UNIX-Type APIs (V5R2)

Integrated File System (IFS) APIs

Volume 1 -- access() through pwrite64()

Table of Contents

The PDF for the Integrated File System (IFS) APIsis divided into two volumes. Volume 1 contains the
APIsfrom access() through prwrite64(); Volume 2 contains the APIs QIgAccess() through writev() and the
IFS exit programs. Both volumes contain information on time stamp updates, the Header Files for
UNIX-Type Functions, and Errno Values for UNIX-Type Functions.

Integrated File System APIs

access() (Determine file accessibility)

#raccessx() (Determine File Accessibility for a Class of Users)4%
chdir() (Change current directory)

chmod() (Change file authorizations)

chown() (Change owner and group of file)

closg() (Close file descriptor)

closedir() (Close directory)

creat() (Create new file or rewrite existing file)

creat64() (Create new file or rewrite existing file (large file enabled))
DosSetFilel ocks() (Lock and unlock arange of an open file)
DosSetFilel ocks64() (Lock and unlock arange of an open file (large file enabled))
DosSetRelMaxFH() (Change maximum number of file descriptors)
dup() (Duplicate open file descriptor)

dup2() (Duplicate open file descriptor to another descriptor)
#»faccessx() (Determine File Accessibility for a Class of Users)#
#fchdir() (Change Current Directory by Descriptor)4

fchmod() (Change file authorizations by descriptor)

fchown() (Change owner and group of file by descriptor)

fentl() (Perform file control command)

fpathconf() (Get configurable path name variables by descriptor)
fstat() (Get file information by descriptor)

fstat64() (Get file information by descriptor (large file enabled))
fstatvfs() (Get file system information by descriptor)

fstatvfs64() (Get file system information by descriptor (64-bit enabled))

fsync() (Synchronize changesto file)

ftruncate() (Truncate file)

ftruncate64() (Truncate file (large file enabled))

getcwd() (Get current directory)

getegid (Get effective group 1D)

geteuid() (Get effective user D)

getgid() (Get real group ID)

getgrgid() (Get group information using group 1D)
getgrgid r() (Get group information using group 1D)
getgrgid r_ts64() (Get group information using group ID)

getgrnam() (Get group information using group hame)
getgrnam r() (Get group information using group hame)
getgrnam _r_ts64() (Get group information using group name)
getgroups() (Get group 1Ds)

getpwnam() (Get user information for user name)
getpwnam r() (Get User Information for User Name)
getpwnam_r_ts64() (Get user information for user name)
getpwuid() (Get user information for user ID)

getpwuid r() (Get User Information for User ID)
getpwuid r ts64() (Get user information for user ID)
getuid() (Get real user ID)

ioctl() (Perform file I/O control request)

Ichown() (Change owner and group of symbolic link)
link() (Createlink tofile)

Iseek() (Set file read/write offset)

Iseek64() (Set file read/write offset (large file enabled))
Istat() (Get file or link information)

Istat64() (Get file or link information (large file enabled))
mkdir() (Make directory)

mkfifo() (Make FIFO special file)

mmap() (Memory map afile)

mmap64() (Memory map a stream file (large file enabled))
mprotect() (Change access protection for memory mapping)
msync() (Synchronize modified data with mapped file)

munmap() (Remove memory mapping)
open() (Openfile)

open64() (Open file (large file enabled))

« opendir() (Open directory)

pathconf() (Get configurable path name variables)

pipe() (Create interprocess channel)

#pread() (Read from Descriptor with Offset)4%

#pread64() (Read from Descriptor with Offset (large file enabled))4
“pwrite() (Write to Descriptor with Offset)4

o 2pwrite64() (Write to Descriptor with Offset (large file enabled))4

Integrated File System APIs--Time Stamp Updates
Header Filesfor UNIX-Type Functions
Errno Values for UNIX-Type Functions

Integrated File System APIs

access() through pwrite64()

The integrated file system APIs can perform operations on directories, files, and related objectsin the file
systems accessed through the integrated file system interface.

The integrated file system APIs (access() through pwrite64()) are:

access() (Determine file accessibility) determines whether afile can be accessed in a particular
manner.

#raccessx() (Determine File Accessibility for a Class of Users) determines whether afile can be
accessed by a specified class of usersin a particular manner. <

chdir() (Change current directory) makes the directory named by path the new current directory.
chmod() (Change file authorizations) changes the mode of the file or directory specified in path.
chown() (Change owner and group of file) changes the owner and group of afile.

close() (Close file descriptor) closes a descriptor, fildes.

closedir() (Close directory) closes the directory stream indicated by dirp.

creat() (Create new file or rewrite existing file) creates anew file or rewrites an existing file so that
it istruncated to zero length.

creat64() (Create new file or rewrite existing file (large file enabled)) creates a new file or rewrites
an existing file so that it is truncated to zero length.

DosSetFilel ocks() (Lock and unlock arange of an open file) locks and unlocks a range of an open
file.

DosSetFilel ocks64() (Lock and unlock arange of an open file (large file enabled)) locks and
unlocks arange of an open file.

DosSetRelMaxFH() (Change maximum number of file descriptors) requests that the system change
the maximum number of file descriptors for the calling process (jab).

dup() (Duplicate open file descriptor) returns a new open file descriptor.

dup2() (Duplicate open file descriptor to another descriptor) returns a descriptor with the value
fildes2.

“faccessx() (Determine File Accessibility for a Class of Users) determines whether afile can be
accessed by a specified class of usersin a particular manner.&

#fchdir() (Change Current Directory by Descriptor) makes the directory named by fildes the new
current directory 4%

fchmod() (Change file authorizations by descriptor) sets the file permission bits of the open file
identified by fildes, its file descriptor.

fchown() (Change owner and group of file by descriptor) changes the owner and group of afile.
fentl() (Perform file control command) performs various actions on open descriptors.

fpathconf() (Get configurable path name variables by descriptor) determines the value of a
configuration variable (name) associated with a particular file descriptor (file_descriptor).

fstat() (Get file information by descriptor) gets status information about the file specified by the
open file descriptor file_descriptor and stores the information in the area of memory indicated by

the buf argument.

fstat64() (Get file information by descriptor (large file enabled)) gets status information about the

file specified by the open file descriptor file_descriptor and stores the information in the area of
memory indicated by the buf argument.

fstatvfs() (Get file system information by descriptor) gets status information about the file system
that contains the file referenced by the open file descriptor fildes.

fstatvfsb4() (Get file system information by descriptor (64-bit enabled)) gets status information
about the file system that contains the file referred to by the open file descriptor fildes.

fsync() (Synchronize changesto file) transfers all data for the file indicated by the open file
descriptor file_descriptor to the storage device associated with file_descriptor.

ftruncate() (Truncate file) truncates the file indicated by the open file descriptor file_descriptor to
the indicated length.

ftruncate64() (Truncate file (large file enabled)) truncates the file indicated by the open file
descriptor file_descriptor to the indicated length.

getewd() (Get current directory) determines the absolute path name of the current directory and
storesit in buf.

getegid (Get effective group 1D) returns the effective group ID (gid) of the calling thread.
geteuid() (Get effective user 1D) returns the effective user ID (uid) of the calling thread.
getaid() (Get real group I1D) returns the real group 1D (gid) of the calling thread.

getaraid() (Get group information using group ID) returns a pointer to an object of type struct
group containing an entry from the user database with a matching gid.

getaraid r() (Get group information using group D) updates the group structure pointed to by grp
and stores a pointer to that structure in the location pointed to by result.

getgrgid r ts64() (Get group information using group 1D) updates the group structure pointed to by
grp and stores a pointer to that structure in the location pointed to by result.

getgrnam() (Get group information using group name) returns a pointer to an object of type struct
group containing an entry from the user database with a matching name.

getgrnam () (Get group information using group name) updates the group structure pointed to by
grp and stores a pointer to that structure in the location pointed to by result.

getgrnam_r_ts64() (Get group information using group name) updates the group structure pointed
to by grp and stores a pointer to that structure in the location pointed to by result.

getgroups() (Get group IDs) returns the number of primary and supplementary group IDs
associated with the calling thread without modifying the array pointed to by the grouplist argument.

getpwnam() (Get user information for user name) returns a pointer to an object of type struct
passwd containing an entry from the user database with a matching name.

getpwnam r() (Get User Information for User Name) updates the passwd structure pointed to by
pwd and stores a pointer to that structure in the location pointed to by result.

getpwnam r_ts64() (Get user information for user name) updates the passwd structure pointed to
by pwd and stores a pointer to that structure in the location pointed to by result.

getpwuid() (Get user information for user ID) returns a pointer to an object of type struct passwd
containing an entry from the user database with a matching uid.

getpwuid r() (Get User Information for User ID) updates the passwd structure pointed to by pwd
and stores a pointer to that structure in the location pointed to by result.

getpwuid r ts64() (Get user information for user ID) updates the passwd structure pointed to by
pwd and stores a pointer to that structure in the location pointed to by result.

getuid() (Get real user ID) returnsthe real user ID (uid) of the calling thread.
ioctl() (Perform file I/O control request) performs control functions (requests) on afile descriptor.

Ichown() (Change owner and group of symbolic link) changes the owner and group of afile. If the

named fileis asymbolic link, Ichown() changes the owner or group of the link itself rather than the
object to which the link points.

link() (Create link to file) provides an alternative path name for the existing file, so that the file can
be accessed by either the existing name or the new name.

Iseek() (Set file read/write offset) changes the current file offset to a new position in thefile.
Iseek64() (Set file read/write offset (large file enabled)) changes the current file offset to a new
position in thefile.

Istat() (Get file or link information) gets status information about a specified file and placesit in the
area of memory pointed to by buf.

Istat64() (Get file or link information (large file enabled)) gets status information about a specified
file and placesit in the area of memory pointed to by buf.

mkdir() (Make directory) creates a new, empty directory whose name is defined by path.

mkfifo() (Make FIFO special file) creates anew FIFO specid file (FIFO) whose name is defined by
path.

mmap() (Memory map afile) establishes a mapping between a process' address space and a stream
file.

mmap64() (Memory map a stream file (large file enabled)) is used to establish a memory mapping
of afile.

mprotect() (Change access protection for memory mapping) is used to change the access protection
of amemory mapping to that specified by protection.

msync() (Synchronize modified data with mapped file) can be used to write modified datafrom a
shared mapping (created using the mmap() function) to non-volatile storage or invalidate privately
mapped pages.

munmap() (Remove memory mapping) removes addressability to a range of memory mapped pages
of aprocess's address space.

open() (Open file) opens afile and returns a number called afile descriptor.
open64() (Open file (large file enabled)) opens afile and returns a number called afile descriptor.
opendir() (Open directory) opens adirectory so that it can be read with the readdir() function.

pathconf() (Get configurable path name variables) |ets an application determine the value of a
configuration variable (name) associated with a particular file or directory (path).

pipe() (Create interprocess channel) creates a data pipe and places two file descriptors, one each

into the arguments fildes[0] and fildeg[1], that refer to the open file descriptions for the read and
write ends of the pipe, respectively.

#pread() (Read from Descriptor with Offset) reads nbyte bytes of input into the memory area
indicated by buf 4%

#pread64() (Read from Descriptor with Offset (large file enabled)) reads nbyte bytes of input into
the memory areaindicated by buf. <%

Zpwrite() (Write to Descriptor with Offset) writes nbyte bytes from buf to the file associated with

file_descriptor 4%

o Zpwrite64() (Write to Descriptor with Offset (large file enabled)) writes nbyte bytes from buf to
the file associated with file_descriptor .4

|Other Functionsthat Operate on Files
|Function |Description
givedescriptor() Givefile access to another job
Give socket access to another job
select() Check 1/O status of multiple file descriptors
Wait for events on multiple sockets
takedescriptor() Take file access from ancther job
Take socket access from ancther job

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions. See Header Files for

UNIX-Type Functions) for the file and member name of each header file.

Many of the terms used in this chapter, such as current directory, file system, path name, and link, are
explained in the Integrated File System book. The APl Examples also shows an example of using several

integrated file system functions.

To determine whether a particular function updates the access, change, and modification times of the object
on which it performs an operation, see Integrated File System APIs--Time Stamp Updatesin Volume 2.

Top | UNIX-Type APIs| APIs by category

access()--Determine File Accessibility

i nt

Syntax

#i ncl ude <uni std. h>

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

access(const char *path, int anode);

The access() function determines whether afile can be accessed in a particular manner. When checking
whether ajob has appropriate permissions, access() looks at the real user ID (uid) and group 1D (gid), not
the effective IDs. Adopted authority is not used.

Parameters

path

amode

(Input) A pointer to the null-terminated path name for the file to be checked for accessibility.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

const char *path is the name of the file whose accessibility you want to determine. If the named file
isasymbolic link, access() resolves the symboalic link.

See QlgAccess- Determine File Accessibility (using NLS-enabled path name) for a description and
an example of supplying the path in any CCSID.

(Input) A bitwise representation of the access permissions to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in amode:
F_OK
Tests whether the file exists
R OK
Tests whether the file can be accessed for reading
W_OK
Tests whether the file can be accessed for writing
X_OK
Tests whether the file can be accessed for execution

Y ou can take the bitwise inclusive OR of any or all of the last three symbolsto test several access

modes at once. If you are using F_OK to test for the existence of the file, you cannot use OR with
any of the other symbols. If any other bits are set in amode, access() returnsthe [EINVAL] error.

If the job has* ALLOBJ special authority, access() will indicate success for R_OK, W_OK, or

X_OK even if none of the permission bits are set.

Authorities

Authorization Required for access()

Authority

Object Referred to Required |errno

|Each directory in the path name preceding the object to be tested *X |[EACCES
|Object when R_OK is specified "R |EACCES
|Object when W_OK is specified "W |EACCES
[Object when X_OK is specified X [EACCES
|Object when R_OK | W_OK is specified *RW |EACCES
|Object when R_OK | X_OK is specified *RX |EACCES
[Object when W_OK [X_OK is specified [FWX [EACCES
[Object when R_OK [W_OK [X_OK is specified [FRWX [EACCES
|Object when F_OK is specified |None |None

Return Value

0
access() was successful.
-1

access() was not successful (the specified accessis not permitted). The errno global variable is set

to indicate the error.

Error Conditions

If access() is not successful, errno usualy indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.
[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operationsto file

permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may

aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.

Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.
[EFILECVT]

File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.
[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.
[EIQ]
Input/output error.

A physical /O error occurred.

A referenced object may be damaged.
[EINTR]
Interrupted function call.

[ELOOP]
A loop exists in the symbolic links.
This error isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.
A path name islonger than PATH_MAX characters or some component of the name islonger than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOSPC]
No space available.
The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.
Insufficient space remains to hold the intended file, directory, or link.
[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.
The independent ASP isin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.
To recover from this error, wait until processing has completed for the independent ASP.
[ENOTDIR]
Not adirectory.
A component of the specified path name existed, but it was not a directory when a directory was
expected.
Some component of the path name is not a directory, or is an empty string.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

B[ETXTBSY]
Text file busy.
An attempt was made to execute an OS/400 PA SE program that is currently open for writing, or an
attempt has been made to open for writing an OS/400 PASE program that is being executed. <%
[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.
[ESTALE]
File or object handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors.
[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPFI872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:
o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in afile system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= #*Independent ASP QSYS.LIB 4
= QOPT

2. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or thefile is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when thelocal Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)

command determine the time between refresh operations of local data.)

3. QOPT File System Differences

If the object exists on avolume formatted in Universal Disk Format (UDF), the authorization that is
checked for the object and preceding directories in the path name follows the rules described in
Figure 1-3, Authorization Required for access(). If the object exists on a volume formatted in some

other media format, no authorization checks are made on the object or preceding directories. The
volume authorization list is checked for the requested authority regardless of the volume media
format.

Related Information

o The<unistd.h> file (see Header Filesfor UNIX-Type Functions)
o The<limits.h> file (see Header Files for UNIX-Type Functions)

o #*accessx()--Determine File Accessibility for Class of Users 4

« chmod()--Change File Authorizations

o 2faccessx()--Determine File Accessibility for Class of Users %%

« open()--Open File

o OlgAccess--Determine File Accessibility using NL S-enabled path name)

o £0lgAccessx()--Determine File Accessibility for Class of Users (using NL S-enabled path name)
<
o stat()--Get File Information

Example

The following example determines how afileis accessed:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

mai n() {
char path[]="/";

if (access(path, F OK) != 0)
printf("' %' does not exist!\n", path);
el se {
if (access(path, R OK) == 0)
printf("You have read access to '%'\n", path);
if (access(path, WOK) == 0)
printf("You have wite access to '%'\n", path);
if (access(path, X OK) == 0)
printf("You have search access to '%'\n", path);

Output:

The output from a user with read and execute accessis:

You have read access to '/’
You have search access to '/

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

&

accessx()--Determine File Accessibility for a
Class of Users

Syntax

#i ncl ude <uni std. h>

i nt accessx(const char *path, int anode, int who);
Service Program Name: QPOLLIB1

Default Public Authority: * USE

Threadsafe: Conditional; see Usage Notes.

The accessx() function determines whether a file can be accessed by a specified class of usersin aparticular
manner.

The caller must have authority to all components in the path name prefix.

Adopted authority is not used.

Parameters

path
(Input) A pointer to the null-terminated path name for the file to be checked for accessibility.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently in

effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented in the
default CCSID of the job.

const char * path is the name of the file whose accessibility you want to determine. If the named fileis
asymboalic link, accessx() resolves the symbolic link.

See QlgAccessx-- Determine File Accessibility for Class of Users (using NL S-enabled path name) for
adescription and an example of supplying the path in any CCSID.

amode
(Input) A bitwise representation of the access permissions to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in amode:
F _OK

(X'00") Tests whether the file exists
R OK

(X'04') Tests whether the file can be accessed for reading

W_OK
(x'02') Tests whether the file can be accessed for writing
X_OK
(x'01") Tests whether the file can be accessed for execution
Y ou can take the bitwise inclusive OR of any or al of the last three symbols to test several access

modes at once. If you are using F_OK to test for the existence of the file, you cannot use OR with any
of the other symbols. If any other bits are set in amode, accessx() returnsthe [EINVAL] error.

who
(Input) The class of users whose authority is to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in who:
ACC_SELF
(X'00") Determinesiif specified access is permitted for the current thread. The effective user
and group I1Ds are used.
Note: If thereal and effective user ID are the same and the real and effective group ID are the
same, the request is treated as ACC_INVOKER. See the Usage Notes for more details.
ACC_INVOKER
(x'01") Determinesiif specified accessis permitted for the current thread. The real user and
group IDs are used.
Note: The expression access(path, amode) is equivalent to accessx(path, amode,
ACC_INVOKER)
ACC_OTHERS

(x'08") Determines if specified accessis permitted for any user other than the object owner.
Only one of R_OK, W_OK, and X_OK is permitted when who is ACC_OTHERS Privileged
users (users with * ALLOBJ special authority) are not considered in this check.

ACC_ALL
(x'20") Determines if specified accessis permitted for al users. Only one of R OK, W_OK,

and X_OK is permitted when who is ACC_ALL. Privileged users (users with *ALLOBJ
specia authority) are not considered in this check.

Authorities

Authorization Required to Path Prefix for accessx()

Authority
Object Referred to Required |errno

|Each directory in the path name preceding the object to be tested *X |EACCES

The following authorities are required if the who parameter is ACC_SELF or ACC_INVOKER. If ACC_SELF
is specified, the effective UID and GID of the caller are used. If ACC_INVOKER is used, thereal UID and
GID of the caller are used.

Authorization Required to Object for accessx()

Authority
Required |errno

Object Referred to

|Object when R_OK is specified "R |EACCES
|Object when W_OK is specified *W |EACCES
|Object when X_OK is specified *X |EACCES
|Object when R_OK | W_OK is specified *RW |EACCES
|Object when R_OK | X_OK is specified *RX |EACCES
|Object when W_OK | X_OK is specified WX |EACCES
|Object when R_OK | W_OK | X_OK is specified *RWX [EACCES
|Object when F_OK is specified |None |None

If the thread has * ALLOBJ special authority, accessx() with ACC_SELF or ACC_INVOKER will indicate
successfor R_OK, W_OK, or X_OK even if none of the permission bits are set.

Return Value

0
accessx() was successful.
-1

accessx() was not successful (or the specified accessis not permitted for the class of users being
checked). The errno global variableis set to indicate the error.

Error Conditions

If access() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCEY
Permission denied.

The class of users specified by the who parameter does not have the permission indicated by the
amode parameter.

The thread does not have access to the specified file, directory, component, or path prefix.

If you are accessing aremote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to data that is stored locally by the
Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that is
not valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]
Input/output error.

A physical 1/O error occurred.
A referenced object may be damaged.

[EINTR]
Interrupted function call.

[ELOOP]
A loop exists in the symbolic links.

Thiserror isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header fil€). Symbolic links are encountered during resolution of the directory
or path name.

[ENAMETOOLONG]
A path nameistoo long.
A path name islonger than PATH_MAX characters or some component of the nameis longer than
NAME _MAX characterswhile_POSIX_NO_TRUNC isin effect. For symbolic links, the length of

the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This could
also be caused by exceeding the user profile storage limit when creating or transferring ownership of
an abject.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the requested
arguments.

[ETXTBSY]
Text file busy.

An attempt was made to execute an OS/400 PASE program that is currently open for writing, or an
attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct
any errors that are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
Errors.
[EADDRNOTAVAIL]

Address not available.
[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.
[ENETRESET]
A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ESTALE]
File or object handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted at
the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:
o Where multiple threads exist in the job.

o The object this function is operating on resides in afile system that is not threadsafe. Only the
following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= Independent ASPQSYS.LIB
= QOPT

. ACC_SELF Mapped to ACC_INVOKER

Some physical file systems do not support ACC_SELF for the who parameter. Therefore, accessx()
will change the who parameter from ACC_SELF to ACC_INVOKERf the caller's real and effective
user 1D are equal, and the caller's real and effective group ID are equal.

. Network File System Differences

The Network File System will only support the value ACC_INVOKER for the who parameter. If
accessx() is called on afilein amounted Network File System directory with avalue for who other
than ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

Local access to remote files through the Network File System may produce unexpected results due to
conditions at the server. Once afileis open, subsequent requests to perform operations on the file can
fail because file attributes are checked at the server on each request. If permissions on thefile are
made more restrictive at the server or thefileis unlinked or made unavailable by the server for another
client, your operation on an open file descriptor will fail when the local Network File System receives
these updates. The local Network File System also impacts operations that retrieve file attributes.
Recent changes at the server may not be available at your client yet, and old values may be returned
from operations. (Severa options on the Add Mounted File System (ADDMFS) command determine
the time between refresh operations of local data.)

. QNTC File System Differences

The QNTC File System will only support the value ACC_INVOKER for the who parameter. If
accessx() is called on afilein the QNTC File System with avalue for who other than

ACC _INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

. QOPT File System Differences

If the object exists on avolume formatted in Universal Disk Format (UDF), the authorization that is
checked for the object and preceding directories in the path name follows the rules described in the
previous table, Authorization Required to Object for accessx(). If the object exists on avolume
formatted in some other media format, no authorization checks are made on the object or preceding
directories. The volume authorization list is checked for the requested authority regardless of the
volume media format.

. QFileSvr.400 File System Differences

The QFileSvr.400 File System will only support the value ACC_INVOKER for the who parameter. If
accessx() is called on afile in the QFileSvr.400 File System with avalue for who other than

ACC _INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

. QNetWare File System Differences

The QNetWare File System will only support the value ACC_INVOKER for the who parameter. |
accessx() is called on afile in the QNetWare File System with a value for who other than

ACC _INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be

returned.

Related Information

« The<unistd.h> file (see Header Files for UNIX-Type Functions)

o The<limits.h> file (see Header Files for UNIX-Type Functions)

« chmod()--Change File Authorizations

» open()--Open File

» access()--Determine File Accessibility

«» faccessx()--Determine File Accessibility for a Class of Users

o QlgAccessx()--Determine File Accessibility for a Class of Users (using NL S-enabled path name)

« QlgAccess()--Determine File Accessibility (using NL S-enabled path name)

o stat()--Get File Information

Example

The following example determines how afileis accessed:

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

mai n() {
char path[]="/nyfile";

if (accessx(path, R OK, ACC _OTHERS)
printf("Someone besi des the owner
if (accessx(path, WOK, ACC _OTHERS)
printf("Someone besi des the owner
if (accessx(path, X OK, ACC_OTHERS)
printf("Someone besi des the owner

Output:

== 0)

has read access to '%'\n", path);
== 0)

has wite access to '%'\n", path);
== 0)

has search access to '%'\n", path);

In this example accessx() was called on '/myfil€'. The following would be the output if someone other than the

owner has * R authority, someone besides the owner has *W authority, and noone other than the owner has* X
authority.

Soneone besi des the owner has read access to '/
Soneone besi des the owner has wite access to '/

&
APl introduced: V5R2

Top | UNIX-Type APIs | APIs by category

chdir()--Change Current Directory

Syntax

#i ncl ude <uni std. h>

int chdir(const char *path);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The chdir() function makes the directory named by path the new current directory. If the last component of
path isasymbolic link, chdir () resolves the contents of the symbolic link. If the chdir() function fails, the
current directory is unchanged.

Parameters

path

(Input) A pointer to the null-terminated path name of the directory that should become the current
directory.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QIgChdir()--Change Current Directory for a description and an example of supplying the path
inany CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for chdir()

|Object Referred to |Authority Required |errno
|Each directory of the path name | *X |EACCES

Return Value

0
chdir () was successful.
-1

chdir () was not successful. The errno global variable is set to indicate the error.

Error Conditions

If chdir () is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file

permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFES)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote

systems.

[EAGAIN]

Operation would have caused the process to be suspended.
[EBADFID]

A file ID could not be assigned when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.
[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.

[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symbolic links encountered is more than POSIX_SY MLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path nameistoo long.
A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME _MAX characterswhile _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or isan empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.
[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]

Address not available,

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with a remote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E

Possible APAR condition or hardware failure.
CPFAOD4 E

File system error occurred. Error number & 1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root

QOpenSys

User-defined

ONTC

QSYS.LIB

#*ndependent ASP QSYS.LIB 4
QOPT

The chdir() API operates on two objects: the previous current working directory and the new one.
If either of these objectsis managed by afile system that is not threadsafe, chdir () fails with the
ENOTSAFE error code.

2. QOPT File System Differences

If the directory exists on avolume formatted in Universal Disk Format (UDF), the authorization
that is checked for each directory in the path name follows the rules described in Authorization

Required for chdir(). If the directory exists on avolume formatted in some other media format, no

authorization checks are made on each directory in the path name. The volume authorization list is
checked for * USE authority regardless of the volume media format.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

» The<limits.h> file (see Header Filesfor UNIX-Type Functions)

« #* fchdir()--Change Current Directory by Descriptor %

o getcwd()--Get Current Directory

o OQlgChdir()--Change Current Directory

o #0lgGetcwd()--Get Current Directory <&

Example
The following example uses chdir ():

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

mai n() {
if (chdir("/tnp") !'= 0)
perror("chdir() to /tnp failed");
if (chdir("/chdir/error™) !'=0)
perror("chdir() to /chdir/error failed");

Output:

chdir() to /chdir/error failed: No such path or directory.

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

chmod()--Change File Authorizations

Syntax

#i ncl ude <sys/stat.h>

i nt chnod(const char *path, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The chmod() function changes #S ISUID, S ISGID, and the permission bits of the file or directory
specified in path to the corresponding bits specified in mode. 4If the named fileis a symbolic link,
chmod() resolves the symbolic link. chmod() has no effect on file descriptions for files that are open at the
time chmod() is called.

When chmod() is successful it updates the change time of thefile.

If thefileis checked out by another user (someone other than the user profile of the current job), chmod()
fails with the [EBUSY] error.

Parameters

path
(Input) A pointer to the null-terminated path name of the file whose mode is being changed.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

See QIlgChmod()--Change File Authorizations for a description and an example of supplying the
path in any CCSID.

mode
(Input) Bitsthat define# S ISUID, S I1SGID, and #the access permissions of thefile.
The mode argument is created with one of the following symbols defined in the <sys/stat.h>
includefile.
S IRUSR
Read permission for the file owner
S IWUSR
Write permission for the file owner
S IXUSR

Search permission (for a directory) or execute permission (for afile) for the file owner
S IRWXU

Read, write, and search or execute for the file owner. S IRWXU isthe bitwise inclusive
ORof S IRUSR, S IWUSR, and S IXUSR

S IRGRP
Read permission for the file's group
S IWGRP
Write permission for the file's group
S IXGRP
Search permission (for adirectory) or execute permission (for afile) for the file's group
S IRWXG

Read, write, and search or execute permission for the files group. S IRWXG is the bitwise
inclusive OR of S IRGRP, S IWGRP, and S_IXGRP

S IROTH
General read permission
S IWOTH
Genera write permission
S IXOTH
General search permission (for adirectory) or general execute permission (for afile)
S IRWXO

General read, write, and search or execute permission. S IRWXO is the bitwise inclusive
ORof S IROTH, S IWOTH, and S IXOTH

S ISUID

Set effective user 1D at execution time. Thisbit isignored if the object specified by pathis
adirectory.

S ISGID

Set effective group ID at execution time. £*See Usage Notes for more information 4if the
object specified by path isadirectory.

If bits other than the bits listed above are set in mode, chmod() returnsthe [EINVAL] error.

Authorities

Note: Adopted authority is not used.
Authorization required for chmod() (excluding QDL S)

|Object Referred to |Authority Required [errno

|Each directory in the path name preceding the object | *X |EACCES

| Owner (see Note) |EPERM

|Note: Y ou do not need the listed authority if you have * ALLOBJ special authority.

Authorization required for chmod() in the QDL S File System

|Object Referred to |Authority Required [errno
|Each directory in the path name preceding the object | *X |EACCES
|Object | Owneror*ALL [EACCES

Return Value

0
chmod() was successful.
-1
chmod() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If chmod() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]
Input/output error.

A physical I/O error occurred.
A referenced object may be damaged.

[EJRNDAMAGE]
Journal damaged.

A journa or al of the journa's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journal entry generated by this operation istoo large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.
The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.
This error isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.
A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile_POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

S ENEWJIRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal. 4

[ENOENT]

No such path or directory.
The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]
No space available.

The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]

Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could also indicate one of the
following errors:
[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ETIMEDOUT]

A remote host did not respond within the timeout period.
[EUNATCH]

The protocol required to support the specified address family is nhot available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

= ZIndependent ASP QSYS.LIB &
= QOPT

2. Root, QOpenSys, and User-Defined File System Differences
If the object has a primary group, it must match the primary group ID or one of the supplemental
group I1Ds of the caler of the API; otherwise, the S ISGID bit is turned off.

3. QSYS.LIB #rand independent ASP QSY S.LIB <File System Differences
chmod() is not supported for member (.MBR) objects.
chmod() returns [EBUSY] if the object is allocated in another job.
QSY S.LIB ##and independent ASP QSY S.LIB do “Xnot support setting the S_ISUID (set-user-I1D)
and S_ISGID (set-group_ID) bits. If they are turned on in the mode parameter, they are ignored.

4. QDLSFile System Differences

10.

Changing the permissions of the /QDL S directory (the root folder) is not allowed. If an attempt is
made to change the permissions, an [ENOTSUP] error is returned.

"Group" rights are not set if there is no current group.

QDL S does not support setting the S ISUID and S_ISGID bits. If they are turned on in the mode
parameter, they areignored.

. QOPT File System Differences

Changing the permissionsis alowed only for an object that exists on a volume formatted in
Universal Disk Format (UDF). For all other media formats, ENOTSUP isreturned.

In addition to the authorization checks described in Authorization Required for chmod(), the
volume authorization list is checked for * CHANGE authority.

QOPT does not support setting the S ISUID and S_ISGID bits for any optical mediaformat. If
they are turned on in the mode parameter, ENOTSUP is returned.
QNetWare File System Differences

The QNetWare file system does not fully support chmod(). See NetWare on iSeries for more
information.

OQNetWare supportsthe S_ISUID and S_ISGID bits by passing them to the server and surfacing
them to the caller. Some versions of NetWare may support the bits and others may not.

. QFileSvr.400 Differences

QFileSvr.400 supportsthe S ISUID and S _ISGID bits by passing them to the server and surfacing
them to the caller.

Network File System Differences

The NFS client supportsthe S ISUID and S_ISGID bits by passing them to the server over the
network and surfacing them to the caller. Whether a particular network file system supports the
setting of these bits depends on the server. Most servers have the capability of masking off these
bitsif the NOSUID option is specified on the export. The default, however, is to support these bits.

. QNTC File System Differences

chmod() does not update the Windows NT server access control lists that control the authority of
usersto the file or directory. The mode settings are ignored.

#S 1SGID bit of adirectory in Root, QOpenSys, or User-Defined File System

The S_ISGID bit of the directory affects what the group ID (GID) isfor objects that are created in
the directory. If the S_ISGID bit of the parent directory is off, the group ID (GID) is set to the
effective GID of the thread creating the object. If the S_ISGID bit of the parent directory ison, the
group 1D (GID) of the new object is set to the GID of the parent directory. For all other file
systems, the GID of the new object is set to the GID of the parent directory. 4%

Related Information

The <sydtypes.h> file (see Header Files for UNIX-Type Functions)

» The<sydstat.h> file (see Header Files for UNIX-Type Functions)

« chown()--Change Owner and Group of File

« fchmod()--Change File Authorizations by Descriptor

o mkdir()--Make Directory

« open()--Open File

o stat()--Get File Information

¢ See QlgChmod()--Change File Authorizations

Example

The following example changes the permissions for afile:

#i ncl ude <stdio. h>
#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>

mai n() {
char fn[]="tenp.file";
int file_descriptor;
struct stat info;

if ((file_descriptor = creat(fn, S IWSR)) == -1)
perror(“"creat() error");
el se {

if (stat(fn, & nfo)!= 0)
perror("stat() error");
el se {
printf("original permssions were: %98o\n", info.st_node);

if (chmod(fn, S IRWU S |RWXKG != 0)
perror("chnmod() error");
el se {
if (stat(fn, & nfo)!= 0)
perror("stat() error");
el se {
printf("after chnod(), perm ssions are: %98o\n", info.st_node);

if (close(file _descriptor)!= 0)
perror("close() error");
if (unlink(fn)!= 0)
perror("unlink() error");
}
}
Output:

original perm ssions were: 00100200
after chnod(), pernissions are: 00100770

Top | UNIX-Type APIs| APIs by category

chown()--Change Owner and Group of File

Syntax

#i ncl ude <uni std. h>

int chown(const char *path, uid t owner, gid t group);
Threadsafe: Conditional; see Usage Notes.

The chown() function changes the owner and group of afile. If the named file is a symbolic link, chown()
resolves the symboalic link. The permissions of the previous owner or primary group to the object are
revoked.

If thefileis checked out by another user (someone other than the user profile of the current job), chown()
failswith the [EBUSY] error.

When chown() completes successfully, it updates the change time of thefile.

Parameters

path

(Input) A pointer to the null-terminated path name of the file whose owner and group are being
changed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

See QIgChown()--Change Owner and Group of File for a description and an example of supplying
the path in any CCSID.

owner
(Input) The user ID (uid) of the new owner of thefile.
group
(Input) The group 1D (gid) of the new group for the file.
Note: Changing the owner or the primary group causesthe S _ISUID (set-user-ID) and S _ISGID
(set-group-1D) bits of the file mode to be cleared, unless the caller has * ALLOBJ specia authority. If the

caller does have * ALLOBJ specia authority, the bits are not changed. This does not apply to directories or
FIFO special files. See the chmod() documentation.

Authorities

Note: Adopted authority is not used.

Authorization Required for chown() (excluding QSYS.LIB, #independent ASP QSYS.LIB, “and
QDLY)

|Object Referred to |Authority Required |errno
|Each directory in the path name preceding the object | *X |EACCES
Object, when changing the owner Owner and *OBJEXIST ’EPERM
(also see Note 1)
|Object, when changing the primary group | See Note 2 |EPERM
|Previous owner's user profile, when changing the owner | *DLT |EPERM
|New owner's user profile, when changing the owner | *ADD |EPERM
User profile of previous primary group, when changing the primary ’ *DLT ’EPERM
group
|New primary group's user profile, when changing the primary group | *ADD |EPERM
Note:

1. You do not need the listed authority if you have * ALLOBJ specia authority.
2. Atleast one of the following must be true:
a. You have*ALLOBJ specia authority.
b. You arethe owner and either of the following:
= The new primary group is the primary group of the job.
= The new primary group is one of the supplementary groups of the job.

Authorization Required for chown() in the QSYS.LIB Zrand independent ASP QSYS.LIB File
Systems

|Object Referred to |Authority Required lerrno
Each directory in the path name preceding *X EACCES
the object See Note 1

|Object when changing the owner | See Note 2(a) |EPERM
|Object when changing the primary group | See Note 2(b) |EPERM
Note:

1. For *FILE objects (such as DDM file, diskette file, print file, and savefile), * RX authority is
required to the parent directory of the object, rather than just * X authority.

2. Therequired authorization varies for each object type. For details of the following commands, see
the iSeries Security Reference @ book.

a. CHGOWN
b. CHGPGP

Authorization Required for chown() in the QDL S File System

|Object Referred to |Authority Required |errno |

|Each directory in the path name preceding the object | *X |[EACCES

Object *ALLOBJ Specia |[EPERM
Authority or Owner

|Previ ous owner's user profile, when changing the owner *DLT |EPERM

|New owner's user profile, when changing the owner *ADD |EPERM

|Previ ous primary group's user profile, when changing the primary group | *DLT |EPERM

|New primary group's user profile, when changing the primary group *ADD |EPERM
Authorization Required for chown() in the QOPT File System
|Object Referred to |Authority Required |errno
|Volume authorization list | *CHANGE |EACCES
|Each directory in the path name preceding the object. | *X |[EACCES
Object *ALLOBJ Specia |EPERM
Authority or Owner

Return Value

0
chown() was successful.
-1
chown() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If chown() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

owner or group isnot avalid user ID (uid) or group ID (gid).

owner isthe current primary group of the object.

[EIO]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]
Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value alowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.

Thiserror isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.

A path name islonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJIRN]
New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJIRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal. 4%

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]
No space available.

The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in ajob that is running with multiple threads.
[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this API:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

chown() is not supported for member (.MBR) objects.

3. QDLSFile System Differences
The owner and primary group of the /QDL S directory (root folder) cannot be changed. If an
attempt is made to change the owner and primary group, a[ENOTSUP] error is returned.

4. QOPT File System Differences
Changing the owner and primary group is allowed only for an object that exists on avolume
formatted in Universal Disk Format (UDF). For all other media formats, ENOTSUP will be
returned.
QOPT file system objects that have owners will not be recognized by the Work with Objects by
Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will
not be recognized by the Work Objects by Primary Group) CL command.

5. QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support chown().

6. QNetWare File System Differences

The QNetWare file system does not support primary group. The GID must be zero.

7. QNTC File System Differences

The owner of files and directories cannot be changed. All files and directoriesin QNTC are owned
by the QDFTOWN user profile.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

» The<limits.h> file (see Header Files for UNIX-Type Functions)

« chmod()--Change File Authorizations

« fchown()--Change Owner and Group of File by Descriptor

o fstat()--Get File Information by Descriptor

o |stat()--Get File or Link Information

o Stat()--Get File Information

« OQlgChown()--Change Owner and Group of File

Example
The following example changes the owner and group of afile:

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>

mai n() {
char fn[]="tenmp.file";
int file_ descriptor;
struct stat info;

if ((file_descriptor = creat(fn, S IRWU) == -1)
perror(“"creat() error");
el se {

close(fil e _descriptor);
stat(fn, & nfo);
printf("original owner was % and group was %\ n", info.st_uid,
info.st _gid);
if (chown(fn, 152, 0) !'= 0)
perror("chown() error");
el se {
stat(fn, & nfo);
printf("after chown(), owner is % and group is %\ n",
info.st _uid, info.st _gid);

}
unl i nk(fn);

Output:

original owner was 137 and group was O
after chown(), owner is 152 and group is O

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

close()--Close File or Socket Descriptor

Syntax

#i ncl ude <uni std. h>

int close(int fildes);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The close() function closes a descriptor, fildes. This frees the descriptor to be returned by future open()
calls and other calls that create descriptors.

When the last open descriptor for afileis closed, thefileitself is closed. If the link count of thefileis zero
at that time, the space occupied by the fileisfreed and the file becomes inaccessible.

close() unlocks (removes) al outstanding byte locks that ajob has on the associated file.

When all file descriptors associated with a pipe or FIFO special file are closed, any dataremaining in the
pipe or FIFO isdiscarded and internal storage used is returned to the system.

When fildes refers to a socket, close() closes the socket identified by the descriptor.

Parameters

fildes
(Input) The descriptor to be closed.

Authorities

No authorization is required. Authorization is verified during open(), creat(), or socket().

Return Value

close() returns an integer. Possible values are:
0 close() was successful.

-1 close() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If close() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFES)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
regquest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.
[EBADFID]

A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
[EIO]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[EJRNDAMAGE]
Journal damaged.
A journa or al of the journa's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value alowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.
[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.
[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4
[ENOBUFS
There is not enough buffer space for the requested operation.

[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYY
Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.

The path name given refers to an object that does not support this function.
[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]
Address not available.

[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.

[EHOSTDOWN]
A remote host is not available.

[EHOSTUNREACH]
A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.

[ENETUNREACH]
Cannot reach the destination network.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPFO872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.
CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

» ZIndependent ASP QSYS.LIB &
= QOPT

2. When a socket descriptor is closed, the system tries to send any queued data associated with the
socket.

o For AF_NSor AF_INET sockets, depending on whether the SO_LINGER socket option is
set, queued data may be discarded.

Note: For these sockets, the default value for the SO_LINGER socket option has the option
flag set off (the system attempts to send any queued data with an infinite wait time).

o For AF_TELEPHONY sockets, depending on whether the SO_LINGER socket optionis
set, buffered data may be discarded.
Note: For these sockets, the default value for the SO_LINGER socket option has the option

flag set on with atime value of 1 second (the system will wait up to 1 second to send
buffered data before clearing the tel ephone connection).

3. A socket descriptor being shared among multiple processesis not closed until the process that
issued the close() isthe last process with access to the socket.

Related Information

o The<unistd.h> file (see Header Filesfor UNIX-Type Functions)
« creat()--Create or Rewrite File

o dup()--Duplicate Open File Descriptor

o dup2()--Duplicate Open File Descriptor to Another Descriptor
« fentl()--Perform File Control Command

« open()--Open File

« setsockopt()--Set Socket Options

« unlink()--Remove Link to File

Example

The following example uses close()

See Code disclaimer information for information pertaining to code examples.

#i ncl ude <stdio. h>
#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

mai n() {
int fdl, fd2;
char out[20]="Test string",
fn[]="test.file",
in[20];
short wite error;

menset (i n, 0x00, sizeof(in));
wite error = 0O;

if ((fdl = creat(fn,S_IRWKU)) == -1)
perror(“"creat() error");
else if ((fd2 = open(fn, O RDWR)) == -1)
perror("open() error");
el se {
if (wite(fdl, out, strlen(out)+l) == -1) {
perror("wite() error");
wite error = 1,

}
cl ose(fdl);
if ('wite_error) {
if (read(fd2, in, sizeof(in)) == -1)
perror("read() error");
else printf("string read fromfile was: "%'\n",

}
cl ose(fd2);

}
}

Output:

string read fromfile was: 'Test string

in);

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

closedir()--Close Directory

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

int closedir(DIR *dirp);
Threadsafe: Conditional; see Usage Notes.

The closedir () function closes the directory stream indicated by dirp. It frees the buffer that readdir () uses
when reading the directory stream.

A file descriptor is used for type DIR; closedir () closes the file descriptor.

Parameters

dirp

(Input) A pointer to a DIR that refers to the open directory stream to be closed. This pointer is
returned by the opendir () function.

Authorities

No authorization is required. Authorization is verified during opendir ().

Return Value

0
closedir () was successful.
-1
closedir () was not successful. The errno global variable is set to indicate the error.

Error Conditions

If closedir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file

permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote

systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write

regquest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is

incorrect, or does not refer to an open file.

This may occur when dirp does not refer to an open directory stream.

[EBADFID]
A file ID could not be assighed when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

This may occur when dirp does not refer to an open directory stream.

