of QP0LROR.

❍

The number of references on the object may change between multiple calls to this API.
Therefore, the above formula for calculating output buffer size for a RORO0200 format
may not be enough space under all conditions.

❍

There are some reference types that are obtained on the object without incrementing the
object's reference count. This could result in a reference count of zero while the object
contains reference types. In this instance, the above formula for calculating output buffer
size for a RORO0200 format may not be enough space.

❍

The list of simple object reference types in the base portions of the RORO0100 and RORO0200
output structures may not contain complete information for objects residing in file systems other
than the Root ('/'), QOpenSys, and User-defined file systems. The simple reference types will,
however, be set in the job array elements in the RORO0200 output structure for any file system.

2.

The list of object reference types in the RORO0200 output formats may be an incomplete list of
references for objects residing in file systems other than the Root ('/'), QOpenSys, and User-defined
file systems. Objects in some of the other file systems can be locked with interfaces that do not use
the Integrated File System. Therefore, references returned by this API will only be references that
were obtained as part of an Integrated File System operation, or an operation that cause the
Integrated File System operation to occur.

3.

Under some circumstances, the list of jobs that are referencing the object may be incomplete.
However, jobs not listed in the job list may still have their references listed in the RORO0100
output. This occurs when system programs obtain references directly on an object without
obtaining an open descriptor for the object.

4.

At some instances during the save or restore of an Integrated File System object, the object may
have references held by the job even though its reference count is 0.

5.

File systems that access remote objects, such as Network File System (NFS) and the QFileSvr.400
file systems, will only be returning references that are locally obtained on the object. Any
references that the remote system may have on the remote object are not returned by this API.

6.

This type of reference information is also viewable through the iSeries Navigator application. The
terminology, however, differs in that iSeries Navigator refers to this type of information as "Usage"
information instead of "Reference" information.

7.

Related Information

The <qp0lror.h> file (see Header Files for UNIX-Type Functions)●

Example

The following is an example use of this API.

See Code disclaimer information for information pertaining to code examples.

#include <qp0lror.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main()
{
 struct PathNameStruct
 {
 Qlg_Path_Name_T header;
 char p[50];
 };

 struct PathNameStruct path;

 char pathName[] = "/CustomerData";

 Qus_EC_t errorCode;

 /* Define a constant for the number of output buffer bytes
 provided for the RORO0100 format. */
#define OUTPUT_BYTES_RORO0100 \
 (sizeof(Qp0l_RORO0100_Output_T) + \
 sizeof(Qp0l_Sim_Ref_Types_Output_T) + \
 100) /* Pad space for potential gap between
 the 2 structures. */

 /* Declare some space for the RORO0100 output. */
 char output100Buf[OUTPUT_BYTES_RORO0100];

 /* Declare a pointer for retrieving the RORO0100 format. */
 Qp0l_RORO0100_Output_T *output100P;

 /* Declare a pointer to retrieve the RORO0200 format. */
 Qp0l_RORO0200_Output_T *output200P;

 /* Declare a job using object pointer. */
 Qp0l_Job_Using_Object_T *jobP;

 unsigned outputBufSize;

 /* Set output buffer pointer and length for retrieving the
 RORO0100 format. */

 output100P = (Qp0l_RORO0100_Output_T *)output100Buf;

 /* Setup the object's path name structure. */
 memset(&path, 0, sizeof(path));
 path.header.CCSID = 37;
 memcpy(path.header.Country_ID,"US",2);
 memcpy(path.header.Language_ID,"ENU",3);
 path.header.Path_Type = QLG_CHAR_SINGLE;
 path.header.Path_Length = strlen(pathName);
 path.header.Path_Name_Delimiter[0] = '/';
 memcpy(path.p, pathName, path.header.Path_Length);

 /* Setup the error code structure to cause the error to be
 returned within the error structure. */
 errorCode.Bytes_Provided = sizeof(errorCode);
 errorCode.Bytes_Available = 0;

 /* First call QP0LROR to get the short format. We will
 use that information about references to conditionally
 allocate more space and then get the longer
 running format's information. */
 QP0LROR(output100P,
 OUTPUT_BYTES_RORO0100,
 QP0LROR_RORO0100_FORMAT,
 (Qlg_Path_Name_T *) &path,
 &errorCode);

 /* Check if an error occurred. */
 if (errorCode.Bytes_Available != 0)
 {
 printf("Error occurred for RORO0100.\n");
 return;
 }

 /* Check if we received any references that might be
 associated with a job. If not, return. */
 if (output100P->Count == 0)
 {
 printf("QP0LROR returned a reference count of %d\n",
 output100P->Count);
 return;
 }

 /* If we get here, then we have at least 1 reference that
 may be identifiable to a job. We will call the
 QP0LROR API to get the RORO0200 format. First we
 compute a buffer size to use. Note: this calculation
 sums up the sizes of all structures contained within
 the RORO0200 format, but doesn't consider gaps between
 each of the structure. To attempt to cover potential
 gaps between structures, an extra 1000 bytes is being
 allocated and room for 10 additional jobs. */
 outputBufSize =
 sizeof(Qp0l_RORO0200_Output_T) +
 sizeof(Qp0l_Sim_Ref_Types_Output_T) +
 sizeof(Qp0l_Ext_Ref_Types_Output_T) +
 ((output100P->Count + 10) *

 (sizeof(Qp0l_Job_Using_Object_T) +
 sizeof(Qp0l_Sim_Ref_Types_Output_T) +
 sizeof(Qp0l_Ext_Ref_Types_Output_T)
) + 1000
);

 if (NULL == (output200P =
 (Qp0l_RORO0200_Output_T *)malloc(outputBufSize)))
 {
 printf("No space available.\n");
 return;
 }

 /* Retrieve object references. */
 QP0LROR(output200P,
 outputBufSize,
 QP0LROR_RORO0200_FORMAT,
 (Qlg_Path_Name_T *) &path,
 &errorCode);

 /* Check if an error occurred. */
 if (errorCode.Bytes_Available != 0)
 {
 free(output200P);
 printf("Error occurred for RORO0200.\n");
 return;
 }

 /* If there was more information available than we had
 provided receiver space for, then we will allocate a
 larger buffer and try once again. This could potentially
 keep reoccurring, but this example will stop after this
 second retry. */
 if (output200P->BytesReturned < output200P->BytesAvailable)
 {
 /* Use the bytes available value to determine how much
 more buffer size is needed. We will pad it with an
 extra 1000 bytes to try and handle more jobs obtaining
 references between calls to QP0LROR. */
 outputBufSize = output200P->BytesAvailable + 1000;

 if (NULL == (output200P = (Qp0l_RORO0200_Output_T *)
 realloc((void *)output200P,
 outputBufSize)))
 {
 printf("No space available.\n");
 return;
 }

 QP0LROR(output200P,
 outputBufSize,
 QP0LROR_RORO0200_FORMAT,
 (Qlg_Path_Name_T *) &path,
 &errorCode);

 /* Check if an error occurred. */
 if (errorCode.Bytes_Available != 0)

 {
 free(output200P);
 printf("Error occurred for RORO0200 (2nd call).\n");
 return;
 }
 }

 /* Print some output. */
 printf("Reference count: %d\n",output200P->Count);
 printf("Jobs returned: %d\n",output200P->JobsReturned);

 if (output200P->JobsReturned > 0)
 {
 jobP = (Qp0l_Job_Using_Object_T *)
 ((char *)output200P + output200P->JobsOffset);
 printf("First job's name: %10.10s %10.10s %6.6s",
 jobP->Name,
 jobP->User,
 jobP->Number);
 }

 free(output200P);

 return;
}

Example Output:

Reference count: 1
Jobs returned: 1
First job's name: JOBNAME123 JOBUSER123 123456

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

Qp0lSaveStgFree()--Save Storage Free

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lSaveStgFree(
 Qlg_Path_Name_T *Path_Name,
 Qp0l_StgFree_Function_t *UserFunction_ptr,
 void *Function_CtlBlk_ptr);

 Service Program Name: QP0LLIB3

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Qp0lSaveStgFree() function calls a user-supplied exit program to save OS/400 objects of type *STMF
and, upon successful completion of the exit program, frees the storage for the object and marks the object as
storage freed. The *STMF object and its attributes remain on the system, but the storage occupied by the
*STMF object's data is deleted. The *STMF object cannot be used until it is restored to the system. This is
accomplished by either of the following:

Restoring the object using the RST command.●

Requesting an operation on the object, requiring one of the following, which will dynamically
retrieve (restore) the *STMF object:

Accessing the object's data (open(), creat(), MOV, CPY, CPYFRMSTMF, or
CPYTOSTMF).

❍

Adding a new name to the object (RNM, ADDLNK, link(), rename(),
Qp0lRenameKeep(), or Qp0lRenameUnlink()).

❍

Checking out the object (CHKOUT).❍

●

The restore operation is done by calling a user-provided exit program registered against the Storage
Extension exit point QIBM_QTA_STOR_EX400. For information on this exit point, see the Storage
Extension Exit Program.

Qp0lSaveStgFree() returns EOFFLINE for an object that is already storage freed or returns EBUSY for an
object that is checked out.

The user exit program can be either a procedure or a program.

Parameters

Path_Name

(Input) A pointer to a path name whose last component is the object that is saved and whose storage
is freed. This path name is in the Qlg_Path_Name_T format. For more information on this
structure, see Path name format.

If the last component of the path name supplied on the call to Qp0lSaveStgFree() is a symbolic
link, then Qp0lSaveStgFree() resolves and follows the link to its target and performs its normal
Qp0lSaveStgFree() functions on that target. If the symbolic link refers to an object in a remote file
system, Qp0lSaveStgFree() returns ENOTSUP to the calling program.

UserFunction_ptr

(Input) A pointer to a structure that contains information about the user exit program that the caller
wants Qp0lSaveStgFree() to call to save an *STMF object. This user exit program can be either a
procedure or a program. If this pointer is NULL, Qp0lSaveStgFree() does not call an exit program
to save the object but does free the object's storage and marks it as storage freed.

User Function Pointer

Offset

Type FieldDec Hex

0 0 BINARY(4) Function type flag

14 E CHAR(10) Program library

4 4 CHAR(10) Program name

24 18 CHAR(1) Multithreaded job action

25 19 CHAR(7) Reserved

32 20 PP(*) Procedure pointer to exit procedure

Function type flag. A flag that indicates whether the Save Storage Free exit program called by
Qp0lSaveStgFree() is a procedure or a program. If the exit program is a procedure, this flag is set
to 0, and the procedure pointer to exit procedure field points to the procedure called by
Qp0lSaveStgFree(). If the exit program is a program, this flag is set to 1 and a program name and
program library are provided, respectively, in the program name and program library fields. Valid
values follow:

0 QP0L_USER_FUNCTION_PTR: A user procedure is called.

1 QP0L_USER_FUNCTION_PGM: A user program is called.

Multithreaded job action. (Input) A CHAR(1) value that indicates the action to take in a
multithreaded job. The default value is QP0L_MLTTHDACN_SYSVAL. For release compatibility
and for processing this parameter against the QMLTTHDACN system value, x'00, x'01', x'02', &
x'03' are treated as x'F0', x'F1', x'F2', and x'F3'.

x'00' QP0L_MLTTHDACN_SYSVAL: The API evaluates the QMLTTHDACN system value
to determine the action to take in a multithreaded job. Valid QMLTTHDACN system
values follow:

'1' Call the exit program. Do not send an informational message.

'2' Call the exit program and send informational message CPI3C80.

'3' The exit program is not called when the API determines that it is running in a
multithreaded job. ENOTSAFE is returned.

x'01' QP0L_MLTTHDACN_NOMSG: Call the exit program. Do not send an informational
message.

x'02' QP0L_MLTTHDACN_MSG: Call the exit program and send informational message
CPI3C80.

x'03' QP0L_MLTTHDACN_NO: The exit program is not called when the API determines that
it is running in a multithreaded job. ENOTSAFE is returned.

Procedure pointer to exit procedure. If the function type flag is 0, which indicates that a
procedure is called instead of a program, this field contains a procedure pointer to the procedure
that Qp0lSaveStgFree() calls. This field must be NULL if the function type flag is 1.

Program library. If the function type flag is 1, indicating a program is called, this field contains
the library in which the program being called (identified by the program name field) is located.
This field must be blank if the function type flag is 0.

Program name. If the function type flag is 1, indicating a program is called, this field contains
the name of the program that is called. The program should be located in the library identified by
the program library field. This field must be blank if the function type flag is 0.

Reserved. A reserved field. This field must be set to binary zero.

Function_CtlBlk_ptr

(Input) A pointer to any data that the caller of Qp0lSaveStgFree() wants to have passed to the
user-defined Save Storage Free exit program that Qp0lSaveStgFree() calls to save an *STMF
object. Qp0lSaveStgFree() does not process the data that is referred to by this pointer. The API
passes this pointer as a parameter to the user-defined Save Storage Free exit program that was
specified on its call. This is a means for the caller of Qp0lSaveStgFree() to pass information to and
from the Save Storage Free exit program.

Authorities

The following table shows the authorization required for the Qp0lSaveStgFree() API.

Object Referred to
Authority
Required errno

Each directory, preceding the last component, in a path name *RX EACCES

Object *SAVSYS or *RW EACCES

Any called program pointed to by the UserFunction_ptr parameter *X EACCES

Any library containing the called program pointed to by the
UserFunction_ptr parameter

*X EACCES

Return Value

0 Qp0lSaveStgFree() was successful.

-1 Qp0lSaveStgFree() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If Qp0lSaveStgFree() is not successful, errno indicates one of the following errors:

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOFFLINE]

Object is suspended.

You have attempted to use an object that has had its data saved and the storage associated with it
freed. An attempt to retrieve the object's data failed. The object's data cannot be used until it is
successfully restored. The object's data was saved and freed either by saving the object with the
STG(*FREE) parameter, or by calling an API.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPI3C80 I An exit program has been called for which the threadsafety status was not known.

CPFA0D4 E File system error occurred.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

QOPT■

❍

●

If the Save Storage Free exit program calls the SAV command or the QsrSave function or any
other function that is not threadsafe, and there are secondary threads active in the job,
Qp0lSaveStgFree() may fail as a result.

●

If the Save Storage Free exit program is not threadsafe or uses a function that is not threadsafe, then
Qp0lSaveStgFree() is not threadsafe.

●

Related Information

The <Qp0lstdi.h> file●

QlgSaveStgFree()--Save Storage Free (using NLS-enabled path name)●

Save Storage Free Exit Program●

Example

See Qp0lGetAttr() description for a code example that shows a call to Qp0lSaveStgFree() by using a
procedure as the exit program. This API also shows an example of a call to Qp0lGetAttr().

API introduced: V4R3

Top | Backup and Recovery APIs | UNIX-Type APIs | APIs by category

Qp0lSetAttr()--Set Attributes

 Syntax

 #include <Qp0lstdi.h>
 int Qp0lSetAttr
 (Qlg_Path_Name_T *Path_Name,
 char *Buffer_ptr,
 uint Buffer_Size,
 uint Follow_Symlnk, ...);

 Service Program Name: QP0LLIB3

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Qp0lSetAttr() function sets one of a set of defined attributes, on each call, for the object that is
referred to by the input *Path_Name. The object must exist, the user must have authority to it, and the
attribute must be supported by the file system to which the object belongs. When an attribute is not
supported by the file system, Qp0lSetAttr() will fail with ENOTSUP. See the Usage Notes section for
more information.

If the last component of the Path_Name parameter is a symbolic link, the Qp0lSetAttr() either sets the
attribute of the symbolic link or sets the attribute of the object that the symbolic link names. This depends
on the value of the Follow_Symlnk parameter.

All times that are set by Qp0lSetAttr() are in seconds since the Epoch so that they are consistent with
UNIX-type APIs. The Epoch is the time 0 hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated
Universal Time. If the OS/400 date is set prior to 1970, all time values will be zero.

Parameters

Path_Name

(Input) The path name of the object for which attribute information is set. This path name is in the
Qlg_Path_Name_T format. For more information on this structure, see Path name format.

Buffer_ptr

(Input) A pointer to a buffer containing a constant that identifies the attribute and the value for the
attribute that Qp0lSetAttr() sets. The number of bytes allocated for this buffer is in the Buffer_Size
parameter.

The following table describes the format of the entry in the buffer.

Buffer Pointer

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to next attribute entry

4 4 BINARY(4) Attribute identification

8 8 BINARY(4) Size of attribute data

12 C CHAR(4) Reserved

16 10 CHAR(*) Attribute data

Attribute data. The value to which the attribute is set.

Attribute identification. The constant identifying the attribute being set. Valid values are:

4 QP0L_ATTR_CREATE_TIME: (UNSIGNED (BINARY(4)) The time the object was
created.

5 QP0L_ATTR_ACCESS_TIME: (UNSIGNED (BINARY(4)) The time the object's data
was last accessed.

7 QP0L_ATTR_MODIFY_TIME: (UNSIGNED (BINARY(4)) The time the object's data
was last changed.

17 QP0L_ATTR_PC_READ_ONLY: (CHAR(1)) Whether the object can be written to or
deleted, have its extended attributes changed or deleted, or have its size changed. Valid
values are:

x'00' QP0L_PC_NOT_READONLY: The object can be changed.

x'01' QP0L_PC_READONLY: The object cannot be changed.

18 QP0L_ATTR_PC_HIDDEN: (CHAR(1)) Whether the object can be displayed using an
ordinary directory listing.

x'00' QP0L_PC_NOT_HIDDEN: The object is not hidden.

x'01' QP0L_PC_HIDDEN: The object is hidden.

19 QP0L_ATTR_PC_SYSTEM: (CHAR(1)) Whether the object is a system file and is
excluded from normal directory searches.

x'00' QP0L_PC_NOT_SYSTEM: The object is not a system file.

x'01' QP0L_PC_SYSTEM: The object is a system file.

20 QP0L_ATTR_PC_ARCHIVE: (CHAR(1)) Whether the object has changed since the
last time the file was saved or reset by a PC client.

x'00' QP0L_PC_NOT_CHANGED: The object has not changed.

x'01' QP0L_PC_CHANGED: The object has changed.

21 QP0L_ATTR_SYSTEM_ARCHIVE: (CHAR(1)) Whether the object has changed and
needs to be saved. It is set on when an object's change time is updated, and set off when
the object has been saved.

x'00' QP0L_SYSTEM_NOT_CHANGED: The object has not changed and does not
need to be saved.

x'01' QP0L_SYSTEM_CHANGED: The object has changed and does need to be
saved.

22 QP0L_ATTR_CODEPAGE: (BINARY(4)) The code page used to derive a coded
character set identifier (CCSID) used for the data in the file or the extended attributes of
the directory.

26 QP0L_ATTR_ALWCKPWRT: (CHAR(1)) Whether a stream file (*STMF) can be
shared with readers and writers during the save-while-active checkpoint processing.
Setting this attribute may cause unexpected results. Please refer to the Backup and

Recovery book for details on this attribute.

x'00' QP0L_NOT_ALWCKPWRT: The object can be shared with readers only.

x'01' QP0L_ALWCKPWRT: The object can be shared with readers and writers.

27 QP0L_ATTR_CCSID: (BINARY(4)) The CCSID of the data and extended attributes of
the object.

31 QP0L_ATTR_DISK_STG_OPT (CHAR(1)) Which option should be used to determine
how auxiliary storage is allocated by the system for the specified object. The option will
take effect immediately and be part of the next auxiliary storage allocation for the
object. This option can only be specified for byte stream files in the Root (/), QOpensys
and User-defined file systems. This option will be ignored for *TYPE1 byte stream files.
Valid values are:

x'00' QP0L_STG_NORMAL: The auxiliary storage will be allocated normally.
That is, as additional auxiliary storage is required, it will be allocated in
logically sized extents to accomodate the current space requirement, and
anticipated future requirements, while minimizing the number of disk I/O
operations. If the QP0L_ATTR_DISK_STG_OPT attribute has not been
specified for an object, this value is the default.

x'01' QP0L_STG_MINIMIZE: The auxiliary storage will be allocated to minimize
the space used by the object. That is, as additional auxiliary storage is
required, it will be allocated in small sized extents to accomodate the current
space requirement. Accessing an object composed of many small extents may
increase the number of disk I/O operations for that object.

x'02' QP0L_STG_DYNAMIC: The system will dynamically determine the
optimum auxiliary storage allocation for the object, balancing space used
versus disk I/O operations. For example, if a file has many small extents, yet is
frequently being read and written, then future auxiliary storage allocations will
be larger extents to minimize the number of disk I/O operations. Or, if a file is
frequently truncated, then future auxiliary storage allocations will be small
extents to minimize the space used. Additionally, information will be
maintained on the byte stream file sizes for this system and its activity. This
file size information will also be used to help determine the optimum auxiliary
storage allocations for this object as it relates to the other objects sizes.

32 QP0L_ATTR_MAIN_STG_OPT: (CHAR(1)) Which option should be used to
determine how main storage is allocated and used by the system for the specified object.
The option will take effect the next time the specified object is opened. This option can
only be specified for byte stream files in the Root (/), QOpensys and User-defined file
systems. Valid values are:

x'00' QP0L_STG_NORMAL: The main storage will be allocated normally. That is,
as much main storage as possible will be allocated and used. This minimizes
the number of disk I/O operations since the information is cached in main
storage. If the QP0L_ATTR_MAIN_STG_OPT attribute has not been
specified for an object, this value is the default.

x'01' QP0L_STG_MINIMIZE: The main storage will be allocated to minimize the
space used by the object. That is, as little main storage as possible will be
allocated and used. This minimizes main storage usage while increasing the
number of disk I/O operations since less information is cached in main
storage.

x'02' QP0L_STG_DYNAMIC: The system will dynamically determine the
optimum main storage allocation for the object depending on other system
activity and main storage contention. That is, when there is little main storage
contention, as much storage as possible will be allocated and used to minimize
the number of disk I/O operations. And when there is significant main storage
contention, less main storage will be allocated and used to minimize the main
storage contention.

