
UNIX-Type APIs (V5R2)

Integrated File System (IFS) APIs

Volume 1 -- access() through pwrite64()

Table of Contents

The PDF for the Integrated File System (IFS) APIs is divided into two volumes. Volume 1 contains the
APIs from access() through prwrite64(); Volume 2 contains the APIs QlgAccess() through writev() and the
IFS exit programs. Both volumes contain information on time stamp updates, the Header Files for
UNIX-Type Functions, and Errno Values for UNIX-Type Functions.

Integrated File System APIs

access() (Determine file accessibility)●

accessx() (Determine File Accessibility for a Class of Users)●

chdir() (Change current directory)●

chmod() (Change file authorizations)●

chown() (Change owner and group of file)●

close() (Close file descriptor)●

closedir() (Close directory)●

creat() (Create new file or rewrite existing file)●

creat64() (Create new file or rewrite existing file (large file enabled))●

DosSetFileLocks() (Lock and unlock a range of an open file)●

DosSetFileLocks64() (Lock and unlock a range of an open file (large file enabled))●

DosSetRelMaxFH() (Change maximum number of file descriptors)●

dup() (Duplicate open file descriptor)●

dup2() (Duplicate open file descriptor to another descriptor)●

faccessx() (Determine File Accessibility for a Class of Users)●

fchdir() (Change Current Directory by Descriptor)●

fchmod() (Change file authorizations by descriptor)●

fchown() (Change owner and group of file by descriptor)●

fcntl() (Perform file control command)●

fpathconf() (Get configurable path name variables by descriptor)●

fstat() (Get file information by descriptor)●

fstat64() (Get file information by descriptor (large file enabled))●

fstatvfs() (Get file system information by descriptor)●

fstatvfs64() (Get file system information by descriptor (64-bit enabled))●

fsync() (Synchronize changes to file)●

ftruncate() (Truncate file)●

ftruncate64() (Truncate file (large file enabled))●

getcwd() (Get current directory)●

getegid (Get effective group ID)●

geteuid() (Get effective user ID)●

getgid() (Get real group ID)●

getgrgid() (Get group information using group ID)●

getgrgid_r() (Get group information using group ID)●

getgrgid_r_ts64() (Get group information using group ID)●

getgrnam() (Get group information using group name)●

getgrnam_r() (Get group information using group name)●

getgrnam_r_ts64() (Get group information using group name)●

getgroups() (Get group IDs)●

getpwnam() (Get user information for user name)●

getpwnam_r() (Get User Information for User Name)●

getpwnam_r_ts64() (Get user information for user name)●

getpwuid() (Get user information for user ID)●

getpwuid_r() (Get User Information for User ID)●

getpwuid_r_ts64() (Get user information for user ID)●

getuid() (Get real user ID)●

ioctl() (Perform file I/O control request)●

lchown() (Change owner and group of symbolic link)●

link() (Create link to file)●

lseek() (Set file read/write offset)●

lseek64() (Set file read/write offset (large file enabled))●

lstat() (Get file or link information)●

lstat64() (Get file or link information (large file enabled))●

mkdir() (Make directory)●

mkfifo() (Make FIFO special file)●

mmap() (Memory map a file)●

mmap64() (Memory map a stream file (large file enabled))●

mprotect() (Change access protection for memory mapping)●

msync() (Synchronize modified data with mapped file)●

munmap() (Remove memory mapping)●

open() (Open file)●

open64() (Open file (large file enabled))●

opendir() (Open directory)●

pathconf() (Get configurable path name variables)●

pipe() (Create interprocess channel)●

pread() (Read from Descriptor with Offset)●

pread64() (Read from Descriptor with Offset (large file enabled))●

pwrite() (Write to Descriptor with Offset)●

pwrite64() (Write to Descriptor with Offset (large file enabled))●

Integrated File System APIs--Time Stamp Updates
Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Integrated File System APIs

access() through pwrite64()

The integrated file system APIs can perform operations on directories, files, and related objects in the file
systems accessed through the integrated file system interface.

The integrated file system APIs (access() through pwrite64()) are:

access() (Determine file accessibility) determines whether a file can be accessed in a particular
manner.

●

accessx() (Determine File Accessibility for a Class of Users) determines whether a file can be
accessed by a specified class of users in a particular manner.

●

chdir() (Change current directory) makes the directory named by path the new current directory.●

chmod() (Change file authorizations) changes the mode of the file or directory specified in path.●

chown() (Change owner and group of file) changes the owner and group of a file.●

close() (Close file descriptor) closes a descriptor, fildes.●

closedir() (Close directory) closes the directory stream indicated by dirp.●

creat() (Create new file or rewrite existing file) creates a new file or rewrites an existing file so that
it is truncated to zero length.

●

creat64() (Create new file or rewrite existing file (large file enabled)) creates a new file or rewrites
an existing file so that it is truncated to zero length.

●

DosSetFileLocks() (Lock and unlock a range of an open file) locks and unlocks a range of an open
file.

●

DosSetFileLocks64() (Lock and unlock a range of an open file (large file enabled)) locks and
unlocks a range of an open file.

●

DosSetRelMaxFH() (Change maximum number of file descriptors) requests that the system change
the maximum number of file descriptors for the calling process (job).

●

dup() (Duplicate open file descriptor) returns a new open file descriptor.●

dup2() (Duplicate open file descriptor to another descriptor) returns a descriptor with the value
fildes2.

●

faccessx() (Determine File Accessibility for a Class of Users) determines whether a file can be
accessed by a specified class of users in a particular manner.

●

fchdir() (Change Current Directory by Descriptor) makes the directory named by fildes the new
current directory.

●

fchmod() (Change file authorizations by descriptor) sets the file permission bits of the open file
identified by fildes, its file descriptor.

●

fchown() (Change owner and group of file by descriptor) changes the owner and group of a file.●

fcntl() (Perform file control command) performs various actions on open descriptors.●

fpathconf() (Get configurable path name variables by descriptor) determines the value of a
configuration variable (name) associated with a particular file descriptor (file_descriptor).

●

fstat() (Get file information by descriptor) gets status information about the file specified by the
open file descriptor file_descriptor and stores the information in the area of memory indicated by

●

the buf argument.

fstat64() (Get file information by descriptor (large file enabled)) gets status information about the
file specified by the open file descriptor file_descriptor and stores the information in the area of
memory indicated by the buf argument.

●

fstatvfs() (Get file system information by descriptor) gets status information about the file system
that contains the file referenced by the open file descriptor fildes.

●

fstatvfs64() (Get file system information by descriptor (64-bit enabled)) gets status information
about the file system that contains the file referred to by the open file descriptor fildes.

●

fsync() (Synchronize changes to file) transfers all data for the file indicated by the open file
descriptor file_descriptor to the storage device associated with file_descriptor.

●

ftruncate() (Truncate file) truncates the file indicated by the open file descriptor file_descriptor to
the indicated length.

●

ftruncate64() (Truncate file (large file enabled)) truncates the file indicated by the open file
descriptor file_descriptor to the indicated length.

●

getcwd() (Get current directory) determines the absolute path name of the current directory and
stores it in buf.

●

getegid (Get effective group ID) returns the effective group ID (gid) of the calling thread.●

geteuid() (Get effective user ID) returns the effective user ID (uid) of the calling thread.●

getgid() (Get real group ID) returns the real group ID (gid) of the calling thread.●

getgrgid() (Get group information using group ID) returns a pointer to an object of type struct
group containing an entry from the user database with a matching gid.

●

getgrgid_r() (Get group information using group ID) updates the group structure pointed to by grp
and stores a pointer to that structure in the location pointed to by result.

●

getgrgid_r_ts64() (Get group information using group ID) updates the group structure pointed to by
grp and stores a pointer to that structure in the location pointed to by result.

●

getgrnam() (Get group information using group name) returns a pointer to an object of type struct
group containing an entry from the user database with a matching name.

●

getgrnam_r() (Get group information using group name) updates the group structure pointed to by
grp and stores a pointer to that structure in the location pointed to by result.

●

getgrnam_r_ts64() (Get group information using group name) updates the group structure pointed
to by grp and stores a pointer to that structure in the location pointed to by result.

●

getgroups() (Get group IDs) returns the number of primary and supplementary group IDs
associated with the calling thread without modifying the array pointed to by the grouplist argument.

●

getpwnam() (Get user information for user name) returns a pointer to an object of type struct
passwd containing an entry from the user database with a matching name.

●

getpwnam_r() (Get User Information for User Name) updates the passwd structure pointed to by
pwd and stores a pointer to that structure in the location pointed to by result.

●

getpwnam_r_ts64() (Get user information for user name) updates the passwd structure pointed to
by pwd and stores a pointer to that structure in the location pointed to by result.

●

getpwuid() (Get user information for user ID) returns a pointer to an object of type struct passwd
containing an entry from the user database with a matching uid.

●

getpwuid_r() (Get User Information for User ID) updates the passwd structure pointed to by pwd
and stores a pointer to that structure in the location pointed to by result.

●

getpwuid_r_ts64() (Get user information for user ID) updates the passwd structure pointed to by
pwd and stores a pointer to that structure in the location pointed to by result.

●

getuid() (Get real user ID) returns the real user ID (uid) of the calling thread.●

ioctl() (Perform file I/O control request) performs control functions (requests) on a file descriptor.●

lchown() (Change owner and group of symbolic link) changes the owner and group of a file. If the
named file is a symbolic link, lchown() changes the owner or group of the link itself rather than the
object to which the link points.

●

link() (Create link to file) provides an alternative path name for the existing file, so that the file can
be accessed by either the existing name or the new name.

●

lseek() (Set file read/write offset) changes the current file offset to a new position in the file.●

lseek64() (Set file read/write offset (large file enabled)) changes the current file offset to a new
position in the file.

●

lstat() (Get file or link information) gets status information about a specified file and places it in the
area of memory pointed to by buf.

●

lstat64() (Get file or link information (large file enabled)) gets status information about a specified
file and places it in the area of memory pointed to by buf.

●

mkdir() (Make directory) creates a new, empty directory whose name is defined by path.●

mkfifo() (Make FIFO special file) creates a new FIFO special file (FIFO) whose name is defined by
path.

●

mmap() (Memory map a file) establishes a mapping between a process' address space and a stream
file.

●

mmap64() (Memory map a stream file (large file enabled)) is used to establish a memory mapping
of a file.

●

mprotect() (Change access protection for memory mapping) is used to change the access protection
of a memory mapping to that specified by protection.

●

msync() (Synchronize modified data with mapped file) can be used to write modified data from a
shared mapping (created using the mmap() function) to non-volatile storage or invalidate privately
mapped pages.

●

munmap() (Remove memory mapping) removes addressability to a range of memory mapped pages
of a process's address space.

●

open() (Open file) opens a file and returns a number called a file descriptor.●

open64() (Open file (large file enabled)) opens a file and returns a number called a file descriptor.●

opendir() (Open directory) opens a directory so that it can be read with the readdir() function.●

pathconf() (Get configurable path name variables) lets an application determine the value of a
configuration variable (name) associated with a particular file or directory (path).

●

pipe() (Create interprocess channel) creates a data pipe and places two file descriptors, one each
into the arguments fildes[0] and fildes[1], that refer to the open file descriptions for the read and
write ends of the pipe, respectively.

●

pread() (Read from Descriptor with Offset) reads nbyte bytes of input into the memory area
indicated by buf.

●

pread64() (Read from Descriptor with Offset (large file enabled)) reads nbyte bytes of input into
the memory area indicated by buf.

●

pwrite() (Write to Descriptor with Offset) writes nbyte bytes from buf to the file associated with●

file_descriptor.

pwrite64() (Write to Descriptor with Offset (large file enabled)) writes nbyte bytes from buf to
the file associated with file_descriptor.

●

Other Functions that Operate on Files

Function Description

givedescriptor() Give file access to another job
Give socket access to another job

select() Check I/O status of multiple file descriptors
Wait for events on multiple sockets

takedescriptor() Take file access from another job
Take socket access from another job

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. See Header Files for
UNIX-Type Functions) for the file and member name of each header file.

Many of the terms used in this chapter, such as current directory, file system, path name, and link, are
explained in the Integrated File System book. The API Examples also shows an example of using several
integrated file system functions.

To determine whether a particular function updates the access, change, and modification times of the object
on which it performs an operation, see Integrated File System APIs--Time Stamp Updates in Volume 2.

Top | UNIX-Type APIs | APIs by category

access()--Determine File Accessibility

 Syntax

 #include <unistd.h>

 int access(const char *path, int amode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The access() function determines whether a file can be accessed in a particular manner. When checking
whether a job has appropriate permissions, access() looks at the real user ID (uid) and group ID (gid), not
the effective IDs. Adopted authority is not used.

Parameters

path

(Input) A pointer to the null-terminated path name for the file to be checked for accessibility.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

const char *path is the name of the file whose accessibility you want to determine. If the named file
is a symbolic link, access() resolves the symbolic link.

See QlgAccess-- Determine File Accessibility (using NLS-enabled path name) for a description and
an example of supplying the path in any CCSID.

amode

(Input) A bitwise representation of the access permissions to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in amode:

F_OK

Tests whether the file exists

R_OK

Tests whether the file can be accessed for reading

W_OK

Tests whether the file can be accessed for writing

X_OK

Tests whether the file can be accessed for execution

You can take the bitwise inclusive OR of any or all of the last three symbols to test several access

modes at once. If you are using F_OK to test for the existence of the file, you cannot use OR with
any of the other symbols. If any other bits are set in amode, access() returns the [EINVAL] error.

If the job has *ALLOBJ special authority, access() will indicate success for R_OK, W_OK, or
X_OK even if none of the permission bits are set.

Authorities

Authorization Required for access()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be tested *X EACCES

Object when R_OK is specified *R EACCES

Object when W_OK is specified *W EACCES

Object when X_OK is specified *X EACCES

Object when R_OK | W_OK is specified *RW EACCES

Object when R_OK | X_OK is specified *RX EACCES

Object when W_OK | X_OK is specified *WX EACCES

Object when R_OK | W_OK | X_OK is specified *RWX EACCES

Object when F_OK is specified None None

Return Value

0

access() was successful.

-1

access() was not successful (the specified access is not permitted). The errno global variable is set
to indicate the error.

Error Conditions

If access() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may

also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EINTR]

Interrupted function call.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[ETXTBSY]

Text file busy.

An attempt was made to execute an OS/400 PASE program that is currently open for writing, or an
attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once a file is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)

2.

command determine the time between refresh operations of local data.)

QOPT File System Differences

If the object exists on a volume formatted in Universal Disk Format (UDF), the authorization that is
checked for the object and preceding directories in the path name follows the rules described in
Figure 1-3, Authorization Required for access(). If the object exists on a volume formatted in some
other media format, no authorization checks are made on the object or preceding directories. The
volume authorization list is checked for the requested authority regardless of the volume media
format.

3.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <limits.h> file (see Header Files for UNIX-Type Functions)●

accessx()--Determine File Accessibility for Class of Users ●

chmod()--Change File Authorizations●

faccessx()--Determine File Accessibility for Class of Users ●

open()--Open File●

QlgAccess--Determine File Accessibility using NLS-enabled path name)●

QlgAccessx()--Determine File Accessibility for Class of Users (using NLS-enabled path name)●

stat()--Get File Information●

Example

The following example determines how a file is accessed:

#include <stdio.h>
#include <unistd.h>

main() {
 char path[]="/";

 if (access(path, F_OK) != 0)
 printf("'%s' does not exist!\n", path);
 else {
 if (access(path, R_OK) == 0)
 printf("You have read access to '%s'\n", path);
 if (access(path, W_OK) == 0)
 printf("You have write access to '%s'\n", path);
 if (access(path, X_OK) == 0)
 printf("You have search access to '%s'\n", path);
 }
}

Output:

The output from a user with read and execute access is:

You have read access to '/'
You have search access to '/'

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

accessx()--Determine File Accessibility for a
Class of Users

 Syntax

 #include <unistd.h>

 int accessx(const char *path, int amode, int who);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The accessx() function determines whether a file can be accessed by a specified class of users in a particular
manner.

The caller must have authority to all components in the path name prefix.

Adopted authority is not used.

Parameters

path

(Input) A pointer to the null-terminated path name for the file to be checked for accessibility.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently in
effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented in the
default CCSID of the job.

const char *path is the name of the file whose accessibility you want to determine. If the named file is
a symbolic link, accessx() resolves the symbolic link.

See QlgAccessx-- Determine File Accessibility for Class of Users (using NLS-enabled path name) for
a description and an example of supplying the path in any CCSID.

amode

(Input) A bitwise representation of the access permissions to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in amode:

F_OK

(x'00') Tests whether the file exists

R_OK

(x'04') Tests whether the file can be accessed for reading

W_OK

(x'02') Tests whether the file can be accessed for writing

X_OK

(x'01') Tests whether the file can be accessed for execution

You can take the bitwise inclusive OR of any or all of the last three symbols to test several access
modes at once. If you are using F_OK to test for the existence of the file, you cannot use OR with any
of the other symbols. If any other bits are set in amode, accessx() returns the [EINVAL] error.

who

(Input) The class of users whose authority is to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in who:

ACC_SELF

(x'00') Determines if specified access is permitted for the current thread. The effective user
and group IDs are used.

Note: If the real and effective user ID are the same and the real and effective group ID are the
same, the request is treated as ACC_INVOKER. See the Usage Notes for more details.

ACC_INVOKER

(x'01') Determines if specified access is permitted for the current thread. The real user and
group IDs are used.

Note: The expression access(path, amode) is equivalent to accessx(path, amode,
ACC_INVOKER)

ACC_OTHERS

(x'08') Determines if specified access is permitted for any user other than the object owner.
Only one of R_OK, W_OK, and X_OK is permitted when who is ACC_OTHERS. Privileged
users (users with *ALLOBJ special authority) are not considered in this check.

ACC_ALL

(x'20') Determines if specified access is permitted for all users. Only one of R_OK, W_OK,
and X_OK is permitted when who is ACC_ALL. Privileged users (users with *ALLOBJ
special authority) are not considered in this check.

Authorities

Authorization Required to Path Prefix for accessx()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be tested *X EACCES

The following authorities are required if the who parameter is ACC_SELF or ACC_INVOKER. If ACC_SELF
is specified, the effective UID and GID of the caller are used. If ACC_INVOKER is used, the real UID and
GID of the caller are used.

Authorization Required to Object for accessx()

Object Referred to
Authority
Required errno

Object when R_OK is specified *R EACCES

Object when W_OK is specified *W EACCES

Object when X_OK is specified *X EACCES

Object when R_OK | W_OK is specified *RW EACCES

Object when R_OK | X_OK is specified *RX EACCES

Object when W_OK | X_OK is specified *WX EACCES

Object when R_OK | W_OK | X_OK is specified *RWX EACCES

Object when F_OK is specified None None

If the thread has *ALLOBJ special authority, accessx() with ACC_SELF or ACC_INVOKER will indicate
success for R_OK, W_OK, or X_OK even if none of the permission bits are set.

Return Value

0

accessx() was successful.

-1

accessx() was not successful (or the specified access is not permitted for the class of users being
checked). The errno global variable is set to indicate the error.

Error Conditions

If access() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES]

Permission denied.

The class of users specified by the who parameter does not have the permission indicated by the
amode parameter.

The thread does not have access to the specified file, directory, component, or path prefix.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by the
Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is
not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EINTR]

Interrupted function call.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the directory
or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length of
the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This could
also be caused by exceeding the user profile storage limit when creating or transferring ownership of
an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the requested
arguments.

[ETXTBSY]

Text file busy.

An attempt was made to execute an OS/400 PASE program that is currently open for writing, or an
attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct
any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only the
following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB■

QOPT■

❍

1.

ACC_SELF Mapped to ACC_INVOKER

Some physical file systems do not support ACC_SELF for the who parameter. Therefore, accessx()
will change the who parameter from ACC_SELF to ACC_INVOKER if the caller's real and effective
user ID are equal, and the caller's real and effective group ID are equal.

2.

Network File System Differences

The Network File System will only support the value ACC_INVOKER for the who parameter. If
accessx() is called on a file in a mounted Network File System directory with a value for who other
than ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

Local access to remote files through the Network File System may produce unexpected results due to
conditions at the server. Once a file is open, subsequent requests to perform operations on the file can
fail because file attributes are checked at the server on each request. If permissions on the file are
made more restrictive at the server or the file is unlinked or made unavailable by the server for another
client, your operation on an open file descriptor will fail when the local Network File System receives
these updates. The local Network File System also impacts operations that retrieve file attributes.
Recent changes at the server may not be available at your client yet, and old values may be returned
from operations. (Several options on the Add Mounted File System (ADDMFS) command determine
the time between refresh operations of local data.)

3.

QNTC File System Differences

The QNTC File System will only support the value ACC_INVOKER for the who parameter. If
accessx() is called on a file in the QNTC File System with a value for who other than
ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

4.

QOPT File System Differences

If the object exists on a volume formatted in Universal Disk Format (UDF), the authorization that is
checked for the object and preceding directories in the path name follows the rules described in the
previous table, Authorization Required to Object for accessx(). If the object exists on a volume
formatted in some other media format, no authorization checks are made on the object or preceding
directories. The volume authorization list is checked for the requested authority regardless of the
volume media format.

5.

QFileSvr.400 File System Differences

The QFileSvr.400 File System will only support the value ACC_INVOKER for the who parameter. If
accessx() is called on a file in the QFileSvr.400 File System with a value for who other than
ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

6.

QNetWare File System Differences7.

The QNetWare File System will only support the value ACC_INVOKER for the who parameter. If
accessx() is called on a file in the QNetWare File System with a value for who other than
ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <limits.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

open()--Open File●

access()--Determine File Accessibility●

faccessx()--Determine File Accessibility for a Class of Users●

QlgAccessx()--Determine File Accessibility for a Class of Users (using NLS-enabled path name)●

QlgAccess()--Determine File Accessibility (using NLS-enabled path name)●

stat()--Get File Information●

Example

The following example determines how a file is accessed:

#include <stdio.h>
#include <unistd.h>

main() {
 char path[]="/myfile";

 if (accessx(path, R_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has read access to '%s'\n", path);
 if (accessx(path, W_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has write access to '%s'\n", path);
 if (accessx(path, X_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has search access to '%s'\n", path);
}

Output:

In this example accessx() was called on '/myfile'. The following would be the output if someone other than the

owner has *R authority, someone besides the owner has *W authority, and noone other than the owner has *X
authority.

Someone besides the owner has read access to '/'
Someone besides the owner has write access to '/'

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

chdir()--Change Current Directory

 Syntax

 #include <unistd.h>

 int chdir(const char *path);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The chdir() function makes the directory named by path the new current directory. If the last component of
path is a symbolic link, chdir() resolves the contents of the symbolic link. If the chdir() function fails, the
current directory is unchanged.

Parameters

path

(Input) A pointer to the null-terminated path name of the directory that should become the current
directory.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgChdir()--Change Current Directory for a description and an example of supplying the path
in any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for chdir()

Object Referred to Authority Required errno

Each directory of the path name *X EACCES

Return Value

0

chdir() was successful.

-1

chdir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If chdir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

The chdir() API operates on two objects: the previous current working directory and the new one.
If either of these objects is managed by a file system that is not threadsafe, chdir() fails with the
ENOTSAFE error code.

1.

QOPT File System Differences

If the directory exists on a volume formatted in Universal Disk Format (UDF), the authorization
that is checked for each directory in the path name follows the rules described in Authorization
Required for chdir(). If the directory exists on a volume formatted in some other media format, no
authorization checks are made on each directory in the path name. The volume authorization list is
checked for *USE authority regardless of the volume media format.

2.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <limits.h> file (see Header Files for UNIX-Type Functions)●

 fchdir()--Change Current Directory by Descriptor ●

getcwd()--Get Current Directory●

QlgChdir()--Change Current Directory●

QlgGetcwd()--Get Current Directory ●

Example

The following example uses chdir():

#include <stdio.h>
#include <unistd.h>

main() {
 if (chdir("/tmp") != 0)
 perror("chdir() to /tmp failed");
 if (chdir("/chdir/error") != 0)
 perror("chdir() to /chdir/error failed");
}

Output:

chdir() to /chdir/error failed: No such path or directory.

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

chmod()--Change File Authorizations

 Syntax

 #include <sys/stat.h>

 int chmod(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The chmod() function changes S_ISUID, S_ISGID, and the permission bits of the file or directory
specified in path to the corresponding bits specified in mode. If the named file is a symbolic link,
chmod() resolves the symbolic link. chmod() has no effect on file descriptions for files that are open at the
time chmod() is called.

When chmod() is successful it updates the change time of the file.

If the file is checked out by another user (someone other than the user profile of the current job), chmod()
fails with the [EBUSY] error.

Parameters

path

(Input) A pointer to the null-terminated path name of the file whose mode is being changed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgChmod()--Change File Authorizations for a description and an example of supplying the
path in any CCSID.

mode

(Input) Bits that define S_ISUID, S_ISGID, and the access permissions of the file.

The mode argument is created with one of the following symbols defined in the <sys/stat.h>
include file.

S_IRUSR

Read permission for the file owner

S_IWUSR

Write permission for the file owner

S_IXUSR

Search permission (for a directory) or execute permission (for a file) for the file owner

S_IRWXU

Read, write, and search or execute for the file owner. S_IRWXU is the bitwise inclusive
OR of S_IRUSR, S_IWUSR, and S_IXUSR

S_IRGRP

Read permission for the file's group

S_IWGRP

Write permission for the file's group

S_IXGRP

Search permission (for a directory) or execute permission (for a file) for the file's group

S_IRWXG

Read, write, and search or execute permission for the file's group. S_IRWXG is the bitwise
inclusive OR of S_IRGRP, S_IWGRP, and S_IXGRP

S_IROTH

General read permission

S_IWOTH

General write permission

S_IXOTH

General search permission (for a directory) or general execute permission (for a file)

S_IRWXO

General read, write, and search or execute permission. S_IRWXO is the bitwise inclusive
OR of S_IROTH, S_IWOTH, and S_IXOTH

S_ISUID

Set effective user ID at execution time. This bit is ignored if the object specified by path is
a directory.

S_ISGID

Set effective group ID at execution time. See Usage Notes for more information if the
object specified by path is a directory.

If bits other than the bits listed above are set in mode, chmod() returns the [EINVAL] error.

Authorities

Note: Adopted authority is not used.

Authorization required for chmod() (excluding QDLS)

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object Owner (see Note) EPERM

Note: You do not need the listed authority if you have *ALLOBJ special authority.

Authorization required for chmod() in the QDLS File System

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object Owner or *ALL EACCES

Return Value

0

chmod() was successful.

-1

chmod() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If chmod() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Root, QOpenSys, and User-Defined File System Differences

If the object has a primary group, it must match the primary group ID or one of the supplemental
group IDs of the caller of the API; otherwise, the S_ISGID bit is turned off.

2.

QSYS.LIB and independent ASP QSYS.LIB File System Differences

chmod() is not supported for member (.MBR) objects.

chmod() returns [EBUSY] if the object is allocated in another job.

QSYS.LIB and independent ASP QSYS.LIB do not support setting the S_ISUID (set-user-ID)
and S_ISGID (set-group_ID) bits. If they are turned on in the mode parameter, they are ignored.

3.

QDLS File System Differences4.

Changing the permissions of the /QDLS directory (the root folder) is not allowed. If an attempt is
made to change the permissions, an [ENOTSUP] error is returned.

"Group" rights are not set if there is no current group.

QDLS does not support setting the S_ISUID and S_ISGID bits. If they are turned on in the mode
parameter, they are ignored.

QOPT File System Differences

Changing the permissions is allowed only for an object that exists on a volume formatted in
Universal Disk Format (UDF). For all other media formats, ENOTSUP is returned.

In addition to the authorization checks described in Authorization Required for chmod(), the
volume authorization list is checked for *CHANGE authority.

QOPT does not support setting the S_ISUID and S_ISGID bits for any optical media format. If
they are turned on in the mode parameter, ENOTSUP is returned.

5.

QNetWare File System Differences

The QNetWare file system does not fully support chmod(). See NetWare on iSeries for more
information.

QNetWare supports the S_ISUID and S_ISGID bits by passing them to the server and surfacing
them to the caller. Some versions of NetWare may support the bits and others may not.

6.

QFileSvr.400 Differences

QFileSvr.400 supports the S_ISUID and S_ISGID bits by passing them to the server and surfacing
them to the caller.

7.

Network File System Differences

The NFS client supports the S_ISUID and S_ISGID bits by passing them to the server over the
network and surfacing them to the caller. Whether a particular network file system supports the
setting of these bits depends on the server. Most servers have the capability of masking off these
bits if the NOSUID option is specified on the export. The default, however, is to support these bits.

8.

QNTC File System Differences

chmod() does not update the Windows NT server access control lists that control the authority of
users to the file or directory. The mode settings are ignored.

9.

S_ISGID bit of a directory in Root, QOpenSys, or User-Defined File System

The S_ISGID bit of the directory affects what the group ID (GID) is for objects that are created in
the directory. If the S_ISGID bit of the parent directory is off, the group ID (GID) is set to the
effective GID of the thread creating the object. If the S_ISGID bit of the parent directory is on, the
group ID (GID) of the new object is set to the GID of the parent directory. For all other file
systems, the GID of the new object is set to the GID of the parent directory.

10.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <sys/stat.h> file (see Header Files for UNIX-Type Functions)●

chown()--Change Owner and Group of File●

fchmod()--Change File Authorizations by Descriptor●

mkdir()--Make Directory●

open()--Open File●

stat()--Get File Information●

See QlgChmod()--Change File Authorizations●

Example

The following example changes the permissions for a file:

#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>

main() {
 char fn[]="temp.file";
 int file_descriptor;
 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) == -1)
 perror("creat() error");
 else {
 if (stat(fn, &info)!= 0)
 perror("stat() error");
 else {
 printf("original permissions were: %08o\n", info.st_mode);
 }
 if (chmod(fn, S_IRWXU|S_IRWXG) != 0)
 perror("chmod() error");
 else {
 if (stat(fn, &info)!= 0)
 perror("stat() error");
 else {
 printf("after chmod(), permissions are: %08o\n", info.st_mode);
 }
 }

 if (close(file_descriptor)!= 0)
 perror("close() error");
 if (unlink(fn)!= 0)
 perror("unlink() error");
 }
}

Output:

original permissions were: 00100200
after chmod(), permissions are: 00100770

Top | UNIX-Type APIs | APIs by category

chown()--Change Owner and Group of File

 Syntax

 #include <unistd.h>

 int chown(const char *path, uid_t owner, gid_t group);

 Threadsafe: Conditional; see Usage Notes.

The chown() function changes the owner and group of a file. If the named file is a symbolic link, chown()
resolves the symbolic link. The permissions of the previous owner or primary group to the object are
revoked.

If the file is checked out by another user (someone other than the user profile of the current job), chown()
fails with the [EBUSY] error.

When chown() completes successfully, it updates the change time of the file.

Parameters

path

(Input) A pointer to the null-terminated path name of the file whose owner and group are being
changed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgChown()--Change Owner and Group of File for a description and an example of supplying
the path in any CCSID.

owner

(Input) The user ID (uid) of the new owner of the file.

group

(Input) The group ID (gid) of the new group for the file.

Note: Changing the owner or the primary group causes the S_ISUID (set-user-ID) and S_ISGID
(set-group-ID) bits of the file mode to be cleared, unless the caller has *ALLOBJ special authority. If the
caller does have *ALLOBJ special authority, the bits are not changed. This does not apply to directories or
FIFO special files. See the chmod() documentation.

Authorities

Note: Adopted authority is not used.

Authorization Required for chown() (excluding QSYS.LIB, independent ASP QSYS.LIB, and
QDLS)

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object, when changing the owner Owner and *OBJEXIST
(also see Note 1)

EPERM

Object, when changing the primary group See Note 2 EPERM

Previous owner's user profile, when changing the owner *DLT EPERM

New owner's user profile, when changing the owner *ADD EPERM

User profile of previous primary group, when changing the primary
group

*DLT EPERM

New primary group's user profile, when changing the primary group *ADD EPERM

Note:

You do not need the listed authority if you have *ALLOBJ special authority.1.

At least one of the following must be true:

You have *ALLOBJ special authority.a.

You are the owner and either of the following:

The new primary group is the primary group of the job.■

The new primary group is one of the supplementary groups of the job.■

b.

2.

Authorization Required for chown() in the QSYS.LIB and independent ASP QSYS.LIB File
Systems

Object Referred to Authority Required errno

Each directory in the path name preceding
the object

*X
See Note 1

EACCES

Object when changing the owner See Note 2(a) EPERM

Object when changing the primary group See Note 2(b) EPERM

Note:

For *FILE objects (such as DDM file, diskette file, print file, and save file), *RX authority is
required to the parent directory of the object, rather than just *X authority.

1.

The required authorization varies for each object type. For details of the following commands, see

the iSeries Security Reference book.

CHGOWNa.

CHGPGPb.

2.

Authorization Required for chown() in the QDLS File System

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Previous owner's user profile, when changing the owner *DLT EPERM

New owner's user profile, when changing the owner *ADD EPERM

Previous primary group's user profile, when changing the primary group *DLT EPERM

New primary group's user profile, when changing the primary group *ADD EPERM

Authorization Required for chown() in the QOPT File System

Object Referred to Authority Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the object. *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Return Value

0

chown() was successful.

-1

chown() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If chown() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

owner or group is not a valid user ID (uid) or group ID (gid).

owner is the current primary group of the object.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this API:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

chown() is not supported for member (.MBR) objects.

2.

QDLS File System Differences

The owner and primary group of the /QDLS directory (root folder) cannot be changed. If an
attempt is made to change the owner and primary group, a [ENOTSUP] error is returned.

3.

QOPT File System Differences

Changing the owner and primary group is allowed only for an object that exists on a volume
formatted in Universal Disk Format (UDF). For all other media formats, ENOTSUP will be
returned.

QOPT file system objects that have owners will not be recognized by the Work with Objects by
Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will
not be recognized by the Work Objects by Primary Group) CL command.

4.

QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support chown().

5.

QNetWare File System Differences

The QNetWare file system does not support primary group. The GID must be zero.

6.

QNTC File System Differences

The owner of files and directories cannot be changed. All files and directories in QNTC are owned
by the QDFTOWN user profile.

7.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <limits.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

fchown()--Change Owner and Group of File by Descriptor●

fstat()--Get File Information by Descriptor●

lstat()--Get File or Link Information●

stat()--Get File Information●

QlgChown()--Change Owner and Group of File●

Example

The following example changes the owner and group of a file:

#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>

main() {
 char fn[]="temp.file";
 int file_descriptor;
 struct stat info;

 if ((file_descriptor = creat(fn, S_IRWXU)) == -1)
 perror("creat() error");
 else {
 close(file_descriptor);
 stat(fn, &info);
 printf("original owner was %d and group was %d\n", info.st_uid,
 info.st_gid);
 if (chown(fn, 152, 0) != 0)
 perror("chown() error");
 else {
 stat(fn, &info);
 printf("after chown(), owner is %d and group is %d\n",
 info.st_uid, info.st_gid);
 }
 unlink(fn);
 }
}

Output:

original owner was 137 and group was 0
after chown(), owner is 152 and group is 0

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

close()--Close File or Socket Descriptor

 Syntax

 #include <unistd.h>

 int close(int fildes);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The close() function closes a descriptor, fildes. This frees the descriptor to be returned by future open()
calls and other calls that create descriptors.

When the last open descriptor for a file is closed, the file itself is closed. If the link count of the file is zero
at that time, the space occupied by the file is freed and the file becomes inaccessible.

close() unlocks (removes) all outstanding byte locks that a job has on the associated file.

When all file descriptors associated with a pipe or FIFO special file are closed, any data remaining in the
pipe or FIFO is discarded and internal storage used is returned to the system.

When fildes refers to a socket, close() closes the socket identified by the descriptor.

Parameters

fildes

(Input) The descriptor to be closed.

Authorities

No authorization is required. Authorization is verified during open(), creat(), or socket().

Return Value

close() returns an integer. Possible values are:

0 close() was successful.

-1 close() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If close() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOBUFS]

There is not enough buffer space for the requested operation.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

❍

1.

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

When a socket descriptor is closed, the system tries to send any queued data associated with the
socket.

For AF_NS or AF_INET sockets, depending on whether the SO_LINGER socket option is
set, queued data may be discarded.

Note: For these sockets, the default value for the SO_LINGER socket option has the option
flag set off (the system attempts to send any queued data with an infinite wait time).

❍

For AF_TELEPHONY sockets, depending on whether the SO_LINGER socket option is
set, buffered data may be discarded.

Note: For these sockets, the default value for the SO_LINGER socket option has the option
flag set on with a time value of 1 second (the system will wait up to 1 second to send
buffered data before clearing the telephone connection).

❍

2.

A socket descriptor being shared among multiple processes is not closed until the process that
issued the close() is the last process with access to the socket.

3.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

fcntl()--Perform File Control Command●

open()--Open File●

setsockopt()--Set Socket Options●

unlink()--Remove Link to File●

Example

The following example uses close()

See Code disclaimer information for information pertaining to code examples.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

main() {
 int fd1, fd2;
 char out[20]="Test string",
 fn[]="test.file",
 in[20];
 short write_error;

 memset(in, 0x00, sizeof(in));

 write_error = 0;

 if ((fd1 = creat(fn,S_IRWXU)) == -1)
 perror("creat() error");
 else if ((fd2 = open(fn,O_RDWR)) == -1)
 perror("open() error");
 else {
 if (write(fd1, out, strlen(out)+1) == -1) {
 perror("write() error");
 write_error = 1;
 }
 close(fd1);
 if (!write_error) {
 if (read(fd2, in, sizeof(in)) == -1)
 perror("read() error");
 else printf("string read from file was: '%s'\n", in);
 }
 close(fd2);
 }
}

Output:

string read from file was: 'Test string'

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

closedir()--Close Directory

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 int closedir(DIR *dirp);

 Threadsafe: Conditional; see Usage Notes.