[EINTR]

Interrupted function call.

[EINVAL]

[EIO]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Input/output error.
A physical I/O error occurred.
A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value alowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJIRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENOSPC]
No space available.

The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYY
Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]
Function is not alowed in ajob that is running with multiple threads.

[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors.

[EADDRNOTAVAIL]
Address not available.

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.
If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program & 1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. If the dirp argument passed to closedir () does not refer to an open directory, closedir () returns the
[EBADF] or [EFAULT] error.

3. After acall to closedir () the dirp will not point to avalid DIR.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)

o The<dirent.h> file (see Header Files for UNIX-Type Functions)

« opendir()--Open Directory
o readdir()--Read Directory Entry
o rewinddir()--Reset Directory Stream to Beginning

Example

The following example closes a directory:

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

mai n() {
DR *dir;
struct dirent *entry;
int count;

if ((dir = opendir("/")) == NULL)
perror("opendir() error");

el se {
count = O;
while ((entry = readdir(dir)) != NULL) {

printf("directory entry 9%93d: %\n", ++count, entry->d_nane);

closedir(dir);
}
}

Output:

directory entry 001:
directory entry 002: ..
directory entry 003: QSYS.LIB
directory entry 004: QDLS
directory entry 005: QQOpenSys
directory entry 006: hone

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

creat()--Create or Rewrite File

Syntax

#i ncl ude <fcntl. h>

int creat(const char *path, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The creat() function creates a new file or rewrites an existing file so that it is truncated to zero length. The
function call

creat (pat h, node) ;
isequivalent to the call

open(pat h, O CREAT| O WRONLY| O TRUNC, node);

This means that the file named by path is created if it does not already exist, opened for writing only, and
truncated to zero length. For further information, see open()--Open File.

The mode argument specifies file permission bits to be used in creating the file. For more information on
mode, see chmod()--Change File Authorizations.

Parameters

path
(Input) A pointer to the null-terminated path name of the file to be created or rewritten.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

When anew fileis created, the new file name is assumed to be represented in the language and
country or region currently in effect for the job.

See QIgCreat()--Create or Rewrite File for a description and an example of supplying the path in
any CCSID.

mode

(Input) The file permission bits to be used when creating the file. The S_ISUID (set-user-ID) and
S ISGID (set-group-1D) bits also may be specified when creating the file.

See #chmod()--Change File Authorizations for details on the values that can be specified for

mode.

Authorities

Note: Adopted authority is not used.

Figure 1-11. Authorization Required for creat() (excluding QSY S.LIB, 2rindependent ASP
QSYS.LIB, %and QDLS)

|Object Referred to |Authority Required [errno

|Each directory in the path name preceding the object to be created |* X |EACCES
|Existing object "W |[EACCES
|Parent directory of object to be created when object does not exist [*WX |EACCES

Figure 1-12. Authorization Required for creat() in the QSY S.LIB #and independent ASP QSYS.LIB
File Systems#

|Object Referred to |Authority Required lerrno

|Each directory in the path name preceding the object to be created [*X |EACCES
[Existing object W [EACCES
|Parent directory of object to be created when object does not exist [*OBIMGT or *OBJALTER |EACCES
Parent directory of the parent directory of object to be created *Add EACCES

when object does not exist

Figure 1-13. Authorization Required for creat() in the QDL S File System

|Object Referred to |Authority Required [errno

|Each directory in the path name preceding the object to be created |*X |[EACCES
|Existing object "W |EACCES
|Parent directory of object to be created when object does not exist |* CHANGE |[EACCES

Return Value

value

creat() was successful. The value returned is the file descriptor for the open file.
-1

creat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If creat() is not successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may
also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.
Thefile D table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The aobject name specified is not correct.

[EBUSY]
Resource busy.
An attempt was made to use a system resource that is not available at thistime.
The open sharing mode may conflict with another open of thisfile, or O WRONLY or O_ RDWR

is specified and the file is checked out by another user.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.
The file specified aready exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

o Unused bits in mode are set and should be cleared.
o Itisinvalid to open thistype of object.

[EIO]
Input/output error.

A physical I/O error occurred.
A referenced object may be damaged.

[EISDIR]
Specified target is adirectory.

The path specified named a directory where afile or object name was expected.

The path name given is adirectory.
2 EJRNDAMAGE]

Journal damaged.

A journa or al of the journa's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.

Thiserror isissued if the number of symbolic links encountered is more than POSIX_SY MLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]
Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors aready open (see the sysconf() function).

[ENAMETOOLONG]
A path name istoo long.
A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile_POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

S ENEWJIRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJIRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENFILE]
Too many open filesin the system.

A system limit has been reached for the number of filesthat are allowed to be concurrently openin
the system.

The entire system has too many other file descriptors already open.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]
System resources not available to complete request.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOVERFLOW]
Object istoo large to process.

The object's data size exceeds the limit allowed by this function.

The specified file exists and its size is too large to be represented in a variable of type off_t (thefile
islarger than 2GB minus 1 byte).

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors.
[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.
If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:

o Where multiple threads exist in the job.

o The object on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= ONTC

= QSYS.LIB

= #ZIndependent ASP QSYS.LIB 4
= QOPT

2. Root, QOpenSys, and User-Defined File System Differences

The user who creates the file becomes its owner. 2If the S_ISGID bit of the parent directory is off,
the group ID (GID) is set to the effective GID of the thread creating the object. If the S_ISGID bit
of the parent directory is on, the €group ID (GID) is copied from the parent directory in which the
fileis created.

The owner, primary group, and public object authorities (* OBJEXIST, *OBIMGT, *OBJALTER,
and * OBJREF) are copied from the parent directory's owner, primary group, and public object
authorities. This occurs even when the new file has a different owner than the parent directory. The
owner, primary group, and public data authorities (*R, *W, and * X) are derived from the
permissions specified in the mode (except for those permissions that are also set in the file mode
creation mask). The new file does not have any private authorities or authorization list. It only has
authorities for the owner, primary group, and public.

3. QSYS.LIB #+and Independent ASP QSY S.LIB “File System Differences

When anew member is created, the mode and profiles must match those of the parent file. If they
do not match, the create operation will fail.

The user who creates a member becomes the owner of the member. However, this owner must be
the same as the owner of the parent directory in which the member is being created.

The group ID is obtained from the primary user profile, if one exists. This group ID must be the
same as the group ID of the file in which the member is being created.

The owner object authorities are set to *OBJEXIST, *OBIMGT, *OBJALTER, and * OBJREF.
The primary group object authorities are specified by options in the user profile of the job. None of
the public object authorities are set.

The owner, primary group, and public data authorities (*R, *W, and * X) are derived from the
permissions specified in the mode (except for those permissions that are also set in the file mode
creation mask). The data authorities must match the data authorities of the file in which the member
is being created.

The primary group authorities are not saved if the primary group does not exist. When a primary
group is attached to the object, the object gets the authorities specified in mode.

A member cannot be created in amixed-CCSID file.
The file access time for a database member is updated using the normal rules that apply to database

files. At most, the access time is updated once per day.

4. QDLSFile System Differences

The user who creates the file becomes its owner. The group ID is copied from the parent folder in
which thefileis created.

The owner object authority is set to *OBIMGT + *OBJEXIST + *OBJALTER + *OBJREF.

The primary group and public object authority and all other authorities are copied from the parent
folder.

The owner, primary group, and public data authority (including * OBJOPR) are derived from the
permissions specified in mode (except those permissions that are also set in the file mode creation
mask).

The primary group authorities specified in mode are not saved if no primary group exists.

. QOPT File System Differences

When the volume on which thefile is being created is formatted in Universal Disk Format (UDF):

o Theauthorization that is checked for the object and preceding directories in the path name
follows the rules described in Figure 1-11 "Authorization Required for creat()."

o Thevolume authorization list is checked for * CHANGE authority.
o The user who creates the file becomes its owner.
o Thegroup ID is copied from the parent directory in which thefileis created.

o The owner, primary group, and public data authorities (*R, *W, and * X) are derived from
the permissions specified in the mode (except those permissions that are also set in thefile
mode creation mask).

o Theresulting share modeis O_ SHARE_NONE; therefore, the function call

creat (pat h, node) ;
is equivalent to the call

open(pat h,
O _CREAT| O WRONLY| O_TRUNC| O_SHARE_NONE,
node) ;

o The same uppercase and lowercase forms in which the names are entered are preserved. No
distinction is made between uppercase and lower case when searching for names.

When the volume on which the file is being created is not formatted in Universal Disk Format
(UDF):

o No authorization checks are made on the object or preceding directories in the path name.
o Thevolume authorization list is checked for * CHANGE authority.

0 QDFTOWN becomes the owner of thefile.

o Nogroup ID isassigned to thefile.

o The permissions specified in the mode are ignored. The owner, primary group, and public
data authorities are set to RWX.

o For newly created files, names are created in uppercase. No distinction is made between
uppercase and lowercase when searching for names.

A file cannot be created as adirect child of /QOPT.

The change and modification times of the parent directory are not updated.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. The creation of afile may fail if permissions and other attributes that are
stored locally by the Network File System are more restrictive than those at the server. A later
attempt to create afile can succeed when the locally stored data has been refreshed. (Several
options on the Add Mounted File System (ADDMFS) command determine the time between
refresh operations of local data.) The creation can also succeed after the file system has been
remounted.

If you try to re-create afile that was recently deleted, the request may fail because data that was
stored locally by the Network File System still has arecord of the file's existence. The creation
succeeds when the locally stored data has been updated.

Once afileis open, subsequent requests to perform operations on the file can fail because file
attributes are checked at the server on each request. If permissions on the file are made more
restrictive at the server or the file is unlinked or made unavailable by the server for another client,
your operation on an open file descriptor will fail when the local Network File System receives
these updates. The local Network File System also impacts operations that retrieve file attributes.
Recent changes at the server may not be available at your client yet, and old values may be returned
from operations.

. QNetWare File System Differences

The user who creates the file becomes the owner. Mode bits are not fully supported. See NetWare
on iSeries for more information.

This function will fail with the [EOVERFLOW] error if the specified file exists and its size istoo
large to be represented in avariable of type off_t (thefileislarger than 2GB minus 1 byte).

When you develop in C-based languages and this function is compiled with the_LARGE_FILES
macro defined, it will be mapped to creat64().

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)
creat64()--Create or Rewrite a File (Large File Enabled)
open()--Open File

QlgCreat()--Create or Rewrite File

Example

The following example creates afile:

#i ncl ude <stdio. h>
#i ncl ude <fcntl. h>

mai n() {
char fn[]="creat.file", text[]="This is a test";

int fd, rc;

if ((fd = creat(fn, SIRUSR| S IWSR)) < 0)
perror(“"creat() error");
el se {
if (-1==(rc=write(fd, text, strlen(text))))
perror("wite() error");
if (close(fd) !'= 0)
perror("close() error");
if (unlink(fn)!= 0)
perror("unlink() error");

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

creat64()--Create or Rewrite a File (Large File
Enabled)

Syntax

#i nclude <fcntl. h>

int creat64(const char *path, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The creat64() function creates a new file or rewrites an existing file so that it is truncated to zero length.
The open file instance created with creat64() is allowed to be larger than 2GB minus 1 byte. The function
cal

cr eat 64(pat h, node) ;
is equivalent to the call

open64(pat h, O CREAT| O WRONLY| O TRUNC, node);

If the file named by path does not already exigt, it is created. Thefile is then opened for writing only and
truncated to zero length. For further information, see open64()--Open File (Large File Enabled).

See QlgCreat64--Create or Rewrite aFile (Large File Enabled) for a description and an example of
supplying the path in any CCSID.

The mode argument specifies file permission bits to be used in creating the file. For more information on
mode, see chmod()--Change File Authorizations.

For additional information about parameters, authorities required, error conditions, and examples, see
creat()--Create or Rewrite File.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the creat64() API, you must compile the source with _LARGE_FILE_API macro defined.

2. All of the usage notes for creat() apply to creat64(). See Usage Notesin the creat() API.

API introduced:; V4R4

Top | UNIX-Type APIs| APIs by category

DosSetFileLocks()--Lock and Unlock a Byte
Range of an Open File

Syntax

#def i ne | NCL_DOSERRORS
#defi ne | NCL_DOSFI LEMGR
#i ncl ude <os2. h>

APl RET API ENTRY DosSet Fi | eLocks(HFI LE Fi | eHandl e,
PFI LELOCK ppUnLockRange,
PFI LELOCK ppLockRange,
ULONG ul Ti meQut ,
ULONG ul Fl ags);

Threadsafe: Conditional; see Usage Notes.

The DosSetFilel ocks() function locks and unlocks a range of an open file. A non-zero range indicates that
alock or unlock request is being made.

Parameters

FileHandle

(Input) The file descriptor of the filein which arangeisto be locked.
ppUnlockRange.

(Input) Address of the structure containing the offset and length of arange to be unlocked. The
structureis asfollows:

FileOffset
The offset to the beginning of the range to be unlocked.
Rangelength

The length of the range to be unlocked. A value of zero means that unlocking is not
required.

ppLockRange

(Input) Address of the structure containing the offset and length of arange to be locked. The
structureis asfollows:

FileOffset
The offset to the beginning of the range to be locked.
RangelLength

The length of the range to be locked. A value of zero meansthat locking is not required.
ulTimeOut

(Input) The maximum time, in milliseconds, that the process isto wait for the requested locks.
ulFlags

(Input) Flags that describe the action to be taken. If any flags other than those listed below are

specified, the error ERROR_INVALID_PARAMETER will be returned.

The following values are to be specified in ulFlags:
'0x0002' or QPOL_DOSSETFILELOCKS ATOMIC

Atomic. Thisbit defines arequest for atomic locking. If thisbit is set to 1 and the lock
rangeis egual to the unlock range, an atomic lock occurs. If thisbit is set to 1 and the lock
rangeis not equal to the unlock range, ERROR_LOCK_VIOLATION is returned.

'0x0001' or QPOL_DOSSETFILELOCKS SHARE
Share. This bit defines the type of access that other processes may haveto the file range
that is being locked.

If thisbit is set to O (the default), other processes have no access to the locked file range.
The current process has exclusive access to the locked file range, which must not overlap
any other locked file range.

If thishit isset to 1, the current process and other processes have shared access to the
locked filerange. A file range with shared access may overlap any other file range with
shared access, but must not overlap any other file range with exclusive access.

Authorities

No authorization is required.

Return Value

NO_ERROR (0)
DosSetFilel ocks() was successful.
value

When value is not NO_ERROR (non-zero), DosSetFilel ocks() was not successful. The value that
isreturned indicates the error.

Error Conditions

If DosSetFilel ocks() is not successful, the value that is returned is one of the following errors. The
<bseerr.h> header file defines these values.

[ERROR_GENERAL_FAILURE]
A general failure occurred.
This may result from damage in the system. Refer to messages in the job log for other possible
causes.
[ERROR_INVALID_HANDLE]
Aninvalid file handle was found.

Thefile handle passed to this function is not valid.
[ERROR_LOCK_VIOLATION]

A lock violation was found.

The reguested lock and unlock ranges are both zero.
[ERROR_INVALID_PARAMETER]
Aninvalid parameter was found.

A parameter passed to this function is not valid.
The byte range specified by the offset and length in the ppUnlockRange or ppLockRange
parameters extends beyond 2GB minus 1 byte.

[ERROR_ATOMIC_LOCK_NOT_SUPPORTED]
The atomic lock operation is not supported.

The file system does not support atomic lock operations.
[ERROR_TIMER_NOT_SUPPORTED]
The lock timer value is not supported.

The file system does not support the lock timer value.

Error Messages

The system may send the following messages from this function.
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program & 1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ERROR_GEN_FAILURE] when al the following
conditions are true:

o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in afile system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root
QOpenSys
User-defined
= ONTC
QSYS.LIB

» ZIndependent ASP QSYS.LIB &
= QOPT

2. Thefollowing file systems do not support timer values other than 0. An attempt to a value other
than O for the timer value resultsin an ERROR_TIMER _NOT_SUPPORTED error.

3. Thefollowing file systems do not support the atomic locking flag. If you turn on the atomic locking
flag, an ERROR_ATOMIC LOCKS NOT_SUPPORTED error isreturned.

o Root

QOpenSys

o User-Defined File System
o QDLS

o QOPT

o OQNetWare

4. Thefollowing file systems do not support byte range locks. An attempt to use this API resultsin an
ERROR_GENERAL_FAILURE error.

o QSYS.LIB

o #Independent ASP QSYS.LIB &
o Network File System

o QFileSvr.400 File System

5. When you develop in C-based languages and this function is compiled with the LARGE_FILES
macro defined, it will be mapped to DosSetFilel. ocks64(). Additionaly, the PFILELOCK data
type will be mapped to atype PFILELOCK64.

6. Locks placed on character specia filesresult in advisory locks. For more information on advisory
locking, please see the fcntl()--Perform File Control Command.

[}

Related Information

» The <fcntl.h> file (see Header Files for UNIX-Type Functions)

o The<o0s2.h> file (see Header Files for UNIX-Type Functions)

o The <os2def.h> file (see Header Files for UNIX-Type Functions)

» The<bseh> file (see Header Files for UNIX-Type Functions)

o The <bsedos.h> file (see Header Files for UNIX-Type Functions)

o The<bseerr.h> file (see Header Files for UNIX-Type Functions)

» DosSetFilel ocksb4()--Lock and Unlock a Byte Range of an Open File (Large File Enabled)

Example
The following example opens, locks, and unlocks afile.

#defi ne | NCL_DOSERRORS
#define | NCL_DOSFI LEMGR
#i ncl ude <o0s2. h>

#i ncl ude <stdio. h>

#define NULL_RANGE OL
#define LOCK_FLAGS 0

mai n() {
char fn[]="lock.file";
char buf[] =
"Test data for |ocking and unlocking range of a file";
int fd;
ULONG | ockTi neout = 2000; /* lock tinmeout of 2 seconds */

FI LELOCK Area; /* area of file to | ock/unl ock */
Area. O fset = 4; /* start locking at byte 4 */
Area. Range = 10; /* lock 10 bytes for the file */

/* Create a file for this exanple */
fd = creat(fn, SIWSR | S |RUSR)

/* Wite some data to the file */
wite(fd, buf, sizof(buf) -1);

cl ose(fd);

/* Open the file */
if ((fd = open(fn, O RDAWR) < 0)
{
perror("open() error");
return;

}

/* Lock a range */

rc = DosSet Fil eLocks((HFILE)fd,
NULL_RANGE,
&Ar ea,
&LockTi neout ,
LOCK _FLAGS) ;

if(rc !'=0) /* Lock failed */

{

perror (" DosSet Fil eLocks() error");

/* Unl ock a range */
rc = DosSet Fil eLocks((HFILE)fd,

&Ar ea,
NULL_RANCE,
&LockTi neout ,
LOCK_FLAGS) ;

if(rc !'=0) /* Unlock failed */

{

perror (" DosSetFil eLocks() error");
cl ose(fd);
unlink(fn);

}

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

DosSetFileLocks64()--Lock and Unlock a Byte
Range of an Open File (Large File Enabled)

Syntax

#def i ne | NCL_DOSERRORS
#defi ne | NCL_DOSFI LEMGR
#i ncl ude <os2. h>

APl RET API ENTRY DosSet Fi | eLocks64(HFI LE Fi | eHandl e,
PFI LELOCK64 ppUnLockRange,
PFI LELOCK64 pplLockRange,
ULONG ul Ti neQut ,
ULONG ul Fl ags) ;

Threadsafe: Conditional; see Usage Notes.

The DosSetFilel ocks64() function locks and unlocks a range of an open file. A non-zero range indicates
that alock or unlock request is being made.

The DosSetFilel ocks64() treats the values specified in the PFILEL OCK 64 structure as unsigned.

The maximum offset that can be specified using DosSetFilel ocks64() is the largest value that can be held
in an 8-byte, unsigned integer, 264 - 1.

The maximum length that can be specified using DosSetFilel ocks64() isthe largest value that can be held
in an 8-byte, unsigned integer, 264 - 1.

DosSetFilel ocks64() is enabled for largefiles. It is capable of operating on files larger than 2GB minus 1
byte as long as the file has been opened by either of the following:
« Using the open64() function (see open64()--Open File (Large File Enabled)).

« Using the open() function (see open()--Open File) with the O_L ARGEFILE flag set in the oflag
parameter. Note that the PFILEL OCK 64 type will hold offsets greater than 2 GB minus 1 byte.

For details about parameters, authorities required, error conditions, and examples, see
DosSetFilel ocks()--Lock and Unlock a Byte Range of an Open File.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the DosSetFilel ocks64() API and the PFILELOCK 64 data type, you must compile the
sourcewith LARGE_FI LE_API defined.

2. For additional usage notes about this API, see Usage Notesin the DosSetFilel ocks() API.

Related Information

o The<fentl.h> file (see Header Files for UNIX-Type Functions)

o The<o0s2.h> file (see Header Files for UNIX-Type Functions)

» The <os2def.h> file (see Header Files for UNIX-Type Functions)

o The<bse.h> file (see Header Files for UNIX-Type Functions)

o The <bsedos.h> file (see Header Filesfor UNIX-Type Functions)

o The<bseerr.h> file (see Header Files for UNIX-Type Functions)

o DosSetFilel ocks()--Lock and Unlock a Byte Range of an Open File

Top | UNIX-Type APIs| APIs by category

DosSetRelMaxFH()--Change Maximum Number
of File Descriptors

Syntax

#def i ne | NCL_DOSERRORS
#defi ne | NCL_DOSFI LEMGR
#i ncl ude <os2. h>

APl RET API ENTRY DosSet Rel MaxFH(PLONG pcbReqgCount,
PULONG pcbCur MaxFH) ;

Threadsafe: Yes

The DosSetRelM axFH () function requests that the system change the maximum number of file descriptors
for the calling process (job). The system preserves al file descriptors that are currently open.

A reguest to increase the maximum number of file descriptors by more than the system can accommodate
will succeed. The resulting maximum will be the largest number possible, but will be less than what you
reguested.

A request to decrease the maximum number of file descriptors will succeed. The resulting maximum will
be the smallest number possible, but may be more than what you expected. For example, assume that the
current maximum is 200 and there are 150 open files. A request to decrease the maximum by 75 resultsin
the maximum being decreased by only 50, to 150, to preserve the open file descriptors.

A request to decrease the maximum number of file descriptors to below 20 will succeed, but the maximum
will never be decreased below 20.

To retrieve the current maximum number of file descriptors, without any side effects, the value pointed to
by pcbRegCount should be set to zero.

Parameters

pcbReqCount

(Input) A pointer to the number to be added to the maximum number of file descriptors for the
calling process. If the value pointed to by pcbRegCount is positive, the system increases the
maximum number of file descriptors. If the value pointed to by pcbReqCount is negative, the
system decreases the maximum number of file descriptors.

pcbCurMaxFH
(Output) A pointer to the location to receive the new total number of allocated file descriptors.

Authorities

No authorization is required.

Return Value

NO_ERROR (0)

DosSetRelM axFH () was successful. The function returns NO_ERROR (0) even if the system
disregards or partialy fulfills arequest for an increase or a decrease (for example, decreasing by a
smaller number than requested). Y ou should examine the value pointed to by pcbhCurMaxFH to
determine the result of this function.

value

When value is not NO_ERROR (non-zero), DosSetRelM axFH () was not successful. The value
that is returned indicates the error.

Error Conditions

If DosSetRelMaxFH() is not successful, the value that is returned is one of the following errors. The
<bseerr.h> header file defines these values.

[ERROR_GENERAL_FAILURE]
A general failure occurred.

This may result from damage in the system. Refer to messagesin the job log for other possible
causes.

[ERROR_PROTECTION_VIOLATION]
A protection violation occurred.

A pointer passed to this function is not avalid pointer.

Error Messages

The system may send the following messages from this function.
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPFO872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. If you are using the select() API, you should be aware of the value of the FD_SETSIZE macro
defined in the <sys/types.h> header file. Thisvalueis defined to be 200. This means that the fd_set
structure is defined to contain 200 bits, one for each file descriptor.

If your application uses DosSetRelM axFH () to increase the maximum number of file descriptors
beyond 200, you should consider defining your own value for the FD_SETSIZE macro prior to
including <sys/types.h>. Thisisto ensure that the fd_set structure is defined with the correct
number of bits to accommodate the actual maximum number of file descriptors.

2. The maximum number of file descriptors for this process may be obtained by using the sysconf()
APl withthe _SC_OPEN_MAX parameter.

Related Information

o The<0s2.h> file (see Header Files for UNIX-Type Functions)
o The<os2def.h> file (see Header Files for UNIX-Type Functions)
o The<bseh> file (see Header Filesfor UNIX-Type Functions)
o The <bsedos.h> file (see Header Files for UNIX-Type Functions)

o The<bseerr.h> file (see Header Files for UNIX-Type Functions)

« The <syd/types.h> file (see Header Files for UNIX-Type Functions)
o Thesdect() API
o sysconf()--Get System Configuration Variables

Example

The following example increases the maximum number of file descriptors by two.

#def i ne | NCL_DOSERRORS
#defi ne | NCL_DOSFI LEMGR
#i ncl ude <os2. h>

#i ncl ude <stdio. h>

void nain()
long ReqCount = 0; /* Nunber to add to naxi num */
[* file descriptor count. */
ul ong Cur MaxFH; /* New count of file descriptors. */
i nt rc; /* Return code. */

/* Find out what the initial maximumis.*/
if (NOERROR == (rc = DosSet Rel MaxFH(&ReqCount, &Cur MaxFH))

printf("Initial maxi mum = %", Cur MaxFH) ;

ReqCount = 2; /* Set up to increase by 2. */
if (NO ERROR == (rc = DosSet Rel MaxFH(&ReqCount ,

printf(" New maxi mum = %", Cur MaxFH) ;

}
if (NOERROR != rc)
{

printf("Error &d",rc);

}
Output:

200 New maxi mum = 202

Initial maxi mum

&Cur MaxFH))

Top | UNIX-Type APIs| APIs by category

dup()--Duplicate Open File Descriptor

Syntax

#i ncl ude <uni std. h>

int dup(int fildes);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Yes

The dup() function returns a new open file descriptor. The new descriptor refers to the same open file as
fildes and shares any locks.

If the original file descriptor was opened in text mode, data conversion is also done on the duplicated file
descriptor.

The FD_CLOEXEC flag that is associated with the new file descriptor is cleared. Refer to fentl()--Perform
File Control Command for additional information about the FD_CLOEXEC flag.

Parameters

fildes
(Input) A descriptor to be duplicated.

The following operations are equivalent:

dup(fil des);
fentl (fil des, F_DUPFD, 0) ;

fd
fd

For further information, see fcntl()--Perform File Control Command.

Authorities

No authorization is required.

Return Value

value dup() was successful. The value returned is the new descriptor.

-1 dup() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If dup() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
regquest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECANCEL]
Operation canceled.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.
An argument valueis not valid, out of range, or NULL.
[EIQ]
Input/output error.

A physical /O error occurred.

A referenced object may be damaged.
[ENOSYY
Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.

The path name given refers to an object that does not support this function.
[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.
[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:
Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPFAOD4 E File system error occurred. Error number & 1.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Related Information

» The<unistd.h> file (see Header Filesfor UNIX-Type Functions)

« close()--Close File or Socket Descriptor

« creat()--Create or Rewrite File

dup2()--Duplicate Open File Descriptor to Another Descriptor

fentl()--Perform File Control Command

open()--Open File

Example

The following exampl e duplicates an open descriptor:

See Code disclaimer information for information pertaining to code examples.

#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdio. h>
#i ncl ude <errno. h>

void print_file_ id(int file_descriptor) {
struct stat info;
if (fstat(file_descriptor, & nfo) !'= 0)
fprintf(stderr, "stat() error for file_descriptor %d:
strerror(errno));
el se
printf("The file id of file descriptor % is %\ n",
file descriptor,(int) info.st_ino);

}

mai n() {
int file descriptor, file_descriptor?2;
char fn[]="original.file";

[* create original file */
if((file_descriptor = creat(fn,S IRUSR| S IWSR)) < 0)
perror(“creat() error");

s\ n",

/* generate a duplicate file descriptor of file_descriptor */

el se {

if ((file_descriptor2 = dup(file_descriptor)) < 0)
perror("dup() error");

/* print resulting information */

el se {
print file id(file_descriptor);
print file id(file_descriptor2);
puts("The file descriptors are different but");
puts("they point to the sane file.");
close(file_descriptor);
close(file_descriptor2);

unlink(fn);
}
}
Output:

The file id of file_descriptor 0 is 30
The file id of file_descriptor 3 is 30
The file descriptors are different but
they point to the sane file.

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

dup?2()--Duplicate Open File Descriptor to
Another Descriptor

Syntax

#i ncl ude <uni std. h>

int dup2(int fildes, int fildes2);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The dup2() function returns a descriptor with the value fildes2. The descriptor refersto the samefile as
fildes, and it will close the file that fildes2 was associated with.

If the original file descriptor was opened in text mode, data conversion is also done on the duplicated file
descriptor.

The FD_CLOEXEC flag that is associated with the new file descriptor is cleared. Refer to fentl()--Perform
File Control Command for additional information about the FD_CL OEXEC flag.

The following conditions apply:

o If fildes2 islessthan zero or greater than or equal to OPEN_MAX, dup2() returns -1 and sets the
errno global variableto [EBADF].

« If fildesisavalid descriptor and is equal to fildes2, dup2() returns fildes2 without closing it.
« If fildesisnot avalid descriptor, dup2() fails and does not close fildes2.

This function works with descriptors for any type of object.

Parameters

fildes
(Input) A descriptor to be duplicated.

fildes2
(Input) The descriptor to which the duplication is made.

Authorities

No authorization is required.

Return Value

value dup2() was successful. The value of fildes2 is returned.

-1 dup2() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If dup2() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may
aso fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.

Thefile D tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EIC]
Input/output error.

A physical 1/0 error occurred.

A referenced object may be damaged.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ESTALE]
File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:
Message ID Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPFAOD4 E File system error occurred. Error number & 1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

QOpenSys

User-defined

QNTC

= QSYSLIB

#Independent ASP QSYS.LIB
= QOPT

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

« close()--Close File or Socket Descriptor
« creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor
« fentl()--Perform File Control Command

« open()--Open File

Example

The following example duplicates an open descriptor:

See Code disclaimer information for information pertaining to code examples.

#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>
#1 ncl ude <stdio. h>
#i ncl ude <errno. h>

void print_file_id(int file_descriptor) {
struct stat info;
if (fstat(file_descriptor, & nfo) != 0)
fprintf(stderr, "stat() error for file_descriptor %d: %\n",
strerror(errno));
el se
printf("The file id of file_descriptor % is %l\n", file_descriptor,
(int) info.st_ino);

}

mai n() {
int file_descriptor, file_descriptor?2;
char fn[] = "original.file";

char fn2[] = "dup2.file";

/* create original file */

if((file_descriptor = creat(fn, SIRUSR| S IWSR)) < 0)
perror("creat() error");

/* create file to dup to */

else if((file_descriptor2 = creat(fn2, S IWSR)) < 0)
perror("creat()error");

/* dup file_descriptor to file_descriptor2; print results */

el se {
print_file_id(file_descriptor);

print_file_id(file_descriptor2);

if ((file_descriptor2 = dup2(file_descriptor,

perror ("dup2() error");

el se {

puts("After dup2()...");
print file id(file _descriptor);
print_file_id(file_descriptor2);
puts("The file descriptors are different but they");

puts("point to the sanme file which is different than");

to.");
cl ose(fil
close(fil

}
unl i nk(fn);

e _descriptor);
e_descriptor?2);

unl i nk(fn2);

}
}

Output:

The file id of
The file id of
After dup2()...
The file id of
The file id of

file_descriptor
file_descriptor

file_descriptor
file_descriptor

0is 30
3is 58

0is 30
3is 30

The file descriptors are different, but they

point to the sane file,

which is different than

file_descriptor2)) < 0)

puts("the file that the second file_descriptor originally pointed

the file that the second file _descriptor originally pointed to.

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

sfaccessx()--Determine File Accessibility for a
Class of Users

Syntax

#1 ncl ude <uni std. h>

int faccessx(int fildes, int anpode, int who);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The faccessx() function determines whether afile can be accessed by a specified class of usersin a particular
manner.

Adopted authority is not used.

Parameters

fildes
(Input) The file descriptor of the file that is having its accessibility checked.

amode
(Input) A bitwise representation of the access permissions to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in amode:
F_OK
(X'00") Tests whether the file exists
R OK
(x'04") Tests whether the file can be accessed for reading
W_OK
(x'02") Tests whether the file can be accessed for writing
X_OK
(x'01") Tests whether the file can be accessed for execution
Y ou can take the bitwise inclusive OR of any or al of the last three symbolsto test several access modes

at once. If you areusing F_OK to test for the existence of the file, you cannot use OR with any of the
other symbols. If any other bits are set in amode, faccessx() returnsthe [EINVAL] error.

(Input) The class of users whose authority isto be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in who:

ACC_SELF
(x'00") Determinesiif specified access is permitted for the current thread. The effective user and
group |Ds are used.

Note: If the real and effective user ID are the same and the real and effective group ID are the
same, the request is treated as ACC_INVOKER. See the Usage Notes for more details.

ACC_INVOKER

(x'01") Determinesif specified accessis permitted for the current thread. The effective user and
group IDs are used.

ACC_OTHERS

(x'08") Determines if specified access is permitted for any user other than the object owner. Only
one of R_OK, W_OK, and X_OK is permitted when who is ACC_OTHERS Privileged users
(users with * ALLOBJ special authority) are not considered in this check.

ACC_ALL

(x'20") Determinesif specified accessis permitted for al users. Only one of R_OK, W_OK, and
X_OK is permitted when who isACC_ALL. Privileged users (users with * ALLOBJ special
authority) are not considered in this check.

Authorities

The following authorities are required if the who parameter is ACC_SELF or ACC_INVOKER. If ACC_SELF is
specified, the effective UID and GID of the caller are used. If ACC_INVOKER s used, the real UID and GID of
the caller are used.

Authorization Required for faccessx()

Authority ’

Object Referred to Required |errno

|Object when R_OK is specified *R |EACCES
|Object when W_OK is specified "W |EACCES
|Object when X_OK is specified *X |EACCES
|Object when R_OK | W_OK is specified *RW |EACCES
|Object when R_OK | X_OK is specified *RX |EACCES
|Object when W_OK | X_OK is specified *WX |EACCES
|Object when R_OK |W_OK | X_OK is specified *RWX [EACCES
|Object when F_OK is specified |None |None

If the current thread has * ALLOBJ special authority, faccessx() with ACC_SELF or ACC_INVOKER will
indicate success for R_OK, W_OK, or X_OK even if none of the permission bits are set.

Return Value

0
faccessx() was successful.
-1

faccessx() was not successful (or the specified accessis not permitted for the class of users being
checked). The errno global variable is set to indicate the error.

Error Conditions

If faccessx() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCEY
Permission denied.

The class of users specified by the who parameter does not have the permission indicated by the amode
parameter.

If you are accessing aremote file through the Network File System, update operations to file permissions
at the server are not reflected at the client until updates to datathat is stored locally by the Network File
System take place. (Several options on the Add Mounted File System (ADDMFS) command determine

the time between refresh operations of local data.) Accessto aremote file may aso fail dueto different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.
Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that is not
valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]
I nput/output error.

A physical 1/O error occurred.
A referenced object may be damaged.

[EINTR]
Interrupted function call.
[ENOSPC]
No space available.
The requested operations required additional space on the device and thereis no space left. This could
also be caused by exceeding the user profile storage limit when creating or transferring ownership of an

object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the requested
arguments.

[ETXTBSY]
Text file busy.

An attempt was made to execute an OS/400 PASE program that is currently open for writing, or an
attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at the
server.

[EUNKNOWN]
Unknown system state.
The operation failed because of an unknown system state. See any messages in the job log and correct
any errors that are indicated, then retry the operation.
If interaction with afile server is required to access the object, errno could indicate one of the following errors:
[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]
Connection ended abnormally.
[ECONNREFUSED]
The destination socket refused an attempted connect operation.
[ECONNRESET]
A connection with aremote socket was reset by that socket.
[EHOSTDOWN]
A remote host is not available.
[EHOSTUNREACH]
A route to the remote host is not available.
[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ESTALE]
File or object handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted at the
server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPFO872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:
o Where multiple threads exist in the job.

o Theabject thisfunction is operating on residesin afile system that is not threadsafe. Only the
following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= ONTC

= QSYSLIB

= Independent ASP QSYS.LIB
= QOPT

2. ACC_SELF Mapped to ACC_INVOKER

Some physical file systems do not support ACC_SELF for the who parameter. However, faccessx() will

change the who parameter from ACC_SELF to ACC_INVOKERif the caller'sreal and effective user ID
are equal, and the caller's real and effective group ID are equal.

. Network File System Differences

The Network File System will only support the value ACC_INVOKER for the who parameter. If
faccessx() is called on afile in amounted Network File System directory with a value for who other than
ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

Local access to remote files through the Network File System may produce unexpected results due to
conditions at the server. Once afileis open, subsequent requests to perform operations on the file can fail
because file attributes are checked at the server on each request. If permissions on the file are made more
restrictive at the server or the fileis unlinked or made unavailable by the server for another client, your
operation on an open file descriptor will fail when the local Network File System receives these updates.
The local Network File System also impacts operations that retrieve file attributes. Recent changes at the
server may not be available at your client yet, and old values may be returned from operations. (Several
options on the Add Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.)

. QNTC File System Differences

The QNTC File System will only support the value ACC_INVOKER for the who parameter. If faccessx()
iscalled on afilein the QNTC File System with avalue for who other than ACC_INVOKER, the call will
return -1 and errno ENOTSUP. Note: If the value for who has been mapped from ACC_SELF to
ACC_INVOKER as previously described, then ENOTSUP will not be returned.

. QOPT File System Differences

If the file descriptor refers to an object that exists on a volume formatted in Universal Disk Format
(UDF), the authorization that is checked for the object follows the rules described in the previous table,
Authorization Required for faccessx(). If the object exists on a volume formatted in some other media
format, no authorization checks are made on the object. The volume authorization list is checked for the
requested authority regardless of the volume mediaformat.

. QFileSvr.400 File System Differences

The QFileSvr.400 File System will only support the value ACC_INVOKER for the who parameter. If
faccessx() is called on afilein the QFileSvr.400 File System with a value for who other than

ACC _INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

. QNetWare File System Differences

The QNetWare File System will only support the value ACC_INVOKER for the who parameter. If
faccessx() is called on afilein the QNetWare File System with avalue for who other than

ACC _INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

Related Information

« The<unistd.h> file (see Header Files for UNIX-Type Functions)

« The<limits.h> file (see Header Files for UNIX-Type Functions)

« chmod()--Change File Authorizations

« open()--Open File

» access()--Determine File Accessibility

« accessx()--Determine File Accessibility for a Class of Users

o QlgAccessx()--Determine File Accessibility for a Class of Users (using NL S-enabled path name)
o QlgAccess()--Determine File Accessibility (using NL S-enabled path name)

o stat()--Get File Information

Example
The following example determines how afileis accessed:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i nclude <fcntl. h>

mai n() {
char path[]="/nyfile";
int fd;

fd = open(path, O RDONLY);

if (fd == -1)

{
printf("Error opening file.\n");
return;

}

if (faccessx(fd, R OK, ACC OTHERS) == 0)

printf("Soneone besides the owner has read access to '%'\n", path);
if (faccessx(fd, WOK, ACC OTHERS) == 0)

printf("Soneone besides the owner has wite access to '%'\n", path);
if (faccessx(fd, X OK, ACC OTHERS) == 0)

printf("Soneone besides the owner has search access to '%'\n", path);
cl ose(fd);

}
Output:

In this example faccessx() was called on adescriptor for ‘/myfile’. The following would be the output if someone
other than the owner has * R authority, someone besides the owner has *W authority, and noone other than the
owner has* X authority.

Someone besi des the owner has read access to '/’
Sonmeone besides the owner has wite access to '/

&

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

» fchdir()--Change Current Directory by
Descriptor

Syntax

#i ncl ude <uni std. h>

int fchdir(int fildes);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The fchdir () function makes the directory named by fildes the new current directory. If the fchdir ()
function fails, the current directory is unchanged.

Parameters

fildes
(Input) The file descriptor of the directory.

Authorities

Note: Adopted authority is not used.

Authorization Required for fchdir()

|Object Referred to |Authority Required |errno
|Each directory of the path name | *X |EACCES

Return Value

0
fchdir () was successful.
-1
fchdir () was not successful. The errno global variableis set to indicate the error.

Error Conditions

If fchdir () is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may
also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file ID could not be assighed when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
[EIQ]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.
Insufficient space remains to hold the intended file, directory, or link.
[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.
The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.
To recover from this error, wait until processing has completed for the independent ASP.
[ENOTDIR]
Not a directory.
A component of the specified path name existed, but it was not a directory when a directory was
expected.
Some component of the path name is not a directory, or is an empty string.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.
[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.
[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E

Possible APAR condition or hardware failure.
CPFAOD4 E

File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root

QOpenSys

User-defined

ONTC

QSsyYs.LIB

Independent ASP QSYS.LIB
QOPT

The fchdir () API operates on two objects: the previous current working directory and the new one.
If either of these objectsis managed by afile system that is not threadsafe, fchdir () fails with the
ENOTSAFE error code.

Network File System Differences

If the local storage of attributes and names is not suppressed (option noac when the file system is
mounted), then one can potentially use the fchdir () API to change to a directory which has been
removed. This depends on how often and when the local storage of attributes and namesis

refreshed.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)

The <limits.h> file (see Header Files for UNIX-Type Functions)

chdir()--Change Current Directory

getewd()--Get Current Directory

o OQlgChdir()--Change Current Directory

o OlgGetcwd()--Get Current Directory

Example
The following example uses fchdir ():

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

mai n() {
char dir[]="tenpfile";
int file_descriptor;

int oflagl = O RDONLY | O _CCsI D
nmode t node = S IRUSR | S IWSR | S | XUSR,
unsi gned int open_ccsid = 37;

if ((file_descriptor = open(dir, oflagl, node, open_ccsid)) < 0)
perror("open() error");

el se {
if (fchdir(file_descriptor) !'= 0)

perror("fchdir() to tenpfile failed");

close(file_descriptor);

}

}

Output:

fchdir() to tenpfile failed: Not a directory.
L4

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

fchmod()--Change File Authorizations by
Descriptor

Syntax

#i ncl ude <sys/stat. h>

int fchnod(int fildes, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: * USE

Threadsafe: Conditional; see Usage Notes.

The fchmod() function #*changes S ISUID, S ISGID, and the permission bits of the open file or directory
identified by fildes its file descriptor, to the corresponding bits specified in mode. <%fchmod() has no effect
on file descriptions for files that are open at the time fchmod() is called.

fchmod() marks for update the change time of thefile.

If the fileis checked out by another user (someone other than the user profile of the current job), fchmod()
failswith the [EBUSY] error.

Parameters

fildes
(Input) The file descriptor of thefile.
mode
(Input) Bits that define #* S ISUID, S_ISGID, and “the access permissions of thefile.

The mode argument is created with one of the symbols defined in the <sys/stat.h> header file. For more
information on the symboals, refer to chmod()--Change File Authorizations.

If bits other than the bits listed above are set in mode, fchmod() returns the [EINVAL] error.

Authorities

Note: Adopted authority is not used.

Figure 1-14. Authorization Required for fchmod() (excluding QDL S)

Authority
Object Referred to Required |errno
Object Owner EPERM
(see Note)

|Note: Y ou do not need the listed authority if you have * ALLOBJ special authority.

Figure 1-15. Authorization Required for fchmod() in the QDL S File System

Authority
Object Referred to Required |errno
Object Owner or |EACCES
*ALL

Return Value

0
fchmod() was successful.
-1

fchmod() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fchmod() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.
[EACCES
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.
Thefile D tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIQ]
Input/output error.

A physical 1/0 error occurred.
A referenced object may be damaged.