200 QP0L_ATTR_RESET_DATE: (UNSIGNED (BINARY(2)) The count of the number of
days an object has been used. Usage has different meanings according to the file system
and according to the individual object types supported within a file system. Usage can
indicate the opening or closing of a file or can refer to adding links, renaming, restoring,
or checking out an object. The usage information format is defined in the Qp0lstdi.h
header file as data type Qp0l_Usage_t and is shown in the following table. This attribute
can be set to zero only. An attempt to set to any other value will result in errno
[EINVAL].

When this attribute is set, the date use count reset for the object is set to the current date.

300 QP0L_ATTR_SUID: (CHAR(1)) Set effective user ID (UID) at execution time. This
value is ignored if the specified object is a directory. Valid values are:

x'00' QP0L_SUID_OFF: The user ID (UID) is not set at execution time.

x'01' QP0L_SUID_ON: The object owner is the effective user ID (UID) at
execution time.

301 QP0L_ATTR_SGID: (CHAR(1)) Set effective group ID (GID) at execution time. Valid
values are:

x'00' QP0L_SGID_OFF: If the object is a file, the group ID (GID) is not set at
execution time. If the object is a directory in the Root ('/'), QOpensys, and
user-defined file systems, the group ID (GID) of objects created in the
directory is set to the effective GID of the thread creating the object. This
value cannot be set for other file systems.

x'01' QP0L_SGID_ON: If the object is a file, the group ID (GID) is set at execution
time. If the object is a directory, the group ID (GID) of objects created in the
directory is set to the GID of the parent directory.

Offset to next attribute entry. (Output) This field is not used by the Qp0lSetAttr() function. It is
provided for alignment so that the same buffer format returned from the Qp0lGetAttr() function
can be used as input to the Qp0lSetAttr() function.

Reserved. A reserved field. This field must be set to binary zero.

Size of attribute data. The exact size of the data for this attribute. If this size does not match the
size that the system stores for this attribute, [EINVAL] is returned.

Buffer_Size

(Input) The size in bytes of the buffer pointed to by the Buffer_ptr parameter.

Follow_Symlnk

(Input) If the last component in the *Path_Name is a symbolic link, Qp0lSetAttr() either acts upon
the symbolic link or the path contained in the symbolic link. This depends on the value of the
Follow_Symlnk parameter. Valid values are:

0 QP0L_DONOT_FOLLOW_SYMLNK: A symbolic link in the last component is not
followed. Attributes of the symbolic link object are set.

1 QP0L_FOLLOW_SYMLNK: A symbolic link in the last component is followed. The
attributes of the object contained in the symbolic link are set.

Authorities

Note: Adopted authority is not used.

Authorization Required for Qp0lSetAttr() (excluding QSYS.LIB and independent ASP QSYS.LIB)

Object Referred to
Authority
Required errno

Each directory, preceding the last component, in the path name *X EACCES

Object, when setting the QP0L_ATTR_DAYS_USED_COUNT,
 QP0L_ATTR_ALWCKPWRT, QP0L_ATTR_DIST_STG_OPT

or QP0L_ATTR_MAIN_STG_OPT attribute

*OBJMGT EACCES

Object, when setting the QP0L_ATTR_CREATE_TIME,
QP0L_ATTR_ACCESS_TIME, or
QP0L_ATTR_MODIFY_TIME attribute to the current time

Owner or *W (See
Note)

EACCES

 Object, when setting the QP0L_ATTR_SUID or
QP0l_ATTR_SGID values

Owner (See Note) EACCES

Object, when setting the QP0L_ATTR_CREATE_TIME,
QP0L_ATTR_ACCESS_TIME, or
QP0L_ATTR_MODIFY_TIME attribute to a specific time

*W EPERM

Object, when setting any other attribute *W EACCES

Note: If the file system supports *ALLOBJ special authority and if you have *ALLOBJ special authority,
you do not need the listed object authority.

Authorization Required for Qp0lSetAttr() (QSYS.LIB and independent ASP QSYS.LIB)

Object Referred to
Authority
Required errno

Each directory, preceding the last component, in the path name *X EACCES

Object, when setting the QP0L_ATTR_DAYS_USED_COUNT
attribute and the object type is *FILE

*OBJOPR and
*OBJMGT

EACCES

Object, when setting the QP0L_ATTR_DAYS_USED_COUNT
attribute and the object is a database file member

*X and *OBJMGT EACCES

Object, when setting the QP0L_ATTR_DAYS_USED_COUNT
attribute and the object is neither a *FILE object type nor a
database file member

*OBJMGT EACCES

Return Value

0 The Qp0lSetAttr() API was successful.

-1 The Qp0lSetAttr() API was not successful. The errno global variable is set to indicate the error.

Error Conditions

If the Qp0lSetAttr() API is not successful, errno indicates one of the following errors:

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECANCEL]

Operation canceled.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent auxiliary storage pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOFFLINE]

Object is suspended.

You have attempted to use an object that has had its data saved and the storage associated with it
freed. An attempt to retrieve the object's data failed. The object's data cannot be used until it is
successfully restored. The object's data was saved and freed either by saving the object with the
STG(*FREE) parameter, or by calling an API.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPE3418 E Possible APAR condition or hardware failure.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Root, QOpenSys, and User-Defined File System Differences

The QP0L_ATTR_CREATE_TIME and QP0L_ATTR_DAYS_USED_COUNT attributes are
supported for objects of type *STMF only. Attempts to set them on other objects will result in the
operation failing with errno set to [ENOTSUP].

2.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The following attribute may be set on objects in these file system:

QP0L_ATTR_DAYS_USED_COUNT❍

Attempting to set any other attribute will result in the operation failing with errno set to

3.

[ENOTSUP].

When you set the QP0L_ATTR_DAYS_USED_COUNT attribute of a database file, all members
in that file will have their days used count reset to 0 also.

Network File System Differences

When you set the following attributes on objects in the Network File System, the operation will fail
with the errno set to [ENOTSUP] if the attribute is not set to the following attribute value.

If set, QP0L_ATTR_PC_READ_ONLY must be set to an attribute value of
QP0L_PC_NOT_READ_ONLY.

❍

If set, QP0L_ATTR_PC_HIDDEN must be set to an attribute value of
QP0L_PC_NOT_HIDDEN.

❍

If set, QP0L_ATTR_PC_SYSTEM must be set to an attribute value of
QP0L_PC_NOT_SYSTEM.

❍

If set, QP0L_ATTR_PC_ARCHIVE must be set to an attribute value of
QP0L_PC_NOT_CHANGED; however, if the object is of type *STMF, the attribute value
must be QP0L_PC_CHANGED.

❍

If set, QP0L_ATTR_SYSTEM_ARCHIVE must be set to an attribute value of
QP0L_SYSTEM_NOT_CHANGED.

❍

The QP0L_ATTR_CREATE_TIME, QP0L_ATTR_DAYS_USED_COUNT,
QP0L_ATTR_CODEPAGE, and QP0L_ATTR_CCSID attributes cannot be set on objects within
the Network File System or they will result in the operation failing with errno set to [ENOTSUP].

4.

QNetWare File System Differences

The QNetWare File System does not support setting QP0L_ATTR_SYSTEM_ARCHIVE or
QP0L_ATTR_DAYS_USED_COUNT. If you set any attribute on a NetWare Directory Services
(NDS) object, the operation will fail with errno set to [ENOTSUP].

5.

Related Information

The <Qp0lstdi.h> file (see Header Files for UNIX-Type Functions)●

The <qlg.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

QlgSetAttr()--Set Attributes (using NLS-enabled path name)●

Qp0lGetAttr()--Get Attributes●

Example

The following is an example showing a call to the Qp0lSetAttr() and the Qp0lGetAttr() APIs.

See Code disclaimer information for information pertaining to code examples.

 /***/
#include "Qp0lstdi.h"
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/types.h>

 int GetAttrObject(
 Qlg_Path_Name_T *Pathname_ptr,
 char *Buffer_ptr,
 unsigned int Buffer_size)
 {
 /**/
 /* Local variables */
 /**/
 struct attrStruct
 {
 Qp0l_AttrTypes_List_t attr_struct;
 uint AttrTypes[10];
 };
 struct attrStruct Attr_types_ptr;

 unsigned int buff_size_needed;
 unsigned int num_bytes_returned;
 unsigned int follow_sym;
 int rc;

 /**/
 /* Start of executable code */
 /**/

 /**/
 /* Initialize Get Attributes Parameters */
 /**/
 memset((void *)&Attr_types_ptr, 0x00,sizeof(struct attrStruct));
 Attr_types_ptr.attr_struct.Number_Of_ReqAttrs = 3;
 Attr_types_ptr.AttrTypes[0] = QP0L_ATTR_PC_READ_ONLY;
 Attr_types_ptr.AttrTypes[1] = QP0L_ATTR_PC_HIDDEN;
 Attr_types_ptr.AttrTypes[2] = QP0L_ATTR_CODEPAGE;
 buff_size_needed = 0;
 follow_sym = QP0L_FOLLOW_SYMLNK;

 /**/
 /* Call Qp0lGetAttr() to retrieve attributes. */
 /**/
 rc = Qp0lGetAttr(Pathname_ptr,
 (Qp0l_AttrTypes_List_t *)&Attr_types_ptr,
 Buffer_ptr,
 Buffer_size,

 &buff_size_needed,
 &num_bytes_returned,
 follow_sym);

 if((rc == 0) && /* If successful, but */
 (num_bytes_returned <= 0)) /* Incorrect bytes returned */
 rc = EUNKNOWN; /* Unknown error */

 return(rc);
 } /* End GetAttrObject() */

 int SetAttrObject(
 Qlg_Path_Name_T *Pathname_ptr,
 char *Buffer_ptr,
 unsigned int Buffer_size)
 {

 /**/
 /* Local variables */
 /**/

 unsigned int follow_sym;
 int rc;
 int done = 0;
 unsigned int attrSize;
 Qp0l_Attr_Header_t *attrPtr;

 /**/
 /* Start of executable code */
 /**/

 /**/
 /* Initialize Set Attributes Parameters */
 /**/
 follow_sym = QP0L_FOLLOW_SYMLNK;

 /**/
 /* Qp0lSetAttr() only sets one attribute at a time. The */
 /* buffer from Qp0lGetAttr may contain more than one */
 /* attribute to set. We may have to call Qp0lSetAttr() */
 /* multiple times. The Next_Attr_Offset value is the key. */
 /* If it is greater than zero, then there is another */
 /* attribute in the buffer. Also, it is important to note */
 /* that the value stored there is the offset from the start */
 /* of the buffer, not the offset from the start of the */
 /* current entry. */
 /**/
 attrPtr = (Qp0l_Attr_Header_t *)Buffer_ptr;
 while(!done)
 {
 attrSize = attrPtr->Attr_Size +
 sizeof(Qp0l_Attr_Header_t); /* Calculate attr size */
 /***/
 /* Call Qp0lSetAttr() to set the attribute */
 /***/
 rc=Qp0lSetAttr(Pathname_ptr,

 (char *)attrPtr,
 attrSize,
 follow_sym);
 if(rc != 0) /* If the function failed */
 done = 1; /* End the loop */
 else if(attrPtr->Next_Attr_Offset > 0) /* If more data */
 attrPtr = (Qp0l_Attr_Header_t *) /* Set attribute */
 (Buffer_ptr + attrPtr->Next_Attr_Offset); /* pointer */
 else /* No more data */
 done = 1; /* End the loop */
 }
 return(rc);
 } /* End SetAttrObject() */

 int main (int argc, char *argv[])
 {
 #define MYPN "FRED"
 #define MYPN2 "FRED2"
 /**/
 /* Local variables */
 /**/
 const char US_const[3] = "US";
 const char Language_const[4] = "ENU";
 const char Path_Name_Del_const[2] = "/";

 typedef struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[sizeof(MYPN)];
 } ;

 typedef struct pnstruct2
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[sizeof(MYPN2)];
 } ;

 struct pnstruct pns;
 struct pnstruct2 pns2;
 int rc;

 char BufferArea[250];
 unsigned int buffer_size = 250;

 /**/
 /* Start of executable code */
 /**/

 /**/
 /* Initialize Pathname for original object */
 /**/
 memset((void *)&pns, 0, sizeof(struct pnstruct));
 pns.qlg_struct.CCSID = 37;
 memcpy(pns.qlg_struct.Country_ID,US_const,2);
 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;
 pns.qlg_struct.Path_Type = 0;

 pns.qlg_struct.Path_Length = sizeof(MYPN) - 1;
 memcpy(pns.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);
 memcpy(pns.pn,MYPN,sizeof(MYPN));

 /**/
 /* Call GetAttrObject to retrieve attributes from the source */
 /* object. */
 /**/
 rc = GetAttrObject((Qlg_Path_Name_T *)&pns,
 BufferArea,
 buffer_size);
 if (rc == 0) /* If GetAttr succeeded */
 {
 /**/
 /* Initialize Pathname for target object */
 /**/
 memset((void *)&pns2, 0, sizeof(struct pnstruct2));
 pns2.qlg_struct.CCSID = 37;
 memcpy(pns2.qlg_struct.Country_ID,US_const,2);
 memcpy(pns2.qlg_struct.Language_ID,Language_const,3);;
 pns2.qlg_struct.Path_Type = 0;
 pns2.qlg_struct.Path_Length = sizeof(MYPN2)-1;
 memcpy(pns2.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);
 memcpy(pns2.pn,MYPN2,sizeof(MYPN2));

 /**/
 /* Call SetAttrObject to set attributes on the target */
 /* object. */
 /**/
 rc=SetAttrObject((Qlg_Path_Name_T *)&pns2,
 BufferArea,
 buffer_size);
 if (rc != 0)
 {
 rc = errno; /* return errno from SetAttrObject */
 printf("Qp0lSetAttr() for %s failed with %i.\n",pns2.pn,rc);
 }
 } /* end check GetAttrObject rc */
 else /* GetAttrObject failed */
 {
 rc = errno; /* return errno from GetAttrObject */
 printf("Qp0lGetAttr() for %s failed with %s.\n",pns.pn,rc);
 }
 return(rc);
 } /* end main */

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

Qp0lUnlink()--Remove Link to File

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lUnlink(Qlg_Path_Name_T *Path_Name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes on open() API.

The Qp0lUnlink() function, similar to the unlink() function, removes a directory entry that refers to a file.
Qp0lUnlink()differs from unlink() in that the Path_Name parameter is a pointer to a Qlg_Path_Name_T
structure instead of a pointer to a character string.

For a discussion of the authorities required, return values, and related information, see unlink()--Remove
Link to File.

Parameters

Path_Name

(Input) The path name of the object to be unlinked. This path name is in the Qlg_Path_Name_T
format. For more information on this structure, see Path Name Format.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

unlink()--Remove Link to File●

link()--Create Link to File●

open()--Open File●

close()--Close File or Socket Descriptor●

rmdir()--Remove Directory●

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes a link to a file: This program was stored in a source file with CCSID 37, so
the constant string "newfile" will be compiled in coded character set identifier (CCSID) 37. Therefore, the
country or region and language specified are United States English, and the CCSID specified is 37.

#include <fcntl.h>
#include <stdio.h>
#include <Qp0lstdi.h>

main() {
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 const char Path_Name_Del_const[2] = "/";

 struct pnstruct
 {
 Qlg_Path_Name_T qlg_struct;
 char pn[7];
 };
 struct pnstruct pns;
 struct pnstruct *pns_ptr = NULL;

 char fn[]="unlink.file";

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));
 pns.qlg_struct.CCSID = 37;
 memcpy(pns.qlg_struct.Country_ID,US_const,2);
 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;
 pns.qlg_struct.Path_Type = 0;
 pns.qlg_struct.Path_Length = sizeof(fn)-1;
 memcpy(pns.qlg_struct.Path_Name_Delimiter,
 Path_Name_Del_const,1);
 memcpy(pns.pn,fn,sizeof(fn));
 memset((void *)&Attr_types_ptr, 0x00,
 sizeof(struct attrStruct));
 pns_ptr = &pns;

 if (Qp0lUnlink((Qlg_Path_Name_T *)&pns) != 0)
 perror("Qp0lunlink() error");
}

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

Qp0zPipe()--Create Interprocess Channel with
Sockets

 Syntax

 #include <spawn.h>

 int Qp0zPipe(int fildes[2]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zPipe() function creates a data pipe that can be used by two processes. One end of the pipe is
represented by the file descriptor returned in fildes[0]. The other end of the pipe is represented by the file
descriptor returned in fildes[1]. Data that is written to one end of the pipe can be read from the other end of
the pipe in a first-in-first-out basis. Both ends of the pipe are open for reading and writing.

The Qp0zPipe() function is often used with the spawn() function to allow the parent and child processes to
send data to each other.

Parameters

fildes[2]

(Input) An integer array of size 2 that will contain the pipe descriptors.

Authorities

None.

Return Value

0 Qp0zPipe() was successful.

-1 Qp0zPipe() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zPipe() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected
an address that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf()
function).

[ENFILE] Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

[ENOBUFS] There is not enough buffer space for the requested operation.

[EOPNOTSUPP] Operation not supported.

The operation, though supported in general, is not supported for the requested object
or the requested arguments.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, then retry the operation.

Usage Notes

The OS/400 implementation of the Qp0zPipe()function is based on sockets rather than pipes and, therefore,
uses socket descriptors. There are several differences:

After calling the fstat() function using one of the file descriptors returned on a Qp0zPipe() call,
when the st_mode from the stat structure is passed to the S_ISFIFO() macro, the return value
indicates FALSE. When the st_mode from the stat structure is passed to S_ISSOCK(), the return
value indicates TRUE.

1.

The file descriptors returned on a Qp0zPipe() call can be used with the send(), recv(), sendto(),
recvfrom(), sendmsg(), and recvmsg() functions.

2.

If you want to use the traditional implementation of pipes, in which the descriptors returned are pipe
descriptors instead of socket descriptors, use the pipe() function.

Related Information

The <spawn.h> file (see Header Files for UNIX-Type Functions)●

fstat()--Get File Information by Descriptor●

pipe()--Create an Interprocess Channel●

spawn()--Spawn Process●

socketpair()--Create a Pair of Sockets●

stat()--Get File Information●

API introduced: V4R1

Top | UNIX-Type APIs | APIs by category

qsygetgroups()--Get Supplemental Group IDs

 Syntax

 #include <qsysetid.h>

 int qsygetgroups(int gidsetsize, gid_t grouplist[])

 Threadsafe: No

If the gidsetsize argument is zero, qsygetgroups() returns the number of supplemental group IDs associated
with the calling thread without modifying the array pointed to by the grouplist argument. Otherwise,
qsygetgroups() fills in the array grouplist with the supplementary group IDs of the calling thread and
returns the actual number of group IDs stored. The values of array entries with indexes larger than or equal
to the returned value are undefined.

Parameters

gidsetsize

(Input) The number of elements in the supplied array grouplist.

grouplist

(Output) The supplementary group IDs.

Authorities

No authorization is required.

Return Value

0 or > 0 qsygetgroups() was successful. If the gidsetsize argument is 0, the number of supplementary
group IDs is returned. If gidsetsize is greater than 0, the array grouplist is filled with the
supplementary group IDs of the calling thread and the return value represents the actual
number of group IDs stored.

-1 qsygetgroups() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If qsygetgroups() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EINVAL] The gidsetsize argument is not equal to zero and is less than the number of group IDs.

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

qsysetegid()--Set Effective Group ID

 Syntax

 #include <qsysetid.h>

 int qsysetegid(gid_t gid);

 Threadsafe: Yes

If gid is equal to either the real, effective, saved group ID, or one of the groups in the supplemental group
list, qsysetegid() sets the effective group ID to gid.

If gid is not equal to any of the current groups, but the thread has *USE authority to the user profile
associated with the gid, qsysetegid() sets the effective group ID to gid.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user ID,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

gid

(Input) Group ID.

This field must contain one of the following values:

0

There is no effective group ID.

1 to 4294967294

The group ID value for the set operation.

Authorities and Locks

User profile associated with uid authority

*USE authority is required to the user profile associated with gid if gid is not equal to the real,
effective, saved group IDs or one of the groups in the supplemental group list.

User profile associated with uid lock

*SHRRD

Return Value

0

qsysetegid() was successful.

-1

qsysetegid() was not successful. errno is set to indicate the error.

Error Conditions

If qsysetegid() is not successful, errno indicates one of the following errors.

[EAGAIN]

User profile associated with the gid is locked. Try again.

[EINVAL]

The value of the gid argument is invalid. Following are possible reasons:

Out of range.❍

Not associated with a user profile.❍

[EDAMAGE]

The user profile associated with the gid or an internal system object is damaged.

[ENOTSUP]

Operation not supported. The current effective user profile specifies OWNER(*GRPPRF), but the
group profile associated with this gid is not equal to the user profile's first group and the user's first
group is not in the list of supplemental groups.

[EPERM]

Operation not permitted. Following are possible reasons:

The thread does not have *USE authority to the user profile associated with the gid and the
gid to be set is not the same as the real, effective, saved group IDs or any of the
supplemental groups.

❍

gid cannot be set to 0 if there are supplemental groups.❍

[EUNKNOWN]

An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs | APIs by category

qsyseteuid()--Set Effective User ID

 Syntax

 #include <qsysetid.h>

 int qsyseteuid(uid_t uid);

 Threadsafe: Yes

If uid is equal to the real, effective, or saved user ID, qsyseteuid() sets the effective user ID to uid.

If uid is not equal to the real, effective, or saved user ID, but the thread has *USE authority to the user
profile associated with uid, qsyseteuid() sets the effective user ID to uid.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user ID,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

uid

(Input) User ID.

This field must contain one of the following values:

0 to 4294967294

The user ID value for the set operation.

Authorities and Locks

User profile associated with uid authority

*USE authority is required to the user profile associated with uid if uid is not equal to the real,
effective or saved user IDs.