The closedir() function closes the directory stream indicated by dirp. It frees the buffer that readdir() uses
when reading the directory stream.

A file descriptor is used for type DIR; closedir() closes the file descriptor.

Parameters

dirp

(Input) A pointer to a DIR that refers to the open directory stream to be closed. This pointer is
returned by the opendir() function.

Authorities

No authorization is required. Authorization is verified during opendir().

Return Value

0

closedir() was successful.

-1

closedir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If closedir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

This may occur when dirp does not refer to an open directory stream.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

This may occur when dirp does not refer to an open directory stream.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

If the dirp argument passed to closedir() does not refer to an open directory, closedir() returns the
[EBADF] or [EFAULT] error.

2.

After a call to closedir() the dirp will not point to a valid DIR.3.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <dirent.h> file (see Header Files for UNIX-Type Functions)●

opendir()--Open Directory●

readdir()--Read Directory Entry●

rewinddir()--Reset Directory Stream to Beginning●

Example

The following example closes a directory:

#include <stdio.h>
#include <sys/types.h>
#include <dirent.h>

main() {
 DIR *dir;
 struct dirent *entry;
 int count;

 if ((dir = opendir("/")) == NULL)
 perror("opendir() error");
 else {
 count = 0;
 while ((entry = readdir(dir)) != NULL) {

 printf("directory entry %03d: %s\n", ++count, entry->d_name);
 }
 closedir(dir);
 }
}

Output:

directory entry 001: .
directory entry 002: ..
directory entry 003: QSYS.LIB
directory entry 004: QDLS
directory entry 005: QOpenSys
directory entry 006: home

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

creat()--Create or Rewrite File

 Syntax

 #include <fcntl.h>

 int creat(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The creat() function creates a new file or rewrites an existing file so that it is truncated to zero length. The
function call

 creat(path,mode);

is equivalent to the call

 open(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

This means that the file named by path is created if it does not already exist, opened for writing only, and
truncated to zero length. For further information, see open()--Open File.

The mode argument specifies file permission bits to be used in creating the file. For more information on
mode, see chmod()--Change File Authorizations.

Parameters

path

(Input) A pointer to the null-terminated path name of the file to be created or rewritten.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

When a new file is created, the new file name is assumed to be represented in the language and
country or region currently in effect for the job.

See QlgCreat()--Create or Rewrite File for a description and an example of supplying the path in
any CCSID.

mode

(Input) The file permission bits to be used when creating the file. The S_ISUID (set-user-ID) and
S_ISGID (set-group-ID) bits also may be specified when creating the file.

See chmod()--Change File Authorizations for details on the values that can be specified for

mode.

Authorities

Note: Adopted authority is not used.

Figure 1-11. Authorization Required for creat() (excluding QSYS.LIB, independent ASP
QSYS.LIB, and QDLS)

Object Referred to Authority Required errno

Each directory in the path name preceding the object to be created *X EACCES

Existing object *W EACCES

Parent directory of object to be created when object does not exist *WX EACCES

Figure 1-12. Authorization Required for creat() in the QSYS.LIB and independent ASP QSYS.LIB
File Systems

Object Referred to Authority Required errno

Each directory in the path name preceding the object to be created *X EACCES

Existing object *W EACCES

Parent directory of object to be created when object does not exist *OBJMGT or *OBJALTER EACCES

Parent directory of the parent directory of object to be created
when object does not exist

*Add EACCES

Figure 1-13. Authorization Required for creat() in the QDLS File System

Object Referred to Authority Required errno

Each directory in the path name preceding the object to be created *X EACCES

Existing object *W EACCES

Parent directory of object to be created when object does not exist *CHANGE EACCES

Return Value

value

creat() was successful. The value returned is the file descriptor for the open file.

-1

creat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If creat() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

The open sharing mode may conflict with another open of this file, or O_WRONLY or O_RDWR
is specified and the file is checked out by another user.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Unused bits in mode are set and should be cleared.❍

It is invalid to open this type of object.❍

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENFILE]

Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOVERFLOW]

Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The specified file exists and its size is too large to be represented in a variable of type off_t (the file
is larger than 2GB minus 1 byte).

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

❍

1.

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

Root, QOpenSys, and User-Defined File System Differences

The user who creates the file becomes its owner. If the S_ISGID bit of the parent directory is off,
the group ID (GID) is set to the effective GID of the thread creating the object. If the S_ISGID bit
of the parent directory is on, the group ID (GID) is copied from the parent directory in which the
file is created.

The owner, primary group, and public object authorities (*OBJEXIST, *OBJMGT, *OBJALTER,
and *OBJREF) are copied from the parent directory's owner, primary group, and public object
authorities. This occurs even when the new file has a different owner than the parent directory. The
owner, primary group, and public data authorities (*R, *W, and *X) are derived from the
permissions specified in the mode (except for those permissions that are also set in the file mode
creation mask). The new file does not have any private authorities or authorization list. It only has
authorities for the owner, primary group, and public.

2.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

When a new member is created, the mode and profiles must match those of the parent file. If they
do not match, the create operation will fail.

The user who creates a member becomes the owner of the member. However, this owner must be
the same as the owner of the parent directory in which the member is being created.

The group ID is obtained from the primary user profile, if one exists. This group ID must be the
same as the group ID of the file in which the member is being created.

The owner object authorities are set to *OBJEXIST, *OBJMGT, *OBJALTER, and *OBJREF.
The primary group object authorities are specified by options in the user profile of the job. None of
the public object authorities are set.

The owner, primary group, and public data authorities (*R, *W, and *X) are derived from the
permissions specified in the mode (except for those permissions that are also set in the file mode
creation mask). The data authorities must match the data authorities of the file in which the member
is being created.

The primary group authorities are not saved if the primary group does not exist. When a primary
group is attached to the object, the object gets the authorities specified in mode.

A member cannot be created in a mixed-CCSID file.

The file access time for a database member is updated using the normal rules that apply to database
files. At most, the access time is updated once per day.

3.

QDLS File System Differences4.

The user who creates the file becomes its owner. The group ID is copied from the parent folder in
which the file is created.

The owner object authority is set to *OBJMGT + *OBJEXIST + *OBJALTER + *OBJREF.

The primary group and public object authority and all other authorities are copied from the parent
folder.

The owner, primary group, and public data authority (including *OBJOPR) are derived from the
permissions specified in mode (except those permissions that are also set in the file mode creation
mask).

The primary group authorities specified in mode are not saved if no primary group exists.

QOPT File System Differences

When the volume on which the file is being created is formatted in Universal Disk Format (UDF):

The authorization that is checked for the object and preceding directories in the path name
follows the rules described in Figure 1-11 "Authorization Required for creat()."

❍

The volume authorization list is checked for *CHANGE authority.❍

The user who creates the file becomes its owner.❍

The group ID is copied from the parent directory in which the file is created.❍

The owner, primary group, and public data authorities (*R, *W, and *X) are derived from
the permissions specified in the mode (except those permissions that are also set in the file
mode creation mask).

❍

The resulting share mode is O_SHARE_NONE; therefore, the function call

creat(path,mode);

is equivalent to the call

open(path,
 O_CREAT|O_WRONLY|O_TRUNC|O_SHARE_NONE,
 mode);

❍

The same uppercase and lowercase forms in which the names are entered are preserved. No
distinction is made between uppercase and lower case when searching for names.

❍

When the volume on which the file is being created is not formatted in Universal Disk Format
(UDF):

No authorization checks are made on the object or preceding directories in the path name.❍

The volume authorization list is checked for *CHANGE authority.❍

QDFTOWN becomes the owner of the file.❍

No group ID is assigned to the file.❍

The permissions specified in the mode are ignored. The owner, primary group, and public
data authorities are set to RWX.

❍

For newly created files, names are created in uppercase. No distinction is made between
uppercase and lowercase when searching for names.

❍

5.

A file cannot be created as a direct child of /QOPT.

The change and modification times of the parent directory are not updated.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. The creation of a file may fail if permissions and other attributes that are
stored locally by the Network File System are more restrictive than those at the server. A later
attempt to create a file can succeed when the locally stored data has been refreshed. (Several
options on the Add Mounted File System (ADDMFS) command determine the time between
refresh operations of local data.) The creation can also succeed after the file system has been
remounted.

If you try to re-create a file that was recently deleted, the request may fail because data that was
stored locally by the Network File System still has a record of the file's existence. The creation
succeeds when the locally stored data has been updated.

Once a file is open, subsequent requests to perform operations on the file can fail because file
attributes are checked at the server on each request. If permissions on the file are made more
restrictive at the server or the file is unlinked or made unavailable by the server for another client,
your operation on an open file descriptor will fail when the local Network File System receives
these updates. The local Network File System also impacts operations that retrieve file attributes.
Recent changes at the server may not be available at your client yet, and old values may be returned
from operations.

6.

QNetWare File System Differences

The user who creates the file becomes the owner. Mode bits are not fully supported. See NetWare
on iSeries for more information.

7.

This function will fail with the [EOVERFLOW] error if the specified file exists and its size is too
large to be represented in a variable of type off_t (the file is larger than 2GB minus 1 byte).

8.

When you develop in C-based languages and this function is compiled with the _LARGE_FILES
macro defined, it will be mapped to creat64().

9.

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

creat64()--Create or Rewrite a File (Large File Enabled)●

open()--Open File●

QlgCreat()--Create or Rewrite File●

Example

The following example creates a file:

#include <stdio.h>
#include <fcntl.h>

main() {
 char fn[]="creat.file", text[]="This is a test";
 int fd, rc;

 if ((fd = creat(fn, S_IRUSR | S_IWUSR)) < 0)
 perror("creat() error");
 else {
 if (-1==(rc=write(fd, text, strlen(text))))
 perror("write() error");
 if (close(fd) != 0)
 perror("close() error");
 if (unlink(fn)!= 0)
 perror("unlink() error");
 }
}

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

creat64()--Create or Rewrite a File (Large File
Enabled)

 Syntax

 #include <fcntl.h>

 int creat64(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The creat64() function creates a new file or rewrites an existing file so that it is truncated to zero length.
The open file instance created with creat64() is allowed to be larger than 2GB minus 1 byte. The function
call

 creat64(path,mode);

is equivalent to the call

 open64(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

If the file named by path does not already exist, it is created. The file is then opened for writing only and
truncated to zero length. For further information, see open64()--Open File (Large File Enabled).

See QlgCreat64--Create or Rewrite a File (Large File Enabled) for a description and an example of
supplying the path in any CCSID.

The mode argument specifies file permission bits to be used in creating the file. For more information on
mode, see chmod()--Change File Authorizations.

For additional information about parameters, authorities required, error conditions, and examples, see
creat()--Create or Rewrite File.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the creat64() API, you must compile the source with _LARGE_FILE_API macro defined.

1.

All of the usage notes for creat() apply to creat64(). See Usage Notes in the creat() API.2.

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

DosSetFileLocks()--Lock and Unlock a Byte
Range of an Open File

 Syntax

 #define INCL_DOSERRORS
 #define INCL_DOSFILEMGR
 #include <os2.h>

 APIRET APIENTRY DosSetFileLocks(HFILE FileHandle,
 PFILELOCK ppUnLockRange,
 PFILELOCK ppLockRange,
 ULONG ulTimeOut,
 ULONG ulFlags);

 Threadsafe: Conditional; see Usage Notes.

The DosSetFileLocks() function locks and unlocks a range of an open file. A non-zero range indicates that
a lock or unlock request is being made.

Parameters

FileHandle

(Input) The file descriptor of the file in which a range is to be locked.

ppUnlockRange.

(Input) Address of the structure containing the offset and length of a range to be unlocked. The
structure is as follows:

FileOffset

The offset to the beginning of the range to be unlocked.

RangeLength

The length of the range to be unlocked. A value of zero means that unlocking is not
required.

ppLockRange

(Input) Address of the structure containing the offset and length of a range to be locked. The
structure is as follows:

FileOffset

The offset to the beginning of the range to be locked.

RangeLength

The length of the range to be locked. A value of zero means that locking is not required.

ulTimeOut

(Input) The maximum time, in milliseconds, that the process is to wait for the requested locks.

ulFlags

(Input) Flags that describe the action to be taken. If any flags other than those listed below are

specified, the error ERROR_INVALID_PARAMETER will be returned.

The following values are to be specified in ulFlags:

'0x0002' or QP0L_DOSSETFILELOCKS_ATOMIC

Atomic. This bit defines a request for atomic locking. If this bit is set to 1 and the lock
range is equal to the unlock range, an atomic lock occurs. If this bit is set to 1 and the lock
range is not equal to the unlock range, ERROR_LOCK_VIOLATION is returned.

'0x0001' or QP0L_DOSSETFILELOCKS_SHARE

Share. This bit defines the type of access that other processes may have to the file range
that is being locked.

If this bit is set to 0 (the default), other processes have no access to the locked file range.
The current process has exclusive access to the locked file range, which must not overlap
any other locked file range.

If this bit is set to 1, the current process and other processes have shared access to the
locked file range. A file range with shared access may overlap any other file range with
shared access, but must not overlap any other file range with exclusive access.

Authorities

No authorization is required.

Return Value

NO_ERROR (0)

DosSetFileLocks() was successful.

value

When value is not NO_ERROR (non-zero), DosSetFileLocks() was not successful. The value that
is returned indicates the error.

Error Conditions

If DosSetFileLocks() is not successful, the value that is returned is one of the following errors. The
<bseerr.h> header file defines these values.

[ERROR_GENERAL_FAILURE]

A general failure occurred.

This may result from damage in the system. Refer to messages in the job log for other possible
causes.

[ERROR_INVALID_HANDLE]

An invalid file handle was found.

The file handle passed to this function is not valid.

[ERROR_LOCK_VIOLATION]

A lock violation was found.

The requested lock and unlock ranges are both zero.

[ERROR_INVALID_PARAMETER]

An invalid parameter was found.

A parameter passed to this function is not valid.

The byte range specified by the offset and length in the ppUnlockRange or ppLockRange
parameters extends beyond 2GB minus 1 byte.

[ERROR_ATOMIC_LOCK_NOT_SUPPORTED]

The atomic lock operation is not supported.

The file system does not support atomic lock operations.

[ERROR_TIMER_NOT_SUPPORTED]

The lock timer value is not supported.

The file system does not support the lock timer value.

Error Messages

The system may send the following messages from this function.

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ERROR_GEN_FAILURE] when all the following
conditions are true:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

❍

1.

Independent ASP QSYS.LIB ■

QOPT■

The following file systems do not support timer values other than 0. An attempt to a value other
than 0 for the timer value results in an ERROR_TIMER_NOT_SUPPORTED error.

2.

The following file systems do not support the atomic locking flag. If you turn on the atomic locking
flag, an ERROR_ATOMIC_LOCKS_NOT_SUPPORTED error is returned.

Root❍

QOpenSys❍

User-Defined File System❍

QDLS❍

QOPT❍

QNetWare❍

3.

The following file systems do not support byte range locks. An attempt to use this API results in an
ERROR_GENERAL_FAILURE error.

QSYS.LIB❍

Independent ASP QSYS.LIB ❍

Network File System❍

QFileSvr.400 File System❍

4.

When you develop in C-based languages and this function is compiled with the _LARGE_FILES
macro defined, it will be mapped to DosSetFileLocks64(). Additionally, the PFILELOCK data
type will be mapped to a type PFILELOCK64.

5.

Locks placed on character special files result in advisory locks. For more information on advisory
locking, please see the fcntl()--Perform File Control Command.

6.

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

The <os2.h> file (see Header Files for UNIX-Type Functions)●

The <os2def.h> file (see Header Files for UNIX-Type Functions)●

The <bse.h> file (see Header Files for UNIX-Type Functions)●

The <bsedos.h> file (see Header Files for UNIX-Type Functions)●

The <bseerr.h> file (see Header Files for UNIX-Type Functions)●

DosSetFileLocks64()--Lock and Unlock a Byte Range of an Open File (Large File Enabled)●

Example

The following example opens, locks, and unlocks a file.

#define INCL_DOSERRORS
#define INCL_DOSFILEMGR
#include <os2.h>

#include <stdio.h>

#define NULL_RANGE 0L
#define LOCK_FLAGS 0

main() {
 char fn[]="lock.file";
 char buf[] =
 "Test data for locking and unlocking range of a file";
 int fd;
 ULONG lockTimeout = 2000; /* lock timeout of 2 seconds */
 FILELOCK Area; /* area of file to lock/unlock */

 Area.Offset = 4; /* start locking at byte 4 */
 Area.Range = 10; /* lock 10 bytes for the file */

 /* Create a file for this example */
 fd = creat(fn, S_IWUSR | S_IRUSR);
 /* Write some data to the file */
 write(fd, buf, sizof(buf) -1);
 close(fd);

 /* Open the file */
 if ((fd = open(fn, O_RDWR) < 0)
 {
 perror("open() error");
 return;
 }

 /* Lock a range */
 rc = DosSetFileLocks((HFILE)fd,
 NULL_RANGE,
 &Area,
 &LockTimeout,
 LOCK_FLAGS);
 if(rc != 0) /* Lock failed */
 {
 perror("DosSetFileLocks() error");
 }

 /* Unlock a range */
 rc = DosSetFileLocks((HFILE)fd,
 &Area,
 NULL_RANGE,
 &LockTimeout,
 LOCK_FLAGS);
 if(rc != 0) /* Unlock failed */
 {
 perror("DosSetFileLocks() error");
 }

 close(fd);
 unlink(fn);
}

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

DosSetFileLocks64()--Lock and Unlock a Byte
Range of an Open File (Large File Enabled)

 Syntax

 #define INCL_DOSERRORS
 #define INCL_DOSFILEMGR
 #include <os2.h>

 APIRET APIENTRY DosSetFileLocks64(HFILE FileHandle,
 PFILELOCK64 ppUnLockRange,
 PFILELOCK64 ppLockRange,
 ULONG ulTimeOut,
 ULONG ulFlags);

 Threadsafe: Conditional; see Usage Notes.

The DosSetFileLocks64() function locks and unlocks a range of an open file. A non-zero range indicates
that a lock or unlock request is being made.

The DosSetFileLocks64() treats the values specified in the PFILELOCK64 structure as unsigned.

The maximum offset that can be specified using DosSetFileLocks64() is the largest value that can be held
in an 8-byte, unsigned integer, 264 - 1.

The maximum length that can be specified using DosSetFileLocks64() is the largest value that can be held
in an 8-byte, unsigned integer, 264 - 1.

DosSetFileLocks64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1
byte as long as the file has been opened by either of the following:

Using the open64() function (see open64()--Open File (Large File Enabled)).●

Using the open() function (see open()--Open File) with the O_LARGEFILE flag set in the oflag
parameter. Note that the PFILELOCK64 type will hold offsets greater than 2 GB minus 1 byte.

●

For details about parameters, authorities required, error conditions, and examples, see
DosSetFileLocks()--Lock and Unlock a Byte Range of an Open File.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the DosSetFileLocks64() API and the PFILELOCK64 data type, you must compile the
source with _LARGE_FILE_API defined.

1.

For additional usage notes about this API, see Usage Notes in the DosSetFileLocks() API.2.

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

The <os2.h> file (see Header Files for UNIX-Type Functions)●

The <os2def.h> file (see Header Files for UNIX-Type Functions)●

The <bse.h> file (see Header Files for UNIX-Type Functions)●

The <bsedos.h> file (see Header Files for UNIX-Type Functions)●

The <bseerr.h> file (see Header Files for UNIX-Type Functions)●

DosSetFileLocks()--Lock and Unlock a Byte Range of an Open File●

Top | UNIX-Type APIs | APIs by category

DosSetRelMaxFH()--Change Maximum Number
of File Descriptors

 Syntax

 #define INCL_DOSERRORS
 #define INCL_DOSFILEMGR
 #include <os2.h>

 APIRET APIENTRY DosSetRelMaxFH(PLONG pcbReqCount,
 PULONG pcbCurMaxFH);

 Threadsafe: Yes

The DosSetRelMaxFH() function requests that the system change the maximum number of file descriptors
for the calling process (job). The system preserves all file descriptors that are currently open.

A request to increase the maximum number of file descriptors by more than the system can accommodate
will succeed. The resulting maximum will be the largest number possible, but will be less than what you
requested.

A request to decrease the maximum number of file descriptors will succeed. The resulting maximum will
be the smallest number possible, but may be more than what you expected. For example, assume that the
current maximum is 200 and there are 150 open files. A request to decrease the maximum by 75 results in
the maximum being decreased by only 50, to 150, to preserve the open file descriptors.

A request to decrease the maximum number of file descriptors to below 20 will succeed, but the maximum
will never be decreased below 20.

To retrieve the current maximum number of file descriptors, without any side effects, the value pointed to
by pcbReqCount should be set to zero.

Parameters

pcbReqCount

(Input) A pointer to the number to be added to the maximum number of file descriptors for the
calling process. If the value pointed to by pcbReqCount is positive, the system increases the
maximum number of file descriptors. If the value pointed to by pcbReqCount is negative, the
system decreases the maximum number of file descriptors.

pcbCurMaxFH

(Output) A pointer to the location to receive the new total number of allocated file descriptors.

Authorities

No authorization is required.

Return Value

NO_ERROR (0)

DosSetRelMaxFH() was successful. The function returns NO_ERROR (0) even if the system
disregards or partially fulfills a request for an increase or a decrease (for example, decreasing by a
smaller number than requested). You should examine the value pointed to by pcbCurMaxFH to
determine the result of this function.

value

When value is not NO_ERROR (non-zero), DosSetRelMaxFH() was not successful. The value
that is returned indicates the error.

Error Conditions

If DosSetRelMaxFH() is not successful, the value that is returned is one of the following errors. The
<bseerr.h> header file defines these values.

[ERROR_GENERAL_FAILURE]

A general failure occurred.

This may result from damage in the system. Refer to messages in the job log for other possible
causes.

[ERROR_PROTECTION_VIOLATION]

A protection violation occurred.

A pointer passed to this function is not a valid pointer.

Error Messages

The system may send the following messages from this function.

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

If you are using the select() API, you should be aware of the value of the FD_SETSIZE macro
defined in the <sys/types.h> header file. This value is defined to be 200. This means that the fd_set
structure is defined to contain 200 bits, one for each file descriptor.

If your application uses DosSetRelMaxFH() to increase the maximum number of file descriptors
beyond 200, you should consider defining your own value for the FD_SETSIZE macro prior to
including <sys/types.h>. This is to ensure that the fd_set structure is defined with the correct
number of bits to accommodate the actual maximum number of file descriptors.

1.

The maximum number of file descriptors for this process may be obtained by using the sysconf()
API with the _SC_OPEN_MAX parameter.

2.

Related Information

The <os2.h> file (see Header Files for UNIX-Type Functions)●

The <os2def.h> file (see Header Files for UNIX-Type Functions)●

The <bse.h> file (see Header Files for UNIX-Type Functions)●

The <bsedos.h> file (see Header Files for UNIX-Type Functions)●

The <bseerr.h> file (see Header Files for UNIX-Type Functions)●

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The select() API●

sysconf()--Get System Configuration Variables●

Example

The following example increases the maximum number of file descriptors by two.

#define INCL_DOSERRORS
#define INCL_DOSFILEMGR
#include <os2.h>
#include <stdio.h>

void main()
{
 long ReqCount = 0; /* Number to add to maximum */
 /* file descriptor count. */
 ulong CurMaxFH; /* New count of file descriptors. */
 int rc; /* Return code. */

 /* Find out what the initial maximum is.*/
 if (NO_ERROR == (rc = DosSetRelMaxFH(&ReqCount, &CurMaxFH))
 {
 printf("Initial maximum = %d",CurMaxFH);

 ReqCount = 2; /* Set up to increase by 2. */

 if (NO_ERROR == (rc = DosSetRelMaxFH(&ReqCount, &CurMaxFH))
 {
 printf(" New maximum = %d",CurMaxFH);
 }
 }
 if (NO_ERROR != rc)
 {
 printf("Error = &d",rc);
 }
}

Output:

Initial maximum = 200 New maximum = 202

Top | UNIX-Type APIs | APIs by category

dup()--Duplicate Open File Descriptor

 Syntax

 #include <unistd.h>

 int dup(int fildes);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The dup() function returns a new open file descriptor. The new descriptor refers to the same open file as
fildes and shares any locks.

If the original file descriptor was opened in text mode, data conversion is also done on the duplicated file
descriptor.

The FD_CLOEXEC flag that is associated with the new file descriptor is cleared. Refer to fcntl()--Perform
File Control Command for additional information about the FD_CLOEXEC flag.

Parameters

fildes

(Input) A descriptor to be duplicated.

The following operations are equivalent:

 fd = dup(fildes);
 fd = fcntl(fildes,F_DUPFD,0);

For further information, see fcntl()--Perform File Control Command.

Authorities

No authorization is required.

Return Value

value dup() was successful. The value returned is the new descriptor.

-1 dup() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If dup() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECANCEL]

Operation canceled.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

close()--Close File or Socket Descriptor●

creat()--Create or Rewrite File●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

fcntl()--Perform File Control Command●

open()--Open File●

Example

The following example duplicates an open descriptor:

See Code disclaimer information for information pertaining to code examples.

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <errno.h>

void print_file_id(int file_descriptor) {
 struct stat info;
 if (fstat(file_descriptor, &info) != 0)
 fprintf(stderr, "stat() error for file_descriptor %d: %s\n",
 strerror(errno));
 else
 printf("The file id of file_descriptor %d is %d\n",
 file_descriptor,(int) info.st_ino);
}

main() {
 int file_descriptor, file_descriptor2;
 char fn[]="original.file";

 /* create original file */
 if((file_descriptor = creat(fn,S_IRUSR | S_IWUSR)) < 0)
 perror("creat() error");
 /* generate a duplicate file descriptor of file_descriptor */
 else {
 if ((file_descriptor2 = dup(file_descriptor)) < 0)
 perror("dup() error");
 /* print resulting information */
 else {
 print_file_id(file_descriptor);
 print_file_id(file_descriptor2);
 puts("The file descriptors are different but");
 puts("they point to the same file.");
 close(file_descriptor);
 close(file_descriptor2);
 }

 unlink(fn);
 }
}

Output:

The file id of file_descriptor 0 is 30
The file id of file_descriptor 3 is 30
The file descriptors are different but
they point to the same file.

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

dup2()--Duplicate Open File Descriptor to
Another Descriptor

 Syntax

 #include <unistd.h>

 int dup2(int fildes, int fildes2);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The dup2() function returns a descriptor with the value fildes2. The descriptor refers to the same file as
fildes, and it will close the file that fildes2 was associated with.

If the original file descriptor was opened in text mode, data conversion is also done on the duplicated file
descriptor.

The FD_CLOEXEC flag that is associated with the new file descriptor is cleared. Refer to fcntl()--Perform
File Control Command for additional information about the FD_CLOEXEC flag.

The following conditions apply:

If fildes2 is less than zero or greater than or equal to OPEN_MAX, dup2() returns -1 and sets the
errno global variable to [EBADF].

●

If fildes is a valid descriptor and is equal to fildes2, dup2() returns fildes2 without closing it.●

If fildes is not a valid descriptor, dup2() fails and does not close fildes2.●

This function works with descriptors for any type of object.

Parameters

fildes

(Input) A descriptor to be duplicated.

fildes2

(Input) The descriptor to which the duplication is made.

Authorities

No authorization is required.

Return Value

value dup2() was successful. The value of fildes2 is returned.

-1 dup2() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If dup2() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

close()--Close File or Socket Descriptor●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

fcntl()--Perform File Control Command●

open()--Open File●

Example

The following example duplicates an open descriptor:

See Code disclaimer information for information pertaining to code examples.

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

void print_file_id(int file_descriptor) {
 struct stat info;
 if (fstat(file_descriptor, &info) != 0)
 fprintf(stderr, "stat() error for file_descriptor %d: %s\n",
 strerror(errno));
 else
 printf("The file id of file_descriptor %d is %d\n", file_descriptor,
 (int) info.st_ino);
}

main() {
 int file_descriptor, file_descriptor2;
 char fn[] = "original.file";
 char fn2[] = "dup2.file";

 /* create original file */
 if((file_descriptor = creat(fn, S_IRUSR | S_IWUSR)) < 0)
 perror("creat() error");
 /* create file to dup to */
 else if((file_descriptor2 = creat(fn2, S_IWUSR)) < 0)
 perror("creat()error");
 /* dup file_descriptor to file_descriptor2; print results */
 else {
 print_file_id(file_descriptor);

 print_file_id(file_descriptor2);
 if ((file_descriptor2 = dup2(file_descriptor, file_descriptor2)) < 0)
 perror("dup2() error");
 else {
 puts("After dup2()...");
 print_file_id(file_descriptor);
 print_file_id(file_descriptor2);
 puts("The file descriptors are different but they");
 puts("point to the same file which is different than");
 puts("the file that the second file_descriptor originally pointed
to.");
 close(file_descriptor);
 close(file_descriptor2);
 }
 unlink(fn);
 unlink(fn2);
 }
}

Output:

The file id of file_descriptor 0 is 30
The file id of file_descriptor 3 is 58
After dup2()...
The file id of file_descriptor 0 is 30
The file id of file_descriptor 3 is 30
The file descriptors are different, but they
point to the same file, which is different than
the file that the second file_descriptor originally pointed to.

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

faccessx()--Determine File Accessibility for a
Class of Users

 Syntax

 #include <unistd.h>

 int faccessx(int fildes, int amode, int who);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The faccessx() function determines whether a file can be accessed by a specified class of users in a particular
manner.

Adopted authority is not used.

Parameters

fildes

(Input) The file descriptor of the file that is having its accessibility checked.

amode

(Input) A bitwise representation of the access permissions to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in amode:

F_OK

(x'00') Tests whether the file exists

R_OK

(x'04') Tests whether the file can be accessed for reading

W_OK

(x'02') Tests whether the file can be accessed for writing

X_OK

(x'01') Tests whether the file can be accessed for execution

You can take the bitwise inclusive OR of any or all of the last three symbols to test several access modes
at once. If you are using F_OK to test for the existence of the file, you cannot use OR with any of the
other symbols. If any other bits are set in amode, faccessx() returns the [EINVAL] error.

who

(Input) The class of users whose authority is to be checked.

The following symbols, which are defined in the <unistd.h> header file, can be used in who:

ACC_SELF

(x'00') Determines if specified access is permitted for the current thread. The effective user and
group IDs are used.

Note: If the real and effective user ID are the same and the real and effective group ID are the
same, the request is treated as ACC_INVOKER. See the Usage Notes for more details.

ACC_INVOKER

(x'01') Determines if specified access is permitted for the current thread. The effective user and
group IDs are used.

ACC_OTHERS

(x'08') Determines if specified access is permitted for any user other than the object owner. Only
one of R_OK, W_OK, and X_OK is permitted when who is ACC_OTHERS. Privileged users
(users with *ALLOBJ special authority) are not considered in this check.

ACC_ALL

(x'20') Determines if specified access is permitted for all users. Only one of R_OK, W_OK, and
X_OK is permitted when who is ACC_ALL. Privileged users (users with *ALLOBJ special
authority) are not considered in this check.

Authorities

The following authorities are required if the who parameter is ACC_SELF or ACC_INVOKER. If ACC_SELF is
specified, the effective UID and GID of the caller are used. If ACC_INVOKER is used, the real UID and GID of
the caller are used.

Authorization Required for faccessx()

Object Referred to
Authority
Required errno

Object when R_OK is specified *R EACCES

Object when W_OK is specified *W EACCES

Object when X_OK is specified *X EACCES

Object when R_OK | W_OK is specified *RW EACCES

Object when R_OK | X_OK is specified *RX EACCES

Object when W_OK | X_OK is specified *WX EACCES

Object when R_OK | W_OK | X_OK is specified *RWX EACCES

Object when F_OK is specified None None

If the current thread has *ALLOBJ special authority, faccessx() with ACC_SELF or ACC_INVOKER will
indicate success for R_OK, W_OK, or X_OK even if none of the permission bits are set.

Return Value

0

faccessx() was successful.

-1

faccessx() was not successful (or the specified access is not permitted for the class of users being
checked). The errno global variable is set to indicate the error.

Error Conditions

If faccessx() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES]

Permission denied.

The class of users specified by the who parameter does not have the permission indicated by the amode
parameter.

If you are accessing a remote file through the Network File System, update operations to file permissions
at the server are not reflected at the client until updates to data that is stored locally by the Network File
System take place. (Several options on the Add Mounted File System (ADDMFS) command determine
the time between refresh operations of local data.) Access to a remote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not
valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EINTR]

Interrupted function call.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This could
also be caused by exceeding the user profile storage limit when creating or transferring ownership of an
object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the requested
arguments.

[ETXTBSY]

Text file busy.

An attempt was made to execute an OS/400 PASE program that is currently open for writing, or an
attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at the
server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct
any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at the
server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only the
following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB■

QOPT■

❍

1.

ACC_SELF Mapped to ACC_INVOKER

Some physical file systems do not support ACC_SELF for the who parameter. However, faccessx() will

2.

change the who parameter from ACC_SELF to ACC_INVOKER if the caller's real and effective user ID
are equal, and the caller's real and effective group ID are equal.

Network File System Differences

The Network File System will only support the value ACC_INVOKER for the who parameter. If
faccessx() is called on a file in a mounted Network File System directory with a value for who other than
ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

Local access to remote files through the Network File System may produce unexpected results due to
conditions at the server. Once a file is open, subsequent requests to perform operations on the file can fail
because file attributes are checked at the server on each request. If permissions on the file are made more
restrictive at the server or the file is unlinked or made unavailable by the server for another client, your
operation on an open file descriptor will fail when the local Network File System receives these updates.
The local Network File System also impacts operations that retrieve file attributes. Recent changes at the
server may not be available at your client yet, and old values may be returned from operations. (Several
options on the Add Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.)

3.

QNTC File System Differences

The QNTC File System will only support the value ACC_INVOKER for the who parameter. If faccessx()
is called on a file in the QNTC File System with a value for who other than ACC_INVOKER, the call will
return -1 and errno ENOTSUP. Note: If the value for who has been mapped from ACC_SELF to
ACC_INVOKER as previously described, then ENOTSUP will not be returned.

4.

QOPT File System Differences

If the file descriptor refers to an object that exists on a volume formatted in Universal Disk Format
(UDF), the authorization that is checked for the object follows the rules described in the previous table,
Authorization Required for faccessx(). If the object exists on a volume formatted in some other media
format, no authorization checks are made on the object. The volume authorization list is checked for the
requested authority regardless of the volume media format.

5.

QFileSvr.400 File System Differences

The QFileSvr.400 File System will only support the value ACC_INVOKER for the who parameter. If
faccessx() is called on a file in the QFileSvr.400 File System with a value for who other than
ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

6.

QNetWare File System Differences

The QNetWare File System will only support the value ACC_INVOKER for the who parameter. If
faccessx() is called on a file in the QNetWare File System with a value for who other than
ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been
mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be
returned.

7.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <limits.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

open()--Open File●

access()--Determine File Accessibility●

accessx()--Determine File Accessibility for a Class of Users●

QlgAccessx()--Determine File Accessibility for a Class of Users (using NLS-enabled path name)●

QlgAccess()--Determine File Accessibility (using NLS-enabled path name)●

stat()--Get File Information●

Example

The following example determines how a file is accessed:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

main() {
 char path[]="/myfile";
 int fd;

 fd = open(path, O_RDONLY);
 if (fd == -1)
 {
 printf("Error opening file.\n");
 return;
 }

 if (faccessx(fd, R_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has read access to '%s'\n", path);
 if (faccessx(fd, W_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has write access to '%s'\n", path);
 if (faccessx(fd, X_OK, ACC_OTHERS) == 0)
 printf("Someone besides the owner has search access to '%s'\n", path);
 close(fd);
}

Output:

In this example faccessx() was called on a descriptor for '/myfile'. The following would be the output if someone
other than the owner has *R authority, someone besides the owner has *W authority, and noone other than the
owner has *X authority.

Someone besides the owner has read access to '/'
Someone besides the owner has write access to '/'

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

 fchdir()--Change Current Directory by
Descriptor

 Syntax

 #include <unistd.h>

 int fchdir(int fildes);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The fchdir() function makes the directory named by fildes the new current directory. If the fchdir()
function fails, the current directory is unchanged.

Parameters

fildes

(Input) The file descriptor of the directory.

Authorities

Note: Adopted authority is not used.

Authorization Required for fchdir()

Object Referred to Authority Required errno

Each directory of the path name *X EACCES

Return Value

0

fchdir() was successful.

-1

fchdir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fchdir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB■

QOPT■

❍

The fchdir() API operates on two objects: the previous current working directory and the new one.
If either of these objects is managed by a file system that is not threadsafe, fchdir() fails with the
ENOTSAFE error code.

1.

Network File System Differences

If the local storage of attributes and names is not suppressed (option noac when the file system is
mounted), then one can potentially use the fchdir() API to change to a directory which has been
removed. This depends on how often and when the local storage of attributes and names is
refreshed.