[EIRNDAMAGE]
Journal damaged.
A journd or al of the journal's attached journal receivers are damaged, or the journa sequence

number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

Thejournal entry generated by this operation istoo large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

Thejournaling state for the journa is*INACTIVE. Thiserror occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal 4%

[ENAMETOOLONG]

A path nameistoo long.
A path nameislonger than PATH_MAX characters or some component of the nameis longer than
NAME_MAX characterswhile_POSIX_NO_TRUNC isin effect. For symbolic links, the length of

the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

2 ENEWJRN]
New journal is needed.
Thejournal was not completely created, or an attempt to delete it did not complete successfully. This

error occurs during operations that were attempting to start or end journaling, or were attempting to
send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENOENT]
No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remainsto hold the intended file, directory, or link.

[ENOSYS)

Function not implemented.

An attempt was made to use afunction that is not available in thisimplementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOSYSRC]

System resources not available to complete request.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

Theindependent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the requested
arguments.

The object referenced by the descriptor does not support the function.

[EPERM]

Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with a remote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted at
the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this API:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. #*All of the usage notes for chmod() apply to fchmod(). See Usage Notes in the chmod API. <X

Related Information

» The<syd/stat.h> file (see Header Files for UNIX-Type Functions)

« chmod()--Change File Authorizations

« chown()--Change Owner and Group of File

« fchown()--Change Owner and Group of File by Descriptor
« mkdir()--Make Directory

» open()--Open File

o stat()--Get File Information

Example
The following example changes afile permission:

#i ncl ude <stdio. h>

#i nclude <fcntl. h>

#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>

mai n() {
char fn[]="tenp.file";
int file_descriptor;
struct stat info;

if ((file_descriptor = creat(fn, S IWSR)) < 0)
perror("creat() error");
el se {
if (stat(fn, & nfo)!= 0)
perror("stat() error");
el se {
printf("original permssions were: %980\n"

}
if (fchnod(file_descriptor, S |IRWU S | RWKG
perror("fchmd() error");
el se {
if (stat(fn, & nfo)!= 0)
perror("stat() error");
el se {
printf("after fchnod(), perm ssions are:
}

if (close(file_descriptor)!= 0)
perror("close() error");
if (unlink(fn)!= 0)
perror("unlink() error");
}

}
Output:

original perm ssions were: 00100200
after fchnod(), perm ssions are: 00100770

i nfo.st_node);

:O)

%980\ n",

i nfo.st_node);

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

fchown()--Change Owner and Group of File by
Descriptor

Syntax

#i ncl ude <uni std. h>

int fchown(int fildes, uid t owner, gid t group);
Threadsafe: Conditional; see Usage Notes.

The fchown() function changes the owner and group of afile. The permissions of the previous owner or
primary group to the object are revoked.

If thefileis checked out by another user (someone other than the user profile of the current job), fchown()
failswith the[EBUSY] error.

When fchown() completes successfully, it marks the change time of the file to be updated.

Parameters

fildes
(Input) The file descriptor of thefile.
owner
(Input) The new user ID to be set for file.
group
(Input) The new group ID to be set for file.
Note: Changing the owner or the primary group causesthe S _ISUID (set-user-ID) and S _ISGID
(set-group-1D) bits of the file mode to be cleared, unless the caller has * ALLOBJ specia authority. If the

caller does have * ALLOBJ specia authority, the bits are not changed. This does not apply to directories,
FIFO specidl files, or pipes. See the chmod() documentation.

Authorities

Note: Adopted authority is not used.

Figure 1-16. Authorization Required for fchown() (excluding QSY S.LIB, #independent ASP
QSYSLIB, %and QDLYS)

|Object Referred to |Authority Required |errno
Object, when changing the owner Owner and *OBJEXIST [EPERM
(also see Note 1)

|Object, when changing the primary group |See Note 2 |EPERM

|Previous owner's user profile, when changing the owner *DLT |EPERM

INew owner's user profile, when changing the owner [*ADD |EPERM
User profile of previous primary group, when changing the primary *DLT EPERM
group
|New primary group's user profile, when changing the primary group ~ [*ADD |EPERM
Note:

1. You do not need the listed authority if you have * ALLOBJ specia authority.
2. Atleast one of the following must be true:

a You have* ALLOBJ special authority.
b. You are the owner and either of the following:
= The new primary group isthe primary group of the job.
= The new primary group is one of the supplementary groups of the job.

Figure 1-17. Authorization Required for fchown() in the QSYS.LIB #*and independent ASP
QSYS.LIB File Systems 4

|Object Referred to |Authority Required lerrno
|Object, when changing the owner |See Note (1) |EPERM
|Object, when changing the primary group |See Note (2) |EPERM

Note: The required authorization varies for each object type. See the following commands in the i Series

Security Reference@ book for details:

1. CHGOBJOWN
2. CHGOBJPGP

Figure 1-18. Authorization Required for fchown() in the QDL S File System

|Object Referred to |Authority Required [errno

Object *ALLOBJ Specia |EPERM
Authority or Owner

|Previous owner's user profile, when changing the owner *DLT |EPERM

|New owner's user profile, when changing the owner I*ADD |EPERM

|Previ ous primary group's user profile, when changing the primary group |* DLT |EPERM

|NeW primary group's user profile, when changing the primary group |*ADD |EPERM

Figure 1-19. Authorization Required for fchown() in the QOPT File System

|Object Referred to |Authority Required [errno

|Volume authorization list |*CHANGE |EACCES

|Each directory in the path name preceding the object. |*X |EACCES

Object *ALLOBJ Specia EPERM
Authority or Owner

Return Value

0
fchown() was successful.
-1
fchown() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If fchown() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
reguest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. arameter passed to this function is not
valid.

owner or group is not avalid user 1D (uid) or group ID (gid).

owner isthe current primary group of the object.

[EIQ]
Input/output error.

A physical /O error occurred.

A referenced object may be damaged.
[EJRNDAMAGE]
Journal damaged.
A journa or al of the journa's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.
The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ENAMETOOLONG]
A path nameistoo long.

A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME _MAX characterswhile _POSIX_NO _TRUNC isin effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

£ ENEWJRN]
New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS

Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOSYSRSC]
System resources not available to complete request.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

The aobject referenced by the descriptor does not support the function.
[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= ONTC

= QSYS.LIB

= ZIndependent ASP QSYS.LIB 4
= QOPT

2. QDLSFile System Differences

The owner and primary group of the /QDL S directory (root folder) cannot be changed. If an
attempt is made to change the owner and primary group, a[ENOTSUP] error is returned.

3. QOPT File System Differences

Changing the owner and primary group is allowed only for an object that exists on avolume

formatted in Universal Disk Format (UDF). For al other media formats, ENOTSUP will be
returned.

QOPT file system objects that have ownerswill not be recognized by the Work with Objects by
Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will
not be recognized by the Work Objects by Primary Group (WRKOBJPGP) CL command.

4. QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support fchown().

5. QNetWare File System Differences

Primary group is not supported. The GID must be zero on this API.

6. QNTC File System Differences

The owner of files and directories cannot be changed. All files and directoriesin QNTC are owned
by the QDFTOWN user profile.

Related Information

» The<unistd.h> file (see Header Filesfor UNIX-Type Functions)

« chown()--Change Owner and Group of File

« chmod()--Change File Authorizations

« fchmod()--Change File Authorizations by Descriptor
« mkdir()--Make Directory

« open()--Open File

« stat()--Get File Information

Example
The following example changes the owner ID and group ID:

#i ncl ude <stdio. h>

#i ncl ude <fcntl. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>

mai n() {
char fn[]="tenp.file";
int file_descriptor;
struct stat info;

if ((file_descriptor = creat(fn, S IWSR)) < 0)

perror(“"creat() error");

el se {
stat(fn, & nfo);
printf("original owner was % and group was %d\n", info.st uid,

info.st _gid);
if (fchown(file_ descriptor, 152, 0) !'= 0)
perror("fchown() error");
el se {
stat(fn, & nfo);
printf("after fchown(), owner is % and group is %\ n",
info.st _uid, info.st _gid);

close(fil e _descriptor);
unlink(fn);
}
}

Output:

original owner was 137 and group was O
after fchown(), owner is 152 and group is O

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

fcntl()--Perform File Control Command

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

int fentl (int descriptor,
i nt command,

ce)
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The fentl() function performs various actions on open descriptors, such as obtaining or changing the
attributes of afile or socket descriptor.

Parameters

descriptor

(Input) The descriptor on which the control command is to be performed, such as having its
attributes retrieved or changed.

command
(Input) The command that is to be performed on the descriptor.

(Input) A variable number of optiona parameters that is dependent on the command. Only some of
the commands use this parameter.

The fentl () commands that are supported are:

F DUPFD Duplicates the descriptor. A third int argument must be specified. fentl() returns the
lowest descriptor greater than or equal to this third argument that is not already
associated with an open file. This descriptor refers to the same object as descriptor and
shares any locks. If the original descriptor was opened in text mode, data conversion is
a so done on the duplicated descriptor. The FD_CLOEXEC flag that is associated with
the new descriptor is cleared.

F_GETFD Obtains the descriptor flags for descriptor. fentl() returns these flags as its result. For a
list of supported file descriptor flags, see Flags. Descriptor flags are associated with a
single descriptor and do not affect other descriptors that refer to the same object.

F_GETFL

F_GETLK

F_GETLK64

F_GETOWN

F_SETFD

F_SETFL

F_SETLK

F_SETLK64

F_SETLKW

Obtains the file status flags and file access mode flags for descriptor. fentl() returns
these flags asits result. For alist of supported file status and file access mode flags, see
ZrUsing the oflag Parameter in open().&

Obtains locking information for an object. Y ou must specify athird argument of type
struct flock *. See File Locking for details. fentl() returns O if it successfully obtains the
locking information. When you develop in C-based languages and the function is
compiled with the LARGE_FILES macro defined, F_ GETLK is mapped to the

F GETLK®64 symbol.

Obtains locking information for alarge file. Y ou must specify athird argument of type
struct flock64 *. See File Locking for details. fentl() returns O if it successfully obtains
the locking information. When you develop in C-based languages, it is necessary to
compile the function with the LARGE_FILE_API macro defined to use this symbol.

Returns the process ID or process group ID that is set to receive the SIGIO (1/Ois
possible on a descriptor) and SIGURG (urgent condition is present) signals. For more
information, see Signal APIs.

Sets the descriptor flags for descriptor. Y ou must specify athird int argument, which
gives the new file descriptor flag settings (see Flags). If any other bitsin the third
argument are set, fentl() fails with the [EINVAL] error. fentl() returns O if it
successfully setsthe flags. Descriptor flags are associated with a single descriptor and
do not affect other descriptors that refer to the same object.

Sets status flags for the descriptor. Y ou must specify athird int argument, giving the
new file status flag settings (see Flags). fentl() does not change the file access mode,
and file access bits in the third argument are ignored. All other oflag values that are
valid on the open() API are also ignored. If any other bitsin the third argument are set,
fentl() failswith the [EINVAL] error. fentl() returns O if it successfully sets the flags.

Sets or clears afile segment lock. Y ou must specify athird argument of type struct
flock *. See File Locking for details. fentl() returns O if it successfully clears the lock.
When you develop in C-based languages and the function is compiled with the
_LARGE_FILES macro defined, F_ SETLK ismapped to the F_SETLK64 symbol.

Sets or clears afile segment lock for alarge file. Y ou must specify athird argument of
type struct flock64 *. See File Locking for details. fentl() returns O if it successfully
clears the lock. When you develop in C-based languages, it is necessary to compile the
function withthe LARGE_FILE_API macro defined to use this symbol.

Sets or clears afile segment lock; however, if ashared or exclusive lock is blocked by
other locks, fentl() waits until the request can be satisfied. Y ou must specify athird
argument of type struct flock *. See File Locking for details. When you develop in
C-based languages and the function is compiled with the LARGE_FILES macro
defined, F_SETLKW is mapped to the F_SETLKW64 symbol.

F_SETLKW64

F_SETOWN

Flags

Sets or clears afile segment lock on alarge file; however, if ashared or exclusive lock
is blocked by other lacks, fentl() waits until the request can be satisfied. See File

Locking for details. Y ou must specify athird argument of type struct flock64 *. When

you develop in C-based languages, it is necessary to compile the function with the
_LARGE_FILE_API macro defined to use this symbol.

Sets the process ID or process group ID that isto receive the SIGIO and SIGURG
signals. For more information, see Signal APIs.

There are several types of flags associated with each open objecte. Flags for an object are represented by
symbols defined in the <fcntl.h header file. The following file status flags can be associated with an object:

FASYNC
FNDELAY

O_APPEND

O_DSYNC

O_NDELAY

O_NONBLOCK

#0_RSYNC

»0O_SYNC

The SIGIO signa is sent to the process when it is possible to do 1/0.

Thisflag is defined to be equivalent to O_NDELAY.

Append mode. If thisflag is 1, every write operation on the file begins at the end of
thefile.

Synchronous update - data only. If thisflag is 1, all file datais written to permanent
storage before the update operation returns. Update operations include, but are not
limited to, the following: ftruncate(), open() with O_TRUNC, and write().

Thisflag is defined to be equivalent to O_NONBLOCK.

Non-blocking mode. If thisflag is 1, read or write operations on the file will not cause
the thread to block. Thisfile status flag applies only to pipe, FIFO, and socket
descriptors.

Synchronous read. If thisflagis 1, read operations to the file will be performed
synchronously. Thisflag is used in combination with O_SYNC or O_DSYNC. When
O_RSYNC and O_SYNC are s¢t, all file data and file attributes are written to
permanent storage before the read operation returns. When O_RSYNC and
O_DSYNC are set, dl file datais written to permanent storage before the read
operation returns.4%

Synchronous update. If thisflag is 1, al file data and file attributes relative to the 1/O
operation are written to permanent storage before the update operation returns. Update
operations include, but are not limited to, the following: ftruncate(), open() with
O_TRUNC, and write().4%

The following file access mode flags can be associated with afile:

O_RDONLY Thefileisopened for reading only.
O_RDWR Thefileis opened for reading and writing.

O_WRONLY Thefileisopened for writing only.

A mask can be used to extract flags:

O_ACCMODE Extracts file access mode flags.

The following descriptor flags can be associated with a descriptor:

FD_CLOEXEC Controls descriptor inheritance during spawn() and spawnp() when simple inheritance
isbeing used, asfollows:

o Ifthe FD_CLOEXEC flag is zero, the descriptor isinherited by the child
processthat is created by the spawn() or spawnp()API.

Note: Descriptorsthat are created as a result of the opendir () API (to
implement open directory streams) are not inherited, regardless of the value of
the FD_CLOEXEC flag.

» If the FD_CLOEXEC flag is set, the descriptor is not inherited by the child
processthat is created by the spawn() or spawnp() API.

Refer to spawn()--Spawn Process and spawnp()--Spawn Process with Path for additional information about
FD_CLOEXEC.

File Locking

A local or remote job can use fentl() to lock out other local or remote jobs from a part of afile. By locking
out other jobs, the job can read or write to that part of the file without interference from others. File locking
can ensure data integrity when several jobs have afile accessed concurrently. For more information about
remote locking, see information about the network lock manager and the network status monitor in the

0S/400 Network File System Support@l book.

Two different structures are used to control locking operations:. struct flock and struct flock64 (both defined
in the <fcntl.h header file). Y ou can use struct flock64 with the F_ GETLK®64, F_SETLK®64, and
F_SETLKW64 commands to control locks on large files (files greater than 2GB minus 1 byte). The struct
flock structure has the following members:

short |_type

short | whence

off t | dtart
off t 1 len
pid t |_pid

Indicates the type of lock, asindicated by one of the following symbols (defined
in the <fcntl.h> header file):

F _RDLCK Indicatesaread lock; also called a shared lock. When ajob hasa
read lock, no other job can obtain write locks for that part of the
file. More than one job can have aread lock on the same part of a
file simultaneously. To establish aread lock, ajob must have the
file accessed for reading.

F WRLCK Indicates awrite lock; also called an exclusive lock. When ajob
has awrite lock, no other job can obtain aread lock or write lock
on the same part or an overlapping part of that file. A job cannot
put awrite lock on part of afileif another job already has aread
lock on an overlapping part of thefile. To establish awrite lock, a
job must have accessed the file for writing.

F UNLCK Unlocksalock that was set previoudly.

One of three symbols used in determining the part of the file that is affected by
thislock. These symbols are defined in the <unistd.h> header file and are the
same as symbols used by Iseek():

SEEK _CUR Thecurrent file offset in thefile.
SEEK_END The end of thefile.
SEEK SET The start of thefile.

Gives abyte offset used to identify the part of the file that is affected by thislock.
If |_start is negative, it is handled as an unsigned value. The part of the file
affected by the lock begins at this offset from the location given by |_whence. For
example, if |_whenceis SEEK_SET and |_start is 10, the locked part of the file
begins at an offset of 10 bytes from the beginning of the file.

Givesthe size of the locked part of thefile, in bytes. If the sizeis negative, itis
treated as an unsigned value. If |_lenis zero, the locked part of the file begins at
the position specified by |_whence and | _start, and extends to the end of thefile.
Together, |_whence, |_start, and | _len are used to describe the part of the file that
is affected by thislock.

Specifiesthe job ID of the job that holds the lock. Thisis an output field used
only with F_GETLK actions.

void *| reserved0 Reserved. Must be set to NULL.

void *| reservedl Reserved. Must be setto NULL.

When you develop in C-based languages and this function is compiled with LARGE_FILES defined, the
struct flock data type will be mapped to a struct flock64 data type. To use the struct flock64 data type
explicitly, it is necessary to compile the function with _LARGE_FILE_API defined.

The struct flock64 structure has the following members:

short |_type Indicates the type of lock, asindicated by one of the following symbols
(defined in the <fcntl.h header file):

F RDLCK Indicatesaread lock; also called a shared lock. When ajob
has aread lock, no other job can obtain write locks for that
part of the file. More than one job can have aread lock on the
same part of afile smultaneously. To establish aread lock, a
job must have the file accessed for reading.

F WRLCK Indicates awrite lock; also called an exclusive lock. When a
job has awrite lock, no other job can obtain aread lock or
write lock on the same part or an overlapping part of that file.
A job cannot put awrite lock on part of afile if another job
aready has aread lock on an overlapping part of thefile. To
establish awrite lock, ajob must have accessed the file for
writing.

F UNLCK Unlocksalock that was set previoudly.

short |_whence One of three symbols used in determining the part of the file that is affected
by thislock. These symbols are defined in the <unistd.h> header file and are
the same as symbols used by Iseek():

SEEK _CUR Thecurrent file offset in thefile.
SEEK_END Theend of thefile.
SEEK SET The start of thefile.

char |_reserved2[4] Reservedfield

off64 t | _start Gives a byte offset used to identify the part of the file that is affected by this
lock. |_start is handled as a signed value. The part of the file affected by the
lock begins at this offset from the location given by |_whence. For example, if
|_whenceisSEEK_SET and |_start is 10, the locked part of the file begins at
an offset of 10 bytes from the beginning of thefile.

off64 t | _len Givesthe size of the locked part of thefile, in bytes. If the sizeis negative, the
part of the file affected is|_start + |_len through |_start - 1. If |_len is zero, the
locked part of the file begins at the position specified by |_whence and |_start,
and extends to the end of the file. Together, |_whence, |_start, and |_len are
used to describe the part of thefile that is affected by this|ock.

pid_t |_pid Specifiesthe job ID of the job that holds the lock. Thisis an output field used
only with F_GETLK actions.

char reserved3[4] Reserved field.
void *| reserved0 Reserved. Must be set to NULL.
void *| reservedl Reserved. Must be set to NULL.
Y ou can set locks by specifying F_ SETLK or F_SETLK64 as the command argument for fentl(). Such a

function call requires athird argument pointing to a struct flock structure (or struct flock64 in the case of
F _SETLK®64), asin this example:

struct flock lock it;

lock it.l _type = F_RDLCK;

lock it.l _whence = SEEK SET;

lock it.l _start = 0;

lock it.l _len = 100;

fentl (file _descriptor, F SETLK, & ock _it);

This example sets up aflock structure describing aread lock on the first 100 bytes of afile, and then calls
fentl() to establish the lock. Y ou can unlock thislock by setting |_typeto F_UNLCK and making the same
call. If an F_SETLK operation cannot set alock, it returnsimmediately with an error saying that the lock
cannot be set.

TheF_SETLKW and F_SETLKW®64 operations are similar to F_SETLK and F_SETLK64, except that
they wait until the lock can be set. For example, if you want to establish an exclusive lock and some other
job already has alock established on an overlapping part of the file, fentl() waits until the other process has
removed itslock.

F_SETLKW and F_SETLKW#64 operations can encounter deadlocks when job A iswaiting for job B to
unlock aregion and job B iswaiting for job A to unlock a different region. If the system detects that an
F_SETLKW or F_SETLKW®64 might cause a deadlock, fcntl() fails with errno set to [EDEADLK].

Withthe F_ SETLK®64, F_ SETLKW®64, and F_GETLK 64 operations, the maximum offset that can be
specified isthe largest value that can be held in an 8-byte, signed integer.

A job can determine locking information about afile by using F GETLK and F_ GETLK64 as the
command argument for fentl(). In this case, the call to fentl() should specify athird argument pointing to a
flock structure. The structure should describe the lock operation you want. When fentl() returns, the
structure indicated by the flock pointer is changed to show the first lock that would prevent the proposed
lock operation from taking place. The returned structure shows the type of lock that is set, the part of the
filethat islocked, and the job ID of the job that holds the lock. In the returned structure:

o | _whenceisaways SEEK_SET.
« |_start givesthe offset of the locked portion from the beginning of the file.
« |_lenisthe length of the locked portion.

If there are no locks that prevent the proposed lock operation, the returned structure has F_UNLCK in
|_type and is otherwise unchanged.

If fentl() attempts to operate on alarge file (one larger than 2GB minus 1 byte) withthe F_SETLK,

F GETLK, or FSETLKW commands, the API fails with [EOVERFLOW]. To work with large files,
compilewiththe LARGE_FILE_API macro defined (when you develop in C-based languages) and use
the F_ SETLK64, F GETLK®64, or FSETLKW64 commands. When you develop in C-based languages, it is
also possible to work with large files by compiling the source with the LARGE FILES macro label
defined. Note that the file must have been opened for large file access (either the open64() API was used or
the open() API was used with the O_LARGEFILE flag defined in the oflag parameter).

An application that usesthe F_ SETLK or F_SETLKW commands may try to lock or unlock afile that has
been extended beyond 2GB minus 1 byte by another application. If the value of |_len is set to 0 on the lock
or unlock reguest, the byte range held or released will go to the end of the file rather than ending at offset
2GB minus 2.

An application that usesthe F_SETLK or F_SETLKW commands also may try to lock or unlock afile that
has been extended beyond offset 2GB minus 2 with |_len NOT set to 0. If this application attempts to lock
or unlock the byte range up to offset 2GB minus2 and | _len is not 0, the unlock request will unlock the file
only up to offset 2GB minus 2 rather than to the end of the file.

A job can have severa locks on afile at the same time, but only one type of lock can be set on a given byte.

Therefore, if ajob puts anew lock on a part of afile that it had locked previously, the job has only one lock
on that part of the file. The type of the lock is the one specified in the most recent locking operation.

Locks can start and extend beyond the current end of afile, but cannot start or extend ahead of the
beginning of afile.

All of thelocks ajob has on afile are removed when the job closes any descriptor that refersto the locked
file.

All locks obtained using fentl() are advisory only. Jobs can use advisory locks to inform each other that
they want to protect parts of afile, but advisory locks do not prevent input and output on the locked parts. If
ajob has appropriate permissions on afile, it can perform whatever 1/0 it chooses, regardless of what
advisory locks are set. Therefore, advisory locking is only a convention, and it works only when all jobs
respect the convention.

Another type of lock, called a mandatory lock, can be set by aremote personal computer application.
Mandatory locks restrict 1/0 on the locked parts. A read fails when reading a part that is locked with a
mandatory write lock. A write fails when writing a part that is locked with a mandatory read or mandatory
write lock.

The maximum starting offset that can be specified by using the fnctl() API is 263 - 1, the largest number
that can be represented by a signed 8-byte integer. Mandatory locks set by a personal computer application
or by auser of the DosSetFilel ocks64() APl may lock a byte range that is greater than 263 - 1.

An application that usesthe F_SETLK64 or F_SETLKW®64 commands can lock the offset range that is
beyond 263 - 1 by locking offset 263 - 1. When offset 263 - 1 islocked, it implicitly locks to the end of the
file. The end of the fileis the largest number than can be represented by an 8-byte unsigned integer or 264 -
1. Thisimplicit lock may inhibit the personal computer application from setting mandatory locksin the
range not explicitly accessable by the fentl() API.

Any lock set using the fentl() API that locks offset 263 - 1 will have alength of 0.

An application that uses the F_ GETLK 64 may encounter a mandatory lock set by a personal computer
application, which locks arange of offsets greater than 263 - 1. Thislock conflict will have a starting offset
equal to or lessthan 263 - 1 and alength of O.

Authorities

No authorization is required.

Return Value

value fentl() was successful. The value returned depends on the command that was specified.

-1 fentl() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If fentl() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Accessto aremote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

[EAGAIN] Operation would have caused the process to be suspended.
The processtried to lock with F_SETLK, but the lock isin conflict with a previously
established lock.

[EBADF] Descriptor not valid.

A descriptor argument was out of range, referred to an object that was not open, or a
read or write request was made to an object that is not open for that operation.

A given descriptor or directory pointer is not valid for this operation. The specified
descriptor isincorrect, or does not refer to an open object.

[EBADFID] A file ID could not be assigned when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

[EBADFUNC] Function parameter in the signal function is not set.

A given descriptor or directory pointer isnot valid for this operation. The specified
descriptor isincorrect, or does not refer to an open object.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EDEADLK] Resource deadlock avoided.

An attempt was made to lock a system resource that would have resulted in a
deadlock situation. The lock was not obtained.

The function attempted was failed to prevent a deadlock.

[EFAULT]

[EINVAL]

[EIO]

[EMFILE]

[ENOLCK]

[ENOMEM]

[ENOSYS

[ENOTAVAIL]

[ENOTSAFE]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors aready open (see the sysconf()
function).

No locks available.

A system-imposed limit on the number of simultaneous file and record locks was
reached, and no more were available at that time.

Storage all ocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.
Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for
any object or any arguments.

The path name given refers to an object that does not support this function.
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

Function is not allowed in ajob that is running with multiple threads.

[EOVERFLOW] Object istoo large to process.
The object's data size exceeds the limit allowed by this function.
One of the valuesto be returned cannot be represented correctly.
The command argument isF_GETLK, F_SETLK, or F_SETLKW and the offset of

any bytein the requested segment cannot be represented correctly in a variable of
type off_t (the offset is greater than 2GB minus 1 byte).

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could also indicate one of the
following errors:
[EADDRNOTAVAIL] Address not available.
[ECONNABORTED] Connection ended abnormally.
[ECONNREFUSED] The destination socket refused an attempted connect operation.
[ECONNRESET] A connection with aremote socket was reset by that socket.
[EHOSTDOWN] A remote host is not available.
[EHOSTUNREACH] A routeto the remote host is not available.
[ENETDOWN] The network is not currently available.
[ENETRESET] A socket is connected to a host that is no longer available.
[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

Error Messages

The following messages may be sent from this function:
Message I D Error Message Text
CPFAOD4 E File system error occurred. Error number & 1.
CPFAO081 E Unable to set return value or error code.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= Z*Independent ASP QSYS.LIB 4
= QOPT

2. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

The following fentl() commands are not supported:
o F_GETLK
o F_SETLK
o F_SETLKW

Using any of these commands resultsin an [ENOSY §] error.
3. Network File System Differences

Reading and writing to afile with the Network File System relies on byte-range locking to
guarantee data integrity. To prevent datainconsistency, use the fentl() API to get and rel ease these

locks. For more information about remote locking, see information about the network lock manager
and the network status monitor in the OS/400 Network File System Support@ book.
4. QNetWare File System Differences

F GETLK and F_SETLKW are not supported. F RDLCK and F WRLCK are ignored. All locks
prevent reading and writing. Advisory locks are not supported. All locks are mandatory locks.
Locking afilethat is opened more than once in the same job with the same access mode is not
supported, and its result is undefined.

5. Thisfunction will fail with the[EOVERFLOW)] error if the command isF_GETLK, F_SETLK, or
F_SETLKW and the offset or the length exceeds offset 2 GB minus 2.

6. When you develop in C-based languages and an application is compiled with the L ARGE_FILES
macro defined, the struct flock data type will be mapped to a struct flock64 data type. To use the
struct flock64 data type explicitly, it is necessary to compile the function with the
_LARGE_FILE_API defined.

7. In several cases, similar function can be obtained by using ioctl().

Related Information

o The <syd/types.h> file (see Header Files for UNIX-Type Functions)
o The<unistd.h> file (see Header Files for UNIX-Type Functions)
« The<fcntl.h> file (see Header Files for UNIX-Type Functions)

« close()--Close File or Socket Descriptor

« dup()--Duplicate Open File Descriptor

o dup2()--Duplicate Open File Descriptor to Another Descriptor

« ioctl()--Perform /O Control Request

o Iseek()--Set File Read/Write Offset

« open()--Open File

« spawn()--Spawn Process

» spawnp()--Spawn Process with Path

« 0OS/400 Network File System Support@ book

Example

The following example uses fentl():

See Code disclaimer information for information pertaining to code examples.

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

int main()

int flags;

i nt append_fl ag;

i nt nonbl ock_fl ag;

i nt access_node;

int file descriptor; /* File Descriptor */
char *textl = "abcdefghij";

char *text2 = "0123456789";

char read buffer[25];

nmenset (read_buffer, "'\0', 25);

/* create a new file */

file descriptor = creat("testfile",S | RAKU);
wite(file descriptor, textl, 10);
close(fil e _descriptor);

/* open the file with read/wite access */
file _descriptor = open("testfile", O RDWR)
read(file_descriptor, read buffer, 24);
printf("first read is \"%\'\n",read_buffer);

/* reset file pointer to the beginning of the file */

| seek(file_descriptor, 0, SEEK SET);

/* set append flag to prevent overwriting existing text */
fentl (file_descriptor, F_SETFL, O APPEND);

wite(file descriptor, text2, 10);

| seek(file_descriptor, 0, SEEK SET);

read(file_descriptor, read buffer, 24);

printf("second read is \'%\'\n",read _buffer);

close(fil e _descriptor);
unlink("testfile");

return O;

}
Output:

first read is 'abcdefghij'
second read is 'abcdefghij0123456789'

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

fpathconf()--Get Configurable Path Name
Variables by Descriptor

Syntax

#i ncl ude <uni std. h>

| ong fpathconf(int file descriptor, int nane);
Threadsafe: Conditional; see Usage Notes.

The fpathconf() function determines the value of a configuration variable (name) associated with a
particular file descriptor (file_descriptor). fpathconf() works exactly like pathconf(), except that it takes a
file descriptor as an argument rather than taking a path name.

Parameters

file_descriptor

(Input) A file descriptor of the file for which the value of the configurable variable is requested.
name

(Input) The name of the configuration variable value requested.

The vaue of hame can be any one of a set of symbols defined in the <unistd.h> include file. Each symbol
stands for a configuration variable. The possible symbols are as follows:

_PC_CHOWN_RESTRICTED

Represents POSIX_CHOWN_RESTRICTED, as defined in the <unistd.h> header file. It restricts
use of chown() to ajob with appropriate privileges, and allows the group 1D of afile to be changed
only to the effective group ID of the job or to one of its supplementary group IDs. If file_descriptor
isadirectory, fpathconf() returns the value for any kind of file under the directory, but not for
subdirectories of the directory.

_PC_LINK_MAX

Represents LINK _MAX, which indicates the maximum number of links the file can have. If
file_descriptor isadirectory, pathconf() returns the maximum number of links that can be
established to the directory itself.

_PC_MAX_CANON

Represents MAX_CANON, which indicates the maximum number of bytesin aterminal canonical
input line.
_PC_MAX_INPUT

Represents MAX_INPUT, which indicates the minimum number of bytes for which spaceis
available in aterminal input queue. This available space is the maximum number of bytesthat a
portable application can have the user enter before the application actually reads the input.

_PC_NAME_MAX

Represents NAME_MAX, which indicates the maximum number of charactersin afile name (not
including any terminating null at the end if the file name is stored as a string). This symbol refers

only to the file name itself; that is, the last component of the path name of the file. fpathconf()
returns the maximum length of file names, even when the path does not refer to a directory.

_PC_PATH_MAX

Represents PATH_MAX, which indicates the maximum number of charactersin a complete path
name (not including any terminating null at the end if the path name is stored as a string).
fpathconf() returns the maximum length of a path name relative to the root of the file system that is
managing the object indicated by file_descriptor , even when the path does not refer to a directory.

_PC_PIPE_BUF

Represents PIPE_BUF, which indicates the maximum number of bytes that can be written
"atomically" to apipe. If more than this number of bytes are written to a pipe, the operation may
take more than one physical write operation and physical read operation to read the data on the
other end of the pipe. If file_descriptor is a FIFO special file, fpathconf() returns the value for the
fileitself. If file_descriptor isadirectory, fpathconf() returns the value for any FIFOs that exist or
that can be created under the directory. If file_descriptor is any other kind of file, an error of
[EINVAL] isreturned.

_PC_NO_TRUNC

Represents POSIX_NO_TRUNC, as defined in the <unistd.h> header file. It generates an error if
afile nameislonger than NAME_MAX. If file_descriptor refersto adirectory, the value returned
by fpathconf() appliesto all files under that directory.

_PC_VDISABLE

Represents POSIX_VDISABLE, as defined in the <unistd.h> header file. This symbol indicates
that terminal special characters can be disabled using this character value, if it is defined.

_PC_THREAD_SAFE

This symbol is used to determine if the object represented by path resides in athreadsafe file
system. fpathconf() returnsthe value 1 if the file system is threadsafe and O if the file system is not
threadsafe. fpathconf() will never fail with error code [ENOTSAFE] when called with
_PC_THREAD_SAFE.

If file_descriptor is adescriptor for a socket, fpathconf() returns an error of [EINVAL].

Authorities

No authorization is required.

Return Value

value

fpathconf() was successful. The value of the variable requested in name is returned.
-1

One of the following has occurred:

o A particular variable has no limit (for example, _PC_PATH_MAX). The errno global
variable is not changed.

o fpathconf() was not successful. The errno is set.

Error Conditions

If fpathconf() is not successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
reguest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.

Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. nameis not avalid configuration variable
name, or the given variable cannot be associated with the specified file.

[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]
Connection ended abnormally.
[ECONNREFUSED]
The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted

at the server.
[ETIMEDOUT]

A remote host did not respond within the timeout period.
[EUNATCH]

The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFAOD4E File system error occurred. Error number & 1.
CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:

o Where multiple threads exist in the job.

o The object on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys
» User-defined
= QNTC

= QSYSLIB
= HIndependent ASP QSYS.LIB &
= QOPT

Related Information

» The<unistd.h> file (see Header Files for UNIX-Type Functions)

« open()--Open File
o pathconf()--Get Configurable Path Name Variables
« 2QlgPathconf()--Get Configurable Path Name V ariables %

Example
The following example uses fpathconf():

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

#i ncl ude <errno. h>

mai n() {
| ong result;
char fn[]="tenp.file";
int file_descriptor;

if ((file_descriptor = creat(fn, SIRUSR)) < 0)
perror(“"creat() error");
el se {
errno = O;
put s("exam ning NAME MAX |imt for current working directory's");
puts("filesystem");
if ((result = fpathconf(file_descriptor, _PC NAME MAX)) == -1)
if (errno == 0)
puts("There is no limt to NAVE_NMAX. ");
el se perror("fpathconf() error");
el se
printf("NAME_MAX is %d\n", result);
cl ose(file_descriptor);
unl i nk(fn);
}
}

Output:
exam ning NAME_LMAX |imt for current working directory's

filesystem
NAVE_MAX is 255

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

fstat()--Get File Information by Descriptor

Syntax

#i ncl ude <sys/stat.h>

int fstat(int descriptor,
struct stat *buffer)

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The fstat() function gets status information about the object specified by the open descriptor descriptor and
stores the information in the area of memory indicated by the buffer argument. The status information is
returned in a stat structure, as defined in the <sys/stat.h> header file.

Parameters

descriptor
(Input) The descriptor for which information isto be retrieved.

buffer

(Output) A pointer to a buffer of type struct stat in which the information is returned. The structure
pointed to by the buffer parameter is described in stat()-- Get File Information.

The st_mode, st_dev, and st_blksize fields are the only fields set for socket descriptors. The
st mode field is set to avalue that indicates the descriptor is a socket descriptor, the st_dev fieldis
set to -1, and the st_blksize field is set to an optimal value determined by the system.

Authorities

No authorization is required.

Return Value

0 fstat() was successful. The information is returned in buffer.

-1 fstat() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If fstat() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

[EAGAIN]

[EBADF]

[EBADFID]

[EBADFUNC]

[EBUSY]

[EDAMAGE]

Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Accessto aremote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

Operation would have caused the process to be suspended.

Descriptor not valid.

A descriptor argument was out of range, referred to afile that was not open, or aread
or write request was made to afile that is not open for that operation.

A given descriptor or directory pointer isnot valid for this operation. The specified
descriptor isincorrect, or does not refer to an open object.

A file ID could not be assigned when linking an object to adirectory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

Function parameter in the signal function is not set.

A given descriptor or directory pointer is not valid for this operation. The specified
descriptor isincorrect, or does not refer to an open object.

Resource busy.
An attempt was made to use a system resource that is not available at thistime.
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid. [EFAULT] isreturned if this function is passed a pointer
parameter that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
This error code may be returned when the underlying object represented by the
descriptor is unable to fill the stat structure (for example, if the function was issued
against a socket descriptor that had its connection reset).

[EIQ] Input/output error.
A physical I/O error occurred.
A referenced object may be damaged.

[ENOBUFY There is not enough buffer space for the requested operation.

[ENOSYSRC] System resources not available to complete request.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) isnot available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

[ENOTSAFE] Function is not allowed in ajob that is running with multiple threads.

[EOVERFLOW] Object istoo large to process.
The object's data size exceeds the limit allowed by this function.

The specified file exists and its size is too large to be represented in the structure
pointed to by buffer (thefileislarger than 2GB minus 1 byte).

[EPERM] Operation not permitted.
Y ou must have appropriate privileges or be the owner of the object or other resource
to do the requested operation.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNATCH]

[EUNKNOWN]

The protocol required to support the specified address family is not available at this
time.
Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET]

[EHOSTDOWN]

A connection with aremote socket was reset by that socket.

A remote host is not available.

[EHOSTUNREACH] A routeto the remote host is not available.

[ENETDOWN]

[ENETRESET]

The network is not currently available.

A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:

Message I D
CPFAOD4 E
CPFAOB1 E
CPF3CF2 E
CPE3418 E

Error Message Text

File system error occurred. Error number & 1.
Unable to set return value or error code.
Error(s) occurred during running of &1 API.

Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:
o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= ONTC

= QSYS.LIB

= ZIndependent ASP QSYS.LIB 4
= QOPT

2. Sockets-Specific Notes

o Thefield st mode can be inspected using the S ISSOCK macro (defined in <sys/stat.h>)
to determine if the descriptor is pointing to a socket descriptor.

o For socket descriptors, use the send buffer size (thisisthe value returned for st_blksize) for
the length parameter on your input and output functions. This can improve performance.

Note: IBM reserves the right to change the calculation of the optimal send size.
3. QOPT File System Differences

The vauefor st_atime will always be zero. The value for st_ctime will always be the creation date
and time of the file or directory.

The user, group, and other mode bits are always on for an object that exists on a volume not
formatted in Universal Disk Format (UDF).

fstat on /QOPT will always return 2,147,483,647 for size fields.
fstat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.
4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or thefile is unlinked or made unavail able by the server
for another client, your operation on an open descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values

may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

5. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See the Netware on iSeries topic for
more information.
6. Thisfunction will fail with the[EOVERFLOW] error if the specified file exists and its size istoo

large to be represented in the structure pointed to by buffer (thefileislarger than 2GB minus 1
byte).

7. When you develop in C-based languages and this function is compiled with _L ARGE_FILES
defined, it will be mapped to fstat64(). Note that the type of the buffer parameter, struct stat *, al'so
will be mapped to type struct stat64 *. See stat64() for more information on this structure.

Related Information

« The<sys/types.h> file (see Header Filesfor UNIX-Type Functions)
o The<sydstat.h> file (see Header Files for UNIX-Type Functions)

« fentl()--Perform File Control Command

« fstat64()--Get File Information by Descriptor (Large File Enabled)

o Istat()--Get File or Link Information

« open()--Open File

« socket()--Create Socket

« dtat()--Get File Information

« Stat64()--Get File Information (Large File Enabled))

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information:

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

mai n() {

<sys/types. h>
<sys/stat. h>

<fcntl. h>
<stdi 0. h>
<tinme. h>

char fn[]="tenp.file";

struct

stat info;

int file_descriptor;

if ((file_descriptor = creat(fn, S IWSR)) < 0)
perror(“"creat() error");

el se {

if (fstat(file_descriptor,

perror("fstat() error");
el se {
pups("fstap() returned:");

pri
pri
pri
pri
pri
pri

ntf("
ntf("
ntf("
ntf("
ntf("
ntf("

i node:
dev id:
node:
i nks:
ui d:

gi d:

&i nf 0)
%\ n", (int)
%\ n", (int)
%®98x\ n",
%\ n",
%\ n", (int)
%\ n", (int)

close(fil e _descriptor);

unlink(fn);

}
}

nf o.
nf o.
nf o.
nf o.
nf o.
nf o.

Output: Note that the output may vary from system to system.

fstat() returned:

i node:
dev id:
node:
i nks:
ui d:

gi d:

3057

1

03000080

1

137
500

st _ino);
st _dev);
st _node);
st_nlink);
st_uid);
st _gid);

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

fstat64()--Get File Information by Descriptor
(Large File Enabled)

Syntax

#i ncl ude <sys/stat.h>

int fstat64(int fildes, struct stat64 *buf);
Threadsafe: Conditional; see Usage Notes.

The fstat64() function gets status information about the file specified by the open file descriptor
file_descriptor and stores the information in the area of memory indicated by the buf argument. The status
information is returned in a stat64 structure, as defined in the <sys/stat.h> header file.

fstat64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte aslong
asthe file has been opened by either of the following:

« Using the open64() function (see open64()--Open File (Large File Enabled)).

« Using the open() function (see open()--Open File) with O_LARGEFILE set in the oflag parameter.

The elements of the stat64 structure are described in stat64()--Get File Information (Large File Enabled).

For additional information about parameters, authorities required, and error conditions, see fstat()--Get File
Information by Descriptor.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the fstat64() APl and the struct stat64 data type, you must compile the source with the
_LARGE_FILE_API macro defined.

2. All of the usage notes for fstat() apply to fstat64(). See Usage Notesin the fstat() API.

Example
The following example gets status information:

#define _LARGE_FI LE_API
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

#i ncl ude <stdio. h>

#i ncl ude <time. h>

mai n() {
char fn[]="tenp.file";

struct stat64 info;
int file_descriptor;

if ((file_descriptor
perror("creat64() error");

el se {
if (ftruncate64(file_descriptor,
perror("ftruncate64() error");

el se {

if (fstat64(file_descriptor,
perror("fstat64() error");
el se {
put s("fstat64()

}

close(fil e _descriptor);

pri
pri
pri
pri
pri
pri
pri

ntf("
ntf("
ntf("
ntf("
ntf("
ntf("
ntf("

unlink(fn);

}
}

i node:
dev id:
node:
i nks:
ui d:

gi d:

si ze:

creat 64(fn,

returned:");

%\ n",
%\ n",
%98x\ n",
%\ n",
%\ n",
%\ n",
%1 d\n",

S IWSR)) < 0)

8589934662) ! = 0)

& nfo) !

(int)
(int)

(int)
(int)
(long |

Output: Note that the output may vary from system to system.

fstat 64(
i node:

dev id:
node:
i nks:
ui d:

gi d:

si ze:

r et ur ned:

3057

1

03000080

1
137
500

8589934662

:0)

nf o.
nf o.
nf o.
nf o.
nf o.
nf o.

ong)

st _ino);
st _dev);
st _node);
st_nlink);
st_uid);
st _gid);

i nfo.st_size);

Top | UNIX-Type APIs| APIs by category

fstatvfs()--Get File System Information by
Descriptor

Syntax

#i ncl ude <sys/statvfs. h>

int fstatvfs(int fildes, struct statvfs *buf);
Threadsafe: Conditional; see Usage Notes.