User profile associated with uid lock

*SHRRD

Return Value

0

qsyseteuid() was successful.

-1

qsyseteuid() was not successful. errno is set to indicate the error.

Error Conditions

If qsyseteuid() is not successful, errno indicates one of the following errors.

[EAGAIN]

User profile associated with the uid is locked. Try again.

[EDAMAGE]

The user profile associated with the uid or an internal system object is damaged.

[EINVAL]

The value of the uid argument is invalid. Following are possible reasons:

Out of range.❍

Not associated with a user profile.❍

[ENOTSUP]

Operation not supported. The user profile associated with this uid specifies OWNER(*GRPPRF),
but the user profile's first group is not the current effective group, nor is it in the list of
supplemental groups.

[EPERM]

Operation not permitted. The thread does not have *USE authority to the user profile and the uid to
be set is not the same as the real, effective, or saved user IDs.

[EUNKNOWN]

An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs | APIs by category

qsysetgid()--Set Group ID

 Syntax

 #include <qsysetid.h>

 int qsysetgid(gid_t gid);

 Threadsafe: Yes

If the thread has *ALLOBJ special authority, qsysetgid() sets the real, effective and saved groups to gid.

If the thread does not have *ALLOBJ special authority, but gid is equal to the real, effective or saved group
IDs, the qsysetgid() function sets the effective group ID to gid. The real group and saved group IDs remain
unchanged.

Any supplementary group IDs of the calling thread remain unchanged.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user ID,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

gid

(Input) Group ID.

This field must contain one of the following values:

0

There is no group ID. The effective group ID can be set to 0 only if there are no
supplemental groups.

1 to 4294967294

The group ID value for the set operation.

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority is required if gid is not equal to the real, effective or saved group ID.

User profile associated with gid lock

*SHRRD

Return Value

0

qsysetgid() was successful.

-1

qsysetgid() was not successful. errno is set to indicate the error.

Error Conditions

If qsysetgid() is not successful, errno indicates one of the following errors.

[EAGAIN]

User profile associated with the gid is locked. Try again.

[EDAMAGE]

The user profile associated with the gid or an internal system object is damaged.

[EINVAL]

The value of the gid argument is invalid. Following are possible reasons:

Out of range.❍

Not associated with a user profile.❍

[ENOTSUP]

Operation not supported. The current effective user profile specifies OWNER(*GRPPRF), but the
group profile associated with this gid is not equal to the user profile's first group and the user's first
group is not in the list of supplemental groups.

[EPERM]

Operation not permitted. Following are possible reasons:

The thread does not have *ALLOBJ special authority and gid is not the same as the real,
effective or saved group ID.

❍

Tried to set effective group ID to 0 when there are supplemental groups.❍

[EUNKNOWN]

An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs | APIs by category

qsysetgroups()--Set Supplemental Group IDs

 Syntax

 #include <qsysetid.h>

 int qsysetgroups(int gidsetsize, gid_t grouplist[])

 Threadsafe: No

The qsysetgroups API sets the supplementary group IDs of the calling thread. The qsysetgroups API cannot
set more than (NGROUPS_MAX-1) groups in the group set.

Parameters

gidsetsize

(Input) The number of elements in the supplied array grouplist.

grouplist

(Input) The supplementary group IDs.

Authorities and locks

User profile associated with gid Authority

*USE authority is required to the user profile associated with each gid in the group list if the gid is
not equal to the current thread's real, effective, or saved group IDs or one of the groups in the
current thread's supplemental group list.

User profile associated with each gid Lock

*SHRRD

Return Value

0 qsysetgroups() was successful.

-1 qsysetgroups() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If qsysetgroups() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]

User profile associated with a gid is locked. Try again.

[EDAMAGE]

The user profile associated with a gid or an internal system object is damaged.

[EINVAL]

One of the GID values in the grouplist argument is not valid. Following are possible reasons:

Out of range.❍

Not associated with a user profile.❍

gidsetsize too large.❍

[ENOTSUP]

Operation not supported. The current effective user profile specifies OWNER(*GRPPRF), but the
user's first group is not equal to the current effective group profile and the user's first group is not in
this list of supplemental groups.

[EPERM]

Operation not permitted. Following are possible reasons:

The thread does not have *USE authority to the user profile associated with the GID and
the GID to be set is not the same as the real, effective, saved group IDs or any of the
supplemental groups.

❍

Supplemental groups cannot be set if effective GID is 0.❍

[EUNKNOWN]

An unknown error has occurred. Check the joblog for error messages.

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

qsysetregid()--Set Real and Effective Group IDs

 Syntax

 #include <qsysetids.h>

 int qsysetregid(gid_t rgid, gid_t egid);

 Threadsafe: Yes

The qsysetregid() function is used to set the real and effective group IDs. The real and effective group IDs
may be set to different values in the same call.

A thread with *ALLOBJ special authority can set the real group ID and the effective group ID to any valid
value.

A thread without *ALLOBJ special authority can only set the real group ID to the saved group ID. A thread
without *ALLOBJ special authority can only set the effective group ID to the saved group ID or the real
group ID.

Any supplemental group IDs remain unchanged.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user ID,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

real gid

(Input) Group ID.

This field must contain one of the following values:

0

There is no real group ID.

1 to 4294967294

The group ID value for the set operation.

4294967295

The real group ID does not change. This value is the same as X'FFFFFFFF' or -1 in
languages that do not support unsigned integers.

effective gid

(Input) Group ID.

This field must contain one of the following values:

0

There is no effective group ID.

1 to 4294967294

The group ID value for the set operation.

4294967295

The effective group ID does not change. This value is the same as X'FFFFFFFF' or -1 in
languages that do not support unsigned integers.

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority is required to change the real group ID if rgid is not equal to the saved
group ID. *ALLOBJ special authority is required to set the effective group ID if the egid is not
equal to the real group ID or the saved group ID.

User profile associated with rgid lock

*SHRRD

User profile associated with egid lock

*SHRRD

Return Value

0

qsysetregid() was successful.

-1

qsysetregid() was not successful. The errno is set to indicate the error.

Error Conditions

If qsysetregid() is not successful, errno indicates one of the following errors.

[EAGAIN]

User profile associated with the rgid or rgid is locked. Try again.

[EDAMAGE]

The user profile associated with one of the gids or an internal system object is damaged.

[EINVAL]

The value of the gid argument is invalid. Following are possible reasons:

Out of range.❍

Not associated with a user profile.❍

[ENOTSUP]

Operation not supported. The current effective user profile specifies OWNER(*GRPPRF), but the
group profile associated with this gid is not equal to the user profile's first group and the user's first
group is not in the list of supplemental groups.

[EPERM]

Operation not permitted. Following are possible reasons:

The thread does not have *ALLOBJ special authority and a change other than changing the
real group ID to the saved group ID, or changing the effective group ID to the real group
ID or the saved group ID was requested.

❍

Tried to set effective group ID to 0 when there are supplemental groups.❍

[EUNKNOWN]

An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs | APIs by category

qsysetreuid()--Set Real and Effective User IDs

 Syntax

 int qsysetreuid(uid_t ruid, uid_t euid);

 Threadsafe: Yes

The qsysetreuid() function sets the real and effective user IDs to the values specified by ruid and euid.

A thread with *ALLOBJ special authority can set either ID to any value.

A thread without *ALLOBJ special authority can only set the effective user ID if the euid argument is equal
to the real, effective, or saved user ID.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user ID,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

real uid

(Input) User ID.

This field must contain one of the following values:

0 to 4294967294

The user ID value for the set operation.

4294967295

The real user ID does not change. This value is the same as X'FFFFFFFF' or -1 in
languages that do not support unsigned integers.

effective uid

(Input) User ID.

This field must contain one of the following values:

0 to 4294967294

The user ID value for the set operation.

4294967295

The effective user ID does not change. This value is the same as X'FFFFFFFF' or -1 in
languages that do not support unsigned integers.

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority is required to change the real user ID. *ALLOBJ special authorty is
required to change the effective user ID if the euid is not equal to the real, effective, or saved user
ID.

User profile associated with euid lock

*SHRRD

User profile associated with ruid lock

*SHRRD

Return Value

0

qsysetreuid() was successful.

-1

qsysetreuid() was not successful. The errno variable is set to indicate the error.

Error Conditions

If qsysetreuid() is not successful, errno indicates one of the following errors.

[EAGAIN]

User profile associated with ruid or euid is locked. Try again.

[EDAMAGE]

The user profile associated with ruid or euid or an internal system object is damaged.

[EINVAL]

The value of the ruid or euid argument is invalid. Following are possible reasons:

Out of range.❍

Not associated with a user profile.❍

[ENOTSUP]

Operation not supported. The user profile associated with this uid specifies OWNER(*GRPPRF),
but the user profile's first group is not the current effective group, nor is it in the list of
supplemental groups.

[EPERM]

Operation not permitted. The current thread does not have *ALLOBJ special authority, and either
an attempt was made to change the effective user ID to a value other than the real user ID or the
saved set-user-ID or an an attempt was made to change the real user ID.

[EUNKNOWN]

An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs | APIs by category

qsysetuid()--Set User ID

 Syntax

 #include <qsysetid.h>

 int qsysetuid(uid_t uid);

 Threadsafe: Yes

If the thread has *ALLOBJ special authority, qsysetuid() sets the real, effective, and saved user ID to uid.

If the thread does not have *ALLOBJ special authority, but uid is equal to the real, effective or saved user
ID, qsysetuid() sets the effective user ID to uid. The real and saved user IDs remain unchanged.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user ID,
effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the
supplemental groups.

Parameters

uid

(Input) User ID.

This field must contain one of the following values:

0 to 4294967294

The user ID value for the set operation.

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority is required if uid is not equal to the real, effective, or saved user ID.

User profile associated with uid lock

*SHRRD

Return Value

0

qsysetuid() was successful.

-1

qsysetuid() was not successful. errno is set to indicate the error.

Error Conditions

If qsysetuid() is not successful, errno indicates one of the following errors.

[EAGAIN]

User profile associated with the uid is locked. Try again.

[EDAMAGE]

The user profile associated with the uid or an internal system object is damaged.

[EINVAL]

The value of the uid is invalid. Following are possible reasons:

Out of range.❍

Not associated with a user profile.❍

[ENOTSUP]

Operation not supported. The user profile associated with this uid specifies OWNER(*GRPPRF),
but the user profile's first group is not the current effective group, nor is it in the list of
supplemental groups.

[EPERM]

Operation not permitted. The thread does not have *ALLOBJ special authority and uid is not the
same as the real, effective or saved user ID.

[EUNKNOWN]

An unknown error has occurred. Check the joblog for error messages.

Top | UNIX-Type APIs | APIs by category

Retrieve Network File System Export Entries
(QZNFRTVE) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable in bytes Input Binary(4)
3 Returned records feedback information Output Char(16)
4 Format name Input Char(8)
5 Object path name Input Char(*)
6 Length of object path name in bytes Input Binary(4)
7 CCSID of object path name given Input Binary(4)
8 Desired CCSID of the object path

names returned
Input Binary(4)

9 Handle Input Binary(4)
10 Error code I/O Char(*)

 Threadsafe: No

The Retrieve Network File System Export Entries (QZNFRTVE) API returns the list of Network File
System (NFS) export entries for objects currently exported to NFS clients or for objects referenced in the
/etc/exports file.

Authorities and Locks

The user must have execute (*X) data authority to the /etc directory (if it exists).●

The user must have read (*R) data authority to the /etc/exports file (if it exists).●

Note: Adopted authority is not used.

Usage Notes

If none of the required parameters are passed to this API, then all of the entries that are currently exported
will be returned to the joblog by messages (CPIB41A). If there are no entries currently exported, then
message CPIB41B will be returned.

Required Parameter Group

The following parameters are required.

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. The API returns only data that the
area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of the receiver variable parameter may be
specified up to the size of the receiver variable area specified by the user program.

No partial entries will be returned. If the length of the receiver variable is less than what is required
by the format selected, then an error is returned (CPFB419) and the size required will be indicated
in the feedback structure.

Returned records feedback information

OUTPUT; CHAR(16)

Information about the entries that are returned in the receiver variable.

For a detailed description of this format, see Format of Returned Records Feedback Information.

Format name

INPUT; CHAR(8)

The name of the format that is used to retrieve NFS export entries.

You can specify one of the following formats:

EXPE0100

Returns information about export entries that are currently exported. These are sometimes
called temporary exports. For a detailed description of this format, see EXPE0100 and
EXPE0200 format.

EXPE0200

Returns information about export entries that are in the /etc/exports file. These are
sometimes called permanent exports. For a detailed description of this format, see
EXPE0100 and EXPE0200 format.

Object path name

INPUT; CHAR(*)

The object path name at which to start listing NFS export entries. Possible values follow:

*FIRST

NFS export entries are returned starting with the first object path name in the NFS export
entry list.

*HANDLE

NFS export entries are returned starting with the object path name that corresponds to the
specified handle.

When the receiver variable is not large enough to hold all of the entries in the NFS export
entry list, the API returns a non-zero handle in the returned records feedback information
parameter. This handle can be used on a subsequent call to the API to continue retrieving
NFS export entries with the next object path name in the NFS export entry list.

There is no implied order to the export entries that are returned. While no sorting or

sequencing has been done on the returned entries, a complete list will eventually be
returned if the *HANDLE option is used.

Object path name

The NFS export entry for the specified object path name is returned.

Length of object path name

INPUT; BINARY(4)

The length of the object path name in bytes. If one of the special values is given for the object path
name, then the length should be given for that special value.

CCSID of object path name given

INPUT; BINARY(4)

The CCSID of the object path name given as an input parameter. Possible values follow:

0

The current Default Job CCSID should be used.

value

A valid CCSID number.

Desired CCSID of object the path names returned.

INPUT; BINARY(4)

The Desired CCSID of the object path names returned. The output structure will contain the actual
CCSID of the returned object path names. This will match the Desired CCSID given as input, if
possible. Possible values follow:

0

The current Default Job CCSID should be used.

value

A valid CCSID number.

Handle of starting object path name

INPUT; BINARY(4)

The handle returned from a previous call to the QZNFRTVE API.

This parameter should be 0 if *HANDLE was NOT specified for the object path name parameter.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see .

Receiver Variable Description

The following table describes the order and format of the data returned in the receiver variable. For a
detailed description of each field, see Field Descriptions.

EXPE0100 and EXPE0200 format

This structure is used to return NFS export information for a single object path name for both the
EXPE0100 and the EXPE0200 formats.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Displacement to object path name

8 8 BINARY(4) Length of object path name

12 C BINARY(4) CCSID of object path name

16 10 BINARY(4) Read-only flag

20 14 BINARY(4) NOSUID flag

24 18 BINARY(4) Displacement to read-write host names

28 1C BINARY(4) Number of read-write host names

32 20 BINARY(4) Displacement to root host names

36 24 BINARY(4) Number of root host names

40 28 BINARY(4) Displacement to access host names

44 2C BINARY(4) Number of access host names

48 30 BINARY(4) Displacement to host options

52 34 BINARY(4) Number of host options

56 38 BINARY(4) Anonymous user ID

60 3C CHAR(10) Anonymous User Profile

* * CHAR(*) Object path name

These fields
repeat for each
host name in the
read-write access
list.

BINARY(4) Length of host name entry

BINARY(4) Length of host name

CHAR(*) Host name

These fields
repeat for each
host name in the
root access list.

BINARY(4) Length of host name entry

BINARY(4) Length of host name

CHAR(*) Host name

These fields
repeat for each
host name in the
access list.

BINARY(4) Length of host name entry

BINARY(4) Length of host name

CHAR(*) Host name

These fields
repeat for each
host name in the
host options list.

BINARY(4) Length of host name options entry

BINARY(4) Network data file CCSID

BINARY(4) Network path name CCSID

BINARY(4) Write mode flag

BINARY(4) Length of host name

CHAR(*) Host name

Returned Records Feedback Information Description

The following table describes the order and format of the data returned in the returned records feedback
information parameter. For a detailed description of each field, see Field Descriptions.

Format of Returned Records Feedback Information

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of NFS export entries

12 C BINARY(4) Handle

Field Descriptions

Anonymous User ID. The user ID used as the effective user ID for requests from unknown users. Hex
value 0xFFFFFFFF (a value of -1 if this were a signed integer) indicates requests from unknown users are
not allowed.

Anonymous User Profile. This is the OS/400 User Profile name that is associated with the Anonymous
User ID returned. If the Anonymous User ID has the special value of hex value 0xFFFFFFFF (a value of -1
if this were a signed integer), then the Anonymous User Profile will be set to the special value of *NONE.

Bytes available. The number of bytes of data available to be returned to the user in the receiver variable. If
all data is returned, bytes available is the same as the number of bytes returned. If the receiver variable was
not large enough to contain all of the data, this value is estimated based on the total number of entries in the
NFS export entry list that could be returned.

Bytes returned. The number of bytes of data returned to the user in the receiver variable.

CCSID of object path name. The CCSID of the object path name.

Object path name. The path name of the object for which export information is to be returned.

Displacement to access host names. The offset (in bytes) from the beginning of the NFS export entry to
the host names in the access list.

Displacement to host options. The offset (in bytes) from the beginning of the NFS export entry to the host
options list.

Displacement to object path name. The offset (in bytes) from the beginning of the NFS export entry to
the object path name.

Displacement to read-write host names. The offset (in bytes) from the beginning of the NFS export entry
to the host names in the read-write access list.

Displacement to root host names. The offset (in bytes) from the beginning of the NFS export entry to the
host names in the root access list.

Handle. The handle to be used on a subsequent call to the API to continue retrieving NFS export entries
with the next object path name in the NFS export entry list. 0 indicates all remaining NFS export entries
have been returned.

Host name. The host name.

Length of entry. The length (in bytes) of the current NFS export entry. The length can be used to access
the next entry.

Length of host name. The length (in bytes) of the host name.

Length of host name entry. The length (in bytes) of this host name entry.

Length of host name options entry. The length (in bytes) of this host name options entry.

Length of object path name. The length (in bytes) of the object path name.

Network data file CCSID. The CCSID used for data of the files sent to and received from the specified
host name.

Network path name CCSID. The CCSID used for path name components of the files sent to and received
from the specified host name.

NOSUID flag. Whether an attempt by the client to enable bits other than the permission bits will be
ignored. Possible values follow:

0

An attempt to set bits other than the permission bits will be carried out.

1

An attempt to set bits other than the permission bits will be ignored.

Number of access host names. The number of host names in the access list.

Number of host options. The number of entries in the host options list.

Number of NFS export entries. The number of complete entries returned in the list of NFS export entries.
A value of zero is returned if the list is empty relative to the requested starting position.

Number of read-write host names. The number of host names in the read-write access list.

Number of root host names. The number of host names in the root access list.

Read-only flag. Whether the object is exported allowing only read access. Possible values follow:

0

The object is exported allowing read-write access for all client hosts that are not specifically
indicated to have read-only access.

1

The object is exported allowing read-only access for all client hosts that are not specifically
indicated to have read-write access.

Write mode flag. Whether write requests are handled synchronously or asynchronously. Synchronously
means that data will be written to disk immediately. Asynchronously does not guarantee that data is written

to disk immediately, and can be used to improve server performance. Possible values follow:

0

Write requests are performed synchronously.

1

Write requests are performed asynchronously.

Error Messages

CPE3418 E

Possible APAR condition or hardware failure.

CPF3C90 E

Literal value cannot be changed.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

CPFA0D4 E

File system error occurred.

Top | UNIX-Type APIs | APIs by category

read()--Read from Descriptor

 Syntax

 #include <unistd.h>

 ssize_t read(int file_descriptor,
 void *buf, size_t nbyte);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

From the file or socket indicated by file_descriptor, the read() function reads nbyte bytes of input into the
memory area indicated by buf. If nbyte is zero, read() returns a value of zero without attempting any other
action.

If file_descriptor refers to a "regular file" (a stream file that can support positioning the file offset) or any
other type of file on which the job can do an lseek() operation, read() begins reading at the file offset
associated with file_descriptor. A successful read() changes the file offset by the number of bytes read.

If read() is successful and nbyte is greater than zero, the access time for the file is updated.

read() is not supported for directories.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA specified,
the data is read from the file assuming it is in textual form. The maximum number of bytes on a single read
that can be supported for text data is 2,147,483,408 (2GB - 240) bytes. The data is converted from the code
page of the file to the code page of the application, job, or system as follows:

When reading from a true stream file, any line-formatting characters (such as carriage return, tab,
and end-of-file) are just converted from one code page to another.

●

When reading from record files that are being used as stream files, end-of-line characters are added
to the end of the data in each record.

●

There are some important considerations when the file is open for text conversion and the CCSIDs involved
are not strictly single-byte:

The read() will return the exact number of bytes requested. For some CCSIDs, this may mean that
partial characters are returned at the end of the user buffer. In this case, the remainder of the
character has been read from the file and internally buffered. The next consecutive read() will begin
with the remainder of the partial character. However, if an lseek() is performed, the buffered data
will be discarded. See lseek()--Set File Read/Write Offset for more information.

●

Because of the above consideration and because of the possible expansion or contraction of
converted data, applications using the O_CCSID flag should avoid assumptions about data size and
the current file offset. For example, a file might have a physical size of 100 bytes, but after an
application has read 100 bytes from the file, the current file offset may be 50. In order to read the
whole file, the application might have to read 200 bytes or more, depending on the CCSIDs
involved.

●

If O_TEXTDATA was not specified on the open(), the data is read from the file without conversion. The
application is responsible for handling the data.

In the QSYS.LIB and independent ASP QSYS.LIB file systems, most end-of-file characters are
symbolic; that is, they are stored outside the member. When reading:

If O_TEXTDATA is specified, both symbolic and nonsymbolic end-of-file characters can be seen.●

If O_TEXTDATA is not specified (binary mode), only nonsymbolic end-of-file characters can be
seen.

●

See the Usage Notes for write()--Write to Descriptor.