2.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <limits.h> file (see Header Files for UNIX-Type Functions)●

chdir()--Change Current Directory●

getcwd()--Get Current Directory●

QlgChdir()--Change Current Directory●

QlgGetcwd()--Get Current Directory●

Example

The following example uses fchdir():

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

main() {
 char dir[]="tempfile";
 int file_descriptor;
 int oflag1 = O_RDONLY | O_CCSID;
 mode_t mode = S_IRUSR | S_IWUSR | S_IXUSR;
 unsigned int open_ccsid = 37;

 if ((file_descriptor = open(dir,oflag1,mode,open_ccsid)) < 0)
 perror("open() error");
 else {
 if (fchdir(file_descriptor) != 0)
 perror("fchdir() to tempfile failed");
 close(file_descriptor);
 }
}

Output:

fchdir() to tempfile failed: Not a directory.

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

fchmod()--Change File Authorizations by
Descriptor

 Syntax

 #include <sys/stat.h>

 int fchmod(int fildes, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The fchmod() function changes S_ISUID, S_ISGID, and the permission bits of the open file or directory
identified by fildes its file descriptor, to the corresponding bits specified in mode. fchmod() has no effect
on file descriptions for files that are open at the time fchmod() is called.

fchmod() marks for update the change time of the file.

If the file is checked out by another user (someone other than the user profile of the current job), fchmod()
fails with the [EBUSY] error.

Parameters

fildes

(Input) The file descriptor of the file.

mode

(Input) Bits that define S_ISUID, S_ISGID, and the access permissions of the file.

The mode argument is created with one of the symbols defined in the <sys/stat.h> header file. For more
information on the symbols, refer to chmod()--Change File Authorizations.

If bits other than the bits listed above are set in mode, fchmod() returns the [EINVAL] error.

Authorities

Note: Adopted authority is not used.

Figure 1-14. Authorization Required for fchmod() (excluding QDLS)

Object Referred to
Authority
Required errno

Object Owner
(see Note)

EPERM

Note: You do not need the listed authority if you have *ALLOBJ special authority.

Figure 1-15. Authorization Required for fchmod() in the QDLS File System

Object Referred to
Authority
Required errno

Object Owner or
*ALL

EACCES

Return Value

0

fchmod() was successful.

-1

fchmod() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fchmod() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length of
the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully. This
error occurs during operations that were attempting to start or end journaling, or were attempting to
send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the requested
arguments.

The object referenced by the descriptor does not support the function.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this API:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

All of the usage notes for chmod() apply to fchmod(). See Usage Notes in the chmod API. 1.

Related Information

The <sys/stat.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

chown()--Change Owner and Group of File●

fchown()--Change Owner and Group of File by Descriptor●

mkdir()--Make Directory●

open()--Open File●

stat()--Get File Information●

Example

The following example changes a file permission:

#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>

main() {
 char fn[]="temp.file";
 int file_descriptor;
 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 if (stat(fn, &info)!= 0)
 perror("stat() error");
 else {
 printf("original permissions were: %08o\n", info.st_mode);
 }
 if (fchmod(file_descriptor, S_IRWXU|S_IRWXG) != 0)
 perror("fchmod() error");
 else {
 if (stat(fn, &info)!= 0)
 perror("stat() error");
 else {
 printf("after fchmod(), permissions are: %08o\n", info.st_mode);
 }
 }
 if (close(file_descriptor)!= 0)
 perror("close() error");
 if (unlink(fn)!= 0)
 perror("unlink() error");
 }
}

Output:

original permissions were: 00100200
after fchmod(), permissions are: 00100770

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

fchown()--Change Owner and Group of File by
Descriptor

 Syntax

 #include <unistd.h>

 int fchown(int fildes, uid_t owner, gid_t group);

 Threadsafe: Conditional; see Usage Notes.

The fchown() function changes the owner and group of a file. The permissions of the previous owner or
primary group to the object are revoked.

If the file is checked out by another user (someone other than the user profile of the current job), fchown()
fails with the [EBUSY] error.

When fchown() completes successfully, it marks the change time of the file to be updated.

Parameters

fildes

(Input) The file descriptor of the file.

owner

(Input) The new user ID to be set for file.

group

(Input) The new group ID to be set for file.

Note: Changing the owner or the primary group causes the S_ISUID (set-user-ID) and S_ISGID
(set-group-ID) bits of the file mode to be cleared, unless the caller has *ALLOBJ special authority. If the
caller does have *ALLOBJ special authority, the bits are not changed. This does not apply to directories,
FIFO special files, or pipes. See the chmod() documentation.

Authorities

Note: Adopted authority is not used.

Figure 1-16. Authorization Required for fchown() (excluding QSYS.LIB, independent ASP
QSYS.LIB, and QDLS)

Object Referred to Authority Required errno

Object, when changing the owner Owner and *OBJEXIST
(also see Note 1)

EPERM

Object, when changing the primary group See Note 2 EPERM

Previous owner's user profile, when changing the owner *DLT EPERM

New owner's user profile, when changing the owner *ADD EPERM

User profile of previous primary group, when changing the primary
group

*DLT EPERM

New primary group's user profile, when changing the primary group *ADD EPERM

Note:

You do not need the listed authority if you have *ALLOBJ special authority.1.

At least one of the following must be true:

You have *ALLOBJ special authority.a.

You are the owner and either of the following:

The new primary group is the primary group of the job.■

The new primary group is one of the supplementary groups of the job.■

b.

2.

Figure 1-17. Authorization Required for fchown() in the QSYS.LIB and independent ASP
QSYS.LIB File Systems

Object Referred to Authority Required errno

Object, when changing the owner See Note (1) EPERM

Object, when changing the primary group See Note (2) EPERM

Note: The required authorization varies for each object type. See the following commands in the iSeries

Security Reference book for details:

CHGOBJOWN1.

CHGOBJPGP2.

Figure 1-18. Authorization Required for fchown() in the QDLS File System

Object Referred to Authority Required errno

Object *ALLOBJ Special
Authority or Owner

EPERM

Previous owner's user profile, when changing the owner *DLT EPERM

New owner's user profile, when changing the owner *ADD EPERM

Previous primary group's user profile, when changing the primary group *DLT EPERM

New primary group's user profile, when changing the primary group *ADD EPERM

Figure 1-19. Authorization Required for fchown() in the QOPT File System

Object Referred to Authority Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the object. *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Return Value

0

fchown() was successful.

-1

fchown() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fchown() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. arameter passed to this function is not
valid.

owner or group is not a valid user ID (uid) or group ID (gid).

owner is the current primary group of the object.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

The object referenced by the descriptor does not support the function.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QDLS File System Differences

The owner and primary group of the /QDLS directory (root folder) cannot be changed. If an
attempt is made to change the owner and primary group, a [ENOTSUP] error is returned.

2.

QOPT File System Differences

Changing the owner and primary group is allowed only for an object that exists on a volume

3.

formatted in Universal Disk Format (UDF). For all other media formats, ENOTSUP will be
returned.

QOPT file system objects that have owners will not be recognized by the Work with Objects by
Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will
not be recognized by the Work Objects by Primary Group (WRKOBJPGP) CL command.

QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support fchown().

4.

QNetWare File System Differences

Primary group is not supported. The GID must be zero on this API.

5.

QNTC File System Differences

The owner of files and directories cannot be changed. All files and directories in QNTC are owned
by the QDFTOWN user profile.

6.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

chown()--Change Owner and Group of File●

chmod()--Change File Authorizations●

fchmod()--Change File Authorizations by Descriptor●

mkdir()--Make Directory●

open()--Open File●

stat()--Get File Information●

Example

The following example changes the owner ID and group ID:

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>

main() {
 char fn[]="temp.file";
 int file_descriptor;
 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");
 else {
 stat(fn, &info);
 printf("original owner was %d and group was %d\n", info.st_uid,
 info.st_gid);
 if (fchown(file_descriptor, 152, 0) != 0)
 perror("fchown() error");
 else {
 stat(fn, &info);
 printf("after fchown(), owner is %d and group is %d\n",
 info.st_uid, info.st_gid);
 }
 close(file_descriptor);
 unlink(fn);
 }
}

Output:

original owner was 137 and group was 0
after fchown(), owner is 152 and group is 0

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

fcntl()--Perform File Control Command

 Syntax

 #include <sys/types.h>
 #include <unistd.h>
 #include <fcntl.h>

 int fcntl(int descriptor,
 int command,
 ...)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The fcntl() function performs various actions on open descriptors, such as obtaining or changing the
attributes of a file or socket descriptor.

Parameters

descriptor

(Input) The descriptor on which the control command is to be performed, such as having its
attributes retrieved or changed.

command

(Input) The command that is to be performed on the descriptor.

...

(Input) A variable number of optional parameters that is dependent on the command. Only some of
the commands use this parameter.

The fcntl() commands that are supported are:

F_DUPFD Duplicates the descriptor. A third int argument must be specified. fcntl() returns the
lowest descriptor greater than or equal to this third argument that is not already
associated with an open file. This descriptor refers to the same object as descriptor and
shares any locks. If the original descriptor was opened in text mode, data conversion is
also done on the duplicated descriptor. The FD_CLOEXEC flag that is associated with
the new descriptor is cleared.

F_GETFD Obtains the descriptor flags for descriptor. fcntl() returns these flags as its result. For a
list of supported file descriptor flags, see Flags. Descriptor flags are associated with a
single descriptor and do not affect other descriptors that refer to the same object.

F_GETFL Obtains the file status flags and file access mode flags for descriptor. fcntl() returns
these flags as its result. For a list of supported file status and file access mode flags, see

Using the oflag Parameter in open().

F_GETLK Obtains locking information for an object. You must specify a third argument of type
struct flock *. See File Locking for details. fcntl() returns 0 if it successfully obtains the
locking information. When you develop in C-based languages and the function is
compiled with the _LARGE_FILES macro defined, F_GETLK is mapped to the
F_GETLK64 symbol.

F_GETLK64 Obtains locking information for a large file. You must specify a third argument of type
struct flock64 *. See File Locking for details. fcntl() returns 0 if it successfully obtains
the locking information. When you develop in C-based languages, it is necessary to
compile the function with the _LARGE_FILE_API macro defined to use this symbol.

F_GETOWN Returns the process ID or process group ID that is set to receive the SIGIO (I/O is
possible on a descriptor) and SIGURG (urgent condition is present) signals. For more
information, see Signal APIs.

F_SETFD Sets the descriptor flags for descriptor. You must specify a third int argument, which
gives the new file descriptor flag settings (see Flags). If any other bits in the third
argument are set, fcntl() fails with the [EINVAL] error. fcntl() returns 0 if it
successfully sets the flags. Descriptor flags are associated with a single descriptor and
do not affect other descriptors that refer to the same object.

F_SETFL Sets status flags for the descriptor. You must specify a third int argument, giving the
new file status flag settings (see Flags). fcntl() does not change the file access mode,
and file access bits in the third argument are ignored. All other oflag values that are
valid on the open() API are also ignored. If any other bits in the third argument are set,
fcntl() fails with the [EINVAL] error. fcntl() returns 0 if it successfully sets the flags.

F_SETLK Sets or clears a file segment lock. You must specify a third argument of type struct
flock *. See File Locking for details. fcntl() returns 0 if it successfully clears the lock.
When you develop in C-based languages and the function is compiled with the
_LARGE_FILES macro defined, F_SETLK is mapped to the F_SETLK64 symbol.

F_SETLK64 Sets or clears a file segment lock for a large file. You must specify a third argument of
type struct flock64 *. See File Locking for details. fcntl() returns 0 if it successfully
clears the lock. When you develop in C-based languages, it is necessary to compile the
function with the _LARGE_FILE_API macro defined to use this symbol.

F_SETLKW Sets or clears a file segment lock; however, if a shared or exclusive lock is blocked by
other locks, fcntl() waits until the request can be satisfied. You must specify a third
argument of type struct flock *. See File Locking for details. When you develop in
C-based languages and the function is compiled with the _LARGE_FILES macro
defined, F_SETLKW is mapped to the F_SETLKW64 symbol.

F_SETLKW64 Sets or clears a file segment lock on a large file; however, if a shared or exclusive lock
is blocked by other locks, fcntl() waits until the request can be satisfied. See File
Locking for details. You must specify a third argument of type struct flock64 *. When
you develop in C-based languages, it is necessary to compile the function with the
_LARGE_FILE_API macro defined to use this symbol.

F_SETOWN Sets the process ID or process group ID that is to receive the SIGIO and SIGURG
signals. For more information, see Signal APIs.

Flags

There are several types of flags associated with each open objecte. Flags for an object are represented by
symbols defined in the <fcntl.h header file. The following file status flags can be associated with an object:

FASYNC The SIGIO signal is sent to the process when it is possible to do I/O.

FNDELAY This flag is defined to be equivalent to O_NDELAY.

O_APPEND Append mode. If this flag is 1, every write operation on the file begins at the end of
the file.

O_DSYNC Synchronous update - data only. If this flag is 1, all file data is written to permanent
storage before the update operation returns. Update operations include, but are not
limited to, the following: ftruncate(), open() with O_TRUNC, and write().

O_NDELAY This flag is defined to be equivalent to O_NONBLOCK.

O_NONBLOCK Non-blocking mode. If this flag is 1, read or write operations on the file will not cause
the thread to block. This file status flag applies only to pipe, FIFO, and socket
descriptors.

O_RSYNC Synchronous read. If this flag is 1, read operations to the file will be performed
synchronously. This flag is used in combination with O_SYNC or O_DSYNC. When
O_RSYNC and O_SYNC are set, all file data and file attributes are written to
permanent storage before the read operation returns. When O_RSYNC and
O_DSYNC are set, all file data is written to permanent storage before the read
operation returns.

O_SYNC Synchronous update. If this flag is 1, all file data and file attributes relative to the I/O
operation are written to permanent storage before the update operation returns. Update
operations include, but are not limited to, the following: ftruncate(), open() with
O_TRUNC, and write().

The following file access mode flags can be associated with a file:

O_RDONLY The file is opened for reading only.

O_RDWR The file is opened for reading and writing.

O_WRONLY The file is opened for writing only.

A mask can be used to extract flags:

O_ACCMODE Extracts file access mode flags.

The following descriptor flags can be associated with a descriptor:

FD_CLOEXEC Controls descriptor inheritance during spawn() and spawnp() when simple inheritance
is being used, as follows:

If the FD_CLOEXEC flag is zero, the descriptor is inherited by the child
process that is created by the spawn() or spawnp()API.

Note: Descriptors that are created as a result of the opendir() API (to
implement open directory streams) are not inherited, regardless of the value of
the FD_CLOEXEC flag.

●

If the FD_CLOEXEC flag is set, the descriptor is not inherited by the child
process that is created by the spawn() or spawnp() API.

●

Refer to spawn()--Spawn Process and spawnp()--Spawn Process with Path for additional information about
FD_CLOEXEC.

File Locking

A local or remote job can use fcntl() to lock out other local or remote jobs from a part of a file. By locking
out other jobs, the job can read or write to that part of the file without interference from others. File locking
can ensure data integrity when several jobs have a file accessed concurrently. For more information about
remote locking, see information about the network lock manager and the network status monitor in the

OS/400 Network File System Support book.

Two different structures are used to control locking operations: struct flock and struct flock64 (both defined
in the <fcntl.h header file). You can use struct flock64 with the F_GETLK64, F_SETLK64, and
F_SETLKW64 commands to control locks on large files (files greater than 2GB minus 1 byte). The struct
flock structure has the following members:

short l_type Indicates the type of lock, as indicated by one of the following symbols (defined
in the <fcntl.h> header file):

F_RDLCK Indicates a read lock; also called a shared lock. When a job has a
read lock, no other job can obtain write locks for that part of the
file. More than one job can have a read lock on the same part of a
file simultaneously. To establish a read lock, a job must have the
file accessed for reading.

F_WRLCK Indicates a write lock; also called an exclusive lock. When a job
has a write lock, no other job can obtain a read lock or write lock
on the same part or an overlapping part of that file. A job cannot
put a write lock on part of a file if another job already has a read
lock on an overlapping part of the file. To establish a write lock, a
job must have accessed the file for writing.

F_UNLCK Unlocks a lock that was set previously.

short l_whence One of three symbols used in determining the part of the file that is affected by
this lock. These symbols are defined in the <unistd.h> header file and are the
same as symbols used by lseek():

SEEK_CUR The current file offset in the file.

SEEK_END The end of the file.

SEEK_SET The start of the file.

off_t l_start Gives a byte offset used to identify the part of the file that is affected by this lock.
If l_start is negative, it is handled as an unsigned value. The part of the file
affected by the lock begins at this offset from the location given by l_whence. For
example, if l_whence is SEEK_SET and l_start is 10, the locked part of the file
begins at an offset of 10 bytes from the beginning of the file.

off_t l_len Gives the size of the locked part of the file, in bytes. If the size is negative, it is
treated as an unsigned value. If l_len is zero, the locked part of the file begins at
the position specified by l_whence and l_start, and extends to the end of the file.
Together, l_whence, l_start, and l_len are used to describe the part of the file that
is affected by this lock.

pid_t l_pid Specifies the job ID of the job that holds the lock. This is an output field used
only with F_GETLK actions.

void *l_reserved0 Reserved. Must be set to NULL.

void *l_reserved1 Reserved. Must be set to NULL.

When you develop in C-based languages and this function is compiled with _LARGE_FILES defined, the
struct flock data type will be mapped to a struct flock64 data type. To use the struct flock64 data type
explicitly, it is necessary to compile the function with _LARGE_FILE_API defined.

The struct flock64 structure has the following members:

short l_type Indicates the type of lock, as indicated by one of the following symbols
(defined in the <fcntl.h header file):

F_RDLCK Indicates a read lock; also called a shared lock. When a job
has a read lock, no other job can obtain write locks for that
part of the file. More than one job can have a read lock on the
same part of a file simultaneously. To establish a read lock, a
job must have the file accessed for reading.

F_WRLCK Indicates a write lock; also called an exclusive lock. When a
job has a write lock, no other job can obtain a read lock or
write lock on the same part or an overlapping part of that file.
A job cannot put a write lock on part of a file if another job
already has a read lock on an overlapping part of the file. To
establish a write lock, a job must have accessed the file for
writing.

F_UNLCK Unlocks a lock that was set previously.

short l_whence One of three symbols used in determining the part of the file that is affected
by this lock. These symbols are defined in the <unistd.h> header file and are
the same as symbols used by lseek():

SEEK_CUR The current file offset in the file.

SEEK_END The end of the file.

SEEK_SET The start of the file.

char l_reserved2[4] Reserved field

off64_t l_start Gives a byte offset used to identify the part of the file that is affected by this
lock. l_start is handled as a signed value. The part of the file affected by the
lock begins at this offset from the location given by l_whence. For example, if
l_whence is SEEK_SET and l_start is 10, the locked part of the file begins at
an offset of 10 bytes from the beginning of the file.

off64_t l_len Gives the size of the locked part of the file, in bytes. If the size is negative, the
part of the file affected is l_start + l_len through l_start - 1. If l_len is zero, the
locked part of the file begins at the position specified by l_whence and l_start,
and extends to the end of the file. Together, l_whence, l_start, and l_len are
used to describe the part of the file that is affected by this lock.

pid_t l_pid Specifies the job ID of the job that holds the lock. This is an output field used
only with F_GETLK actions.

char reserved3[4] Reserved field.

void *l_reserved0 Reserved. Must be set to NULL.

void *l_reserved1 Reserved. Must be set to NULL.

You can set locks by specifying F_SETLK or F_SETLK64 as the command argument for fcntl(). Such a
function call requires a third argument pointing to a struct flock structure (or struct flock64 in the case of
F_SETLK64), as in this example:

 struct flock lock_it;
 lock_it.l_type = F_RDLCK;
 lock_it.l_whence = SEEK_SET;
 lock_it.l_start = 0;
 lock_it.l_len = 100;
 fcntl(file_descriptor,F_SETLK,&lock_it);

This example sets up a flock structure describing a read lock on the first 100 bytes of a file, and then calls
fcntl() to establish the lock. You can unlock this lock by setting l_type to F_UNLCK and making the same
call. If an F_SETLK operation cannot set a lock, it returns immediately with an error saying that the lock
cannot be set.

The F_SETLKW and F_SETLKW64 operations are similar to F_SETLK and F_SETLK64, except that
they wait until the lock can be set. For example, if you want to establish an exclusive lock and some other
job already has a lock established on an overlapping part of the file, fcntl() waits until the other process has
removed its lock.

F_SETLKW and F_SETLKW64 operations can encounter deadlocks when job A is waiting for job B to
unlock a region and job B is waiting for job A to unlock a different region. If the system detects that an
F_SETLKW or F_SETLKW64 might cause a deadlock, fcntl() fails with errno set to [EDEADLK].

With the F_SETLK64, F_SETLKW64, and F_GETLK64 operations, the maximum offset that can be
specified is the largest value that can be held in an 8-byte, signed integer.

A job can determine locking information about a file by using F_GETLK and F_GETLK64 as the
command argument for fcntl(). In this case, the call to fcntl() should specify a third argument pointing to a
flock structure. The structure should describe the lock operation you want. When fcntl() returns, the
structure indicated by the flock pointer is changed to show the first lock that would prevent the proposed
lock operation from taking place. The returned structure shows the type of lock that is set, the part of the
file that is locked, and the job ID of the job that holds the lock. In the returned structure:

l_whence is always SEEK_SET.●

l_start gives the offset of the locked portion from the beginning of the file.●

l_len is the length of the locked portion.●

If there are no locks that prevent the proposed lock operation, the returned structure has F_UNLCK in
l_type and is otherwise unchanged.

If fcntl() attempts to operate on a large file (one larger than 2GB minus 1 byte) with the F_SETLK,
F_GETLK, or FSETLKW commands, the API fails with [EOVERFLOW]. To work with large files,
compile with the _LARGE_FILE_API macro defined (when you develop in C-based languages) and use
the F_SETLK64, F_GETLK64, or FSETLKW64 commands. When you develop in C-based languages, it is
also possible to work with large files by compiling the source with the _LARGE_FILES macro label
defined. Note that the file must have been opened for large file access (either the open64() API was used or
the open() API was used with the O_LARGEFILE flag defined in the oflag parameter).

An application that uses the F_SETLK or F_SETLKW commands may try to lock or unlock a file that has
been extended beyond 2GB minus 1 byte by another application. If the value of l_len is set to 0 on the lock
or unlock request, the byte range held or released will go to the end of the file rather than ending at offset
2GB minus 2.

An application that uses the F_SETLK or F_SETLKW commands also may try to lock or unlock a file that
has been extended beyond offset 2GB minus 2 with l_len NOT set to 0. If this application attempts to lock
or unlock the byte range up to offset 2GB minus 2 and l_len is not 0, the unlock request will unlock the file
only up to offset 2GB minus 2 rather than to the end of the file.

A job can have several locks on a file at the same time, but only one type of lock can be set on a given byte.

Therefore, if a job puts a new lock on a part of a file that it had locked previously, the job has only one lock
on that part of the file. The type of the lock is the one specified in the most recent locking operation.

Locks can start and extend beyond the current end of a file, but cannot start or extend ahead of the
beginning of a file.

All of the locks a job has on a file are removed when the job closes any descriptor that refers to the locked
file.

All locks obtained using fcntl() are advisory only. Jobs can use advisory locks to inform each other that
they want to protect parts of a file, but advisory locks do not prevent input and output on the locked parts. If
a job has appropriate permissions on a file, it can perform whatever I/O it chooses, regardless of what
advisory locks are set. Therefore, advisory locking is only a convention, and it works only when all jobs
respect the convention.

Another type of lock, called a mandatory lock, can be set by a remote personal computer application.
Mandatory locks restrict I/O on the locked parts. A read fails when reading a part that is locked with a
mandatory write lock. A write fails when writing a part that is locked with a mandatory read or mandatory
write lock.

The maximum starting offset that can be specified by using the fnctl() API is 263 - 1, the largest number
that can be represented by a signed 8-byte integer. Mandatory locks set by a personal computer application
or by a user of the DosSetFileLocks64() API may lock a byte range that is greater than 263 - 1.

An application that uses the F_SETLK64 or F_SETLKW64 commands can lock the offset range that is
beyond 263 - 1 by locking offset 263 - 1. When offset 263 - 1 is locked, it implicitly locks to the end of the
file. The end of the file is the largest number than can be represented by an 8-byte unsigned integer or 264 -
1. This implicit lock may inhibit the personal computer application from setting mandatory locks in the
range not explicitly accessable by the fcntl() API.

Any lock set using the fcntl() API that locks offset 263 - 1 will have a length of 0.

An application that uses the F_GETLK64 may encounter a mandatory lock set by a personal computer
application, which locks a range of offsets greater than 263 - 1. This lock conflict will have a starting offset
equal to or less than 263 - 1 and a length of 0.

Authorities

No authorization is required.

Return Value

value fcntl() was successful. The value returned depends on the command that was specified.

-1 fcntl() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fcntl() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Access to a remote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

[EAGAIN] Operation would have caused the process to be suspended.

The process tried to lock with F_SETLK, but the lock is in conflict with a previously
established lock.

[EBADF] Descriptor not valid.

A descriptor argument was out of range, referred to an object that was not open, or a
read or write request was made to an object that is not open for that operation.

A given descriptor or directory pointer is not valid for this operation. The specified
descriptor is incorrect, or does not refer to an open object.

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

[EBADFUNC] Function parameter in the signal function is not set.

A given descriptor or directory pointer is not valid for this operation. The specified
descriptor is incorrect, or does not refer to an open object.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EDEADLK] Resource deadlock avoided.

An attempt was made to lock a system resource that would have resulted in a
deadlock situation. The lock was not obtained.

The function attempted was failed to prevent a deadlock.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf()
function).

[ENOLCK] No locks available.

A system-imposed limit on the number of simultaneous file and record locks was
reached, and no more were available at that time.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSYS] Function not implemented.

An attempt was made to use a function that is not available in this implementation for
any object or any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW] Object is too large to process.

The object's data size exceeds the limit allowed by this function.

One of the values to be returned cannot be represented correctly.

The command argument is F_GETLK, F_SETLK, or F_SETLKW and the offset of
any byte in the requested segment cannot be represented correctly in a variable of
type off_t (the offset is greater than 2GB minus 1 byte).

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EHOSTDOWN] A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at
this time.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The following fcntl() commands are not supported:

F_GETLK❍

F_SETLK❍

F_SETLKW❍

Using any of these commands results in an [ENOSYS] error.

2.

Network File System Differences

Reading and writing to a file with the Network File System relies on byte-range locking to
guarantee data integrity. To prevent data inconsistency, use the fcntl() API to get and release these

3.

locks. For more information about remote locking, see information about the network lock manager

and the network status monitor in the OS/400 Network File System Support book.

QNetWare File System Differences

F_GETLK and F_SETLKW are not supported. F_RDLCK and F_WRLCK are ignored. All locks
prevent reading and writing. Advisory locks are not supported. All locks are mandatory locks.
Locking a file that is opened more than once in the same job with the same access mode is not
supported, and its result is undefined.

4.

This function will fail with the [EOVERFLOW] error if the command is F_GETLK, F_SETLK, or
F_SETLKW and the offset or the length exceeds offset 2 GB minus 2.

5.

When you develop in C-based languages and an application is compiled with the _LARGE_FILES
macro defined, the struct flock data type will be mapped to a struct flock64 data type. To use the
struct flock64 data type explicitly, it is necessary to compile the function with the
_LARGE_FILE_API defined.

6.

In several cases, similar function can be obtained by using ioctl().7.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

close()--Close File or Socket Descriptor●

dup()--Duplicate Open File Descriptor●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

ioctl()--Perform I/O Control Request●

lseek()--Set File Read/Write Offset●

open()--Open File●

spawn()--Spawn Process●

spawnp()--Spawn Process with Path●

OS/400 Network File System Support book●

Example

The following example uses fcntl():

See Code disclaimer information for information pertaining to code examples.

#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <fcntl.h>

int main()
{
 int flags;
 int append_flag;
 int nonblock_flag;
 int access_mode;
 int file_descriptor; /* File Descriptor */
 char *text1 = "abcdefghij";
 char *text2 = "0123456789";
 char read_buffer[25];

 memset(read_buffer, '\0', 25);

 /* create a new file */
 file_descriptor = creat("testfile",S_IRWXU);
 write(file_descriptor, text1, 10);
 close(file_descriptor);

 /* open the file with read/write access */
 file_descriptor = open("testfile", O_RDWR);
 read(file_descriptor, read_buffer,24);
 printf("first read is \'%s\'\n",read_buffer);

 /* reset file pointer to the beginning of the file */
 lseek(file_descriptor, 0, SEEK_SET);
 /* set append flag to prevent overwriting existing text */
 fcntl(file_descriptor, F_SETFL, O_APPEND);
 write(file_descriptor, text2, 10);
 lseek(file_descriptor, 0, SEEK_SET);
 read(file_descriptor, read_buffer,24);
 printf("second read is \'%s\'\n",read_buffer);

 close(file_descriptor);
 unlink("testfile");

 return 0;
}

Output:

first read is 'abcdefghij'
second read is 'abcdefghij0123456789'

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

fpathconf()--Get Configurable Path Name
Variables by Descriptor

 Syntax

 #include <unistd.h>

 long fpathconf(int file_descriptor, int name);

 Threadsafe: Conditional; see Usage Notes.

The fpathconf() function determines the value of a configuration variable (name) associated with a
particular file descriptor (file_descriptor). fpathconf() works exactly like pathconf(), except that it takes a
file descriptor as an argument rather than taking a path name.

Parameters

file_descriptor

(Input) A file descriptor of the file for which the value of the configurable variable is requested.

name

(Input) The name of the configuration variable value requested.

The value of name can be any one of a set of symbols defined in the <unistd.h> include file. Each symbol
stands for a configuration variable. The possible symbols are as follows:

_PC_CHOWN_RESTRICTED

Represents _POSIX_CHOWN_RESTRICTED, as defined in the <unistd.h> header file. It restricts
use of chown() to a job with appropriate privileges, and allows the group ID of a file to be changed
only to the effective group ID of the job or to one of its supplementary group IDs. If file_descriptor
is a directory, fpathconf() returns the value for any kind of file under the directory, but not for
subdirectories of the directory.

_PC_LINK_MAX

Represents LINK_MAX, which indicates the maximum number of links the file can have. If
file_descriptor is a directory, pathconf() returns the maximum number of links that can be
established to the directory itself.

_PC_MAX_CANON

Represents MAX_CANON, which indicates the maximum number of bytes in a terminal canonical
input line.

_PC_MAX_INPUT

Represents MAX_INPUT, which indicates the minimum number of bytes for which space is
available in a terminal input queue. This available space is the maximum number of bytes that a
portable application can have the user enter before the application actually reads the input.

_PC_NAME_MAX

Represents NAME_MAX, which indicates the maximum number of characters in a file name (not
including any terminating null at the end if the file name is stored as a string). This symbol refers

only to the file name itself; that is, the last component of the path name of the file. fpathconf()
returns the maximum length of file names, even when the path does not refer to a directory.

_PC_PATH_MAX

Represents PATH_MAX, which indicates the maximum number of characters in a complete path
name (not including any terminating null at the end if the path name is stored as a string).
fpathconf() returns the maximum length of a path name relative to the root of the file system that is
managing the object indicated by file_descriptor , even when the path does not refer to a directory.

_PC_PIPE_BUF

Represents PIPE_BUF, which indicates the maximum number of bytes that can be written
"atomically" to a pipe. If more than this number of bytes are written to a pipe, the operation may
take more than one physical write operation and physical read operation to read the data on the
other end of the pipe. If file_descriptor is a FIFO special file, fpathconf() returns the value for the
file itself. If file_descriptor is a directory, fpathconf() returns the value for any FIFOs that exist or
that can be created under the directory. If file_descriptor is any other kind of file, an error of
[EINVAL] is returned.

_PC_NO_TRUNC

Represents _POSIX_NO_TRUNC, as defined in the <unistd.h> header file. It generates an error if
a file name is longer than NAME_MAX. If file_descriptor refers to a directory, the value returned
by fpathconf() applies to all files under that directory.

_PC_VDISABLE

Represents _POSIX_VDISABLE, as defined in the <unistd.h> header file. This symbol indicates
that terminal special characters can be disabled using this character value, if it is defined.

_PC_THREAD_SAFE

This symbol is used to determine if the object represented by path resides in a threadsafe file
system. fpathconf() returns the value 1 if the file system is threadsafe and 0 if the file system is not
threadsafe. fpathconf() will never fail with error code [ENOTSAFE] when called with
_PC_THREAD_SAFE.

If file_descriptor is a descriptor for a socket, fpathconf() returns an error of [EINVAL].

Authorities

No authorization is required.

Return Value

value

fpathconf() was successful. The value of the variable requested in name is returned.

-1

One of the following has occurred:

A particular variable has no limit (for example, _PC_PATH_MAX). The errno global
variable is not changed.

❍

fpathconf() was not successful. The errno is set.❍

Error Conditions

If fpathconf() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. name is not a valid configuration variable
name, or the given variable cannot be associated with the specified file.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

❍

1.

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

open()--Open File●

pathconf()--Get Configurable Path Name Variables●

QlgPathconf()--Get Configurable Path Name Variables ●

Example

The following example uses fpathconf():

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>

main() {
 long result;
 char fn[]="temp.file";
 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IRUSR)) < 0)
 perror("creat() error");
 else {
 errno = 0;
 puts("examining NAME_MAX limit for current working directory's");
 puts("filesystem:");
 if ((result = fpathconf(file_descriptor, _PC_NAME_MAX)) == -1)
 if (errno == 0)
 puts("There is no limit to NAME_MAX.");
 else perror("fpathconf() error");
 else
 printf("NAME_MAX is %ld\n", result);
 close(file_descriptor);
 unlink(fn);
 }
}

Output:

examining NAME_MAX limit for current working directory's
filesystem:
NAME_MAX is 255

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

fstat()--Get File Information by Descriptor

 Syntax

 #include <sys/stat.h>

 int fstat(int descriptor,
 struct stat *buffer)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The fstat() function gets status information about the object specified by the open descriptor descriptor and
stores the information in the area of memory indicated by the buffer argument. The status information is
returned in a stat structure, as defined in the <sys/stat.h> header file.

Parameters

descriptor

(Input) The descriptor for which information is to be retrieved.

buffer

(Output) A pointer to a buffer of type struct stat in which the information is returned. The structure
pointed to by the buffer parameter is described in stat()-- Get File Information.

The st_mode, st_dev, and st_blksize fields are the only fields set for socket descriptors. The
st_mode field is set to a value that indicates the descriptor is a socket descriptor, the st_dev field is
set to -1, and the st_blksize field is set to an optimal value determined by the system.

Authorities

No authorization is required.

Return Value

0 fstat() was successful. The information is returned in buffer.

-1 fstat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fstat() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Access to a remote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

[EAGAIN] Operation would have caused the process to be suspended.

[EBADF] Descriptor not valid.

A descriptor argument was out of range, referred to a file that was not open, or a read
or write request was made to a file that is not open for that operation.

A given descriptor or directory pointer is not valid for this operation. The specified
descriptor is incorrect, or does not refer to an open object.

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

[EBADFUNC] Function parameter in the signal function is not set.

A given descriptor or directory pointer is not valid for this operation. The specified
descriptor is incorrect, or does not refer to an open object.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid. [EFAULT] is returned if this function is passed a pointer
parameter that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

This error code may be returned when the underlying object represented by the
descriptor is unable to fill the stat structure (for example, if the function was issued
against a socket descriptor that had its connection reset).

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOSYSRSC] System resources not available to complete request.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW] Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The specified file exists and its size is too large to be represented in the structure
pointed to by buffer (the file is larger than 2GB minus 1 byte).

[EPERM] Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource
to do the requested operation.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNATCH] The protocol required to support the specified address family is not available at this
time.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EHOSTDOWN] A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT] A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Sockets-Specific Notes

The field st_mode can be inspected using the S_ISSOCK macro (defined in <sys/stat.h>)
to determine if the descriptor is pointing to a socket descriptor.

❍

For socket descriptors, use the send buffer size (this is the value returned for st_blksize) for
the length parameter on your input and output functions. This can improve performance.

Note: IBM reserves the right to change the calculation of the optimal send size.

❍

2.

QOPT File System Differences

The value for st_atime will always be zero. The value for st_ctime will always be the creation date
and time of the file or directory.

The user, group, and other mode bits are always on for an object that exists on a volume not
formatted in Universal Disk Format (UDF).

fstat on /QOPT will always return 2,147,483,647 for size fields.

fstat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

3.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once a file is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values

4.

may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See the Netware on iSeries topic for
more information.

5.

This function will fail with the [EOVERFLOW] error if the specified file exists and its size is too
large to be represented in the structure pointed to by buffer (the file is larger than 2GB minus 1
byte).

6.

When you develop in C-based languages and this function is compiled with _LARGE_FILES
defined, it will be mapped to fstat64(). Note that the type of the buffer parameter, struct stat *, also
will be mapped to type struct stat64 *. See stat64() for more information on this structure.