The fstatvfs() function gets status information about the file system that contains the file referenced by the
open file descriptor fildes. The information is stored in the area of memory indicated by the buf argument.
The status information isreturned in a statvfs structure, as defined in the <sys/statvfs.h> header file.

Parameters

fildes

(Input) The file descriptor of the file from which file system information is required.
buf

(Output) A pointer to the area to which the information should be written.

The elements of the statvfs structure are described in statvfs()--Get File System Information. Signed fields
of the statvfs structure that are not supported by the mounted file system will be set to -1.

Authorities
Note: Adopted authority is not used.

Figure 1-20. Authorization Required for fstatvfs()

Authority
Object Referred to Required |errno
|Each directory in the path name that precedes the object *X |EACCES
|Object |None |None

Return Value

0
fstatvfs() was successful. The information is returned in buf.
-1
fstatvfs() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If fstatvfs() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.
If you are accessing aremote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may

also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
request was madeto afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file 1D could not be assigned when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The aobject name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]
Input/output error.

A physical I/O error occurred.
A referenced object may be damaged.

[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.

A path nameislonger than PATH_MAX characters or some component of the name is longer than

NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

Thereis not enough memory to perform the requested function.

[ENOSPC]
No space available.

The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP isin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]

Address not available,

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with a remote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
CPE3418 E
Possible APAR condition or hardware failure.
CPFAOD4 E
File system error occurred. Error number & 1.
CPF3CF2 E
Error(s) occurred during running of &1 API.
CPF9872 E
Program or service program & 1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYSLIB

= #Independent ASP QSYS.LIB 4
= QOPT

2. Root ("/") and QOpenSys File System Differences

These file systemsreturn the f_flag field with the ST_NOSUID flag bit turned off. However,
support for the setuid/setgid semanticsis limited to the ability to store and retrievethe S_ISUID
and S_ISGID flags when these file systems are accessed from the Network File System server.

3. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

4. When you develop in C-based languages and an application is compiled with the _LARGE_FILES
macro defined, the fstatvfs() APl will be mapped to a call to the fstatvfs64(). Additionally, the
struct statvfs data type will be mapped to a struct statvfst4.

Related Information

« The<sydstatvis.h> file (see Header Filesfor UNIX-Type Functions)
« The<sys/types.h> file (see Header Filesfor UNIX-Type Functions)

« chmod()--Change File Authorizations

« chown()--Change Owner and Group of File
« creat()--Create or Rewrite File

o dup()--Duplicate Open File Descriptor

« fentl()--Perform File Control Command

o fstatvis64()--Get File System Information by Descriptor (64-Bit Enabled)
o link()--Create Link to File

« open()--Open File

o read()--Read from Descriptor

» statvfs()--Get File System Information

« unlink()--Remove Link to File

« utime()--Set File Access and Modification Times

o write()--Write to Descriptor

Example
The following example gets status information about a file system:

#i ncl ude <sys/statvfs. h>
#i ncl ude <stdio. h>

mai n() {
struct statvfs info;
int fildes;

if (-1 == (fildes = open("/", O RDONLY)))
perror("open() error");
else if (-1 == fstatvfs(fildes, & nfo))
perror(“"fstatvfs() error");
el se {
puts("fstatvfs() returned the follow ng information");
puts("about the Root ('/') file system");
printf(" f_bsize : %\ n", info.f_bsize);
printf(" f_blocks . %98X9M8X\ n",

printf("

printf("
printf("
printf("
printf("
printf("
printf("
printf("
}
}

*((int *)& nfo.f_blocks[0]),
*((int *)& nfo.f_blocks[4]));
f _bfree T O8XYH8X\ n",
*((int *)& nfo.f_bfree[0]),
*((int *)& nfo.f_bfree[4]));

f files ;o ow\n"
f ffree ;o\ n"
f fsid ;o\ n"
f flag X\ n"
f _namemax : %w\n"
f _pathmax : %w\n"

f _basetype : %\n"

nf o.
nf o.
nf o.
nf o.
nf o.
nf o.
nf o.

f files);

f ffree);

f fsid);

f _flag);

f _namemax) ;
f _pat hmax) ;
f _basetype);

Output: The following information will vary from file system to file system.

statvfs() returned the follow ng information
about the Root ('/') file system

f _bsize

f _bl ocks
f_bfree

f files

f ffree

f fsid
f_flag

f _namemax
f _pat hrmax

f _basetype

4096
00000000002BF800
0000000000091703
4294967295
4294967295

0

1A

255

4294967295
"root" (/)

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

fstatvfs64()--Get File System Information by
Descriptor (64-Bit Enabled)

Syntax

#i ncl ude <sys/statvfs. h>

int fstatvfs64(int fildes, struct statvfs64 *buf);
Threadsafe: Conditional; see Usage Notes.

The fstatvfs64() function gets status information about the file system that contains the file referred to by
the open file descriptor fildes. The information is stored in the area of memory indicated by the buf

argument. The status information is returned in a statvfsé4 structure, as defined in the <syg/statvfs.h>
header file.

For details about parameters, authorities required, error conditions and examples, see fstatvfs()--Get File
System Information by Descriptor. For details about the struct statvfst4 structure, see statvist4()--Get File
System Information (64-Bit Enabled).

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the fstatvfs64() API and the struct statvfs64 data type, you must compile the source with the
_LARGE_FILE_API defined.

2. All of the usage notes for fstatvfs() apply to fstatvfs64(). See Usage Notes in the fstatvfs() API.

Top | UNIX-Type APIs| APIs by category

fsync()--Synchronize Changes to File

Syntax

#i ncl ude <uni std. h>

int fsync(int file_descriptor);
Threadsafe: Conditional; see Usage Notes.

The fsync() function transfers all data for the file indicated by the open file descriptor file_descriptor to the
storage device associated with file_descriptor. fsync() does not return until the transfer is complete, or until
an error is detected.

Parameters

file_descriptor
(Input) The file descriptor of the file that isto have its modified data written to permanent storage.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

0
fsync() was successful.
-1
fsync() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fsync() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file

permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
reguest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.

Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Thefiletypeisnot valid for this operation.

[EIO]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[EJRNDAMAGE]
Journal damaged.
A journal or all of the journal's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value alowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJIRN]
New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJIRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal. 4%

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available,

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:

o Where multiple threads exist in the job.
o The object on which thisfunction is operating resides in afile system that is not threadsafe.

Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

» ZIndependent ASP QSYS.LIB &
= QOPT

2. Using thisfunction on a character special file will result in areturn value of -1 and the errno global
value set to EINVAL.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

« open()--Open File

o write()--Write to Descriptor

Example
The following example uses fsync():

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

#i ncl ude <stdio. h>

#defi ne mega_string_| en 250000

mai n() {
char *mega_string;
int file_descriptor;
int ret;
char fn[]="fsync.file";

if ((nmega_string = (char*) malloc(nmega_string_len)) == NULL)
perror("malloc() error");
else if ((file_descriptor = creat(fn, S_IWSR)) < 0)
perror(“"creat() error");
el se {
menset (nmega_string, 's', nega_string_|en);
if ((ret = wite(file_descriptor,
mega_string, nmega_string_len)) == -1)
perror("wite() error");
el se {

printf("wite() wote % bytes\n", ret);
if (fsync(file_descriptor) != 0)
perror("fsync() error");
else if ((ret = wite(file_descriptor,
mega_string, nmega_string len)) == -1)
perror("wite() error");
el se
printf("wite() wote % bytes\n", ret);

cl ose(file_descriptor);
unl i nk(fn);

}
}
Output:

wite() wote 250000 bytes
wite() wote 250000 bytes

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

ftruncate()--Truncate File

Syntax

#i ncl ude <uni std. h>

int ftruncate(int file descriptor, off_t |ength);
Threadsafe: Conditional; see Usage Notes.

The ftruncate() function truncates the file indicated by the open file descriptor file_descriptor to the
indicated length. file_descriptor must be a"regular file" that is open for writing. (A regular fileisastream
file that can support positioning the file offset.) If the file size exceeds length, any extra datais discarded. If
thefile size is smaller than length, the file is extended and filled with binary zeros to the indicated length.
(In the QSY S.LIB #*and independent ASP QSY S.LIB file systems “blanks are used instead of zeros to pad
records after amember is extended.)

If ftruncate() completes successfully, it marks the change time and modification times of the file. Also, the
S ISUID (set-user-ID) and S_ISGID (set-group-1D) bits of the file mode are cleared. If ftruncate() is not
successful, the file is unchanged.

If ftruncate() is used to truncate the file to 0 bytes and the file has an OS/400 digital signature, the
signature is del eted.

Parameters

file_descriptor
(Input) The file descriptor of thefile.

length
(Input) The desired size of thefilein bytes.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

0
ftruncate() was successful.
-1

ftruncate() was not successful. The errno global variableis set to indicate the error. If the file
descriptor is not open for writing, ftruncate returns a[EBADF] error. If the file descriptor isa
valid descriptor open for writing but is not a descriptor for aregular file, ftruncate() returns a

[EINVAL] error.

Error Conditions

If ftruncate() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file ID could not be assighed when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.
An attempt was made to use a system resource that is not available at thistime.

The QSYS.LIB #*or independent ASP QSY S.LIB #file system cannot get exclusive access to the
member to clear truncated data.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFBIG]
Object istoo large.

The size of the object would exceed the system allowed maximum size #or the process soft file
size limit. &

Thefileisaregular file and length is greater than 2GB minus 1 byte.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. file_descriptor does not refer to aregular
file open for writing, or the specified length is not correct.

[EIO]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[EISDIR]
Specified target is adirectory.

The path specified named a directory where afile or object name was expected.

The path name given is adirectory.

A[EJRNDAMAGE]
Journal damaged.

A journa or al of the journa's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journal entry generated by this operation istoo large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

Thejournaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOCKED]
Areabeing read from or written to is locked.

The read or write of an area conflicts with alock held by another process.

[ENAMETOOLONG]
A path name istoo long.
A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile_POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal %

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYY
Function not implemented.

An attempt was made to use afunction that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOSYSRSC]
System resources not available to complete request.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

The object referenced by the descriptor does not support the function.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]
Connection ended abnormally.
[ECONNREFUSED]
The destination socket refused an attempted connect operation.
[ECONNRESET]
A connection with aremote socket was reset by that socket.
[EHOSTDOWN]
A remote host is not available.
[EHOSTUNREACH]
A route to the remote host is not available.
[ENETDOWN]
The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= ONTC

= QSYS.LIB

= ZIndependent ASP QSYS.LIB 4
= QOPT

2. When you develop in C-based languages and this function is compiled with LARGE FILES
defined, it will be mapped to ftruncate64(). Note also that the type of the length parameter will be
remapped from off_t to off64 t.

3. For the Network File System, this function will fail with the [EFBIG] or the [EIO] error if the
length specified is greater than the largest file size supported by the server.

4. Using this function on a character special file resultsin areturn value of -1 and the errno global
value set to EINVAL.

5. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

This function is not supported for save files and will fail with error code [ENOTSUP].
6. 2 the write exceeds the process soft file size limit, signal SIFXFSZ isissued. 4

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)
« ftruncate64()--Truncate File (Large File Enabled)

« open()--Open File

Example
The following example uses ftruncate():

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

#i ncl ude <stdio. h>

#define string_l en 1000

mai n() {
char *mega_string;
int file_descriptor;
int ret;
char fn[]="wite.file";
struct stat st;

if ((nmega_string = (char*) malloc(string_len)) == NULL)
perror("malloc() error");

else if ((file_descriptor = creat(fn, S_IWSR)) < 0)
perror("creat() error");

el se {
nmenset (nmega_string, '0', string_len);
if ((ret = wite(file_descriptor, mega_string, string_len)) == -1)
perror("wite() error");
el se {

printf("wite() wote % bytes\n", ret);
fstat(file_descriptor, &st);
printf("the file has % d bytes\n", (long) st.st_size);

if (ftruncate(file_descriptor, 1) !'= 0)
perror("ftruncate() error");
el se {

fstat(file_descriptor, &st);
printf("the file has % d bytes\n", (long) st.st_size);

close(fil e _descriptor);
unlink(fn);
}
}

Output:
wite() wote 1000 bytes

the file has 1000 bytes
the file has 1 bytes

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

ftruncate64()--Truncate File (Large File
Enabled)

Syntax

#i ncl ude <uni std. h>

int ftruncate64(int file descriptor, off64_t |ength);
Threadsafe: Conditional; see Usage Notes.

The ftruncate64() function truncates the file indicated by the open file descriptor file_descriptorto the
indicated length. file_descriptor must be a"regular file" that is open for writing. (A regular fileis astream
file that can support positioning the file offset.) If the file size exceeds length, any extradatais discarded. If
thefile size is smaller than length, the file is extended and filled with binary zeros to the indicated length.
(In the QSY S.LIB :#+and independent ASP QSY S.LIB file systems, “blanks are used instead of zerosto
pad records after amember is extended.)

ftruncate64() is enabled for largefiles. It is capable of operating on files larger than 2GB minus 1 byte as
long as the file has been opened by either of the following:
« Using the open64() function (see open64()--Open File (Large File Enabled)).

« Using the open() function (see open()--Open File) with the O_LARGEFILE flag set in the oflag
parameter.

If ftruncate64() completes successfully, it marks the change time and modification times of thefile. If
ftruncate64() is not successful, the file is unchanged.

For additional information about parameters, authorities, error conditions, and examples, see
ftruncate()--Truncate File.

Usage Notes

1. For file systemsthat do support large files, this function will fail with the [EFBIG] error if the
length specified is greater than 2GB minus 1 byte and O_LARGEFILE is not set in the oflag.

2. For file systemsthat do not support large files, this function will fail with the [EINVAL] error if the
length specified is greater than 2GB minus 1 byte.

3. QFileSvr.400 File System Differences

Although QFileSvr.400 does not support large files, it will return [EFBIG] if the length specified is
greater than 2GB minus 1 byte.

4. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the ftruncate64() APl and the off64_t data type, you must compile the source with
_LARGE_FILE_API defined.

5. All of the usage notes for ftruncate() apply to ftruncate64(). See Usage Notes in the ftruncate()
API.

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

getcwd()--Get Current Directory

Syntax

#i ncl ude <uni std. h>

char *getcwd(char *buf, size t size);
Threadsafe: Conditional; see Usage Notes.

The getcwd() function determines the absolute path name of the current directory and storesit in buf. The
components of the returned path name are not symbolic links.

The access time of each directory in the absolute path name of the current directory (excluding the current
directory itself) is updated.

If buf isaNULL pointer, getcwd() returns aNULL pointer and the [EINVAL] error.

Parameters

buf

(Output) A pointer to a buffer that will be used to hold the absolute path name of the current
directory. The buffer must be large enough to contain the full pathname including the terminating
NULL character. The current directory isreturned in the CCSID (coded character set identifier)
currently in effect for the job. If the CCSID of thejob is 65535, this parameter is assumed to be
represented in the default CCSID of thejob.

See QlgGetcwd()--Get Current Directory for a description and an example of supplying the buf in

any CCSID.
size

(Input) The number of bytesin the buffer buf.
Authorities

Note: Adopted authority is not used.

Authorization Required for getcwd()

|Object Referred to |Authority Required lerrno

Each directory in the path name preceding *RX EACCES
the current directory

|Current directory | *X |EACCES

Note: QDL S File System Differences

If the current directory is an immediate subdirectory of /QDLS (that is, at the next level below /QDLSin
the directory hierarchy), the user must have * RX (* USE) authority to the directory. Otherwise, the QDL S
authority requirements are the same as shown above.

Return Value

value
getewd() was successful. The value returned is a pointer to buf.
NULL

getcwd() was not successful. The errno global variable is set to indicate the error. After an error,
the contents of buf are not defined.

Note: If buf isaNULL pointer, getcwd() returnsa NULL pointer.

Error Conditions

If getcwd() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFES)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file 1D could not be assigned when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The aobject name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.
The file specified already exists and the specified operation requiresthat it not exist.

The named file, directory, or path already exists.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

A parameter passed to this function is not valid.

[EIO]
Input/output error.

A physical I/O error occurred.
A referenced object may be damaged.

[EMFILE]
Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors aready open (see the sysconf() function).

[ENAMETOOLONG]
A path name istoo long.
A path name islonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENFILE]
Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[ERANGE]
A range error occurred.

The vaue of an argument istoo small, or aresult too large.

The size argument istoo small. It is greater than zero but smaller than the length of the path name
plusaNULL character.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors.
[EADDRNOTAVAIL]
Address not available.
[ECONNABORTED]
Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.
[EHOSTDOWN]
A remote host is not available.
[EHOSTUNREACH]
A route to the remote host is not available.
[ENETDOWN]
The network is not currently available.
[ENETRESET]
A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes
1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:
o Where multiple threads exist in the job.
o The object thisfunction is operating on resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

= Root
= QOpenSys

User-defined

=« QNTC

QSYS.LIB

#Independent ASP QSYS.LIB 4
= QOPT

2. QOPT File System Differences

If the directory exists on avolume formatted in Universal Disk Format (UDF), the authorization
that is checked for the directory and preceding directoriesin the path name follows the rules
described in Authorization Required for getcwd(). If the directory exists on a volume formatted in
some other media format, no authorization checks are made on the directory or preceding
directories. The volume authorization list is checked for * USE authority regardless of the volume
media format.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

« chdir()--Change Current Directory
o OlgGetcwd()--Get Current Directory

Example

The following exampl e determines the current directory:

#i ncl ude <uni std. h>
#i ncl ude <stdi o. h>

mai n()
char cwd[1024];

if (chdir("/tmp") = 0)
perror("chdir() error()");
el se

if (getcwd(cwd, sizeof(cwd)) == NULL)
perror("getcwd() error");

el se
printf("current working directory is: %\n", cwd);

}
}

Output:

current working directory is: /tnp

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

getegid()--Get Effective Group ID

Syntax

#i ncl ude <uni std. h>

gid_t getegid(void);
Threadsafe: Yes

The getegid() function returns the effective group ID (gid) of the calling thread. The effective gid isthe
group ID under which the thread is currently running. The effective gid of athread may change while the
thread is running.

Parameters

None.

Authorities

No authorization is required.

Return Value

>0
getegid() was successful. The value returned represents the effective gid.

>=0
getegid() was successful. If there is no gid, the user ID has no group profile associated with it and
returns 0. Otherwise, if there isagroup profile, the API returns the gid of the group profile.

-1

getegid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getegid() isnot successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]
Internal object compressed. Try again.
[EDAMAGE]
The user profile associated with the thread gid or an internal system object is damaged.

[ENOMEM]
The user profile associated with the thread gid has exceeded its storage limit.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

Example

The following exampl e gets the effective gid.

#i ncl ude <unistd. h>
mai n()
gidt ef gid;
if (-1 == (ef _gid = getegid(void)))
perror("getegid() error.");
el se
printf("The effective gid is: %\n", ef gid);

}
Output:

The effective gid is: 75

Top | UNIX-Type APIs| APIs by category

geteuid()--Get Effective User ID

Syntax

#i ncl ude <uni std. h>

ui d_t geteuid(void);
Threadsafe: Yes

The geteuid() function returns the effective user 1D (uid) of the calling thread. The effective uid is the user
ID under which the thread is currently running. The effective uid of athread may change while the thread is
running.

Parameters

None.

Authorities

No authorization is required.

Return Value

Oor>0
geteuid() was successful. The value returned represents the effective uid.
-1
geteuid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If geteuid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.
[EDAMAGE]

The user profile associated with the thread uid or an internal system object is damaged.
[ENOMEM]

The user profile associated with the thread uid has exceeded its storage limit.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

Example

The following exampl e gets the effective uid.

#i ncl ude <uni std. h>
mai n()
uid t ef uid;
if (-1 == (ef _uid = geteuid(void)))
perror("geteuid() error.");

el se
printf("The effective uid is: %\n", ef _uid);

}
Output:

The effective uid is: 1957

Top | UNIX-Type APIs| APIs by category

getgid()--Get Real Group ID

Syntax

#i ncl ude <uni std. h>

gid_t getgid(void);
Threadsafe: Yes

The getgid() function returnsthe real group ID (gid) of the calling thread. Thereal gid isthe group ID
under which the thread was created.

Note: When a user profile swap is done with the QWTSETP API prior to running the getgid() function,
the gid for the current profileis returned.

Parameters

None.

Authorities

No authorization is required.

Return Value

>0
getgid() was successful. The value returned represents the gid.

>=0
getgid() was successful. If thereis no gid, the user ID has no group profile associated with it and
returns 0. Otherwise, if thereisagroup profile, the API returns the gid of the group profile.

-1

getgid() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If getgid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]
Internal object compressed. Try again.
[EDAMAGE]

The user profile associated with the thread gid or an internal system object is damaged.
[ENOMEM]
The user profile associated with the thread gid has exceeded its storage limit.

Related Information

« The<unistd.h> file (see Header Filesfor UNIX-Type Functions)

Example

The following example gets the real gid.

#i ncl ude <unistd. h>
mai n()
gid t gid;
if (-1 == (gid = getgid(void)))
perror("getgid() error.");

el se
printf("The real gid is: %\n", gid);

}
Output:

The real gidis: 75

Top | UNIX-Type APIs | APIs by category

getgrgid()--Get Group Information Using Group
ID

Syntax
#i ncl ude <grp. h>

struct group *getgrgid(gid_ t gid);
Threadsafe: No

The getgrgid() function returns a pointer to an object of type struct group containing an entry from the user
database with a matching gid.

Parameters

gid
(Input) Group ID.

Authorities

*READ authority is required to the user profile associated with the gid. If the user does not have *READ
authority, only the name of the group and the group 1D values are returned.

Return Value

struct group *

getgrgid() was successful. The return value points to static data of the format struct group, which is
defined in the grp.h header file. This storage is overwritten on each call to this function. This static
storage areais also used by the getgrnam() function. The struct group has the following elements:

char* gr_name Name of the group
gid_t gr gd GrouplID
char ** gr_mem A null-terminated list of pointersto the individual member profile names. If

the group profile does not have any members or if the caller does not have
*READ authority to the group profile, the list will be empty.

NULL pointer
getgrgid was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgrgid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the gid is currently locked by another process.
[EC2]

Detected pointer that is not valid.
[EINVAL]

Vaueisnot valid. Check the job log for messages.
[ENOENT]

The user profile associated with the gid was not found.
[ENOMEM]

The user profile associated with the gid has exceeded its storage limit.
[ENOSPC]

Machine storage limit exceeded.

Related Information

o The<grp.h> file (see Header Files for UNIX-Type Functions)

« getgrgid r()--Get Group Information Using Group ID

Example

The following example gets the group information for the gid of 91. The group name is GROUPL. There
are two group members, CLIFF and PATRICK.

#i ncl ude <grp. h>
#i ncl ude <stdi o. h>

mai n()

struct group *grp;
short int I p;

if (NULL == (grp = getgrgid(91)))
perror("getgrgid() error.");
el se

printf("The group nane is: %\n", grp->gr_nane);

printf("The gid is: %\n", grp->gr_gid);

for (I'p =1; NULL !'= *(grp->gr_mem); |p++, (grp->gr_memn ++)
printf("Goup nenber % is: %\n", |Ip, *(grp->gr_nmen);

}
Output:

The group name is: GROUPL
The gid is: 91
Goup nenber 1 is: CLIFF
G oup nenber 2 is: PATRI CK

Top | UNIX-Type APIs| APIs by category

getgrgid_r()--Get Group Information Using
Group ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <grp. h>

int getgrgid r(gid t gid, struct group *grp,
char *buffer, size_t bufsize, struct group
**result);

Threadsafe: Yes

The getgrgid_r() function updates the group structure pointed to by grp and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching gid.

Parameters

gid

(Input) Group ID.
arp

(Input) A pointer to agroup structure.
buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the group structure grp.

bufsize
(Input) The size of buffer in bytes.

result
(Input) A pointer to alocation in which a pointer to the updated group structure is stored. If an error
occurs or if the requested entry cannot be found, aNULL pointer is stored in this |ocation.

The struct group, which is defined in the grp.h header file, has the following elements:

char * gr_name Name of the group
gid_t or_gid Group ID
char** gr_mem A null-terminated list of pointersto the individual member profile names. If the

group profile does not have any members or if the caller does not have *READ
authority to the group profile, the list will be empty.

Authorities

*READ authority is required to the user profile associated with the gid. If the user does not have *READ
authority, only the name of the group and the group 1D values are returned.

Return Value

0
getgrgid_r was successful.
Any other value
Failure: The return value contains an error number indicating the error.

Error Conditions

If getgrgid_r() is not successful, the return value usually indicates one of the following errors. Under some
conditions, the value could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the gid is currently locked by another process.

[EC2]

Detected pointer that is not valid.
[EINVAL]

Valueisnot valid. Check the job log for messages.
[ENOENT]

The user profile associated with the gid was not found.
[ENOMEM]

The user profile associated with the gid has exceeded its storage limit.
[ENOSPC]

Machine storage limit exceeded.
[ERANGE]

Insufficient storage was supplied by buffer and bufsize to contain the data to be referenced by the
resulting group structure.

Related Information

o The<grp.h> file Header Filesfor UNIX-Type Functions(see)

o getgrgid()--Get Group Information Using Group ID

Example

The following example gets the group information for the gid of 91. The group name is GROUPL. There
are two group members, CLIFF and PATRICK.

#i ncl ude <sys/types. h>
#i ncl ude <grp. h>

#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

mai n()
{ short int |p;
struct group grp;
struct group * grpptr=&grp;
struct group * tenmpG pPtr;
char grpbuffer[200];
int grplinelen = sizeof (grpbuffer);

if ((getgrgid r(91, grpptr,grpbuffer,grplinelen, & enpG pPtr))!=0)
perror("getgrgid r() error.");
el se

printf("\nThe group nane is: %\n", grp.gr_nane);

printf("The gid is: %\n", grp.gr_gid);

for (I'p =1; NULL !'= *(grp.gr_nen); |p++, (grp.gr_mem ++)
printf("Goup Menber % is: %\n", |Ip, *(grp.gr_nmem);

}
Output:

The group name is: GROUPL
The gid is: 91
Goup nenber 1 is: CLIFF
Group nenber 2 is: PATRI CK

Top | UNIX-Type APIs| APIs by category

getgrgid_r _ts64()--Get Group Information Using
Group ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <grp. h>

int getgrgid r_ts64(
gid t gid,
struct group * _ ptr64 grp,
char * _ prt64 buffer,
size_t bufsize,
struct group * __ptr64 * _ ptr64 result);

Service Program Name: QSY PAPI64
Default Public Authority: *USE

Threadsafe: Y es

The getgrgid_r_ts64() function updates the group structure pointed to by grp and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching gid. getgrgid_r_ts64() differsfrom getgrgid_r() in that it accepts 8-byte teraspace pointers.

For adiscussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the getgrgid_r () API, see getgrgid r()--Get Group Information Using Group ID.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

getgrnam()--Get Group Information Using
Group Name

Syntax

#i ncl ude <grp. h>

struct group *getgrnan{const char *nane);
Threadsafe: No

The getgrnam() function returns a pointer to an object of type struct group containing an entry from the
user database with a matching name.

Parameters

name
(Input) A pointer to a group profile name.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have * READ
authority, only the name of the group and the group 1D values are returned.

Return Value

struct group *

getgrnam() was successful. The return value points to static data of the format struct group, which
isdefined in the grp.h header file. This storage is overwritten on each call to thisfunction. This
static storage areais also used by the getgrgid() function. The struct group has the following
elements:

char* gr_name Name of the group
gid_t gr gd GrouplID
char ** gr_mem A null-terminated list of pointersto the individual member profile names. If

the group profile does not have any members or if the caller does not have
*READ authority to the group profile, the list will be empty.

NULL pointer
getgrnam was hot successful. The errno global variable is set to indicate the error.

Error Conditions

If getgrnam() is not successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the name is currently locked by another process.
[EC2]
Detected pointer that is not valid.
[EDAMAGE]
The user profile associated with the group hame or an internal system object is damaged.
[EINVAL]
Valueisnot valid. Check the job log for messages.
[ENOENT]

The user profile associated with the name was not found or the profile name specified is not a
group profile.

[EUNKNOWN]
Unknown system state. Check the job log for a CPF9872 message.

Related Information

o The<grp.h> file (see Header Files for UNIX-Type Functions)

« getgrnam r()--Get Group Information Using Group Name

Example

The following example gets the group information for the group GROUPL. The gid is 91. There are two
group members, CLIFF and PATRICK.

#i ncl ude <grp. h>
#i ncl ude <stdi o. h>

mai n()

{
struct group *grp;
short int I p;

if (NULL == (grp = getgrnan("GROUP1")))
perror("getgrnan() error.");
el se

printf("The group nane is: %\n", grp->gr_nane);

printf("The gid is: %\n", grp->gr_gid);

for (I'p =1; NULL !'= *(grp->gr_mem); |p++, (grp->gr_memn ++)
printf("Goup nenber % is: %\n", |Ip, *(grp->gr_nmen);

}
Output:

The group name is: GROUPL
The gid is: 91
Goup nenber 1 is: CLIFF
G oup nenber 2 is: PATRI CK

Top | UNIX-Type APIs| APIs by category

getgrnam_r()--Get Group Information Using
Group Name

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <grp. h>

int getgrnamr(const char *nanme, struct group *grp,
char *buffer, size_t bufsize, struct group
**result);

Threadsafe: Yes

The getgrnam_r () function updates the group structure pointed to by grp and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with
matching name.

Parameters

name

(Input) A pointer to a group profile name.
arp

(Input) A pointer to agroup structure.
buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the group structure grp.

bufsize
(Input) The size of buffer in bytes.
result
(Input) A pointer to alocation in which a pointer to the updated group structure is stored. If an error
occurs or the requested entry cannot be found, aNULL pointer is stored in this location.
The struct group, which is defined in the grp.h header file, has the following elements:
char * gr_name Name of the group
gid_t or_gid Group ID

char ** gr_mem A null-terminated list of pointersto the individual member profile names. If the
group profile does not have any members or if the caller does not have *READ
authority to the group profile, the list will be empty.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have * READ
authority, only the name of the group and the group 1D values are returned.

Return Value

0
getgrnam_r was successful.
Any other value
Failure: The return value contains an error number indicating the error.

Error Conditions

If getgrnam_r () is not successful, the return value usually indicates one of the following errors. Under
some conditions, the value could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the name is currently locked by another process.
[EC2]
Detected pointer that is not valid.
[EDAMAGE]
The user profile associated with the group name or an internal system object is damaged.
[EINVAL]
Valueis not valid. Check the job log for messages.
[ENOENT]

The user profile associated with the name was not found or the profile name specified is not a
group profile.

[ERANGE]

Insufficient storage was supplied by buffer and bufsize to contain the data to be referenced by the
resulting group structure.

[EUNKNOWN]
Unknown system state. Check the job log for a CPF9872 message.

Related Information

o The<grp.h>file (see)
« getgrnam()--Get Group Information Using Group Name

Example

The following example gets the group information for the group GROUPL. The gid is 91. There are two
group members, CLIFF and PATRICK.

#i ncl ude <sys/types. h>
#i ncl ude <grp. h>

#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

mai n()

{

}

short int |p;

struct group grp;

struct group * grpptr=&grp;

struct group * tenpG pPtr;

char grpbuffer[200];

int grplinelen = sizeof(grpbuffer);

if ((getgrnamr (" GROUPL1", grpptr, grpbuffer,grplinelen, & empG pPtr))!=0)
perror("getgrnamr() error.");
el se

printf("\nThe group nane is: %\n", grp.gr_nane);

printf("The gid is: %\n", grp.gr_gid);

for (I'p =1; NULL !'= *(grp.gr_nen); |p++, (grp.gr_mem ++)
printf("Goup Menber % is: %\n", |Ip, *(grp.gr_nem);

Output:

The group name is: GROUPL
The gid is: 91
Goup nenber 1 is: CLIFF
Group nenber 2 is: PATRI CK

Top | UNIX-Type APIs| APIs by category

getgrnam_r_ts64()--Get Group Information
Using Group Name

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <grp. h>

int getgrnamr _ts64(
const char * __ ptr64 nane,
struct group * _ ptr64 grp,
char * _ ptr64 buffer,
size_t bufsize,
struct group * __ptr64 * _ ptr64 result);

Service Program Name: QSY PAPI64
Default Public Authority: *USE

Threadsafe: Y es

The getgrnam_r_ts64() function updates the group structure pointed to by grp and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching name. getgrnam_r_ts64() differsfrom getgrnam_r() in that it accepts 8-byte teraspace pointers.

For adiscussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the getgrnam_r() API, see getgrnam_r()--Get Group Information Using Group Name.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

getgroups()--Get Group IDs

Syntax
#i ncl ude <uni std. h>
int getgroups(int gidsetsize, gid t grouplist[])

Threadsafe: No

If the gidsetsize argument is zero, getgroups() returns the number of X*group | Ds associated with the
calling thread without modifying the array pointed to by the grouplist argument. The number of group IDs
includes the effective group ID and the supplementary group | Ds.4% Otherwise, getgroups() fillsin the
array grouplist with the #* effective group |D< and supplementary group IDs of the calling thread and
returns the actual number of group IDs stored. The values of array entries with indexes larger than or equal
to the returned value are undefined.

Parameters
gidsetsize
(Input) The number of elementsin the supplied array grouplist.

grouplist

(Output) #The effective group ID and supplementary group IDs. The first element in grouplist is
the effective group I1D.4%

Authorities

No authorization is required.

Return Value

Oor>0 & getgroups() was successful. If the gidsetsize argument is 0, the number of group IDsis
returned. This number includes the effective group ID and supplementary group IDs. If
gidsetsize is greater than O, the array grouplist isfilled with the effective group 1D and
supplementary group 1Ds of the calling thread and the return value represents the actual
number of group IDs stored.4%

-1 getgroups() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgroups() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]
The gidsetsize argument is not equal to zero and is less than the number of Z*group IDs. <

Usage Notes

This function can be used in two different ways. First, if called with gidsetsize equal to 0, it is used to return
the number of groups associated with athread. Second, if called with gidsetsize not equal to O, it isused to
return alist of the gi ds representing the Zreffective “and supplementary groups associated with a thread.
In this case, the gidsetsize argument represents how much space is available in the grouplist argument.

The calling routine can choose to call this function with gidsetsize equal to O to determine how much space
to allocate for a second call to this function. The second call returns the values. The following isan
example of this method:

i nt nungr oups;
gid_t *grouplist;

nungr oups = get groups(0, NULL);
grouplist = (gid_t *) calloc(nungroups, sizeof(gid_t));
if (getgroups(nungroups, grouplist) !'=-1) {

}

Alternatively, the calling routine can choose to create enough space for NGROUPS MAX entries to ensure
enough space is avail able for the maximum possible number of entries that may be returned. This
introduces the possibility of wasted space. The following is an example of this method:

i nt nungroups;
gid_t grouplist][NGROUPS MAX];

if (getgroups(NGROUPS MAX, grouplist) !'=-1) {
}

Related Information

» The<unistd.h> file (see Header Files for UNIX-Type Functions)

Top | UNIX-Type APIs| APIs by category

getpwnam()--Get User Information for User
Name

Syntax

#i ncl ude <pwd. h>

struct passwd *get pwnan{const char *nane);
Threadsafe: No

The getpwnam() function returns a pointer to an object of type struct passwd containing an entry from the
user database with a matching name.

Parameters

name
(Input) A pointer to a user profile name.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have * READ
authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

struct passwd *

getpwnam() was successful. The return value points to static data of the format struct passwd,
which is defined in the pwd.h header file. This storage is overwritten on each call to this function.
This static storage areais also used by the getpwuid() function. The struct passwd has the
following elements:

char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID of the user'sfirst group. If the user does not have afirst group,
the gid value will be set to 0.

char * pw_dir Initial working directory. If the user does not have * READ authority to
the user profile, the pw_dir pointer will be set to NULL.

char * pw_shell Initial user program. If the user does not have * READ authority to the

user profile, the pw_shell pointer will be set to NULL.

NULL pointer
getpwnam() was not successful. The errno global variableis set to indicate the error.

See QlgGetpwnam()--Get User Information for User Name (using NL S-enabled path name) for a
description and an example where the path name is returned in any CCSID.

Error Conditions

If getpwnam() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the name is currently locked by another process.
[EC2]
Detected pointer that is not valid.
[EINVAL]
Vaueisnot valid. Check the job log for messages.
[ENOENT]
The user profile associated with the name was not found.
[ENOMEM]

The user profile associated with the uid has exceeded its storage limit or is unable to allocate
memory.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

Theinitial working directory is returned in the CCSID value of the job.

Related Information

« The<pwd.h> file (see Header Filesfor UNIX-Type APIS)

o getpwnam r()--Get User Information for User Name

« OlgGetpwnam()--Get User Information for User Name (using NL S-enabled path name)

Example

The following example gets the user database information for the user name of MYUSER. The uid is 22.
The gid of MYUSER'sfirst group is 1012. The initial directory is/home/MYUSER. Theinitial user
program is*LIBL/QCMD.

#i ncl ude <pwd. h>
mai n()
struct passwd *pd;

if (NULL == (pd = get pwnan(" MYUSER")))
perror("getpwnam() error.");

el se

{
printf("The user nane is: %\n", pd->pw _nane);
printf("The user id is: %\n", pd->pw_ uid);
printf("The group id is: %\n", pd->pw gid);
printf("The initial directory is: %\n", pd->pw dir);
printf("The initial user programis: %\n", pd->pw shell);

}
Output:

The user name is: MYUSER

The user id is: 22

The group id is: 1012

The initial directory is: / home/ MYUSER
The initial user programis: *LIBL/ QCVMD

Top | UNIX-Type APIs| APIs by category

getpwnam_r()--Get User Information for User
Name

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

i nt getpwnamr(const char *nanme, struct passwd

*pwd, char *buffer, size_t bufsize,
struct passwd **result);

Service Program Name: QSY PAPI
Default Public Authority: *USE

Threadsafe: Yes

The getpwnam_r () function updates the passwd structure pointed to by pwd and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching name.

Parameters

name
(Input) A pointer to a user profile name.

pwd
(Input) A pointer to a passwd structure.

buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the structure pwd.

bufsize
(Input) The size of buffer in bytes.

result

(Input) A pointer to alocation in which a pointer to the updated passwd structure is stored. If an
error accurs or if the requested entry cannot be found, aNULL pointer is stored in this location.

The struct passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name
uid_t pw_uid UserID

uid_t pw_gid Group ID of the user'sfirst group. If the user does not have afirst group, the GID
value will be set to 0.

char * pw_dir Initial working directory. If the user does not have * READ authority to the user
profile, the pw_dir pointer will be set to NULL.

char * pw_shell Initial user program. If the user does not have * READ authority to the user profile,
the pw_shell will be set to NULL.

See QlgGetpwnam r()--Get User Information for User Name (using NL S-enabled path name) for a
description and an example where the path nameisreturned in any CCSID. Go to _r version

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have * READ
authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

0
getpwnam_r was successful.

Any other value
Failure: The return value contains an error number indicating the error.

Error Conditions

If getpwnam_r () is not successful, the return value usually indicates one of the following errors. Under
some conditions, the value could indicate an error other than those listed here.

[EAGAIN] The user profile associated with the name is currently locked by another
process.

[EC2] Detected pointer that is not valid.

[EINVAL] Valueisnot valid. Check the job log for messages.

[ENOENT] The user profile associated with the name was not found.

[ENOMEM] The user profile associated with the uid has exceeded its storage limit or is

unable to allocate memory.

[ERANGE] Insufficient storage was supplied through buffer and bufsize to contain the data
to be referenced by the resulting group structure.

[EUNKNOWN] Unknown system state. Check the job log for a CPF9872 message. If thereis
no message, verify that the home directory field in the user profile can be

displayed.

Usage Notes

Theinitial working directory isreturned in the CCSID value of the job.

Related Information

« The<pwd.h> file (see Header Files for UNIX-Type Functions)

« getpwnam()--Get User Information for User Name

Example

The following example gets the user database information for the user name of MYUSER. The UID is 22.
The GID of MYUSER'sfirst group is 1012. Theinitial directory is/home/MY USER. Theinitial user
program is*LIBL/QCMD.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

mai n()
struct

struct
struct

<sys/types. h>
<pwd. h>

<st di 0. h>
<errno. h>

passwd pd;
passwd* pwdpt r =&pd;
passwd* tenpPwdPtr;

char pwdbuffer[200];
int pwdlinelen = sizeof (pwdbuffer);

if ((getpwnamr (" MYUSER', pwdpt r, pwdbuf f er, pwdl i nel en, & enmpPwdPtr)) ! =0)
perror("getpwnamr () error.");

el se

{

printf("\nThe user nane is: %\n", pd.pw_nane);
printf("The user id is: %\n", pd. pw.uid);

printf("The group id is: %\n", pd. pwgid);

printf("The initial directory is: %\n", pd.pwdir);
printf("The initial user programis: %\n", pd.pw shell);

}
Output:

The user nane is: MYUSER

The user ID is: 22

The group ID is: 1012

The initial directory is: / home/ MYUSER

The initial user programis: *LIBL/ QCVD

API introduced:; V4R4

Top | UNIX-Type APIs| APIs by category

getpwnam _r_ts64()--Get User Information for
User Name

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

i nt get pwnamr _ts64(
const char * __ ptr64 nane,
struct passwd * _ ptr64 pwd,
char * _ ptr64 buffer,
size_t bufsize,
struct passwd * _ptr64 * _ ptr64 result);

Service Program Name: QSY PAPI64
Default Public Authority: *USE

Threadsafe: Y es

The getpwnam_r_ts64() function updates the passwd structure pointed to by pwd and stores a pointer to
that structure in the location pointed to by result. The structure contains an entry from the user database
with a matching name. getpwnam_r_ts64() differs from getpwnam_r() in that it accepts 8-byte teraspace
pointers.

For adiscussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the getpwnam_r() API, see getpwnam r()--Get User Information for User Name.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

getpwuid()--Get User Information for User ID

Syntax

#i ncl ude <pwd. h>

struct passwd *getpwuid(uid t uid);
Threadsafe: No

The getpwuid() function returns a pointer to an object of type struct passwd containing an entry from the
user database with a matching uid.

Parameters

uid
(Input) User ID.

Authorities

*READ authority is required to the user profile associated with the uid. If the user does not have *READ
authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

struct passwd *

getpwuid() was successful. The return value points to static data of the format struct passwd, which
is defined in the pwd.h header file. This storage is overwritten on each call to this function. This
static storage areais also used by the getpwnam() function. The struct passwd has the following

elements:

char * pw_name User name

uid t pw_uid User ID

uid_t pw_gid Group ID of the user'sfirst group. If the user does not have afirst group,
the gid value will be set to 0.

char * pw_dir Initial working directory. If the user does not have * READ authority to
the user profile, the pw_dir pointer will be set to NULL.

char* pw_shell Initial user program. If the user does not have *READ authority to the

user profile, the pw_shell pointer will be set to NULL.

NULL pointer

getpwuid() was not successful. The errno global variableis set to indicate the error.

See QlgGetpwuid()--Get User Information for User 1D (using NL S-enabled path name) for a description
and an example where the path name is returned in any CCSID.

Error Conditions

If getpwuid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]
The user profile associated with the uid is currently locked by another process.
[EC2]
Detected pointer that is not valid.
[EINVAL]
Valueisnot valid. Check the job log for messages.
[ENOENT]
The user profile associated with uid was not found.
[ENOMEM]

The user profile associated with the uid has exceeded its storage limit or is unable to allocate
memory.

[ENOSPC]
Machine storage limit exceeded.
[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

Theinitial working directory is returned in the CCSID value of the job.

Related Information

o The<pwd.h> file (see Header Filesfor UNIX-Type Functions)

o getpwuid r()--Get User Information for User 1D
o OlgGetpwuid()--Get User Information for User ID (using NL S-enabled path name)

Example

The following example gets the user database information for the uid of 22. The user nameis MY USER.
The gid of MYUSER's first group is 1012. Theinitial directory is/home/MYUSER. The initial user
program is*LIBL/QCMD.