When file_descriptor refers to a socket, the read() function reads from the socket identified by the socket
descriptor.

When attempting to read from an empty pipe or FIFO:

If no job has the pipe or FIFO open for writing, read() return 0 to indicate end-of-file.●

If some job has the pipe or FIFO open for writing and O_NONBLOCK was specified, read() will
fail and errno will be set to [EAGAIN].

●

If some job has the pipe or FIFO open for writing and O_NONBLOCK was not specified, read()
will block the calling thread until some data is written or until the pipe or FIFO is closed by all jobs
that had the pipe or FIFO open for writing.

●

Parameters

file_descriptor

(Input) The descriptor to be read.

buf

(Output) A pointer to a buffer in which the bytes read are placed.

nbyte

(Input) The number of bytes to be read.

Authorities

No authorization is required.

Return Value

value

read() was successful. The value returned is the number of bytes actually read and placed in buf.
This number is less than or equal to nbyte. It is less than nbyte only if read() reached the end of the
file before reading the requested number of bytes. If read() is reading a regular file and encounters
a part of the file that has not been written (but before the end of the file), read() places bytes
containing zeros into buf in place of the unwritten bytes.

-1

read() was not successful. The errno global variable is set to indicate the error. If the value of nbyte
is greater than SSIZE_MAX, read() sets errno to [EINVAL].

Error Conditions

If read() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Access to a remote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

This may occur if file_descriptor refers to a socket and the socket is using a
connection-oriented transport service, and a connect() was previously completed. The
thread, however, does not have the appropriate privileges to the objects that were
needed to establish a connection. For example, the connect() required the use of an
APPC device that the thread was not authorized to.

[EAGAIN] Operation would have caused the process to be suspended.

If file_descriptor refers to a pipe or FIFO that has its O_NONBLOCK flag set, this
error occurs if the read() would have blocked the calling thread.

[EBADF] Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a
read or write request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The
specified descriptor is incorrect, or does not refer to an open file. Or, this read request
was made to a file that was only open for writing.

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINTR] Interrupted function call.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

This may occur if file_descriptor refers to a socket that is using a connectionless
transport service, is not a socket of type SOCK_RAW, and is not bound to an address.

The file resides in a file system that does not support large files, and the starting
offset of the file exceeds 2GB minus 2 bytes.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[ENXIO] No such device or address.

[EOVERFLOW] Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The file is a regular file, nbyte is greater than 0, the starting offset is before the
end-of-file, and the starting offset is greater than or equal to 2GB minus 2 bytes.

[ERESTART] A system call was interrupted and may be restarted.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, then retry the operation.

When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

The retransmission limit has been reached for data that was being sent on
the socket.

●

A protocol error was detected.●

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EINTR] Interrupted function call.

[ENOTCONN] Requested operation requires a connection.

This error code is returned only on sockets that use a connection-oriented
transport service.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A non-blocking connect() was previously completed that resulted in the
connection timing out. No connection is established. This error code is returned
only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at
this time.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EHOSTDOWN] A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at
this time.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is
operation is a save file and multiple threads exist in the job.

This function will fail with error code [EIO] if the file specified is a save file and the file does not
contain complete save file data.

The file access time for a database member is updated using the normal rules that apply to database
files. At most, the access time is updated once per day.

If you previously used the integrated file system interface to manipulate a member that contains an
end-of-file character, you should avoid using other interfaces (such as the Source Entry Utility or
database reads and writes) to manipulate the member. If you use other interfaces after using the
integrated file system interface, the end-of-file information will be lost.

2.

QOPT File System Differences

The file access time is not updated on a read() operation.

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being read are ignored.

3.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once a file is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

4.

Reading and writing to files with the Network File System relies on byte-range locking to
guarantee data integrity. To prevent data inconsistency, use the fcntl() API to get and release these
locks.

QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will
be received.

5.

For sockets that use a connection-oriented transport service (for example, sockets with a type of
SOCK_STREAM), a return value of zero indicates one of the following:

The partner program has issued a close() for the socket.❍

The partner program has issued a shutdown() to disable writing to the socket.❍

The connection is broken and the error was returned on a previously issued socket function.❍

A shutdown() to disable reading was previously done on the socket.❍

6.

The following applies to sockets that use a connectionless transport service (for example, a socket
with a type of SOCK_DGRAM).

If a connect() has been issued previously, then data can be received only from the address
specified in the previous connect().

❍

The address from which data is received is discarded, since the read() has no address
parameter.

❍

The entire message must be read in a single read operation. If the size of the message is too
large to fit in the user supplied buffer, the remaining bytes of the message are discarded.

❍

A returned value of zero indicates one of the following:

The partner program has sent a NULL message (a datagram with no user data).■

A shutdown() to disable reading was previously done on the socket.■

The buffer length specified was zero.■

❍

7.

For file systems that do not support large files, read() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do
support large files, read() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2
bytes and the file was not opened for large file access.

8.

Using this function successfully on the /dev/null or /dev/zero character special file results in a
return value of zero. In addition, the access time for the file is updated.

9.

Related Information

The <limits.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

fcntl()--Perform File Control Command●

ioctl()--Perform I/O Control Request●

lseek()--Set File Read/Write Offset●

open()--Open File●

pread()--Read from Descriptor with Offset ●

pread64()--Read from Descriptor with Offset (large file enabled) ●

pwrite()--Write to Descriptor with Offset ●

pwrite64()--Write to Descriptor with Offset (large file enabled) ●

readv()--Read from Descriptor Using Multiple Buffers●

recv()--Receive Data●

recvfrom()--Receive Data●

recvmsg()--Receive Data or Descriptors or Both●

write()--Write to Descriptor●

writev()--Write to Descriptor Using Multiple Buffers●

Example

The following example opens a file and reads input:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

main() {
 int ret, file_descriptor, rc;
 char buf[]="Test text";

 if ((file_descriptor = creat("test.output", S_IWUSR))!= 0)
 perror("creat() error");
 else {
 if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))
 perror("write() error");
 if (close(file_descriptor)!= 0)
 perror("close() error");
 }

 if ((file_descriptor = open("test.output", O_RDONLY)) < 0)
 perror("open() error");
 else {
 ret = read(file_descriptor, buf, sizeof(buf)-1));
 buf[ret] = 0x00;
 printf("block read: \n<%s>\", buf);
 if (close(file_descriptor)!= 0)
 perror("close() error");
 }

 if (unlink("test.output")!= 0)
 perror("unlink() error");
}

Output:

block read:
<Test text>

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

readdir()--Read Directory Entry

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 struct dirent *readdir(DIR *dirp);

 Threadsafe: No; see Usage Notes.

The readdir() function returns a pointer to a dirent structure describing the next directory entry in the
directory stream associated with dirp.

A call to readdir() overwrites data produced by a previous call to readdir() on the same directory stream.
Calls for different directory streams do not overwrite the data of each other.

If the call to readdir() actually reads the directory, the access time of the directory is updated.

readdir() performs translation if necessary to convert the directory entry name into the CCSID (coded
character set identifier) of the job at the time of the call to opendir().

Parameters

dirp

(Input) A pointer to a DIR that refers to theopen directory stream to be read. This pointer is
returned by opendir() (see opendir()--Open Directory).

See QlgReaddir()--Read Directory Entry for a description and an example of supplying the dirp in
any CCSID, using a dirent_lg structure.

A dirent structure has the following contents:

char d_reserved1[16] Reserved.
unsigned int d_fileno_gen_id The generation ID associated with the file ID.
ino_t d_fileno The file ID of the file. This number uniquely identifies the

object within a file system.
unsigned int d_reclen The length of the directory entry in bytes.
int d_reserved3 Reserved.
char d_reserved4[6] Reserved.
char d_reserved5[2] Reserved.

qlg_nls_t d_nlsinfo National language information about d_name. The following
fields are defined:

int ccsid

CCSID of the characters in the d_name field.

char country_id[2]

Country or region identifier associated with the
d_name field.

char language_id[3]

Language identifier associated with the d_name field.

char nls_reserved[3]

Reserved.
unsigned int d_namelen The length of the name in bytes, excluding the null terminator.
char d_name[640] A string that gives the name of a file in the directory. This

string ends in a terminating null, and has a maximum length of
{NAME_MAX} bytes, not including the terminating NULL
(see pathconf()--Get Configurable Path Name Variables).

Authorities

No authorization is required. Authorization is verified during opendir().

Return Value

value

readdir() was successful. The value returned is a pointer to a dirent structure describing the next
directory entry in the directory stream.

NULL pointer

One of the following has occurred:

readdir() reached the end of the directory stream. The errno global variable is not
changed.

❍

readdir() was not successful. The errno is set.❍

Error Conditions

If readdir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and

the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

The readdir_r() API should be used to read a directory when running in a multithreaded job.1.

Save the data from readdir(), if required, before calling closedir(), because closedir() frees the
data.

2.

If the dirp argument passed to readdir() does not refer to an open directory stream, readdir()
returns the [EBADF] error.

3.

readdir() buffers multiple directory entries to improve performance. This means the directory is
not actually read on each call to readdir(). As a result, files that are added to the directory after

4.

opendir() or rewinddir() may not be returned on calls to readdir(), and files that are removed may
still be returned on calls to readdir().

readdir() also returns directory entries for dot (.) and dot-dot (..) subdirectories.5.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

Calls to readdir() that update the access time of the directory use the normal rules that apply to
libraries and database files. At most, the access time is updated once per day.

6.

QDLS File System Differences

The access time of the directory is updated on opendir(). The access time is not affected by
readdir().

When objects in QDLS are accessed, the country or region ID and language ID of the directory
entry name are always set to the country or region ID and language ID of the system.

When a readdir() operation specifies the /QDLS directory, the user must have *USE authority to
each child object of the /QDLS directory (that is, *USE authority to each object immediately below
QDLS in the directory hierarchy). A directory entry is returned only for those objects for which the
user has *USE authority. If the readdir() operation specifies a directory below QDLS, a directory
entry is returned for all objects, even if the user does not have *USE authority for some of the
objects.

7.

QOPT File System Differences

The access time of the directory is not updated on a readdir() operation.

8.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <dirent.h> file see Header Files for UNIX-Type Functions)●

opendir()--Open Directory●

QlgReaddir()--Read Directory Entry●

rewinddir()--Reset Directory Stream to Beginning●

closedir()--Close Directory●

pathconf()--Get Configurable Path Name Variables●

Example

The following example reads the contents of a root directory:

#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>

main() {
 DIR *dir;
 struct dirent *entry;

 if ((dir = opendir("/")) == NULL)
 perror("opendir() error");
 else {
 puts("contents of root:");
 while ((entry = readdir(dir)) != NULL)
 printf(" %s\n", entry->d_name);
 closedir(dir);
 }
}

Output:

contents of root:
 .
 ..
 QSYS.LIB
 QDLS
 QOpenSys
 QOPT
 home

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

readdir_r()--Read Directory Entry

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 int readdir_r(DIR *dirp, struct dirent *entry,
 struct dirent **result);

 Threadsafe: Conditional; see Usage Notes.

The readdir_r() function initializes the dirent structure that is referenced by entry to represent the next
directory entry in the directory stream that is associated with dirp. The readdir_r() function then stores a
pointer to the entry structure at the location referenced by result.

The storage pointed to by entry must be large enough for a dirent structure.

If the call to readdir_r() actually reads the directory, the access time of the directory is updated.

The readdir_r() function performs translation, if necessary, to convert the directory entry name into the
coded character set identifier (CCSID) of the job at the time of the call to opendir().

Parameters

dirp

(Input) A pointer to a DIR that refers to the open directory stream to be read. This pointer is
returned by opendir() (see opendir()--Open Directory).

See QlgReaddir()--Read Directory Entry for a description and an example of supplying the dirp in
any CCSID.

entry

(Output) A pointer to a dirent structure in which the directory entry is to be placed.

result

(Output) A pointer to a pointer to a dirent structure. Upon successfully reading a directory entry,
this dirent pointer is set to the same value as entry. Upon reaching the end of the directory stream,
this pointer will be set to NULL.

A dirent structure has the following contents:

char d_reserved1[16] Reserved.
unsigned int d_fileno_gen_id The generation ID associated with the file ID.
ino_t d_fileno The file ID of the file. This number uniquely identifies the

object within a file system.
unsigned int d_reclen The length of the directory entry in bytes.
int d_reserved3 Reserved.
char d_reserved4[6] Reserved.

char d_reserved5[2] Reserved.
qlg_nls_t d_nlsinfo National language information about d_name. The following

fields are defined:

int ccsid

CCSID of the characters in the d_name field.

char country_id[2]

Country or region identifier that is associated with the
d_name field.

char language_id[3]

Language identifier that is associated with the d_name
field.

char nls_reserved[3]

Reserved.
unsigned int d_namelen The length of the name in bytes, excluding the null terminator.
char d_name[640] A string that gives the name of a file in the directory. This

string ends in a terminating null, and has a maximum length of
{NAME_MAX} bytes, not including the terminating NULL
(see pathconf()--Get Configurable Path Name Variables).

Authorities

No authorization is required. Authorization is verified during opendir().

Return Value

0

readdir_r() was successful. The result parameter points to one of the following:

A pointer to a dirent structure that describes the next directory entry in the directory stream.
This will be the same value as the entry parameter.

❍

A NULL pointer. readdir_r() reached the end of the directory stream. The errno global
variable is not changed.

❍

error code

readdir_r() was not successful. This value is set to the same value as the errno global variable.

Error Conditions

If readdir_r() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

❍

1.

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

readdir_r() is threadsafe only when directed to a directory in a threadsafe file system.2.

If the dirp argument that is passed to readdir_r() does not refer to an open directory stream,
readdir_r() returns the [EBADF] error.

3.

readdir_r() caches multiple directory entries to improve performance. This means the directory is
not actually read on each call to readdir_r(). As a result, files that are added to the directory after
opendir() or rewinddir() may not be returned on calls to readdir_r(), and files that are removed
may still be returned on calls to readdir_r().

4.

readdir_r() also returns directory entries for dot (.) and dot-dot (..) subdirectories.5.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

Calls to readdir_r() that update the access time of the directory use the normal rules that apply to
libraries and database files. At most, the access time is updated once per day.

6.

QDLS File System Differences

The access time of the directory is updated on opendir(). The access time is not affected by
readdir_r().

When objects in QDLS are accessed, the country or region ID and language ID of the directory
entry name are always set to the country or region ID and language ID of the system.

When a readdir_r() operation specifies the /QDLS directory, the user must have *USE authority to
each object in the /QDLS directory (that is, *USE authority to each object immediately below
QDLS in the directory hierarchy). A directory entry is returned only for those objects for which the
user has *USE authority. If the readdir_r() operation specifies a directory below QDLS, a
directory entry is returned for all objects, even if the user does not have *USE authority for some of
the objects.

7.

QOPT File System Differences

The access time of the directory is not updated on a readdir_r() operation.

8.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions) >●

The <dirent.h> file (see Header Files for UNIX-Type Functions)●

opendir()--Open Directory●

QlgReaddir()--Read Directory Entry●

readdir_r_ts64()--Read Directory Entry●

rewinddir()--Reset Directory Stream to Beginning●

closedir()--Close Directory●

pathconf()--Get Configurable Path Name Variables●

Example

The following example reads the contents of a root directory:

#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>

main() {
 int return_code;
 DIR *dir;
 struct dirent entry;
 struct dirent *result;

 if ((dir = opendir("/")) == NULL)
 perror("opendir() error");
 else {
 puts("contents of root:");
 for (return_code = readdir_r(dir, &entry, &result);
 result != NULL && return_code == 0;
 return_code = readdir_r(dir, &entry, &result))
 printf(" %s\n", entry.d_name);
 if (return_code != 0)
 perror("readdir_r() error");
 closedir(dir);
 }
}

Output:

contents of root:
 .
 ..
 QSYS.LIB
 QDLS
 QOpenSys
 QOPT
 home

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

readdir_r_ts64()--Read Directory Entry

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 int readdir_r_ts64(DIR * __ptr64 dirp,
 struct dirent * __ptr64 entry,
 struct dirent * __ptr64 * __ptr64 result);

 Service Program Name: QP0LLIBTS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The readdir_r_ts64() function initializes the dirent structure that is referenced by entry to represent the
next directory entry in the directory stream that is associated with dirp. readdir_r_ts64() differs from
readdir_r() in that it accepts 8-byte process local pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the readdir_r() API, see readdir_r()--Read Directory Entry.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

readlink()--Read Value of Symbolic Link

 Syntax

 #include <unistd.h>

 int readlink(const char *path, char *buf, size_t bufsiz);

 Threadsafe: Conditional; see Usage Notes.

The readlink() function places the contents of the symbolic link path in the buffer buf. The size of the
buffer is set by bufsiz. The contents of the returned buffer do not include a terminating NULL. When bufsiz
is 0, the number of bytes contained in the symbolic link is returned and the buffer is unchanged.

If the buffer is too small to contain the contents of the symbolic link, the contents are truncated to the size
of the buffer (bufsiz).

A successful readlink(), where bufsiz is greater than zero, sets the access time of the symbolic link.

Parameters

path

(Input) A pointer to the null-terminated path name of the symbolic link.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgReadlink()--Read Value of Symbolic Link for a description and an example of supplying
the path in any CCSID.

buf

(Output) A pointer to the area in which the contents of the link should be stored.

This parameter will be returned in the CCSID currently in effect for the job. If the CCSID of the
job is 65535, this parameter is assumed to be represented in the default CCSID of the job.

bufsiz

(Input) The size of buf in bytes.

Authorities

Note: Adopted authority is not used.

Authorization required for readlink()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object *X EACCES

Object None None

Return Value

value

readlink() was successful.

When bufsiz is greater than zero, the value returned is the number of bytes placed in the buffer.
When bufsiz is zero, the value returned is the number of bytes contained in the symbolic link. The
buffer is not changed.

If the return value is equal to bufsiz, the entire contents of the symbolic link may not have been
returned. You can determine the size of the contents of the symbolic link by using either lstat() or
readlink() with a zero value for bufsiz.

-1

readlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If readlink() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The named file is not a symbolic link.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

❍

1.

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

File System Differences

The following file systems do not support readlink().

QSYS.LIB❍

Independent ASP QSYS.LIB ❍

QDLS❍

QOPT❍

QNetWare❍

QNTC❍

2.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

lstat()--Get File or Link Information●

QlgReadlink()--Read Value of Symbolic Link●

stat()--Get File Information●

symlink()--Make Symbolic Link●

unlink()--Remove Link to File●

Example

The following example uses readlink():

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

main() {
 char fn[]="readlink.file";
 char sl[]="readlink.symlink";
 char buf[30];
 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");

 else {
 close(file_descriptor);
 if (symlink(fn, sl) != 0)
 perror("symlink() error");
 else {
 if (readlink(sl, buf, sizeof(buf)) < 0)
 perror("readlink() error");
 else printf("readlink() returned '%s' for '%s'\n", buf, sl);

 unlink(sl);
 }
 unlink(fn);
 }
}

Output:

readlink() returned 'readlink.file' for 'readlink.symlink'

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

readv()--Read from Descriptor Using Multiple
Buffers

 Syntax

 #include <sys/types.h>
 #include <sys/uio.h>

 int readv(int descriptor,
 struct iovec *io_vector[],
 int vector_length)

 Threadsafe: Conditional; see Usage Notes.

The readv() function is used to receive data from a file or socket descriptor. readv() provides a way for data
to be stored in several different buffers (scatter/gather I/O).

See read()--Read from Descriptor for more information related to reading from a descriptor.

Parameters

descriptor

(Input) The descriptor to be read. The descriptor refers to a file or a socket.

io_vector[]

(I/O) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointers to
buffers in which the data to be read is stored. The structure pointed to by the io_vector parameter is
defined in <sys/uio.h>.

 struct iovec {
 void *iov_base;
 size_t iov_len;
 }

iov_base and iov_len are the only fields in iovec used by sockets. iov_base contains the pointer to a
buffer and iov_len contains the buffer length. The rest of the fields are reserved.

vector_length

(Input) The number of entries in io_vector.

Authorities

No authorization is required.

Return Value

readv() returns an integer. Possible values are:

-1 (unsuccessful)●

n (successful), where n is the number of bytes read.●

Error Conditions

If readv() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Access to a remote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

This may occur if file_descriptor refers to a socket and the socket is using a
connection-oriented transport service, and a connect() was previously completed. The
thread, however, does not have the appropriate privileges to the objects that were
needed to establish a connection. For example, the connect() required the use of an
APPC device that the thread was not authorized to.

[EAGAIN] Operation would have caused the process to be suspended.

[EBADF] Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a
read or write request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The
specified descriptor is incorrect, or does not refer to an open file. Or, this readv
request was made to a file that was only open for writing.

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINTR] Interrupted function call.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

This may occur if file_descriptor refers to a socket that is using a connectionless
transport service, is not a socket of type SOCK_RAW, and is not bound to an address.

The file resides in a file system that does not support large files, and the starting
offset of the file exceeds 2 GB minus 2 bytes.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW] Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The file is a regular file, nbyte is greater than 0, the starting offset is before the
end-of-file and is greater than or equal to 2GB minus 2 bytes.

[ERESTART] A system call was interrupted and may be restarted.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, then retry the operation.

When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

The retransmission limit has been reached for data that was being sent on
the socket.

●

A protocol error was detected.●

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EINTR] Interrupted function call.

[ENOTCONN] Requested operation requires a connection.

This error code is returned only on sockets that use a connection-oriented
transport service.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A non-blocking connect() was previously completed that resulted in the
connection timing out. No connection is established. This error code is returned
only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at
this time.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EHOSTDOWN] A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at
this time.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

The io_vector[] parameter is an array of struct iovec structures. When a readv() is issued, the
system processes the array elements one at a time, starting with io_vector[0]. For each element,
iov_len bytes of received data are placed in storage pointed to by iov_base. Data is placed in
storage until all buffers are full, or until there is no more data to receive. Only the storage pointed
to by iov_base is updated. No change is made to the iov_len fields. To determine the end of the
data, the application program must use the following:

The function return value (the total number of bytes received).❍

The lengths of the buffers pointed to by iov_base.❍

2.