7.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <sys/stat.h> file (see Header Files for UNIX-Type Functions)●

fcntl()--Perform File Control Command●

fstat64()--Get File Information by Descriptor (Large File Enabled)●

lstat()--Get File or Link Information●

open()--Open File●

socket()--Create Socket●

stat()--Get File Information●

stat64()--Get File Information (Large File Enabled))●

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <time.h>

main() {
 char fn[]="temp.file";
 struct stat info;
 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");

 else {
 if (fstat(file_descriptor, &info) != 0)
 perror("fstat() error");
 else {
 puts("fstat() returned:");
 printf(" inode: %d\n", (int) info.st_ino);
 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 }
 close(file_descriptor);
 unlink(fn);
 }
}

Output: Note that the output may vary from system to system.

fstat() returned:
 inode: 3057
 dev id: 1
 mode: 03000080
 links: 1
 uid: 137
 gid: 500

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

fstat64()--Get File Information by Descriptor
(Large File Enabled)

 Syntax

 #include <sys/stat.h>

 int fstat64(int fildes, struct stat64 *buf);

 Threadsafe: Conditional; see Usage Notes.

The fstat64() function gets status information about the file specified by the open file descriptor
file_descriptor and stores the information in the area of memory indicated by the buf argument. The status
information is returned in a stat64 structure, as defined in the <sys/stat.h> header file.

fstat64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as long
as the file has been opened by either of the following:

Using the open64() function (see open64()--Open File (Large File Enabled)).●

Using the open() function (see open()--Open File) with O_LARGEFILE set in the oflag parameter.●

The elements of the stat64 structure are described in stat64()--Get File Information (Large File Enabled).

For additional information about parameters, authorities required, and error conditions, see fstat()--Get File
Information by Descriptor.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the fstat64() API and the struct stat64 data type, you must compile the source with the
_LARGE_FILE_API macro defined.

1.

All of the usage notes for fstat() apply to fstat64(). See Usage Notes in the fstat() API.2.

Example

The following example gets status information:

#define _LARGE_FILE_API
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <time.h>

main() {
 char fn[]="temp.file";

 struct stat64 info;
 int file_descriptor;

 if ((file_descriptor = creat64(fn, S_IWUSR)) < 0)
 perror("creat64() error");
 else {
 if (ftruncate64(file_descriptor, 8589934662) != 0)
 perror("ftruncate64() error");
 else {
 if (fstat64(file_descriptor, &info) != 0)
 perror("fstat64() error");
 else {
 puts("fstat64() returned:");
 printf(" inode: %d\n", (int) info.st_ino);
 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 printf(" size: %lld\n", (long long) info.st_size);
 }
 }
 close(file_descriptor);
 unlink(fn);
 }
}

Output: Note that the output may vary from system to system.

fstat64() returned:
 inode: 3057
 dev id: 1
 mode: 03000080
 links: 1
 uid: 137
 gid: 500
 size: 8589934662

Top | UNIX-Type APIs | APIs by category

fstatvfs()--Get File System Information by
Descriptor

 Syntax

 #include <sys/statvfs.h>

 int fstatvfs(int fildes, struct statvfs *buf);

 Threadsafe: Conditional; see Usage Notes.

The fstatvfs() function gets status information about the file system that contains the file referenced by the
open file descriptor fildes. The information is stored in the area of memory indicated by the buf argument.
The status information is returned in a statvfs structure, as defined in the <sys/statvfs.h> header file.

Parameters

fildes

(Input) The file descriptor of the file from which file system information is required.

buf

(Output) A pointer to the area to which the information should be written.

The elements of the statvfs structure are described in statvfs()--Get File System Information. Signed fields
of the statvfs structure that are not supported by the mounted file system will be set to -1.

Authorities

Note: Adopted authority is not used.

Figure 1-20. Authorization Required for fstatvfs()

Object Referred to
Authority
Required errno

Each directory in the path name that precedes the object *X EACCES

Object None None

Return Value

0

fstatvfs() was successful. The information is returned in buf.

-1

fstatvfs() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fstatvfs() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than

NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E

Possible APAR condition or hardware failure.

CPFA0D4 E

File system error occurred. Error number &1.

CPF3CF2 E

Error(s) occurred during running of &1 API.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Root ("/") and QOpenSys File System Differences

These file systems return the f_flag field with the ST_NOSUID flag bit turned off. However,
support for the setuid/setgid semantics is limited to the ability to store and retrieve the S_ISUID
and S_ISGID flags when these file systems are accessed from the Network File System server.

2.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once a file is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

3.

When you develop in C-based languages and an application is compiled with the _LARGE_FILES
macro defined, the fstatvfs() API will be mapped to a call to the fstatvfs64(). Additionally, the
struct statvfs data type will be mapped to a struct statvfs64.

4.

Related Information

The <sys/statvfs.h> file (see Header Files for UNIX-Type Functions)●

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

chown()--Change Owner and Group of File●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

fcntl()--Perform File Control Command●

fstatvfs64()--Get File System Information by Descriptor (64-Bit Enabled)●

link()--Create Link to File●

open()--Open File●

read()--Read from Descriptor●

statvfs()--Get File System Information●

unlink()--Remove Link to File●

utime()--Set File Access and Modification Times●

write()--Write to Descriptor●

Example

The following example gets status information about a file system:

#include <sys/statvfs.h>
#include <stdio.h>

main() {
 struct statvfs info;
 int fildes;

 if (-1 == (fildes = open("/",O_RDONLY)))
 perror("open() error");
 else if (-1 == fstatvfs(fildes, &info))
 perror("fstatvfs() error");
 else {
 puts("fstatvfs() returned the following information");
 puts("about the Root ('/') file system:");
 printf(" f_bsize : %u\n", info.f_bsize);
 printf(" f_blocks : %08X%08X\n",

 *((int *)&info.f_blocks[0]),
 *((int *)&info.f_blocks[4]));
 printf(" f_bfree : %08X%08X\n",
 *((int *)&info.f_bfree[0]),
 *((int *)&info.f_bfree[4]));
 printf(" f_files : %u\n", info.f_files);
 printf(" f_ffree : %u\n", info.f_ffree);
 printf(" f_fsid : %u\n", info.f_fsid);
 printf(" f_flag : %X\n", info.f_flag);
 printf(" f_namemax : %u\n", info.f_namemax);
 printf(" f_pathmax : %u\n", info.f_pathmax);
 printf(" f_basetype : %s\n", info.f_basetype);
 }
}

Output: The following information will vary from file system to file system.

statvfs() returned the following information
about the Root ('/') file system:
 f_bsize : 4096
 f_blocks : 00000000002BF800
 f_bfree : 0000000000091703
 f_files : 4294967295
 f_ffree : 4294967295
 f_fsid : 0
 f_flag : 1A
 f_namemax : 255
 f_pathmax : 4294967295
 f_basetype : "root" (/)

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

fstatvfs64()--Get File System Information by
Descriptor (64-Bit Enabled)

 Syntax

 #include <sys/statvfs.h>

 int fstatvfs64(int fildes, struct statvfs64 *buf);

 Threadsafe: Conditional; see Usage Notes.

The fstatvfs64() function gets status information about the file system that contains the file referred to by
the open file descriptor fildes. The information is stored in the area of memory indicated by the buf
argument. The status information is returned in a statvfs64 structure, as defined in the <sys/statvfs.h>
header file.

For details about parameters, authorities required, error conditions and examples, see fstatvfs()--Get File
System Information by Descriptor. For details about the struct statvfs64 structure, see statvfs64()--Get File
System Information (64-Bit Enabled).

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the fstatvfs64() API and the struct statvfs64 data type, you must compile the source with the
_LARGE_FILE_API defined.

1.

All of the usage notes for fstatvfs() apply to fstatvfs64(). See Usage Notes in the fstatvfs() API.2.

Top | UNIX-Type APIs | APIs by category

fsync()--Synchronize Changes to File

 Syntax

 #include <unistd.h>

 int fsync(int file_descriptor);

 Threadsafe: Conditional; see Usage Notes.

The fsync() function transfers all data for the file indicated by the open file descriptor file_descriptor to the
storage device associated with file_descriptor. fsync() does not return until the transfer is complete, or until
an error is detected.

Parameters

file_descriptor

(Input) The file descriptor of the file that is to have its modified data written to permanent storage.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

0

fsync() was successful.

-1

fsync() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fsync() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The file type is not valid for this operation.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.❍

1.

Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

Using this function on a character special file will result in a return value of -1 and the errno global
value set to EINVAL.

2.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

open()--Open File●

write()--Write to Descriptor●

Example

The following example uses fsync():

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define mega_string_len 250000

main() {
 char *mega_string;
 int file_descriptor;
 int ret;
 char fn[]="fsync.file";

 if ((mega_string = (char*) malloc(mega_string_len)) == NULL)
 perror("malloc() error");
 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 memset(mega_string, 's', mega_string_len);
 if ((ret = write(file_descriptor,
 mega_string, mega_string_len)) == -1)
 perror("write() error");
 else {

 printf("write() wrote %d bytes\n", ret);
 if (fsync(file_descriptor) != 0)
 perror("fsync() error");
 else if ((ret = write(file_descriptor,
 mega_string, mega_string_len)) == -1)
 perror("write() error");
 else
 printf("write() wrote %d bytes\n", ret);
 }
 close(file_descriptor);
 unlink(fn);
 }
}

Output:

write() wrote 250000 bytes
write() wrote 250000 bytes

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

ftruncate()--Truncate File

 Syntax

 #include <unistd.h>

 int ftruncate(int file_descriptor, off_t length);

 Threadsafe: Conditional; see Usage Notes.

The ftruncate() function truncates the file indicated by the open file descriptor file_descriptor to the
indicated length. file_descriptor must be a "regular file" that is open for writing. (A regular file is a stream
file that can support positioning the file offset.) If the file size exceeds length, any extra data is discarded. If
the file size is smaller than length, the file is extended and filled with binary zeros to the indicated length.
(In the QSYS.LIB and independent ASP QSYS.LIB file systems blanks are used instead of zeros to pad
records after a member is extended.)

If ftruncate() completes successfully, it marks the change time and modification times of the file. Also, the
S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits of the file mode are cleared. If ftruncate() is not
successful, the file is unchanged.

If ftruncate() is used to truncate the file to 0 bytes and the file has an OS/400 digital signature, the
signature is deleted.

Parameters

file_descriptor

(Input) The file descriptor of the file.

length

(Input) The desired size of the file in bytes.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

0

ftruncate() was successful.

-1

ftruncate() was not successful. The errno global variable is set to indicate the error. If the file
descriptor is not open for writing, ftruncate returns a [EBADF] error. If the file descriptor is a
valid descriptor open for writing but is not a descriptor for a regular file, ftruncate() returns a

[EINVAL] error.

Error Conditions

If ftruncate() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

The QSYS.LIB or independent ASP QSYS.LIB file system cannot get exclusive access to the
member to clear truncated data.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFBIG]

Object is too large.

The size of the object would exceed the system allowed maximum size or the process soft file
size limit.

The file is a regular file and length is greater than 2GB minus 1 byte.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. file_descriptor does not refer to a regular
file open for writing, or the specified length is not correct.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOCKED]

Area being read from or written to is locked.

The read or write of an area conflicts with a lock held by another process.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

The object referenced by the descriptor does not support the function.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

When you develop in C-based languages and this function is compiled with _LARGE_FILES
defined, it will be mapped to ftruncate64(). Note also that the type of the length parameter will be
remapped from off_t to off64_t.

2.

For the Network File System, this function will fail with the [EFBIG] or the [EIO] error if the
length specified is greater than the largest file size supported by the server.

3.

Using this function on a character special file results in a return value of -1 and the errno global
value set to EINVAL.

4.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

This function is not supported for save files and will fail with error code [ENOTSUP].

5.

If the write exceeds the process soft file size limit, signal SIFXFSZ is issued. 6.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

ftruncate64()--Truncate File (Large File Enabled)●

open()--Open File●

Example

The following example uses ftruncate():

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define string_len 1000

main() {
 char *mega_string;
 int file_descriptor;
 int ret;
 char fn[]="write.file";
 struct stat st;

 if ((mega_string = (char*) malloc(string_len)) == NULL)
 perror("malloc() error");
 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 memset(mega_string, '0', string_len);
 if ((ret = write(file_descriptor, mega_string, string_len)) == -1)
 perror("write() error");
 else {
 printf("write() wrote %d bytes\n", ret);
 fstat(file_descriptor, &st);
 printf("the file has %ld bytes\n", (long) st.st_size);
 if (ftruncate(file_descriptor, 1) != 0)
 perror("ftruncate() error");
 else {
 fstat(file_descriptor, &st);
 printf("the file has %ld bytes\n", (long) st.st_size);
 }

 }
 close(file_descriptor);
 unlink(fn);
 }
}

Output:

write() wrote 1000 bytes
the file has 1000 bytes
the file has 1 bytes

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

ftruncate64()--Truncate File (Large File
Enabled)

 Syntax

 #include <unistd.h>

 int ftruncate64(int file_descriptor, off64_t length);

 Threadsafe: Conditional; see Usage Notes.

The ftruncate64() function truncates the file indicated by the open file descriptor file_descriptorto the
indicated length. file_descriptor must be a "regular file" that is open for writing. (A regular file is a stream
file that can support positioning the file offset.) If the file size exceeds length, any extra data is discarded. If
the file size is smaller than length, the file is extended and filled with binary zeros to the indicated length.
(In the QSYS.LIB and independent ASP QSYS.LIB file systems, blanks are used instead of zeros to
pad records after a member is extended.)

ftruncate64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as
long as the file has been opened by either of the following:

Using the open64() function (see open64()--Open File (Large File Enabled)).●

Using the open() function (see open()--Open File) with the O_LARGEFILE flag set in the oflag
parameter.

●

If ftruncate64() completes successfully, it marks the change time and modification times of the file. If
ftruncate64() is not successful, the file is unchanged.

For additional information about parameters, authorities, error conditions, and examples, see
ftruncate()--Truncate File.

Usage Notes

For file systems that do support large files, this function will fail with the [EFBIG] error if the
length specified is greater than 2GB minus 1 byte and O_LARGEFILE is not set in the oflag.

1.

For file systems that do not support large files, this function will fail with the [EINVAL] error if the
length specified is greater than 2GB minus 1 byte.

2.

QFileSvr.400 File System Differences

Although QFileSvr.400 does not support large files, it will return [EFBIG] if the length specified is
greater than 2GB minus 1 byte.

3.

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the ftruncate64() API and the off64_t data type, you must compile the source with
_LARGE_FILE_API defined.

4.

All of the usage notes for ftruncate() apply to ftruncate64(). See Usage Notes in the ftruncate()
API.

5.

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

getcwd()--Get Current Directory

 Syntax

 #include <unistd.h>

 char *getcwd(char *buf, size_t size);

 Threadsafe: Conditional; see Usage Notes.

The getcwd() function determines the absolute path name of the current directory and stores it in buf. The
components of the returned path name are not symbolic links.

The access time of each directory in the absolute path name of the current directory (excluding the current
directory itself) is updated.

If buf is a NULL pointer, getcwd() returns a NULL pointer and the [EINVAL] error.

Parameters

buf

(Output) A pointer to a buffer that will be used to hold the absolute path name of the current
directory. The buffer must be large enough to contain the full pathname including the terminating
NULL character. The current directory is returned in the CCSID (coded character set identifier)
currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be
represented in the default CCSID of the job.

See QlgGetcwd()--Get Current Directory for a description and an example of supplying the buf in
any CCSID.

size

(Input) The number of bytes in the buffer buf.

Authorities

Note: Adopted authority is not used.

Authorization Required for getcwd()

Object Referred to Authority Required errno

Each directory in the path name preceding
the current directory

*RX EACCES

Current directory *X EACCES

Note: QDLS File System Differences

If the current directory is an immediate subdirectory of /QDLS (that is, at the next level below /QDLS in
the directory hierarchy), the user must have *RX (*USE) authority to the directory. Otherwise, the QDLS
authority requirements are the same as shown above.

Return Value

value

getcwd() was successful. The value returned is a pointer to buf.

NULL

getcwd() was not successful. The errno global variable is set to indicate the error. After an error,
the contents of buf are not defined.

Note: If buf is a NULL pointer, getcwd() returns a NULL pointer.

Error Conditions

If getcwd() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

A parameter passed to this function is not valid.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EMFILE]

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[ERANGE]

A range error occurred.

The value of an argument is too small, or a result too large.

The size argument is too small. It is greater than zero but smaller than the length of the path name
plus a NULL character.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

❍

1.

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

QOPT File System Differences

If the directory exists on a volume formatted in Universal Disk Format (UDF), the authorization
that is checked for the directory and preceding directories in the path name follows the rules
described in Authorization Required for getcwd(). If the directory exists on a volume formatted in
some other media format, no authorization checks are made on the directory or preceding
directories. The volume authorization list is checked for *USE authority regardless of the volume
media format.

2.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

chdir()--Change Current Directory●

QlgGetcwd()--Get Current Directory●

Example

The following example determines the current directory:

#include <unistd.h>
#include <stdio.h>

main()
{
 char cwd[1024];

 if (chdir("/tmp") != 0)
 perror("chdir() error()");
 else
 {
 if (getcwd(cwd, sizeof(cwd)) == NULL)
 perror("getcwd() error");
 else
 printf("current working directory is: %s\n", cwd);
 }
}

Output:

current working directory is: /tmp

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

getegid()--Get Effective Group ID

 Syntax

 #include <unistd.h>

 gid_t getegid(void);

 Threadsafe: Yes

The getegid() function returns the effective group ID (gid) of the calling thread. The effective gid is the
group ID under which the thread is currently running. The effective gid of a thread may change while the
thread is running.

Parameters

None.

Authorities

No authorization is required.

Return Value

> 0

getegid() was successful. The value returned represents the effective gid.

>= 0

getegid() was successful. If there is no gid, the user ID has no group profile associated with it and
returns 0. Otherwise, if there is a group profile, the API returns the gid of the group profile.

-1

getegid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getegid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.

[EDAMAGE]

The user profile associated with the thread gid or an internal system object is damaged.

[ENOMEM]

The user profile associated with the thread gid has exceeded its storage limit.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Example

The following example gets the effective gid.

#include <unistd.h>

main()
{
 gid_t ef_gid;

 if (-1 == (ef_gid = getegid(void)))
 perror("getegid() error.");
 else
 printf("The effective gid is: %u\n", ef_gid);

}

Output:

 The effective gid is: 75

Top | UNIX-Type APIs | APIs by category

geteuid()--Get Effective User ID

 Syntax

 #include <unistd.h>

 uid_t geteuid(void);

 Threadsafe: Yes

The geteuid() function returns the effective user ID (uid) of the calling thread. The effective uid is the user
ID under which the thread is currently running. The effective uid of a thread may change while the thread is
running.

Parameters

None.

Authorities

No authorization is required.

Return Value

0 or > 0

geteuid() was successful. The value returned represents the effective uid.

-1

geteuid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If geteuid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.

[EDAMAGE]

The user profile associated with the thread uid or an internal system object is damaged.

[ENOMEM]

The user profile associated with the thread uid has exceeded its storage limit.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Example

The following example gets the effective uid.

#include <unistd.h>

main()
{
 uid_t ef_uid;

 if (-1 == (ef_uid = geteuid(void)))
 perror("geteuid() error.");
 else
 printf("The effective uid is: %u\n", ef_uid);

}

Output:

 The effective uid is: 1957

Top | UNIX-Type APIs | APIs by category

getgid()--Get Real Group ID

 Syntax

 #include <unistd.h>

 gid_t getgid(void);

 Threadsafe: Yes

The getgid() function returns the real group ID (gid) of the calling thread. The real gid is the group ID
under which the thread was created.

Note: When a user profile swap is done with the QWTSETP API prior to running the getgid() function,
the gid for the current profile is returned.

Parameters

None.

Authorities

No authorization is required.

Return Value

> 0

getgid() was successful. The value returned represents the gid.

>= 0

getgid() was successful. If there is no gid, the user ID has no group profile associated with it and
returns 0. Otherwise, if there is a group profile, the API returns the gid of the group profile.

-1

getgid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.

[EDAMAGE]

The user profile associated with the thread gid or an internal system object is damaged.

[ENOMEM]

The user profile associated with the thread gid has exceeded its storage limit.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Example

The following example gets the real gid.

#include <unistd.h>

main()
{
 gid_t gid;

 if (-1 == (gid = getgid(void)))
 perror("getgid() error.");
 else
 printf("The real gid is: %u\n", gid);

}

Output:

 The real gid is: 75

Top | UNIX-Type APIs | APIs by category

getgrgid()--Get Group Information Using Group
ID

 Syntax

 #include <grp.h>

 struct group *getgrgid(gid_t gid);

 Threadsafe: No

The getgrgid() function returns a pointer to an object of type struct group containing an entry from the user
database with a matching gid.

Parameters

gid

(Input) Group ID.

Authorities

*READ authority is required to the user profile associated with the gid. If the user does not have *READ
authority, only the name of the group and the group ID values are returned.

Return Value

struct group *

getgrgid() was successful. The return value points to static data of the format struct group, which is
defined in the grp.h header file. This storage is overwritten on each call to this function. This static
storage area is also used by the getgrnam() function. The struct group has the following elements:

char * gr_name Name of the group
gid_t gr_gid Group ID
char ** gr_mem A null-terminated list of pointers to the individual member profile names. If

the group profile does not have any members or if the caller does not have
*READ authority to the group profile, the list will be empty.

NULL pointer

getgrgid was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgrgid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the gid is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the gid was not found.

[ENOMEM]

The user profile associated with the gid has exceeded its storage limit.

[ENOSPC]

Machine storage limit exceeded.

Related Information

The <grp.h> file (see Header Files for UNIX-Type Functions)●

getgrgid_r()--Get Group Information Using Group ID●

Example

The following example gets the group information for the gid of 91. The group name is GROUP1. There
are two group members, CLIFF and PATRICK.

#include <grp.h>
#include <stdio.h>

main()
{
 struct group *grp;
 short int lp;

 if (NULL == (grp = getgrgid(91)))
 perror("getgrgid() error.");
 else
 {
 printf("The group name is: %s\n", grp->gr_name);
 printf("The gid is: %u\n", grp->gr_gid);
 for (lp = 1; NULL != *(grp->gr_mem); lp++, (grp->gr_mem)++)
 printf("Group member %d is: %s\n", lp, *(grp->gr_mem));
 }

}

Output:

 The group name is: GROUP1
 The gid is: 91
 Group member 1 is: CLIFF
 Group member 2 is: PATRICK

Top | UNIX-Type APIs | APIs by category

getgrgid_r()--Get Group Information Using
Group ID

 Syntax

 #include <sys/types.h>
 #include <grp.h>

 int getgrgid_r(gid_t gid, struct group *grp,
 char *buffer, size_t bufsize, struct group
**result);

 Threadsafe: Yes

The getgrgid_r() function updates the group structure pointed to by grp and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching gid.

Parameters

gid

(Input) Group ID.

grp

(Input) A pointer to a group structure.

buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the group structure grp.

bufsize

(Input) The size of buffer in bytes.

result

(Input) A pointer to a location in which a pointer to the updated group structure is stored. If an error
occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

The struct group, which is defined in the grp.h header file, has the following elements:

char * gr_name Name of the group
gid_t gr_gid Group ID
char ** gr_mem A null-terminated list of pointers to the individual member profile names. If the

group profile does not have any members or if the caller does not have *READ
authority to the group profile, the list will be empty.

Authorities

*READ authority is required to the user profile associated with the gid. If the user does not have *READ
authority, only the name of the group and the group ID values are returned.

Return Value

0

getgrgid_r was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If getgrgid_r() is not successful, the return value usually indicates one of the following errors. Under some
conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the gid is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the gid was not found.

[ENOMEM]

The user profile associated with the gid has exceeded its storage limit.

[ENOSPC]

Machine storage limit exceeded.

[ERANGE]

Insufficient storage was supplied by buffer and bufsize to contain the data to be referenced by the
resulting group structure.

Related Information

The <grp.h> file Header Files for UNIX-Type Functions(see)●

getgrgid()--Get Group Information Using Group ID●

Example

The following example gets the group information for the gid of 91. The group name is GROUP1. There
are two group members, CLIFF and PATRICK.

#include <sys/types.h>
#include <grp.h>
#include <stdio.h>
#include <errno.h>

main()
{ short int lp;
 struct group grp;
 struct group * grpptr=&grp;
 struct group * tempGrpPtr;
 char grpbuffer[200];
 int grplinelen = sizeof(grpbuffer);

 if ((getgrgid_r(91,grpptr,grpbuffer,grplinelen,&tempGrpPtr))!=0)
 perror("getgrgid_r() error.");
 else
 {
 printf("\nThe group name is: %s\n", grp.gr_name);
 printf("The gid is: %u\n", grp.gr_gid);
 for (lp = 1; NULL != *(grp.gr_mem); lp++, (grp.gr_mem)++)
 printf("Group Member %d is: %s\n", lp, *(grp.gr_mem));
 }

}

Output:

 The group name is: GROUP1
 The gid is: 91
 Group member 1 is: CLIFF
 Group member 2 is: PATRICK

Top | UNIX-Type APIs | APIs by category

getgrgid_r_ts64()--Get Group Information Using
Group ID

 Syntax

 #include <sys/types.h>
 #include <grp.h>

 int getgrgid_r_ts64(
 gid_t gid,
 struct group * __ptr64 grp,
 char * __prt64 buffer,
 size_t bufsize,
 struct group * __ptr64 * __ptr64 result);

 Service Program Name: QSYPAPI64

 Default Public Authority: *USE

 Threadsafe: Yes

The getgrgid_r_ts64() function updates the group structure pointed to by grp and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching gid. getgrgid_r_ts64() differs from getgrgid_r() in that it accepts 8-byte teraspace pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the getgrgid_r() API, see getgrgid_r()--Get Group Information Using Group ID.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

getgrnam()--Get Group Information Using
Group Name

 Syntax

 #include <grp.h>

 struct group *getgrnam(const char *name);

 Threadsafe: No

The getgrnam() function returns a pointer to an object of type struct group containing an entry from the
user database with a matching name.

Parameters

name

(Input) A pointer to a group profile name.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have *READ
authority, only the name of the group and the group ID values are returned.

Return Value

struct group *

getgrnam() was successful. The return value points to static data of the format struct group, which
is defined in the grp.h header file. This storage is overwritten on each call to this function. This
static storage area is also used by the getgrgid() function. The struct group has the following
elements:

char * gr_name Name of the group
gid_t gr_gid Group ID
char ** gr_mem A null-terminated list of pointers to the individual member profile names. If

the group profile does not have any members or if the caller does not have
*READ authority to the group profile, the list will be empty.

NULL pointer

getgrnam was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgrnam() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EDAMAGE]

The user profile associated with the group name or an internal system object is damaged.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found or the profile name specified is not a
group profile.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Related Information

The <grp.h> file (see Header Files for UNIX-Type Functions)●

getgrnam_r()--Get Group Information Using Group Name●

Example

The following example gets the group information for the group GROUP1. The gid is 91. There are two
group members, CLIFF and PATRICK.

#include <grp.h>
#include <stdio.h>

main()
{
 struct group *grp;
 short int lp;

 if (NULL == (grp = getgrnam("GROUP1")))
 perror("getgrnam() error.");
 else
 {
 printf("The group name is: %s\n", grp->gr_name);
 printf("The gid is: %u\n", grp->gr_gid);
 for (lp = 1; NULL != *(grp->gr_mem); lp++, (grp->gr_mem)++)
 printf("Group member %d is: %s\n", lp, *(grp->gr_mem));
 }

}

Output:

 The group name is: GROUP1
 The gid is: 91
 Group member 1 is: CLIFF
 Group member 2 is: PATRICK

Top | UNIX-Type APIs | APIs by category

getgrnam_r()--Get Group Information Using
Group Name

 Syntax

 #include <sys/types.h>
 #include <grp.h>

 int getgrnam_r(const char *name, struct group *grp,
 char *buffer, size_t bufsize, struct group
**result);

 Threadsafe: Yes

The getgrnam_r() function updates the group structure pointed to by grp and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with
matching name.

Parameters

name

(Input) A pointer to a group profile name.

grp

(Input) A pointer to a group structure.

buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the group structure grp.

bufsize

(Input) The size of buffer in bytes.

result

(Input) A pointer to a location in which a pointer to the updated group structure is stored. If an error
occurs or the requested entry cannot be found, a NULL pointer is stored in this location.

The struct group, which is defined in the grp.h header file, has the following elements:

char * gr_name Name of the group

gid_t gr_gid Group ID

char ** gr_mem A null-terminated list of pointers to the individual member profile names. If the
group profile does not have any members or if the caller does not have *READ
authority to the group profile, the list will be empty.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have *READ
authority, only the name of the group and the group ID values are returned.

Return Value

0

getgrnam_r was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If getgrnam_r() is not successful, the return value usually indicates one of the following errors. Under
some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EDAMAGE]

The user profile associated with the group name or an internal system object is damaged.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found or the profile name specified is not a
group profile.

[ERANGE]

Insufficient storage was supplied by buffer and bufsize to contain the data to be referenced by the
resulting group structure.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Related Information

The <grp.h> file (see)●

getgrnam()--Get Group Information Using Group Name●

Example

The following example gets the group information for the group GROUP1. The gid is 91. There are two
group members, CLIFF and PATRICK.

#include <sys/types.h>
#include <grp.h>
#include <stdio.h>
#include <errno.h>

main()
{ short int lp;
 struct group grp;
 struct group * grpptr=&grp;
 struct group * tempGrpPtr;
 char grpbuffer[200];
 int grplinelen = sizeof(grpbuffer);

 if ((getgrnam_r("GROUP1",grpptr,grpbuffer,grplinelen,&tempGrpPtr))!=0)
 perror("getgrnam_r() error.");
 else
 {
 printf("\nThe group name is: %s\n", grp.gr_name);
 printf("The gid is: %u\n", grp.gr_gid);
 for (lp = 1; NULL != *(grp.gr_mem); lp++, (grp.gr_mem)++)
 printf("Group Member %d is: %s\n", lp, *(grp.gr_mem));
 }

}

Output:

 The group name is: GROUP1
 The gid is: 91
 Group member 1 is: CLIFF
 Group member 2 is: PATRICK

Top | UNIX-Type APIs | APIs by category

getgrnam_r_ts64()--Get Group Information
Using Group Name

 Syntax

 #include <sys/types.h>
 #include <grp.h>

 int getgrnam_r_ts64(
 const char * __ptr64 name,
 struct group * __ptr64 grp,
 char * __ptr64 buffer,
 size_t bufsize,
 struct group * __ptr64 * __ptr64 result);

 Service Program Name: QSYPAPI64

 Default Public Authority: *USE

 Threadsafe: Yes

The getgrnam_r_ts64() function updates the group structure pointed to by grp and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching name. getgrnam_r_ts64() differs from getgrnam_r() in that it accepts 8-byte teraspace pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the getgrnam_r() API, see getgrnam_r()--Get Group Information Using Group Name.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

getgroups()--Get Group IDs

 Syntax

 #include <unistd.h>

 int getgroups(int gidsetsize, gid_t grouplist[])

 Threadsafe: No

If the gidsetsize argument is zero, getgroups() returns the number of group IDs associated with the
calling thread without modifying the array pointed to by the grouplist argument. The number of group IDs
includes the effective group ID and the supplementary group IDs. Otherwise, getgroups() fills in the
array grouplist with the effective group ID and supplementary group IDs of the calling thread and
returns the actual number of group IDs stored. The values of array entries with indexes larger than or equal
to the returned value are undefined.

Parameters

gidsetsize

(Input) The number of elements in the supplied array grouplist.

grouplist

(Output) The effective group ID and supplementary group IDs. The first element in grouplist is
the effective group ID.

Authorities

No authorization is required.

Return Value

0 or > 0 getgroups() was successful. If the gidsetsize argument is 0, the number of group IDs is
returned. This number includes the effective group ID and supplementary group IDs. If
gidsetsize is greater than 0, the array grouplist is filled with the effective group ID and
supplementary group IDs of the calling thread and the return value represents the actual
number of group IDs stored.

-1 getgroups() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgroups() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]

The gidsetsize argument is not equal to zero and is less than the number of group IDs.

Usage Notes

This function can be used in two different ways. First, if called with gidsetsize equal to 0, it is used to return
the number of groups associated with a thread. Second, if called with gidsetsize not equal to 0, it is used to
return a list of the gids representing the effective and supplementary groups associated with a thread.
In this case, the gidsetsize argument represents how much space is available in the grouplist argument.

The calling routine can choose to call this function with gidsetsize equal to 0 to determine how much space
to allocate for a second call to this function. The second call returns the values. The following is an
example of this method:

int numgroups;
gid_t *grouplist;

numgroups = getgroups(0,NULL);
grouplist = (gid_t *) calloc(numgroups, sizeof(gid_t));
if (getgroups(numgroups, grouplist) != -1) {
 .
 .
}

Alternatively, the calling routine can choose to create enough space for NGROUPS_MAX entries to ensure
enough space is available for the maximum possible number of entries that may be returned. This
introduces the possibility of wasted space. The following is an example of this method:

int numgroups;
gid_t grouplist[NGROUPS_MAX];

if (getgroups(NGROUPS_MAX, grouplist) != -1) {
 .
 .
}

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Top | UNIX-Type APIs | APIs by category

getpwnam()--Get User Information for User
Name

 Syntax

 #include <pwd.h>

 struct passwd *getpwnam(const char *name);

 Threadsafe: No

The getpwnam() function returns a pointer to an object of type struct passwd containing an entry from the
user database with a matching name.

Parameters

name

(Input) A pointer to a user profile name.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have *READ
authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

struct passwd *

getpwnam() was successful. The return value points to static data of the format struct passwd,
which is defined in the pwd.h header file. This storage is overwritten on each call to this function.
This static storage area is also used by the getpwuid() function. The struct passwd has the
following elements:

char * pw_name User name
uid_t pw_uid User ID
uid_t pw_gid Group ID of the user's first group. If the user does not have a first group,

the gid value will be set to 0.
char * pw_dir Initial working directory. If the user does not have *READ authority to

the user profile, the pw_dir pointer will be set to NULL.
char * pw_shell Initial user program. If the user does not have *READ authority to the

user profile, the pw_shell pointer will be set to NULL.

NULL pointer

getpwnam() was not successful. The errno global variable is set to indicate the error.

See QlgGetpwnam()--Get User Information for User Name (using NLS-enabled path name) for a
description and an example where the path name is returned in any CCSID.

Error Conditions

If getpwnam() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the uid has exceeded its storage limit or is unable to allocate
memory.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

The initial working directory is returned in the CCSID value of the job.

Related Information

The <pwd.h> file (see Header Files for UNIX-Type APIs)●

getpwnam_r()--Get User Information for User Name●

QlgGetpwnam()--Get User Information for User Name (using NLS-enabled path name)●

Example

The following example gets the user database information for the user name of MYUSER. The uid is 22.
The gid of MYUSER's first group is 1012. The initial directory is /home/MYUSER. The initial user
program is *LIBL/QCMD.

#include <pwd.h>

main()
{
 struct passwd *pd;

 if (NULL == (pd = getpwnam("MYUSER")))
 perror("getpwnam() error.");
 else
 {
 printf("The user name is: %s\n", pd->pw_name);
 printf("The user id is: %u\n", pd->pw_uid);
 printf("The group id is: %u\n", pd->pw_gid);
 printf("The initial directory is: %s\n", pd->pw_dir);
 printf("The initial user program is: %s\n", pd->pw_shell);
 }

}

Output:

 The user name is: MYUSER
 The user id is: 22
 The group id is: 1012
 The initial directory is: /home/MYUSER
 The initial user program is: *LIBL/QCMD

Top | UNIX-Type APIs | APIs by category

getpwnam_r()--Get User Information for User
Name

 Syntax

 #include <sys/types.h>
 #include <pwd.h>

 int getpwnam_r(const char *name, struct passwd
 *pwd, char *buffer, size_t bufsize,
 struct passwd **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getpwnam_r() function updates the passwd structure pointed to by pwd and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching name.

Parameters

name

(Input) A pointer to a user profile name.

pwd

(Input) A pointer to a passwd structure.

buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the structure pwd.

bufsize

(Input) The size of buffer in bytes.

result

(Input) A pointer to a location in which a pointer to the updated passwd structure is stored. If an
error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

The struct passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name
uid_t pw_uid User ID

uid_t pw_gid Group ID of the user's first group. If the user does not have a first group, the GID
value will be set to 0.

char * pw_dir Initial working directory. If the user does not have *READ authority to the user
profile, the pw_dir pointer will be set to NULL.

char * pw_shell Initial user program. If the user does not have *READ authority to the user profile,
the pw_shell will be set to NULL.

See QlgGetpwnam_r()--Get User Information for User Name (using NLS-enabled path name) for a
description and an example where the path name is returned in any CCSID. Go to _r version

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have *READ
authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

0

getpwnam_r was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If getpwnam_r() is not successful, the return value usually indicates one of the following errors. Under
some conditions, the value could indicate an error other than those listed here.

[EAGAIN] The user profile associated with the name is currently locked by another
process.

[EC2] Detected pointer that is not valid.

[EINVAL] Value is not valid. Check the job log for messages.

[ENOENT] The user profile associated with the name was not found.

[ENOMEM] The user profile associated with the uid has exceeded its storage limit or is
unable to allocate memory.

[ERANGE] Insufficient storage was supplied through buffer and bufsize to contain the data
to be referenced by the resulting group structure.

[EUNKNOWN] Unknown system state. Check the job log for a CPF9872 message. If there is
no message, verify that the home directory field in the user profile can be
displayed.

Usage Notes

The initial working directory is returned in the CCSID value of the job.