#i ncl ude <pwd. h>
mai n()
struct passwd *pd;

if (NULL == (pd = getpwid(22)))
perror("getpwiid() error.");
el se
{
printf(The user nane is: %\n", pd->pw_nane);
printf("The user id is: %\n", pd->pw_uid);
printf("The group id is: %\n", pd->pw gid);
printf("The initial directory is: %\n", pd->pw dir);
printf("The initial user programis: %\n", pd->pw shell);

}
Output:

The user nanme is: MYUSER

The user id is: 22

The group id is: 1012

The initial directory is: / home/ MYUSER
The initial user programis: *LIBL/ QCMD

Top | UNIX-Type APIs| APIs by category

getpwuid_r()--Get User Information for User ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

int getpwuid r(uid t uid, struct passwd *pwd,

char *buffer, size_ t bufsize, struct passwd
**result);

Service Program Name: QSY PAPI
Default Public Authority: *USE

Threadsafe: Yes

The getpwuid_r () function updates the passwd structure pointed to by pwd and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching uid.

Parameters
uid

(Input) User ID.
pwd

(Input) A pointer to a struct passwd.

buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the structure passwd.

bufsize
(Input) The size of buffer in bytes.

result

(Input) A pointer to alocation in which a pointer to the updated passwd structure is stored. If an
error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

The struct passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name
uid_t pw_uid User ID

uid_t pw_gid Group ID of the user'sfirst group. If the user does not have a
first group, the GID value will be set to 0.

char * pw_dir Initial working directory. If the user does not have *READ
authority to the user profile, the pw_dir pointer will be set to
NULL.

char * pw_shell Initial user program. If the user does not have *READ
authority to the user profile, the pw_shell pointer will be set to
NULL.

See QlgGetpwuid r()--Get User Information for User ID (using NL S-enabled path name) for a description
and an example where the path name is returned in any CCSID.

Authorities

*READ authority is required to the user profile associated with the uid. If the user does not have *READ
authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

0
getpwuid_r () was successful.

Any other value
Failure: The return value contains an error number indicating the error.

Error Conditions

If getpwuid_r () is not successful, the error value usually indicates one of the following errors. Under some
conditions, the value could indicate an error other than those listed here.

[EAGAIN] The user profile associated with the uid is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL] Vaueisnot valid. Check the job log for messages.

[ENOENT] The user profile associated with the uid was not found.

[ENOMEM] The user profile associated with the uid has exceeded its storage limit or is
unable to allocate memory.

[ENOSPC] Machine storage limit exceeded.

[ERANGE] Insufficient storage was supplied through buffer and bufsize to contain the data

to be referenced by the resulting group structure.

[EUNKNOWN] Unknown system state. Check the job log for a CPF9872 message. If thereis
no message, verify that the home directory field in the user profile can be

displayed.

Usage Notes

Theinitia working directory isreturned in the CCSID value of the job.

Related Information

» The<pwd.h> file (see Header Files for UNIX-Type Functions)

o getpwuid()--Get User Information for User ID

Example

The following example gets the user database information for the UID of 22. The user nameisMY USER.
The GID of MYUSER'sfirst group is 1012. The initial directory is/home/MYUSER. The initial user
program is*LIBL/QCMD.

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

mai n()

struct passwd pd;

struct passwd* pwdptr=&pd;

struct passwd* tenpPwdPtr;

char pwdbuffer[200];

int pwdlinelen = sizeof (pwdbuffer);

if ((getpwuid_r (22, pwdptr, pwdbuffer, pwdlinel en, & enpPwdPtr))! =0)
perror("getpwiid_r() error.");

el se

{
printf("\nThe user nane is: 9%\n", pd.pw_namne);
printf("The user id is: %\n", pd. pw_uid);
printf("The group id is: %\n", pd.pw._gid);
printf("The initial directory is: %\n", pd.pw.dir);
printf("The initial user programis: %\n", pd.pw_shell);

Output:

The user nane is: MYUSER

The user ID is: 22

The group ID is: 1012

The initial directory is: / home/ MYUSER
The initial user programis: *LIBL/ QCVD

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

getpwuid_r_ts64()--Get User Information for
User ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

int getpwuid r ts64(
uid t uid,
struct passwd * _ ptr64 pwd,
char * _ ptr64 buffer,
size_t bufsize,
struct passwd * _ ptr64 * _ ptr64 result);

Service Program Name: QSY PAPI64

Default Public Authority: *USE
Threadsafe: Yes

The getpwuid_r_ts64() function updates the passwd structure pointed to by pwd and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching uid. getpwuid_r_ts64() differsfrom getpwuid_r() in that it accepts 8-byte teraspace pointers.

For adiscussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the getpwuid_r () API, see getpwuid r()--Get User Information for User ID.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

getuid()--Get Real User ID

Syntax

#i ncl ude <uni std. h>

uid_t getuid(void);
Threadsafe: Yes

The getuid() function returns the real user 1D (uid) of the calling thread. The real uid isthe user ID under
which the thread was created.

Note: When a user profile swap is done with the QWTSETP API prior to running the getuid() function,
the uid for the current profileis returned.

Parameters

None.

Authorities

No authorization is required.

Return Value

Oor>0
getuid() was successful. The value returned represents the uid.
-1
getuid() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If getuid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.
[EDAMAGE]

The user profile associated with the thread uid or an internal system object is damaged.
[ENOMEM]

The user profile associated with the thread uid has exceeded its storage limit.

Related Information

« The<unistd.h> file (see Header Filesfor UNIX-Type Functions)

Example

The following example gets the real uid.

#i ncl ude <unistd. h>
mai n()
uid t uid;
if (-1 == (uid = getuid(void)))
perror("getuid() error.");

el se
printf("The real uid is: %\n", uid);

}
Output:

The real uid is: 1957

Top | UNIX-Type APIs | APIs by category

ioctl()--Perform 1/O Control Request

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ioctl.h>

int ioctl(int descriptor,
unsi gned | ong request,
)
Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

Theioctl() function performs control functions (requests) on a descriptor.

Parameters

descriptor

(Input) The descriptor on which the control request is to be performed.

request

(Input) The reguest that is to be performed on the descriptor.

(Input) A variable number of optional parameters that are dependent on the request.

Theioctl() requests that are supported are:

FIOASYNC

FIOCCSD

Set or clear the flag that allows the receipt of asynchronous 1/0 signals (SIGIO).

The third parameter represents a pointer to an integer flag. A nonzero value sets the socket to generate
SIGIO signals, while a zero value sets the socket to not generate SIGIO signals. Note that before the
SIGIO signals can be delivered, you must use either the FIOSETOWN or SIOCSPGRP ioctl() request, or
the F_SETOWN fcntl() command to set a process ID or a process group ID to indicate what process or
group of processes will receive the signal. Once conditioned to send SIGIO signals, a socket will generate
SIGIO signals whenever certain significant conditions change on the socket. For example, SIGIO will be
generated when normal data arrives on the socket, when out-of-band data arrives on the socket (in
addition to the SIGURG signal), when an error occurs on the socket, or when end-of-fileis received on
the socket. It is also generated when a connection request is received on the socket (if it is asocket on
which the listen() verb has been done). Also note that a socket can be set to generate the SIGIO signal by
using the fentl() command F_SETFL with aflag value specifying FASYNC.

Return the coded character set ID (CCSID) associated with the open instance represented by the
descriptor and the CCSID associated with the object. The third parameter represents a pointer to the
structure QpOIFIOCCSID, which is defined in <sys/ioctl.h>. Thisinformation may be necessary to
correctly manipulate data read from or written to a file opened in another process.

If the open instance represented by the descriptor isin binary mode (the open() did not specify the
O_TEXTDATA open flag), the open instance CCSID returned is equal to the object CCSID returned.

FIOGETOWN

FIONBIO

FIONREAD

FIOSETOWN

SOCADDRT

Get the process ID or process group ID that isto receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that will contain the process ID or the process
group ID to which the socket is currently sending asynchronous signals such as SIGURG. A process D is
returned as a positive integer, and a process group 1D is specified as a negative integer. A 0 value returned
indicates that no asynchronous signal's can be generated by the socket. A positive or a negative value
indicates that the socket has been set to generate SIGURG signals.

Set or clear the nonblocking 1/0 flag (O_NONBLOCK oflag). The third parameter represents a pointer to
an integer flag. A nonzero value sets the nonblocking /O flag for the descriptor; a zero value clears the
flag.

Return the number of bytes available to be read. The third parameter represents a pointer to an integer that
is set to the number of bytes available to be read.

Set the process ID or process group ID that isto receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that contains the process ID or the process
group ID to which the socket should send asynchronous signals such as SIGURG. A process D is
specified as a positive integer, and a process group ID is specified as a negative integer. Specifying a0
value resets the socket such that no asynchronous signals are delivered. Specifying aprocess D or a
process group |D requests that sockets begin sending the SIGURG signal to the specified ID when
out-of-band data arrives on the socket.

Add an entry to the interface routing table. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure rtentry, which is defined in <net/route.h>:

struct rtentry [
struct sockaddr rt_dst;
struct sockaddr rt_mask;
struct sockaddr rt_gateway;
int rt_ntu;
u_short rt_fIl ags;
u_short rt_refcnt;
u_char rt_protocol;
u_char rt_TGCS;
char rt_if[1FNAMSI Z] ;

I

The rt_dst, rt_mask, and rt_gateway fields are the route destination address, route address mask, and
gateway address, respectively. rt_mtu is the maximum transfer unit associated with the route. rt_flags
contains flags that give some information about aroute (for example, whether the route was created
dynamically, whether the route is usable, type of route, and so on). rt_refcnt indicates the number of
references that exist to the route entry. rt_protocol indicates how the route entry was generated (for
example, configuration, ICMP redirect, and so on). rt_tosis the type of service associated with the route.
rt_if isaNULL-terminated string that represents the interface | P address in dotted decimal format that is
associated with the route.
To add aroute, the following fields must be set:

o rt_dst

o rt_mask

« rt_gateway

e It _tos

« rt_protocol

« rt_mtu (Setting the rt_mtu value to zero essentially means use the MTU from the associated line
description used when the route is bound to an IFC.)

o rt_if (rt_if can be set to the dotted decimal equivalent of INADDR_ANY, whichis0.)

In addition, the rt_flags bit flags can be set to the following:

o RTF_NOREBIND_IFC_FAIL if no rebinding of the route is to occur when the interface
associated with the route fails.

o RTF_NOREBIND_IFC_ACTV if no rebinding is to occur when interfaces are activated or

S OCATMARK

SOCDELRT

SOCGIFADDR

S OCGIFBRDADDR

deactivated.

To delete aroute, the following fields must be set:
o rt_dst
o rt_mask
« rt_gateway
o rt_tos
« rt_protocol

All other fields are ignored when adding or removing an entry.
Return the value indicating whether socket's read pointer is currently at the out-of-band mark.

The third parameter represents a pointer to an integer flag. If the socket's read pointer is currently at the
out-of-band mark, the flag is set to a nonzero value. If it isnot, the flag is set to zero.

Delete an entry from the interface routing table. Valid for sockets with address family of AF_INET.
See SOCADDRT for more information on the third parameter.
Get the interface address. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifreq, defined in <net/if.h>:

struct ifreq {
char ifr_name[| FNAVSI ZE] ;
uni on {
struct sockaddr ifru_addr;
struct sockaddr ifru_mask;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_nu;
i nt infu_rbufsize;
char ifru_linenane[10];
char ifru_TGCS;
Yoifr_ifru;
b

ifr_name is the name of the interface for which information isto be retrieved. The OS/400
implementation requires thisfield to be set to a NULL-terminated string that represents the interface IP
addressin dotted decimal format. Depending on the request, one of the fieldsin the ifr_ifru union will be
set upon return from theioctl() cal. ifru_addr isthe local IP address of the interface. ifru_mask isthe
subnetwork mask associated with the interface. ifru_broadaddr is the broadcast address. ifru_flags
contains flags that give some information about an interface (for example, token-ring routing support,
whether interface is active, broadcast address, and so on). ifru_mtu is the maximum transfer unit
configured for the interface. ifru_rbufsize is the reassembly buffer size of the interface. ifru_linenameis
the line name associated with the interface. ifru_TOSis the type of service configured for the interface.

Get the interface broadcast address. Valid for sockets with address family of AF_INET.

See SOCGIFADDR for more information on the third parameter.

S OCGIFCONF Get the interface configuration list. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifconf, defined in <net/if.h>:

struct ifconf [
int ifc_len;
int ifc_configured;
int ifc_returned;
uni on {
caddr_t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;
1;
ifc_lenisavalue-result field. The caller passes the size of the buffer pointed to by ifcu_buf. On return,
ifc_len contains the amount of storage that was used in the buffer pointed to by ifcu_buf for the interface
entries. ifc_configured is the number of interface entriesin the interface list. ifc_returned is the number of
interface entries that were returned (this is dependent on the size of the buffer pointed to by ifcu_buf).
ifcu_buf isthe user buffer in which alist of interface entries will be stored. Each stored entry will be an
ifreq structure.

To get the interface configuration list, the following fields must be set:
« ifc_len
o ifcu_buf

See SIOCGIFADDR for more information on the list of ifreq structures returned. For this request, the
ifr_nameand ifru_addr fieldswill be set to avalue.

Note: Additional information about each individual interface can be obtained using these values and the
other interface-related requests.

S OCGIFFLAGS Get interface flags. Valid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

S OCGIFLIND Get the interface line description name. Valid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

SOCGIFMTU Get the interface network MTU. Valid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

SOCGIFNETMASK Get the mask for the network portion of the interface address. Valid for sockets with address family of
AF_INET.

See SOCGIFADDR for more information on the third parameter.

S OCGIFRBUFS Get the interface reassembly buffer size. Valid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

SOCGIFTOS Get the interface type-of-service (TOS). Vaid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

S OCGPGRP Get the process ID or process group ID that isto receive the SIGIO and SIGURG signals.

See FIOGETOWN for more information on the third parameter.

S OCGRTCONF Get the route configuration list. Valid for sockets with address family of AF_INET.

For the SIOCGRTCONF request, the third parameter represents a pointer to the structure rtconf, also
defined in <net/route.h>:

struct rtconf [
int rtc_len;
int rtc_configured;
int rtc_returned;
uni on {
caddr _t rtcu_buf;
struct rtentry *rtcu_req;
} rtc_rtcu;

1;

rtc_lenisavalue-result field. The caller passes the size of the buffer pointed to by rtcu_buf. On return,
rtc_len contains the amount of storage that was used in the buffer pointed to by rtcu_buf for the route
entries. rtc_configured is the number of route entriesin the route list. rtc_returned is the number of route
entries that were returned (thisis dependent on the size of the buffer pointed to by rtcu_buf). rtcu_buf is
the user buffer in which alist of route entries will be stored. Each stored entry will be an rtentry structure.

To get the route configuration list, the following fields must be set:
e rtc_len
o rtcu_buf

See SIOCADDRT for more information on the list of rtentry structures returned. For this request, al
fieldsin each rtentry structure will be set to avalue.

S OCSENDQ Return the number of bytes on the send queue that have not been acknowledged by the remote system.
Valid for sockets with address family of AF_INET #*or AF_INET64 and socket type of
SOCK_STREAM.

The third parameter represents a pointer to an integer that is set to the number of bytes yet to be
acknowledged as being received by the remote TCP transport driver.

Notes:

1. SIOCSENDQ isused after a series of blocking or non-blocking send operations to see if the sent
data has reached the transport layer on the remote system. Note that this does not not guarantee
the data has reached the remote application.

2. When SIOCSENDQ is used in a multithreaded application, the actions of other threads must be
considered by the application. SIOCSENDQ provides a result for a socket descriptor at the given
point in time when the ioctl()) request is received by the TCP transport layer. Blocking send
operations that have not completed, as well as non-blocking send operations in other threads
issued after the SIOCSENDQ ioctl(), are not reflected in the result obtained for the SIOCSENDQ
ioctl().

3. In asituation where the application has multiple threads sending data on the same socket
descriptor, the application should not assume that all data has been received by the remote side
when O isreturned if the application is not positive that all send operations in the other threads
were complete at the time the SIOCSENDQ ioctl() was issued. An application should issue the
SIOCSENDQ ioctl() only after it has completed all of the send operations. No value is added by
querying the machineto seeif it has sent all of the data when the application itself has not sent all
of the datain a given unit of work.

S OCSPGRP Set the process ID or process group ID that isto receive the SIGIO and SIGURG signals.

See FIOSETOWN for more information on the third parameter.

S OCSTELRSC Set telephony resources. Valid for sockets with address family of AF_TELEPHONY .

The third parameter represents a pointer to a TelResource structure, which is defined in <nettel/tel.h>.

struct Tel Resource { /* tel ephony resource structure */
i nt tr Count ; /* nunber of devices */
char trReserved[12]; /* reserved */
voi d* trResourceli st; /* pointer to array of system
poi nters */
1

trCountl is the number of devices that are to be associated with the socket, trReserved is areserved field,
and trResourcelList is a pointer to an array of space pointers. Each of these space pointersis the address of
adevice that will be associated with the socket.

Notes:

1. Thisrequest will associate one or more telephony (* TEL) network devices with a socket. Once
the association is made, it will last until the socket is closed.

2. Theuser isresponsible for resolving each device name to a system pointer.

3. Before the device can be associated with a socket, the following conditions must be met:
o The PPP line, network controller, and network device descriptions must exist.
o The PPP line must be associated with an ISDN network controller.

o The PPPline must be associated with a connection list and connection list entry (inbound
or outbound, as appropriate).

o Theline, controller, and device must be varied on.

4. Theuser must have at least operational authority for the devicesto be associated with the socket.
5. A device cannot be associated with more than one socket at atime.

6. If the SIOCSTELRSC request fails for any reason, none of the specified devices will be
associated the socket.

7. For more information about this request and the AF_TELEPHONY address family, please see
Socket address family.

Authorities

No authorization is required.

Return Value

ioctl() returns an integer. Possible values are:
« O(ioctl() was successful)
o -1 (ioctl() was not successful. The errno global variable is set to indicate the error.)

Error Conditions

If ioctl() is not successful, errno usualy indicates one of the following errors. Under some conditions, errno could indicate an error
other than those listed here.

[EACCES

[EAGAIN]

[EBADF]

[EBADFID]

[EBUSY|

[EDAMAGE]

[EFAULT]

H{EINTR]

[EINVAL]

[EIO]

[ENOBUFS

[ENOSPC]

Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file permissions at the
server are not reflected at the client until updatesto datathat is stored locally by the Network File System take
place. (Several options on the Add Mounted File System (ADDMFS) command determine the time between
refresh operations of local data.) Accessto aremote file may also fail due to different mappings of user IDs
(UID) or group IDs (GID) on the local and remote systems.

Operation would have caused the process to be suspended.

Descriptor not valid.

A descriptor argument was out of range, referred to an object that was not open, or aread or write request was
made to an object that is not open for that operation.

A given descriptor or directory pointer is not valid for this operation. The specified descriptor isincorrect, or
does not refer to an open object.

A file 1D could not be assigned when linking an object to adirectory.

Thefile D tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The address used for an argument is not correct.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.
Interrupted function call &

The value specified for an argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the operation
specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL. Either the requested function is not supported, or the
optional parameter is not valid.

Input/output error.
A physical 1/0 error occurred.
A referenced object may be damaged.

There is not enough buffer space for the requested operation.

No space available.

The requested operations reguired additional space on the device and there is no space left. This could also be
caused by exceeding the user profile storage limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended object.

[ENOSYS]

[ENOTAVAIL]

[ENOTSAFE]

[EPERM]

[EPIPE]

[ERESTART]

[ESTALE]

[EUNATCH]

[EUNKNOWN]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or any
arguments.

The path name given refers to an object that does not support this function.

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP isin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG) processing.
To recover from this error, wait until processing has completed for the independent ASP.

Function is not allowed in ajob that is running with multiple threads.

Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the requested
operation.

Broken pipe.
A system call was interrupted and may be restarted. &

File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted at the
server.

The protocol required to support the specified address family is not available at thistime.

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any
errors that are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could also indicate one of the following errors:
[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET]

[EHOSTDOWN]

A connection with aremote socket was reset by that socket.

A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN]

[ENETRESET]

The network is not currently available.

A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:
Message ID Error Message Text
CPFAOD4 E File system error occurred. Error number & 1.
CPFAO8LE Unable to set return value or error code.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPE3418 E Possible APAR condition or hardware failure.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:

o Where multiple threads exist in the job.

o The object on which this function is operating residesin afile system that is not threadsafe. Only the following file
systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

» ZIndependent ASP QSYS.LIB
= QOPT

2. QDLSFile System Differences

QDL S does not support ioctl().
3. QOPT File System Differences

QOPT does not support ioctl().

4. A program must have the appropriate privilege *1OSY SCFG to issue any of the following requests: SSOCADDRT and
SIOCDELRT.

Related Information

« The <syglioctl.h> file (see Header Files for UNIX-Type Functions)

« The <sysltypes.h> file (see Header Files for UNIX-Type Functions)

« fentl()--Perform File Control Command

« Socket Programming

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Ichown()--Change Owner and Group of
Symbolic Link

Syntax

#i ncl ude <uni std. h>

int |chown(const char *path, uid_t owner, gid_t group);
Threadsafe: Conditional; see Usage Notes.

The Ichown() function changes the owner and group of afile. If the named fileis asymboalic link, Ichown()
changes the owner or group of the link itself rather than the object to which the link points. The permissions
of the previous owner or primary group to the object are revoked.

If thefileis checked out by another user (someone other than the user profile of the current job), Ichown()
failswith the[EBUSY] error.

When Ichown() completes successfully, it updates the change time of thefile.

Parameters

path

(Input) A pointer to the null-terminated path name of the file whose owner and group are being
changed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

See QlgL chown()--Change Owner and Group of Symbolic Link for a description and an example
of supplying the path in any CCSID.

owner
(Input) The user ID (uid) of the new owner of thefile. If the valueis -1, the user ID is not changed.

group

(Input) The group ID (gid) of the new group for thefile. If the valueis -1, the group ID is not
changed.

Note: Changing the owner or the primary group causesthe S ISUID (set-user-ID) and S _ISGID
(set-group-1D) bits of the file mode to be cleared, unless the caller has* ALLOBJ special authority. If the
caller does have * ALLOBJ specia authority the bits are not changed. This does not apply to directories.
See the chmod() documentation.

Authorities

Note: Adopted authority is not used.

Authorization Required for Ichown() (excluding QSYS.LIB, #independent ASP QSYS.LIB, %and
QDLY)

|Object Referred to |Authority Required |errno
|Each directory in the path name preceding the object | *X |EACCES
Object, when changing the owner Owner and *OBJEXIST ’EPERM
(also see Note 1)
|Object, when changing the primary group | See Note 2 |EPERM
|Previous owner's user profile, when changing the owner | *DLT |EPERM
|New owner's user profile, when changing the owner | *ADD |EPERM
User profile of previous primary group, when changing the primary ’ *DLT ’EPERM
group
|New primary group's user profile, when changing the primary group | *ADD |EPERM
Note:

1. You do not need the listed authority if you have * ALLOBJ specia authority.
2. Atleast one of the following must be true:
a. You have*ALLOBJ specia authority.
b. You arethe owner and either of the following:
= The new primary group is the primary group of the job.
= The new primary group is one of the supplementary groups of the job.

Authorization Required for Ichown() in the QSYS.LIB #+and independent ASP QSYS.LIB File
Systems

|Object Referred to |Authority Required lerrno
Each directory in the path name preceding *X EACCES
the object

See Note 1
|Object when changing the owner | See Note 2(a) |EPERM
|Object when changing the primary group | See Note 2(b) |EPERM
Note:

1. For *FILE objects (such as DDM file, diskette file, print file, and savefile), * RX authority is
required to the parent directory of the object, rather than just * X authority.

2. Therequired authorization varies for each object type. For details of the following commands see
the iSeries Security Reference@' book.

a. CHGOWN
b. CHGPGP

Authorization Required for Ichown() in the QDL S File System

|Object Referred to |Authority Required [errno

|Each directory in the path name preceding the object | *X |EACCES
Object *ALLOBJ Specia |EPERM
Authority or Owner

|Previous owner's user profile, when changing the owner | *DLT |EPERM
INew owner's user profile, when changing the owner | *ADD |EPERM

|Previ ous primary group's user profile, when changing the primary group *DLT |EPERM
|New primary group's user profile, when changing the primary group *ADD |EPERM
Authorization Required for Ichown() in the QOPT File System

|Object Referred to |Authority Required |errno

|Volume authorization list | *CHANGE |[EACCES

|Each directory in the path name preceding the object. | *X |EACCES

Object *ALLOBJ Special |[EPERM

Authority or Owner

Return Value

0
Ichown() was successful.
-1
Ichown() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If Ichown() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The aobject name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.
owner or group isnot avalid user ID (uid) or group ID (gid).

owner isthe current primary group of the object.

[EIO]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
2 EJRNDAMAGE]
Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value alowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.

Thiserror isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.

A path name islonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJIRN]
New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E Filesystem error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes
1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys
» User-defined
= QNTC

= QSYSLIB
= HIndependent ASP QSYS.LIB &
= QOPT

2. QSYS.LIB #+and Independent ASP QSY S.LIB “File System Differences

Ichown() is not supported for member ((MBR) objects.

3. QDLSFile System Differences
The owner and primary group of the /QDL S directory (root folder) cannot be changed. If an
attempt is made to change the owner and primary group, a[ENOTSUP] error is returned.

4. QOPT File System Differences
Changing the owner and primary group is allowed only for an object that exists on avolume
formatted in Universal Disk Format (UDF). For all other media formats, ENOTSUP will be
returned.
QOPT file system objects that have owners will not be recognized by the Work with Objects by
Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will
not be recognized by the Work Objects by Primary Group (WRKOBJPGP) CL command.

5. QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support Ichown().

6. QNetWare File System Differences

The QNetWare file system does not support primary group. The GID must be zero.

7. QNTC File System Differences

The owner of files and directories cannot be changed. All files and directoriesin QNTC are owned
by the QDFTOWN user profile.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type APIs)

o The<limits.h> file
« chmod()--Change File Authorizations

« fchown()--Change Owner and Group of File by Descriptor
« fstat()--Get File Information by Descriptor

o Istat()--Get File or Link Information

o stat()--Get File Information

¢ OlgL chown()--Change Owner and Group of Symbolic Link

Example

The following example changes the owner and group of afile:

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>

mai n() {
char link_name[]="tenp.|ink";
char fn[]="tenp.file";
struct stat info;

if (symink(fn, link_name) == -1)
perror("symink() error");
el se {
I stat (Iink_nanme, & nfo);
printf("original ower was %l and group was %\ n", info.st_uid,
info.st_gid);

if (lchown(link_name, 152, 0) != 0)
perror ("l chown() error");
el se {
I stat (Iink_nanme, & nfo);
printf("after | chown(), owner is % and group is %\n",
info.st_uid, info.st_gid);

unl i nk(link_nane);

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

link()--Create Link to File

Syntax

#i ncl ude <uni std. h>

int link(const char *existing, const char *new);
Threadsafe: Conditional; see Usage Notes.

The link() function provides an alternative path name for the existing file, so that the file can be accessed
by either the existing name or the new name. link() creates alink with a path name new to an existing file
whose path name is existing. The link can be stored in the same directory asthe original file or in adifferent
directory.

Thelink() function creates a hard link, which guarantees the existence of afile even after the original path
name has been removed.

If link() successfully creates the link, it increments the link count of the file. The link count indicates how
many links there are to thefile. If link() fails for some reason, the link count is not incremented.

If the existing argument names a symbolic link, link() creates alink that refers to the file that results from
resolving the path name contained in the symbolic link. If new names a symbolic link, link() fails and sets
errno to [EEXIST].

A successful link updates the change time of the file, and the change time and modification time of the
directory that contains new (parent directory).

If thefileis checked out by another user (a user profile other than the user profile of the current job), link()
failswith the[EBUSY] error.

Links created by this function are not allowed to cross file systems. For example, you cannot create alink
to afile in the QOpenSys directory from the root (/) directory.

Links are not allowed to directories. If existing names adirectory, link() fails and sets errno to [EPERM].

A job must have accessto afileto link toit.

Parameters

existing
(Input) A pointer to a null-terminated path name naming an existing file to which anew link isto
be created.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

See QlgLink()--Create Link to File for a description and an example of supplying the existing in
any CCSID.

new

(Input) A pointer to a null-terminated path name that is the name of the new link.

This parameter is assumed to be represented in the CCSID currently in effect for the job. If the
CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job. The new link name is assumed to be represented in the language and country or region
currently in effect for the job.

See QlgLink()--Create Link to File for a description and an example of supplying the new in any
CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for link()

Authority
Object Referred to Required |errno
Each directory in the existing path name that precedes the object being linked *X EACCES
to
|Existing object | *OBJEXIST |EACCES
|Each directory in the new path name that precedes the object being linked to | *X |[EACCES
|Parent directory of the new link | *WX |[EACCES

Return Value

0

-1

link () was successful.

link () was not successful. The errno global variable is set to indicate the error.

Error Conditions

If link() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES

Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by

the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote

systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.
The file specified aready exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.

[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[EISDIR]
Specified target is adirectory.

The path specified named a directory where afile or object name was expected.

The path name given is adirectory.
[EJRNDAMAGE]
Journal damaged.
A journa or al of the journa's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.
The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.

This error isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMLINK]
Maximum link count for afile was exceeded.
An attempt was made to have the link count of asingle file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

[ENAMETOOLONG]
A path name istoo long.
A path name islonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJIRN]
New journal is needed.
The journa was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS
Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

Linksto directories are not supported.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

[EXDEV]
Improper link.

A link to afile on another file system was attempted.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes
1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:

o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys
» User-defined

QNTC
QSYSLIB

#¥Independent ASP QSYS.LIB &
= QOPT

2. Thelink() function should be used sparingly to avoid potential performance degradation. The
greater the number of hard links to an object, the more time it will take to change the attributes of
the object.

3. File System Differences

The following file systems do not support link():
o QSYSLIB
o #Independent ASP QSYS.LIB 4
o QDLS
o QOPT
o QFileSvr.400
o ONetWare
o QNTC

If link() isused in any of these file systems, a[ENOSY §] error is returned.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)
QlgLink()--Create Link to File

rename()--Rename File or Directory

unlink()--Remove Link to File

Example
The following example uses link():

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#include <fcntl. h>

#i ncl ude <stdlib. h>

mai n()
char fn[]="1ink.exanple.file";
char In[]="Iink. exanple.link";

int file_descriptor;
struct stat info;

if ((file_descriptor = creat(fn, S IWSR)) < 0)

perror(“"creat() error");

el se {

}
}

close(fil e _descriptor);
puts("before link()");
stat (fn, & nfo);
printf(" nunber of links is %u\n",info.st_nlink);
if (link(fn, In) !'=0) {
perror("link() error");
unlink(fn);

el se {
puts("after link()");
stat (fn, & nfo);
printf(" nunber of links is %u\n",info.st_nlink);
unlink(Iln);
puts("after first unlink()");
stat (fn, & nfo);
printf(" nunber of links is %u\n",info.st_nlink);
unlink(fn);
}

Output:

before |ink()

nunmber of links is 1

after 1ink()

nunmber of links is 2

after first unlink()

nunmber of links is 1

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Iseek()--Set File Read/Write Offset

Syntax

#i ncl ude <uni std. h>

off t Iseek(int file descriptor, off t offset, int whence);
Threadsafe: Conditional; see Usage Notes.

The Iseek() function changes the current file offset to a new position in the file. The new position is the
given byte offset from the position specified by whence. After you have used |seek () to seek to anew
location, the next 1/0O operation on the file begins at that location.

Iseek () lets you specify new file offsets past the current end of thefile. If dataiswritten at such a point,
read operations in the gap between this data and the old end of the file will return bytes containing binary
zeros (or bytes containing blanks in the QSY S.LIB #*and independent ASP QSY S.LIB file systems). <%In
other words, the gap is assumed to be filled with zeros (or with blanks in the QSY S.LIB #*and independent
ASP QSYS.LIB file systems). €4Seeking past the end of afile, however, does not automatically extend the
length of thefile. There must be awrite operation before the file is actually extended.

There are some important considerations for Iseek() if the O_TEXTDATA and O_CCSID flags were
specified on the open(), £+the file CCSID and open CCSID are not the same, and the converted data could
expand or contract: <

« Making assumptions about data size and the current file offset is extremely dangerous. For
example, afile might have a physical size of 100 bytes, but after an application has read 100 bytes
from thefile, the current file offset may be only 50. To read the whole file, the application might
have to read 200 bytes or more, depending on the CCSIDs involved. Therefore, Iseek() will only be
allowed to change the current file offset to:

o The start of thefile (offset 0, whence SEEK _SET)

o Theend of thefile (offset O, whence SEEK_END). In this case, the function will return a
calculated value based on the physical size of the file, the CCSID of thefile, and the
CCSID of the open instance. This may be different than the actua file offset.

If any other combination of valuesis specified, |seek() failsand errno is set to ENOTSUP.

« Internally-buffered data from aread or write operation is discarded. See read()--Read from
Descriptor and write()--Write to Descriptor for more information concerning internal buffering of
text data.

« The expected state for the current text conversion isreset to the initial state. This consideration
applies only when using a CCSID that can represent data using more than one graphic character set
or containing characters of different byte lengths. Some CCSIDs require an escape or shift
sequence to signify a state change from one character set or byte length to another. Failing to
account for this consideration could lead to incorrect text conversion if, for instance, a double-byte
character at the new file offset was treated as two single-byte characters by the conversion function.

In the QSY S.LIB file #+and independent ASP QSY S.LIB file systems, you can seek only to the beginning
of amember while in text mode.

Parameters

file_descriptor
(Input) The file whose current file offset you want to change.
offset

(input) The amount (positive or negative) the byte offset isto be changed. The sign indicates
whether the offset isto be moved forward (positive) or backward (negative).

whence
(Input) One of the following symbols (defined in the <unistd.h> header file):
SEEK_SET
The start of thefile
SEEK_CUR
The current file offset in thefile
SEEK_END
The end of thefile

If bits in whence are set to values other than those defined above, Iseek() fails with the [EINVAL] error.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

value

Iseek () was successful. The value returned is the new file offset, measured in bytes from the
beginning of thefile.

Iseek () was not successful. The errno global variableis set to indicate the error.

Error Conditions

If 1seek () is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
reguest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.

Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. A parameter passed to this function is not
valid.

[EIO]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]
No space available.

The regquested operations required additional space on the device and there is no space left. This
could aso be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]
System resources not available to compl ete request.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOVERFLOW]
Object istoo large to process.

The aobject's data size exceeds the limit allowed by this function.
The resulting file offset would be a value that cannot be represented correctly in avariable of type

off _t (the offset is greater than 2GB minus 2 bytes).

[ESPIPE]

Seek request not supported for object.
A seek request was specified for an object that does not support seeking.
The abject is not capable of seeking.

Thefile_descriptor argument is associated with a pipe or FIFO.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the
following errors:
[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been
deleted at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

= ZIndependent ASP QSYS.LIB &
= QOPT

2. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations (several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data).

3. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

This function is not supported for save files and will fail with error code [ENOTSUP].

4. Thisfunction will fail with the [EOVERFLOW)] error if the resulting file offset would be avalue
that cannot be represented correctly in avariable of type off_t (the offset is greater than 2 GB
minus 2 bytes).

5. When you develop in C-based languages and an application is compiled with the L ARGE_FILES
macro defined, the Iseek () API will be mapped to a call to the Iseek64() API. Additionally, the data
type off_t will be mapped to the type off64 t.

6. Using this function with the write(), Spwrite(), and pwrite64() functions on the /dev/null or
/dev/zero “character special file will not result in the file data size changing from zero.

Related Information

» The<unistd.h> file (see Header Files for UNIX-Type Functions)
« creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor

« fentl()--Perform File Control Command

o |seek64()--Set File Read/Write Offset (Large File Enabled)

» open()--Open File

« Zpread()--Read from Descriptor with Offset 44

« 2pread64()--Read from Descriptor with Offset (large file enabled) &
o Zpwrite()--Write to Descriptor with Offset 4%

o Zpwrite64()--Write to Descriptor with Offset (large file enabled)
« read()--Read from Descriptor

« write()--Write to Descriptor

Example

The following example positions afile (that has at least 11 bytes) to an offset of 10 bytes before the end of
thefile:

| seek(file_descriptor,-10, SEEK END);

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

Iseek64()--Set File Read/Write Offset (Large File
Enabled)

Syntax

#i ncl ude <uni std. h>

of f64 t | seek64(int file descriptor,
of f64_t offset, int whence);

Threadsafe: Conditional; see Usage Notes.

The Iseek64() function changes the current file offset to a new position in the file. The new position isthe
given byte offset from the position specified by whence. After you have used |seek64() to seek to anew
location, the next 1/O operation on the file begins at that location.

Iseek 64() lets you specify new file offsets past the current end of the file. If datais written at such a point,
read operations in the gap between this data and the old end of the file will return bytes containing binary
zeros (or bytes containing blanks in the QSY S.LIB #*or independent ASP QSY S.LIB file systems). In other
words, the gap is assumed to be filled with zeros (or with blanks in the QSY S.L1B or independent ASP
QSYS.LIB file systems). €I you seek past the end of afile, however, the length of thefileis not
automatically extended. The maximum offset that can be specified is the largest value that can be held in an
8-byte, signed integer. Y ou must do awrite operation before the file is actually extended.

In the QSY S.LIB £*or independent ASP QSY S.LIB file systems, “€you can seek only to the beginning of a
member while in text mode.

Iseek64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte aslong
as the file has been opened by either of the following:
« Using the open64() function (see open64()--Open File (Large File Enabled)).

« Using the open() function (see open()--Open File) with the O_L ARGEFILE flag set.

For additional information about parameters, authorities required, error conditions and examples, see
Iseek()--Set File Read/Write Offset.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the Iseek64() API and the off64_t data type, you must compile the source with the
_LARGE_FILE_API defined.

2. All of the usage notes for Iseek() apply to Iseek64(). See Usage Notesin the Iseek() API.

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

Istat()--Get File or Link Information

Syntax

#i ncl ude <sys/stat.h>

int |stat(const char *path, struct stat *buf);
Threadsafe: Conditional; see Usage Notes.

The Istat() function gets status information about a specified file and placesit in the area of memory

pointed to by buf. If the named fileis asymbolic link, Istat() returns information about the symboalic link
itself.

Theinformation is returned in the stat structure, referenced by buf. For details on the stat structure, see
stat()--Get File Information.

If the named file is not a symbolic link, Istat() updates the time-related fields before putting information in
the stat structure.

Parameters

path
(Input) A pointer to the null-terminated path name of thefile.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgL stat()--Get File or Link Information for a description and an example of supplying the
path in any CCSID.

buf

(Output) A pointer to the area to which the information should be written.

Authorities

Note: Adopted authority is not used.

Authorization Required for Istat()

|Object Referred to |Authority Required [errno
|Each directory in the path name preceding the object | *X |[EACCES
[Object | R [EACCES

Return Value

0
Istat() was successful. Theinformation is returned in buf.
-1
Istat() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If Istat() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES
Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.
If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may

also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIQ]
Input/output error.

A physical I/O error occurred.
A referenced object may be damaged.

[ELOOP]
A loop exists in the symbolic links.

This error isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]
A path name istoo long.

A path name islonger than PATH_MAX characters or some component of the name islonger than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.
The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage alocation request failed.
A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTSAFE]

Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOVERFLOW]
Object istoo large to process.

The object's data size exceeds the limit allowed by this function.

Thefile size in bytes cannot be represented correctly in the structure pointed to by buf (thefileis
larger than 2GB minus 1 byte).

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors.
[EADDRNOTAVAIL]

Address not available.
[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]
The network is not currently available.
[ENETRESET]
A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ESTALE]
File or abject handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:

o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

= ZIndependent ASP QSYS.LIB &
= QOPT

2.

QOPT File System Differences

Thevauefor st_atime will always be zero. The value for st_ctime will always be the creation date
and time of thefile or directory.

If the object exists on avolume formatted in Universal Disk Format (UDF), the authorization that is
checked for the object and each directory in the path name follows the rules described in
Authorization Required for Istat(). If the object exists on a volume formatted in some other media
format, no authorization checks are made on the object or each directory in the path name. The
volume authorization list is checked for * USE authority regardless of the volume media format.

The user, group, and other mode bits are always on for an object tha exists on a volume not
formatted in Universal Disk format (UDF).

Istat on /QOPT will always return 2,147,483,647 for size fields.
Istat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or thefile is unlinked or made unavail able by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

OQNetWare File System Differences

The QNetWare file system does not fully support mode bits. See NetWare on i Series for more
information.

This function will fail with the [EOVERFLOW)] error if the file size in bytes cannot be represented
correctly in the structure pointed to by buf (the file islarger than 2GB minus 1 byte).

When you develop in C-based languages and this function is compiled with LARGE _FILES
defined, it will be mapped to Istat64(). Note that the type of the buf parameter, struct stat, also will
be mapped to type struct stat64.

Related Information

The <syd/stat.h> file (see Header Files for UNIX-Type Functions)

The <sydtypes.h> file (see Header Files for UNIX-Type Functions)

chmod()--Change File Authorizations

chown()--Change Owner and Group of File

o creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor

« fentl()--Perform File Control Command

« fstat()--Get File Information by Descriptor
o link()--Create Link to File

« mkdir()--Make Directory

« open()--Open File

o QlglLstat()--Get File or Link Information

« read()--Read from Descriptor

« readlink()--Read Value of Symbolic Link
« dtat()--Get File Information

« symlink()--Make Symbolic Link

« unlink()--Remove Link to File

« utime()--Set File Access and Modification Times

« write()--Write to Descriptor

Example

The following example provides status information for afile:

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdio. h>

#i ncl ude <fcntl. h>

#i ncl ude <uni std. h>

#i ncl ude <tine. h>

#i ncl ude <stdio. h>

mai n() {
char fn[]="tenp.file", In[]="tenp.link";
struct stat info;
int file_descriptor;

if ((file_descriptor = creat(fn, S IWSR)) < 0)
perror(“"creat() error");
el se {
close(fil e_descriptor);
if (link(fn, In) !'=0)
perror("link() error");
el se {
if (Istat(ln, & nfo) !'= 0)
perror("lstat() error");
el se {
puts("lIstat() returned:");
printf(" inode: %\ n", (int) info.st_ino);

printf(" dev id: %\ n", (int) info.st_dev);

printf(" node: %08x\ n", i nfo.st_node);
printf(" |inks: %\ n", i nfo.st_nlink);
printf(" ui d: %\ n", (int) info.st _uid);
printf(" gi d: %\ n", (int) info.st _gid);
unlink(Iln);
unlink(fn);
}
}
Output:

| stat() returned:
i node: 3022

dev id: 1
node: 00008080
i nks: 2
ui d: 137
gi d: 500

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Istat64()--Get File or Link Information (Large
File Enabled)

Syntax

#i ncl ude <sys/stat.h>

int |stat64(const char *path, struct stat64 *buf);
Threadsafe: Conditional; see Usage Notes.

The Istat64() function gets status information about a specified file and places it in the area of memory
pointed to by buf. If the named file isa symbolic link, Istat64() returns information about the symbolic link
itself.

The information is returned in the stat64 structure, referred to by buf. For details on the stat64 structure, see
stat64()--Get File Information (Large File Enabled).

If the named file is not a symbolic link, Istat64() updates the time-related fields before putting information
in the stat64 structure.

For additional information about parameters, authorities required, and error conditions, see |stat()--Get File
or Link Information.

See QlgL stat64()--Get File or Link Information (Large File Enabled) for a description and an example of
supplying the path in any CCSID.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To usethelstat64() API and the struct stat64 data type, you must compile the source with the
_LARGE_FILE_API defined.

2. All of the usage notes for Istat() apply to Istat64(). See Usage Notesin the Istat() API.

Example
The following example provides status information for afile.