For sockets that use a connection-oriented transport service (for example, sockets with a type of
SOCK_STREAM), a returned value of zero indicates one of the following:

The partner program has issued a close() for the socket.❍

The partner program has issued a shutdown() to disable writing to the socket.❍

The connection is broken and the error was returned on a previously issued socket function.❍

A shutdown() to disable reading was previously done on the socket.❍

3.

The following applies to sockets that use a connectionless transport service (for example, a socket
with a type of SOCK_DGRAM):

If a connect() has been issued previously, then data can be received only from the address
specified in the previous connect().

❍

The address from which data is received is discarded, because the readv() has no address
parameter.

❍

The entire message must be read in a single read operation. If the size of the message is too
large to fit in the user-supplied buffers, the remaining bytes of the message are discarded.

❍

A returned value of zero indicates one of the following:

The partner program has sent a NULL message (a datagram with no user data).■

A shutdown() to disable reading was previously done on the socket.■

❍

4.

The buffer length specified by the application was zero.■

For the file systems that do not support large files, readv() will return [EINVAL] if the starting
offset exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that
do support large files, readv() will return [EOVERFLOW] if the starting offset exceeds 2GB minus
2 bytes and file was not opened for large file access.

5.

QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will
be received.

6.

QOPT File System Differences

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being read are ignored.

7.

Using this function successfully on the /dev/null or /dev/zero character special file results in a
return value of 0. In addition, the access time for the file is updated.

8.

Related Information

The <limits.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

fcntl()--Perform File Control Command●

ioctl()--Perform I/O Control Request●

lseek()--Set File Read/Write Offset●

open()--Open File●

read()--Read from Descriptor●

recv()--Receive Data●

recvfrom()--Receive Data●

recvmsg()--Receive Data or Descriptors or Both●

write()--Write to Descriptor●

writev()--Write to Descriptor Using Multiple Buffers●

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

rename()--Rename File or Directory

 Syntax

 #include <Qp0lstdi.h>

 int rename(const char *old, const char *new);

 Threadsafe: Conditional; see Usage Notes.

The rename() function can be defined to be either Qp0lRenameUnlink() or Qp0lRenameKeep(),
depending upon the definitions of the _POSIX_SOURCE and _POSIX1_SOURCE macros in the
<Qp0lstdi.h> header file:

When _POSIX_SOURCE or _POSIX1_SOURCE is defined, rename() is defined to be
Qp0lRenameUnlink(). Either rename() or Qp0lRenameUnlink() can be used to rename a file or
directory with the semantics of Qp0lRenameUnlink().

●

When _POSIX_SOURCE and _POSIX1_SOURCE are not defined, rename() is defined to be
Qp0lRenameKeep(). Either rename() or Qp0lRenameKeep() can be used to rename a file or
directory with the semantics of Qp0lRenameKeep().

●

When the <Qp0lstdi.h> header file is not included, rename() operates only on database files in the
QSYS.LIB or independent ASP QSYS.LIB file system, as it did before the introduction of the
integrated file system.

For details on the use of rename(), see the Qp0lRenameUnlink() and Qp0lRenameKeep() functions.

Parameters

old

(Input) A pointer to the null-terminated path name of the file to be renamed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

new

(Input) A pointer to the null-terminated path name of the new name of the file.

This parameter is assumed to be represented in the CCSID currently in effect for the job. If the
CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job.

The new file name is assumed to be represented in the language and country or region currently in
effect for the process.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Related Information

The <stdio.h> file (see Header Files for UNIX-Type Functions)●

The <Qp0lstdi.h> file (see Header Files for UNIX-Type Functions)●

pathconf()--Get Configurable Path Name Variables●

Qp0lRenameKeep()--Rename File or Directory, Keep "new" If It Exists●

Qp0lRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists●

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

rewinddir()--Reset Directory Stream to
Beginning

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 void rewinddir(DIR *dirp);

 Threadsafe: Yes

The rewinddir() function "rewinds" the position of an open directory stream to the beginning. dirp points
to a DIR associated with an open directory stream.

The next call to readdir() reads the first entry in the directory. If the contents of the directory have changed
since the directory was opened and rewinddir() is called, subsequent calls to readdir() read the changed
contents.

Parameters

dirp

(Input) A pointer to a DIR that refers to the open directory stream to be rewound. This pointer is
returned by the opendir() function.

Authorities

No authorization is required. Authorization is verified during opendir().

Return Value

None.

Error Conditions

None.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPF1F05 E

Directory handle not valid.

CPF3CF2 E

Error(s) occurred during running of &1 API.

Usage Notes

If the dirp argument passed to rewinddir() does not refer to an open directory, unexpected results
could occur.

1.

Files that are added to the directory after opendir() or rewinddir() may not be returned on calls to
readdir().

2.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <dirent.h> file (see Header Files for UNIX-Type Functions)●

opendir()--Open Directory●

readdir()--Read Directory Entry●

closedir()--Close Directory●

Example

The following example produces the contents of a directory by opening it, rewinding it, and closing it:

#include <sys/types.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>

main() {
 DIR *dir;
 struct dirent *entry;

 if ((dir = opendir("/")) == NULL)
 perror("opendir() error");
 else {
 puts("contents of root:");
 while ((entry = readdir(dir)) != NULL)

 printf("%s ", entry->d_name);
 rewinddir(dir);
 puts("");
 while ((entry = readdir(dir)) != NULL)
 printf("%s ", entry->d_name);
 closedir(dir);
 puts("");
 }
}

Output:

contents of root:
 . .. QSYS.LIB QDLS QOpenSys QOPT home
 . .. QSYS.LIB QDLS QOpenSys QOPT home newdir

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

rmdir()--Remove Directory

 Syntax

 #include <unistd.h>

 int rmdir(const char *path);

 Threadsafe: Conditional; see Usage Notes.

The rmdir() function removes a directory, path, provided that the directory is empty; that is, the directory
contains no entries other than "dot" (.) or "dot-dot" (..). path must not end in dot (.) or dot-dot (..).

If no job currently has the directory open, rmdir() deletes the directory itself. The space occupied by the
directory is freed for new use. If one or more jobs have the directory open, rmdir() removes the link and
the dot (.) or dot-dot (..). entries. The directory itself is not removed until the last job closes the directory.
New files cannot be created under a directory after the last link is removed, even if the directory is still
open.

rmdir() does not remove a directory that still contains files or subdirectories. If path refers to a directory
that is not empty, the [ENOTEMPTY] error is returned. If path refers to the current directory of the current
job, to the root (/) directory, or to a directory that cannot be removed, the [EBUSY] error is returned.

If path refers to a symbolic link, rmdir() does not affect any file or directory named by the contents of the
symbolic link.

If rmdir() is successful, the change and modification times for the parent directory are updated.

Parameters

path

(Input) A pointer to the null-terminated path name of the directory to be removed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgRmdir()--Remove Directory (using NLS-enabled path name) for a description and an
example of supplying the path in any CCSID.

Authorities

Note: Adopted authority is not used.

Figure 1-70. Authorization Required for rmdir() (excluding QSYS.LIB, independent ASP
QSYS.LIB, and QDLS)

Object Referred to
Authority
Required errno

Each directory in the path name preceding the directory to be removed *X EACCES

Parent directory of the directory to be removed *WX EACCES

Directory to be removed *OBJEXIST EACCES

Figure 1-71. Authorization Required for rmdir() in the QSYS.LIB and independent ASP
QSYS.LIB File Systems

Object Referred to
Authority
Required errno

Each directory in the path name preceding the directory to be removed *X EACCES

Parent directory of the directory to be removed *X EACCES

Directory to be removed, if it is a library *OBJEXIST,
*RX

EACCES

Directory to be removed, if it is a database file *OBJEXIST,
*OBJOPR

EACCES

Figure 1-72. Authorization Required for rmdir() in the QDLS File System

Object Referred to
Authority
Required errno

Each directory in the path name preceding the directory to be removed *X EACCES

Parent directory of the directory to be removed *X EACCES

Directory to be removed *OBJEXIST,
*X

EACCES

Figure 1-73. Authorization Required for rmdir() in the QOPT File System

Object Referred to
Authority
Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the directory to be removed if volume
media format is Universal Disk Format (UDF)

*X EACCES

Parent directory of the directory to be removed if volume media format is
Universal Disk Format (UDF)

*WX EACCES

Directory to be removed if volume media format is Universal Disk Format (UDF) *W EACCES

Directory and parent directories if volume media format is not Universal Disk
Format (UDF)

None None

Return Value

0

rmdir() was successful.

-1

rmdir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If rmdir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

The path cannot be removed because it is the current working directory of the current process, or it
is currently being used by the system.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. The last component of path is 'dot' or
'dot-dot'.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string. The last component of the path name
is dot or dot-dot.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTEMPTY]

Directory not empty.

You tried to remove a directory that is not empty. A directory cannot contain objects when it is
being removed.

The specified directory is not empty.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

If one or more jobs have the library or file open, rmdir() returns [EBUSY].

If rmdir() is successful, the change and modification times for the parent library are updated only
if the "directory" being removed is a database file.

2.

QDLS File System Differences3.

If one or more jobs have the folder open, or are using the folder as their current directory, rmdir()
returns [EBUSY].

QOPT File System Differences

The change and modification times of the parent directory are not updated.

If path refers to a directory that any job has open, the [EBUSY] error is returned.

4.

QNTC File System Differences

The change and modification times of the parent directory are not updated.

5.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

mkdir()--Make Directory●

QlgRmdir()--Remove Directory (using NLS-enabled path name)●

unlink()--Remove Link to File●

Example

The following example removes a directory:

#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>

main() {
 char new_dir[]="new_dir";
 char new_file[]="new_dir/new_file";
 int file_descriptor;

 if (mkdir(new_dir, S_IRWXU|S_IRGRP|S_IXGRP) != 0)
 perror("mkdir() error");
 else if ((file_descriptor = creat(new_file, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 close(file_descriptor);
 unlink(new_file);
 }

 if (rmdir(new_dir) != 0)
 perror("rmdir() error");
 else
 puts("removed!");

}

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

stat()--Get File Information

 Syntax

 #include <sys/stat.h>

 int stat(const char *path, struct stat *buf);

 Threadsafe: Conditional; see Usage Notes.

The stat() function gets status information about a specified file and places it in the area of memory pointed
to by the buf argument.

If the named file is a symbolic link, stat() resolves the symbolic link. It also returns information about the
resulting file.

Parameters

path

(Input) A pointer to the null-terminated path name of the file from which information is required.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgStat()--Get File Information (using NLS-enabled path name) for a description and an
example of supplying the path in any CCSID.

buf

(Output) A pointer to the area to which the information should be written.

The information is returned in the following stat structure, as defined in the <sys/stat.h> header file:

mode_t st_mode A bit string indicating the permissions and privileges of the
file. Symbols are defined in the <sys/stat.h> header file to refer
to bits in a mode_t value; these symbols are listed in
chmod()--Change File Authorizations.

ino_t st_ino The file ID for the object. This number uniquely identifies the
object within a file system. When st_ino and st_dev are used
together, they uniquely identify the object on the system.

nlink_t st_nlink The number of links to the file. This field will be 65,535 if
the value could not fit in the specified nlink_t field. The
complete value will be in the st_nlink32 field.

 unsigned short st_reserved2 Reserved.

uid_t st_uid The numeric user ID (uid) of the owner of the file.

gid_t st_gid The numeric group ID (gid) for the file.

off_t st_size Defined as follows for each file type:

Regular File

The number of data bytes in the file.

Directory

The number of bytes allocated to the directory.

Symbolic Link

The number of bytes in the path name stored in the
symbolic link.

Local Socket

Always zero.

OS/400 Native Object

This value is dependent on the object type.
time_t st_atime The most recent time the file was accessed.

time_t st_mtime The most recent time the contents of the file were changed.

time_t st_ctime The most recent time the status of the file was changed.

dev_t st_dev The file system ID to which the object belongs. This number
uniquely identifies the file system to which the object belongs.
When st_ino and st_dev are used together, they uniquely
identify the object on the system. This field will be
4,294,967,295 if the value could not fit in the specified dev_t
field. The complete value will be in the st_dev64 field.

size_t st_blksize The block size of the file in bytes.

unsigned long st_allocsize The number of bytes allocated to the file.

qp0l_objtype_t st_objtype The iSeries object type; for example, *STMF or *DIR. Refer

to CL Programming for a list of the iSeries object types.

unsigned short st_codepage The code page derived from the CCSID used for the data in the
file or the extended attributes of the directory. If the returned
value of this field is zero (0), there is more than one code page
associated with the st_ccsid. If the st_ccsid is not a supported
iSeries CCSID, the st_codepage is set equal to the st_ccsid.

unsigned short st_ccsid The CCSID used for the data in the file or the extended
attributes of the directory.

 dev_t st_rdev The device ID of the object if the object is a character special
file or block special file. This number uniquely identifies the
file device. This field will be 4,294,967,295 if the value could
not fit in the specified dev_t field. The complete value will be
in the st_rdev64 field.

 nlink32_t st_nlink32 The number of links to the file.

 dev64_t st_rdev64 The device ID of the object in 64 bit format. See st_rdev for
more information.

 dev64_t st_dev64 The file system ID to which the object belongs in 64 bit
format. See st_dev for more information.

 char st_reserved1[36] Reserved.

unsigned int st_ino_gen_id The generation ID associated with the file ID.

Values of time_t are given in terms of seconds since a fixed point in time called the Epoch.

You can examine properties of a mode_t value from the st_mode field using a collection of macros defined
in the <sys/stat.h> header file. If mode is a mode_t value, then:

S_ISBLK(mode)

Is nonzero for block special files

S_ISCHR(mode)

Is nonzero for character special files

S_ISDIR(mode)

Is nonzero for directories

S_ISFIFO(mode)

Is nonzero for pipes and FIFO special files

S_ISREG(mode)

Is nonzero for regular files

S_ISLNK(mode) >

Is nonzero for symbolic links

S_ISSOCK(mode)

Is nonzero for local sockets

S_ISNATIVE(mode)

Is nonzero for OS/400 native objects

Authorities

Note: Adopted authority is not used.

Figure 1-74. Authorization Required for stat()>

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object None None

Return Value

0

stat() was successful. The information is returned in buf.

-1

stat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If stat() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOVERFLOW]

Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The file size in bytes cannot be represented correctly in the structure pointed to by buf (the file is
larger than 2GB minus 1 byte).

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

❍

1.

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The stat() function could return zero for the st_atime value (in the stat structure) under some
conditions.

2.

QDLS File System Differences

If the date corresponding to the st_atime, st_mtime, or st_ctime value precedes 1970, stat() returns
zero for that value. Also, if the specified path is /QDLS, stat() returns zero for all three values
st_atime, st_mtime, and st_ctime.

3.

QOPT File System Differences

The value for st_atime will always be zero. The value for st_ctime will always be the creation date
and time of the file or directory.

The user, group, and other mode bits are always on for an object that exists on a volume not
formatted in Universal Disk Format (UDF).

If the object exists on a volume formatted in Universal Disk Format (UDF), the authorization that is
checked for the object and preceding directories in the path name follows the rules described in
Figure 1-74, "Authorization Required for stat()." If the object exists on a volume formatted in some
other media format, no authorization checks are made on the object or on each directory in the path
name. The volume authorization list is checked for *USE authority regardless of the media format
of the volume.

stat on /QOPT will always return 2,147,483,647 for size fields.

stat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

4.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once a file is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

5.

QNetWare File System Differences6.

The QNetWare file system does not fully support mode bits. See Netware on iSeries in the iSeries
Information Center for more information.

This function will fail with the [EOVERFLOW] error if the file size in bytes cannot be represented
correctly in the structure pointed to by buf (the file is larger than 2GB minus 1 byte).

7.

When you develop in C-based languages and this function is compiled with _LARGE_FILES
defined, it will be mapped to fstat64(). Note that the type of the buf parameter, struct stat *, also
will be mapped to type struct stat64 *.

8.

Related Information

The <sys/stat.h> file (see Header Files for UNIX-Type Functions)●

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

chown()--Change Owner and Group of File●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

fcntl()--Perform File Control Command●

fstat()--Get File Information by Descriptor●

link()--Create Link to File●

lstat()--Get File or Link Information●

mkdir()--Make Directory●

open()--Open File●

QlgStat()--Get File Information (using NLS-enabled path name)●

read()--Read from Descriptor●

readlink()--Read Value of Symbolic Link●

stat64()--Get File Information (Large File Enabled)●

symlink()--Make Symbolic Link●

unlink()--Remove Link to File●

utime()--Set File Access and Modification Times●

write()--Write to Descriptor●

Example

The following example gets status information about a file:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

#include <time.h>

main() {
 struct stat info;

 if (stat("/", &info) != 0)
 perror("stat() error");
 else {
 puts("stat() returned the following information about root f/s:");
 printf(" inode: %d\n", (int) info.st_ino);
 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 }
}

Output: note that the following information will vary from system to system.

stat() returned the following information about root f/s:
 inode: 0
 dev id: 1
 mode: 010001ed
 links: 3
 uid: 137
 gid: 500

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

stat64()--Get File Information (Large File
Enabled)

 Syntax

 #include <sys/stat.h>

 int stat64(const char *path, struct stat64 *buf);

 Threadsafe: Conditional; see Usage Notes.

The stat64() function gets status information about a specified file and places it in the area of memory
pointed to by the buf argument.

If the named file is a symbolic link, stat64() resolves the symbolic link. It also returns information about
the resulting file.

stat64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte and
returning correct sizes.

For additional information about authorities required, error conditions, and examples, see stat()--Get File
Information.

Parameters

path

(Input) A pointer to the null-terminated path name of the file from which information is required.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgStat64()--Get File Information (large file enabled and using NLS-enabled path name) for a
description and an example of supplying the path in any CCSID.

buf

(Output) A pointer to the area to which the information should be written.

The information is returned in the following stat64 structure, as defined in the <sys/stat.h> header file:

mode_t st_mode A bit string indicating the permissions and privileges of the
file. Symbols are defined in the <sys/stat.h> header file to refer
to bits in a mode_t value; these symbols are listed in
chmod()--Change File Authorizations.

ino_t st_ino The file ID for the object. This number uniquely identifies the
object within a file system. When st_ino and st_dev are used
together, they uniquely identify the object on the system.

uid_t st_uid The numeric user ID (uid) of the owner of the file.

gid_t st_gid The numeric group ID (gid) for the file.

off64_t st_size Defined as follows for each file type:

Regular File

The number of data bytes in the file.

Directory

The number of bytes allocated to the directory.

Symbolic Link

The number of bytes in the path name stored in the
symbolic link.

Local Socket

Always zero.

OS/400 Native Object

This value is dependent on the object type.
time_t st_atime The most recent time the file was accessed.

time_t st_mtime The most recent time the contents of the file were changed.

time_t st_ctime The most recent time the status of the file was changed.

dev_t st_dev The file system ID to which the object belongs. This number
uniquely identifies the file system to which the object belongs.
When st_ino and st_dev are used together, they uniquely
identify the object on the system. This field will be
4,294,967,295 if the value could not fit in the specified dev_t
field. The complete value will be in the st_dev64 field.

size_t st_blksize The block size of the file in bytes.

nlink_t st_nlink The number of links to the file. This field will be 65,535 if
the value could not fit in the specified nlink_t field. The
complete value will be in the st_nlink32 field.

unsigned short st_codepage The code page derived from the CCSID used for the data in the
file or the extended attributes of the directory. If the returned
value of this field is 0, a code page could not be derived.

unsigned long long st_allocsize The number of bytes allocated to the file.

unsigned int st_ino_gen_id The generation ID associated with the file ID.

qp0l_objtype_t st_objtype The iSeries0 object type; for example, *STMF or *DIR. Refer

to CL Programming for a list of the iSeries object types.

 char st_reserved2[5] Reserved.

 dev-t st_rdev The device ID of the object if the object is a character special
file or block special file. This number uniquely identifies the
file device. This field will be 4,294,967,295 if the value could
not fit in the specified dev_t field. The complete value will be
in the st_rdev64 field.

 dev64_t st_rdev64 The device ID of the object in 64 bit format. See st_rdev for
more information.

 dev64_t st_dev64 The file system ID to which the object belongs in 64 bit
format. See st_dev for more information.

 nlink32_t st_nlink32 The number of links to the file.

 char st_reserved1[26] Reserved.

unsigned short st_ccsid The CCSID used for the data in the file or the extended
attributes of the directory.

Values of time_t are given in terms of seconds since a fixed point in time called the Epoch.

You can examine properties of a mode_t value from the st_mode field using a collection of macros defined
in the <sys/stat.h> header file. If mode is a mode_t value, then:

S_ISBLK(mode)

Is nonzero for block special files

S_ISCHR(mode)

Is nonzero for character special files

S_ISDIR(mode)

Is nonzero for directories

S_ISFIFO(mode)

Is nonzero for pipes and FIFO special files

S_ISREG(mode)

Is nonzero for regular files

S_ISLNK(mode)

Is nonzero for symbolic links

S_ISSOCK(mode)

Is nonzero for local sockets

S_ISNATIVE(mode)

Is nonzero for OS/400 native objects

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use either the stat64() API or the QlgStat64() API and the struct stat64 data type, you must
compile the source with _LARGE_FILE_API defined.

1.

All of the usage notes for stat() also apply to stat64() and to QlgStat64(). See Usage Notes in the
stat() API.

2.

Top | UNIX-Type APIs | APIs by category

statvfs()--Get File System Information

 Syntax

 #include <sys/statvfs.h>

 int statvfs(const char *path, struct statvfs *buf);

 Threadsafe: Conditional; see Usage Notes.

The statvfs() function gets status information about the file system that contains the file named by the path
argument. The information will be placed in the area of memory pointed to by the buf argument.

If the named file is a symbolic link, statvfs() resolves the symbolic link.