Related Information

The <pwd.h> file (see Header Files for UNIX-Type Functions)●

getpwnam()--Get User Information for User Name●

Example

The following example gets the user database information for the user name of MYUSER. The UID is 22.
The GID of MYUSER's first group is 1012. The initial directory is /home/MYUSER. The initial user
program is *LIBL/QCMD.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <errno.h>

main()
{
 struct passwd pd;
 struct passwd* pwdptr=&pd;
 struct passwd* tempPwdPtr;
 char pwdbuffer[200];
 int pwdlinelen = sizeof(pwdbuffer);

 if ((getpwnam_r("MYUSER",pwdptr,pwdbuffer,pwdlinelen,&tempPwdPtr))!=0)
 perror("getpwnam_r() error.");
 else
 {
 printf("\nThe user name is: %s\n", pd.pw_name);
 printf("The user id is: %u\n", pd.pw_uid);
 printf("The group id is: %u\n", pd.pw_gid);
 printf("The initial directory is: %s\n", pd.pw_dir);
 printf("The initial user program is: %s\n", pd.pw_shell);
 }

}

Output:

 The user name is: MYUSER
 The user ID is: 22
 The group ID is: 1012
 The initial directory is: /home/MYUSER

 The initial user program is: *LIBL/QCMD

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

getpwnam_r_ts64()--Get User Information for
User Name

 Syntax

 #include <sys/types.h>
 #include <pwd.h>

 int getpwnam_r_ts64(
 const char * __ptr64 name,
 struct passwd * __ptr64 pwd,
 char * __ptr64 buffer,
 size_t bufsize,
 struct passwd * __ptr64 * __ptr64 result);

 Service Program Name: QSYPAPI64

 Default Public Authority: *USE

 Threadsafe: Yes

The getpwnam_r_ts64() function updates the passwd structure pointed to by pwd and stores a pointer to
that structure in the location pointed to by result. The structure contains an entry from the user database
with a matching name. getpwnam_r_ts64() differs from getpwnam_r() in that it accepts 8-byte teraspace
pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the getpwnam_r() API, see getpwnam_r()--Get User Information for User Name.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

getpwuid()--Get User Information for User ID

 Syntax

 #include <pwd.h>

 struct passwd *getpwuid(uid_t uid);

 Threadsafe: No

The getpwuid() function returns a pointer to an object of type struct passwd containing an entry from the
user database with a matching uid.

Parameters

uid

(Input) User ID.

Authorities

*READ authority is required to the user profile associated with the uid. If the user does not have *READ
authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

struct passwd *

getpwuid() was successful. The return value points to static data of the format struct passwd, which
is defined in the pwd.h header file. This storage is overwritten on each call to this function. This
static storage area is also used by the getpwnam() function. The struct passwd has the following
elements:

char * pw_name User name
uid_t pw_uid User ID
uid_t pw_gid Group ID of the user's first group. If the user does not have a first group,

the gid value will be set to 0.
char * pw_dir Initial working directory. If the user does not have *READ authority to

the user profile, the pw_dir pointer will be set to NULL.
char * pw_shell Initial user program. If the user does not have *READ authority to the

user profile, the pw_shell pointer will be set to NULL.

NULL pointer

getpwuid() was not successful. The errno global variable is set to indicate the error.

See QlgGetpwuid()--Get User Information for User ID (using NLS-enabled path name) for a description
and an example where the path name is returned in any CCSID.

Error Conditions

If getpwuid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the uid is currently locked by another process.

[EC2]

Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with uid was not found.

[ENOMEM]

The user profile associated with the uid has exceeded its storage limit or is unable to allocate
memory.

[ENOSPC]

Machine storage limit exceeded.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify
that the home directory field in the user profile can be displayed.

Usage Notes

The initial working directory is returned in the CCSID value of the job.

Related Information

The <pwd.h> file (see Header Files for UNIX-Type Functions)●

getpwuid_r()--Get User Information for User ID●

QlgGetpwuid()--Get User Information for User ID (using NLS-enabled path name)●

Example

The following example gets the user database information for the uid of 22. The user name is MYUSER.
The gid of MYUSER's first group is 1012. The initial directory is /home/MYUSER. The initial user
program is *LIBL/QCMD.

#include <pwd.h>

main()
{
 struct passwd *pd;

 if (NULL == (pd = getpwuid(22)))
 perror("getpwuid() error.");
 else
 {
 printf(The user name is: %s\n", pd->pw_name);
 printf("The user id is: %u\n", pd->pw_uid);
 printf("The group id is: %u\n", pd->pw_gid);
 printf("The initial directory is: %s\n", pd->pw_dir);
 printf("The initial user program is: %s\n", pd->pw_shell);
 }

}

Output:

 The user name is: MYUSER
 The user id is: 22
 The group id is: 1012
 The initial directory is: /home/MYUSER
 The initial user program is: *LIBL/QCMD

Top | UNIX-Type APIs | APIs by category

getpwuid_r()--Get User Information for User ID

 Syntax

 #include <sys/types.h>
 #include <pwd.h>

 int getpwuid_r(uid_t uid, struct passwd *pwd,
 char *buffer, size_t bufsize, struct passwd
 **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getpwuid_r() function updates the passwd structure pointed to by pwd and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching uid.

Parameters

uid

(Input) User ID.

pwd

(Input) A pointer to a struct passwd.

buffer

(Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by
the structure passwd.

bufsize

(Input) The size of buffer in bytes.

result

(Input) A pointer to a location in which a pointer to the updated passwd structure is stored. If an
error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

The struct passwd, which is defined in the pwd.h header file, has the following elements:

char * pw_name User name
uid_t pw_uid User ID

uid_t pw_gid Group ID of the user's first group. If the user does not have a
first group, the GID value will be set to 0.

char * pw_dir Initial working directory. If the user does not have *READ
authority to the user profile, the pw_dir pointer will be set to
NULL.

char * pw_shell Initial user program. If the user does not have *READ
authority to the user profile, the pw_shell pointer will be set to
NULL.

See QlgGetpwuid_r()--Get User Information for User ID (using NLS-enabled path name) for a description
and an example where the path name is returned in any CCSID.

Authorities

*READ authority is required to the user profile associated with the uid. If the user does not have *READ
authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

0

getpwuid_r() was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If getpwuid_r() is not successful, the error value usually indicates one of the following errors. Under some
conditions, the value could indicate an error other than those listed here.

[EAGAIN] The user profile associated with the uid is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL] Value is not valid. Check the job log for messages.

[ENOENT] The user profile associated with the uid was not found.

[ENOMEM] The user profile associated with the uid has exceeded its storage limit or is
unable to allocate memory.

[ENOSPC] Machine storage limit exceeded.

[ERANGE] Insufficient storage was supplied through buffer and bufsize to contain the data
to be referenced by the resulting group structure.

[EUNKNOWN] Unknown system state. Check the job log for a CPF9872 message. If there is
no message, verify that the home directory field in the user profile can be
displayed.

Usage Notes

The initial working directory is returned in the CCSID value of the job.

Related Information

The <pwd.h> file (see Header Files for UNIX-Type Functions)●

getpwuid()--Get User Information for User ID●

Example

The following example gets the user database information for the UID of 22. The user name is MYUSER.
The GID of MYUSER's first group is 1012. The initial directory is /home/MYUSER. The initial user
program is *LIBL/QCMD.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <errno.h>

main()
{
 struct passwd pd;
 struct passwd* pwdptr=&pd;
 struct passwd* tempPwdPtr;
 char pwdbuffer[200];
 int pwdlinelen = sizeof(pwdbuffer);

 if ((getpwuid_r(22,pwdptr,pwdbuffer,pwdlinelen,&tempPwdPtr))!=0)
 perror("getpwuid_r() error.");
 else
 {
 printf("\nThe user name is: %s\n", pd.pw_name);
 printf("The user id is: %u\n", pd.pw_uid);
 printf("The group id is: %u\n", pd.pw_gid);
 printf("The initial directory is: %s\n", pd.pw_dir);
 printf("The initial user program is: %s\n", pd.pw_shell);
 }

}

Output:

 The user name is: MYUSER
 The user ID is: 22
 The group ID is: 1012
 The initial directory is: /home/MYUSER
 The initial user program is: *LIBL/QCMD

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

getpwuid_r_ts64()--Get User Information for
User ID

 Syntax

 #include <sys/types.h>
 #include <pwd.h>

 int getpwuid_r_ts64(
 uid_t uid,
 struct passwd * __ptr64 pwd,
 char * __ptr64 buffer,
 size_t bufsize,
 struct passwd * __ptr64 * __ptr64 result);

 Service Program Name: QSYPAPI64

 Default Public Authority: *USE
 Threadsafe: Yes

The getpwuid_r_ts64() function updates the passwd structure pointed to by pwd and stores a pointer to that
structure in the location pointed to by result. The structure contains an entry from the user database with a
matching uid. getpwuid_r_ts64() differs from getpwuid_r() in that it accepts 8-byte teraspace pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes, and
an example for the getpwuid_r() API, see getpwuid_r()--Get User Information for User ID.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

getuid()--Get Real User ID

 Syntax

 #include <unistd.h>

 uid_t getuid(void);

 Threadsafe: Yes

The getuid() function returns the real user ID (uid) of the calling thread. The real uid is the user ID under
which the thread was created.

Note: When a user profile swap is done with the QWTSETP API prior to running the getuid() function,
the uid for the current profile is returned.

Parameters

None.

Authorities

No authorization is required.

Return Value

0 or > 0

getuid() was successful. The value returned represents the uid.

-1

getuid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getuid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.

[EDAMAGE]

The user profile associated with the thread uid or an internal system object is damaged.

[ENOMEM]

The user profile associated with the thread uid has exceeded its storage limit.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Example

The following example gets the real uid.

#include <unistd.h>

main()
{
 uid_t uid;

 if (-1 == (uid = getuid(void)))
 perror("getuid() error.");
 else
 printf("The real uid is: %u\n", uid);

}

Output:

 The real uid is: 1957

Top | UNIX-Type APIs | APIs by category

ioctl()--Perform I/O Control Request

 Syntax

 #include <sys/types.h>
 #include <sys/ioctl.h>

 int ioctl(int descriptor,
 unsigned long request,
 ...);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The ioctl() function performs control functions (requests) on a descriptor.

Parameters

descriptor

(Input) The descriptor on which the control request is to be performed.

request

(Input) The request that is to be performed on the descriptor.

...

(Input) A variable number of optional parameters that are dependent on the request.

The ioctl() requests that are supported are:

FIOASYNC Set or clear the flag that allows the receipt of asynchronous I/O signals (SIGIO).

The third parameter represents a pointer to an integer flag. A nonzero value sets the socket to generate
SIGIO signals, while a zero value sets the socket to not generate SIGIO signals. Note that before the
SIGIO signals can be delivered, you must use either the FIOSETOWN or SIOCSPGRP ioctl() request, or
the F_SETOWN fcntl() command to set a process ID or a process group ID to indicate what process or
group of processes will receive the signal. Once conditioned to send SIGIO signals, a socket will generate
SIGIO signals whenever certain significant conditions change on the socket. For example, SIGIO will be
generated when normal data arrives on the socket, when out-of-band data arrives on the socket (in
addition to the SIGURG signal), when an error occurs on the socket, or when end-of-file is received on
the socket. It is also generated when a connection request is received on the socket (if it is a socket on
which the listen() verb has been done). Also note that a socket can be set to generate the SIGIO signal by
using the fcntl() command F_SETFL with a flag value specifying FASYNC.

FIOCCSID Return the coded character set ID (CCSID) associated with the open instance represented by the
descriptor and the CCSID associated with the object. The third parameter represents a pointer to the
structure Qp0lFIOCCSID, which is defined in <sys/ioctl.h>. This information may be necessary to
correctly manipulate data read from or written to a file opened in another process.

If the open instance represented by the descriptor is in binary mode (the open() did not specify the
O_TEXTDATA open flag), the open instance CCSID returned is equal to the object CCSID returned.

FIOGETOWN Get the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that will contain the process ID or the process
group ID to which the socket is currently sending asynchronous signals such as SIGURG. A process ID is
returned as a positive integer, and a process group ID is specified as a negative integer. A 0 value returned
indicates that no asynchronous signals can be generated by the socket. A positive or a negative value
indicates that the socket has been set to generate SIGURG signals.

FIONBIO Set or clear the nonblocking I/O flag (O_NONBLOCK oflag). The third parameter represents a pointer to
an integer flag. A nonzero value sets the nonblocking I/O flag for the descriptor; a zero value clears the
flag.

FIONREAD Return the number of bytes available to be read. The third parameter represents a pointer to an integer that
is set to the number of bytes available to be read.

FIOSETOWN Set the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that contains the process ID or the process
group ID to which the socket should send asynchronous signals such as SIGURG. A process ID is
specified as a positive integer, and a process group ID is specified as a negative integer. Specifying a 0
value resets the socket such that no asynchronous signals are delivered. Specifying a process ID or a
process group ID requests that sockets begin sending the SIGURG signal to the specified ID when
out-of-band data arrives on the socket.

SIOCADDRT Add an entry to the interface routing table. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure rtentry, which is defined in <net/route.h>:

 struct rtentry [
 struct sockaddr rt_dst;
 struct sockaddr rt_mask;
 struct sockaddr rt_gateway;
 int rt_mtu;
 u_short rt_flags;
 u_short rt_refcnt;
 u_char rt_protocol;
 u_char rt_TOS;
 char rt_if[IFNAMSIZ];
];

The rt_dst, rt_mask, and rt_gateway fields are the route destination address, route address mask, and
gateway address, respectively. rt_mtu is the maximum transfer unit associated with the route. rt_flags
contains flags that give some information about a route (for example, whether the route was created
dynamically, whether the route is usable, type of route, and so on). rt_refcnt indicates the number of
references that exist to the route entry. rt_protocol indicates how the route entry was generated (for
example, configuration, ICMP redirect, and so on). rt_tos is the type of service associated with the route.
rt_if is a NULL-terminated string that represents the interface IP address in dotted decimal format that is
associated with the route.

To add a route, the following fields must be set:

rt_dst●

rt_mask●

rt_gateway●

rt_tos●

rt_protocol●

rt_mtu (Setting the rt_mtu value to zero essentially means use the MTU from the associated line
description used when the route is bound to an IFC.)

●

rt_if (rt_if can be set to the dotted decimal equivalent of INADDR_ANY, which is 0.)●

In addition, the rt_flags bit flags can be set to the following:

RTF_NOREBIND_IFC_FAIL if no rebinding of the route is to occur when the interface
associated with the route fails.

●

RTF_NOREBIND_IFC_ACTV if no rebinding is to occur when interfaces are activated or●

deactivated.

To delete a route, the following fields must be set:

rt_dst●

rt_mask●

rt_gateway●

rt_tos●

rt_protocol●

All other fields are ignored when adding or removing an entry.

SIOCATMARK Return the value indicating whether socket's read pointer is currently at the out-of-band mark.

The third parameter represents a pointer to an integer flag. If the socket's read pointer is currently at the
out-of-band mark, the flag is set to a nonzero value. If it is not, the flag is set to zero.

SIOCDELRT Delete an entry from the interface routing table. Valid for sockets with address family of AF_INET.

See SIOCADDRT for more information on the third parameter.

SIOCGIFADDR Get the interface address. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifreq, defined in <net/if.h>:

 struct ifreq {
 char ifr_name[IFNAMSIZE];
 union {
 struct sockaddr ifru_addr;
 struct sockaddr ifru_mask;
 struct sockaddr ifru_broadaddr;
 short ifru_flags;
 int ifru_mtu;
 int infu_rbufsize;
 char ifru_linename[10];
 char ifru_TOS;
 } ifr_ifru;
 };

ifr_name is the name of the interface for which information is to be retrieved. The OS/400
implementation requires this field to be set to a NULL-terminated string that represents the interface IP
address in dotted decimal format. Depending on the request, one of the fields in the ifr_ifru union will be
set upon return from the ioctl() call. ifru_addr is the local IP address of the interface. ifru_mask is the
subnetwork mask associated with the interface. ifru_broadaddr is the broadcast address. ifru_flags
contains flags that give some information about an interface (for example, token-ring routing support,
whether interface is active, broadcast address, and so on). ifru_mtu is the maximum transfer unit
configured for the interface. ifru_rbufsize is the reassembly buffer size of the interface. ifru_linename is
the line name associated with the interface. ifru_TOS is the type of service configured for the interface.

SIOCGIFBRDADDR Get the interface broadcast address. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR for more information on the third parameter.

SIOCGIFCONF Get the interface configuration list. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifconf, defined in <net/if.h>:

 struct ifconf [
 int ifc_len;
 int ifc_configured;
 int ifc_returned;
 union {
 caddr_t ifcu_buf;
 struct ifreq *ifcu_req;
 } ifc_ifcu;
];

ifc_len is a value-result field. The caller passes the size of the buffer pointed to by ifcu_buf. On return,
ifc_len contains the amount of storage that was used in the buffer pointed to by ifcu_buf for the interface
entries. ifc_configured is the number of interface entries in the interface list. ifc_returned is the number of
interface entries that were returned (this is dependent on the size of the buffer pointed to by ifcu_buf).
ifcu_buf is the user buffer in which a list of interface entries will be stored. Each stored entry will be an
ifreq structure.

To get the interface configuration list, the following fields must be set:

ifc_len●

ifcu_buf●

See SIOCGIFADDR for more information on the list of ifreq structures returned. For this request, the
ifr_name and ifru_addr fields will be set to a value.

Note: Additional information about each individual interface can be obtained using these values and the
other interface-related requests.

SIOCGIFFLAGS Get interface flags. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR for more information on the third parameter.

SIOCGIFLIND Get the interface line description name. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR for more information on the third parameter.

SIOCGIFMTU Get the interface network MTU. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR for more information on the third parameter.

SIOCGIFNETMASK Get the mask for the network portion of the interface address. Valid for sockets with address family of
AF_INET.

See SIOCGIFADDR for more information on the third parameter.

SIOCGIFRBUFS Get the interface reassembly buffer size. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR for more information on the third parameter.

SIOCGIFTOS Get the interface type-of-service (TOS). Valid for sockets with address family of AF_INET.

See SIOCGIFADDR for more information on the third parameter.

SIOCGPGRP Get the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

See FIOGETOWN for more information on the third parameter.

SIOCGRTCONF Get the route configuration list. Valid for sockets with address family of AF_INET.

For the SIOCGRTCONF request, the third parameter represents a pointer to the structure rtconf, also
defined in <net/route.h>:

 struct rtconf [
 int rtc_len;
 int rtc_configured;
 int rtc_returned;
 union {
 caddr_t rtcu_buf;
 struct rtentry *rtcu_req;
 } rtc_rtcu;
];

rtc_len is a value-result field. The caller passes the size of the buffer pointed to by rtcu_buf. On return,
rtc_len contains the amount of storage that was used in the buffer pointed to by rtcu_buf for the route
entries. rtc_configured is the number of route entries in the route list. rtc_returned is the number of route
entries that were returned (this is dependent on the size of the buffer pointed to by rtcu_buf). rtcu_buf is
the user buffer in which a list of route entries will be stored. Each stored entry will be an rtentry structure.

To get the route configuration list, the following fields must be set:

rtc_len●

rtcu_buf●

See SIOCADDRT for more information on the list of rtentry structures returned. For this request, all
fields in each rtentry structure will be set to a value.

SIOCSENDQ Return the number of bytes on the send queue that have not been acknowledged by the remote system.
Valid for sockets with address family of AF_INET or AF_INET6 and socket type of
SOCK_STREAM.

The third parameter represents a pointer to an integer that is set to the number of bytes yet to be
acknowledged as being received by the remote TCP transport driver.

Notes:

SIOCSENDQ is used after a series of blocking or non-blocking send operations to see if the sent
data has reached the transport layer on the remote system. Note that this does not not guarantee
the data has reached the remote application.

1.

When SIOCSENDQ is used in a multithreaded application, the actions of other threads must be
considered by the application. SIOCSENDQ provides a result for a socket descriptor at the given
point in time when the ioctl()) request is received by the TCP transport layer. Blocking send
operations that have not completed, as well as non-blocking send operations in other threads
issued after the SIOCSENDQ ioctl(), are not reflected in the result obtained for the SIOCSENDQ
ioctl().

2.

In a situation where the application has multiple threads sending data on the same socket
descriptor, the application should not assume that all data has been received by the remote side
when 0 is returned if the application is not positive that all send operations in the other threads
were complete at the time the SIOCSENDQ ioctl() was issued. An application should issue the
SIOCSENDQ ioctl() only after it has completed all of the send operations. No value is added by
querying the machine to see if it has sent all of the data when the application itself has not sent all
of the data in a given unit of work.

3.

SIOCSPGRP Set the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

See FIOSETOWN for more information on the third parameter.

SIOCSTELRSC Set telephony resources. Valid for sockets with address family of AF_TELEPHONY.

The third parameter represents a pointer to a TelResource structure, which is defined in <nettel/tel.h>.

struct TelResource { /* telephony resource structure */
 int trCount; /* number of devices */
 char trReserved[12]; /* reserved */
 void* trResourceList; /* pointer to array of system
 pointers */
};

trCount1 is the number of devices that are to be associated with the socket, trReserved is a reserved field,
and trResourceList is a pointer to an array of space pointers. Each of these space pointers is the address of
a device that will be associated with the socket.

Notes:

This request will associate one or more telephony (*TEL) network devices with a socket. Once
the association is made, it will last until the socket is closed.

1.

The user is responsible for resolving each device name to a system pointer.2.

Before the device can be associated with a socket, the following conditions must be met:

The PPP line, network controller, and network device descriptions must exist.❍

The PPP line must be associated with an ISDN network controller.❍

The PPP line must be associated with a connection list and connection list entry (inbound
or outbound, as appropriate).

❍

The line, controller, and device must be varied on.❍

3.

The user must have at least operational authority for the devices to be associated with the socket.4.

A device cannot be associated with more than one socket at a time.5.

If the SIOCSTELRSC request fails for any reason, none of the specified devices will be
associated the socket.

6.

For more information about this request and the AF_TELEPHONY address family, please see
Socket address family.

7.

Authorities

No authorization is required.

Return Value

ioctl() returns an integer. Possible values are:

0(ioctl() was successful)●

-1 (ioctl() was not successful. The errno global variable is set to indicate the error.)●

Error Conditions

If ioctl() is not successful, errno usually indicates one of the following errors. Under some conditions, errno could indicate an error
other than those listed here.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file permissions at the
server are not reflected at the client until updates to data that is stored locally by the Network File System take
place. (Several options on the Add Mounted File System (ADDMFS) command determine the time between
refresh operations of local data.) Access to a remote file may also fail due to different mappings of user IDs
(UID) or group IDs (GID) on the local and remote systems.

[EAGAIN] Operation would have caused the process to be suspended.

[EBADF] Descriptor not valid.

A descriptor argument was out of range, referred to an object that was not open, or a read or write request was
made to an object that is not open for that operation.

A given descriptor or directory pointer is not valid for this operation. The specified descriptor is incorrect, or
does not refer to an open object.

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.

[EINTR] Interrupted function call.

[EINVAL] The value specified for an argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the operation
specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. Either the requested function is not supported, or the
optional parameter is not valid.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOSPC] No space available.

The requested operations required additional space on the device and there is no space left. This could also be
caused by exceeding the user profile storage limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended object.

[ENOSYS] Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or any
arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[EPERM] Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the requested
operation.

[EPIPE] Broken pipe.

[ERESTART] A system call was interrupted and may be restarted.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at the
server.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any
errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the following errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EHOSTDOWN] A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT] A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe. Only the following file
systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QDLS File System Differences

QDLS does not support ioctl().

2.

QOPT File System Differences

QOPT does not support ioctl().

3.

A program must have the appropriate privilege *IOSYSCFG to issue any of the following requests: SIOCADDRT and
SIOCDELRT.

4.

Related Information

The <sys/ioctl.h> file (see Header Files for UNIX-Type Functions)●

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

fcntl()--Perform File Control Command●

Socket Programming●

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

lchown()--Change Owner and Group of
Symbolic Link

 Syntax

 #include <unistd.h>

 int lchown(const char *path, uid_t owner, gid_t group);

 Threadsafe: Conditional; see Usage Notes.

The lchown() function changes the owner and group of a file. If the named file is a symbolic link, lchown()
changes the owner or group of the link itself rather than the object to which the link points. The permissions
of the previous owner or primary group to the object are revoked.

If the file is checked out by another user (someone other than the user profile of the current job), lchown()
fails with the [EBUSY] error.

When lchown() completes successfully, it updates the change time of the file.

Parameters

path

(Input) A pointer to the null-terminated path name of the file whose owner and group are being
changed.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgLchown()--Change Owner and Group of Symbolic Link for a description and an example
of supplying the path in any CCSID.

owner

(Input) The user ID (uid) of the new owner of the file. If the value is -1, the user ID is not changed.

group

(Input) The group ID (gid) of the new group for the file. If the value is -1, the group ID is not
changed.

Note: Changing the owner or the primary group causes the S_ISUID (set-user-ID) and S_ISGID
(set-group-ID) bits of the file mode to be cleared, unless the caller has *ALLOBJ special authority. If the
caller does have *ALLOBJ special authority the bits are not changed. This does not apply to directories.
See the chmod() documentation.

Authorities

Note: Adopted authority is not used.

Authorization Required for lchown() (excluding QSYS.LIB, independent ASP QSYS.LIB, and
QDLS)

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object, when changing the owner Owner and *OBJEXIST
(also see Note 1)

EPERM

Object, when changing the primary group See Note 2 EPERM

Previous owner's user profile, when changing the owner *DLT EPERM

New owner's user profile, when changing the owner *ADD EPERM

User profile of previous primary group, when changing the primary
group

*DLT EPERM

New primary group's user profile, when changing the primary group *ADD EPERM

Note:

You do not need the listed authority if you have *ALLOBJ special authority.1.

At least one of the following must be true:

You have *ALLOBJ special authority.a.

You are the owner and either of the following:

The new primary group is the primary group of the job.■

The new primary group is one of the supplementary groups of the job.■

b.

2.

Authorization Required for lchown() in the QSYS.LIB and independent ASP QSYS.LIB File
Systems

Object Referred to Authority Required errno

Each directory in the path name preceding
the object

*X

See Note 1

EACCES

Object when changing the owner See Note 2(a) EPERM

Object when changing the primary group See Note 2(b) EPERM

Note:

For *FILE objects (such as DDM file, diskette file, print file, and save file), *RX authority is
required to the parent directory of the object, rather than just *X authority.

1.

The required authorization varies for each object type. For details of the following commands see

the iSeries Security Reference book.

CHGOWNa.

CHGPGPb.

2.

Authorization Required for lchown() in the QDLS File System

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Previous owner's user profile, when changing the owner *DLT EPERM

New owner's user profile, when changing the owner *ADD EPERM

Previous primary group's user profile, when changing the primary group *DLT EPERM

New primary group's user profile, when changing the primary group *ADD EPERM

Authorization Required for lchown() in the QOPT File System

Object Referred to Authority Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the object. *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Return Value

0

lchown() was successful.

-1

lchown() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If lchown() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

owner or group is not a valid user ID (uid) or group ID (gid).

owner is the current primary group of the object.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

The thread does not have authority to perform the requested function.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

❍

1.

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

lchown() is not supported for member (.MBR) objects.

2.

QDLS File System Differences

The owner and primary group of the /QDLS directory (root folder) cannot be changed. If an
attempt is made to change the owner and primary group, a [ENOTSUP] error is returned.

3.

QOPT File System Differences

Changing the owner and primary group is allowed only for an object that exists on a volume
formatted in Universal Disk Format (UDF). For all other media formats, ENOTSUP will be
returned.

QOPT file system objects that have owners will not be recognized by the Work with Objects by
Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will
not be recognized by the Work Objects by Primary Group (WRKOBJPGP) CL command.

4.

QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support lchown().

5.

QNetWare File System Differences

The QNetWare file system does not support primary group. The GID must be zero.

6.

QNTC File System Differences

The owner of files and directories cannot be changed. All files and directories in QNTC are owned
by the QDFTOWN user profile.

7.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type APIs)●

The <limits.h> file●

chmod()--Change File Authorizations●

fchown()--Change Owner and Group of File by Descriptor●

fstat()--Get File Information by Descriptor●

lstat()--Get File or Link Information●

stat()--Get File Information●

QlgLchown()--Change Owner and Group of Symbolic Link●

Example

The following example changes the owner and group of a file:

#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>

main() {
 char link_name[]="temp.link";
 char fn[]="temp.file";
 struct stat info;

 if (symlink(fn, link_name) == -1)
 perror("symlink() error");
 else {
 lstat(link_name, &info);
 printf("original owner was %d and group was %d\n", info.st_uid,
 info.st_gid);
 if (lchown(link_name, 152, 0) != 0)
 perror("lchown() error");
 else {
 lstat(link_name, &info);
 printf("after lchown(), owner is %d and group is %d\n",
 info.st_uid, info.st_gid);
 }
 unlink(link_name);
 }
}

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

link()--Create Link to File

 Syntax

 #include <unistd.h>

 int link(const char *existing, const char *new);

 Threadsafe: Conditional; see Usage Notes.

The link() function provides an alternative path name for the existing file, so that the file can be accessed
by either the existing name or the new name. link() creates a link with a path name new to an existing file
whose path name is existing. The link can be stored in the same directory as the original file or in a different
directory.

The link() function creates a hard link, which guarantees the existence of a file even after the original path
name has been removed.

If link() successfully creates the link, it increments the link count of the file. The link count indicates how
many links there are to the file. If link() fails for some reason, the link count is not incremented.

If the existing argument names a symbolic link, link() creates a link that refers to the file that results from
resolving the path name contained in the symbolic link. If new names a symbolic link, link() fails and sets
errno to [EEXIST].

A successful link updates the change time of the file, and the change time and modification time of the
directory that contains new (parent directory).

If the file is checked out by another user (a user profile other than the user profile of the current job), link()
fails with the [EBUSY] error.

Links created by this function are not allowed to cross file systems. For example, you cannot create a link
to a file in the QOpenSys directory from the root (/) directory.

Links are not allowed to directories. If existing names a directory, link() fails and sets errno to [EPERM].

A job must have access to a file to link to it.

Parameters

existing

(Input) A pointer to a null-terminated path name naming an existing file to which a new link is to
be created.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgLink()--Create Link to File for a description and an example of supplying the existing in
any CCSID.

new

(Input) A pointer to a null-terminated path name that is the name of the new link.

This parameter is assumed to be represented in the CCSID currently in effect for the job. If the
CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job. The new link name is assumed to be represented in the language and country or region
currently in effect for the job.

See QlgLink()--Create Link to File for a description and an example of supplying the new in any
CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for link()

Object Referred to
Authority
Required errno

Each directory in the existing path name that precedes the object being linked
to

*X EACCES

Existing object *OBJEXIST EACCES

Each directory in the new path name that precedes the object being linked to *X EACCES

Parent directory of the new link *WX EACCES

Return Value

0

link() was successful.

-1

link() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If link() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by

the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMLINK]

Maximum link count for a file was exceeded.

An attempt was made to have the link count of a single file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

Links to directories are not supported.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

[EXDEV]

Improper link.

A link to a file on another file system was attempted.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

❍

1.

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

The link() function should be used sparingly to avoid potential performance degradation. The
greater the number of hard links to an object, the more time it will take to change the attributes of
the object.

2.

File System Differences

The following file systems do not support link():

QSYS.LIB❍

Independent ASP QSYS.LIB ❍

QDLS❍

QOPT❍

QFileSvr.400❍

QNetWare❍

QNTC❍

If link() is used in any of these file systems, a [ENOSYS] error is returned.

3.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

QlgLink()--Create Link to File●

rename()--Rename File or Directory●

unlink()--Remove Link to File●

Example

The following example uses link():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

main()
{
 char fn[]="link.example.file";
 char ln[]="link.example.link";

 int file_descriptor;
 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 close(file_descriptor);
 puts("before link()");
 stat(fn,&info);
 printf(" number of links is %hu\n",info.st_nlink);
 if (link(fn, ln) != 0) {
 perror("link() error");
 unlink(fn);
 }
 else {
 puts("after link()");
 stat(fn,&info);
 printf(" number of links is %hu\n",info.st_nlink);
 unlink(ln);
 puts("after first unlink()");
 stat(fn,&info);
 printf(" number of links is %hu\n",info.st_nlink);
 unlink(fn);
 }
 }
}

Output:

before link()
 number of links is 1
after link()
 number of links is 2
after first unlink()
 number of links is 1

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

lseek()--Set File Read/Write Offset

 Syntax

 #include <unistd.h>

 off_t lseek(int file_descriptor, off_t offset, int whence);

 Threadsafe: Conditional; see Usage Notes.

The lseek() function changes the current file offset to a new position in the file. The new position is the
given byte offset from the position specified by whence. After you have used lseek() to seek to a new
location, the next I/O operation on the file begins at that location.

lseek() lets you specify new file offsets past the current end of the file. If data is written at such a point,
read operations in the gap between this data and the old end of the file will return bytes containing binary
zeros (or bytes containing blanks in the QSYS.LIB and independent ASP QSYS.LIB file systems). In
other words, the gap is assumed to be filled with zeros (or with blanks in the QSYS.LIB and independent
ASP QSYS.LIB file systems). Seeking past the end of a file, however, does not automatically extend the
length of the file. There must be a write operation before the file is actually extended.

There are some important considerations for lseek() if the O_TEXTDATA and O_CCSID flags were
specified on the open(), the file CCSID and open CCSID are not the same, and the converted data could
expand or contract:

Making assumptions about data size and the current file offset is extremely dangerous. For
example, a file might have a physical size of 100 bytes, but after an application has read 100 bytes
from the file, the current file offset may be only 50. To read the whole file, the application might
have to read 200 bytes or more, depending on the CCSIDs involved. Therefore, lseek() will only be
allowed to change the current file offset to:

The start of the file (offset 0, whence SEEK_SET)❍

The end of the file (offset 0, whence SEEK_END). In this case, the function will return a
calculated value based on the physical size of the file, the CCSID of the file, and the
CCSID of the open instance. This may be different than the actual file offset.

❍

If any other combination of values is specified, lseek() fails and errno is set to ENOTSUP.

●

Internally-buffered data from a read or write operation is discarded. See read()--Read from
Descriptor and write()--Write to Descriptor for more information concerning internal buffering of
text data.

●

The expected state for the current text conversion is reset to the initial state. This consideration
applies only when using a CCSID that can represent data using more than one graphic character set
or containing characters of different byte lengths. Some CCSIDs require an escape or shift
sequence to signify a state change from one character set or byte length to another. Failing to
account for this consideration could lead to incorrect text conversion if, for instance, a double-byte
character at the new file offset was treated as two single-byte characters by the conversion function.

●

In the QSYS.LIB file and independent ASP QSYS.LIB file systems, you can seek only to the beginning
of a member while in text mode.

Parameters

file_descriptor

(Input) The file whose current file offset you want to change.

offset

(input) The amount (positive or negative) the byte offset is to be changed. The sign indicates
whether the offset is to be moved forward (positive) or backward (negative).

whence

(Input) One of the following symbols (defined in the <unistd.h> header file):

SEEK_SET

The start of the file

SEEK_CUR

The current file offset in the file

SEEK_END

The end of the file

If bits in whence are set to values other than those defined above, lseek() fails with the [EINVAL] error.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

value

lseek() was successful. The value returned is the new file offset, measured in bytes from the
beginning of the file.

-1

lseek() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If lseek() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. A parameter passed to this function is not
valid.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EOVERFLOW]

Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The resulting file offset would be a value that cannot be represented correctly in a variable of type
off_t (the offset is greater than 2GB minus 2 bytes).

[ESPIPE]

Seek request not supported for object.

A seek request was specified for an object that does not support seeking.

The object is not capable of seeking.

The file_descriptor argument is associated with a pipe or FIFO.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the
following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been
deleted at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once a file is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations (several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data).

2.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

This function is not supported for save files and will fail with error code [ENOTSUP].

3.

This function will fail with the [EOVERFLOW] error if the resulting file offset would be a value
that cannot be represented correctly in a variable of type off_t (the offset is greater than 2 GB
minus 2 bytes).

4.

When you develop in C-based languages and an application is compiled with the _LARGE_FILES
macro defined, the lseek() API will be mapped to a call to the lseek64() API. Additionally, the data
type off_t will be mapped to the type off64_t.

5.

Using this function with the write(), pwrite(), and pwrite64() functions on the /dev/null or
/dev/zero character special file will not result in the file data size changing from zero.

6.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

fcntl()--Perform File Control Command●

lseek64()--Set File Read/Write Offset (Large File Enabled)●

open()--Open File●

pread()--Read from Descriptor with Offset ●

pread64()--Read from Descriptor with Offset (large file enabled) ●

pwrite()--Write to Descriptor with Offset ●

pwrite64()--Write to Descriptor with Offset (large file enabled) ●

read()--Read from Descriptor●

write()--Write to Descriptor●

Example

The following example positions a file (that has at least 11 bytes) to an offset of 10 bytes before the end of
the file:

lseek(file_descriptor,-10,SEEK_END);

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

lseek64()--Set File Read/Write Offset (Large File
Enabled)

 Syntax

 #include <unistd.h>

 off64_t lseek64(int file_descriptor,
 off64_t offset, int whence);

Threadsafe: Conditional; see Usage Notes.

The lseek64() function changes the current file offset to a new position in the file. The new position is the
given byte offset from the position specified by whence. After you have used lseek64() to seek to a new
location, the next I/O operation on the file begins at that location.

lseek64() lets you specify new file offsets past the current end of the file. If data is written at such a point,
read operations in the gap between this data and the old end of the file will return bytes containing binary
zeros (or bytes containing blanks in the QSYS.LIB or independent ASP QSYS.LIB file systems). In other
words, the gap is assumed to be filled with zeros (or with blanks in the QSYS.LIB or independent ASP
QSYS.LIB file systems). If you seek past the end of a file, however, the length of the file is not
automatically extended. The maximum offset that can be specified is the largest value that can be held in an
8-byte, signed integer. You must do a write operation before the file is actually extended.