#define LARGE FI LE_API
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdio. h>

#i ncl ude <fcntl. h>

#i ncl ude <uni std. h>

#i ncl ude <tine. h>

#i ncl ude <stdio. h>

mai n() {
char fn[]="tenmp.file", In[]="tenp.link";
struct stat64 info;
int file_descriptor;

if ((file_descriptor = creat64(fn, S IWSR)) < 0)
perror("creat64() error");
el se {
close(fil e _descriptor);
if (link(fn, In) !'=0)
perror("link() error");
el se {
if (Istat64(ln, & nfo) != 0)
perror("lstat64() error");
el se {
puts("lstat64() returned:");
printf(" inode: %\ n", (int) info.st_ino);
printf(" dev id: %\ n", (int) info.st_dev);
printf(" node: %08x\ n", i nfo.st_node);
printf(" |inks: %\ n", i nfo.st_nlink);
printf(" ui d: %\ n", (int) info.st _uid);
printf(" gi d: %\ n", (int) info.st _gid);
printf(" si ze: %1d\n", (long long) info.st_size);

unlink(Iln);
}
unlink(fn);
}
}
Output:

| stat() returned:
i node: 3022
dev id: 1
node: 00008080
i nks: 2
ui d: 137
gi d: 500
si ze: 18

Top | UNIX-Type APIs| APIs by category

mkdir()--Make Directory

Syntax

#i ncl ude <sys/stat.h>

i nt nkdir(const char *path, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The mkdir () function creates a new, empty directory whose name is defined by path. The file permission
bitsin mode are modified by the file creation mask of the job and then used to set the file permission bits of
the directory being created.

For more information on the permission bits in mode see chmod()--Change File Authorizations. For more
information on the file creation mask, see umask()--Set Authorization Mask for Job.

The owner 1D of the new directory is set to the effective user ID (uid) of the job. #*If the directory is being
created in the Root ('/), QOpensys, and user-defined file systems, the following applies. If the S I1SGID bit
of the parent directory is off, the group ID (GID) is set to the effective GID of the thread creating the
directory. If the S_ISGID hit of the parent directory is on, the group ID (GID) of the new directory is set to
the GID of the parent directory. For all other file systems, the €group ID (GID) of the new directory is set
to the GID of the parent directory.

mkdir () sets the access, change, modification, and creation times for the new directory. It also sets the
change and modification times for the directory that contains the new directory (parent directory).

Thelink count of the parent directory link count isincreased by one. The link count of the new directory is
set to 2. The new directory also contains an entry for "dot" (.) and "dot-dot" (..).

If path names a symbolic link, the symbolic link is not followed, and mkdir () fails with the [EEXIST]
error.

If bits in mode other than the file permission bits are set, mkdir () fails with the [EINV AL] error.

Parameters

path
(Input) A pointer to the null-terminated path name of the directory to be created.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently

in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

The name of the new directory is assumed to be represented in the language and country or region
currently in effect for the process.

See QlgMkdir()--Make Directory for a description and an example of supplying the path in any
CCSID.

mode
(Input) Permission bits for the new directory. #The S_ISGID (set-group-ID) bit also may be
specified when creating the directory.

See chmod()--Change File Authorizations for details on the values that can be specified for mode.
&

Authorities

Note: Adopted authority is not used.

Authorization Required for mkdir() (excluding QSYS.LIB, #*Independent ASP QSYS.LIB, “and
QDLS)

Authority
Object Referred to Required |errno
|Each directory in the path name preceding the directory to be created. | *X |EACCES
|Parent directory of directory to be created | *WX |[EACCES

Authorization Required for mkdir() in the QSYS.LIB #and independent ASP QSYS.LIB File
Systems 4

Authority
Object Referred to Required |errno
|Each directory in the path name preceding the directory to be created. | *X |EACCES

Parent directory of directory to be created (when the directory being created |*X and *ADD |[EACCES
isadatabasefile)

Authorization Required for mkdir() in the QDL S File System

Authority
Object Referred to Required |errno
|Each directory in the path name preceding the directory to be created. | *X |EACCES
|Parent directory of directory to be created | *CHANGE |EACCES

Return Value

0
mkdir () was successful. The directory was created.
-1

mkdir () was not successful. The directory was not created. The errno global variableis set to
indicate the error.

Error Conditions

If mkdir() isnot successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.
If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may

aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.
The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists. Or, the last component of path isa symbolic link.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[EJRNDAMAGE]
Journal damaged.
A journa or al of the journa's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

Thejournaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.
The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMLINK]
Maximum link count for afile was exceeded.

An attempt was made to have the link count of asingle file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

[ENAMETOOLONG]
A path nameistoo long.
A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJIRN]
New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage alocation request failed.
A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS

Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors:
[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]
Connection ended abnormally.
[ECONNREFUSED]
The destination socket refused an attempted connect operation.
[ECONNRESET]
A connection with aremote socket was reset by that socket.
[EHOSTDOWN]
A remote host is not available.
[EHOSTUNREACH)]
A route to the remote host is not available.
[ENETDOWN]
The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]
Cannot reach the destination network.
[ESTALE]
File or abject handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is nhot available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E Filesystem error occurred. Error number &1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o There are secondary threads active in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. Root, QOpenSys, and User-Defined File System Differences
The user who creates the directory becomes its owner.

#The S _ISGID bit of the directory affects what the group ID (GID) is for objects that are created
in the directory. If the S ISGID bit of the parent directory is off, the group ID (GID) is set to the
effective GID of the thread creating the object. If the S ISGID bit of the parent directory ison, the

group ID (GID) is copied from the parent directory in which the new directory is being created.

The owner, primary group, and public object authorities (*OBJEXIST, *OBIMGT, *OBJALTER,
and *OBJREF) are copied from the parent directory's owner, primary group, and public object
authorities. This occurs even when the new directory has a different owner than the parent
directory. The owner, primary group, and public data authorities (*R, *W, and * X) are derived
from the permissions specified in the mode (except for those permissions that are also set in thefile
mode creation mask). The new directory does not have any private authorities or authorization list.
It only has authorities for the owner, primary group, and public.

. QSYS.LIB **and Independent ASP QSY S.LIB “File System Differences

The user who cresates the directory becomesits owner. The group ID is copied from the primary
user ID, if one exists.

The owner isgiven *ALL object authority to the new directory. The group object authorities are
copied from the user profile of the owner. The public receives no object authority to the directory.

The primary group authorities specified in mode are not saved if no primary group exists.

The change and madification times for the directory that contains the new directory are only set
when the new directory is a database file.

. QDLSFile System Differences

The user who creates the directory becomes its owner. The group 1D is copied from the parent
folder in which the new directory is being created.

The object authority of the owner isset to *OBIMGT + *OBJEXIST + *OBJALTER + *OBJREF.

The primary group and public object authority and all other authorities are copied from the parent
folder.

The owner, primary group, and public data authority (including * OBJOPR) are derived from the
permissions specified in mode (except those permissions that are also set in the file mode creation
mask).

The primary group authorities specified in mode are not saved if no primary group exists.

. QOPT File System Differences

When the volume on which the directory is being created is formatted in Universal Disk Format
(UDF):

o The authorization that is checked for the object and preceding directoriesin the path name
follows the rules described in Authorization Required for mkdir().

o Thevolume authorization list is checked for * CHANGE authority.
o The user who creates the file becomes its owner.
o Thegroup ID is copied from the parent directory in which the fileis created.

o The owner, primary group, and public data authorities (*R, *W, and * X) are derived from
the permissions specified in the mode.

o The same uppercase and lowercase formsin which the names are entered are preserved. No

distinction is made between uppercase and lowercase when searching for names.
When the volume on which the directory is being created is not formatted in Universal Disk Format
(UDF):
o No authorization is checked on the object or preceding directories in the path name.
o Thevolume authorization list is checked for * CHANGE authority.
o QDFTOWN becomes the owner of the directory.
o No group ID isassigned to the directory.

o The permissions specified in the mode are ignored. The owner, primary group, and public
data authorities are set to RWX.

o For newly created directories, names are created in uppercase. No distinction is made
between uppercase and |owercase when searching for names.

A directory cannot be created as a direct child of /QOPT.

The change and modification times of the parent directory are not updated.

. Network File System Differences

Local access to remote directories through the Network File System may produce unexpected
results due to conditions at the server. The creation of adirectory may fail if permissions and other
attributes that are stored locally by the Network File System are more restrictive than those at the
server. A later attempt to create afile can succeed when the locally stored data has been refreshed.
(Several options on the Add Mounted File System (ADDMFS) command determine the time
between refresh operations of local data.) The creation can also succeed after the file system has
been remounted.

If you try to re-create a directory that was recently deleted, the request may fail because data that
was stored locally by the Network File System still has arecord of the directory's existence. The
creation succeeds when the locally stored data has been updated.

. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See NetWare on i Series for more
information.

. QNTC File System Differences

Directory authorities are inherited from the access contral list (if any exists) of the parent directory.
The mode bits are ignored.

In addition to the normal mkdir() function, in the QNTC file system, mkdir () can be used to add a
server directory under the /QNTC directory level. Directories for all functional Windows NT
serversin the local subnet are automatically created. However, Windows NT servers outside the
local subnet must be added by using mkdir () or the MKDIR command. For example:

char new dir[]="/QNTC/ NTSRV1";
nkdi r (new_di r, NULL)

would add the NTSRV 1 server into the QNTC directory structure for future access of files and
directories on that server.

It isalso possible to add the server by using the TCP/IP address. For example:

char new dir[]="/QNTC 9. 130. 67. 24";
nkdi r (new_di r, NULL)

The directories added using mkdir () will not persist across IPLs. Thus, mkdir () or the Make
Directory (MKDIR) command must be reissued after every system IPL.

Related Information

« The<sydstat.h> file (see Header Filesfor UNIX-Type Functions)

« chmod()--Change File Authorizations

o QlgMkdir()--Make Directory

« stat()--Get File Information

« umask()--Set Authorization Mask for Job

« pathconf()--Get Configurable Path Name Variables

Example

The following example creates a new directory:

#i ncl ude <sys/stat. h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>

mai n() {
char new dir[]="new dir";

if (nkdir(new dir, S IRWU S IRGRP| S I XCRP) != 0)
perror("nkdir() error");
else if (chdir(newdir) !'= 0)
perror("first chdir() error");
else if (chdir("..") '=0)
perror("second chdir() error");
else if (rndir(new.dir) !'= 0)
perror("rmdir() error");
el se
put s("success!");

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

mkfifo()--Make FIFO Special File

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>

int nkfifo(const char *path, node_t node);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The mkfifo() function creates a new FIFO specid file (FIFO) whose name is defined by path. A FIFO
special fileisatype of file with the property that data written to the file is read on afirst-in-first-out basis.
See the open(), read(), write(), Iseek, and close functions for more characteristics of a FIFO special file.

A FIFO may be opened for reading only or writing only for a uni-directional 1/O. It also may be opened for
reading and writing access to provide a bi-directional FIFO descriptor.

The file permission bits in mode are modified by the file creation mask of the job and then used to set the
file permission bits of the FIFO being created.

For more information on the permission bits inmode, see chmod()--Change File Authorizations. For more
information on the file creation mask, see umask()--Set Authorization Mask for Job.

The owner ID of the new FIFO is set to the effective user ID (UID) of the thread. #*If the object is being
created in the Root ('/"), QOpensys, and user-defined file systems, the following applies. If the S ISGID hit
of the parent directory is off, the group ID (GID) is set to the effective GID of the thread creating the
object. If the S_ISGID hit of the parent directory is on, the group ID (GID) of the new object is set to the
GID of the parent directory. For al other file systems, the “group ID (GID) of the new FIFO is set to the
GID of the parent directory.

Upon successful completion, mkfifo() sets the access, change, modification, and creation times for the new
FIFO. It aso sets the change and modification times for the directory that contains the new FIFO (parent
directory).

If path contains a symbolic link, the symbolic link is followed.

If path names a symbolic link, the symbolic link is not followed, and mkfifo() fails with the [EEXIST]
error.

If bitsin mode other than the file permission bits are set, mkfifo() fails with the [EINVAL] error.

Parameters
path
(Input) A pointer to the null-terminated path name of the FIFO special file to be created.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

The name of the new FIFO is assumed to be represented in the language and country or region
currently in effect for the process.

See QlgMkfifo()--Make FIFO Special File (using NLS-enabled path name) for a description and an
example of supplying the path in any CCSID.

mode
(Input) Permission bits for the new FIFO.

Authorities

Adopted authority is not used.

Authorization Required for mkfifo()

Authority
Object Referred to Required |errno
|Each directory in the path name preceding the FIFO to be created. | *X |EACCES
|Parent directory of FIFO to be created | *WX |EACCES

Return Value

0 mkfifo() was successful. The FIFO was created.

-1 mkfifo() was not successful. The FIFO was not created. The errno global variable is set to indicate
the error.

Error Conditions

If mkfifo() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file

permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremotefileaso
may fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to adirectory.

Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBADNAME]
The object name specified is not correct.

[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EEXIST]
File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists. Or, the last component of path isa symbolic link.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.
[EFILECVT]

File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.
[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.
A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.
An argument value is not valid, out of range, or NULL.
[EIQ]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMLINK]
Maximum link count for afile was exceeded.
An attempt was made to have the link count of asingle file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.
[ENAMETOOLONG]
A path name istoo long.
A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile_POSIX NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.
[ENOSPC]
No space available.
The regquested operations required additional space on the device and there is no space left. This

could aso be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]
Function not implemented.
An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.
The path name given refers to an object that does not support this function.
[ENOTDIR]
Not adirectory.
A component of the specified path name existed, but it was not a directory when a directory was
expected.
Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.
[EPERM]
Operation not permitted.
Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.
[EROFS]
Read-only file system.

Y ou have attempted an update operation in afile system that only supports read operations.
[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.
[ESTALE]
File or abject handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors.
[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.

[EHOSTDOWN]
A remote host is not available.

[EHOSTUNREACH]
A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.

[ENETUNREACH]
Cannot reach the destination network.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. File System Differences

The following file systems support mkfifo():
o Root
o QOpenSys
o User-defined

3. There are some restrictions when opening a FIFO for text conversion and the CCSIDs involved are
not strictly single-byte:

o Opening aFIFO for reading or reading and writing is not allowed.

o Any conversion between CCSIDs that are not strictly single-byte must be done by an open
instance that has write-only access.

4. The owner, primary group, and public object authorities (*OBJEXIST, *OBIMGT, *OBJALTER,
and * OBJREF) are copied from the parent directory's owner, primary group, and public object
authorities. This occurs even when the new FIFO has a different owner than the parent directory.
The owner, primary group, and public data authorities (*R, *W, and * X) are derived from the
permissions specified in the mode (except for those permissions that are also set in the file mode
creation mask). The new FIFO does not have any private authorities or authorization list. It only
has authorities for the owner, primary group, and public.

Related Information

» The<sydstat.h> file (see Header Filesfor UNIX-Type Functions)

« The <syd/types.h> file (see Header Files for UNIX-Type Functions)

« chmod()--Change File Authorizations
o umask()--Set Authorization Mask for Job

« QlgMkfifo()--Make FIFO Special File (using NL S-enabled path name)

Example

The following example creates a new FIFO:

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdio. h>

void main() {
char *nypath = "/ newrl FO';

if (nkfifo(nypath, S IRWKU S_IRWKO != 0)
perror("nkfifo() error");

el se
puts("success!");

return;

}

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

mmap()--Memory Map a File

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

void *mmuap(void *addr,
size t len,
int protection,
int flags,
int fildes,
off t off);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Yes

The mmap() function establishes a mapping between a process address space and a stream file.

The address space of the process from the address returned to the caller, for alength of len, is mapped onto
astream file starting at offset off.

The portion of the stream file being mapped is from starting offset off for alength of len bytes. The actua
address returned from the function is derived from the values of flagsand the value specified for address.

The mmap() function causes areference to be associated with the file represented by fildes. This reference
is not removed by subsequent close operations. The file remains referenced as long as a mapping exists
over thefile.

If amapping already exists for the portion of the processes address space that is to be mapped and the value
MAP_FIXED was specified for flags, then the previous mappings for the affected pages are implicitly
unmapped. If one or more files affected by the implicit unmap no longer have active mappings, these files
will be unreferenced as a result of mmap().

The use of the mmap() function is restricted by the QSHRMEMCTL System Value. When this system
valueis 0, the mmap() function may not create a shared mapping having with PROT_WRI TE capability.
Essentially, this prevents the creation of a memory map that could alter the contents of the stream file being
mapped. If the flags parameter indicated MAP_SHARED, the prot parameter specifies PROT_WRITE and
the QSHRMEMCTL system value is 0, then the mmap() functions will fail and an error number of
EACCES results.

When the mmap() function creates a memory map, the current value of the QSHRMEMCTL system value
is stored with the mapping. This further restricts attempts to change the protection of the mapping through
the use of the mprotect function. Changing the system valueonly affects memory maps created after the
system value is changed.

If the size of the file increases after the mmayp() function completes, then the whole pages beyond the
original end of file will not be accessible using the mapping.

If the size of the mapped file is decreased after mmap(), attempts to reference beyond the end of the file are
undefined and may result in an MCHO601 exception.

Any datawritten to that portion of the file that is allocated beyond end-of-file may not be preserved.
Changes made beyond end of file using mapped access may not be preserved.

The portion of the file beyond end-of-file is assumed to be zero by the traditiona file access APIs such as
read(), readv(), write(), writev(), and ftruncate(). The system may clear apartia page, or whole pages
alocated beyond end-of-file. This must be taken into account when directly changing a memory mapped
file beyond end-of-file. It is not recommended that data be directly changed beyond end-of-file because the
extra space allocated varies and unpredictabl e results may occur.

The mmayp() function is only supported for * TY PE2 stream files (* STMF) existing in the root (/),
QOpenSys, and User-Defined file systems.

#Journaling cannot be started while afile is memory mapped. Likewise, ajournaled file cannot be memory
mapped. The mmap() function will fail with EINVAL if thefileisjournaled.<4

The off parameter must be zero or amultiple of the system page size. The _SC_PAGESIZE or
_SC_PAGE_SIZE options on the sysconf() function may be used to retrieve the system page size.

Parameters

addr

(Input) The starting address of the memory areato be mapped. If the MAP_FIXED valueis
specified with the flagparameter, then address must be a multiple of the system page size. Use the
_SC PAGESIZE or _SC PAGE_SIZE options of the sysconf() API to obtain the actual page size
in an implementation-independent manner. When the MAP_FIXED flag is specified, this address
must not be zero.

(Input) The length in bytesto map. A length of zero will result in an errno of EINVAL.

protection

(Input) The access allowed to this process for this mapping. Specify PROT_NONE, PROT_READ,
PROT_WRITE, or atheinclusive-or of PROT_READ and PROT_WRITE. Y ou cannot specify a
protection value more permissive than the mode in which the file was opened.

The PROT_WRITE value requires that the file be opened for write and read access.

The following table shows the symbolic constants allowed for the protection parameter.

Symbolic Decimal
Constant Value Description

|IPROT_READ | 1 |Read access is allowed.

PROT_WRITE 2 Write accessis allowed. Note that this value assumes
PROT_READ also.

|IPROT_NONE | 8 INo data access is allowed.

PROT_EXEC 4 Thisvalueisallowed, but is equivalent to
PROT_READ.

flags
(Input) Further defines the type of mapping desired. There are actually two independent options

fildes

off

controlled through the flags parameter.

The first attribute controls whether or not changes made through the mapping will be seen by other
processes. The MAP_PRIVATE option will cause a copy on write mapping to be created. A change
to the mapping resultsin a change to a private copy of the affected portion of the file. These
changes cannot be seen by other processes. The MAP_SHARED option provides a memory
mapping of the file where changes (if allowed by the protection parameter) are made to thefile.
Changes are shared with other processes when MAP_SHARED is specified.

The second control provided by the flags parameter in conjunction with the value of the addr
parameter influences the address range assigned to the mapping. Y ou may request one of the
following address selection modes:

1. An exact address range specification. The system will set up the mapping at this location if
the address range is valid. Any mapping in the successfully mapping range that existed
prior to the mapping operation isimplicitly unmapped by this operation.

2. A suggested address range. The system will select arange close to the suggested range.

3. System selected. The system will select an address range. This usually is used to acquire
the initial memory map range. Subsequent ranges can be mapped relative to this range.

The MAP_FIXED flag value specifies that the virtual address has been specified through the addr
parameter. The mmap() function will use the value of addr as the starting point of the memory
map.

When MAP_FIXED is set in the flags parameter, the system isinformed that the return value must
be equal to the value of addr. Aninvalid value of addr when MAP_FIXED is specified will result
in avalue of MAP_FAILED, which hasavalue of 0, for the returned value and the the value of
errno will be set to EINVAL.

When MAP_FIXED is not specified, avaue of zero for parameter addr indicates that the system
may choose the value for the return value. If MAP_FIXED is not specified and a nonzero valueis
specified for addr, the system will take this as a suggestion to find a contiguous address range close
to the specified address.

The following table shows the symbolic constants allowed for the flags parameter.

Symbolic Decimal

Constant Value Description

IMAP_SHARED | 4 |Changes are shared.
IMAP_PRIVATE | 2 |Changes are private.
IMAP_FIXED | 1 |Parameter addr has exact address

(Input) An open file descriptor.

(Input) The offset into the file, in bytes, where the map should begin.

Authorities

No authority checking is performed by the mmap() function because this was done by the open() functions
which assigned the file descriptor, fildes, used by the mmap() function.

The following table shows the open access intent that is required for the various combinations of the
mapping sharing mode and mapping intent.

|Mapping Sharing Mode IMapping I ntent |Open accessintents allowed
IMAP_SHARED |PROT_READ |O_RDONLY or O_RDWR
IMAP_SHARED |PROT_WRITE |O_RDWR

IMAP_SHARED |PROT_NONE |O_RDONLY or O_RDWR
IMAP_PRIVATE |PROT_READ |O_RDONLY or O_RDWR
IMAP_PRIVATE IPROT_WRITE |O_RDONLY or O_RDWR
IMAP_PRIVATE |PROT_NONE |O_RDONLY or O_RDWR

Return Value

Upon successful completion, the mmap() function returns the address at which the mapping was placed;
otherwise, it returns avalue of MAP_FAILED, which has avalue of 0, and sets errno to indicate the error.
The symbol MAP_FAILED isdefined in the header <sys'mman.h>.

If successful, function mmap() will never return avalue of MAP_FAILED.

If mmap() failsfor reasons other than EBADF, EINVAL, or ENOTSUP, some of the mappings in the
address range starting at addr and continuing for len bytes may have been unmapped and no new mappings
are created.

Error Conditions

When the mmap() function fails, it returns MAP_FAILED, which has avalue of 0, and sets the errno as
follows.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

Thefile referenced by fildesis not open for read, or thefile is not opened for write and
PROT_WRITE for a shared mapping is being requested. This error also results when the

QSHRMEMCTL system valueis 0 and PROT_WRITE is specified.
[EBADFUNC]
Function parameter in the signal function is not set.
A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.
The fildes parameter does not refer to an open file descriptr.

[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

The vaue of the addr parameter isinvalid. This can occur when MAP_FIXED is specified and the
value of the addr parameter is not a multiple of the system page size. This may also occur if the
value for parameter addr isnot avalid VOID* pointer or is not within the range allowed.

This error number is also returned if the value of the flags parameter does not indicate either
MAP_SHARED or MAP_PRIVATE.
#This error number is also returned if the specified file isjournaled.<4
[ENODEV]
No such device.
The fildes parameter does not refer to a* TY PE2 stream file (* STMF) in the root, QOpenSys, or
user-defined file systems.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.

This can occur if the portion of the local process address space reserved for memory mapping has
been exceeded.

When MAP_FIXED is specified, it may also occur if the address range specified by the
combination of the addr and len parameters results in a range outside the range reserved for process
local storage.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.
An unsupported value, or combination of values, was specified on the protection parameter.
[ENXIO]
No such device or address.

The portion of the file, as specified by off and len is not valid for the current size of thefile.
[EOVERFLOW]
Object istoo large to process.

The object's data size exceeds the limit allowed by this function.

The value of off plus len exceeds the maximum offset allowed for the file referenced by fildes.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.
Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPFAOD4 E File system error occurred.
CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. The msync() function must be used to write changed pages of a shared mapping to disk. If a system
crash occurs before the msync function is executed, some data may not be preserved.

2. If the application chooses to mix file access methods such asread(), readv(), write(), or writev()
with mmap(), then the application must ensure proper synchronization. While operations such as
read() and write() arerelatively atomic because of internal locking, access through the memory
map created by mmap() does not synchronize with the read(), readv(), write(), and writev()
functions. Several synchronization functions are available, including the fentl() API, the
DosDetFilel ocks() API, and the mutex functions. Use one of these synchronization methods
around access and modifications if atomic accessis required. These techniques also will ensure
atomic access in a multiprocessor environment.

3. When using mmap(), it is necessary to first make a nonspecific mapping request to generate avalid
address. Thisis easily done by specifying a requested address (addr) of 0 and not specifying
MAP_FIXED. Then, using the returned address pa as the new requested address (addr) and also
specifying MAP_FIXED for the flags parameter. The example below illustrates how this technique
can be applied to achieve a contiguous mapping of several files.

4. 3The address pointer returned by mmap() can only be used with the V4R4MO or later versions of
the following languages:

o ILECOBOL
o ILERPG

o ILE Cif the TERASPACE parameter is used when compiling the program.<X

Related Information
« open()--Open File
» 0pen64()--Open File (Large File Enabled)
« mmap64()--Memory Map a Stream File (Large File Enabled)
« munmap()--Remove Memory Mapping
« mprotect()--Change Access Protection for Memory Mapping

« msync()--Synchronize Modified Data with Mapped File

Example

The following example creates two files and then produces a contiguous memory mapping of the first data
page of each file using two invocations of mmap().

See Code disclaimer information for information pertaining to code examples.

#i ncl ude <errno. h>

#i ncl ude <fcntl. h>

#i ncl ude <uni std. h>

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

mai n(voi d) {

size t bytesWitten = 0;

i nt my_offset = 0;

char textly="Data for file 1.";

char text2Y="Data for file 2.";

int fdi,fd2;

i nt PageSi ze;

voi d *address;

voi d *address2;

fdl = open("/tnp/ mmaptest 1",
(O CREAT | OTRUNC | O RDWR),
(SIRU | SIRMKG| S IRWO);

if (fdl <0)

perror("open() error");
el se {

bytesWitten = wite(fdl, textl, strlen(textl));
if (bytesWitten !'= strlen(textl)) {
perror("wite() error");
int closeRC = cl ose(fdl);
return -1;

}

fd2 = open("/tnp/ mmapt est 2",
(O_CREAT | O TRUNC | O RDWR)
(SIRU | SIRMKG| S IRWO);
if (fd2 < 0)
perror("open() error");
el se {
bytesWitten = wite(fd2, text2, strlen(text2));
if (bytesWitten !'= strlen(text2))
perror("wite() error");

PageSi ze = (int)sysconf(_SC PAGESI ZE)
if (PageSize < 0) {
perror("sysconf() error");

el se {

off t lastoffset = |Iseek(fdl, PageSize-1, SEEK SET);
if (lastoffset < 0) {
perror ("l seek() error");

el se {
bytesWitten = wite(fdl, " ", 1); /* grow file 1 to 1 page. */

off t lastoffset = |seek(fd2, PageSize-1, SEEK SET);
bytesWitten = wite(fd2, " ", 1); /* grow file 2 to 1 page. */

/*
* W want to show how to nenory map two files with

* the sanme nenory map. W are going to create a two page
* nmenory map over file nunber 1, even though there is only
* one page available. Then we will conme back and renmap
* the 2nd page of the address range returned fromstep 1
* over the first 4096 bytes of file 2.
*/

int |en;

nmy_offset = 0;
| en = PageSi ze; /* Map one page */
address = nmap(NULL,
| en,
PROT_READ,
MAP_SHARED,
fdil,
my_offset);
if (address !'= MAP_FAILED) {
address2 = mmap(((char*)address) +PageSi ze,
| en,
PROT_READ,
MAP_SHARED | MAP_FI XED, fd2,

nmy_offset);
if (address2 != MAP_FAILED) {
[* print data fromfile 1 */
printf("\n%", addr ess);
[* print data fromfile 2 */
printf("\n%", address2?);
} /* address 2 was okay. */
el se {
perror("mmap() error=");
} /* nmap for file 2 failed. */

el se {
perror("munmap() error=");

/*

* Unmap two pages.

*/
i f (munmap(address, 2*PageSize) < 0) {
perror("nmunmap() error");

el se;

}

}
cl ose(fd2);
unlink("/tnp/nmapt est2");

}
cl ose(fdl);
unl i nk("/tnp/ mmaptest1");
}
/*
* Unmap two pages.
*/
if (munnap(address, 2*PageSize) < 0) {
perror("munmap() error");

el se;

}

Output:

Data for file 1
Data for file 2

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

mmap64()--Memory map a Stream File (Large
File Enabled)

Syntax

#i ncl ude <sys/ mman. h>

void *muap64(void *addr,
size t len,
i nt protection,
int flags,
int fildes,
of f64 t off);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Yes

The mmap64() function, similar to the mmap() function, is used to establish a memory mapping of afile.

For adiscussion of the parameters, authorities required, return values, related information, and examples for
mmap(), see mmap()--Memory Map aFile.
Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs normally are hidden.

To use the mmap64() API, you must compile the source withthe LARGE_FILE_API macro
defined.

2. All of the usage notes for mmap() apply to mmap64().

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

mprotect()--Change Access Protection for
Memory Mapping

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

i nt

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Yes

nprotect(void *addr,
size t len,
i nt protection);

The mprotect() function is used to change the access protection of a memory mapping to that specified by
protection. All whole pages of the process's address space, that were established by the mmap() function,
addressed from addr continuing for alength of len will be affected by the change of access protection. Y ou
may specify PROT_NONE, PROT_READ, PROT_WRITE, or theinclusive or of PROT_READ and
PROT_WRITE as values for the protect parameter.

Parameters

addr

(Input) The starting address of the memory region for which the accessisto be changed.

The addr argument must be a multiple of the page size. The sysconf() function may be used to
determine the system page size.

(Input) The length in bytes of the address range.

protection

(Input) The desired access protection. Y ou may specify PROT_NONE, PROT_READ,
PROT_WRITE, or theinclusive or of PROT_READ AND PROT_WRITE as vauesfor the
protection argument.

No access through the memory mapping will be permitted if PROT_NONE is specified.
Storage associated with the mapping cannot be altered unless the PROT_WRITE value is specified.
For shared mappings, PROT_WRITE requires that the file descriptor used to establish the map had

been opened for write access. A shared mapping is a mapping created with the MAP_SHARED
value of the flag parameter of the mmayp() function.

Since private mappings do not alter the underlying file, PROT_WRITE may be specified for a
mapping that had been created MAP_PRIVATE and had been opened for read access.

The following table shows the symbolic constants allowed for the protection argument.

Symbolic ’Deci mal ’

Constant Value Description

|PROT_WRITE | 2 |Write access allowed.

IPROT_READ | 2 |Read access allowed.

|PROT_NONE | 8 INo access allowed.
Authorities

No authorization is required.

Return Value

Upon successful completion, the mprotect() function returns 0. Upon failure, -1 isreturned and errno is set

to the appropriate error number.

Error Conditions

When the mprotect() function fails, it returns -1 and sets there errno variable as follows.

[EACCES

Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFES)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

The protection argument specifies a protection that viol ates the access permission the process has
to the underlying mapped file.

If the QSHRMEMCTL system value was 0 at the time the mapping was created, then this continues
to limit the allowed access until the mapping is destroyed. An attempt to change the protection of a
shared mapping to PROT_WRITE when the QSHRMEMCTL system value had been zero at the
time of map creation will result in an errno of EACCES.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
The addr argument is not a mulitple of the page size.

This error number also may indicate that the value of the len argument is 0.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.

The addr argument is out of the allowed range.
[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

For mpr otect() this can be caused by an invalid combination of access requests on the protection
parameter.

Error Messages

The following messages may be sent from this function.

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E Filesystem error occurred. Error number &1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

Usage Notes

1. #The address pointer that was returned by mmap() can only be used with the V4R4MO or later
versions of the following languages:

o ILE COBOL
o ILE RPG
o ILE Cif the TERASPACE parameter is used when compiling the program. <&

Related Information
« open()--Open File
« 0pen64()--Open File (Large File Enabled)
« creat()--Create or Rewrite File
« creat64()--Create or Rewrite a File (Large File Enabled)

« mmap()--Memory Map a Stream File

« munmap()--Remove Memory Mapping

« msync()--Synchronize Modified Data with Mapped File

Example

The following example creates afile, produces a memory mapping of the file using mmap(), and then
changes the protection of the file using mprotect().

#i ncl ude <errno. h>

#i ncl ude <fcntl. h>

#i ncl ude <uni std. h>

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

mai n(voi d) {

size t bytesWitten =0;

int fd;

int PageSi ze;

char textY = "This is a test";

if ((PageSize = sysconf(_SC PAGE SIZE)) < 0) {
perror("sysconf() Error=");
return -1;

}

fd = open("/tnp/ mprotectTest",
(O CREAT | OTRUNC | O RDWR),
(S IRU | SIRMKG| S IRWO);
if (fd<0) {
perror("open() error");
return fd,

}

off t lastoffset = Iseek(fd, 0, SEEK SET);

bytesWitten = wite(fd, text, strlen(text));

if (bytesWitten != strlen(text)) {
perror("wite error. ");

return -1;
}
| astof fset = | seek(fd, PageSize-1, SEEK SET);
bytesWitten = wite(fd, " ", 1); /* grow file to 1 page. */

if (bytesWitten I= 1) {
perror("wite error. ");
return -1;

}
/* mmap the file. */
voi d *addr ess;
int |en;
off t my offset = O;
| en = PageSi ze; /* Map one page */
address =
mrap(NULL, | en, PROT_NONE, MAP_SHARED, fd, my_offset);

if (address == MAP_FAI LED)
perror("mmap error. ");
return -1;

}

if (nprotect(address, len, PROT_WRITE) < 0) {
perror("nprotect failed with error:");
return -1;

el se (void) printf("%", address);

close(fd);
unl i nk("/tnp/ mprotectTest");

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

msync()--Synchronize Modified Data with
Mapped File

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

int msync(void *addr,

size t len,
i nt flags);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Yes

The msync() function can be used to write modified data from a shared mapping (created using the
mmap() function) to non-volatile storage or invalidate privately mapped pages. The datalocated through

mapping address addr for alength of len are either written to disk, or invalidated, depending on the value of
flags and the private or shared nature of the mapping.

Parameters

addr

The starting address of the memory region to be synchronized to permanent storage. The specified
address must be a multiple of the page size.

The number of bytes affected. The length must not be zero. If the length is not a multiple of the
page size the system will round this value to the next page boundary.

flags
The desired synchronization.

The following table shows the symbolic constants allowed for the flags parameter.

Symbolic ’Deci mal

Constant Value Description

IMS_ASYNC | 1 |Perform asynchronous writes.
IMS_SYNC | 2 |Perform synchronous writes.
IMS_INVALIDATE | 4 |Invalidate privately cached data

TheMS_SYNC and MS_ASYNC options are mutually exclusive. TheMS_SYNC and
MS_ASYNC options are ignored if the memory map was created with the MAP_PRIVATE option.

The MS_INVALIDATE option is used to discard changes made to a memory map created with the
MAP_PRIVATE option. The private memory map is synchronized with the current datain thefile.
Any reference subsequent to the execution of the msync() function that invalidates a page will
result in areference to the current value of the file. The first modification of a page after the
privately mapped page isinvalidated results in the creation of afresh private copy of that page.
Subsequent modifications of this page prior to the next execution of an msync that invalidates the
page will result in modifications to the same private copy of the page.

The MS_INVALIDATE valueisignored if the memory map was created with the MAP_SHARED
option.

Authorities

No authorization is required.

Return Value

Upon successful completion, the msync() function returns O.

Error Conditions

When the msync() function fails, it returns -1 and sets errno as follows.
[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
The value of the flags parameter may be invalid.
The value of the len parameter may be zero.

The vaue of the addr may not be a multiple of the page size or is out of the allowed range.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.

CPE3418 E Possible APAR condition or hardware failure.
CPFAOD4E Filesystem error occurred. Error number &1.

CPF3CF2E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Usage Notes

1. The msync() function must be used to write changed pages of a shared mapping to disk. If a system
crash occurs before the msync() function completes, some data may not be preserved.

Process termination does not automatically write changed pages to disk. Some or all pages may be
eventually written by the paging subsystem, but no guarantee is given. Therefore, if the data must
be preserved the msync() function must be used to ensure changes made through a shared memory
map are written to disk.

2. #The address pointer that was returned by mmap() can only be used with the V4R4MO or later
versions of the following languages:

o ILE COBOL
o ILE RPG
o ILE Cif the TERASPACE parameter is used when compiling the program. <&

Related Information

» open()--Open File

open64()--Open File (Large File Enabled)

« mmap()--Memory Map a Stream File

munmap()--Remove Memory Mapping

mprotect()--Change Access Protection for Memory Mapping

Example

The following example creates afile, creates amemory map, stores data into the file, and writes the datato
disk using the msync() function.

#i ncl ude <errno.h >
#i ncl ude <fcntl.h >
#i ncl ude <unistd.h >
#i ncl ude <stdio.h >
#i ncl ude <stdlib.h >
#i ncl ude <string.h >
#i ncl ude <sys/types.h >
#i ncl ude <sys/mman. h >

mai n(voi d) {

size t bytesWitten =0;

int fd;

i nt PageSi ze;)

const char textY = "This is a test";

if ((PageSize = sysconf(_SC PAGE SIZE)) < 0) {
perror("sysconf() Error=");
return -1;

}

fd = open("/tnp/ msyncTest",
(O CREAT | OTRUNC | O RDWR),
(SIRU | SIRMKG| S IRWO);
if (fd<0) {
perror("open() error");

return fd;
}
off t lastoffset = | seek(fd, PageSize, SEEK SET);
bytesWitten = wite(fd, " ", 1);

if (bytesWitten !'=1) {
perror("wite error. ");
return -1;

}

/* mmap the file. */
voi d *address;
int |en;
off t my offset = 0;
| en = PageSi ze; /* Map one page */
address =
mmap(NULL, |en, PROT_WRI TE, MAP_SHARED, fd, ny_offset);

if (address == MAP_FAI LED)
perror("mmap error. ");
return -1;

/* Move sone data into the file using nmenory nmap. */
(void) strcpy((char*) address, text);
/* use nsync to wite changes to disk. */
if (meync(address, PageSize , M5 SYNC) < 0) {
perror("nsync failed with error:");
return -1;

el se (void) printf("%","msync conpl eted successfully.");

cl ose(fd);

unlink("/tnp/ msyncTest");
}
Output:

This is a test.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

munmap()--Remove Memory Mapping

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

int munmap (void *addr,
size t len);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Yes

The munmap() function removes addressability to a range of memory mapped pages of a process's address
space. All pages starting with addr and continuing for alength of len bytes are removed.

The address range specified must begin on a page boundary. Portions of the specified address range which
are not mapped, or were not established by the mmap() function, are not affected by the munmap()
function.

If the mapping was created MAP_PRIVATE then any private altered pages are discarded and the system
storage associated with the copies are returned to the system free space.

When the mapping is removed, the reference associated with the pages mapped over the file is removed. If
the file has no references other than those due to memory mapping and the remaining memory mappings
are removed by the munmap() function, then the file becomes unreferenced. If the file becomes
unreferenced due to an munmap() function call and the fileis no longer linked, then the file will be
deleted.

Parameters

addr
The starting address of the memory region being removed.

The addr parameter must be a multiple of the page size. The value zero or NULL isnot avalid
starting address. The sysconf() function may be used to determine the system page size.

(Input) The length of the address range. All whole pages beginning with addr for alength of len are
included in the address range.

Authorities

No authorization is required.

Return Value

Upon successful completion, the munmap() function returns 0. Upon failure, -1 is returned and errno is set
to the appropriate error number.

Error Conditions

When the munmap() function fails, it returns -1 and sets errno as follows.
[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

For munmap() this may mean that the address range from addr and continuing for a length of len
isoutside the valid range allowed for a process. This error may also indicate that the value for the
addr parameter is not amultiple of the page size. A value of O for parameter len also will result in
this error number.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. #*The address pointer that was returned by mmap() can only be used with the V4R4MO or later
versions of the following languages:

o ILE COBOL
o ILERPG

o ILE Cif the TERASPACE parameter is used when compiling the program.<

Related Information
» open()--Open File

open64()--Open File (Large File Enabled)

o mmap()--Memory Map a Stream File

mprotect()--Change Access Protection for Memory Mapping

msync()--Synchronize Modified Data with Mapped File

Example

The following example creates afile, produces a memory mapping of the file using mmap(), and then
removes the mapping using the munmap() function.

#i ncl ude <stdi o. h>

#i nclude <fcntl. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

mai n() {
char fn[]="creat.file";
char text[]="This is a test";
int fd;
i nt PageSi ze;

if ((fd =
open(fn, O CREAT | ORDW | OAPPEND, S |RWKU) < 0)
perror("open() error");
else if (wite(fd, text, strlen(text)) < O;
error("wite() error=");
else if ((PageSi ze=sysconf(_SC PAGESIZE)) < 0)
error("sysconf() Error=");

el se {
off t lastoffset = |seek(fd, PageSize-1, SEEK SET);
wite(fd, " ", 1); /* grow file to 1 page. */

/* mmap the file. */
voi d *address;
int |en;

my_offset = 0;

| en = 4096; /* Map one page */
address =

mrmap(NULL, | en, PROT_READ, MAP_SHARED, fd, my_offset)
if (address !'= MAP_FAILED) {

if (munmap(address, len)) == -1) {
error("munmap failed with error:");
}

}

close(fd);
unlink(fn);
}
}

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

open()--Open File

Syntax

#i ncl ude <fcntl. h>

int open(const char *path, int oflag, . . .);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The open() function opens afile and returns a number called afile descriptor. You can use thisfile
descriptor to refer to the file in subsequent 1/0 operations such asread() or write(). In these subsequent
operations, the file descriptor is commonly identified by the argument fildes or descriptor. Each file opened
by ajob gets anew file descriptor.

If the last element of the path is a symbolic link, the open() function resolves the contents of the symbolic
link.

open() positions the file offset (an indicator showing where the next read or write will take place in the file)
at the beginning of the file. However, there are options that can change the position.

open() clearsthe FD_CLOEXEC file descriptor flag for the new file descriptor. Refer to fentl()--Perform
File Control Command for additional information about the FD_CL OEXEC flag.

The open() function also can be used to open adirectory. The resulting file descriptor can be used in some
functions that have a fildes parameter.

If the file being opened has been saved and its storage freed, the file is restored during this open() function.
The storage extension exit program registered against the QIBM_QTA_STOR_EX400 exit point is called
to restore the object. (See the Storage Extension Exit Program for details). If the file cannot successfully be

restored, open() fails with the EOFFLINE error number.

Parameters

path
(Input) A pointer to the null-terminated path name of the file to be opened.
This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of thejob.

When anew fileis created, the new file name is assumed to be represented in the language and
country or region currently in effect for the job.

See QlgOpen()--Open a File (using NL S-enabled path name) for a description and an exampl e of

oflag

mode

supplying the path in any CCSID.
(Input) The file status flags and file access modes of the file to be opened. See Using the oflag
Parameter.

Note: The open64() API setsthe O LARGEFILE flag internally.

(Input) An optional third parameter of type mode _t that is required if the O_CREAT flag is set. It
specifies the file permission bits to be used when afile is created. For a description of the
permission bits, see chmod()--Change File Authaorizations.

conversion I1D

(Input) An optional fourth parameter of type unsigned int that is required if the O_CCSID or
O_CODEPAGE flag is set.

If the O_CCSID flag is set, this parameter specifiesa CCSID. If the O_CODEPAGE flag is set, this
parameter specifies a code page used to derive a CCSID.

The specified or derived CCSID is assumed to be the CCSID of the datain the file, *when a new
fileis created. This CCSID is associated with the file during file creation.

When the O_TEXT_CREAT flag and its prerequisite flags are not set, the specified or derived
CCSID isthe CCSID in4&which datais to be returned (when reading from afil€), or the CCSID in
which datais being supplied (when writing to afile).

See Using CCSIDs and code pages for more details.

Frtext file creation conversion |D

(Input) An optional fifth parameter of type unsigned int that isrequired if the O TEXT _CREAT
flag, along with prerequisite flags O_ TEXTDATA, O_CREAT, and either O_CCSID or
O_CODEPAGE, is set. Note: because O_EXCL is not required, this parameter may apply to files
that already exist.

When O_CCSID flag is set, this parameter specifiesa CCSID. If the O_CODEPAGE flag is set,
this parameter specifies a code page used to derive a CCSID.

The specified or derived CCSID will be used as the CCSID of this open instance. Therefore, this
will be the CCSID in which dataisto be returned (when reading from afile), or the CCSID in
which datais being supplied (when writing to afile). Datawill be stored in the CCSID associated
with the open file. Note: if the file was not created by this open operation, the file's CCSID may be
different than the CCSID associated with the conversion ID parameter.