Parameters

path

(Input) A pointer to the null-terminated path name of the file from which file system information is
required.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgStatvfs()--Get File System Information (using NLS-enabled path name) for a description
and an example of supplying the path in any CCSID.

buf

(Output) A pointer to the area to which the information should be written.

The information is returned in the following statvfs structure, as defined in the <sys/statvfs.h> header file.
Signed fields of the statvfs structure that are not supported by the mounted file system will be set to -1.

unsigned long f_bsize The file system block size in bytes. Some file systems may
return zero in this field. If this field is zero, then the contents of
the f_blocks, f_bfree, and f_bavail fields are undefined.

unsigned long f_frsize The fundamental file system block size in bytes. Some file
systems may return zero in this field. If this field is zero, then
the contents of the f_blocks, f_bfree, and f_bavail fields are
undefined.

_Bin8 f_blocks The total number of blocks in the file system in terms of
f_frsize.

_Bin8 f_bfree The total number of free blocks in the file system.

_Bin8 f_bavail The total number of free blocks available to a non-privileged
process.

unsigned long f_files The total number of file serial numbers.

unsigned long f_ffree The total number of free file serial numbers.

unsigned long f_favail The number of free file serial numbers available to a
non-privileged process.

unsigned long f_fsid The file system ID. This field will be 4,294,967,295 if the
value could not fit in the specified unsigned long field.

unsigned long f_flag File system flags. Symbols are defined in the <sys/statvfs.h>
header file to refer to bits in this field (see The f_flags field).

unsigned long f_namemax The maximum file name length in the file system. Some file
systems may return the maximum value that can be stored in
an unsigned long to indicate the file system has no maximum
file name length. The maximum value that can be stored in an
unsigned long is defined in <limits.h> as ULONG_MAX.

This value is the number of bytes allowed in the file name if it
were encoded in the CCSID of the job. If the CCSID is mixed,
this number is an estimate and may be larger than the actual
allowable maximum.

unsigned long f_pathmax The maximum path length in the file system. Some file
systems may return the maximum value that can be stored in
an unsigned long to indicate the file system has no maximum
path length. The maximum value that can be stored in an
unsigned long is defined in <limits.h> as ULONG_MAX.

This value is the number of bytes allowed in the file name if it
were encoded in the CCSID of the job. If the CCSID is mixed,
this number is an estimate and may be larger than the actual
allowable maximum.

long f_objlinkmax The maximum number of hard links for objects other than
directories.

long f_dirlinkmax The maximum number of hard links for a directory.

 char f_reserved1[4] Reserved.

 unsigned long
long

f_fsid64 The file system ID in 64 bit format.

char f_basetype[80] The NULL-terminated file system type name. The text in this
field will be returned in the CCSID (coded character set
identifier) currently in effect for the job. If the CCSID of the
job is 65535, this is assumed to be represented in the default
CCSID of the job.

The f_flags field

The following symbols are defined in the <sys/statvfs.h> header file to refer to bits that may be returned in
the f_flags field:

ST_RDONLY

The file system is mounted for read-only access.

ST_NOSUID

The file system does not support setuid/setgid semantics.

ST_CASE_SENSITIVE

The file system is case sensitive.

ST_CHOWN_RESTRICTED

The file system restricts the changing of the owner or primary group to a process that has the
appropriate privileges.

ST_THREAD_SAFE

The file system is thread-safe. Thread-safe APIs may operate on objects in this file system in a
thread-safe manner.

ST_DYNAMIC_MOUNT

The file system allows itself to be dynamically mounted and unmounted.

ST_NO_MOUNT_OVER

The file system does not allow any part of it to be mounted over.

ST_NO_EXPORTS

The file system does not allow any of its objects to be exported to the Network File System (NFS)
Server.

ST_SYNCHRONOUS

The file system supports the "synchronous write" semantic of NFS Version 2.

Authorities

Note: Adopted authority is not used.

Figure 1-75. Authorization Required for statvfs()

Object Referred to
Authority
Required errno

Each directory in the path name that precedes the object *X EACCES

Object None None

Return Value

0

statvfs() was successful. The information is returned in buf.

-1

statvfs() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If statvfs() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Root ("/") and QOpenSys File System Differences

These file systems return the f_flag field with the ST_NOSUID flag bit turned off. However,
support for the setuid/setgid semantics is limited to the ability to store and retrieve the S_ISUID
and S_ISGID flags when these file systems are accessed from the Network File System server.

2.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. The local Network File System also impacts operations that retrieve file
attributes. Recent changes at the server may not be available at your client yet, and old values may
be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

3.

When you develop in C-based languages and this function is compiled with _LARGE_FILES
defined, it will be mapped to statvfs64(). Additionally, the struct statvfs data type will be mapped
to a struct statvfs64.

4.

Related Information

The <sys/statvfs.h> file (see Header Files for UNIX-Type Functions)●

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

chown()--Change Owner and Group of File●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

fcntl()--Perform File Control Command●

fstatvfs()--Get File System Information by Descriptor●

link()--Create Link to File●

open()--Open File●

QlgStatvfs()--Get File System Information (using NLS-enabled path name)●

read()--Read from Descriptor●

statvfs64()--Get File System Information (64-Bit Enabled)●

unlink()--Remove Link to File●

utime()--Set File Access and Modification Times●

write()--Write to Descriptor●

Example

The following example gets status information about a file system:

#include <sys/statvfs.h>
#include <stdio.h>

main() {
 struct statvfs info;

 if (-1 == statvfs("/", &info))
 perror("statvfs() error");
 else {
 puts("statvfs() returned the following information");
 puts("about the Root ('/') file system:");
 printf(" f_bsize : %u\n", info.f_bsize);
 printf(" f_blocks : %08X%08X\n",
 *((int *)&info.f_blocks[0]),
 *((int *)&info.f_blocks[4]));
 printf(" f_bfree : %08X%08X\n",
 *((int *)&info.f_bfree[0]),
 *((int *)&info.f_bfree[4]));
 printf(" f_files : %u\n", info.f_files);
 printf(" f_ffree : %u\n", info.f_ffree);

 printf(" f_fsid : %u\n", info.f_fsid);
 printf(" f_flag : %X\n", info.f_flag);
 printf(" f_namemax : %u\n", info.f_namemax);
 printf(" f_pathmax : %u\n", info.f_pathmax);
 printf(" f_basetype : %s\n", info.f_basetype);
 }
}

Output: The following information will vary from file system to file system.

statvfs() returned the following information
about the Root ('/') file system:
 f_bsize : 4096
 f_blocks : 00000000002BF800
 f_bfree : 0000000000091703
 f_files : 4294967295
 f_ffree : 4294967295
 f_fsid : 0
 f_flag : 1A
 f_namemax : 255
 f_pathmax : 4294967295
 f_basetype : "root" (/)

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

statvfs64()--Get File System Information (64-Bit
Enabled)

 Syntax

 #include <sys/statvfs.h>

 int statvfs64(const char *path, struct statvfs64 *buf)

 Threadsafe: Conditional; see Usage Notes.

The statvfs64() function gets status information about the file system that contains the file named by the
path argument. The information is placed in the area of memory pointed to by the buf argument.

If the named file is a symbolic link, statvfs64() resolves the symbolic link.

For details about authorities required, error conditions, and examples, see statvfs()--Get File System
Information.

Parameters

path

(Input) A pointer to the null-terminated path name of the file from which file system information is
required.

This parameter is assumed to be represented in the coded character set identifier (CCSID) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgStatvfs64()--Get File System Information (64-Bit enabled and using NLS-enabled path
name) for a description and an example of supplying the path in any CCSID.

buf

(Output) A pointer to the area to which the information should be written.

The information is returned in the following statvfs64 structure, as defined in the <sys/statvfs.h> header
file. Signed fields of the statvfs64 structure that are not supported by the mounted file system will be set to
-1.

unsigned long f_bsize The file system block size in bytes. Some file systems may
return zero in this field. If this field is zero, then the contents of
the f_blocks, f_bfree, and f_bavail fields are undefined.

unsigned long f_frsize The fundamental file system block size in bytes. Some file
systems may return zero in this field. If this field is zero, then
the contents of the f_blocks, f_bfree, and f_bavail fields are
undefined.

unsigned long long f_blocks The total number of blocks in the file system in terms of
f_frsize.

unsigned long long f_bfree The total number of free blocks in the file system.

unsigned long long f_bavail The total number of free blocks available to a non-privileged
process.

unsigned long f_files The total number of file serial numbers.

unsigned long f_ffree The total number of free file serial numbers.

unsigned long f_favail The number of free file serial numbers available to a
non-privileged process.

unsigned long f_fsid The file system ID. This field will be 4,294,967,295 if the
value could not fit in the specified unsigned long field.

unsigned long f_flag File system flags. Symbols are defined in the <sys/statvfs.h>
header file to refer to bits in this field (see The f_flags field).

unsigned long f_namemax The maximum file name length in the file system. Some file
systems may return the maximum value that can be stored in
an unsigned long to indicate the file system has no maximum
file name length. The maximum value that can be stored in an
unsigned long is defined in <limits.h> as ULONG_MAX.

This value is the number of bytes allowed in the file name if it
were encoded in the CCSID of the job. If the CCSID is mixed,
this number is an estimate and may be larger than the actual
allowable maximum.

unsigned long f_pathmax The maximum path length in the file system. Some file
systems may return the maximum value that can be stored in
an unsigned long to indicate the file system has no maximum
path length. The maximum value that can be stored in an
unsigned long is defined in <limits.h> as ULONG_MAX.

This value is the number of bytes allowed in the file name if it
were encoded in the CCSID of the job. If the CCSID is mixed,
this number is an estimate and may be larger than the actual
allowable maximum.

long f_objlinkmax The maximum number of hard links for objects other than
directories.

long f_dirlinkmax The maximum number of hard links for a directory.

 char f_reserved1[4] Reserved.

 unsigned long
long

f_fsid64 The file system ID in 64 bit format.

char f_basetype[80] The NULL-terminated file system type name. The text in this
field will be returned in the CCSID (coded character set
identifier) currently in effect for the job. If the CCSID of the
job is 65535, this is assumed to be represented in the default
CCSID of the job.

For further details about the f_flags field, see statvfs()--Get File System Information.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the statvfs64() API or the QlgStatvfs64() API and the struct statvfs64 data type, you must
compile the source with the _LARGE_FILE_API macro defined.

1.

All of the usage notes for statvfs() apply to statvfs64() and QlgStatvfs64(). See Usage Notes in the
statvfs() API.

2.

Top | UNIX-Type APIs | APIs by category

symlink()--Make Symbolic Link

 Syntax

 #include <unistd.h>

 int symlink(const char *pname, const char *slink);

 Threadsafe: Conditional; see Usage Notes.

The symlink() function creates the symbolic link named by slink with the value specified by pname. File
access checking is not performed on the file pname, and the file need not exist. In addition, a symbolic link
can cross file system boundaries.

If slink names a symbolic link, symlink() fails with the [EEXIST] error.

A symbolic link path name is resolved in the following manner:

When a component of a path name refers to a symbolic link rather than to a directory, the path
name contained in the symbolic link is resolved.

●

If the path name in the symbolic link begins with / (slash), the symbolic link path name is resolved
relative to the root directory for the job.

If the path name in the symbolic link does not start with / (slash), the symbolic link path name is
resolved relative to the directory that contains the symbolic link.

●

If the symbolic link is the last component of a path name, it may or may not be resolved.
Resolution depends on the function using the path name. For example, rename() does not resolve a
symbolic link when the symbolic link is the final component of either the new or old path name.
However, open() does resolve a symbolic link when the link is the last component.

●

If the symbolic link is not the last component of the original path name, remaining components of
the original path name are resolved relative to the symbolic link.

●

When a / (slash) is the last component of a path name and it is preceded by a symbolic link, the
symbolic link is always resolved.

●

Any files and directories to which a symbolic link refers are checked for access permission.

symlink() sets the access, change, modification, and creation times for the new symbolic link. It also sets
the change and modification times for the directory that contains the new symbolic link.

Parameters

pname

(Input) A pointer to the null-terminated value of the symbolic link.

The value of the symbolic link is assumed to be represented in the CCSID (coded character set
identifier) currently in effect for the job. If the CCSID of the job is 65535, this parameter is
assumed to be represented in the default CCSID of the job.

See QlgSymlink--Make Symbolic Link (using NLS-enabled path name) for a description and an
example of supplying the pname in any CCSID.

slink

(Input) A pointer to the null-terminated name of the symbolic link to be created.

This parameter is assumed to be represented in the CCSID, language, and country or region
currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be
represented in the default CCSID of the job.

See QlgSymlink--Make Symbolic Link (using NLS-enabled path name) for a description and an
example of supplying the slink in any CCSID.

Authorities

Note: Adopted authority is not used.

Figure 1-76. Authorization Required for symlink()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be created *X EACCES

Parent directory of object to be created *WX EACCES

Return Value

0

symlink() was successful.

-1

symlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If symlink() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may

also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

❍

1.

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

File System Differences

The following file systems do not support symlink():

QSYS.LIB❍

Independent ASP QSYS.LIB ❍

QDLS❍

QOPT❍

QFileSvr.400❍

QNetWare❍

QNTC❍

2.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

link()--Create Link to File●

QlgSymlink--Make Symbolic Link (using NLS-enabled path name)●

readlink()--Read Value of Symbolic Link●

unlink()--Remove Link to File●

Example

The following example uses symlink():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

main() {
 char fn[]="readlink.file";
 char sl[]="readlink.symlink";
 char buf[30];
 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 close(file_descriptor);
 if (symlink(fn, sl) != 0)
 perror("symlink() error");
 else {
 if (readlink(sl, buf, sizeof(buf)) < 0)
 perror("readlink() error");
 else printf("readlink() returned '%s'
 for '%s'\n", buf, sl);

 unlink(sl);
 }
 unlink(fn);
 }
}

Output:

readlink() returned 'readlink.file' for 'readlink.symlink'

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

sysconf()--Get System Configuration Variables

 Syntax

 #include <unistd.h>

 long sysconf(int name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The sysconf() function returns the value of a system configuration option. The configuration option to be
obtained is specified by name.

Parameters

name

(Input) The named variable whose value is to be returned.

The value of name can be any one of the following symbols defined in the <unistd.h> header file, each
corresponding to a system configuration option:

_SC_ARG_MAX (Not supported by the iSeries server). Represents ARG_MAX, which indicates
the maximum number of bytes of arguments and environment data that can be
passed in an exec function.

_SC_CHILD_MAX (Not supported by the iSeries server). Represents CHILD_MAX, which
indicates the maximum number of jobs that a real user ID (uid) can have
running simultaneously.

_SC_CLK_TCK Represents the CLK_TCK macro, which indicates the number of clock ticks in
a second. CLK_TCK is defined in the <time.h> header file.

_SC_JOB_CONTROL (Not supported by the iSeries server). Represents the
_POSIX_JOB_CONTROL macro, which indicates that certain job control
operations are implemented by this version of the operating system. If
_POSIX_JOB_CONTROL is defined (in the <unistd.h> header file), various
APIs, such as setpgid(), provide more function than when the macro is not
defined.

_SC_NGROUPS_MAX Represents NGROUPS_MAX, which indicates the maximum number of
supplementary group IDs (gid) that can be associated with a job.

_SC_OPEN_MAX Represents OPEN_MAX, which indicates the maximum number of files that a
single job can have open at one time.

_SC_PAGESIZE Represents the system hardware page size. The symbol _SC_PAGESIZE is
defined as the decimal value 11.

_SC_PAGE_SIZE Represents the system hardware page size. The symbol _SC_PAGE_SIZE is
defined as the decimal value 12.

_SC_SAVED_IDS (Not supported by the iSeries server). Represents the _POSIX_SAVED_IDS
macro, which indicates that this POSIX implementation has a saved set uid and
a saved set gid. If the macro exists, it is defined in the <unistd.h> header file.
This symbol affects the behavior of such functions as setuid() and setgid().

_SC_STREAM_MAX Represents the STREAM_MAX macro, which indicates the maximum number
of streams that a job can have open at one time. The macro is defined in the
<limits.h> header file.

_SC_TZNAME_MAX (Not supported by the iSeries server). Represents the TZNAME_MAX macro,
which indicates the maximum length of the name of a time zone. If the macro
exists, it is defined in the <limits.h> header file.

_SC_VERSION (Not supported by the iSeries server). Represents the _POSIX_VERSION
macro, which indicates the version of the POSIX.1 standard that the system
conforms to. If the macro exists, it is defined in the <unistd.h> header file.

_SC_CCSID Represents the default coded character set identifier (CCSID) used internally
for integrated file system path names. A CCSID uniquely identifies the coded
graphic character representation of a path name and includes such information
as the character set and code page identifier. The symbol _SC_CCSID is
defined as the decimal value 10.

Authorities

No authorization is required.

Return Value

value sysconf() was successful. The value associated with the specified option is returned.

-1 One of the following has occurred:

The variable corresponding to name is valid but is not supported by the system. The
errno global variable is not changed.

●

sysconf() failed in some other way. The errno is set to indicate the error.●

Error Conditions

If sysconf() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an
object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value for name is not valid.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines the value of OPEN_MAX:

#include <stdio.h>
#include <unistd.h>
#include <errno.h>

main() {
 long result;

 errno = 0;
 puts("examining OPEN_MAX limit");
 if ((result = sysconf(_SC_OPEN_MAX)) == -1)
 if (errno == 0)
 puts("OPEN_MAX is not supported.");
 else perror("sysconf() error");
 else
 printf("OPEN_MAX is %ld\n", result);
}

Output:

examining OPEN_MAX limit
OPEN_MAX is 200

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

umask()--Set Authorization Mask for Job

 Syntax

 #include <sys/stat.h>

 mode_t umask(mode_t cmask);

 Threadsafe: Yes

Every job has a file creation mask. When a job starts, the value of the file creation mask is zero. The value
of zero means that no permissions are masked when a file or directory is created in the job. The umask()
function changes the value of the file creation mask for the current job to the value specified in cmask.

The cmask argument controls file permission bits that should be set whenever the job creates a file. File
permission bits set to 1 in the file creation mask are set to 0 in the file permission bits of files that are
created by the job.

For example, if a call to open() specifies a mode argument with file permission bits, the file creation mask
of the job affects the mode argument; bits that are 1 in the mask are set to 0 in the mode argument and,
therefore, in the mode of the created file.

Only the file permission bits of cmask are used. The other bits in cmask must be cleared (not set), or the
CPFA0D3 message is issued.

Parameters

cmask

(Input) The new value of the file creation mask. For a description of the permission bits, see
chmod()--Change File Authorizations.

Authorities

No authorization is required.

Return Value

umask() returns the previous value of the file creation mask. It does not return -1 or set the errno global
variable.

Error Conditions

None.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D3 E

cmask parameter is not valid.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

QNTC File System Differences

umask() does not update the file creation mask for QNTC. The settings specified in cmask are
ignored.

1.

Related Information

The <sys/stat.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

creat()--Create or Rewrite File●

mkdir()--Make Directory●

open()--Open File●

Example

The following example uses umask():

#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>

main()
{
 int file_descriptor;
 struct stat info;

 umask(S_IRWXG);

 if ((file_descriptor =
 creat("umask.file", S_IRWXU|S_IRWXG)) < 0)
 perror("creat() error");
 else {
 fstat(file_descriptor, &info);
 printf("permissions are: %08x\n", info.st_mode);
 close(file_descriptor);
 unlink("umask.file");
 }
}

Output:

permissions are: 000081c0

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

unlink()--Remove Link to File

 Syntax

 #include <unistd.h>

 int unlink(const char *path);

 Threadsafe: Conditional; see Usage Notes.

The unlink() function removes a directory entry that refers to a file. This unlink() deletes the link named
by path and decrements the link count for the file itself.

If the link count becomes zero and no job currently has the file open, the file itself is deleted. The space
occupied by the file is freed for new use, and the current contents of the file are lost. If one or more jobs
have the file open when the last link is removed, unlink() removes the link, but the file itself is not
removed until the last job closes the file.

unlink() cannot be used to remove a directory; use rmdir() instead.

If path refers to a symbolic link, unlink() removes the symbolic link but not a file or directory named by
the contents of the symbolic link.

If unlink() succeeds, the change and modification times for the parent directory are updated. If the link
count of the file is not zero, the change time for the file is also updated. If unlink() fails, the link is not
removed.

If the file is checked out, unlink() fails with the [EBUSY] error. If the file is marked "read-only", unlink()
fails with the [EROOBJ] error.

Parameters

path

(Input) A pointer to the null-terminated path name of the file to be unlinked.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgUnlink()--Remove Link to File (using NLS-enabled path name) for a description and an
example of supplying the path in any CCSID.

Authorities

Note: Adopted authority is not used.

Figure 1-77. Authorization Required for unlink() (excluding QSYS.LIB, independent ASP
QSYS.LIB, QDLS and QOPT)

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be unlinked *X EACCES

Parent directory of the object to be unlinked *WX EACCES

Object to be unlinked *OBJEXIST EACCES

Figure 1-78. Authorization Required for unlink() in the QSYS.LIB and independent ASP
QSYS.LIB File Systems

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be unlinked *X EACCES

Parent directory of the object to be unlinked See Note EACCES

Object to be unlinked See Note EACCES

Note: The required authorization varies for each object type. See the DLTxxx

commands in the iSeries Security Reference book for details.

Figure 1-79. Authorization Required for unlink() in the QDLS File System

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be unlinked *X EACCES

Parent directory of the object to be unlinked *X EACCES

Object to be unlinked *ALL EACCES

Figure 1-80. Authorization Required for unlink() in the QOPT File System

Object Referred to
Authority
Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the object to be unlinked if volume
media format is Universal Disk Format (UDF)

*X EACCES

Parent directory of the object to be unlinked if volume media format is Universal
Disk Format (UDF)

*WX EACCES

Object to be unlinked if volume media format is Universal Disk Format (UDF) *W EACCES

Object to be unlinked and parent directories if volume media format is not
Universal Disk Format (UDF)

None None

Return Value

0

unlink() was successful.