In the QSYS.LIB or independent ASP QSYS.LIB file systems, you can seek only to the beginning of a
member while in text mode.

lseek64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as long
as the file has been opened by either of the following:

Using the open64() function (see open64()--Open File (Large File Enabled)).●

Using the open() function (see open()--Open File) with the O_LARGEFILE flag set.●

For additional information about parameters, authorities required, error conditions and examples, see
lseek()--Set File Read/Write Offset.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the lseek64() API and the off64_t data type, you must compile the source with the
_LARGE_FILE_API defined.

1.

All of the usage notes for lseek() apply to lseek64(). See Usage Notes in the lseek() API.2.

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

lstat()--Get File or Link Information

 Syntax

 #include <sys/stat.h>

 int lstat(const char *path, struct stat *buf);

 Threadsafe: Conditional; see Usage Notes.

The lstat() function gets status information about a specified file and places it in the area of memory
pointed to by buf. If the named file is a symbolic link, lstat() returns information about the symbolic link
itself.

The information is returned in the stat structure, referenced by buf. For details on the stat structure, see
stat()--Get File Information.

If the named file is not a symbolic link, lstat() updates the time-related fields before putting information in
the stat structure.

Parameters

path

(Input) A pointer to the null-terminated path name of the file.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

See QlgLstat()--Get File or Link Information for a description and an example of supplying the
path in any CCSID.

buf

(Output) A pointer to the area to which the information should be written.

Authorities

Note: Adopted authority is not used.

Authorization Required for lstat()

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object *R EACCES

Return Value

0

lstat() was successful. The information is returned in buf.

-1

lstat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If lstat() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length

of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOVERFLOW]

Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The file size in bytes cannot be represented correctly in the structure pointed to by buf (the file is
larger than 2GB minus 1 byte).

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

Where multiple threads exist in the job.❍

The object this function is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

QOPT File System Differences

The value for st_atime will always be zero. The value for st_ctime will always be the creation date
and time of the file or directory.

If the object exists on a volume formatted in Universal Disk Format (UDF), the authorization that is
checked for the object and each directory in the path name follows the rules described in
Authorization Required for lstat(). If the object exists on a volume formatted in some other media
format, no authorization checks are made on the object or each directory in the path name. The
volume authorization list is checked for *USE authority regardless of the volume media format.

The user, group, and other mode bits are always on for an object tha exists on a volume not
formatted in Universal Disk format (UDF).

lstat on /QOPT will always return 2,147,483,647 for size fields.

lstat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

2.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once a file is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

3.

QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See NetWare on iSeries for more
information.

4.

This function will fail with the [EOVERFLOW] error if the file size in bytes cannot be represented
correctly in the structure pointed to by buf (the file is larger than 2GB minus 1 byte).

5.

When you develop in C-based languages and this function is compiled with _LARGE_FILES
defined, it will be mapped to lstat64(). Note that the type of the buf parameter, struct stat, also will
be mapped to type struct stat64.

6.

Related Information

The <sys/stat.h> file (see Header Files for UNIX-Type Functions)●

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

chown()--Change Owner and Group of File●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

fcntl()--Perform File Control Command●

fstat()--Get File Information by Descriptor●

link()--Create Link to File●

mkdir()--Make Directory●

open()--Open File●

QlgLstat()--Get File or Link Information●

read()--Read from Descriptor●

readlink()--Read Value of Symbolic Link●

stat()--Get File Information●

symlink()--Make Symbolic Link●

unlink()--Remove Link to File●

utime()--Set File Access and Modification Times●

write()--Write to Descriptor●

Example

The following example provides status information for a file:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdio.h>

main() {
 char fn[]="temp.file", ln[]="temp.link";
 struct stat info;
 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 close(file_descriptor);
 if (link(fn, ln) != 0)
 perror("link() error");
 else {
 if (lstat(ln, &info) != 0)
 perror("lstat() error");
 else {
 puts("lstat() returned:");
 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 }
 unlink(ln);
 }
 unlink(fn);
 }
}

Output:

lstat() returned:
 inode: 3022
 dev id: 1
 mode: 00008080
 links: 2
 uid: 137
 gid: 500

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

lstat64()--Get File or Link Information (Large
File Enabled)

 Syntax

 #include <sys/stat.h>

 int lstat64(const char *path, struct stat64 *buf);

 Threadsafe: Conditional; see Usage Notes.

The lstat64() function gets status information about a specified file and places it in the area of memory
pointed to by buf. If the named file is a symbolic link, lstat64() returns information about the symbolic link
itself.

The information is returned in the stat64 structure, referred to by buf. For details on the stat64 structure, see
stat64()--Get File Information (Large File Enabled).

If the named file is not a symbolic link, lstat64() updates the time-related fields before putting information
in the stat64 structure.

For additional information about parameters, authorities required, and error conditions, see lstat()--Get File
or Link Information.

See QlgLstat64()--Get File or Link Information (Large File Enabled) for a description and an example of
supplying the path in any CCSID.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the lstat64() API and the struct stat64 data type, you must compile the source with the
_LARGE_FILE_API defined.

1.

All of the usage notes for lstat() apply to lstat64(). See Usage Notes in the lstat() API.2.

Example

The following example provides status information for a file.

#define _LARGE_FILE_API
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>

#include <stdio.h>

main() {
 char fn[]="temp.file", ln[]="temp.link";
 struct stat64 info;
 int file_descriptor;

 if ((file_descriptor = creat64(fn, S_IWUSR)) < 0)
 perror("creat64() error");
 else {
 close(file_descriptor);
 if (link(fn, ln) != 0)
 perror("link() error");
 else {
 if (lstat64(ln, &info) != 0)
 perror("lstat64() error");
 else {
 puts("lstat64() returned:");
 printf(" inode: %d\n", (int) info.st_ino);
 printf(" dev id: %d\n", (int) info.st_dev);
 printf(" mode: %08x\n", info.st_mode);
 printf(" links: %d\n", info.st_nlink);
 printf(" uid: %d\n", (int) info.st_uid);
 printf(" gid: %d\n", (int) info.st_gid);
 printf(" size: %lld\n", (long long) info.st_size);
 }
 unlink(ln);
 }
 unlink(fn);
 }
}

Output:

lstat() returned:
 inode: 3022
 dev id: 1
 mode: 00008080
 links: 2
 uid: 137
 gid: 500
 size: 18

Top | UNIX-Type APIs | APIs by category

mkdir()--Make Directory

 Syntax

 #include <sys/stat.h>

 int mkdir(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The mkdir() function creates a new, empty directory whose name is defined by path. The file permission
bits in mode are modified by the file creation mask of the job and then used to set the file permission bits of
the directory being created.

For more information on the permission bits in mode see chmod()--Change File Authorizations. For more
information on the file creation mask, see umask()--Set Authorization Mask for Job.

The owner ID of the new directory is set to the effective user ID (uid) of the job. If the directory is being
created in the Root ('/'), QOpensys, and user-defined file systems, the following applies. If the S_ISGID bit
of the parent directory is off, the group ID (GID) is set to the effective GID of the thread creating the
directory. If the S_ISGID bit of the parent directory is on, the group ID (GID) of the new directory is set to
the GID of the parent directory. For all other file systems, the group ID (GID) of the new directory is set
to the GID of the parent directory.

mkdir() sets the access, change, modification, and creation times for the new directory. It also sets the
change and modification times for the directory that contains the new directory (parent directory).

The link count of the parent directory link count is increased by one. The link count of the new directory is
set to 2. The new directory also contains an entry for "dot" (.) and "dot-dot" (..).

If path names a symbolic link, the symbolic link is not followed, and mkdir() fails with the [EEXIST]
error.

If bits in mode other than the file permission bits are set, mkdir() fails with the [EINVAL] error.

Parameters

path

(Input) A pointer to the null-terminated path name of the directory to be created.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

The name of the new directory is assumed to be represented in the language and country or region
currently in effect for the process.

See QlgMkdir()--Make Directory for a description and an example of supplying the path in any
CCSID.

mode

(Input) Permission bits for the new directory. The S_ISGID (set-group-ID) bit also may be
specified when creating the directory.

See chmod()--Change File Authorizations for details on the values that can be specified for mode.

Authorities

Note: Adopted authority is not used.

Authorization Required for mkdir() (excluding QSYS.LIB, Independent ASP QSYS.LIB, and
QDLS)

Object Referred to
Authority
Required errno

Each directory in the path name preceding the directory to be created. *X EACCES

Parent directory of directory to be created *WX EACCES

Authorization Required for mkdir() in the QSYS.LIB and independent ASP QSYS.LIB File
Systems

Object Referred to
Authority
Required errno

Each directory in the path name preceding the directory to be created. *X EACCES

Parent directory of directory to be created (when the directory being created
is a database file)

*X and *ADD EACCES

Authorization Required for mkdir() in the QDLS File System

Object Referred to
Authority
Required errno

Each directory in the path name preceding the directory to be created. *X EACCES

Parent directory of directory to be created *CHANGE EACCES

Return Value

0

mkdir() was successful. The directory was created.

-1

mkdir() was not successful. The directory was not created. The errno global variable is set to
indicate the error.

Error Conditions

If mkdir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists. Or, the last component of path is a symbolic link.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMLINK]

Maximum link count for a file was exceeded.

An attempt was made to have the link count of a single file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

There are secondary threads active in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

Root, QOpenSys, and User-Defined File System Differences

The user who creates the directory becomes its owner.

The S_ISGID bit of the directory affects what the group ID (GID) is for objects that are created
in the directory. If the S_ISGID bit of the parent directory is off, the group ID (GID) is set to the
effective GID of the thread creating the object. If the S_ISGID bit of the parent directory is on, the

2.

group ID (GID) is copied from the parent directory in which the new directory is being created.

The owner, primary group, and public object authorities (*OBJEXIST, *OBJMGT, *OBJALTER,
and *OBJREF) are copied from the parent directory's owner, primary group, and public object
authorities. This occurs even when the new directory has a different owner than the parent
directory. The owner, primary group, and public data authorities (*R, *W, and *X) are derived
from the permissions specified in the mode (except for those permissions that are also set in the file
mode creation mask). The new directory does not have any private authorities or authorization list.
It only has authorities for the owner, primary group, and public.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The user who creates the directory becomes its owner. The group ID is copied from the primary
user ID, if one exists.

The owner is given *ALL object authority to the new directory. The group object authorities are
copied from the user profile of the owner. The public receives no object authority to the directory.

The primary group authorities specified in mode are not saved if no primary group exists.

The change and modification times for the directory that contains the new directory are only set
when the new directory is a database file.

3.

QDLS File System Differences

The user who creates the directory becomes its owner. The group ID is copied from the parent
folder in which the new directory is being created.

The object authority of the owner is set to *OBJMGT + *OBJEXIST + *OBJALTER + *OBJREF.

The primary group and public object authority and all other authorities are copied from the parent
folder.

The owner, primary group, and public data authority (including *OBJOPR) are derived from the
permissions specified in mode (except those permissions that are also set in the file mode creation
mask).

The primary group authorities specified in mode are not saved if no primary group exists.

4.

QOPT File System Differences

When the volume on which the directory is being created is formatted in Universal Disk Format
(UDF):

The authorization that is checked for the object and preceding directories in the path name
follows the rules described in Authorization Required for mkdir().

❍

The volume authorization list is checked for *CHANGE authority.❍

The user who creates the file becomes its owner.❍

The group ID is copied from the parent directory in which the file is created.❍

The owner, primary group, and public data authorities (*R, *W, and *X) are derived from
the permissions specified in the mode.

❍

The same uppercase and lowercase forms in which the names are entered are preserved. No❍

5.

distinction is made between uppercase and lowercase when searching for names.

When the volume on which the directory is being created is not formatted in Universal Disk Format
(UDF):

No authorization is checked on the object or preceding directories in the path name.❍

The volume authorization list is checked for *CHANGE authority.❍

QDFTOWN becomes the owner of the directory.❍

No group ID is assigned to the directory.❍

The permissions specified in the mode are ignored. The owner, primary group, and public
data authorities are set to RWX.

❍

For newly created directories, names are created in uppercase. No distinction is made
between uppercase and lowercase when searching for names.

❍

A directory cannot be created as a direct child of /QOPT.

The change and modification times of the parent directory are not updated.

Network File System Differences

Local access to remote directories through the Network File System may produce unexpected
results due to conditions at the server. The creation of a directory may fail if permissions and other
attributes that are stored locally by the Network File System are more restrictive than those at the
server. A later attempt to create a file can succeed when the locally stored data has been refreshed.
(Several options on the Add Mounted File System (ADDMFS) command determine the time
between refresh operations of local data.) The creation can also succeed after the file system has
been remounted.

If you try to re-create a directory that was recently deleted, the request may fail because data that
was stored locally by the Network File System still has a record of the directory's existence. The
creation succeeds when the locally stored data has been updated.

6.

QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See NetWare on iSeries for more
information.

7.

QNTC File System Differences

Directory authorities are inherited from the access control list (if any exists) of the parent directory.
The mode bits are ignored.

In addition to the normal mkdir() function, in the QNTC file system, mkdir() can be used to add a
server directory under the /QNTC directory level. Directories for all functional Windows NT
servers in the local subnet are automatically created. However, Windows NT servers outside the
local subnet must be added by using mkdir() or the MKDIR command. For example:

 char new_dir[]="/QNTC/NTSRV1";
 mkdir(new_dir,NULL)

would add the NTSRV1 server into the QNTC directory structure for future access of files and
directories on that server.

8.

It is also possible to add the server by using the TCP/IP address. For example:

 char new_dir[]="/QNTC/9.130.67.24";
 mkdir(new_dir,NULL)

The directories added using mkdir() will not persist across IPLs. Thus, mkdir() or the Make
Directory (MKDIR) command must be reissued after every system IPL.

Related Information

The <sys/stat.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

QlgMkdir()--Make Directory●

stat()--Get File Information●

umask()--Set Authorization Mask for Job●

pathconf()--Get Configurable Path Name Variables●

Example

The following example creates a new directory:

#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>

main() {
 char new_dir[]="new_dir";

 if (mkdir(new_dir, S_IRWXU|S_IRGRP|S_IXGRP) != 0)
 perror("mkdir() error");
 else if (chdir(new_dir) != 0)
 perror("first chdir() error");
 else if (chdir("..") != 0)
 perror("second chdir() error");
 else if (rmdir(new_dir) != 0)
 perror("rmdir() error");
 else
 puts("success!");
}

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

mkfifo()--Make FIFO Special File

 Syntax

 #include <sys/types.h>
 #include <sys/stat.h>

 int mkfifo(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The mkfifo() function creates a new FIFO special file (FIFO) whose name is defined by path. A FIFO
special file is a type of file with the property that data written to the file is read on a first-in-first-out basis.
See the open(), read(), write(), lseek, and close functions for more characteristics of a FIFO special file.

A FIFO may be opened for reading only or writing only for a uni-directional I/O. It also may be opened for
reading and writing access to provide a bi-directional FIFO descriptor.

The file permission bits in mode are modified by the file creation mask of the job and then used to set the
file permission bits of the FIFO being created.

For more information on the permission bits inmode, see chmod()--Change File Authorizations. For more
information on the file creation mask, see umask()--Set Authorization Mask for Job.

The owner ID of the new FIFO is set to the effective user ID (UID) of the thread. If the object is being
created in the Root ('/'), QOpensys, and user-defined file systems, the following applies. If the S_ISGID bit
of the parent directory is off, the group ID (GID) is set to the effective GID of the thread creating the
object. If the S_ISGID bit of the parent directory is on, the group ID (GID) of the new object is set to the
GID of the parent directory. For all other file systems, the group ID (GID) of the new FIFO is set to the
GID of the parent directory.

Upon successful completion, mkfifo() sets the access, change, modification, and creation times for the new
FIFO. It also sets the change and modification times for the directory that contains the new FIFO (parent
directory).

If path contains a symbolic link, the symbolic link is followed.

If path names a symbolic link, the symbolic link is not followed, and mkfifo() fails with the [EEXIST]
error.

If bits in mode other than the file permission bits are set, mkfifo() fails with the [EINVAL] error.

Parameters

path

(Input) A pointer to the null-terminated path name of the FIFO special file to be created.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

The name of the new FIFO is assumed to be represented in the language and country or region
currently in effect for the process.

See QlgMkfifo()--Make FIFO Special File (using NLS-enabled path name) for a description and an
example of supplying the path in any CCSID.

mode

(Input) Permission bits for the new FIFO.

Authorities

Adopted authority is not used.

Authorization Required for mkfifo()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the FIFO to be created. *X EACCES

Parent directory of FIFO to be created *WX EACCES

Return Value

0 mkfifo() was successful. The FIFO was created.
-1 mkfifo() was not successful. The FIFO was not created. The errno global variable is set to indicate

the error.

Error Conditions

If mkfifo() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file also
may fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists. Or, the last component of path is a symbolic link.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMLINK]

Maximum link count for a file was exceeded.

An attempt was made to have the link count of a single file exceed LINK_MAX. The value of
LINK_MAX can be determined using the pathconf() or the fpathconf() function.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROFS]

Read-only file system.

You have attempted an update operation in a file system that only supports read operations.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

File System Differences

The following file systems support mkfifo():

Root❍

QOpenSys❍

User-defined❍

2.

There are some restrictions when opening a FIFO for text conversion and the CCSIDs involved are
not strictly single-byte:

Opening a FIFO for reading or reading and writing is not allowed.❍

Any conversion between CCSIDs that are not strictly single-byte must be done by an open
instance that has write-only access.

❍

3.

The owner, primary group, and public object authorities (*OBJEXIST, *OBJMGT, *OBJALTER,
and *OBJREF) are copied from the parent directory's owner, primary group, and public object
authorities. This occurs even when the new FIFO has a different owner than the parent directory.
The owner, primary group, and public data authorities (*R, *W, and *X) are derived from the
permissions specified in the mode (except for those permissions that are also set in the file mode
creation mask). The new FIFO does not have any private authorities or authorization list. It only
has authorities for the owner, primary group, and public.

4.

Related Information

The <sys/stat.h> file (see Header Files for UNIX-Type Functions)●

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

chmod()--Change File Authorizations●

umask()--Set Authorization Mask for Job●

QlgMkfifo()--Make FIFO Special File (using NLS-enabled path name)●

Example

The following example creates a new FIFO:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

void main() {
 char *mypath = "/newFIFO";

 if (mkfifo(mypath, S_IRWXU|S_IRWXO) != 0)
 perror("mkfifo() error");
 else
 puts("success!");

 return;
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

mmap()--Memory Map a File

 Syntax

 #include <sys/types.h>
 #include <sys/mman.h>

 void *mmap(void *addr,
 size_t len,
 int protection,
 int flags,
 int fildes,
 off_t off);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The mmap() function establishes a mapping between a process' address space and a stream file.

The address space of the process from the address returned to the caller, for a length of len, is mapped onto
a stream file starting at offset off.

The portion of the stream file being mapped is from starting offset off for a length of len bytes. The actual
address returned from the function is derived from the values of flagsand the value specified for address.

The mmap() function causes a reference to be associated with the file represented by fildes. This reference
is not removed by subsequent close operations. The file remains referenced as long as a mapping exists
over the file.

If a mapping already exists for the portion of the processes address space that is to be mapped and the value
MAP_FIXED was specified for flags, then the previous mappings for the affected pages are implicitly
unmapped. If one or more files affected by the implicit unmap no longer have active mappings, these files
will be unreferenced as a result of mmap().

The use of the mmap() function is restricted by the QSHRMEMCTL System Value. When this system
value is 0, the mmap() function may not create a shared mapping having with PROT_WRITE capability.
Essentially, this prevents the creation of a memory map that could alter the contents of the stream file being
mapped. If the flags parameter indicated MAP_SHARED, the prot parameter specifies PROT_WRITE and
the QSHRMEMCTL system value is 0, then the mmap() functions will fail and an error number of
EACCES results.

When the mmap() function creates a memory map, the current value of the QSHRMEMCTL system value
is stored with the mapping. This further restricts attempts to change the protection of the mapping through
the use of the mprotect function. Changing the system valueonly affects memory maps created after the
system value is changed.

If the size of the file increases after the mmap() function completes, then the whole pages beyond the
original end of file will not be accessible using the mapping.

If the size of the mapped file is decreased after mmap(), attempts to reference beyond the end of the file are
undefined and may result in an MCH0601 exception.

Any data written to that portion of the file that is allocated beyond end-of-file may not be preserved.
Changes made beyond end of file using mapped access may not be preserved.

The portion of the file beyond end-of-file is assumed to be zero by the traditional file access APIs such as
read(), readv(), write(), writev(), and ftruncate(). The system may clear a partial page, or whole pages
allocated beyond end-of-file. This must be taken into account when directly changing a memory mapped
file beyond end-of-file. It is not recommended that data be directly changed beyond end-of-file because the
extra space allocated varies and unpredictable results may occur.

The mmap() function is only supported for *TYPE2 stream files (*STMF) existing in the root (/),
QOpenSys, and User-Defined file systems.

Journaling cannot be started while a file is memory mapped. Likewise, a journaled file cannot be memory
mapped. The mmap() function will fail with EINVAL if the file is journaled.

The off parameter must be zero or a multiple of the system page size. The _SC_PAGESIZE or
_SC_PAGE_SIZE options on the sysconf() function may be used to retrieve the system page size.

Parameters

addr

(Input) The starting address of the memory area to be mapped. If the MAP_FIXED value is
specified with the flagparameter, then address must be a multiple of the system page size. Use the
_SC_PAGESIZE or _SC_PAGE_SIZE options of the sysconf() API to obtain the actual page size
in an implementation-independent manner. When the MAP_FIXED flag is specified, this address
must not be zero.

len

(Input) The length in bytes to map. A length of zero will result in an errno of EINVAL.

protection

(Input) The access allowed to this process for this mapping. Specify PROT_NONE, PROT_READ,
PROT_WRITE, or a the inclusive-or of PROT_READ and PROT_WRITE. You cannot specify a
protection value more permissive than the mode in which the file was opened.

The PROT_WRITE value requires that the file be opened for write and read access.

The following table shows the symbolic constants allowed for the protection parameter.

Symbolic
Constant

Decimal
Value Description

PROT_READ 1 Read access is allowed.

PROT_WRITE 2 Write access is allowed. Note that this value assumes
PROT_READ also.

PROT_NONE 8 No data access is allowed.

PROT_EXEC 4 This value is allowed, but is equivalent to
PROT_READ.

flags

(Input) Further defines the type of mapping desired. There are actually two independent options

controlled through the flags parameter.

The first attribute controls whether or not changes made through the mapping will be seen by other
processes. The MAP_PRIVATE option will cause a copy on write mapping to be created. A change
to the mapping results in a change to a private copy of the affected portion of the file. These
changes cannot be seen by other processes. The MAP_SHARED option provides a memory
mapping of the file where changes (if allowed by the protection parameter) are made to the file.
Changes are shared with other processes when MAP_SHARED is specified.

The second control provided by the flags parameter in conjunction with the value of the addr
parameter influences the address range assigned to the mapping. You may request one of the
following address selection modes:

An exact address range specification. The system will set up the mapping at this location if
the address range is valid. Any mapping in the successfully mapping range that existed
prior to the mapping operation is implicitly unmapped by this operation.

1.

A suggested address range. The system will select a range close to the suggested range.2.

System selected. The system will select an address range. This usually is used to acquire
the initial memory map range. Subsequent ranges can be mapped relative to this range.

3.

The MAP_FIXED flag value specifies that the virtual address has been specified through the addr
parameter. The mmap() function will use the value of addr as the starting point of the memory
map.

When MAP_FIXED is set in the flags parameter, the system is informed that the return value must
be equal to the value of addr. An invalid value of addr when MAP_FIXED is specified will result
in a value of MAP_FAILED, which has a value of 0, for the returned value and the the value of
errno will be set to EINVAL.

When MAP_FIXED is not specified, a value of zero for parameter addr indicates that the system
may choose the value for the return value. If MAP_FIXED is not specified and a nonzero value is
specified for addr, the system will take this as a suggestion to find a contiguous address range close
to the specified address.

The following table shows the symbolic constants allowed for the flags parameter.

Symbolic
Constant

Decimal
Value Description

MAP_SHARED 4 Changes are shared.

MAP_PRIVATE 2 Changes are private.

MAP_FIXED 1 Parameter addr has exact address

fildes

(Input) An open file descriptor.

off

(Input) The offset into the file, in bytes, where the map should begin.

Authorities

No authority checking is performed by the mmap() function because this was done by the open() functions
which assigned the file descriptor, fildes, used by the mmap() function.

The following table shows the open access intent that is required for the various combinations of the
mapping sharing mode and mapping intent.

Mapping Sharing Mode Mapping Intent Open access intents allowed

MAP_SHARED PROT_READ O_RDONLY or O_RDWR

MAP_SHARED PROT_WRITE O_RDWR

MAP_SHARED PROT_NONE O_RDONLY or O_RDWR

MAP_PRIVATE PROT_READ O_RDONLY or O_RDWR

MAP_PRIVATE PROT_WRITE O_RDONLY or O_RDWR

MAP_PRIVATE PROT_NONE O_RDONLY or O_RDWR

Return Value

Upon successful completion, the mmap() function returns the address at which the mapping was placed;
otherwise, it returns a value of MAP_FAILED, which has a value of 0, and sets errno to indicate the error.
The symbol MAP_FAILED is defined in the header <sys/mman.h>.

If successful, function mmap() will never return a value of MAP_FAILED.

If mmap() fails for reasons other than EBADF, EINVAL, or ENOTSUP, some of the mappings in the
address range starting at addr and continuing for len bytes may have been unmapped and no new mappings
are created.

Error Conditions

When the mmap() function fails, it returns MAP_FAILED, which has a value of 0, and sets the errno as
follows.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

The file referenced by fildes is not open for read, or the file is not opened for write and
PROT_WRITE for a shared mapping is being requested. This error also results when the

QSHRMEMCTL system value is 0 and PROT_WRITE is specified.

[EBADFUNC]

Function parameter in the signal function is not set.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.

The fildes parameter does not refer to an open file descriptr.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

The value of the addr parameter is invalid. This can occur when MAP_FIXED is specified and the
value of the addr parameter is not a multiple of the system page size. This may also occur if the
value for parameter addr is not a valid VOID* pointer or is not within the range allowed.

This error number is also returned if the value of the flags parameter does not indicate either
MAP_SHARED or MAP_PRIVATE.

This error number is also returned if the specified file is journaled.

[ENODEV]

No such device.

The fildes parameter does not refer to a *TYPE2 stream file (*STMF) in the root, QOpenSys, or
user-defined file systems.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

This can occur if the portion of the local process address space reserved for memory mapping has
been exceeded.

When MAP_FIXED is specified, it may also occur if the address range specified by the
combination of the addr and len parameters results in a range outside the range reserved for process
local storage.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

An unsupported value, or combination of values, was specified on the protection parameter.

[ENXIO]

No such device or address.

The portion of the file, as specified by off and len is not valid for the current size of the file.

[EOVERFLOW]

Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The value of off plus len exceeds the maximum offset allowed for the file referenced by fildes.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

The msync() function must be used to write changed pages of a shared mapping to disk. If a system
crash occurs before the msync function is executed, some data may not be preserved.

1.

If the application chooses to mix file access methods such as read(), readv(), write(), or writev()
with mmap(), then the application must ensure proper synchronization. While operations such as
read() and write() are relatively atomic because of internal locking, access through the memory
map created by mmap() does not synchronize with the read(), readv(), write(), and writev()
functions. Several synchronization functions are available, including the fcntl() API, the
DosDetFileLocks() API, and the mutex functions. Use one of these synchronization methods
around access and modifications if atomic access is required. These techniques also will ensure
atomic access in a multiprocessor environment.

2.

When using mmap(), it is necessary to first make a nonspecific mapping request to generate a valid
address. This is easily done by specifying a requested address (addr) of 0 and not specifying
MAP_FIXED. Then, using the returned address pa as the new requested address (addr) and also
specifying MAP_FIXED for the flags parameter. The example below illustrates how this technique
can be applied to achieve a contiguous mapping of several files.

3.

The address pointer returned by mmap() can only be used with the V4R4M0 or later versions of
the following languages:

ILE COBOL❍

ILE RPG❍

4.

ILE C if the TERASPACE parameter is used when compiling the program.❍

Related Information

open()--Open File●

open64()--Open File (Large File Enabled)●

mmap64()--Memory Map a Stream File (Large File Enabled)●

munmap()--Remove Memory Mapping●

mprotect()--Change Access Protection for Memory Mapping●

msync()--Synchronize Modified Data with Mapped File●

Example

The following example creates two files and then produces a contiguous memory mapping of the first data
page of each file using two invocations of mmap().

See Code disclaimer information for information pertaining to code examples.

#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/mman.h>

main(void) {

 size_t bytesWritten = 0;
 int my_offset = 0;
 char text1Ý="Data for file 1.";
 char text2Ý="Data for file 2.";
 int fd1,fd2;
 int PageSize;
 void *address;
 void *address2;
 fd1 = open("/tmp/mmaptest1",
 (O_CREAT | O_TRUNC | O_RDWR),
 (S_IRWXU | S_IRWXG | S_IRWXO));
 if (fd1 < 0)
 perror("open() error");
 else {

 bytesWritten = write(fd1, text1, strlen(text1));
 if (bytesWritten != strlen(text1)) {
 perror("write() error");
 int closeRC = close(fd1);
 return -1;
 }

 fd2 = open("/tmp/mmaptest2",
 (O_CREAT | O_TRUNC | O_RDWR),
 (S_IRWXU | S_IRWXG | S_IRWXO));
 if (fd2 < 0)
 perror("open() error");
 else {
 bytesWritten = write(fd2, text2, strlen(text2));
 if (bytesWritten != strlen(text2))
 perror("write() error");

 PageSize = (int)sysconf(_SC_PAGESIZE);
 if (PageSize < 0) {
 perror("sysconf() error");
 }
 else {

 off_t lastoffset = lseek(fd1, PageSize-1, SEEK_SET);
 if (lastoffset < 0) {
 perror("lseek() error");
 }
 else {
 bytesWritten = write(fd1, " ", 1); /* grow file 1 to 1 page. */

 off_t lastoffset = lseek(fd2, PageSize-1, SEEK_SET);

 bytesWritten = write(fd2, " ", 1); /* grow file 2 to 1 page. */
 /*
 * We want to show how to memory map two files with
 * the same memory map. We are going to create a two page
 * memory map over file number 1, even though there is only
 * one page available. Then we will come back and remap
 * the 2nd page of the address range returned from step 1
 * over the first 4096 bytes of file 2.
 */

 int len;

 my_offset = 0;
 len = PageSize; /* Map one page */
 address = mmap(NULL,
 len,
 PROT_READ,
 MAP_SHARED,
 fd1,
 my_offset);
 if (address != MAP_FAILED) {
 address2 = mmap(((char*)address)+PageSize,
 len,
 PROT_READ,
 MAP_SHARED | MAP_FIXED, fd2,

 my_offset);
 if (address2 != MAP_FAILED) {
 /* print data from file 1 */
 printf("\n%s",address);
 /* print data from file 2 */
 printf("\n%s",address2);
 } /* address 2 was okay. */
 else {
 perror("mmap() error=");
 } /* mmap for file 2 failed. */
 }
 else {
 perror("munmap() error=");
 }
 /*
 * Unmap two pages.
 */
 if (munmap(address, 2*PageSize) < 0) {
 perror("munmap() error");
 }
 else;

 }
 }
 close(fd2);
 unlink("/tmp/mmaptest2");
 }
 close(fd1);
 unlink("/tmp/mmaptest1");
 }
 /*
 * Unmap two pages.
 */
 if (munmap(address, 2*PageSize) < 0) {
 perror("munmap() error");
 }
 else;
}

Output:

Data for file 1
Data for file 2

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

mmap64()--Memory map a Stream File (Large
File Enabled)

 Syntax

 #include <sys/mman.h>

 void *mmap64(void *addr,
 size_t len,
 int protection,
 int flags,
 int fildes,
 off64_t off);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The mmap64() function, similar to the mmap() function, is used to establish a memory mapping of a file.

For a discussion of the parameters, authorities required, return values, related information, and examples for
mmap(), see mmap()--Memory Map a File.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs normally are hidden.
To use the mmap64() API, you must compile the source with the _LARGE_FILE_API macro
defined.

1.

All of the usage notes for mmap() apply to mmap64().2.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

mprotect()--Change Access Protection for
Memory Mapping

 Syntax

 #include <sys/types.h>
 #include <sys/mman.h>

 int mprotect(void *addr,
 size_t len,
 int protection);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The mprotect() function is used to change the access protection of a memory mapping to that specified by
protection. All whole pages of the process's address space, that were established by the mmap() function,
addressed from addr continuing for a length of len will be affected by the change of access protection. You
may specify PROT_NONE, PROT_READ, PROT_WRITE, or the inclusive or of PROT_READ and
PROT_WRITE as values for the protect parameter.

Parameters

addr

(Input) The starting address of the memory region for which the access is to be changed.

The addr argument must be a multiple of the page size. The sysconf() function may be used to
determine the system page size.

len

(Input) The length in bytes of the address range.

protection

(Input) The desired access protection. You may specify PROT_NONE, PROT_READ,
PROT_WRITE, or the inclusive or of PROT_READ AND PROT_WRITE as values for the
protection argument.

No access through the memory mapping will be permitted if PROT_NONE is specified.

Storage associated with the mapping cannot be altered unless the PROT_WRITE value is specified.

For shared mappings, PROT_WRITE requires that the file descriptor used to establish the map had
been opened for write access. A shared mapping is a mapping created with the MAP_SHARED
value of the flag parameter of the mmap() function.

Since private mappings do not alter the underlying file, PROT_WRITE may be specified for a
mapping that had been created MAP_PRIVATE and had been opened for read access.

The following table shows the symbolic constants allowed for the protection argument.

Symbolic
Constant

Decimal
Value Description

PROT_WRITE 2 Write access allowed.

PROT_READ 2 Read access allowed.

PROT_NONE 8 No access allowed.

Authorities

No authorization is required.

Return Value

Upon successful completion, the mprotect() function returns 0. Upon failure, -1 is returned and errno is set
to the appropriate error number.

Error Conditions

When the mprotect() function fails, it returns -1 and sets there errno variable as follows.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

The protection argument specifies a protection that violates the access permission the process has
to the underlying mapped file.

If the QSHRMEMCTL system value was 0 at the time the mapping was created, then this continues
to limit the allowed access until the mapping is destroyed. An attempt to change the protection of a
shared mapping to PROT_WRITE when the QSHRMEMCTL system value had been zero at the
time of map creation will result in an errno of EACCES.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The addr argument is not a mulitple of the page size.

This error number also may indicate that the value of the len argument is 0.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

The addr argument is out of the allowed range.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

For mprotect() this can be caused by an invalid combination of access requests on the protection
parameter.

Error Messages

The following messages may be sent from this function.

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

The address pointer that was returned by mmap() can only be used with the V4R4M0 or later
versions of the following languages:

ILE COBOL❍

ILE RPG❍

ILE C if the TERASPACE parameter is used when compiling the program.❍

1.

Related Information

open()--Open File●

open64()--Open File (Large File Enabled)●

creat()--Create or Rewrite File●

creat64()--Create or Rewrite a File (Large File Enabled)●

mmap()--Memory Map a Stream File●

munmap()--Remove Memory Mapping●

msync()--Synchronize Modified Data with Mapped File●

Example

The following example creates a file, produces a memory mapping of the file using mmap(), and then
changes the protection of the file using mprotect().

#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/mman.h>

main(void) {

 size_t bytesWritten =0;
 int fd;
 int PageSize;
 char textÝ = "This is a test";

 if ((PageSize = sysconf(_SC_PAGE_SIZE)) < 0) {
 perror("sysconf() Error=");
 return -1;
 }

 fd = open("/tmp/mmprotectTest",
 (O_CREAT | O_TRUNC | O_RDWR),
 (S_IRWXU | S_IRWXG | S_IRWXO));
 if (fd < 0) {
 perror("open() error");
 return fd;
 }

 off_t lastoffset = lseek(fd, 0, SEEK_SET);
 bytesWritten = write(fd, text, strlen(text));
 if (bytesWritten != strlen(text)) {
 perror("write error. ");
 return -1;
 }

 lastoffset = lseek(fd, PageSize-1, SEEK_SET);
 bytesWritten = write(fd, " ", 1); /* grow file to 1 page. */
 if (bytesWritten != 1) {
 perror("write error. ");
 return -1;
 }
 /* mmap the file. */
 void *address;
 int len;
 off_t my_offset = 0;
 len = PageSize; /* Map one page */
 address =
 mmap(NULL, len, PROT_NONE, MAP_SHARED, fd, my_offset);

 if (address == MAP_FAILED) {
 perror("mmap error. ");
 return -1;
 }

 if (mprotect(address, len, PROT_WRITE) < 0) {
 perror("mprotect failed with error:");
 return -1;
 }
 else (void) printf("%s",address);

 close(fd);
 unlink("/tmp/mmprotectTest");
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

msync()--Synchronize Modified Data with
Mapped File

 Syntax

 #include <sys/types.h>
 #include <sys/mman.h>

 int msync(void *addr,
 size_t len,
 int flags);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The msync() function can be used to write modified data from a shared mapping (created using the
mmap() function) to non-volatile storage or invalidate privately mapped pages. The data located through
mapping address addr for a length of len are either written to disk, or invalidated, depending on the value of
flags and the private or shared nature of the mapping.