See Using CCSIDs and code pages for more detail s.%%

Using the oflag Parameter

One of the following values must be specified in oflag:
O_RDONLY

Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR
Open for both reading and writing.

One or more of the following also can be specified in oflag:
O_APPEND
Position the file offset at the end of the file before each write operation.

O_CREAT
The call to open() has a mode argument.

If the file being opened already exists, O CREAT has no effect, except when O_EXCL isaso
specified (see the following description of O_EXCL.

If the file being opened does not exist, it is created. The user ID (uid) of thefileis set to the
effective uid of the job. Z#If the object is being created in the Root ('/'), QOpensys, and user-defined
file systems, the following applies. If the S_ISGID bit of the parent directory is off, the group ID
(GID) is set to the effective GID of the thread creating the object. If the S _ISGID bit of the parent
directory ison, the group ID (GID) of the new abject is set to the GID of the parent directory. For
al other file systems, the &group ID (GID) of thefileis set to the GID of the directory in which the
fileiscreated. File permission bits are set according to mode, except for those set in the file mode
creation mask of thejob. The S_ISUID (set-user-ID) and S_ISGID (set-group-I1D) bits are also set
according to mode. The file type bitsin mode are ignored. All other bits in mode must be cleared
(not set) or a[EINVAL] error is returned.

O_EXCL

Ignored if O_CREAT isnot set. If both O_ EXCL and O_CREAT are specified, open() failsif the
file aready exists. If both O_ EXCL and O_CREAT are specified, and path names a symbolic link,
open() fails regardless of the contents of the symbolic link.

O_LARGEFILE

Open alarge file. The descriptor returned can be used with the other APIsto operate on files larger
than 2GB (GB = 1073741824) minus 1 byte. The file systems that do not support large files will
justignorethe O_LARGEFILE openflagif itisset. The O_LARGEFILE flag isignored by thefile
systems when open() is used to open a directory.

O_TRUNC

Truncate the file to zero length if thefile existsand it isa"regular file" (a stream file that can
support positioning the file offset). The mode and owner of thefile are not changed. O_TRUNC
applies only to regular files. O_TRUNC has no effect on FIFO special files. The O_TRUNC
behavior applies only when thefileis successfully opened with O_ RDWR or O_WRONLY .

Truncation of the file will return the [EOVERFLOW)] error if thefileislarger than 2 GB minus 1
byte and if the O_LARGEFILE oflag is not also specified on the open() call. (Note that open64()
setsthe O_LARGEFILE oflag automatically.)

If thefileexistsand it isaregular file, the S ISUID (set-user-ID) and S _ISGID (set-group-1D) bits
of the file mode are cleared.

If the file has an OS/400 digital signature, open() with the O_TRUNC oflag causes the signature to
be deleted.

O_TEXTDATA
Determines how the datais processed when afileis opened.

o If O_TEXTDATA is specified, the datais processed astext.

The datais read from the file and written to the file assuming it isin textual form. When
the datais read from the filg, it is converted from the CCSID of the file to the CCSID of the
job or the CCSID specified by the application receiving the data. When datais written to
thefile, it is converted to the CCSID of the file from the CCSID of thejob or the CCSID
specified by the application.

For true stream files, any line-formatting characters (such as carriage return, tab, and
end-of-file) are just converted from one CCSID to another.

When reading from arecord file that is being used as a stream file, end-of-line characters
are added to the end of the datain each record. When writing to the record file:
» End-of-line characters are removed.

= Records are padded with blanks (for a source physical file member) or nulls (for a
data physical file member).

= Tab characters are replaced by the appropriate number of blanksto the next tab
position.

o If O_ TEXTDATA isnot specified, the datais processed as binary. The datais read from
the file and written to the file without any conversion. The application is responsible for
handling the data.

See Using CCSIDs and code pages for more details on text conversions.

0_ccsD

The call to open has a fourth argument (conversion ID), which isto be interpreted asa CCSID.
Text conversions between any two CCSIDs supported by the iconv() API can be performed.

Thisflag cannot be specified with the O_CODEPAGE flag.

See Using CCSIDs and code pages for more details.

O_CODEPAGE

The call to open has afourth argument (conversion ID), which isto be interpreted as a code page.
Only single-byte-to-single-byte or double-byte-to-double-byte text conversions are allowed.

This flag cannot be specified with the O_CCSID flag.

See Using CCSIDs and code pages for more details.

0 _TEXT_CREAT

The call to open has a fifth argument (text file creation conversion ID), which isto be interpreted as
either a code page or CCSID, depending on whether the O_ CODEPAGE or O_CCSID was s&t.

If the O_TEXT_CREAT flag is specified, al of the following flags must a so be specified:
O_CREAT, O_TEXTDATA, and either O_CODEPAGE or O_CCSID. If all of these prerequisite
flags are not specified when O_TEXT_CREAT is specified, then the call to open will fail with
error condition [EINVAL].

Thisflag indicates that the textual data read from or written to thisfile will be converted between
the CCSID specified or derived from the text file creation conversion ID and the CCSID of thefile.
When datais read from thefile, it is converted from the CCSID of the file to the CCSID specified
or derived from the text file creation conversion ID. When datais written to the file, it is converted
to the CCSID of thefile from the CCSID specified or derived from the text file creation conversion
ID.

See Using CCSIDs and code pages for more details.<%

O_INHERITMODE

Create the file with the same data authorities as the parent directory that the fileis created in. Any
data authorities passed in the mode parameter are ignored. The mode parameter, however, must till
be specified with avalid mode value. Thisflag isignored if the O_CREAT flag is not set.

The "root" (/), QOpenSys, QSY S.LIB, #independent ASP QSY S.LIB, €and QDL Sfile systems
support this flag on an open() with the O_CREAT flag set. The QOPT file system ignores this flag
because filesin thisfile system do not have data authorities.

O_NONBLOCK
Return without delay from certain operations on this open descriptor.

If O_NONBLOCK is specified when opening a FIFO:
o Anopen() for reading only or reading and writing access returns without delay.

o An open() for writing only returns an error if no job currently has the FIFO open for
reading. The errno value will be ENXIO.

If O_NONBLOCK isnot specified when opening a FIFO:

o An open() for reading only blocks the calling thread until another thread opens the FIFO
for writing.

o Anopen() for writing only blocks the calling thread until another thread opens the FIFO
for reading.

o Anopen() for reading and writing returns without delay.

The O_NONBLOCK open flag isignored for al other object types.
Z0_SYNC

Updates to the file will be performed synchronously. All file data and file attributes relative to the
I/O operation are written to permanent storage before the update operation returns. Update
operations include, but are not limited to, the following: ftruncate(), open() with O_ TRUNC, and

write().

O_DSYNC

Updates to the file will be performed synchronously, but only the file datais written to permanent
storage before the update operation returns. Update operations include, but are not limited to, the
following: ftruncate(), open() with O_TRUNC, and write().

O_RSYNC

Read operations to the file will be performed synchronously. Pending update requests affecting the
datato be read are written to permanent storage. Thisflag is used in combination with O_SYNC or
O_DSYNC. When O_RSYNC and O_SYNC are s&t, dl file dataand file attributes are written to
permanent storage before the read operation returns. When O_RSYNC and O_DSYNC are set, dl
file datais written to permanent storage before the read operation returns.<

A file sharing mode may also be specified in the oflag. If none are specified, a default sharing mode of
O_SHARE_RDWR isused. No more than one of the following may be specified:

O_SHARE_RDONLY
Share with readers only. Open thefile only if both of the following are true:

o Thefilecurrently is not open for writing.

o The access intent does not conflict with the sharing mode of another open instance of this
file.

Once opened with this sharing mode, any request to open thisfile for writing fails with the
[EBUSY] error.

O_SHARE_WRONLY
Share with writers only. Open thefile only if both of the following are true:

o Thefileisnot currently open for reading.

o The access intent does not conflict with the sharing mode of another open instance of this
file.

Once opened with this sharing mode, any request to open thisfile for reading fails with the
[EBUSY] error.

O_SHARE_RDWR

Share with readers and writers. Open thefile only if the access intent of this open does not conflict
with the sharing mode of another open instance of thisfile.

O SHARE_NONE

Share with neither readers nor writers. Open the file only if the file is not currently open. Once the
fileis opened with this sharing mode, any request to open thisfile for reading or writing fails with
the [EBUSY] error.

All other bits in oflag must be cleared (not set).

Notes:

1. If O_ WRONLY or O_RDWR is specified and the file is checked out by a user profile other than
that of the current job, the open() fails with the [EBUSY] error.

2. If O_WRONLY or O_RDWR is specified and the file is marked "read-only," the open() fails with
the [EROOBJ] error.

3. If O_CREAT is specified and the file did not previously exist, a successful open() sets the access
time, change time, modification time, and creation time for the new file. It also updates the change
time and modification time of the directory that contains the new file (the parent directory of the
new file).

If O_TRUNC is specified and the file previously existed, a successful open() updates the change
time and modification time for thefile.
4. Sharing Files

If asharing mode is not specified in the oflag parameter, a default sharing mode of
O_SHARE_RDWR is used. The open() may fail with the [EBUSY] error number if thefileis

aready open with a sharing mode that conflicts with the access intent of this open() request.

Directories may only be opened with a sharing mode of O_SHARE_RDWR. If any other sharing
mode is specified, the open() fails with error number [EINVAL].

For * CHRSF files, asharing mode of O_SHARE_RDWR is used regardless of the sharing mode
specified in the oflag parameter. The sharing mode specified in the oflag parameter isignored.

The following table shows when conflicts will occur:

|File Sharing Conflicts
|Sharing Mode
Readers No Others
Access Intent ’ReadersOnIy WritersOnly |and Writers|(Exclusive)
|O_RDONLY |OK |EBUSY |OK |EBUSY
|O_WRONLY |[EBUSY |OK |OK |EBUSY
|O_RDWR |EBUSY |EBUSY |OK |EBUSY

Using CCSIDs and code pages

If the O_CCSID or O_CODEPAGE flag is specified, but O_CREAT is not, the mode parameter must be
specified, but its value will be ignored.

The value of conversion ID must be less than 65536. The [EINVAL] error will be returned if it is not.

When anew fileis created:

« conversion ID is used to derive a CCSID to be associated with the new file (the "file CCSID") and
this open instance (the "open CCSID"). If the fileisto contain textual data, this CCSID is assumed
to be the CCSID of the data, Z+unlessthe O_TEXT_CREAT flag and its prerequisite flags were
also specified. &

o If neither O_CCSID nor O_CODEPAGE is specified, or if O_CCSID is specified and conversion
ID is zero (0), thefile CCSID is set to the CCSID of thejob. If thejob CCSID is 65535, thefile
CCSID is set to the default CCSID of the job.

« For this open instance, if the O_TEXT_CREAT flag and its prerequisite flags were not specified,
the file CCSID and open CCSID are the same and no text conversion will take place on data written
to or read from the file, whether O_TEXTDATA is specified or not. If you would like to associate
the new file with the CCSID specified in conversion ID, but you would also like to have text
conversion occur between the file's CCSID and a different CCSID, consider using the
O_TEXT_CREAT flag and corresponding text file creation conversion ID parameter. <%

o The QSYS.LIB #and independent ASP QSY S.LIB file systems 4% cannot associate the derived
CCSID with the database file member being created. Rather, the CCSID of the new member isthe
CCSID of the database file in which the member is being created. Data read or written during this
open instance is converted from or to the CCSID of the database file.

When an existing file is opened:

« conversion ID is used to derive a CCSID to be associated with this open instance (the "open
CCsID").

« If neither O_CCSID nor O_CODEPAGE is specified, or if O_CCSID is specified and conversion
ID is zero (0), the open CCSID is set to the CCSID of thejob. If thejob CCSID is 65535, the open
CCSID is set to the default CCSID of the job.

o If O TEXTDATA is specified, the system will convert from the file CCSID to the open CCSID
when reading data from the file, and convert from the open CCSID to the file CCSID when writing
datato thefile.

o If O TEXTDATA isspecified, but O CCSID is not:

o open() failswhen the file CCSID and open CCSID are not the same and one of them is not
strictly single-byte or double-byte.

o open() failswhen the file CCSID is double-byte and the open CCSID is single-byte, or the
reverse.

o Ineither case, the [ECONVERT] error is returned.

See Examples for a sample program that creates a new file and then opensit for data conversion.

Authorities

Note: Adopted authority is not used.

ZrAuthorization Required for open() (excluding QSYS.LIB, independent ASP QSYS.LIB,and QDL S)%%

Authority
Required
*X |EACCES

Object Referred to

|Each directory in the path name preceding the object to be opened |

|Existing object when access modeis O_RDONLY | *R |EACCES

|Existing object when access mode is O_WRONLY | *W |EACCES

|Existing object when access modeis O_RDWR | *RW |EACCES
|

errno

|Existing object when O_TRUNC is specified *W |EACCES

Parent directory of object to be created when object does not exist and O_CREAT *WX ’EACCES
is specified

ZrAuthorization Required for open() in the QSYS.LIB and independent ASP QSYS.LIB File Systems#

Authority
Object Referred to Required

|Each directory in the path name preceding the object to be opened | *X |EACCES
|Existing object when access modeis O_RDONLY | *R |[EACCES

errno

|Existi ng object when access modeis O_WRONLY *W |EACCES
|Existing object when access modeis O_RDWR *RW [EACCES
|Existing object when O_TRUNC is speified *W |[EACCES

Parent directory of object to be created when object does not exist and *OBJIMGT or [EACCES
O_CREAT is specified *OBJALTER

Parent directory of the parent directory of object to be created when object does *ADD EACCES
not exist and O_CREAT is specified

|Authorizati on Required for open() in the QDL S File System

Authority
Required

Object Referred to
|Each directory in the path name preceding the object to be opened | *X |[EACCES
| Existing object when access mode is O_RDONLY | *R |EACCES
|Existing object when access modeis O_WRONLY | *W |EACCES
|
|

errno

|Existing object when access modeis O_RDWR *RW |EACCES
|Existing object when O_TRUNC is specified *W |[EACCES

Parent directory of object to be created when object does not exist and O_CREAT |*CHANGE ’EACCES
is specified

Return Value

value open() was successful. The value returned is the file descriptor.

-1 open() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If open() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to aremote file may
also fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assigned when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.
An attempt was made to use a system resource that is not available at thistime.

The open sharing mode may conflict with another open of thisfile, or O WRONLY or O_ RDWR
is specified and the file is checked out by another user.

In the QSY S.LIB #rand independent ASP QSY S.LIB file systems, «Xif the O_TEXTDATA flag
was specified, the file may be already openin thisjob or another job wherethe O_TEXTDATA
flag was not specified. Or if the O_TEXTDATA flag was not specified, the file may be already
open in thisjob or another job wherethe O_TEXTDATA flag was specified.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EEXIST]
File exists.

The file specified already exists and the specified operation requiresthat it not exist.

The named file, directory, or path already exists.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.
[EFILECVT

File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.
[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.
A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.
An argument value is not valid, out of range, or NULL.
o O _RDONLY and O_TRUNC were both specified.
o Morethan oneof O_ RDONLY, O WRONLY, or O RDWR are set in oflag.

o Morethan oneof O_SHARE_RDONLY, O_SHARE_WRONLY, O_SHARE_RDWR, or
O_SHARE_NONE are set in oflag.

o Unused bitsin oflag are set and should be cleared.

o Unused bitsin mode are set and should be cleared.

o Itisnot valid to open this type of object.

o O _CODEPAGE and O_CCSID were both specified.

[EIQ]
Input/output error.

A physical /O error occurred.

A referenced object may be damaged.
[EISDIR]
Specified target is adirectory.
The path specified named a directory where afile or object name was expected.
The path name given isadirectory. Write access or O_TRUNC has been specified and is not valid
for adirectory.
[EJRNDAMAGE]
Journal damaged.
A journa or al of the journa's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.
[EJRNINACTIVE]
Journal inactive.
The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.
[EJRNRCVSPC]
Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal .4
[ELOOP]
A loop exists in the symbolic links.
This error isissued if the number of symboalic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]
Too many open files for this process.
An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.
The process has more than OPEN_MAX descriptors aready open (see the sysconf() function).
[ENAMETOOLONG]
A path name istoo long.
A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

£ ENEWJRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal %

[ENFILE]
Too many open filesin the system.

A system limit has been reached for the number of files that are allowed to be concurrently openin
the system.

The entire system has too many other file descriptors already open.
[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

Thereis not enough memory to perform the requested function.

[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.
Insufficient space remains to hold the intended file, directory, or link.
[ENOSYY
Function not implemented.
An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.
The path name given refers to an object that does not support this function.
[ENOSYSRSC]
System resources not available to complete request.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.
The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.
To recover from this error, wait until processing has completed for the independent ASP.
[ENOTDIR]
Not a directory.
A component of the specified path name existed, but it was not a directory when a directory was
expected.
Some component of the path name is not a directory, or isan empty string.
[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.
[ENXIO]
No such device or address.
O_NONBLOCK and O_ WRONLY open flags are specified, path refers to a FIFO, and no job has
the FIFO open for reading.
[EOFFLINE]
Operation is suspended.
Y ou have atempted to use an object that has had its data saved and the storage associated with it
freed. An attempt to retrieve the object's data failed. The object's data cannot be used until itis

restored successfully. The object's data was saved and freed either by saving the object with the
STG(* FREE) parameter or by calling an API.

[EOVERFLOW]

Object istoo large to process.

The object's data size exceeds the limit allowed by this function.

The size of the specified file cannot be represented correctly in avariable of type off_t (thefileis
larger than 2GB minus 1 byte).

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.
[EROOBJ]

Object isread only.

Y ou have attempted to update an object that can be read only.
[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

A[ETXTBSY]
Text file busy.

An attempt was made to execute an OS/400 PA SE program that is currently open for writing, or an
attempt has been made to open for writing an OS/400 PASE program that is being executed. 4

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]
Address not available.

[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.

[EHOSTDOWN]
A remote host is not available.

[EHOSTUNREACH)]
A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.

[ENETUNREACH]
Cannot reach the destination network.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
Message I D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPFAOD4 E File system error occurred. Error number & 1.
CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root
= QOpenSys

User-defined

« ONTC

QSYS.LIB

#Independent ASP QSYS.LIB 4
= QOPT

2. Root, QOpenSys, and User-Defined File System Differences

#The user who creates the file becomes its owner. The S_ISGID bit of the directory affects what
the group ID (GID) isfor objectsthat are created in the directory. If the S_ISGID hit of the parent
directory is off, the group ID (GID) is set to the effective GID of the thread creating the object. If
the S_ISGID hit of the parent directory is on, the group ID is copied from the parent directory in
which thefileis created. %

When you do not specify O_INHERITMODE for the oflag parameter, the owner, primary group,
and public object authorities (*OBJEXIST, *OBIJMGT, *OBJALTER, and *OBJREF) are copied
from the parent directory's owner, primary group, and public object authorities. This occurs even
when the new file has a different owner than the parent directory. The owner, primary group, and
public data authorities (*R, *W, and * X) are derived from the permissions specified in the mode
(except for those permissions that are also set in the file mode creation mask). The new file does
not have any private authorities or authorization list. It only has authorities for the owner, primary
group, and public.

When you specify O_INHERITMODE for the oflag parameter, the owner, primary group, and
public data and object authorities (*R, *W, *X, *OBJEXIST, *OBJMGT, *OBJALTER, and
*OBJREF) are copied from the parent directory's owner, primary group, and public data and object
authorities. In addition, the private authorities (if any) and authorization list (if any) are copied
from the parent directory. If the new file has a different owner than the parent directory and the
new file's owner has a private authority in the parent directory, that private authority is not copied
from the parent directory. The authority for the owner of the new file is copied from the owner of
the parent directory.

There are some restrictions when opening a FIFO for text conversion and the CCSIDsinvolved are
not strictly single-byte:

o Opening a FIFO for reading or reading and writing is not allowed. The errno global
variableis set to [ENOTSUP].

o Any conversion between CCSIDs that are not strictly single-byte must be done by an open
instance that has write only access.

3. #QSYS.LIB and Independent ASP QSY S.LIB File System Differences®

The following object types are alowed to be opened:

o *MBR (physical file member)
The only types of physical files supported when specifying the O TEXTDATA flag are
program-described physical filesthat contain asingle field and source physical files that
contain asingle text field. Externally described physical files are supported for binary
access only.

o *LIB (library)

o *FILE (physicdl file or savefile)

o *USRSPC (user space)

When anew member is created, the mode and profiles must match those of the parent file. If they
do not match, the create operation will fail.

The user who creates a member becomes the owner of the member. However, this owner must be
the same as the owner of the parent directory in which the member is being created.

The group ID is obtained from the primary user profile, if one exists. This group ID must be the
same as the group ID of the file in which the member is being created.

The primary group authorities specified in mode are not saved if no primary group exists.
Y ou cannot open a member in afile that has a mixed data CCSID.

The file access time for a database member is updated using the normal rules that apply to database
files. At most, the access time is updated once per day.

Dueto the restriction that only one job may have a database member open for writing at atime, the
sharing modes O_SHARE_WRONLY and O_SHARE_RDWR do not provide the requested level
of sharing.

o If O SHARE WRONLY is specified, the open() succeeds. However, in al jobs other than
the one that performed this open(), the actual enforced share mode for thisfileis equivalent
to O_SHARE_NONE.

o If O_ SHARE_RDWR is specified, or if no share mode is specified, the open() succeeds.
However, in al jobs other than the one that performed this open(), the actual enforced
share mode is equivalent to O SHARE _RDONLY.

The open() of adatabase member fails with an [EBUSY] error under any of the following
conditions:

o The O_TEXTDATA flagis specified, but the file is already open in thisjob or another job
wherethe O_TEXTDATA flag is not specified.

o The O_TEXTDATA flagis not specified, but the fileis already openin thisjob or another
job wherethe O_TEXTDATA flag and write access are specified.

o The O_TEXTDATA flagis specified and write access is requested, but the file is already
open in this job or another job where O_TEXTDATA is specified and write accessis also
reguested.

0 #The O_CREAT flag is specified, the member already exists, and the QSYS.LIB or
independent ASP QSY S.LIB file system cannot get exclusive access to the member. They
must have exclusive access to clear the old member. &

o The O_TEXTDATA flagis not specified (binary mode) and more than one job triesto
obtain write access to the member. This condition does not apply to PC clients. Because PC
clients share the same server job, they can share access to the member.

o The user attempts to open a member with access intentions that conflict with existing
object locks on the member.

This function will fail with error code [ENOTSAFE] if the object on which thisfunction is
operating is asave file and multiple threads exist in the job.

This function will fail with error code [ENOTSURP] if the file specified is a save file and the
O_RDWR flag is specified. A savefile can be opened for either reading only or writing only.

This function will fail with error code [ENOTSURP] if the file specified is a save file and the
O_TEXTDATA flag is specified.

If asave file containing datais opened for writing, the O_APPEND or O_TRUNC flag must be
specified. Otherwise, the open() will fail with errno set to [ENOTSUP].

There are some restrictions on sharing modes when opening a save file.

a. A savefile may not have more than one open descriptor per job, regardless of the sharing
mode specified.

= A savefile currently open for reading only cannot be opened again in the same job
for reading or writing. The open() will fail with errno set to [EBUSY].

= A savefile currently open for writing only cannot be opened again in the same job
for reading or writing. The open() will fail with errno set to [EBUSY].

b. Dueto therestriction that only one job may have a save file open when the save file is open
for writing, the sharing modes O_SHARE_WRONLY and O_SHARE_RDWR do not
provide the regested level of sharing.

= If O_ SHARE_WRONLY is specified, the open() succeeds. However, in al jobs
other than the one that performed this open(), the actual enforced share mode for
thisfileisequivalent to O_SHARE_NONE.

= If O_ SHARE_RDWR is specified and thefile is opened for reading only, the
open() succeeds. However, in all jobs other than the one that performed this
open(), the actual enforced share modeis equivalent to O_SHARE_RDONLY.

= If O_ SHARE RDWR is specified and the file is opened for writing only, the
open() succeeds. However, in al jobs other than the one that performed this
open(), the actual enforced share mode is equivalent to O SHARE_NONE.

Note: Unpredictable results, including loss of data, could occur if, in the same job, a user triesto
open the same file for writing at the same time by using both open() API for stream file access and
a data management open API for record access.

4. QDLSFile System Differences

When O_CREAT is specified and anew fileis created:

o the owner's abject authority is set to *OBIMGT + *OBJEXIST + *OBJALTER +
*OBJREF.

o The primary group and public object authority and al other authorities are copied from the
directory (folder) in which thefileis created.

o The owner, primary group, and public data authority (including * OBJOPR) are derived
from the permissions specified in mode (except those permissions that are also set in the
file mode creation mask).

The primary group authorities specified in mode are not saved if no primary group exists.

QDL S does not store the language ID and country or region ID with its files. When this information
isrequested (using the readdir() function), QDLS returns the language ID and country or region ID
of the system.

. QOPT File System Differences

When the volume on which the file is being opened is formatted in Universal Disk Format (UDF):

o The authorization that is checked for the object and preceding directoriesin the path name
follows the rules described in Authorization Required for open().

o Thevolume authorization list is checked for * USE when the access modeis O_ RDONLY.
The volume authorization list is checked for * CHANGE when the access mode is
O _RDWR or O WRONLY.

o The user who creates the file becomes its owner.
o Thegroup ID is copied from the parent directory in which the fileis created.

o The owner, primary group, and public data authorities (*R, *W, and * X) are derived from
the permissions specified in the mode (except those permissions that are also set in thefile
mode creation mask).

o When O_INHERITMODE is specified for the oflag parameter, the data authorities are
copied from the parent directory.

o The sharing modesO_SHARE_RDONLY, O_SHARE_WRONLY, and
O_SHARE_RDWR do not provide the requested level of sharing when the access modeis
O_RDWR or O_WRONLY . When the access modeisO_RDWR or O_ WRONLY , the
resulting sharing mode semantic will be equivalent to O_SHARE_NONE.

o For newly created files, the same uppercase and lowercase forms in which the names are
entered are preserved. No distinction is made between uppercase and lowercase when
searching for names.

o #Thisfunction will fail with error code [EINVAL] if theO_SYNC, O _DSYNC, or
O_RSYNC open flag is specified.

When the volume on which the file is being opened is not formatted in Universal Disk Format
(UDF):

o No authorization checks are made on the object or preceding directoriesin the path name.

o Thevolume authorization list is checked for * USE when the accessmodeis O RDONLY.
The volume authorization list is checked for * CHANGE when the access modeis
O_RDWR or O WRONLY.

o QDFTOWN becomes the owner of thefile.

o No group ID isassigned to thefile.

6.

10.

11.

o The permissions specified in the mode are ignored. The owner, primary group, and public
data authorities are set to RWX.

o For newly created files, names are created in uppercase. No distinction is made between
uppercase and lowercase when searching for names.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. The creation of afile may fail if permissions and other attributes that are
stored locally by the Network File System are more restrictive than those at the server. A later
attempt to create afile can succeed when the locally stored data has been refreshed. (Several
options on the Add Mounted File System (ADDMFS) command determine the time between
refresh operations of local data.) The creation can also succeed after the file system has been
remounted.

If you try to re-create afile that was recently deleted, the request may fail because data that was
stored locally by the Network File System still has arecord of the file's existence. The creation
succeeds when the locally stored data has been updated.

Once afile is open, subsequent requests to perform operations on the file can fail because file
attributes are checked at the server on each request. If permissions on the file are made more
restrictive at the server or the file is unlinked or made unavailable by the server for another client,
your operation on an open file descriptor will fail when the local Network File System receives
these updates. The local Network File System also impacts operations that retrieve file attributes.
Recent changes at the server may not be available at your client yet, and old values may be returned
from operations.

The sharing modes O_SHARE_RDONLY, O_SHARE_WRONLY, and O_SHARE_NONE do not
provide the requested level of sharing. If any one of these share modes is specified, the resulting
share mode semantic will be equivalent to O_SHARE_RDWR.

. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See Netware on iSeriesin the iSeries
Information Center for more information.

. Thisfunction will fail with the [EOVERFLOW] error if the specified file exists and its size istoo

large to be represented in avariable of type off_t (thefileislarger than 2 GB minus 1 byte).

. When you develop in C-based languages and an application is compiled with the L ARGE_FILES

macro defined, the open() APl will be mapped to acall to the open64() API.

#»Using this function on the /dev/null or /dev/zero character special file, the oflag values of
O_CREAT and O_TRUNC have no effect.<

#TheO_SYNC, O_DSYNC, and O_RSYNC open flags will not cause updates made to the file by
mapped access to be written to permanent storage. %

Related Information

o The<fentl.h> file (see Header Files for UNIX-Type Functions)

o close()--Close File or Socket Descriptor

« creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor

« fentl()--Perform File Control Command

o |seek()--Set File Read/Write Offset

» 0pen64()--Open File (Large File Enabled)

o QlgOpen()--Open aFile (using NL S-enabled path name)
« read()--Read from Descriptor

« dtat()--Get File Information

» umask()--Set Authorization Mask for Job

o write()--Write to Descriptor

Examples

See Code disclaimer information for information pertaining to code examples.

The following example opens an output file for appending. Because no sharing mode is specified, the
O_SHARE_RDWR sharing mode is used.

int fildes;
fildes = open("outfile"™, O WRONLY | O APPEND) ;

The following example creates a new file with read, write, and execute permissions for the user creating the
file. If the file already exists, the open() fails. If the open() succeeds, the file is opened for sharing with
readers only.

fildes = open("newfile", O WRONLY| O_CREAT| O_EXCL| O_SHARE_RDONLY, S_| RWKU) ;

This example first creates an output file for with a specified CCSID. Thefileis then closed and opened
again with data conversion. The open() function is called twice because #*no data conversion would have
occurred when using the first open's descriptor on read or write operations, even if O_TEXTDATA had
been specified on that open; however, the second open could be eliminated entirely by using

O_TEXT_CREAT onthefirst open. Thisis demonstrated in the code example immediately following this
example. €In this example, EBCDIC datais written to the file and converted to ASCI|I.

#i ncl ude <fcntl. h>
#i ncl ude <sys/stat. h>
#i ncl ude <errno. h>
#i ncl ude <stdio. h>

int main(int argc, char *argv[])

{
int fd;
int rc;
char nane[]="/test.dat";
char data[]="abcdef ghijk";
int oflagl O CREAT | O RDWR | O _CCsl b
int oflag2 = O RDWR | O TEXTDATA | O _CCSI D;
nmode_t node = S ITRUSR | S IWSR | S | XUSR,
unsigned int file_ccsid 819;
unsi gned int open_ccsid 37;

/***/

/* First create the file with the CCSID 819. */

/***/

if ((fd=open(name, of | agl, node,file_ccsid)) < 0)

perror("open() for create failed");
return(0);

}
if (close(fd) < 0)
{

perror("close() failed.");
return(0);

/***/

/* Now open the file so EBCDI C (CCSID 37) data */
/* witten will be converted to ASCII (CCSID 819).*/

/***/

if ((fd=open(name, of | ag2, node, open_ccsid)) < 0)

perror("open() with translation failed");

return(0);
/***/
/* Wite some EBCDI C dat a. */

/***/

if (-1 == (rc=wite(fd, data, strlen(data))))

perror("wite failed");
return(0);

}

if (0 !'= (rc=close(fd)))
{

perror("close failed");
return(0);
}
}

#¥n this second example, EBCDIC datais written to the file and converted to ASCII. Thiswill produce the
same results as the first example, except that it did it by only using one open instead of two.

#i ncl ude <fcntl. h>
#i ncl ude <sys/stat. h>
#i ncl ude <errno. h>
#i ncl ude <stdio. h>

int main(int argc, char *argv[])

int fd;

int rc;

char nane[]="/test.dat";
char data[]="abcdef ghij k";

int oflagl = O CREAT | ORDAR | O CCSID | O TEXTDATA | O TEXT_CREAT |
O _EXCL;

nmode_t node = S ITRUSR | S IWSR | S | XUSR,

unsigned int file_ccsid = 819;

unsi gned int open_ccsid = 37;

/***/

/* First create the file with the CCSID 819, and */
/* open it such that the data is converted */
/* between the the open CCSID of 37 and the */
/* file's CCSID of 819 when witing data to it. */

/***/

if ((fd=open(name, of | agl, node, file_ccsid, open_ccsid)) < 0)

perror("open() for create failed");
return(0);

/***/

/* Wite sone EBCDI C dat a. */

/***/

if (-1 == (rc=wite(fd, data, strlen(data))))

perror("wite failed");
return(0);

/***/

/* Close the file. */

/***/

if (0 != (rc=close(fd)))

perror("close failed");

return(0);

}
}

&«

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

open64()--Open File (Large File Enabled)

Syntax

#i ncl ude <fcntl. h>

i nt open64(const char *path, int oflag, . . .);
Threadsafe: Conditional; see Usage Notes.

The open64() function, similar to the open() function, opens afile and returns a number called afile
descriptor. open64() differs from open() in that it automatically opens the file with the O_LARGEFILE
flag set. For afurther description of the open flags, see Using the oflag Parameter in the open() API.

For adiscussion of the parameters, authorities required, return values, related information, and examples for
the open() and open64() APIs, see open()--Open File.

See QlgOpen64()--Open File (Large File Enabled) for a description and an example of supplying the path
inany CCSID.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.

To use the open64() API, you must compile the source with the L ARGE_FILE_API macro
defined.

2. All of the usage notes for open() apply to open64() and QlgOpen64(). See Usage Notesin the
open() API.

Top | UNIX-Type APIs| APIs by category

opendir()--Open Directory

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

DI R *opendir(const char *dirnane);
Threadsafe: Conditional; see Usage Notes.

The opendir () function opens a directory so that it can be read with the readdir () function. The variable
dirnameis astring giving the name of the directory to open. If the last component of dirnameis a symbolic
link, opendir () follows the symbolic link. As aresult, the directory that the symbolic link referstois
opened. The functions readdir (), rewinddir (), and closedir () can be called after a successful call to
opendir (). Thefirst readdir() call reads the first entry in the directory.

Names returned on callsto readdir () are returned in the CCSID (coded character set identifier) in effect for
the current job at the time this opendir () function is called. If the CCSID of the job is 65535, the default
CCSID of thejob is used. See QlgOpendir()--Open Directory for specifying adifferent CCSID.

Parameters

dirname

(Input) A pointer to the null-terminated path name of the directory to be opened.

This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job.

See QlgOpendir()--Open Directory for a description and an example of supplying the dirnamein
any CCSID.
Authorities

Note: Adopted authority is not used.

Authorization required for opendir ()

Authority
Object Referred to Required errno
Each directory in the path name preceding the directory to be *X EACCES
opened

| The directory to be opened | *R |EACCES

Return Value

value

opendir () was successful. The value returned is a pointer to a DIR, representing an open directory
stream. This DI R describes the directory and is used in subsequent operations on the directory
using the readdir (), rewinddir (), and closedir () functions.

NULL pointer
opendir () was not successful. The errno global variable is set to indicate the error.

Error Conditions

If opendir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES
Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.
If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may

also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]
The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.
The file specified already exists and the specified operation requiresthat it not exist.

The named file, directory, or path already exists.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.

[EIQ]
Input/output error.

A physical /O error occurred.

A referenced object may be damaged.
[EJRNDAMAGE]
Journal damaged.

A journa or al of the journa's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]
Journal inactive.

Thejournaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]
Journal space or system storage error.
The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal .4

[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symbolic links encountered is more than POSIX_SY MLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]
Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors aready open (see the sysconf() function).

[ENAMETOOLONG]
A path name istoo long.

A path nameislonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile _POSIX_NO_TRUNC isin effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.:*

[ENEWJRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4

[ENFILE]
Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.

The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP isin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errors that are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors.
[EADDRNOTAVAIL]

Address not available.
[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]
A socket is connected to a host that is no longer available.
[ENETUNREACH]
Cannot reach the destination network.
[ESTALE]
File or object handle rejected by server.
If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.
[ETIMEDOUT]
A remote host did not respond within the timeout period.
[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E Filesystem error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o Theobject on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= Z*Independent ASP QSYS.LIB 4
= QOPT

2. The opendir () function uses afile descriptor for each open directory. Applications are limited to
opening no more than OPEN_MAX files and directories, and are subject to receiving the
[EMFILE] and [ENFILE] errors when too many file descriptors are in use. See the sysconf()

function for a description of OPEN_MAX.

Thefile descriptor that is used by opendir () will not be inherited in achild process that is created
by the spawn() or spawnp() API.

3. opendir() may alocate memory from the user's heap.

4. Filesthat are added to the directory after the first call to readdir () following an opendir () or
rewinddir () may not be returned on calls to readdir (), and files that are removed may still be
returned on callsto readdir ().

5. QDLSFile System Differences

QDL S updates the access time on opendir ().

6. QOPT File System Differences

If the directory exists on avolume formatted in Universal Disk Format (UDF), the authorization
that is checked for the directory and preceding directoriesin the path name follows the rules
described in Authorization required for opendir(). If the directory exists on a volume formatted in
some other media format, no authorization checks are made on the directory being opened and each
directory in the path name. The volume authorization list is checked for * USE authority regardless
of the volume media format.

Related Information

o The<sys/types.h> file (see Header Files for UNIX-Type Functions)
o The<dirent.h> file (see Header Files for UNIX-Type Functions)

» QlgOpendir()--Open Directory

o readdir()--Read Directory Entry

« readdir r()--Read Directory Entry

« readdir r ts64()--Read Directory Entry

« rewinddir()--Reset Directory Stream to Beginning

o closedir()--Close Directory

o spawn()--Spawn Process

o spawnp()--Spawn Process with Path

Example
The following example opens a directory:

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>
#i ncl ude <errno. h>

#i ncl ude <stdio. h>

void traverse(char *fn, int indent) {
DR *dir;
struct dirent *entry;
i nt count;

char path[1025]; /*** EXTRA STORAGE MAY BE NEEDED ***/

struct stat info;

for (count=0; count<indent; count++) printf(" ");
printf("%\n", fn);

if ((dir = opendir(fn)) == NULL)
perror("opendir() error");
el se {
while ((entry = readdir(dir)) !'= NULL) {
if (entry->d _nanme[0] !'=".") {
strcpy(path, fn);
strcat(path, "/");
strcat(path, entry->d nane);
if (stat(path, & nfo) !'= 0)

fprintf(stderr, "stat() error on %: %\n"

strerror(errno));
else if (S_ISDR(info.st_node))
traverse(path, indent+1);

}
closedir(dir);

}
}
mai n() {

puts("Directory structure:");

traverse("/etc", 0);
}
Output:

Directory structure:
letc
/ etc/ sanpl es
/ etc/ sanpl es/ | BM
/ etc/| BM

pat h,

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

pathconf()--Get Configurable Path Name
Variables

Syntax

#i ncl ude <uni std. h>

| ong pat hconf (const char *path, int nane);
Threadsafe: Conditional; see Usage Notes.

The pathconf() function lets an application determine the value of a configuration variable (name)
associated with a particular file or directory (path).

If the named fileisasymbolic link, pathconf() resolves the symbolic link.

Parameters

path

(Input) A pointer to the null-terminated path name of the file for which the value of the
configuration variable is requested.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the process. If the CCSID of the job is 65535, this parameter is assumed to be
represented in the default CCSID of the job.

See QlgPathconf()--Get Configurable Path Name Variables for a description and an exampl e of
supplying the path in any CCSID.

name
(Input) The name of the configuration variable value requested.

The vaue of hame can be any one of the following set of symbols defined in the <unistd.h> header file,

each standing for a configuration variable:

_PC_LINK_MAX

Represents LINK _MAX, which indicates the maximum number of links the file can have. If pathis
adirectory, pathconf() returns the maximum number of links that can be established to the
directory itself.

_PC_MAX_CANON

Represents MAX_CANON, which indicates the maximum number of bytesin aterminal canonical
input line.

_PC_MAX_INPUT

Represents MAX_INPUT, which indicates the minimum number of bytes for which spaceis
available in aterminal input queue. This available space is the maximum number of bytesthat a
portable application can have the user enter before the application actually reads the input.

_PC_NAME_MAX
Represents NAME_MA X, which indicates the maximum number of bytesin afile name (not
including any terminating null at the end if the file name is stored as a string). This symbol refers
only to the file name itself; that is, the last component of the path name of the file. pathconf()
returns the maximum length of file names, even when the path does not refer to adirectory.

Thisvaueisthe number of bytes allowed in the file name if it were encoded in the CCSID of the
job. If the CCSID is mixed, this number is an estimate and may be larger than the actual allowable
maximum.

_PC_PATH_MAX

Represents PATH_MAX, which indicates the maximum number of bytes in a complete path name
(not including any terminating null at the end if the path name is stored as a string). pathconf()
returns the maximum length of arelative path name relative to path, even when path does not refer
to adirectory.

Thisvaue isthe number of bytes allowed in the path name if it were encoded in the CCSID of the
job. If the CCSID is mixed, this number is an estimate and may be larger than the actual allowable
maximum.

_PC_PIPE_BUF

Represents PIPE_BUF, which indicates the maximum number of bytes that can be written
"atomically" to a pipe. If more than this number of bytes are written to a pipe, the operation may
take more than one physical write operation and physical read operation to read the data on the
other end of the pipe. If path isaFIFO specid file, pathconf() returns the value for the file itself. If
path is adirectory, pathconf() returns the value for any FIFOsthat exist or that can be created
under the directory. If path isany other kind of file, an error of [EINVAL] isreturned.

_PC_CHOWN_RESTRICTED

Represents _POSIX_CHOWN_RESTRICTED, as defined in the <unistd.h> header file. It restricts
use of chown() to ajob with appropriate privileges, and allows the group 1D of afile to be changed
only to the effective group ID of the job or to one of its supplementary group IDs. If pathisa
directory, pathconf() returns the value for any kind of file under the directory, but not for
subdirectories of the directory.

_PC_NO_TRUNC

Represents POSIX_NO_TRUNC, as defined in the <unistd.h> header file. It generates an error if
afile nameislonger than NAME_MAX. If path refersto a directory, the value returned by
pathconf() appliesto al files under that directory.

_PC_VDISABLE

Represents POSIX_VDISABLE, as defined in the <unistd.h> header file. This symbol indicates
that terminal special characters can be disabled using this character value, if it is defined.

_PC_THREAD_SAFE

This symbol is used to determine if the object represented by path residesin athreadsafe file
system. pathconf() returnsthe value 1 if the file system is threadsafe and O if the file system is not
threadsafe. fpathconf() will never fail with error code [ENOTSAFE] when called with
_PC_THREAD_SAFE.

Authorities

Note: Adopted authority is not used.

Authorization required for pathconf()

Authority

Object Referred to Required errno
|Each directory in the path name preceding the object | *X |EACCES
|Object | None |None

Return Value

value
pathconf() was successful. The value of the variable requested in name is returned.

-1
One of the following has occurred:

o A particular variable has no limit (for example, PC PATH_MAX). The errno global
variable is not changed.

o pathconf() was not successful. Theerrnois set.

Error Conditions

If fpathconf() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.
An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.
If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may

aso fail dueto different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADFID]
A file ID could not be assignhed when linking an object to a directory.

ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.
[EBUSY]
Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[ECONVERT]
Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that

isnot valid.

[EFILECVT]
File ID conversion of adirectory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. nameis not avalid configuration variable
name, or the given variable cannot be associated with the specified file.

[EIQ]
Input/output error.

A physical /O error occurred.
A referenced object may be damaged.

[EISDIR]
Specified target is adirectory.

The path specified named a directory where afile or object name was expected.

The path name given is adirectory.

[ELOOP]
A loop existsin the symbolic links.
Thiserror isissued if the number of symbolic links encountered is more than POSIX_SY MLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name istoo long.
A path name islonger than PATH_MAX characters or some component of the name is longer than
NAME_MAX characterswhile _POSIX_NO_TRUNC isin effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]
No space available.
The regquested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]
Not adirectory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENOTSUP]
Operation not supported.
The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]
Operation not permitted.
Y ou must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]
Object isread only.

Y ou have attempted to update an object that can be read only.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available,

[ECONNABORTED]

Connection ended abnormally.
[ECONNREFUSED]

The destination socket refused an attempted connect operation.
[ECONNRESET]

A connection with aremote socket was reset by that socket.
[EHOSTDOWN]

A remote host is not available.
[EHOSTUNREACH]

A route to the remote host is not available.
[ENETDOWN]

The network is not currently available.
[ENETRESET]

A socket is connected to a host that is no longer available.
[ENETUNREACH]

Cannot reach the destination network.
[ESTALE]

File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4E File system error occurred. Error number & 1.