-1

unlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If unlink() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

The file may be checked out.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

unlink() is not permitted on directories in this part of the directory hierarchy, or unlink() is
permitted but the user does not have sufficient authority.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

[EXDEV]

Improper link.

A link to a file on another file system was attempted.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences2.

The link to a file cannot be removed when a job has the file open.

The following object types cannot be unlinked when there are secondary threads active in the job:
*CFGL, *CNNL, *COSD, *CTLD, *DEVD, *IPXD, *LIND, *MODD, *NTBD, *NWID,
*NWSD. The operation will fail with error code [ENOTSAFE].

QDLS File System Differences

The link to a document cannot be removed when a job has the document open (returns the
[EBUSY] error).

3.

QOPT File System Differences

The change and modification times of the parent directory are not updated.

The link to a file cannot be removed when a job has the file open.

4.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

close()--Close File or Socket Descriptor●

link()--Create Link to File●

open()--Open File●

QlgOpen()--Open a File (using NLS-enabled path name)●

QlgRmdir()--Remove Directory (using NLS-enabled path name)●

QlgUnlink()--Remove Link to File (using NLS-enabled path name)●

rmdir()--Remove Directory●

Example

The following example removes a link to a file:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

main() {
 int file_descriptor;
 char fn[]="unlink.file";

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 close(file_descriptor);

 if (unlink(fn) != 0)
 perror("unlink() error");
 }
}

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

utime()--Set File Access and Modification
Times

 Syntax

 #include <utime.h>

 int utime(const char *path, const struct utimbuf *times);

 Threadsafe: Conditional; see Usage Notes.

The utime() function sets the access and modification times of path to the values in the utimbuf structure. If
times is a NULL pointer, the access and modification times are set to the current time. If the named file is a
symbolic link, utime() resolves the symbolic link.

If the file is checked out by another user (someone other than the user profile of the current job), utime()
fails with the [EBUSY] error.

When utime() completes successfully, it marks the change time of the file to be updated.

Parameters

path

(Input) A pointer to the null-terminated path name of the file for which the times should be
changed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgUtime()--Set File Access and Modification Times (using NLS-enabled path name) for a
description and an example of supplying the path in any CCSID.

times

(Input) A pointer to a structure utimbuf, which contains the times to be updated.

The structure utimbuf is defined according to the POSIX.1 definition as follows:

struct utimbuf {
 time_t actime; /* The new access time */
 time_t modtime; /* The new modification time */
 }

The time_t type gives the number of seconds since the Epoch.

Authorities

Note: Adopted authority is not used.

Figure 1-81. Authorization Required for utime() (excluding QDLS)

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object *X EACCES

Object when changing the time to a specified value Owner or
*W (See
Note)

EPERM

Object when changing the time to the current time Owner or
*W (See
Note)

EACCES

Note: You do not need the listed authority if you have *ALLOBJ special authority.

Figure 1-82. Authorization Required for utime() in the QDLS File System

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object *X EACCES

Object when changing the time to a specified value *W EPERM

Object when changing the time to the current time *W EACCES

Return Value

0

utime() was successful. The file access and modification times are changed.

-1

utime() was not successful. The file times are not changed. The errno global variable is set to
indicate the error.

Error Conditions

If utime() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by

the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems. times is NULL and the job does not have authority to perform the requested function.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

times is not NULL and the thread does not have authority to perform the requested function.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

These file systems do not support utime().

2.

QDLS File System Differences

Changing the times of the /QDLS directory (the root folder) is not allowed.

3.

QOPT File System Differences

The QOPT file system does not support utime().

4.

QNTC File System Differences

The QNTC file system does not set the access and modification times of path. The values in the
utimbuf structure are ignored.

5.

Related Information

The <utime.h> file (see Header Files for UNIX-Type Functions)●

The <limits.h> file (see Header Files for UNIX-Type Functions)●

QlgUtime()--Set File Access and Modification Times (using NLS-enabled path name)●

Example

The following example uses utime():

#include <utime.h>
#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

main() {
 int file_descriptor;
 char fn[]="utime.file";
 struct utimbuf ubuf;
 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 close(file_descriptor);
 puts("before utime()");
 stat(fn,&info);
 printf(" utime.file modification time is %ld\n",
 info.st_mtime);
 ubuf.modtime = 0; /* set modification time to Epoch */
 time(&ubuf.actime);
 if (utime(fn, &ubuf) != 0)
 perror("utime() error");
 else {
 puts("after utime()");
 stat(fn,&info);
 printf(" utime.file modification time is %ld\n",
 info.st_mtime);
 }
 unlink(fn);
 }
}

Output:

before utime()
 utime.file modification time is 749323571
after utime()
 utime.file modification time is 0

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

write()--Write to Descriptor

 Syntax

 #include <unistd.h>

 ssize_t write
 (int file_descriptor, const void *buf, size_t nbyte);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The write() function writes nbyte bytes from buf to the file or socket associated with file_descriptor. nbyte
should not be greater than INT_MAX (defined in the <limits.h> header file). If nbyte is zero, write() simply
returns a value of zero without attempting any other action.

If file_descriptor refers to a "regular file" (a stream file that can support positioning the file offset) or any other
type of file on which the job can do an lseek() operation, write() begins writing at the file offset associated with
file_descriptor, unless O_APPEND is set for the file (see below). A successful write() increments the file offset
by the number of bytes written. If the incremented file offset is greater than the previous length of the file, the
length of the file is set to the new file offset.

If O_APPEND (defined in the <fcntl.h> header file) is set for the file, write() sets the file offset to the end of
the file before writing the output.

If there is not enough room to write the requested number of bytes (for example, because there is not enough
room on the disk), the write() function writes as many bytes as the remaining space can hold.

If write() is successful and nbyte is greater than zero, the change and modification times for the file are updated.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA specified, the
data is written to the file assuming it is in textual form. The maximum number of bytes on a single write that
can be supported for text data is 2,147,483,408 (2GB - 240) bytes. The data is converted from the code page of
the application, job, or system to the code page of the file as follows:

When writing to a true stream file, any line-formatting characters (such as carriage return, tab, and
end-of-file) are just converted from one code page to another.

●

When writing to a record file that is being used as a stream file:

End-of-line characters are removed.❍

Records are padded with blanks (for a source physical file member) or nulls (for a data physical
file member).

❍

Tab characters are replaced by the appropriate number of blanks to the next tab position.❍

●

There are some important considerations if O_CCSID was specified on the open().

The write() will attempt to convert all of the data in the user's buffer. Successfully converted data will
be written. Unconverted data is usually assumed to be a partial character. Partial characters will be
buffered internally and data from the next consecutive write will be appended to the buffered data. If
incorrect data is provided on a consecutive write, the write may fail with the [ECONVERT] error.

●

If an lseek() is performed, the file is closed, or the current job is ended, the buffered data will be
discarded. Discarded data will not be written to the file. See lseek()--Set File Read/Write Offset for
more information.

Because of the above consideration and because of the possible expansion or contraction of converted
data, applications using the O_CCSID flag should avoid assumptions about data size and the current file
offset. For example, the user may supply a buffer to 100 bytes, but after an application has written the
buffer to a new file, the file size may be 50, 200, or something else, depending on the CCSIDs involved.

●

If O_TEXTDATA was not specified on the open(), the data is written to the file without conversion. The
application is responsible for handling the data.

When file_descriptor refers to a socket, the write() function writes to the socket identified by the socket
descriptor.

Note: When the write completes successfully, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits of
the file mode will be cleared. If the write is unsuccessful, the bits are undefined.>

Write requests to a pipe or FIFO are handled the same as a regular file, with the following exceptions:

The S_ISUID and S_ISGID file mode bits will not be cleared.●

There is no file offset associated with a pipe or FIFO. Each write request will append to the end of the
pipe or FIFO.

●

Write requests of [PIPE_BUF] bytes or less will not be interleaved with data from other threads
performing writes on the same pipe or FIFO. Writes of greater than [PIPE_BUF] bytes may have data
interleaved on arbitrary boundaries with writes by other threads, whether or not the O_NONBLOCK
flag of the file status flags is set.

●

If the O_NONBLOCK flag was not specified and the pipe or FIFO is full, the write request will block
the calling thread until the requested amount of data in nbyte is written.

●

If the O_NONBLOCK flag was specified, then the following pertain to various write requests:

The write() function will not block the calling thread.❍

A write request for [PIPE_BUF] or fewer bytes will have the following effect:

If there is sufficient space available in the pipe or FIFO, write() will transfer all the data and
return the number of bytes requested. If there is not sufficient space in the pipe or FIFO, write()
will transfer no data, return -1, and set errno to [EAGAIN].

❍

A write request for more than [PIPE_BUF] bytes will cause one of the following:

When at least one byte can be written, write() will transfer what it can and return the
number of bytes written.

■

When no data can be written, write() will transfer no data, return -1, and set errno to
[EAGAIN].

■

❍

●

Parameters

file_descriptor

(Input) The descriptor of the file to which the data is to be written.

buf

(Input) A pointer to a buffer containing the data to be written.

nbyte

(Input) The size in bytes of the data to be written.

Authorities

No authorization is required.

Return Value

value write() was successful. The value returned is the number of bytes actually written. This number is
less than or equal to nbyte.

-1 write() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If write() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or
path.

If you are accessing a remote file through the Network File System, update
operations to file permissions at the server are not reflected at the client until
updates to data that is stored locally by the Network File System take place.
(Several options on the Add Mounted File System (ADDMFS) command
determine the time between refresh operations of local data.) Access to a remote
file may also fail due to different mappings of user IDs (UID) or group IDs (GID)
on the local and remote systems.

If writing to a socket, this error code indicates one of the following:

The destination address specified is a broadcast address and the socket
option SO_BROADCAST was not set (with a setsockopt()).

●

The process does not have the appropriate privileges to the destination
address. This error code can only be returned on a socket with an address
family of AF_INET and a type of SOCK_DGRAM.

●

[EAGAIN] Operation would have caused the process to be suspended.

If file_descriptor refers to a pipe or FIFO that has its O_NONBLOCK flag set, this
error occurs if the write() would have blocked the calling thread.

[EBADF] Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or
a read or write request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The
specified descriptor is incorrect, or does not refer to an open file. Or this write()
request was made to a file that was only open for reading.

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon
as possible.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is
not valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

[EFBIG] Object is too large.

The size of the object would exceed the system allowed maximum size or the
process soft file size limit.

The file is a regular file, nbyte is greater than 0, and the starting offset is greater
than or equal to 2 GB minus 2 bytes.

[EINTR] Interrupted function call.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted
on an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The file system that the file resides in does not support large files, and the starting
offset exceeds 2GB minus 2 bytes.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE] Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the
journal sequence number has exceeded the maximum value allowed. This error
occurs during operations that were attempting to send an entry to the journal.

[EJRNENTTOOLONG] Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE] Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during
operations that were attempting to send an entry to the journal.

[EJRNRCVSPC] Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage
limit has been exceeded for the system, the object, the user profile, or the group
profile. This error occurs during operations that were attempting to send an entry
to the journal.

[ENEWJRN] New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete
successfully. This error occurs during operations that were attempting to start or
end journaling, or were attempting to send an entry to the journal.

[ENEWJRNRCV] New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be
journaled. This error occurs during operations that were attempting to send an
entry to the journal.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC] No space available.

The requested operations required additional space on the device and there is no
space left. This could also be caused by exceeding the user profile storage limit
when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the
independent ASP.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[ENXIO] No such device or address.

[ERESTART] A system call was interrupted and may be restarted.

[ETRUNC] Data was truncated on an input, output, or update operation.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, thenretry the operation.

When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless transport
service.

[EDESTADDRREQ] Operation requires destination address.

A destination address has not been associated with the socket pointed to by the fildes
parameter. This error code can only be returned on sockets that use a connectionless
transport service.

[EHOSTDOWN] A remote host is not available.

This error code can only be returned on sockets that use a connectionless transport
service.

[EHOSTUNREACH] A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless transport
service.

[EINTR] Interrupted function call.

[EMSGSIZE] Message size out of range.

The data to be sent could not be sent atomically because the size specified by nbyte is
too large.

[ENETDOWN] The network is not currently available.

This error code can only be returned on sockets that use a connectionless transport
service.

[ENETUNREACH] Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless transport
service.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented
transport service.

[EPIPE] Broken pipe.

[EUNATCH] The protocol required to support the specified address family is not available at this
time.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

If interaction with a file server is required to access the object, errno could indicate one of the following errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EHOSTDOWN] A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at this
time.>

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

❍

1.

QNTC■

QSYS.LIB■

 Independent ASP QSYS.LIB ■

QOPT■

QSYS.LIB and independent ASP QSYS.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is operating is
a save file and multiple threads exist in the job.

If the file specified is a save file, only complete records will be written into the save file. A write()
request that does not provide enough data to completely fill a save file record will cause the partial
record's data to be saved by the file system. The saved partial record will then be combined with
additional data on subsequent write()'s until a complete record may be written into the save file. If the
save file is closed prior to a saved partial record being written into the save file, then the saved partial
record is discarded, and the data in that partial record will need to be written again by the application.

A successful write() updates the change, modification, and access times for a database member using
the normal rules that apply to database files. At most, the access time is updated once per day.

You should be careful when writing end-of-file characters in the QSYS.LIB and independent ASP
QSYS.LIB file systems. These file systems end-of-file characters are symbolic; that is, they are
stored outside the file member. However, some situations can result in actual, nonsymbolic end-of-file
characters being written to a member. These nonsymbolic end-of-file characters could cause some tools
or utilities to fail. For example:

If you previously wrote an end-of-file character as the last character of a member, do not
continue to write data after that end-of-file character. Continuing to write data will cause a
nonsymbolic end-of-file to be written. As a result, a compile of the member could fail.

❍

If you previously wrote an end-of-file character as the last character of a member, do not write
other end-of-file characters preceding it in the file. This will cause a nonsymbolic end-of-file to
be written. As a result, a compile of the member could fail.

❍

If you previously used the integrated file system interface to manipulate a member that contains
an end-of-file character, avoid using other interfaces (such as the Source Entry Utility or
database reads and writes) to manipulate the member. If you use other interfaces after using the
integrated file system interface, the end-of-file information will be lost.

❍

2.

QOPT File System Differences

The change and modification times of the file are updated when the file is closed.

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the range
being written are ignored.

3.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to
conditions at the server. Once a file is open, subsequent requests to perform operations on the file can
fail because file attributes are checked at the server on each request. If permissions on the file are made
more restrictive at the server or the file is unlinked or made unavailable by the server for another client,
your operation on an open file descriptor will fail when the local Network File System receives these
updates. The local Network File System also impacts operations that retrieve file attributes. Recent
changes at the server may not be available at your client yet, and old values may be returned from

4.

operations (several options on the Add Mounted File System (ADDMFS) command determine the time
between refresh operations of local data).

Reading and writing to files with the Network File System relies on byte-range locking to guarantee
data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks.

QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be
received.

5.

Sockets Usage Notes

write() only works with sockets on which a connect() has been issued, since it does not allow
the caller to specify a destination address.

1.

To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a
setsockopt()).

2.

When using a connection-oriented transport service, all errors except [EUNATCH] and
[EUNKNOWN] are mapped to [EPIPE] on an output operation when either of the following
occurs:

A connection that is in progress is unsuccessful.■

An established connection is broken.■

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input
operation (for example, read()).

3.

6.

For the file systems that do not support large files, write() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do support
large files, write() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and the file was
not opened for large file access.

7.

Using this function successfully on the /dev/null or /dev/zero character special file results in a
return value of the total number of bytes requested to be written. No data is written to the character
special file. In addition, the change and modification times for the file are updated.

8.

 If the write exceeds the process soft file size limit, signal SIFXFSZ is issued. 9.

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

fcntl()--Perform File Control Command●

ioctl()--Perform I/O Control Request●

lseek()--Set File Read/Write Offset●

open()--Open File●

 pread()--Read from Descriptor with Offset●

pread64()--Read from Descriptor with Offset (large file enabled)●

pwrite()--Write to Descriptor with Offset●

pwrite64()--Write to Descriptor with Offset (large file enabled) ●

read()--Read from Descriptor●

readv()--Read from Descriptor Using Multiple Buffers●

send()--Send Data●

sendmsg()--Send Data or Descriptors or Both●

sendto()--Send Data●

writev()--Write to Descriptor Using Multiple Buffers●

Example

See Code disclaimer information for information pertaining to code examples.

The following example writes a specific number of bytes to a file:

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define mega_string_len 1000000

main() {
 char *mega_string;
 int file_descriptor;
 int ret;
 char fn[]="write.file";

 if ((mega_string = (char*) malloc(mega_string_len)) == NULL)
 perror("malloc() error");
 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 memset(mega_string, '0', mega_string_len);
 if ((ret = write(file_descriptor, mega_string, mega_string_len)) == -1)
 perror("write() error");
 else printf("write() wrote %d bytes\n", ret);
 if (close(file_descriptor)!= 0)
 perror("close() error");
 if (unlink(fn)!= 0)
 perror("unlink() error");
 }
}

Output:

write() wrote 1000000 bytes

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

writev()--Write to Descriptor Using Multiple
Buffers

 Syntax

 #include <sys/types.h>
 #include <sys/uio.h>

 int writev(int descriptor,
 struct iovec *io_vector[],
 int vector_length)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The writev() function is used to write data to a file or socket descriptor. writev() provides a way for the data
that is going to be written to be stored in several different buffers (scatter/gather I/O).

Note: When the write completes successfully, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits
of the file mode will be cleared. If the write is unsuccessful, the bits are undefined.

See write()--Write to Descriptor for more information related to writing to a descriptor.

Parameters

descriptor

(Input) The descriptor to which the data is to be written. The descriptor refers to either a file or a
socket.

io_vector[]

(Input) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointers to
buffers in which the data to be written is stored. The structure pointed to by the io_vector parameter
is defined in <sys/uio.h>.

 struct iovec {
 void *iov_base;
 size_t iov_len;
 }

iov_base and iov_len are the only fields in iovec used by sockets. iov_base contains the pointer to a
buffer and iov_len contains the buffer length. The rest of the fields are reserved.

vector_length

(Input) The number of entries in io_vector.

Authorities

No authorization is required.

Return Value

writev() returns an integer. Possible values are:

-1 (unsuccessful)●

n (successful), where n is the number of bytes written.●

Error Conditions

If writev() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object
access permissions.

The thread does not have access to the specified file, directory, component, or
path.

If you are accessing a remote file through the Network File System, update
operations to file permissions at the server are not reflected at the client until
updates to data that is stored locally by the Network File System take place.
(Several options on the Add Mounted File System (ADDMFS) command
determine the time between refresh operations of local data.) Access to a
remote file may also fail due to different mappings of user IDs (UID) or group
IDs (GID) on the local and remote systems.

If writing to a socket, this error code indicates one of the following:

The destination address specified is a broadcast address and the socket
option SO_BROADCAST was not set (with a setsockopt()).

●

The process does not have the appropriate privileges to the destination
address. This error code can only be returned on a socket with an
address family of AF_INET and a type of SOCK_DGRAM.

●

[EAGAIN] Operation would have caused the process to be suspended.

[EBADF] Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not
open, or a read or write request was made to a file that is not open for that
operation.

A given file descriptor or directory pointer is not valid for this operation. The
specified descriptor is incorrect, or does not refer to an open file. Or this
writev() request was made to a file that was only open for reading.

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as
soon as possible.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at this
time.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that
is not valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

[EFBIG] Object is too large.

The size of the object would exceed the system allowed maximum size or
the process soft file size limit.

The file is a regular file, nbyte is greater than 0, and the starting offset is
greater than or equal to 2GB minus 2 bytes.

[EINTR] Interrupted function call.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was
attempted on an object and the operation specified is not supported for that
type of object.

An argument value is not valid, out of range, or NULL.

The file resides in a file system that does not support large files, and the
starting offset exceeds 2GB minus 2 bytes.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE] Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the
journal sequence number has exceeded the maximum value allowed. This
error occurs during operations that were attempting to send an entry to the
journal.

[EJRNENTTOOLONG] Entry too large to send.

The journal entry generated by this operation is too large to send to the
journal.

[EJRNINACTIVE] Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during
operations that were attempting to send an entry to the journal.

[EJRNRCVSPC] Journal space or system storage error.

The attached journal receiver does not have space for the entry because the
storage limit has been exceeded for the system, the object, the user profile, or
the group profile. This error occurs during operations that were attempting to
send an entry to the journal.

[ENEWJRN] New journal is needed.

The journal was not completely created, or an attempt to delete it did not
complete successfully. This error occurs during operations that were
attempting to start or end journaling, or were attempting to send an entry to
the journal.

[ENEWJRNRCV] New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be
journaled. This error occurs during operations that were attempting to send an
entry to the journal.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC] No space available.

The requested operations required additional space on the device and there is
no space left. This could also be caused by exceeding the user profile storage
limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim
Storage (RCLSTG) processing.

To recover from this error, wait until processing has completed for the
independent ASP.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[ERESTART] A system call was interrupted and may be restarted.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file
may have been deleted at the server.

[ETRUNC] Data was truncated on an input, output, or update operation.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages
in the job log and correct any errors that are indicated, then retry the operation.

When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless
transport service.

[EDESTADDRREQ] Operation requires destination address.

A destination address has not been associated with the socket pointed to by the
fildes parameter. This error code can only be returned on sockets that use a
connectionless transport service.

[EHOSTDOWN] A remote host is not available.

This error code can only be returned on sockets that use a connectionless
transport service.

[EHOSTUNREACH] A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless
transport service.

[EINTR] Interrupted function call.

[EMSGSIZE] Message size out of range.

The data to be sent could not be sent atomically because the size specified by
nbyte is too large.

[ENETDOWN] The network is not currently available.

This error code can only be returned on sockets that use a connectionless
transport service.