Parameters

addr

The starting address of the memory region to be synchronized to permanent storage. The specified
address must be a multiple of the page size.

len

The number of bytes affected. The length must not be zero. If the length is not a multiple of the
page size the system will round this value to the next page boundary.

flags

The desired synchronization.

The following table shows the symbolic constants allowed for the flags parameter.

Symbolic
Constant

Decimal
Value Description

MS_ASYNC 1 Perform asynchronous writes.

MS_SYNC 2 Perform synchronous writes.

MS_INVALIDATE 4 Invalidate privately cached data

The MS_SYNC and MS_ASYNC options are mutually exclusive. The MS_SYNC and
MS_ASYNC options are ignored if the memory map was created with the MAP_PRIVATE option.

The MS_INVALIDATE option is used to discard changes made to a memory map created with the
MAP_PRIVATE option. The private memory map is synchronized with the current data in the file.
Any reference subsequent to the execution of the msync() function that invalidates a page will
result in a reference to the current value of the file. The first modification of a page after the
privately mapped page is invalidated results in the creation of a fresh private copy of that page.
Subsequent modifications of this page prior to the next execution of an msync that invalidates the
page will result in modifications to the same private copy of the page.

The MS_INVALIDATE value is ignored if the memory map was created with the MAP_SHARED
option.

Authorities

No authorization is required.

Return Value

Upon successful completion, the msync() function returns 0.

Error Conditions

When the msync() function fails, it returns -1 and sets errno as follows.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The value of the flags parameter may be invalid.

The value of the len parameter may be zero.

The value of the addr may not be a multiple of the page size or is out of the allowed range.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

The msync() function must be used to write changed pages of a shared mapping to disk. If a system
crash occurs before the msync() function completes, some data may not be preserved.

Process termination does not automatically write changed pages to disk. Some or all pages may be
eventually written by the paging subsystem, but no guarantee is given. Therefore, if the data must
be preserved the msync() function must be used to ensure changes made through a shared memory
map are written to disk.

1.

The address pointer that was returned by mmap() can only be used with the V4R4M0 or later
versions of the following languages:

ILE COBOL❍

ILE RPG❍

ILE C if the TERASPACE parameter is used when compiling the program.❍

2.

Related Information

open()--Open File●

open64()--Open File (Large File Enabled)●

mmap()--Memory Map a Stream File●

munmap()--Remove Memory Mapping●

mprotect()--Change Access Protection for Memory Mapping●

Example

The following example creates a file, creates a memory map, stores data into the file, and writes the data to
disk using the msync() function.

#include <errno.h >
#include <fcntl.h >
#include <unistd.h >
#include <stdio.h >
#include <stdlib.h >
#include <string.h >
#include <sys/types.h >
#include <sys/mman.h >

main(void) {

 size_t bytesWritten =0;
 int fd;
 int PageSize;
 const char textÝ = "This is a test";

 if ((PageSize = sysconf(_SC_PAGE_SIZE)) < 0) {
 perror("sysconf() Error=");
 return -1;
 }

 fd = open("/tmp/mmsyncTest",
 (O_CREAT | O_TRUNC | O_RDWR),
 (S_IRWXU | S_IRWXG | S_IRWXO));
 if (fd < 0) {
 perror("open() error");
 return fd;
 }

 off_t lastoffset = lseek(fd, PageSize, SEEK_SET);
 bytesWritten = write(fd, " ", 1);
 if (bytesWritten != 1) {
 perror("write error. ");
 return -1;
 }

 /* mmap the file. */
 void *address;
 int len;
 off_t my_offset = 0;
 len = PageSize; /* Map one page */
 address =
 mmap(NULL, len, PROT_WRITE, MAP_SHARED, fd, my_offset);

 if (address == MAP_FAILED) {
 perror("mmap error. ");
 return -1;
 }
 /* Move some data into the file using memory map. */
 (void) strcpy((char*) address, text);
 /* use msync to write changes to disk. */
 if (msync(address, PageSize , MS_SYNC) < 0) {
 perror("msync failed with error:");
 return -1;
 }
 else (void) printf("%s","msync completed successfully.");

 close(fd);
 unlink("/tmp/msyncTest");
}

Output:

This is a test.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

munmap()--Remove Memory Mapping

 Syntax

 #include <sys/types.h>
 #include <sys/mman.h>

 int munmap (void *addr,
 size_t len);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The munmap() function removes addressability to a range of memory mapped pages of a process's address
space. All pages starting with addr and continuing for a length of len bytes are removed.

The address range specified must begin on a page boundary. Portions of the specified address range which
are not mapped, or were not established by the mmap() function, are not affected by the munmap()
function.

If the mapping was created MAP_PRIVATE then any private altered pages are discarded and the system
storage associated with the copies are returned to the system free space.

When the mapping is removed, the reference associated with the pages mapped over the file is removed. If
the file has no references other than those due to memory mapping and the remaining memory mappings
are removed by the munmap() function, then the file becomes unreferenced. If the file becomes
unreferenced due to an munmap() function call and the file is no longer linked, then the file will be
deleted.

Parameters

addr

The starting address of the memory region being removed.

The addr parameter must be a multiple of the page size. The value zero or NULL is not a valid
starting address. The sysconf() function may be used to determine the system page size.

len

(Input) The length of the address range. All whole pages beginning with addr for a length of len are
included in the address range.

Authorities

No authorization is required.

Return Value

Upon successful completion, the munmap() function returns 0. Upon failure, -1 is returned and errno is set
to the appropriate error number.

Error Conditions

When the munmap() function fails, it returns -1 and sets errno as follows.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

For munmap() this may mean that the address range from addr and continuing for a length of len
is outside the valid range allowed for a process. This error may also indicate that the value for the
addr parameter is not a multiple of the page size. A value of 0 for parameter len also will result in
this error number.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

The address pointer that was returned by mmap() can only be used with the V4R4M0 or later
versions of the following languages:

ILE COBOL❍

ILE RPG❍

1.

ILE C if the TERASPACE parameter is used when compiling the program.❍

Related Information

open()--Open File●

open64()--Open File (Large File Enabled)●

mmap()--Memory Map a Stream File●

mprotect()--Change Access Protection for Memory Mapping●

msync()--Synchronize Modified Data with Mapped File●

Example

The following example creates a file, produces a memory mapping of the file using mmap(), and then
removes the mapping using the munmap() function.

#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/mman.h>

main() {
 char fn[]="creat.file";
 char text[]="This is a test";
 int fd;
 int PageSize;

 if ((fd =
 open(fn, O_CREAT | O_RDWR | O_APPEND,S_IRWXU) < 0)
 perror("open() error");
 else if (write(fd, text, strlen(text)) < 0;
 error("write() error=");
 else if ((PageSize=sysconf(_SC_PAGESIZE)) < 0)
 error("sysconf() Error=");
 else {
 off_t lastoffset = lseek(fd, PageSize-1, SEEK_SET);
 write(fd, " ", 1); /* grow file to 1 page. */
 /* mmap the file. */
 void *address;
 int len;
 my_offset = 0;

 len = 4096; /* Map one page */
 address =
 mmap(NULL, len, PROT_READ, MAP_SHARED, fd, my_offset)
 if (address != MAP_FAILED) {

 if (munmap(address, len)) == -1) {
 error("munmap failed with error:");
 }
 }

 close(fd);
 unlink(fn);
 }
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

open()--Open File

 Syntax

 #include <fcntl.h>

 int open(const char *path, int oflag, . . .);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The open() function opens a file and returns a number called a file descriptor. You can use this file
descriptor to refer to the file in subsequent I/O operations such as read() or write(). In these subsequent
operations, the file descriptor is commonly identified by the argument fildes or descriptor. Each file opened
by a job gets a new file descriptor.

If the last element of the path is a symbolic link, the open() function resolves the contents of the symbolic
link.

open() positions the file offset (an indicator showing where the next read or write will take place in the file)
at the beginning of the file. However, there are options that can change the position.

open() clears the FD_CLOEXEC file descriptor flag for the new file descriptor. Refer to fcntl()--Perform
File Control Command for additional information about the FD_CLOEXEC flag.

The open() function also can be used to open a directory. The resulting file descriptor can be used in some
functions that have a fildes parameter.

If the file being opened has been saved and its storage freed, the file is restored during this open() function.
The storage extension exit program registered against the QIBM_QTA_STOR_EX400 exit point is called
to restore the object. (See the Storage Extension Exit Program for details). If the file cannot successfully be
restored, open() fails with the EOFFLINE error number.

Parameters

path

(Input) A pointer to the null-terminated path name of the file to be opened.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented
in the default CCSID of the job.

When a new file is created, the new file name is assumed to be represented in the language and
country or region currently in effect for the job.

See QlgOpen()--Open a File (using NLS-enabled path name) for a description and an example of

supplying the path in any CCSID.

oflag

(Input) The file status flags and file access modes of the file to be opened. See Using the oflag
Parameter.

Note: The open64() API sets the O_LARGEFILE flag internally.

mode

(Input) An optional third parameter of type mode_t that is required if the O_CREAT flag is set. It
specifies the file permission bits to be used when a file is created. For a description of the
permission bits, see chmod()--Change File Authorizations.

conversion ID

(Input) An optional fourth parameter of type unsigned int that is required if the O_CCSID or
O_CODEPAGE flag is set.

If the O_CCSID flag is set, this parameter specifies a CCSID. If the O_CODEPAGE flag is set, this
parameter specifies a code page used to derive a CCSID.

The specified or derived CCSID is assumed to be the CCSID of the data in the file, when a new
file is created. This CCSID is associated with the file during file creation.

When the O_TEXT_CREAT flag and its prerequisite flags are not set, the specified or derived
CCSID is the CCSID in which data is to be returned (when reading from a file), or the CCSID in
which data is being supplied (when writing to a file).

See Using CCSIDs and code pages for more details.

text file creation conversion ID

(Input) An optional fifth parameter of type unsigned int that is required if the O_TEXT_CREAT
flag, along with prerequisite flags O_TEXTDATA, O_CREAT, and either O_CCSID or
O_CODEPAGE, is set. Note: because O_EXCL is not required, this parameter may apply to files
that already exist.

When O_CCSID flag is set, this parameter specifies a CCSID. If the O_CODEPAGE flag is set,
this parameter specifies a code page used to derive a CCSID.

The specified or derived CCSID will be used as the CCSID of this open instance. Therefore, this
will be the CCSID in which data is to be returned (when reading from a file), or the CCSID in
which data is being supplied (when writing to a file). Data will be stored in the CCSID associated
with the open file. Note: if the file was not created by this open operation, the file's CCSID may be
different than the CCSID associated with the conversion ID parameter.

See Using CCSIDs and code pages for more details.

Using the oflag Parameter

One of the following values must be specified in oflag:

O_RDONLY

Open for reading only.

O_WRONLY

Open for writing only.

O_RDWR

Open for both reading and writing.

One or more of the following also can be specified in oflag:

O_APPEND

Position the file offset at the end of the file before each write operation.

O_CREAT

The call to open() has a mode argument.

If the file being opened already exists, O_CREAT has no effect, except when O_EXCL is also
specified (see the following description of O_EXCL.

If the file being opened does not exist, it is created. The user ID (uid) of the file is set to the
effective uid of the job. If the object is being created in the Root ('/'), QOpensys, and user-defined
file systems, the following applies. If the S_ISGID bit of the parent directory is off, the group ID
(GID) is set to the effective GID of the thread creating the object. If the S_ISGID bit of the parent
directory is on, the group ID (GID) of the new object is set to the GID of the parent directory. For
all other file systems, the group ID (GID) of the file is set to the GID of the directory in which the
file is created. File permission bits are set according to mode, except for those set in the file mode
creation mask of the job. The S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits are also set
according to mode. The file type bits in mode are ignored. All other bits in mode must be cleared
(not set) or a [EINVAL] error is returned.

O_EXCL

Ignored if O_CREAT is not set. If both O_EXCL and O_CREAT are specified, open() fails if the
file already exists. If both O_EXCL and O_CREAT are specified, and path names a symbolic link,
open() fails regardless of the contents of the symbolic link.

O_LARGEFILE

Open a large file. The descriptor returned can be used with the other APIs to operate on files larger
than 2GB (GB = 1073741824) minus 1 byte. The file systems that do not support large files will
just ignore the O_LARGEFILE open flag if it is set. The O_LARGEFILE flag is ignored by the file
systems when open() is used to open a directory.

O_TRUNC

Truncate the file to zero length if the file exists and it is a "regular file" (a stream file that can
support positioning the file offset). The mode and owner of the file are not changed. O_TRUNC
applies only to regular files. O_TRUNC has no effect on FIFO special files. The O_TRUNC
behavior applies only when the file is successfully opened with O_RDWR or O_WRONLY.

Truncation of the file will return the [EOVERFLOW] error if the file is larger than 2 GB minus 1
byte and if the O_LARGEFILE oflag is not also specified on the open() call. (Note that open64()
sets the O_LARGEFILE oflag automatically.)

If the file exists and it is a regular file, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits
of the file mode are cleared.

If the file has an OS/400 digital signature, open() with the O_TRUNC oflag causes the signature to
be deleted.

O_TEXTDATA

Determines how the data is processed when a file is opened.

If O_TEXTDATA is specified, the data is processed as text.

The data is read from the file and written to the file assuming it is in textual form. When
the data is read from the file, it is converted from the CCSID of the file to the CCSID of the
job or the CCSID specified by the application receiving the data. When data is written to
the file, it is converted to the CCSID of the file from the CCSID of the job or the CCSID
specified by the application.

For true stream files, any line-formatting characters (such as carriage return, tab, and
end-of-file) are just converted from one CCSID to another.

When reading from a record file that is being used as a stream file, end-of-line characters
are added to the end of the data in each record. When writing to the record file:

End-of-line characters are removed.■

Records are padded with blanks (for a source physical file member) or nulls (for a
data physical file member).

■

Tab characters are replaced by the appropriate number of blanks to the next tab
position.

■

❍

If O_TEXTDATA is not specified, the data is processed as binary. The data is read from
the file and written to the file without any conversion. The application is responsible for
handling the data.

❍

See Using CCSIDs and code pages for more details on text conversions.

O_CCSID

The call to open has a fourth argument (conversion ID), which is to be interpreted as a CCSID.
Text conversions between any two CCSIDs supported by the iconv() API can be performed.

This flag cannot be specified with the O_CODEPAGE flag.

See Using CCSIDs and code pages for more details.

O_CODEPAGE

The call to open has a fourth argument (conversion ID), which is to be interpreted as a code page.
Only single-byte-to-single-byte or double-byte-to-double-byte text conversions are allowed.

This flag cannot be specified with the O_CCSID flag.

See Using CCSIDs and code pages for more details.

O_TEXT_CREAT

The call to open has a fifth argument (text file creation conversion ID), which is to be interpreted as
either a code page or CCSID, depending on whether the O_CODEPAGE or O_CCSID was set.

If the O_TEXT_CREAT flag is specified, all of the following flags must also be specified:
O_CREAT, O_TEXTDATA, and either O_CODEPAGE or O_CCSID. If all of these prerequisite
flags are not specified when O_TEXT_CREAT is specified, then the call to open will fail with
error condition [EINVAL].

This flag indicates that the textual data read from or written to this file will be converted between
the CCSID specified or derived from the text file creation conversion ID and the CCSID of the file.
When data is read from the file, it is converted from the CCSID of the file to the CCSID specified
or derived from the text file creation conversion ID. When data is written to the file, it is converted
to the CCSID of the file from the CCSID specified or derived from the text file creation conversion
ID.

See Using CCSIDs and code pages for more details.

O_INHERITMODE

Create the file with the same data authorities as the parent directory that the file is created in. Any
data authorities passed in the mode parameter are ignored. The mode parameter, however, must still
be specified with a valid mode value. This flag is ignored if the O_CREAT flag is not set.

The "root" (/), QOpenSys, QSYS.LIB, independent ASP QSYS.LIB, and QDLS file systems
support this flag on an open() with the O_CREAT flag set. The QOPT file system ignores this flag
because files in this file system do not have data authorities.

O_NONBLOCK

Return without delay from certain operations on this open descriptor.

If O_NONBLOCK is specified when opening a FIFO:

An open() for reading only or reading and writing access returns without delay.❍

An open() for writing only returns an error if no job currently has the FIFO open for
reading. The errno value will be ENXIO.

❍

If O_NONBLOCK is not specified when opening a FIFO:

An open() for reading only blocks the calling thread until another thread opens the FIFO
for writing.

❍

An open() for writing only blocks the calling thread until another thread opens the FIFO
for reading.

❍

An open() for reading and writing returns without delay.❍

The O_NONBLOCK open flag is ignored for all other object types.

O_SYNC

Updates to the file will be performed synchronously. All file data and file attributes relative to the
I/O operation are written to permanent storage before the update operation returns. Update
operations include, but are not limited to, the following: ftruncate(), open() with O_TRUNC, and
write().

O_DSYNC

Updates to the file will be performed synchronously, but only the file data is written to permanent
storage before the update operation returns. Update operations include, but are not limited to, the
following: ftruncate(), open() with O_TRUNC, and write().

O_RSYNC

Read operations to the file will be performed synchronously. Pending update requests affecting the
data to be read are written to permanent storage. This flag is used in combination with O_SYNC or
O_DSYNC. When O_RSYNC and O_SYNC are set, all file data and file attributes are written to
permanent storage before the read operation returns. When O_RSYNC and O_DSYNC are set, all
file data is written to permanent storage before the read operation returns.

A file sharing mode may also be specified in the oflag. If none are specified, a default sharing mode of
O_SHARE_RDWR is used. No more than one of the following may be specified:

O_SHARE_RDONLY

Share with readers only. Open the file only if both of the following are true:

The file currently is not open for writing.❍

The access intent does not conflict with the sharing mode of another open instance of this
file.

❍

Once opened with this sharing mode, any request to open this file for writing fails with the
[EBUSY] error.

O_SHARE_WRONLY

Share with writers only. Open the file only if both of the following are true:

The file is not currently open for reading.❍

The access intent does not conflict with the sharing mode of another open instance of this
file.

❍

Once opened with this sharing mode, any request to open this file for reading fails with the
[EBUSY] error.

O_SHARE_RDWR

Share with readers and writers. Open the file only if the access intent of this open does not conflict
with the sharing mode of another open instance of this file.

O_SHARE_NONE

Share with neither readers nor writers. Open the file only if the file is not currently open. Once the
file is opened with this sharing mode, any request to open this file for reading or writing fails with
the [EBUSY] error.

All other bits in oflag must be cleared (not set).

Notes:

If O_WRONLY or O_RDWR is specified and the file is checked out by a user profile other than
that of the current job, the open() fails with the [EBUSY] error.

1.

If O_WRONLY or O_RDWR is specified and the file is marked "read-only," the open() fails with
the [EROOBJ] error.

2.

If O_CREAT is specified and the file did not previously exist, a successful open() sets the access
time, change time, modification time, and creation time for the new file. It also updates the change
time and modification time of the directory that contains the new file (the parent directory of the
new file).

If O_TRUNC is specified and the file previously existed, a successful open() updates the change
time and modification time for the file.

3.

Sharing Files

If a sharing mode is not specified in the oflag parameter, a default sharing mode of
O_SHARE_RDWR is used. The open() may fail with the [EBUSY] error number if the file is

4.

already open with a sharing mode that conflicts with the access intent of this open() request.

Directories may only be opened with a sharing mode of O_SHARE_RDWR. If any other sharing
mode is specified, the open() fails with error number [EINVAL].

For *CHRSF files, a sharing mode of O_SHARE_RDWR is used regardless of the sharing mode
specified in the oflag parameter. The sharing mode specified in the oflag parameter is ignored.

The following table shows when conflicts will occur:

File Sharing Conflicts

Access Intent

Sharing Mode

Readers Only Writers Only
Readers
and Writers

No Others
(Exclusive)

O_RDONLY OK EBUSY OK EBUSY

O_WRONLY EBUSY OK OK EBUSY

O_RDWR EBUSY EBUSY OK EBUSY

Using CCSIDs and code pages

If the O_CCSID or O_CODEPAGE flag is specified, but O_CREAT is not, the mode parameter must be
specified, but its value will be ignored.

The value of conversion ID must be less than 65536. The [EINVAL] error will be returned if it is not.

When a new file is created:

conversion ID is used to derive a CCSID to be associated with the new file (the "file CCSID") and
this open instance (the "open CCSID"). If the file is to contain textual data, this CCSID is assumed
to be the CCSID of the data, unless the O_TEXT_CREAT flag and its prerequisite flags were
also specified.

●

If neither O_CCSID nor O_CODEPAGE is specified, or if O_CCSID is specified and conversion
ID is zero (0), the file CCSID is set to the CCSID of the job. If the job CCSID is 65535, the file
CCSID is set to the default CCSID of the job.

●

For this open instance, if the O_TEXT_CREAT flag and its prerequisite flags were not specified,
the file CCSID and open CCSID are the same and no text conversion will take place on data written
to or read from the file, whether O_TEXTDATA is specified or not. If you would like to associate
the new file with the CCSID specified in conversion ID, but you would also like to have text
conversion occur between the file's CCSID and a different CCSID, consider using the
O_TEXT_CREAT flag and corresponding text file creation conversion ID parameter.

●

The QSYS.LIB and independent ASP QSYS.LIB file systems cannot associate the derived
CCSID with the database file member being created. Rather, the CCSID of the new member is the
CCSID of the database file in which the member is being created. Data read or written during this
open instance is converted from or to the CCSID of the database file.

●

When an existing file is opened:

conversion ID is used to derive a CCSID to be associated with this open instance (the "open
CCSID").

●

If neither O_CCSID nor O_CODEPAGE is specified, or if O_CCSID is specified and conversion
ID is zero (0), the open CCSID is set to the CCSID of the job. If the job CCSID is 65535, the open
CCSID is set to the default CCSID of the job.

●

If O_TEXTDATA is specified, the system will convert from the file CCSID to the open CCSID
when reading data from the file, and convert from the open CCSID to the file CCSID when writing
data to the file.

●

If O_TEXTDATA is specified, but O_CCSID is not:

open() fails when the file CCSID and open CCSID are not the same and one of them is not
strictly single-byte or double-byte.

❍

open() fails when the file CCSID is double-byte and the open CCSID is single-byte, or the
reverse.

❍

In either case, the [ECONVERT] error is returned.❍

●

See Examples for a sample program that creates a new file and then opens it for data conversion.

Authorities

Note: Adopted authority is not used.

Authorization Required for open() (excluding QSYS.LIB, independent ASP QSYS.LIB,and QDLS)

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be opened *X EACCES

Existing object when access mode is O_RDONLY *R EACCES

Existing object when access mode is O_WRONLY *W EACCES

Existing object when access mode is O_RDWR *RW EACCES

Existing object when O_TRUNC is specified *W EACCES

Parent directory of object to be created when object does not exist and O_CREAT
is specified

*WX EACCES

Authorization Required for open() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be opened *X EACCES

Existing object when access mode is O_RDONLY *R EACCES

Existing object when access mode is O_WRONLY *W EACCES

Existing object when access mode is O_RDWR *RW EACCES

Existing object when O_TRUNC is specified *W EACCES

Parent directory of object to be created when object does not exist and
O_CREAT is specified

*OBJMGT or
*OBJALTER

EACCES

Parent directory of the parent directory of object to be created when object does
not exist and O_CREAT is specified

*ADD EACCES

Authorization Required for open() in the QDLS File System

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object to be opened *X EACCES

Existing object when access mode is O_RDONLY *R EACCES

Existing object when access mode is O_WRONLY *W EACCES

Existing object when access mode is O_RDWR *RW EACCES

Existing object when O_TRUNC is specified *W EACCES

Parent directory of object to be created when object does not exist and O_CREAT
is specified

*CHANGE EACCES

Return Value

value open() was successful. The value returned is the file descriptor.

-1 open() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If open() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

The open sharing mode may conflict with another open of this file, or O_WRONLY or O_RDWR
is specified and the file is checked out by another user.

In the QSYS.LIB and independent ASP QSYS.LIB file systems, if the O_TEXTDATA flag
was specified, the file may be already open in this job or another job where the O_TEXTDATA
flag was not specified. Or if the O_TEXTDATA flag was not specified, the file may be already
open in this job or another job where the O_TEXTDATA flag was specified.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

O_RDONLY and O_TRUNC were both specified.❍

More than one of O_RDONLY, O_WRONLY, or O_RDWR are set in oflag.❍

More than one of O_SHARE_RDONLY, O_SHARE_WRONLY, O_SHARE_RDWR, or
O_SHARE_NONE are set in oflag.

❍

Unused bits in oflag are set and should be cleared.❍

Unused bits in mode are set and should be cleared.❍

It is not valid to open this type of object.❍

O_CODEPAGE and O_CCSID were both specified.❍

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory. Write access or O_TRUNC has been specified and is not valid
for a directory.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENFILE]

Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or
any arguments.

The path name given refers to an object that does not support this function.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[ENXIO]

No such device or address.

O_NONBLOCK and O_WRONLY open flags are specified, path refers to a FIFO, and no job has
the FIFO open for reading.

[EOFFLINE]

Operation is suspended.

You have atempted to use an object that has had its data saved and the storage associated with it
freed. An attempt to retrieve the object's data failed. The object's data cannot be used until it is
restored successfully. The object's data was saved and freed either by saving the object with the
STG(*FREE) parameter or by calling an API.

[EOVERFLOW]

Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The size of the specified file cannot be represented correctly in a variable of type off_t (the file is
larger than 2GB minus 1 byte).

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETXTBSY]

Text file busy.

An attempt was made to execute an OS/400 PASE program that is currently open for writing, or an
attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

❍

1.

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

Root, QOpenSys, and User-Defined File System Differences

The user who creates the file becomes its owner. The S_ISGID bit of the directory affects what
the group ID (GID) is for objects that are created in the directory. If the S_ISGID bit of the parent
directory is off, the group ID (GID) is set to the effective GID of the thread creating the object. If
the S_ISGID bit of the parent directory is on, the group ID is copied from the parent directory in
which the file is created.

When you do not specify O_INHERITMODE for the oflag parameter, the owner, primary group,
and public object authorities (*OBJEXIST, *OBJMGT, *OBJALTER, and *OBJREF) are copied
from the parent directory's owner, primary group, and public object authorities. This occurs even
when the new file has a different owner than the parent directory. The owner, primary group, and
public data authorities (*R, *W, and *X) are derived from the permissions specified in the mode
(except for those permissions that are also set in the file mode creation mask). The new file does
not have any private authorities or authorization list. It only has authorities for the owner, primary
group, and public.

When you specify O_INHERITMODE for the oflag parameter, the owner, primary group, and
public data and object authorities (*R, *W, *X, *OBJEXIST, *OBJMGT, *OBJALTER, and
*OBJREF) are copied from the parent directory's owner, primary group, and public data and object
authorities. In addition, the private authorities (if any) and authorization list (if any) are copied
from the parent directory. If the new file has a different owner than the parent directory and the
new file's owner has a private authority in the parent directory, that private authority is not copied
from the parent directory. The authority for the owner of the new file is copied from the owner of
the parent directory.

There are some restrictions when opening a FIFO for text conversion and the CCSIDs involved are
not strictly single-byte:

Opening a FIFO for reading or reading and writing is not allowed. The errno global
variable is set to [ENOTSUP].

❍

Any conversion between CCSIDs that are not strictly single-byte must be done by an open
instance that has write only access.

❍

2.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The following object types are allowed to be opened:

*MBR (physical file member)
The only types of physical files supported when specifying the O_TEXTDATA flag are
program-described physical files that contain a single field and source physical files that
contain a single text field. Externally described physical files are supported for binary
access only.

❍

*LIB (library)❍

*FILE (physical file or save file)❍

3.

*USRSPC (user space)❍

When a new member is created, the mode and profiles must match those of the parent file. If they
do not match, the create operation will fail.

The user who creates a member becomes the owner of the member. However, this owner must be
the same as the owner of the parent directory in which the member is being created.

The group ID is obtained from the primary user profile, if one exists. This group ID must be the
same as the group ID of the file in which the member is being created.

The primary group authorities specified in mode are not saved if no primary group exists.

You cannot open a member in a file that has a mixed data CCSID.

The file access time for a database member is updated using the normal rules that apply to database
files. At most, the access time is updated once per day.

Due to the restriction that only one job may have a database member open for writing at a time, the
sharing modes O_SHARE_WRONLY and O_SHARE_RDWR do not provide the requested level
of sharing.

If O_SHARE_WRONLY is specified, the open() succeeds. However, in all jobs other than
the one that performed this open(), the actual enforced share mode for this file is equivalent
to O_SHARE_NONE.

❍

If O_SHARE_RDWR is specified, or if no share mode is specified, the open() succeeds.
However, in all jobs other than the one that performed this open(), the actual enforced
share mode is equivalent to O_SHARE_RDONLY.

❍

The open() of a database member fails with an [EBUSY] error under any of the following
conditions:

The O_TEXTDATA flag is specified, but the file is already open in this job or another job
where the O_TEXTDATA flag is not specified.

❍

The O_TEXTDATA flag is not specified, but the file is already open in this job or another
job where the O_TEXTDATA flag and write access are specified.

❍

The O_TEXTDATA flag is specified and write access is requested, but the file is already
open in this job or another job where O_TEXTDATA is specified and write access is also
requested.

❍

The O_CREAT flag is specified, the member already exists, and the QSYS.LIB or
independent ASP QSYS.LIB file system cannot get exclusive access to the member. They
must have exclusive access to clear the old member.

❍

The O_TEXTDATA flag is not specified (binary mode) and more than one job tries to
obtain write access to the member. This condition does not apply to PC clients. Because PC
clients share the same server job, they can share access to the member.

❍

The user attempts to open a member with access intentions that conflict with existing
object locks on the member.

❍

This function will fail with error code [ENOTSAFE] if the object on which this function is
operating is a save file and multiple threads exist in the job.

This function will fail with error code [ENOTSUP] if the file specified is a save file and the
O_RDWR flag is specified. A save file can be opened for either reading only or writing only.

This function will fail with error code [ENOTSUP] if the file specified is a save file and the
O_TEXTDATA flag is specified.

If a save file containing data is opened for writing, the O_APPEND or O_TRUNC flag must be
specified. Otherwise, the open() will fail with errno set to [ENOTSUP].

There are some restrictions on sharing modes when opening a save file.

A save file may not have more than one open descriptor per job, regardless of the sharing
mode specified.

A save file currently open for reading only cannot be opened again in the same job
for reading or writing. The open() will fail with errno set to [EBUSY].

■

A save file currently open for writing only cannot be opened again in the same job
for reading or writing. The open() will fail with errno set to [EBUSY].

■

a.

Due to the restriction that only one job may have a save file open when the save file is open
for writing, the sharing modes O_SHARE_WRONLY and O_SHARE_RDWR do not
provide the reqested level of sharing.

If O_SHARE_WRONLY is specified, the open() succeeds. However, in all jobs
other than the one that performed this open(), the actual enforced share mode for
this file is equivalent to O_SHARE_NONE.

■

If O_SHARE_RDWR is specified and the file is opened for reading only, the
open() succeeds. However, in all jobs other than the one that performed this
open(), the actual enforced share mode is equivalent to O_SHARE_RDONLY.

■

If O_SHARE_RDWR is specified and the file is opened for writing only, the
open() succeeds. However, in all jobs other than the one that performed this
open(), the actual enforced share mode is equivalent to O_SHARE_NONE.

■

b.

Note: Unpredictable results, including loss of data, could occur if, in the same job, a user tries to
open the same file for writing at the same time by using both open() API for stream file access and
a data management open API for record access.

QDLS File System Differences

When O_CREAT is specified and a new file is created:

the owner's object authority is set to *OBJMGT + *OBJEXIST + *OBJALTER +
*OBJREF.

❍

The primary group and public object authority and all other authorities are copied from the
directory (folder) in which the file is created.

❍

The owner, primary group, and public data authority (including *OBJOPR) are derived
from the permissions specified in mode (except those permissions that are also set in the
file mode creation mask).

❍

4.

The primary group authorities specified in mode are not saved if no primary group exists.

QDLS does not store the language ID and country or region ID with its files. When this information
is requested (using the readdir() function), QDLS returns the language ID and country or region ID
of the system.

QOPT File System Differences

When the volume on which the file is being opened is formatted in Universal Disk Format (UDF):

The authorization that is checked for the object and preceding directories in the path name
follows the rules described in Authorization Required for open().

❍

The volume authorization list is checked for *USE when the access mode is O_RDONLY.
The volume authorization list is checked for *CHANGE when the access mode is
O_RDWR or O_WRONLY.

❍

The user who creates the file becomes its owner.❍

The group ID is copied from the parent directory in which the file is created.❍

The owner, primary group, and public data authorities (*R, *W, and *X) are derived from
the permissions specified in the mode (except those permissions that are also set in the file
mode creation mask).

❍

When O_INHERITMODE is specified for the oflag parameter, the data authorities are
copied from the parent directory.

❍

The sharing modes O_SHARE_RDONLY, O_SHARE_WRONLY, and
O_SHARE_RDWR do not provide the requested level of sharing when the access mode is
O_RDWR or O_WRONLY. When the access mode is O_RDWR or O_WRONLY, the
resulting sharing mode semantic will be equivalent to O_SHARE_NONE.

❍

For newly created files, the same uppercase and lowercase forms in which the names are
entered are preserved. No distinction is made between uppercase and lowercase when
searching for names.

❍

This function will fail with error code [EINVAL] if the O_SYNC, O_DSYNC, or
O_RSYNC open flag is specified.

❍

When the volume on which the file is being opened is not formatted in Universal Disk Format
(UDF):

No authorization checks are made on the object or preceding directories in the path name.❍

The volume authorization list is checked for *USE when the access mode is O_RDONLY.
The volume authorization list is checked for *CHANGE when the access mode is
O_RDWR or O_WRONLY.

❍

QDFTOWN becomes the owner of the file.❍

No group ID is assigned to the file.❍

5.

The permissions specified in the mode are ignored. The owner, primary group, and public
data authorities are set to RWX.

❍

For newly created files, names are created in uppercase. No distinction is made between
uppercase and lowercase when searching for names.

❍

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. The creation of a file may fail if permissions and other attributes that are
stored locally by the Network File System are more restrictive than those at the server. A later
attempt to create a file can succeed when the locally stored data has been refreshed. (Several
options on the Add Mounted File System (ADDMFS) command determine the time between
refresh operations of local data.) The creation can also succeed after the file system has been
remounted.

If you try to re-create a file that was recently deleted, the request may fail because data that was
stored locally by the Network File System still has a record of the file's existence. The creation
succeeds when the locally stored data has been updated.

Once a file is open, subsequent requests to perform operations on the file can fail because file
attributes are checked at the server on each request. If permissions on the file are made more
restrictive at the server or the file is unlinked or made unavailable by the server for another client,
your operation on an open file descriptor will fail when the local Network File System receives
these updates. The local Network File System also impacts operations that retrieve file attributes.
Recent changes at the server may not be available at your client yet, and old values may be returned
from operations.

The sharing modes O_SHARE_RDONLY, O_SHARE_WRONLY, and O_SHARE_NONE do not
provide the requested level of sharing. If any one of these share modes is specified, the resulting
share mode semantic will be equivalent to O_SHARE_RDWR.

6.

QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See Netware on iSeries in the iSeries
Information Center for more information.

7.

This function will fail with the [EOVERFLOW] error if the specified file exists and its size is too
large to be represented in a variable of type off_t (the file is larger than 2 GB minus 1 byte).

8.

When you develop in C-based languages and an application is compiled with the _LARGE_FILES
macro defined, the open() API will be mapped to a call to the open64() API.

9.

Using this function on the /dev/null or /dev/zero character special file, the oflag values of
O_CREAT and O_TRUNC have no effect.

10.

The O_SYNC, O_DSYNC, and O_RSYNC open flags will not cause updates made to the file by
mapped access to be written to permanent storage.

11.

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

close()--Close File or Socket Descriptor●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

fcntl()--Perform File Control Command●

lseek()--Set File Read/Write Offset●

open64()--Open File (Large File Enabled)●

QlgOpen()--Open a File (using NLS-enabled path name)●

read()--Read from Descriptor●

stat()--Get File Information●

umask()--Set Authorization Mask for Job●

write()--Write to Descriptor●

Examples

See Code disclaimer information for information pertaining to code examples.

The following example opens an output file for appending. Because no sharing mode is specified, the
O_SHARE_RDWR sharing mode is used.

int fildes;
fildes = open("outfile",O_WRONLY | O_APPEND);

The following example creates a new file with read, write, and execute permissions for the user creating the
file. If the file already exists, the open() fails. If the open() succeeds, the file is opened for sharing with
readers only.

fildes = open("newfile",O_WRONLY|O_CREAT|O_EXCL|O_SHARE_RDONLY,S_IRWXU);

This example first creates an output file for with a specified CCSID. The file is then closed and opened
again with data conversion. The open() function is called twice because no data conversion would have
occurred when using the first open's descriptor on read or write operations, even if O_TEXTDATA had
been specified on that open; however, the second open could be eliminated entirely by using

O_TEXT_CREAT on the first open. This is demonstrated in the code example immediately following this
example. In this example, EBCDIC data is written to the file and converted to ASCII.