CPF3CF2E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. When thisfunction is called with any configuration variable name except _PC_THREAD_SAFE,
the following usage note applies:

o Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are

true:

= Where multiple threads exist in the job.

= The object on which this function is operating residesin afile system that is not
threadsafe. Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= #*Independent ASP QSYS.LIB 4
= QOPT

Related Information

o The<unistd.h> file (see Header Filesfor UNIX-Type Functions)

chown()--Change Owner and Group of File
fpathconf()--Get Configurable Path Name V ariables by Descriptor
QlgPathconf()--Get Configurable Path Name Variables

Example

The following exampl e determines the maximum number of bytesin afile name:

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <errno. h>

mai n() {
| ong result;
errno = 0;
put s("exam ning NAME MAX |imt for root filesystent);
if ((result = pathconf("/", _PC NAME MAX)) == -1)
if (errno == 0)

puts("There is no limt to NAVE MAX. ");
el se perror("pathconf() error");
el se
printf("NAVE MAX is % d\n", result);
}

Output:

exam ning NAVE_MAX limit for root filesystem
NAME_MAX is 255

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

pipe()--Create an Interprocess Channel

Syntax

#i ncl ude <uni std. h>

int pipe(int fildes[2]);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Yes

The pipe() function creates a data pipe and places two file descriptors, one each into the arguments
fildeg O] and fildeq] 1], that refer to the open file descriptions for the read and write ends of the pipe,
respectively. Their integer values will be the two lowest available at the time of the pipe() call. The
O_NONBLOCK and FD_CLOEXEC flags will be clear on both descriptors. NOTE: these flags can,
however, be set by the fentl() function.

Data can be written to the file descriptor fildes[1] and read from file descriptor fildes[0]. A read on the file
descriptor fildeg 0] will access datawritten to the file descriptor fildeg[1] on afirst-in-first-out basis. File
descriptor fildeg Q] is open for reading only. File descriptor fildes[1] is open for writing only.

The pipe() function is often used with the spawn() function to allow the parent and child processes to send
data to each other.

Upon successful completion, pipe() will update the access time, change time, and modification time of the
pipe.

Parameters

fildeq 2]
(Output) Aninteger array of size 2 that will receive the pipe descriptors.

Authorities

None.

Return Value

0 pipe() was successful.

-1 pipeg() was not successful. The errno variableis set to indicate the error.

Error Conditions

If pipe() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT]

[EMFILE]

[ENFILE]

[ENOMEM]

[EUNKNOWN]

The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors aready open (see the sysconf()
function).

Too many open filesin the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job
log and correct any errors that are indicated, then retry the operation.

Related Information

» The<unistd.h> file (see Header Filesfor UNIX-Type Functions)
« The<fcntl.h> file (see Header Files for UNIX-Type Functions)

o fentl()--Perform File Control Command

o fstat()--Get File Information by Descriptor

o Op0zPipe()--Create I nterprocess Channel with Sockets

« read()--Read from Descriptor

o spawn()--Spawn Process

o write()--Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a pipe, writes 10 bytes of data to the pipe, and then reads those 10 bytes of
data from the pipe.

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <string. h>

void nmain()

int fildes[2];

int rc;

char writeData[10];
char readbDat a[10];
int bytesWitten;

i nt bytesRead;

nenset (witeData,' A, 10);

if (-1 == pipe(fildes))

{
perror("pipe error");
return;
}
if (-1 == (bytesWitten = wite(fildes[1],
wr it eDat a,
{ 10)))
perror("wite error");
el se
printf("wote % bytes\n", bytesWitten);
if (-1 == (bytesRead = read(fildes[0],
readDat a,
{ 10)))
perror("read error");
el se
printf("read % bytes\n", byt esRead);
}
}

cl ose(fildes[0]);
close(fildes[1]);

return;

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

»pread()--Read from Descriptor with Offset

Syntax

#i ncl ude <uni std. h>

ssize t pread(int file_descriptor,
void *buf, size t nbyte, off_t offset);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

From thefileindicated by file_descriptor, the pread() function reads nbyte bytes of input into the memory
areaindicated by buf. The offset value defines the starting position in the file and the file pointer position is
not changed.

See read()--Read from Descriptor for more information relating to reading from a descriptor.

In the QSY S.LIB and independent ASP QSY S.LIB file systems, the offset will be ignored for a member
while in text mode.

Parameters

file_descriptor
(Input) The descriptor to be read.

buf
(Output) A pointer to a buffer in which the bytes read are placed.

nbyte
(Input) The number of bytesto be read.

offset
(Input) The offset to the desired starting position in the file.

Authorities

No authorization is required.

Return Value

value pread() was successful. The value returned is the number of bytes actually read and placed in
buf. This number isless than or equal to nbyte. It isless than nbyte only if pread() reached the
end of the file before reading the requested number of bytes. If pread() is reading aregular file
and encounters a part of the file that has not been written (but before the end of thefile), pread()
places bytes containing zeros into buf in place of the unwritten bytes.

-1 pread() was not successful. The errno global variable is set to indicate the error. If the value of
nbyte is greater than SSIZE_MAX, pread() setserrno to [EINVAL].

Error Conditions

If pread() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFES)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file. Or, this pread request was made to afile that was only
open for writing.

[EBADFID]
A file ID could not be assighed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

This may occur if thefileresidesin afile system that does not support large files, and the starting
offset of the file exceeds 2GB minus 2 bytes.

Thiswill aso occur if the offset valueis less than O.
[EIQ]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.
[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENXIO]

No such device or address.

[EOVERFLOW]
Object istoo large to process.

The aobject's data size exceeds the limit allowed by this function.

Thefileisaregular file, nbyte is greater than O, the starting offset is before the end-of-file, and the
starting offset is greater than or equal to 2GB minus 2 bytes.

[ERESTART]
A system call was interrupted and may be restarted.

[ESPIPE]
Seek request not supported for object.

A seek request was specified for an object that does not support seeking.

The object is not capable of seeking.
[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]
Address not available.

[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.

[EHOSTDOWN]
A remote host is not available.

[EHOSTUNREACH]
A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.

[ENETUNREACH]
Cannot reach the destination network.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPFO872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.
CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

= Independent ASP QSYS.LIB
= QOPT

2. QSYS.LIB and Independent ASP QSY S.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which thisfunctionis
operation is a save file and multiple threads exist in the job.

Thisfunction will fail with error code [EIQ] if the file specified is a save file and the file does not
contain complete save file data.

The file access time for a database member is updated using the normal rules that apply to database
files. At most, the access time is updated once per day.

If you previously used the integrated file system interface to manipulate a member that contains an
end-of-file character, you should avoid using other interfaces (such as the Source Entry Utility or
database reads and writes) to manipulate the member. If you use other interfaces after using the
integrated file system interface, the end-of-file information will be lost.

3. QOPT File System Differences
The file access time is not updated on a pread() operation.

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being read are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

Reading and writing to files with the Network File System relies on byte-range locking to
guarantee data integrity. To prevent data inconsistency, use the fentl() API to get and release these
locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If alarger buffer is passed, the error EINVAL will
be received.

6. For file systems that do not support large files, pread() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do
support largefiles, pread() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2
bytes and the file was not opened for large file access.

7. Using this function successfully on the /dev/null or /dev/zero character special file resultsin a
return value of zero. In addition, the access time for the fileis updated.

8. If file_descriptor refersto a descriptor obtained using the open() function with O_TEXTDATA and
O_CCSID specified, the file CCSID and open CCSID are not the same, and the converted data
could expand or contract, then the offset value must be O.

9. If file_descriptor refersto a character special file, the offset value isignored.

Related Information

« The<limits.h> file (see Header Files for UNIX-Type Functions)
o The<unistd.h> file (see Header Files for UNIX-Type Functions)
« creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor

« dup2()--Duplicate Open File Descriptor to Another Descriptor

« fentl()--Perform File Control Command

« ioctl()--Perform I/O Control Request

o Iseek()--Set File Read/Write Offset

« open()--Open File

« pread64()--Read from Descriptor with Offset (large file enabled)
o pwrite()--Write to Descriptor with Offset

o pwrite64()--Write to Descriptor with Offset (large file enabled)
« read()--Read from Descriptor

« readv()--Read from Descriptor Using Multiple Buffers

o recv()--Receive Data

« recvfrom()--Receive Data

« recvmsg()--Receive Data or Descriptors or Both

« write()--Write to Descriptor

o writev()--Write to Descriptor Using Multiple Buffers

Example
The following example opens afile and reads input:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

mai n() {
int ret, file_descriptor;
of f _t off=5;
char buf[]="Test text";

if ((file_descriptor = creat("test.output", S IWSR))!= 0)
perror(“"creat() error");
el se {
if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))
perror("wite() error");
if (close(file _descriptor)!= 0)
perror("close() error");

}

if ((file_descriptor = open("test.output”, O RDONLY)) < 0)
perror("open() error");
el se {
ret = pread(file_descriptor, buf, ((sizeof(buf)-1)-off), off);
buf[ret] = 0x00;
printf("block pread: \n<%s>\n", buf);
if (close(file _descriptor)!= 0)
perror("close() error");

if (unlink("test.output")!= 0)
perror("unlink() error");

Output:

bl ock pread:
<text>

&

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

}}

pread64()--Read from Descriptor with Offset
(large file enabled)

Syntax

#i ncl ude <uni std. h>

ssize_t pread64(int file_descriptor,
void *buf, size_t nbyte, off64_t offset);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

From thefile indicated by file_descriptor, the pread64() function reads nbyte bytes of input into the
memory areaindicated by buf. The offset value defines the starting position in the file and the file pointer
position is not changed.

pread64() is enabled for largefiles. It is capable of operating on files larger than 2GB minus 1 byte aslong
asthe file has been opened by either of the following:

« Using the open64() function (see open64()--Open File (large file enabled)).

« Using the open() function (see open()--Open File) with O_L ARGEFILE set in the oflag parameter.

For additional information about parameters, authorities, and error conditions, see pread()--Read from
Descriptor with Offset.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the pread64 API, you must compile the source withthe LARGE_FILE_API macro
defined.

2. All of the usage notes for pread() apply to pread64(). See Usage Notesin the pread API.

Example
The following example opens afile and reads input:

#define LARGE FI LE API
#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i ncl ude <fcntl. h>

mai n() {
int ret, file_descriptor;
off64 t of f=5;
char buf[]="Test text";

if ((file_descriptor = creat64("test.output”, S IWSR))!= 0)
perror(“"creat64() error");
el se {
if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))
perror("wite() error");
if (close(file _descriptor)!= 0)
perror("close() error");
}

if ((file_descriptor = open64("test.output”, O RDONLY)) < 0)
perror("open64() error");
el se {
ret = pread64(file_descriptor, buf, ((sizeof(buf)-1)-off), off);
buf[ret] = 0x00;
printf("block pread64: \n<%s>\n", buf);
if (close(file _descriptor)!= 0)
perror("close() error");

if (unlink("test.output")!= 0)
perror("unlink() error");

Output:

bl ock pread64:
<text>

&

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

&

pwrite()--Write to Descriptor with Offset

Syntax

#i ncl ude <uni std. h>
ssize t pwite

(int file_descriptor, const void *buf,
size_t nbyte, off_t offset);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The pwrite() function writes nbyte bytes from buf to the file associated with file_descriptor. The offset value
defines the starting position in the file and the file pointer position is not changed.

See write()--Write to Descriptor for more information relating to writing to a descriptor.

In the QSY S.LIB and independent ASP QSY S.LIB file systems, the offset will be ignored for a member while
in text mode.

The offset will also be ignored if file_descriptor refersto adescriptor obtained using the open() function with
O_APPEND specified.

Parameters

file_descriptor
(Input) The descriptor of the file to which the datais to be written.

buf
(Input) A pointer to a buffer containing the datato be written.

nbyte
(Input) The sizein bytes of the data to be written.

offset
(Input) The offset to the desired starting position in the file.

Authorities

No authorization is required.

Return Value

value pwrite() was successful. The value returned isthe number of bytes actually written. This number is
less than or equal to nbyte.

-1 pwrite() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If pwrite() isnot successful, errno usualy indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing aremote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by the
Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
request was made to afilethat is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file. Or this pwrite() request was made to afile that was only
open for reading.

[EBADFID]
A file 1D could not be assigned when linking an object to a directory.

Thefile D tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY|

Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.
In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that is
not valid.
[EFBIG]
Object istoo large.
The size of the object would exceed the system allowed maximum size or the process soft file size
limit.
Thefileisaregular file, nbyte is greater than 0, and the starting offset is greater than or equal to 2 GB
minus 2 bytes.
[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Thefile system that the file resides in does not support large files, and the starting offset exceeds 2GB
minus 2 bytes.
Thiswill also occur if the offset value isless than O.
[EIQ]
Input/output error.

A physical 1/O error occurred.

A referenced object may be damaged.
[EJRNDAMAGE]
Journal damaged.
A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journal entry generated by this operation istoo large to send to the journal.
[EJRNINACTIVE]

Journal inactive.
The journaling state for the journal is*INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.
[EJRNRCVSPC]
Journal space or system storage error.
The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJIRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully. This

error occurs during operations that were attempting to start or end journaling, or were attempting to
send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.
[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This could
also be caused by exceeding the user profile storage limit when creating or transferring ownership of
an object.

Insufficient space remains to hold the intended file, directory, or link.
[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ENXIO]
No such device or address.

[ERESTART]
A system call was interrupted and may be restarted.

[ETRUNC]
Data was truncated on an input, output, or update operation.

[ESPIPE]
Seek request not supported for object.

A seek request was specified for an object that does not support seeking.

The object is not capable of seeking.
[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted at
the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct
any errors that are indicated, thenretry the operation.

If interaction with afile server isrequired to access the object, errno could also indicate one of the following
errors:

[EADDRNOTAVAIL]
Address not available.

[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.

[EHOSTDOWN]
A remote host is not available.

[EHOSTUNREACH]
A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]
File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted at
the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:
Message ID Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO81 E Unableto set return value or error code.

CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= |ndependent ASPQSYS.LIB
= QOPT

2. QSYS.LIB and Independent ASP QSY S.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the abject on which this function is operating
is asave file and multiple threads exist in the job.

If the file specified is a save file, only complete records will be written into the save file. A pwrite()
regquest that does not provide enough datato completely fill a save file record will cause the partial
record's data to be saved by the file system. The saved partial record will then be combined with
additional data on subsequent pwrite()'s until a complete record may be written into the savefile. If
the savefileis closed prior to a saved partia record being written into the savefile, then the saved
partial record is discarded, and the data in that partial record will need to be written again by the
application.

A successful pwrite() updates the change, modification, and access times for a database member
using the normal rules that apply to database files. At most, the access time is updated once per day.

Y ou should be careful when writing end-of-file charactersin the QSY S.LIB and independent ASP
QSYS.LIB file systems. For these file systems, end-of-file characters are symbolic; that is, they are
stored outside the file member. However, some situations can result in actual, nonsymbolic end-of-file
characters being written to a member. These nonsymbolic end-of-file characters could cause some
toolsor utilitiesto fail. For example:

o If you previously wrote an end-of-file character as the last character of a member, do not
continue to write data after that end-of-file character. Continuing to write datawill cause a
nonsymbolic end-of-file to be written. As aresult, a compile of the member could fail.

o If you previously wrote an end-of-file character as the last character of a member, do not write
other end-of-file characters preceding it in the file. Thiswill cause anonsymbolic end-of-file
to be written. As aresult, acompile of the member could fail.

o If you previously used the integrated file system interface to manipulate a member that
contains an end-of-file character, avoid using other interfaces (such as the Source Entry
Utility or database reads and writes) to manipulate the member. If you use other interfaces
after using the integrated file system interface, the end-of -file information will be lost.

3. QOPT File System Differences
The change and modification times of the file are updated when thefile is closed.

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the range
being written are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to
conditions at the server. Once afileis open, subsequent requests to perform operations on the file can
fail because file attributes are checked at the server on each request. If permissions on thefile are
made more restrictive at the server or thefileis unlinked or made unavailable by the server for another
client, your operation on an open file descriptor will fail when the local Network File System receives
these updates. The local Network File System also impacts operations that retrieve file attributes.
Recent changes at the server may not be available at your client yet, and old values may be returned
from operations (several options on the Add Mounted File System (ADDMFS) command determine
the time between refresh operations of local data).

Reading and writing to files with the Network File System relies on byte-range locking to guarantee
data integrity. To prevent datainconsistency, use the fcntl() API to get and rel ease these locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If alarger buffer is passed, the error EINVAL will be
received.

6. For the file systems that do not support large files, pwrite() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do
support largefiles, pwrite() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and
the file was not opened for large file access.

7. Using this function successfully on the /dev/null or /dev/zero character special fileresultsin areturn
value of the total number of bytes requested to be written. No datais written to the /dev/null or
/dev/zero character specia file. In addition, the change and modification times for the file are updated.

8. If the write exceeds the process soft file size limit, signal SIFXFSZ isissued.

9. If file_descriptor refersto a descriptor obtained using the open() function with O_ TEXTDATA and
O_CCsSID specified, the file CCSID and open CCSID are not the same, and the converted data could
expand or contract, then the offset value must be 0.

10. If file_descriptor refersto a character special file, the offset value isignored.

Related Information

« The<fcntl.h> file (see Header Files for UNIX-Type Functions)
« The<unistd.h> file (see Header Files for UNIX-Type Functions)
« creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor

« dup2()--Duplicate Open File Descriptor to Another Descriptor

« fentl()--Perform File Control Command

« ioctl()--Perform I/O Control Request

o Iseek()--Set File Read/Write Offset

» open()--Open File

« pread()--Read from Descriptor with Offset

 pread64()--Read from Descriptor with Offset (large file enabled)
« pwrite64()--Write to Descriptor with Offset (large file enabled)
« read()--Read from Descriptor

« readv()--Read from Descriptor Using Multiple Buffers

« send()--Send Data

« sendmsg()--Send Data or Descriptors or Both

« sendto()--Send Data

o write()--Write to Descriptor

« writev()--Write to Descriptor Using Multiple Buffers

Example

The following example writes a specific number of bytesto afile:

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <fcntl. h>

#i ncl ude <stdio. h>

#define nmega_string_| en 1000000

mai n() {

char *mega_stri ng;

int file_descriptor;
int ret;

off t off=5;

char fn[]="wite.file";

if ((mega_string = (char*) malloc(nega_string_|len+off)) == NULL)
perror("malloc() error");
else if ((file_descriptor = creat(fn, S IWSR)) < 0)
perror(“creat() error");
el se {
nmenset (mega_string, '0', nega_string_len);
if ((ret = pwite(file_descriptor, nmega_string, nega_string_len, off))
== -1)
perror("pwite() error");
else printf("pwite() wote % bytes at offset %\ n", ret, off);
if (close(file_descriptor)!= 0)
perror("close() error");
if (unlink(fn)!= 0)
perror("unlink() error");
}

}
Output:

pwite() wote 1000000 bytes at offset 5
&«

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

2

pwrite64()--Write to Descriptor with Offset (large
file enabled)

Syntax

#i ncl ude <uni std. h>
ssize_t pwite64

(int file_descriptor, const void *buf,
size_t nbyte, off64_t offset);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The pwrite64() function writes nbyte bytes from buf to the file associated with file_descriptor. The offset value
defines the starting position in the file and the file pointer position is not changed.

In the QSY S.LIB and independent ASP QSY S.LIB file systems, the offset will be ignored for a member whilein
text mode.

The offset will also be ignored if file_descriptor refers to a descriptor obtained using the open() function with
O_APPEND specified.

pwrite64() is enabled for largefiles. It is capable of operating on files larger than 2GB minus 1 byte as long as
the file has been opened by either of the following:

« Using the open64() function (see open64()--Open File (large file enabled)).

«» Using the open() function (see open()--Open File) with O_LARGEFILE set in the oflag parameter.

For additional information about parameters, authorities, and error conditions, see pwrite()--Write to Descriptor
with Offset.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To use
the pwrite64 API, you must compile the source withthe LARGE_FILE_API macro defined.

2. All of the usage notes for pwrite() apply to pwrite64(). See Usage Notes in the pwrite API.

Example
The following example writes a specific number of bytesto afile:

#define LARGE FILE_API
#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i nclude <fcntl. h>

#i ncl ude <stdi o. h>

#define nmega_string_|l en 1000000

mai n() {

char *mega_string;

int file_descriptor;
int ret;

off64_t of f=5;

char fn[]="wite.file";

if ((mega_string = (char*) malloc(nega_string_len+off)) == NULL)
perror("malloc() error");
else if ((file_descriptor = creat64(fn, S IWSR)) < 0)
perror("creat64() error");
el se {
menset (mega_string, '0', nmega_string_len);
if ((ret = pwite64(file_descriptor, nmega_string, nega_string_len, off))
== -1)
perror("pwite64() error");
el se printf("pwite64() wote %l bytes at offset %\n", ret, off);
if (close(file_descriptor)!= 0)
perror("close() error");
if (unlink(fn)!= 0)
perror("unlink() error");

}
}
Output:

pwite64() wote 1000000 bytes at offset 5
&

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

Integrated File System APIs--Time Stamp
Updates

Each object (file and directory) has three time values associated with it:
AccessTime Thetime that the datain the object is accessed.
Change Time Thetime that the attributes of the object are changed.

Modify Time Thetime that the datain the object is changed.

These values are returned by the stat(), fstat(), Istat(), #*and QlgStat()<%APIs.

When it is stated that an API sets or updates one of these time values, the value may be "marked for update”
by the API rather than actually updated. When a subsequent stat(), fstat(), Istat(), £*and QlgStat()4< APl is
called, or thefileis closed by all processes, the times that were previously "marked for update” are updated
and the update marks are cleared.

The value of these times is measured in seconds since the Epoch. The Epoch isthe time 0 hours, 0 minutes,
0 seconds, January 1, 1970, Coordinated Universal Time. If the system date is set prior to 1970, al time
values will be zero. The following table shows which of these times are "marked for update" by each of the
APlIs.

|Time Stamp Updates for I ntegrated File System APIs

|Function |Access |Change IModify
|access INo INo INo
|#raccessx [No [No INo
|chdir INo INo INo
\chmod INo Yes INo
\chown INo Yes INo
|close INo INo INo
|closedir INo INo INo
|creat? (new file) [Yes [Yes [Yes
|creat! (parent directory of new file) INo Yes Yes
|creat? (existing file) [No [Yes [Yes
|DosSetFilel ocks INo INo INo
|DosSetRelMaxFH INo INo INo
|dup INo INo INo
|dup2 INo INo INo
|#faccessx INo [No INo &
[#fchdir INo [No INo <
|fchmod INo Yes INo
|fchown INo Yes INo
|fentl INo INo INo
|fpathconf INo INo INo
|fstat INo INo INo
|fstatvfs INo INo INo

|fsync INo INo INo
|ftruncate INo Yes Yes
|getowd Yes3 INo [No
|getegid [No [No [No
|geteuid INo INo INo
|getgid [No [No [No
|getgrgid INo INo INo
|getgrgid_r INo INo INo
\getgrnam INo INo INo
getgrnam_r INo INo INo
|getgroups INo INo INo
|getpwnam INo INo INo
|getpwnam_r INo INo INo
getpwuid INo INo INo
getpwuid_r INo INo INo
|getuid [No [No [No
|givedescriptor INo INo INo
lioctl INo INo INo
llchown INo Yes INo
llink4 (file) [No [Yes [No
[link# (parent directory) [No [Yes [Yes
| seek INo INo INo
|Istat INo INo INo
|mkdir5 (new directory) [Yes [Yes [Yes
|mkdir5 (parent directory) [No [Yes [Yes
|mkfifo® (new directory) [Yes [Yes [Yes
|mkfifof (parent directory) [No [Yes [Yes
lopen O_CREAT (new file) [Yes [Yes [Yes
|open O_CREATY (parent directory) [No [Yes [Yes
|open O_TRUNCS (existing file) [No [Yes [Yes
|lopen® (existing file) [No [No [No
|opendir INo INo INo
|pathconf INo INo INo
[pread Yes [No INo
[pread64 Yes INo INo &
[Zpwrite INo [Yes IYes<
[pwrite64 INo [Yes [Yes &
|QlgAccess INo INo INo
#QIgAccessx INo [No INo &
|QlgChdir INo INo INo
|QlgChmod INo Yes INo

|QlgChown INo Yes INo
|QIgCreat! (new file) [Yes [Yes [Yes
|QIgCreat (parent directory of new file) INo [Yes [Yes
|QIgCreat? (existing file) [No [Yes [Yes
|QlgCvtPathToQSY SObjName INo INo INo
|QlgGetAttr INo Yes INo
|QIgGetcwd |Y&53 |No |No
|QI gGetPathFromFilelD |Y&810 |No |No
|QlgLchown INo Yes INo
|QlgLink? (file) [No [Yes [No
|QIgLink4 (parent directory) INo [Yes [Yes
|QlgL stat INo INo INo
|QIgMkdir® (new directory) [Yes [Yes [Yes
|QIgMkdirS (parent directory) INo [Yes [Yes
|QIgMKfifoS (new directory) [Yes [Yes [Yes
|QIgMKkfifoS (parent directory) [No [Yes [Yes
|QIgOpen O_CREATY (new file) [Yes [Yes [Yes
|QIgOpen O_CREAT (parent directory) INo [Yes [Yes
|QIgOpen O_TRUNCS (existing file) [No [Yes [Yes
|QIgOpen? (existing file) [No [No [No
|QlgOpendir INo INo INo
|QlgPathconf INo INo INo
|QlgProcessSubtree Yes INo INo
|QlgReaddir Yes INo INo
|QlgReaddir_r Yes INo INo
|QlgReadlink Yes INo INo
|QlgRenameK eep (parent directories) INo Yes Yes
|QlgRenameUnlink (parent directories) INo Yes Yes
|QlgRmdir (parent directory) INo Yes Yes
|QlgSetAttr INo Yes INo
|QlgStat [No [No [No
|QlgStatvfs INo INo INo
|QIgSymlink1! (new link) [Yes [Yes [Yes
|QIgSymlink® (parent directory) [No [Yes [Yes
|QIgUtime!3 [No [Yes [No
|QIgUnlink?2 (file) [No [Yes [No
|QIgUnlink12 (parent directory) [No [Yes [Yes
[>QPOFPTOS Yes [No INo &
|QpOI CvtPathToQSY SObjName INo INo INo
|QpOIGetAttr INo Yes INo
|Qp0| GetPathFromFilelD |Y eslo |No |No

|QpOI ProcessSubtree Yes INo INo
|QpOI RenameK eep (parent directories) INo Yes Yes
|QpOIRenameUnlink (parent directories) INo Yes Yes
#*QPOLROR INo INo INo &
| QpOI SetAttr INo Yes INo
|gsysetegid() INo INo INo
|gsyseteuid() INo INo INo
|asysetgid() [No [No [No
|gsysetregid() INo INo INo
|gsysetreid() INo INo INo
|gsysetuid() INo INo INo
|read Yes INo INo
|readv Yes INo INo
|readdir Yes INo INo
|readdir_r Yes INo INo
readlink Yes INo INo
|rewinddir INo INo INo
\rmdir (parent directory) INo Yes Yes
|select INo INo INo
|stat INo INo INo
|statvfs INo INo INo
|symlink1L (new link) [Yes [Yes [Yes
|symlink (parent directory) INo [Yes [Yes
|sysconf INo INo INo
|takedescriptor INo INo INo
|umask INo INo INo
|unlink12 (file) [No [Yes [No
|unlink12 (parent directory) [No [Yes [Yes
|utimel3 [No [Yes [No
write INo Yes Yes
|writev INo Yes Yes

Notes:

10.

11.

12.

13.

When the file did not previously exist, a successful creat() or QlgCreat() set the
access, change, and modification times for the new file. It also sets the change and
modification times of the directory that contains the new file (parent directory).

When the file previously existed, a successful creat() or QIgCreat() setsthe change
and modification times for thefile.

The access time of each directory in the absolute path name of the current directory
(excluding the current directory itself) is updated.

A successful link() or QIgLink() sets the change time of the file and the change and
modification times of the directory that contains the new link (parent directory).

A successful mkdir () or QlgMkdir () sets the access, change, and modification times
for the new directory. It aso sets the change and modification times of the directory
that contains the new directory (parent directory).

A successful mkfifo() or QlgM kfifo() sets the access, change, and modification times
for the new FIFO (first-in-first-out) special file. It also sets the change and
modification times of the parent directory that contains the new FIFO file.

When O_CREAT is specified and the file did not previously exist, a successful open()
or QlgOpen() sets the access, change, and modification times for the new file. It also
sets the change and modification times of the directory that contains the new file
(parent directory).

When O_TRUNC is specified and the file previously existed, a successful open() or
QlgOpen() setsthe change and modification times for the file.

When O_CREAT and O_TRUNC are not specified, open() or QlgOpen() does not
update any time stamps.

A successful QpOlGetPathFromFilel D() or QlgGetPathFromFilel D() setsthe
access time of each directory in the absolute path name to thefile.

A successful symlink() or QlgSymlink() sets the access, change, and modification
times for the new symbolic link. It also sets the change and modification times of the
directory that contains the new directory (parent directory).

A successful unlink() or QlgUnlink() sets the change and modification times of the
directory that contains the file being unlinked (parent directory). If the link count for
thefileis not zero, the change time for thefileis set.

A successful utime() or Qlgutime() sets the access and modify times of thefile as
specified by the application. The change time of thefileis set to the current time.

Top | UNIX-Type APIs| APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

« Macro definitions
« Datatype definitions
« Structure definitions
« Function prototypes
The header files are provided in the QSY SINC library, which is optionally installable. Make sure

QSY SINC ison your system before compiling programs that use these header files. For information on
installing the QSY SINC library, see Data structures and the QSY SINC Library.

The table below shows the file and member name in the QSY SINC library for each header file used by the
UNIX-type APIsin this publication.

Nameof Filein

Name of Header File QSYSINC Name of M ember
| arpalinet.h | ARPA | INET
| apanameserh | ARPA | NAMESER
| bse.h | H | BSE
| bsedos.h | H | BSEDOS
| bseerr.h | H | BSEERR
| dirent.h | H | DIRENT
| errno.h | H | ERRNO
| fentl.h | H | FCNTL
| grp.h | H | GRP
| Zinttypes.h | H | INTTYPES®
| limits.h | H | LIMITS
| #mman.h | H | MMAN
| netdbh.h | H | NETDB
| Pnetinet/icmpé.h | NETINET | ICMP6&
| net/if.h | NET | IF
| netinet/in.h | NETINET | IN
| netinet/ip_icmp.h | NETINET | IP_ICMP
| netinet/ip.h | NETINET | IP
| Pnetinet/ipph | NETINET | IP6
| netinet/tcp.h | NETINET | TCP
| netinet/udp.h | NETINET | UDP
| netns/idp.h | NETNS | IDP
| netns/ipx.h | NETNS | IPX
| netngns.h | NETNS | NS
| netns/sp.h | NETNS | SP
| net/route.h | NET | ROUTE
| nettel/tel.h | NETTEL | TEL

| 0s2.h | H | 02

| 0s2def h | H | OS2DEF

| pwd.h | H | PWD

| Qigh | H | QLG

| qpOlflop.h | H | QPOLFLOP
| Zqpoljrnl.h | H | QPOLJRNL
| #qpOiror.h | H | QPOLROR%
[Qpoistdih | H [QPOLSTDI
[opOwpidh | H [QPOWPID
| qpOzdipc.h | H | QPOZDIPC

| gpO0zipc.h | H | QPOZIPC

| gpOzolip.h | H | QPOZOLIP

| gpOzolsm.h | H | QPOZOLSM
| gpOzripc.h | H | QPOZRIPC

| gpOztrc.h | H | QPOZTRC

| qpOztrml.h | H | QPOZTRML
[gpozi170h | H | QPOZ1170
| Pgsoasynch | H | QSOASYNCX
[anxapih | H [QTNXAAPI
| gtnxadtp.h | H | QTNXADTP
| qgtomeapi.h | H | QTOMEAPI
| qgtossapi.h | H | QTOSSAPI

| resolv.h | H | RESOLVE

| semaphore.h | H | SEMAPHORE
| signal.h | H | SIGNAL

| spawn.h | H | SPAWN

| ss.h | H | SSL

| syslerrno.h | H | ERRNO

[sysioctih | SYS | IOCTL

| syslipc.h | SYS | IPC

| sys/layout.h | H | LAYOUT

| sys/limits.h | H | LIMITS

| sys/msg.h | SYS | MSG

| sys/param.h | SYS | PARAM

| Psysresourceh | SYS | RESOURCE#
| sys/sem.h | SYS | SEM

[syesimph | SYS | SETIMP

| sys/shm.h | SYS | SHM

[sys/signah | SYS | SIGNAL

[syssocketh | SYS [SOCKET

| sys/stat.h | SYs | STAT

[gesavfsh | SYS [STATVFS

| sys/time.h | SYS | TIME

| sysitypes.h | SYS | TYPES

| sys/uio.h | SYS | ulo

| sys/un.h | SYS | UN

| syswait.h | SYs | WAIT

| Zulimith | H | ULIMIT
| unistd.h | H | UNISTD
| utime.h | H | UTIME

You can display a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(5)

« Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FI LE(QSYSI NC/ SYS) MBR(STAT)

Y ou can print a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(6)

« Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROVFI LE(QSYSI NC/ SYS) TOFI LE(* PRI NT) FROMVBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs| APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

IName |Value | Text

EDOM 3001 A domain error occurred in a math
function.

|ERANGE |3002 |A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

|[ENOTOPEN 13004 |Fileis not open.

|[ENOTREAD |3005 |Fileis not opened for read operations.

|EIO 13006 |Input/output error.

|ENODEV 13007 INo such device.

ERECIO ’3008 Cannot get single character for files
opened for record 1/0.

|[ENOTWRITE 13009 |Fileis not opened for write operations.

|ESTDIN 13010 | The stdin stream cannot be opened.

|ESTDOUT 13011 | The stdout stream cannot be opened.

|ESTDERR 13012 | The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

|EBADNAME 13014 | The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

|EBADPOS 13017 | The position specifier is not correct.

ENOPOS 3018 Thereis no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 ngﬁ current record position istoo long for
tell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 _Functi on parameter in the signal function
is not set.

|ENOENT 13025 INo such path or directory.

|[ENOREC 13026 |Record is not found.

|EPERM 13027 |The operation is not permitted.

|EBADDATA 13028 |Message datais not valid.

|EBUSY 13029 |Resource busy.

|EBADOPT 13040 |Option specified is not valid.

|[ENOTUPD 13041 |Fileis not opened for update operations.

|[ENOTDLT |3042 |Fileis not opened for delete operations.

EPAD 3043 The number of characterswritten is
shorter than the expected record length.
EBADKEYLN 3044 A length that was not valid was specified
for the key.
EPUTANDGET 3080 A read operation should not immediately
follow awrite operation.
EGETANDPUT 3081 A write operation should not immediately
follow aread operation.
|EIOERROR 3101 |A nonrecoverable 1/O error occurred.
|EIORECERR 3102 |A recoverable /O error occurred.
|EACCES 3401 |Permission denied.
|ENOTDIR 3403 INot adirectory.
|ENOSPC 3404 INo spaceis available.
|EXDEV 3405 |Improper link.
EAGAIN 3406 Operation would have caused the process
to be suspended.
EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.
|EINTR 3407 |Interrupted function call.
EFAULT 3408 The address used for an argument was not
correct.
|ETIME 3409 |Operation timed out.
|ENXIO 3415 INo such device or address.
EAPAR 3418 Possible APAR condition or hardware
failure.
|ERECURSE 13419 |Recursive attempt rejected.
|EADDRINUSE 3420 |Address already in use.
|[EADDRNOTAVAIL 3421 |Address is not available.
EAFNOSUPPORT 3422 The type of socket isnot supported in this
protocol family.
|EALREADY 3423 |Operation is already in progress.
|[ECONNABORTED 3424 |Connection ended abnormally.
ECONNREFUSED 3425 A remote host refused an attempted
connect operation.
ECONNRESET 3426 A connection with a remote socket was
reset by that socket.
|EDESTADDRREQ |3427 |Operation requires destination address.
|EHOSTDOWN 3428 |A remote host is not available.
|[EHOSTUNREACH 3429 |A route to the remote host is not available.
|EINPROGRESS 3430 |Operation in progress.
|EISCONN 3431 |A connection has already been established.
|EMSGSIZE 3432 |Message size is out of range.
|[ENETDOWN 3433 |The network currently is not available.
ENETRESET A socket is connected to a host that is no

=

longer available.

|[ENETUNREACH 3435 |Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
regquested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

|[ENOTSUP 3440 |Operation is not supported.
|EOPNOTSUPP 3440 |Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT (3442 No protocol of the specified type and
domain exists.

EPROTOTY PE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

|ESHUTDOWN 3445 |Cannot send data after a shutdown.
|ESOCKTNOSUPPORT |3446 | The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
thistime.

|EBADF 3450 |Descriptor is not valid.

|EMFILE 3452 |Too many open files for this process.
|ENFILE 3453 |Too many open filesin the system.
|EPIPE 3455 |Broken pipe.

|ECANCEL 3456 |Operation cancelled.

|EEXIST 3457 |File exists.

|EDEADLK 3459 |Resource deadlock avoided.
|[ENOMEM 3460 | Storage all ocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

|ETERM 3464 |Operation was terminated.
|ENOENT1 3465 INo such file or directory.

ENOEQFLOG 3466 Object is aready linked to a dead
directory.

|[EEMPTYDIR 3467 |Directory is empty.

EMLINK 3468 Maximum link count for afile was
exceeded.

|ESPIPE 3469 | Seek request is not supported for object.

|ENOSYS 3470 |Function not implemented.

|EISDIR 3471 |Specified target is adirectory.

|EROFS 3472 |Read-only file system.

|[EUNKNOWN 3474 |Unknown system state.

|EITERBAD 3475 |Iterator is not valid.

|EITERSTE 3476 |Iterator isin wrong state for operation.

|EHRICLSBAD |3477 |HRI classisnot valid.

|EHRICLBAD 3478 IHRI subclass is not valid.

|EHRITYPBAD |3479 |HRI typeisnot valid.

|ENOTAPPL 3480 |Data requested is not applicable.

|EHRIREQTYP 3481 IHRI request type s not valid.

|[EHRINAMEBAD 3482 IHRI resource name is not valid.

|EDAMAGE 3484 |A damaged object was encountered.

|ELOOP 3485 |A loop exists in the symbolic links.

IENAMETOOLONG 3486 |A path name is too long.

|ENOLCK 3487 INo locks are available.

|[ENOTEMPTY 3488 |Directory is not empty.

|ENOSY SRSC 3489 |System resources are not available.

|[ECONVERT 13490 |Conversion error.

|E2BIG 3491 |Argument list istoo long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

|ETYPE 3493 |Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

|ESOFTDAMAGE 3497 |Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

|EOFFLINE 13499 |Object is suspended.

|EROOBJ 13500 |Object is aread-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDS 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 | Duplicate extended attribute record.

ELOCKED 3506 Areabeing read from or writtentois

locked.

EFBIG 3507 |Object too large.

EIDRM 3509 The semaphore, shared memory, or
message gqueue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of

the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

|EFILECVT 3511 |File ID conversion of adirectory failed.

EBADFID 3512 A file 1D could not be assigned when
linking an object to a directory.

|ESTALE 3513 |File handle was rejected by server.

|ESRCH 3515 INo such process.

|IENOTSIGINIT 3516 |Process is not enabled for signals.

|ECHILD 3517 INo child process.

|EBADH 13520 IHandleis not valid.

ETOOMANY REFS 3523 The operation would have exceeded the

maximum number of references allowed
for a descriptor.

|ENOTSAFE 3524 |Function is not allowed.

|[EOVERFLOW 3525 |Object istoo large to process.

|EIRNDAMAGE 3526 \Journal is damaged.

|EJRNI NACTIVE |3527 |Journa| isinactive.

|EJRNRCVSPC 3528 |Journal space or system storage error.

|EIRNRMT 3529 |Journal is remote.

|ENEWJRNRCV 3530 INew journal receiver is needed.

|ENEWJRN 3531 INew journal is needed.

|EJOURNALED 3532 |Object already journaled.

|[EJRNENTTOOLONG 3533 |Entry istoo large to send.

|EDATALINK 3534 |Object is adatalink object.

|[ENOTAVAIL 3535 |IASPisnot available.

|ENOTTY 3536 |10 control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

|ETXTBSY 3543 | Text file busy.

|[EASPGRPNOTSET 3544 |ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs| APIs by category

	Integrated File System (IFS) APIs, Volume 1 (V5R2)
	Table of Contents
	Integrated File System APIs -- access() through pwrite64()
	APIs
	access()--Determine File Accessibility
	accessx()--Determine File Accessibility for a Class of Users
	chdir()--Change Current Directory
	chmod()--Change File Authorizations
	chown()--Change Owner and Group of File
	close()--Close File or Socket Descriptor
	closedir()--Close Directory
	creat()--Create or Rewrite File
	creat64()--Create or Rewrite a File (Large File Enabled)
	DosSetFileLocks()--Lock and Unlock a Byte Range of an Open File
	DosSetFileLocks64()--Lock and Unlock a Byte Range of an Open File (Large File Enabled)
	DosSetRelMaxFH()--Change Maximum Number of File Descriptors
	dup()--Duplicate Open File Descriptor
	dup2()--Duplicate Open File Descriptor to Another Descriptor
	faccessx()--Determine File Accessibility for a Class of Users
	fchdir()--Change Current Directory by Descriptor
	fchmod()--Change File Authorizations by Descriptor
	fchown()--Change Owner and Group of File by Descriptor
	fcntl()--Perform File Control Command
	fpathconf()--Get Configurable Path Name Variables by Descriptor
	fstat()--Get File Information by Descriptor
	fstat64()--Get File Information by Descriptor (Large File Enabled)
	fstatvfs()--Get File System Information by Descriptor
	fstatvfs64()--Get File System Information by Descriptor (64-Bit Enabled)
	fsync()--Synchronize Changes to File
	ftruncate()--Truncate File
	ftruncate64()--Truncate File (Large File Enabled)
	getcwd()--Get Current Directory
	getegid()--Get Effective Group ID
	geteuid()--Get Effective User ID
	getgid()--Get Real Group ID
	getgrgid()--Get Group Information Using Group ID
	getgrgid_r()--Get Group Information Using Group ID
	getgrgid_r_ts64()--Get Group Information Using Group ID
	getgrnam()--Get Group Information Using Group Name
	getgrnam_r()--Get Group Information Using Group Name
	getgrnam_r_ts64()--Get Group Information Using Group Name
	getgroups()--Get Group IDs
	getpwnam()--Get User Information for User Name
	getpwnam_r()--Get User Information for User Name
	getpwnam_r_ts64()--Get User Information for User Name
	getpwuid()--Get User Information for User ID
	getpwuid_r()--Get User Information for User ID
	getpwuid_r_ts64()--Get User Information for User ID
	getuid()--Get Real User ID
	ioctl()--Perform I/O Control Request
	lchown()--Change Owner and Group of Symbolic Link
	link()--Create Link to File
	lseek()--Set File Read/Write Offset
	lseek64()--Set File Read/Write Offset (Large File Enabled)
	lstat()--Get File or Link Information
	lstat64()--Get File or Link Information (Large File Enabled)
	mkdir()--Make Directory
	mkfifo()--Make FIFO Special File
	mmap()--Memory Map a File
	mmap64()--Memory map a Stream File (Large File Enabled)
	mprotect()--Change Access Protection for Memory Mapping
	msync()--Synchronize Modified Data with Mapped File
	munmap()--Remove Memory Mapping
	open()--Open File
	open64()--Open File (Large File Enabled)
	opendir()--Open Directory
	pathconf()--Get Configurable Path Name Variables
	pipe()--Create an Interprocess Channel
	pread()--Read from Descriptor with Offset
	pread64()--Read from Descriptor with Offset (large file enabled)
	pwrite()--Write to Descriptor with Offset
	pwrite64()--Write to Descriptor with Offset (large file enabled)

	Integrated File System APIs--Time Stamp Updates

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