[ENETUNREACH] Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless
transport service.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented
transport service.

[EPIPE] Broken pipe.

[EUNATCH] The protocol required to support the specified address family is not available at
this time.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EHOSTDOWN] A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at
this time.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

writev() only works with sockets on which a connect() has been issued, since the call does not
allow the caller to specify a destination address.

2.

writev() is an atomic operation on sockets of type SOCK_DGRAM and SOCK_RAW in that it3.

produces one packet of data every time it is issued. For example, a writev() to a datagram socket
results in a single datagram.

To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a
setsockopt()).

4.

When using a connection-oriented transport service, all errors except [EUNATCH] and
[EUNKNOWN] are mapped to [EPIPE] on an output operation when either of the following
occurs:

A connection that is in progress is unsuccessful.❍

An established connection is broken.❍

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation
(for example, read()).

5.

For the file systems that do not support large files, writev() will return [EINVAL] if the starting
offset exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that
do support large files, writev() will return [EFBIG] if the starting offset exceeds 2GB minus 2
bytes and the file was not opened for large file access.

6.

QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will
be received.

7.

QOPT File System Differences

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being written are ignored.

8.

Using this function successfully on the dev/null or /dev/zero character special file results in a
return value of the total number of bytes requested to be written. No data is written to the character
special file. In addition, the change and modification times for the file are updated.

9.

If the write exceeds the process soft file size limit, signal SIFXFSZ is issued. 10.

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

fcntl()--Perform File Control Command●

ioctl()--Perform I/O Control Request●

lseek()--Set File Read/Write Offset●

open()--Open File●

read()--Read from Descriptor●

readv()--Read from Descriptor Using Multiple Buffers●

send()--Send Data●

sendmsg()--Send Data or Descriptors or Both●

sendto()--Send Data●

write()--Write to Descriptor●

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

Process a Path Name Exit Program

 Required Parameter Group:

1 Selection status pointer Input BINARY(4)
2 Error value pointer Input BINARY(4)
3 Return value pointer Output BINARY(4)
4 Object name pointer Input CHAR(*)
5 Function control block pointer Input CHAR(*)

The Process a Path Name exit program is a user-specified exit program that is called by the
Qp0lProcessSubtree() function for each object in the API's search that meets the caller's selection criteria.
This exit program can be either a procedure or program.

When the user exit program is given control, it can call other APIs, build lists or tables, or do other
processing. Since the API passes the names of all the children objects to the user exit program before
passing the name of the parent, the user exit program can also delete directories.

If the exit program encounters an error during processing, it returns a valid errno in the Return value pointer
field, that Qp0lProcessSubtree() returns to its caller. When its processing is complete, the exit program
return code is set to tell Qp0lProcessSubtree() to do one of the following:

End processing.●

Continue processing by calling the exit program again with the next object from the same directory.●

Continue processing by calling the exit program again, but not with objects from the same
directory. In this case, Qp0lProcessSubtree() moves to the next directory or object that meets the
specified criteria and calls the exit program with it.

●

If Qp0lProcessSubtree() encounters any problems in resolving to a user exit program,
Qp0lProcessSubtree() ends and returns to its caller. If Qp0lProcessSubtree() encounters any errors with
any other parameters, it ends and returns control to its caller, after a call to the user exit program. This call
allows the exit program to perform any desired cleanup before Qp0lProcessSubtree() ends. Use the
Err_recovery_action parameter of Qp0lProcessSubtree() to set other conditions for calling or not calling
the user exit program.

Storage referred to by the Selection status pointer, Error value pointer, Return value pointer, or the Object
name pointer when the Process a Path Name exit program is called, are destroyed or reused when
Qp0lProcessSubtree() regains control.

See Qp0lProcessSubtree()--Process a Path Name for more information.

Parameters

Selection status pointer

INPUT; BINARY(4)

A pointer to an unsigned integer. This pointer indicates whether Qp0lProcessSubtree()

encountered any problems in processing. Valid values follow:

0 QP0L_SELECT_OK: Indicates to that no problems were encountered during the selection of
the current object. The Error value pointer parameter is set to NULL.

1 QP0L_SELECT_DONE: Indicates that the last object was processed and that this is the last
call to the Process a Path Name exit program. The Object name pointer and the Error value
pointer parameters are set to NULL.

2 QP0L_SELECT_NOT_OK: Indicates that Qp0lProcessSubtree() has encountered an error
but that the Process a Path Name exit program can decide if the operation should continue or
end. The Error value pointer parameter points to a valid errno.

3 QP0L_SELECT_FAILED: Indicates that Qp0lProcessSubtree() has encountered an
unrecoverable error and that Qp0lProcessSubtree() will return to its caller when it regains
control. The Error value pointer parameter points to a valid errno.

Error value pointer

INPUT; BINARY(4)

A pointer to a valid errno that describes any problems encountered by the API during the
processing of the current object. Any valid errno can be passed in this field when this parameter is
not NULL.

Return value pointer

OUTPUT; BINARY(4)

A pointer to a value from the Process a Path Name exit program that instructs the API to continue
or to end processing. Valid values follow.

0 Process a Path Name exit program was successful.

-1 Process a Path Name exit program was successful. Qp0lProcessSubtree()
should skip processing any remaining objects in this directory and move on to
process objects in other directories.

> 0 (an errno) Process a Path Name exit program was not successful.
Qp0lProcessSubtree() ends.

Object name pointer

INPUT; CHAR(*)

A pointer to the path name structure that contains the fully qualified name of the object being
processed by Qp0lProcessSubtree(). The Path_Type flag defined in the qlg.h header file must be
used to determine whether the Object name pointer contains a pointer or is a character string. This
flag must also be used to determine whether the path name delimiter character is 1 or 2 characters
long. Value values follow:

0 The path name is a character string, and the path name delimiter is 1 character long.

1 The path name is a pointer, and the path name delimiter character is 1 character long.

2 The path name is a character string, and the path name delimiter is 2 characters long.

3 The path name is a pointer, and the path name delimiter character is 2 characters long.

Function control block pointer

INPUT; CHAR(*)

A pointer to the data that is passed to Qp0lProcessSubtree() on its call. Qp0lProcessSubtree()
does not process the data that is referred to by this pointer, but passes this pointer as a parameter
when it calls the exit program.

Exit program introduced: V4R3

Top | UNIX-Type APIs | APIs by category

Save Storage Free Exit Program

 Required Parameter Group:

1 Path name pointers Input Char(*)
2 Return code pointer Output Binary(4)
3 Return value pointer Output Binary(4)
4 Function control block pointer Input Char(*)

The Save Storage Free exit program is a user-specified program that is called by Qp0lSaveStgFree() to
save an OS/400 object of type *STMF. This exit program can be either a procedure or program.

When the Save Storage Free exit program is given control, it should save the object so it can be
dynamically retrieved at a later time. The *STMF object is locked when the exit program is called to
prevent changes to it until the storage free operation is complete. If the Save Storage Free exit program
ends unsuccessfully, it must return a valid errno in the storage pointed to by the return value pointer.
Qp0lSaveStgFree() then passes this errno to its caller with a minus one return code.

Storage referred to by the path name pointers or the return code pointer when the Save Storage Free exit
program is called is destroyed or reused when Qp0lSaveStgFree() regains control.

Required Parameter Group

Path names pointers

INPUT; CHAR(*)

All of the path names to the *STMF object being storage freed. There is one path name for each
link to the object. These path names are in the Qlg_Path_Name_T format and are in the UCS-2
CCSID. See Path name format for more information on this format. For information about UCS-2,
see the Globalization topic.

Path Name Pointers

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of path names

4 4 CHAR(12) Reserved

16 10 ARRAY(*) Array of path name pointers

Array of path name pointers. Pointers to each path name that Qp0lSaveStgFree() found for the
object identified by the path name on the call to Qp0lSaveStgFree(). Each path name is in the
Qlg_Path_Name_T format.

Number of path names. The total number of path names that Qp0lSaveStgFree() found for the
object identified by the caller of Qp0lSaveStgFree().

Reserved. A reserved field. This field must be set to binary zero.

Return code pointer

OUTPUT; BINARY(4)

A pointer to an indicator that is returned to indicate whether the exit program was successful or
whether it failed. Valid values follow:

0 The Save Storage Free exit program was successful.

-1 The Save Storage Free exit program was not successful. The Return value pointer is set to
indicate the error.

Return value pointer

OUTPUT; BINARY(4)

A pointer to a valid errno that is returned from the exit program to identify the reason it was not
successful.

Function control block pointer

INPUT; CHAR(*)

A pointer to the data that is passed to Qp0lSaveStgFree() on its call. Qp0lSaveStgFree() does not
process the data that is referred to by this pointer, but passes this pointer as a parameter when it
calls the exit program.

Related Information

Qp0lSaveStgFree()--Save Storage Free●

Exit program introduced: V4R3

Top | Backup and Recovery APIs | UNIX-Type APIs | APIs by category

Integrated File System APIs--Time Stamp
Updates
Each object (file and directory) has three time values associated with it:

Access Time The time that the data in the object is accessed.

Change Time The time that the attributes of the object are changed.

Modify Time The time that the data in the object is changed.

These values are returned by the stat(), fstat(), lstat(), and QlgStat() APIs.

When it is stated that an API sets or updates one of these time values, the value may be "marked for update"
by the API rather than actually updated. When a subsequent stat(), fstat(), lstat(), and QlgStat() API is
called, or the file is closed by all processes, the times that were previously "marked for update" are updated
and the update marks are cleared.

The value of these times is measured in seconds since the Epoch. The Epoch is the time 0 hours, 0 minutes,
0 seconds, January 1, 1970, Coordinated Universal Time. If the system date is set prior to 1970, all time
values will be zero. The following table shows which of these times are "marked for update" by each of the
APIs.

Time Stamp Updates for Integrated File System APIs

Function Access Change Modify

access No No No

accessx No No No

chdir No No No

chmod No Yes No

chown No Yes No

close No No No

closedir No No No

creat1 (new file) Yes Yes Yes

creat1 (parent directory of new file) No Yes Yes

creat2 (existing file) No Yes Yes

DosSetFileLocks No No No

DosSetRelMaxFH No No No

dup No No No

dup2 No No No

faccessx No No No

fchdir No No No

fchmod No Yes No

fchown No Yes No

fcntl No No No

fpathconf No No No

fstat No No No

fstatvfs No No No

fsync No No No

ftruncate No Yes Yes

getcwd Yes3 No No

getegid No No No

geteuid No No No

getgid No No No

getgrgid No No No

getgrgid_r No No No

getgrnam No No No

getgrnam_r No No No

getgroups No No No

getpwnam No No No

getpwnam_r No No No

getpwuid No No No

getpwuid_r No No No

getuid No No No

givedescriptor No No No

ioctl No No No

lchown No Yes No

link4 (file) No Yes No

link4 (parent directory) No Yes Yes

lseek No No No

lstat No No No

mkdir5 (new directory) Yes Yes Yes

mkdir5 (parent directory) No Yes Yes

mkfifo6 (new directory) Yes Yes Yes

mkfifo6 (parent directory) No Yes Yes

open O_CREAT7 (new file) Yes Yes Yes

open O_CREAT7 (parent directory) No Yes Yes

open O_TRUNC8 (existing file) No Yes Yes

open9 (existing file) No No No

opendir No No No

pathconf No No No

pread Yes No No

pread64 Yes No No

pwrite No Yes Yes

pwrite64 No Yes Yes

QlgAccess No No No

QlgAccessx No No No

QlgChdir No No No

QlgChmod No Yes No

QlgChown No Yes No

QlgCreat1 (new file) Yes Yes Yes

QlgCreat1 (parent directory of new file) No Yes Yes

QlgCreat2 (existing file) No Yes Yes

QlgCvtPathToQSYSObjName No No No

QlgGetAttr No Yes No

QlgGetcwd Yes3 No No

QlgGetPathFromFileID Yes10 No No

QlgLchown No Yes No

QlgLink4 (file) No Yes No

QlgLink4 (parent directory) No Yes Yes

QlgLstat No No No

QlgMkdir5 (new directory) Yes Yes Yes

QlgMkdir5 (parent directory) No Yes Yes

QlgMkfifo5 (new directory) Yes Yes Yes

QlgMkfifo5 (parent directory) No Yes Yes

QlgOpen O_CREAT7 (new file) Yes Yes Yes

QlgOpen O_CREAT7 (parent directory) No Yes Yes

QlgOpen O_TRUNC8 (existing file) No Yes Yes

QlgOpen9 (existing file) No No No

QlgOpendir No No No

QlgPathconf No No No

QlgProcessSubtree Yes No No

QlgReaddir Yes No No

QlgReaddir_r Yes No No

QlgReadlink Yes No No

QlgRenameKeep (parent directories) No Yes Yes

QlgRenameUnlink (parent directories) No Yes Yes

QlgRmdir (parent directory) No Yes Yes

QlgSetAttr No Yes No

QlgStat No No No

QlgStatvfs No No No

QlgSymlink11 (new link) Yes Yes Yes

QlgSymlink11 (parent directory) No Yes Yes

QlgUtime13 No Yes No

QlgUnlink12 (file) No Yes No

QlgUnlink12 (parent directory) No Yes Yes

QP0FPTOS Yes No No

Qp0lCvtPathToQSYSObjName No No No

Qp0lGetAttr No Yes No

Qp0lGetPathFromFileID Yes10 No No

Qp0lProcessSubtree Yes No No

Qp0lRenameKeep (parent directories) No Yes Yes

Qp0lRenameUnlink (parent directories) No Yes Yes

QP0LROR No No No

Qp0lSetAttr No Yes No

qsysetegid() No No No

qsyseteuid() No No No

qsysetgid() No No No

qsysetregid() No No No

qsysetreuid() No No No

qsysetuid() No No No

read Yes No No

readv Yes No No

readdir Yes No No

readdir_r Yes No No

readlink Yes No No

rewinddir No No No

rmdir (parent directory) No Yes Yes

select No No No

stat No No No

statvfs No No No

symlink11 (new link) Yes Yes Yes

symlink11 (parent directory) No Yes Yes

sysconf No No No

takedescriptor No No No

umask No No No

unlink12 (file) No Yes No

unlink12 (parent directory) No Yes Yes

utime13 No Yes No

write No Yes Yes

writev No Yes Yes

Notes:

When the file did not previously exist, a successful creat() or QlgCreat() set the
access, change, and modification times for the new file. It also sets the change and
modification times of the directory that contains the new file (parent directory).

1.

When the file previously existed, a successful creat() or QlgCreat() sets the change
and modification times for the file.

2.

The access time of each directory in the absolute path name of the current directory
(excluding the current directory itself) is updated.

3.

A successful link() or QlgLink() sets the change time of the file and the change and
modification times of the directory that contains the new link (parent directory).

4.

A successful mkdir() or QlgMkdir() sets the access, change, and modification times
for the new directory. It also sets the change and modification times of the directory
that contains the new directory (parent directory).

5.

A successful mkfifo() or QlgMkfifo() sets the access, change, and modification times
for the new FIFO (first-in-first-out) special file. It also sets the change and
modification times of the parent directory that contains the new FIFO file.

6.

When O_CREAT is specified and the file did not previously exist, a successful open()
or QlgOpen() sets the access, change, and modification times for the new file. It also
sets the change and modification times of the directory that contains the new file
(parent directory).

7.

When O_TRUNC is specified and the file previously existed, a successful open() or
QlgOpen() sets the change and modification times for the file.

8.

When O_CREAT and O_TRUNC are not specified, open() or QlgOpen() does not
update any time stamps.

9.

A successful Qp0lGetPathFromFileID() or QlgGetPathFromFileID() sets the
access time of each directory in the absolute path name to the file.

10.

A successful symlink() or QlgSymlink() sets the access, change, and modification
times for the new symbolic link. It also sets the change and modification times of the
directory that contains the new directory (parent directory).

11.

A successful unlink() or QlgUnlink() sets the change and modification times of the
directory that contains the file being unlinked (parent directory). If the link count for
the file is not zero, the change time for the file is set.

12.

A successful utime() or QlgUtime() sets the access and modify times of the file as
specified by the application. The change time of the file is set to the current time.

13.

Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Integrated File System (IFS) APIs, Volume 2 (V5R2)
	Table of Contents
	Integrated File System APIs -- QlgAccess() through writev() and Process a Path Name Exit Program
	APIs
	QlgAccess()--Determine File Accessibility (using NLS-enabled path name)
	QlgAccessx()--Determine File Accessibility for a Class of Users(using NLS-enabled path name)
	QlgChdir()--Change Current Directory (using NLS-enabled path name)
	QlgChmod()--Change File Authorizations (using NLS-enabled path name)
	QlgChown()--Change Owner and Group of File (using NLS-enabled path name)
	QlgCreat()--Create or Rewrite File (using NLS-enabled path name)
	QlgCreat64()--Create or Rewrite a File (large file enabled and using NLS-enabled path name)
	QlgCvtPathToQSYSObjName()-- Resolve Integrated File System Path Name into QSYS Object Name (using NLS-enabled path name)
	QlgGetAttr()--Get Attributes (using NLS-enabled path name)
	QlgGetcwd()--Get Current Directory (using NLS-enabled path name)
	QlgGetPathFromFileID()--Get Path Name of Object from Its File ID (using NLS-enabled path name)
	QlgGetpwnam()--Get User Information for User Name (using NLS-enabled path name)
	QlgGetpwnam_r()--Get User Information for User Name (using NLS-enabled path name)
	QlgGetpwuid()--Get User Information for User ID (using NLS-enabled path name)
	QlgGetpwuid_r()--Get User Information for User ID (using NLS-enabled path name)
	QlgLchown()--Change Owner and Group of Symbolic Link (using NLS-enabled path name)
	QlgLink()--Create Link to File (using NLS-enabled path name)
	QlgLstat()--Get File or Link Information (using NLS-enabled path name)
	QlgLstat64()--Get File or Link Information (large file enabled and using NLS-enabled path name)
	QlgMkdir()--Make Directory (using NLS-enabled path name)
	QlgMkfifo()--Make FIFO Special File (using NLS-enabled path name)
	QlgOpen()--Open a File (using NLS-enabled path name)
	QlgOpen64()--Open File (large file enabled and using NLS-enabled path name)
	QlgOpendir()--Open Directory (using NLS-enabled path name)
	QlgPathconf()--Get Configurable Path Name Variables (using NLS-enabled path name)
	QlgProcessSubtree()--Process a Path Name (using NLS-enabled path name)
	QlgReaddir()--Read Directory Entry (using NLS-enabled path name)
	QlgReaddir_r()--Read Directory Entry (using NLS-enabled path name)
	QlgReadlink()--Read Value of Symbolic Link (using NLS-enabled path name)
	QlgRenameKeep()--Rename File or Directory, Keep "new" If It Exists (using NLS-enabled path name)
	QlgRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists (using NLS-enabled path name)
	QlgRmdir()--Remove Directory (using NLS-enabled path name)
	QlgSaveStgFree()--Save Storage Free (using NLS-enabled path name)
	QlgSetAttr()--Set Attributes (using NLS-enabled path name)
	QlgStat()--Get File Information (using NLS-enabled path name)
	QlgStat64()--Get File Information (large file enabled and using NLS-enabled path name)
	QlgStatvfs()--Get File System Information (using NLS-enabled path name)
	QlgStatvfs64()--Get File System Information (64-Bit enabled and using NLS-enabled path name)
	QlgSymlink()--Make Symbolic Link (using NLS-enabled path name)
	QlgUnlink()--Remove Link to File (using NLS-enabled path name)
	QlgUtime()--Set File Access and Modification Times (using NLS-enabled path name)
	Perform Miscellaneous File System Functions (qp0fptos) API
	Qp0lCvtPathToQSYSObjName()-- Resolve Integrated File System Path Name into QSYS Object Name
	Perform File System Operation (QP0LFLOP) API
	Qp0lGetAttr()--Get Attributes
	Qp0lGetPathFromFileID()--Get Path Name of Object from Its File ID
	Qp0lOpen()--Open File
	Qp0lProcessSubtree()--Process a Path Name
	Qp0lRenameKeep()--Rename File or Directory, Keep "new" If It Exists
	Qp0lRenameUnlink()--Rename File or Directory, Unlink "new" If It Exists
	Retrieve Object References (QP0LROR) API
	Qp0lSaveStgFree()--Save Storage Free
	Qp0lSetAttr()--Set Attributes
	Qp0lUnlink()--Remove Link to File
	Qp0zPipe()--Create Interprocess Channel with Sockets
	qsygetgroups()--Get Supplemental Group IDs
	qsysetegid()--Set Effective Group ID
	qsyseteuid()--Set Effective User ID
	qsysetgid()--Set Group ID
	qsysetgroups()--Set Supplemental Group IDs
	qsysetregid()--Set Real and Effective Group IDs
	qsysetreuid()--Set Real and Effective User IDs
	qsysetuid()--Set User ID
	Retrieve Network File System Export Entries (QZNFRTVE) API
	read()--Read from Descriptor
	readdir()--Read Directory Entry
	readdir_r()--Read Directory Entry
	readdir_r_ts64()--Read Directory Entry
	readlink()--Read Value of Symbolic Link
	readv()--Read from Descriptor Using Multiple Buffers
	rename()--Rename File or Directory
	rewinddir()--Reset Directory Stream to Beginning
	rmdir()--Remove Directory
	stat()--Get File Information
	stat64()--Get File Information (Large File Enabled)
	statvfs()--Get File System Information
	statvfs64()--Get File System Information (64-Bit Enabled)
	symlink()--Make Symbolic Link
	sysconf()--Get System Configuration Variables
	umask()--Set Authorization Mask for Job
	unlink()--Remove Link to File
	utime()--Set File Access and Modification Times
	write()--Write to Descriptor
	writev()--Write to Descriptor Using Multiple Buffers

	Exit programs
	Process a Path Name Exit Program
	Save Storage Free Exit Program

	Integrated File System APIs--Time Stamp Updates

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