#include <fcntl.h>
#include <sys/stat.h>
#include <errno.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 int fd;
 int rc;
 char name[]="/test.dat";
 char data[]="abcdefghijk";
 int oflag1 = O_CREAT | O_RDWR | O_CCSID;
 int oflag2 = O_RDWR | O_TEXTDATA | O_CCSID;
 mode_t mode = S_IRUSR | S_IWUSR | S_IXUSR;
 unsigned int file_ccsid = 819;
 unsigned int open_ccsid = 37;

 /***/
 /* First create the file with the CCSID 819. */
 /***/

 if ((fd=open(name,oflag1,mode,file_ccsid)) < 0)
 {
 perror("open() for create failed");
 return(0);
 }

 if (close(fd) < 0)
 {
 perror("close() failed.");
 return(0);
 }

 /***/
 /* Now open the file so EBCDIC (CCSID 37) data */
 /* written will be converted to ASCII (CCSID 819).*/
 /***/

 if ((fd=open(name,oflag2,mode,open_ccsid)) < 0)
 {
 perror("open() with translation failed");
 return(0);
 }

 /***/
 /* Write some EBCDIC data. */
 /***/

 if (-1 == (rc=write(fd, data, strlen(data))))
 {
 perror("write failed");
 return(0);
 }

 if (0 != (rc=close(fd)))
 {
 perror("close failed");
 return(0);
 }
}

In this second example, EBCDIC data is written to the file and converted to ASCII. This will produce the
same results as the first example, except that it did it by only using one open instead of two.

#include <fcntl.h>
#include <sys/stat.h>
#include <errno.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 int fd;
 int rc;
 char name[]="/test.dat";
 char data[]="abcdefghijk";
 int oflag1 = O_CREAT | O_RDWR | O_CCSID | O_TEXTDATA | O_TEXT_CREAT |
O_EXCL;
 mode_t mode = S_IRUSR | S_IWUSR | S_IXUSR;
 unsigned int file_ccsid = 819;
 unsigned int open_ccsid = 37;

 /***/
 /* First create the file with the CCSID 819, and */
 /* open it such that the data is converted */
 /* between the the open CCSID of 37 and the */
 /* file's CCSID of 819 when writing data to it. */
 /***/

 if ((fd=open(name,oflag1,mode,file_ccsid,open_ccsid)) < 0)
 {
 perror("open() for create failed");
 return(0);
 }

 /***/
 /* Write some EBCDIC data. */
 /***/

 if (-1 == (rc=write(fd, data, strlen(data))))
 {
 perror("write failed");
 return(0);
 }

 /***/
 /* Close the file. */
 /***/
 if (0 != (rc=close(fd)))
 {

 perror("close failed");
 return(0);
 }
}

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

open64()--Open File (Large File Enabled)

 Syntax

 #include <fcntl.h>

 int open64(const char *path, int oflag, . . .);

 Threadsafe: Conditional; see Usage Notes.

The open64() function, similar to the open() function, opens a file and returns a number called a file
descriptor. open64() differs from open() in that it automatically opens the file with the O_LARGEFILE
flag set. For a further description of the open flags, see Using the oflag Parameter in the open() API.

For a discussion of the parameters, authorities required, return values, related information, and examples for
the open() and open64() APIs, see open()--Open File.

See QlgOpen64()--Open File (Large File Enabled) for a description and an example of supplying the path
in any CCSID.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the open64() API, you must compile the source with the _LARGE_FILE_API macro
defined.

1.

All of the usage notes for open() apply to open64() and QlgOpen64(). See Usage Notes in the
open() API.

2.

Top | UNIX-Type APIs | APIs by category

opendir()--Open Directory

 Syntax

 #include <sys/types.h>
 #include <dirent.h>

 DIR *opendir(const char *dirname);

 Threadsafe: Conditional; see Usage Notes.

The opendir() function opens a directory so that it can be read with the readdir() function. The variable
dirname is a string giving the name of the directory to open. If the last component of dirname is a symbolic
link, opendir() follows the symbolic link. As a result, the directory that the symbolic link refers to is
opened. The functions readdir(), rewinddir(), and closedir() can be called after a successful call to
opendir(). The first readdir() call reads the first entry in the directory.

Names returned on calls to readdir() are returned in the CCSID (coded character set identifier) in effect for
the current job at the time this opendir() function is called. If the CCSID of the job is 65535, the default
CCSID of the job is used. See QlgOpendir()--Open Directory for specifying a different CCSID.

Parameters

dirname

(Input) A pointer to the null-terminated path name of the directory to be opened.

This parameter is assumed to be represented in the CCSID currently in effect for the job. If the
CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of the
job.

See QlgOpendir()--Open Directory for a description and an example of supplying the dirname in
any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization required for opendir()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the directory to be
opened

*X EACCES

The directory to be opened *R EACCES

Return Value

value

opendir() was successful. The value returned is a pointer to a DIR, representing an open directory
stream. This DIR describes the directory and is used in subsequent operations on the directory
using the readdir(), rewinddir(), and closedir() functions.

NULL pointer

opendir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If opendir() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EEXIST]

File exists.

The file specified already exists and the specified operation requires that it not exist.

The named file, directory, or path already exists.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.
This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENFILE]

Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

❍

1.

The opendir() function uses a file descriptor for each open directory. Applications are limited to
opening no more than OPEN_MAX files and directories, and are subject to receiving the
[EMFILE] and [ENFILE] errors when too many file descriptors are in use. See the sysconf()

2.

function for a description of OPEN_MAX.

The file descriptor that is used by opendir() will not be inherited in a child process that is created
by the spawn() or spawnp() API.

opendir() may allocate memory from the user's heap.3.

Files that are added to the directory after the first call to readdir() following an opendir() or
rewinddir() may not be returned on calls to readdir(), and files that are removed may still be
returned on calls to readdir().

4.

QDLS File System Differences

QDLS updates the access time on opendir().

5.

QOPT File System Differences

If the directory exists on a volume formatted in Universal Disk Format (UDF), the authorization
that is checked for the directory and preceding directories in the path name follows the rules
described in Authorization required for opendir(). If the directory exists on a volume formatted in
some other media format, no authorization checks are made on the directory being opened and each
directory in the path name. The volume authorization list is checked for *USE authority regardless
of the volume media format.

6.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <dirent.h> file (see Header Files for UNIX-Type Functions)●

QlgOpendir()--Open Directory●

readdir()--Read Directory Entry●

readdir_r()--Read Directory Entry●

readdir_r_ts64()--Read Directory Entry●

rewinddir()--Reset Directory Stream to Beginning●

closedir()--Close Directory●

spawn()--Spawn Process●

spawnp()--Spawn Process with Path●

Example

The following example opens a directory:

#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <errno.h>

#include <stdio.h>

void traverse(char *fn, int indent) {
 DIR *dir;
 struct dirent *entry;
 int count;
 char path[1025]; /*** EXTRA STORAGE MAY BE NEEDED ***/
 struct stat info;

 for (count=0; count<indent; count++) printf(" ");
 printf("%s\n", fn);

 if ((dir = opendir(fn)) == NULL)
 perror("opendir() error");
 else {
 while ((entry = readdir(dir)) != NULL) {
 if (entry->d_name[0] != '.') {
 strcpy(path, fn);
 strcat(path, "/");
 strcat(path, entry->d_name);
 if (stat(path, &info) != 0)
 fprintf(stderr, "stat() error on %s: %s\n", path,
 strerror(errno));
 else if (S_ISDIR(info.st_mode))
 traverse(path, indent+1);
 }
 }
 closedir(dir);
 }
}

main() {
 puts("Directory structure:");
 traverse("/etc", 0);
}

Output:

Directory structure:
/etc
 /etc/samples
 /etc/samples/IBM
 /etc/IBM

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

pathconf()--Get Configurable Path Name
Variables

 Syntax

 #include <unistd.h>

 long pathconf(const char *path, int name);

 Threadsafe: Conditional; see Usage Notes.

The pathconf() function lets an application determine the value of a configuration variable (name)
associated with a particular file or directory (path).

If the named file is a symbolic link, pathconf() resolves the symbolic link.

Parameters

path

(Input) A pointer to the null-terminated path name of the file for which the value of the
configuration variable is requested.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently
in effect for the process. If the CCSID of the job is 65535, this parameter is assumed to be
represented in the default CCSID of the job.

See QlgPathconf()--Get Configurable Path Name Variables for a description and an example of
supplying the path in any CCSID.

name

(Input) The name of the configuration variable value requested.

The value of name can be any one of the following set of symbols defined in the <unistd.h> header file,
each standing for a configuration variable:

_PC_LINK_MAX

Represents LINK_MAX, which indicates the maximum number of links the file can have. If path is
a directory, pathconf() returns the maximum number of links that can be established to the
directory itself.

_PC_MAX_CANON

Represents MAX_CANON, which indicates the maximum number of bytes in a terminal canonical
input line.

_PC_MAX_INPUT

Represents MAX_INPUT, which indicates the minimum number of bytes for which space is
available in a terminal input queue. This available space is the maximum number of bytes that a
portable application can have the user enter before the application actually reads the input.

_PC_NAME_MAX

Represents NAME_MAX, which indicates the maximum number of bytes in a file name (not
including any terminating null at the end if the file name is stored as a string). This symbol refers
only to the file name itself; that is, the last component of the path name of the file. pathconf()
returns the maximum length of file names, even when the path does not refer to a directory.

This value is the number of bytes allowed in the file name if it were encoded in the CCSID of the
job. If the CCSID is mixed, this number is an estimate and may be larger than the actual allowable
maximum.

_PC_PATH_MAX

Represents PATH_MAX, which indicates the maximum number of bytes in a complete path name
(not including any terminating null at the end if the path name is stored as a string). pathconf()
returns the maximum length of a relative path name relative to path, even when path does not refer
to a directory.

This value is the number of bytes allowed in the path name if it were encoded in the CCSID of the
job. If the CCSID is mixed, this number is an estimate and may be larger than the actual allowable
maximum.

_PC_PIPE_BUF

Represents PIPE_BUF, which indicates the maximum number of bytes that can be written
"atomically" to a pipe. If more than this number of bytes are written to a pipe, the operation may
take more than one physical write operation and physical read operation to read the data on the
other end of the pipe. If path is a FIFO special file, pathconf() returns the value for the file itself. If
path is a directory, pathconf() returns the value for any FIFOs that exist or that can be created
under the directory. If path is any other kind of file, an error of [EINVAL] is returned.

_PC_CHOWN_RESTRICTED

Represents _POSIX_CHOWN_RESTRICTED, as defined in the <unistd.h> header file. It restricts
use of chown() to a job with appropriate privileges, and allows the group ID of a file to be changed
only to the effective group ID of the job or to one of its supplementary group IDs. If path is a
directory, pathconf() returns the value for any kind of file under the directory, but not for
subdirectories of the directory.

_PC_NO_TRUNC

Represents _POSIX_NO_TRUNC, as defined in the <unistd.h> header file. It generates an error if
a file name is longer than NAME_MAX. If path refers to a directory, the value returned by
pathconf() applies to all files under that directory.

_PC_VDISABLE

Represents _POSIX_VDISABLE, as defined in the <unistd.h> header file. This symbol indicates
that terminal special characters can be disabled using this character value, if it is defined.

_PC_THREAD_SAFE

This symbol is used to determine if the object represented by path resides in a threadsafe file
system. pathconf() returns the value 1 if the file system is threadsafe and 0 if the file system is not
threadsafe. fpathconf() will never fail with error code [ENOTSAFE] when called with
_PC_THREAD_SAFE.

Authorities

Note: Adopted authority is not used.

Authorization required for pathconf()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the object *X EACCES

Object None None

Return Value

value

pathconf() was successful. The value of the variable requested in name is returned.

-1

One of the following has occurred:

A particular variable has no limit (for example, _PC_PATH_MAX). The errno global
variable is not changed.

❍

pathconf() was not successful. The errno is set.❍

Error Conditions

If fpathconf() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EFILECVT]

File ID conversion of a directory failed.

Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL. name is not a valid configuration variable
name, or the given variable cannot be associated with the specified file.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

The path specified named a directory where a file or object name was expected.

The path name given is a directory.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

[EROOBJ]

Object is read only.

You have attempted to update an object that can be read only.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

CPE3418 E Possible APAR condition or hardware failure.
CPFA0D4 E File system error occurred. Error number &1.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

When this function is called with any configuration variable name except _PC_THREAD_SAFE,
the following usage note applies:

This function will fail with error code [ENOTSAFE] when all the following conditions are❍

1.

true:

Where multiple threads exist in the job.■

The object on which this function is operating resides in a file system that is not
threadsafe. Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB ■

QOPT■

■

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

chown()--Change Owner and Group of File●

fpathconf()--Get Configurable Path Name Variables by Descriptor●

QlgPathconf()--Get Configurable Path Name Variables●

Example

The following example determines the maximum number of bytes in a file name:

#include <stdio.h>
#include <unistd.h>
#include <errno.h>

main() {
 long result;

 errno = 0;
 puts("examining NAME_MAX limit for root filesystem");
 if ((result = pathconf("/", _PC_NAME_MAX)) == -1)
 if (errno == 0)
 puts("There is no limit to NAME_MAX.");
 else perror("pathconf() error");
 else
 printf("NAME_MAX is %ld\n", result);
}

Output:

examining NAME_MAX limit for root filesystem
NAME_MAX is 255

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

pipe()--Create an Interprocess Channel

 Syntax

 #include <unistd.h>

 int pipe(int fildes[2]);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The pipe() function creates a data pipe and places two file descriptors, one each into the arguments
fildes[0] and fildes[1], that refer to the open file descriptions for the read and write ends of the pipe,
respectively. Their integer values will be the two lowest available at the time of the pipe() call. The
O_NONBLOCK and FD_CLOEXEC flags will be clear on both descriptors. NOTE: these flags can,
however, be set by the fcntl() function.

Data can be written to the file descriptor fildes[1] and read from file descriptor fildes[0]. A read on the file
descriptor fildes[0] will access data written to the file descriptor fildes[1] on a first-in-first-out basis. File
descriptor fildes[0] is open for reading only. File descriptor fildes[1] is open for writing only.

The pipe() function is often used with the spawn() function to allow the parent and child processes to send
data to each other.

Upon successful completion, pipe() will update the access time, change time, and modification time of the
pipe.

Parameters

fildes[2]

(Output) An integer array of size 2 that will receive the pipe descriptors.

Authorities

None.

Return Value

0 pipe() was successful.

-1 pipe() was not successful. The errno variable is set to indicate the error.

Error Conditions

If pipe() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf()
function).

[ENFILE] Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job
log and correct any errors that are indicated, then retry the operation.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

fcntl()--Perform File Control Command●

fstat()--Get File Information by Descriptor●

Qp0zPipe()--Create Interprocess Channel with Sockets●

read()--Read from Descriptor●

spawn()--Spawn Process●

write()--Write to Descriptor●

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a pipe, writes 10 bytes of data to the pipe, and then reads those 10 bytes of
data from the pipe.

#include <stdio.h>
#include <unistd.h>
#include <string.h>

void main()
{
 int fildes[2];
 int rc;
 char writeData[10];
 char readData[10];
 int bytesWritten;
 int bytesRead;

 memset(writeData,'A',10);

 if (-1 == pipe(fildes))
 {
 perror("pipe error");
 return;
 }

 if (-1 == (bytesWritten = write(fildes[1],
 writeData,
 10)))
 {
 perror("write error");
 }
 else
 {
 printf("wrote %d bytes\n",bytesWritten);

 if (-1 == (bytesRead = read(fildes[0],
 readData,
 10)))
 {
 perror("read error");
 }
 else
 {
 printf("read %d bytes\n",bytesRead);
 }
 }

 close(fildes[0]);
 close(fildes[1]);

 return;
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

pread()--Read from Descriptor with Offset

 Syntax

 #include <unistd.h>

 ssize_t pread(int file_descriptor,
 void *buf, size_t nbyte, off_t offset);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

From the file indicated by file_descriptor, the pread() function reads nbyte bytes of input into the memory
area indicated by buf. The offset value defines the starting position in the file and the file pointer position is
not changed.

See read()--Read from Descriptor for more information relating to reading from a descriptor.

In the QSYS.LIB and independent ASP QSYS.LIB file systems, the offset will be ignored for a member
while in text mode.

Parameters

file_descriptor

(Input) The descriptor to be read.

buf

(Output) A pointer to a buffer in which the bytes read are placed.

nbyte

(Input) The number of bytes to be read.

offset

(Input) The offset to the desired starting position in the file.

Authorities

No authorization is required.

Return Value

value pread() was successful. The value returned is the number of bytes actually read and placed in
buf. This number is less than or equal to nbyte. It is less than nbyte only if pread() reached the
end of the file before reading the requested number of bytes. If pread() is reading a regular file
and encounters a part of the file that has not been written (but before the end of the file), pread()
places bytes containing zeros into buf in place of the unwritten bytes.

-1 pread() was not successful. The errno global variable is set to indicate the error. If the value of
nbyte is greater than SSIZE_MAX, pread() sets errno to [EINVAL].

Error Conditions

If pread() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file. Or, this pread request was made to a file that was only
open for writing.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

This may occur if the file resides in a file system that does not support large files, and the starting
offset of the file exceeds 2GB minus 2 bytes.

This will also occur if the offset value is less than 0.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENXIO]

No such device or address.

[EOVERFLOW]

Object is too large to process.

The object's data size exceeds the limit allowed by this function.

The file is a regular file, nbyte is greater than 0, the starting offset is before the end-of-file, and the
starting offset is greater than or equal to 2GB minus 2 bytes.

[ERESTART]

A system call was interrupted and may be restarted.

[ESPIPE]

Seek request not supported for object.

A seek request was specified for an object that does not support seeking.

The object is not capable of seeking.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the
following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

❍

1.

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB■

QOPT■

QSYS.LIB and Independent ASP QSYS.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is
operation is a save file and multiple threads exist in the job.

This function will fail with error code [EIO] if the file specified is a save file and the file does not
contain complete save file data.

The file access time for a database member is updated using the normal rules that apply to database
files. At most, the access time is updated once per day.

If you previously used the integrated file system interface to manipulate a member that contains an
end-of-file character, you should avoid using other interfaces (such as the Source Entry Utility or
database reads and writes) to manipulate the member. If you use other interfaces after using the
integrated file system interface, the end-of-file information will be lost.

2.

QOPT File System Differences

The file access time is not updated on a pread() operation.

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being read are ignored.

3.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once a file is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or the file is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

Reading and writing to files with the Network File System relies on byte-range locking to
guarantee data integrity. To prevent data inconsistency, use the fcntl() API to get and release these
locks.

4.

QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will
be received.

5.

For file systems that do not support large files, pread() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do
support large files, pread() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2
bytes and the file was not opened for large file access.

6.

Using this function successfully on the /dev/null or /dev/zero character special file results in a
return value of zero. In addition, the access time for the file is updated.

7.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA and
O_CCSID specified, the file CCSID and open CCSID are not the same, and the converted data
could expand or contract, then the offset value must be 0.

8.

If file_descriptor refers to a character special file, the offset value is ignored.9.

Related Information

The <limits.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

fcntl()--Perform File Control Command●

ioctl()--Perform I/O Control Request●

lseek()--Set File Read/Write Offset●

open()--Open File●

pread64()--Read from Descriptor with Offset (large file enabled)●

pwrite()--Write to Descriptor with Offset●

pwrite64()--Write to Descriptor with Offset (large file enabled)●

read()--Read from Descriptor●

readv()--Read from Descriptor Using Multiple Buffers●

recv()--Receive Data●

recvfrom()--Receive Data●

recvmsg()--Receive Data or Descriptors or Both●

write()--Write to Descriptor●

writev()--Write to Descriptor Using Multiple Buffers●

Example

The following example opens a file and reads input:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

main() {
 int ret, file_descriptor;
 off_t off=5;
 char buf[]="Test text";

 if ((file_descriptor = creat("test.output", S_IWUSR))!= 0)
 perror("creat() error");
 else {
 if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))
 perror("write() error");
 if (close(file_descriptor)!= 0)
 perror("close() error");
 }

 if ((file_descriptor = open("test.output", O_RDONLY)) < 0)
 perror("open() error");
 else {
 ret = pread(file_descriptor, buf, ((sizeof(buf)-1)-off), off);
 buf[ret] = 0x00;
 printf("block pread: \n<%s>\n", buf);
 if (close(file_descriptor)!= 0)
 perror("close() error");
 }
 if (unlink("test.output")!= 0)
 perror("unlink() error");
}

Output:

block pread:
<text>

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

pread64()--Read from Descriptor with Offset
(large file enabled)

 Syntax

 #include <unistd.h>

 ssize_t pread64(int file_descriptor,
 void *buf, size_t nbyte, off64_t offset);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

From the file indicated by file_descriptor, the pread64() function reads nbyte bytes of input into the
memory area indicated by buf. The offset value defines the starting position in the file and the file pointer
position is not changed.

pread64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as long
as the file has been opened by either of the following:

Using the open64() function (see open64()--Open File (large file enabled)).●

Using the open() function (see open()--Open File) with O_LARGEFILE set in the oflag parameter.●

For additional information about parameters, authorities, and error conditions, see pread()--Read from
Descriptor with Offset.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the pread64 API, you must compile the source with the _LARGE_FILE_API macro
defined.

1.

All of the usage notes for pread() apply to pread64(). See Usage Notes in the pread API.2.

Example

The following example opens a file and reads input:

#define _LARGE_FILE_API
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

main() {
 int ret, file_descriptor;
 off64_t off=5;
 char buf[]="Test text";

 if ((file_descriptor = creat64("test.output", S_IWUSR))!= 0)
 perror("creat64() error");
 else {
 if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))
 perror("write() error");
 if (close(file_descriptor)!= 0)
 perror("close() error");
 }

 if ((file_descriptor = open64("test.output", O_RDONLY)) < 0)
 perror("open64() error");
 else {
 ret = pread64(file_descriptor, buf, ((sizeof(buf)-1)-off), off);
 buf[ret] = 0x00;
 printf("block pread64: \n<%s>\n", buf);
 if (close(file_descriptor)!= 0)
 perror("close() error");
 }
 if (unlink("test.output")!= 0)
 perror("unlink() error");
}

Output:

block pread64:
<text>

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

pwrite()--Write to Descriptor with Offset

 Syntax

 #include <unistd.h>

 ssize_t pwrite
 (int file_descriptor, const void *buf,
 size_t nbyte, off_t offset);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The pwrite() function writes nbyte bytes from buf to the file associated with file_descriptor. The offset value
defines the starting position in the file and the file pointer position is not changed.

See write()--Write to Descriptor for more information relating to writing to a descriptor.

In the QSYS.LIB and independent ASP QSYS.LIB file systems, the offset will be ignored for a member while
in text mode.

The offset will also be ignored if file_descriptor refers to a descriptor obtained using the open() function with
O_APPEND specified.

Parameters

file_descriptor

(Input) The descriptor of the file to which the data is to be written.

buf

(Input) A pointer to a buffer containing the data to be written.

nbyte

(Input) The size in bytes of the data to be written.

offset

(Input) The offset to the desired starting position in the file.

Authorities

No authorization is required.

Return Value

value pwrite() was successful. The value returned is the number of bytes actually written. This number is
less than or equal to nbyte.

-1 pwrite() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If pwrite() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by the
Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file. Or this pwrite() request was made to a file that was only
open for reading.

[EBADFID]

A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is
not valid.

[EFBIG]

Object is too large.

The size of the object would exceed the system allowed maximum size or the process soft file size
limit.

The file is a regular file, nbyte is greater than 0, and the starting offset is greater than or equal to 2 GB
minus 2 bytes.

[EINTR]

Interrupted function call.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the
operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The file system that the file resides in does not support large files, and the starting offset exceeds 2GB
minus 2 bytes.

This will also occur if the offset value is less than 0.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE]

Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the journal sequence
number has exceeded the maximum value allowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]

Entry too large to send.

The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been
exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJRN]

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully. This
error occurs during operations that were attempting to start or end journaling, or were attempting to
send an entry to the journal.

[ENEWJRNRCV]

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This could
also be caused by exceeding the user profile storage limit when creating or transferring ownership of
an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENXIO]

No such device or address.

[ERESTART]

A system call was interrupted and may be restarted.

[ETRUNC]

Data was truncated on an input, output, or update operation.

[ESPIPE]

Seek request not supported for object.

A seek request was specified for an object that does not support seeking.

The object is not capable of seeking.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct
any errors that are indicated, thenretry the operation.

If interaction with a file server is required to access the object, errno could also indicate one of the following
errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ESTALE]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted at
the server.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

This function will fail with error code [ENOTSAFE] when all the following conditions are true:

Where multiple threads exist in the job.❍

The object on which this function is operating resides in a file system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root■

QOpenSys■

User-defined■

QNTC■

QSYS.LIB■

Independent ASP QSYS.LIB■

QOPT■

❍

1.

QSYS.LIB and Independent ASP QSYS.LIB File System Differences2.

This function will fail with error code [ENOTSAFE] if the object on which this function is operating
is a save file and multiple threads exist in the job.

If the file specified is a save file, only complete records will be written into the save file. A pwrite()
request that does not provide enough data to completely fill a save file record will cause the partial
record's data to be saved by the file system. The saved partial record will then be combined with
additional data on subsequent pwrite()'s until a complete record may be written into the save file. If
the save file is closed prior to a saved partial record being written into the save file, then the saved
partial record is discarded, and the data in that partial record will need to be written again by the
application.

A successful pwrite() updates the change, modification, and access times for a database member
using the normal rules that apply to database files. At most, the access time is updated once per day.

You should be careful when writing end-of-file characters in the QSYS.LIB and independent ASP
QSYS.LIB file systems. For these file systems, end-of-file characters are symbolic; that is, they are
stored outside the file member. However, some situations can result in actual, nonsymbolic end-of-file
characters being written to a member. These nonsymbolic end-of-file characters could cause some
tools or utilities to fail. For example:

If you previously wrote an end-of-file character as the last character of a member, do not
continue to write data after that end-of-file character. Continuing to write data will cause a
nonsymbolic end-of-file to be written. As a result, a compile of the member could fail.

❍

If you previously wrote an end-of-file character as the last character of a member, do not write
other end-of-file characters preceding it in the file. This will cause a nonsymbolic end-of-file
to be written. As a result, a compile of the member could fail.

❍

If you previously used the integrated file system interface to manipulate a member that
contains an end-of-file character, avoid using other interfaces (such as the Source Entry
Utility or database reads and writes) to manipulate the member. If you use other interfaces
after using the integrated file system interface, the end-of-file information will be lost.

❍

QOPT File System Differences

The change and modification times of the file are updated when the file is closed.

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the range
being written are ignored.

3.

Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to
conditions at the server. Once a file is open, subsequent requests to perform operations on the file can
fail because file attributes are checked at the server on each request. If permissions on the file are
made more restrictive at the server or the file is unlinked or made unavailable by the server for another
client, your operation on an open file descriptor will fail when the local Network File System receives
these updates. The local Network File System also impacts operations that retrieve file attributes.
Recent changes at the server may not be available at your client yet, and old values may be returned
from operations (several options on the Add Mounted File System (ADDMFS) command determine
the time between refresh operations of local data).

Reading and writing to files with the Network File System relies on byte-range locking to guarantee
data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks.

4.

QFileSvr.400 File System Differences5.

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be
received.

For the file systems that do not support large files, pwrite() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do
support large files, pwrite() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and
the file was not opened for large file access.

6.

Using this function successfully on the /dev/null or /dev/zero character special file results in a return
value of the total number of bytes requested to be written. No data is written to the /dev/null or
/dev/zero character special file. In addition, the change and modification times for the file are updated.

7.

If the write exceeds the process soft file size limit, signal SIFXFSZ is issued.8.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA and
O_CCSID specified, the file CCSID and open CCSID are not the same, and the converted data could
expand or contract, then the offset value must be 0.

9.

If file_descriptor refers to a character special file, the offset value is ignored.10.

Related Information

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

creat()--Create or Rewrite File●

dup()--Duplicate Open File Descriptor●

dup2()--Duplicate Open File Descriptor to Another Descriptor●

fcntl()--Perform File Control Command●

ioctl()--Perform I/O Control Request●

lseek()--Set File Read/Write Offset●

open()--Open File●

pread()--Read from Descriptor with Offset●

pread64()--Read from Descriptor with Offset (large file enabled)●

pwrite64()--Write to Descriptor with Offset (large file enabled)●

read()--Read from Descriptor●

readv()--Read from Descriptor Using Multiple Buffers●

send()--Send Data●

sendmsg()--Send Data or Descriptors or Both●

sendto()--Send Data●

write()--Write to Descriptor●

writev()--Write to Descriptor Using Multiple Buffers●

Example

The following example writes a specific number of bytes to a file:

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define mega_string_len 1000000

main() {
 char *mega_string;
 int file_descriptor;
 int ret;
 off_t off=5;
 char fn[]="write.file";

 if ((mega_string = (char*) malloc(mega_string_len+off)) == NULL)
 perror("malloc() error");
 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)
 perror("creat() error");
 else {
 memset(mega_string, '0', mega_string_len);
 if ((ret = pwrite(file_descriptor, mega_string, mega_string_len, off))
== -1)
 perror("pwrite() error");
 else printf("pwrite() wrote %d bytes at offset %d\n", ret, off);
 if (close(file_descriptor)!= 0)
 perror("close() error");
 if (unlink(fn)!= 0)
 perror("unlink() error");
 }
}

Output:

pwrite() wrote 1000000 bytes at offset 5

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

pwrite64()--Write to Descriptor with Offset (large
file enabled)

 Syntax

 #include <unistd.h>

 ssize_t pwrite64
 (int file_descriptor, const void *buf,
 size_t nbyte, off64_t offset);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The pwrite64() function writes nbyte bytes from buf to the file associated with file_descriptor. The offset value
defines the starting position in the file and the file pointer position is not changed.

In the QSYS.LIB and independent ASP QSYS.LIB file systems, the offset will be ignored for a member while in
text mode.

The offset will also be ignored if file_descriptor refers to a descriptor obtained using the open() function with
O_APPEND specified.

pwrite64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as long as
the file has been opened by either of the following:

Using the open64() function (see open64()--Open File (large file enabled)).●

Using the open() function (see open()--Open File) with O_LARGEFILE set in the oflag parameter.●

For additional information about parameters, authorities, and error conditions, see pwrite()--Write to Descriptor
with Offset.

Usage Notes

When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To use
the pwrite64 API, you must compile the source with the _LARGE_FILE_API macro defined.

1.

All of the usage notes for pwrite() apply to pwrite64(). See Usage Notes in the pwrite API.2.

Example

The following example writes a specific number of bytes to a file:

#define _LARGE_FILE_API
#include <unistd.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

#define mega_string_len 1000000

main() {
 char *mega_string;
 int file_descriptor;
 int ret;
 off64_t off=5;
 char fn[]="write.file";

 if ((mega_string = (char*) malloc(mega_string_len+off)) == NULL)
 perror("malloc() error");
 else if ((file_descriptor = creat64(fn, S_IWUSR)) < 0)
 perror("creat64() error");
 else {
 memset(mega_string, '0', mega_string_len);
 if ((ret = pwrite64(file_descriptor, mega_string, mega_string_len, off))
== -1)
 perror("pwrite64() error");
 else printf("pwrite64() wrote %d bytes at offset %d\n", ret, off);
 if (close(file_descriptor)!= 0)
 perror("close() error");
 if (unlink(fn)!= 0)
 perror("unlink() error");
 }
}

Output:

pwrite64() wrote 1000000 bytes at offset 5

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

Integrated File System APIs--Time Stamp
Updates
Each object (file and directory) has three time values associated with it:

Access Time The time that the data in the object is accessed.

Change Time The time that the attributes of the object are changed.

Modify Time The time that the data in the object is changed.

These values are returned by the stat(), fstat(), lstat(), and QlgStat() APIs.

When it is stated that an API sets or updates one of these time values, the value may be "marked for update"
by the API rather than actually updated. When a subsequent stat(), fstat(), lstat(), and QlgStat() API is
called, or the file is closed by all processes, the times that were previously "marked for update" are updated
and the update marks are cleared.

The value of these times is measured in seconds since the Epoch. The Epoch is the time 0 hours, 0 minutes,
0 seconds, January 1, 1970, Coordinated Universal Time. If the system date is set prior to 1970, all time
values will be zero. The following table shows which of these times are "marked for update" by each of the
APIs.

Time Stamp Updates for Integrated File System APIs

Function Access Change Modify

access No No No

accessx No No No

chdir No No No

chmod No Yes No

chown No Yes No

close No No No

closedir No No No

creat1 (new file) Yes Yes Yes

creat1 (parent directory of new file) No Yes Yes

creat2 (existing file) No Yes Yes

DosSetFileLocks No No No

DosSetRelMaxFH No No No

dup No No No

dup2 No No No

faccessx No No No

fchdir No No No

fchmod No Yes No

fchown No Yes No

fcntl No No No

fpathconf No No No

fstat No No No

fstatvfs No No No

fsync No No No

ftruncate No Yes Yes

getcwd Yes3 No No

getegid No No No

geteuid No No No

getgid No No No

getgrgid No No No

getgrgid_r No No No

getgrnam No No No

getgrnam_r No No No

getgroups No No No

getpwnam No No No

getpwnam_r No No No

getpwuid No No No

getpwuid_r No No No

getuid No No No

givedescriptor No No No

ioctl No No No

lchown No Yes No

link4 (file) No Yes No

link4 (parent directory) No Yes Yes

lseek No No No

lstat No No No

mkdir5 (new directory) Yes Yes Yes

mkdir5 (parent directory) No Yes Yes

mkfifo6 (new directory) Yes Yes Yes

mkfifo6 (parent directory) No Yes Yes

open O_CREAT7 (new file) Yes Yes Yes

open O_CREAT7 (parent directory) No Yes Yes

open O_TRUNC8 (existing file) No Yes Yes

open9 (existing file) No No No

opendir No No No

pathconf No No No

pread Yes No No

pread64 Yes No No

pwrite No Yes Yes

pwrite64 No Yes Yes

QlgAccess No No No

QlgAccessx No No No

QlgChdir No No No

QlgChmod No Yes No

QlgChown No Yes No

QlgCreat1 (new file) Yes Yes Yes

QlgCreat1 (parent directory of new file) No Yes Yes

QlgCreat2 (existing file) No Yes Yes

QlgCvtPathToQSYSObjName No No No

QlgGetAttr No Yes No

QlgGetcwd Yes3 No No

QlgGetPathFromFileID Yes10 No No

QlgLchown No Yes No

QlgLink4 (file) No Yes No

QlgLink4 (parent directory) No Yes Yes

QlgLstat No No No

QlgMkdir5 (new directory) Yes Yes Yes

QlgMkdir5 (parent directory) No Yes Yes

QlgMkfifo5 (new directory) Yes Yes Yes

QlgMkfifo5 (parent directory) No Yes Yes

QlgOpen O_CREAT7 (new file) Yes Yes Yes

QlgOpen O_CREAT7 (parent directory) No Yes Yes

QlgOpen O_TRUNC8 (existing file) No Yes Yes

QlgOpen9 (existing file) No No No

QlgOpendir No No No

QlgPathconf No No No

QlgProcessSubtree Yes No No

QlgReaddir Yes No No

QlgReaddir_r Yes No No

QlgReadlink Yes No No

QlgRenameKeep (parent directories) No Yes Yes

QlgRenameUnlink (parent directories) No Yes Yes

QlgRmdir (parent directory) No Yes Yes

QlgSetAttr No Yes No

QlgStat No No No

QlgStatvfs No No No

QlgSymlink11 (new link) Yes Yes Yes

QlgSymlink11 (parent directory) No Yes Yes

QlgUtime13 No Yes No

QlgUnlink12 (file) No Yes No

QlgUnlink12 (parent directory) No Yes Yes

QP0FPTOS Yes No No

Qp0lCvtPathToQSYSObjName No No No

Qp0lGetAttr No Yes No

Qp0lGetPathFromFileID Yes10 No No

Qp0lProcessSubtree Yes No No

Qp0lRenameKeep (parent directories) No Yes Yes

Qp0lRenameUnlink (parent directories) No Yes Yes

QP0LROR No No No

Qp0lSetAttr No Yes No

qsysetegid() No No No

qsyseteuid() No No No

qsysetgid() No No No

qsysetregid() No No No

qsysetreuid() No No No

qsysetuid() No No No

read Yes No No

readv Yes No No

readdir Yes No No

readdir_r Yes No No

readlink Yes No No

rewinddir No No No

rmdir (parent directory) No Yes Yes

select No No No

stat No No No

statvfs No No No

symlink11 (new link) Yes Yes Yes

symlink11 (parent directory) No Yes Yes

sysconf No No No

takedescriptor No No No

umask No No No

unlink12 (file) No Yes No

unlink12 (parent directory) No Yes Yes

utime13 No Yes No

write No Yes Yes

writev No Yes Yes

Notes:

When the file did not previously exist, a successful creat() or QlgCreat() set the
access, change, and modification times for the new file. It also sets the change and
modification times of the directory that contains the new file (parent directory).

1.

When the file previously existed, a successful creat() or QlgCreat() sets the change
and modification times for the file.

2.

The access time of each directory in the absolute path name of the current directory
(excluding the current directory itself) is updated.

3.

A successful link() or QlgLink() sets the change time of the file and the change and
modification times of the directory that contains the new link (parent directory).

4.

A successful mkdir() or QlgMkdir() sets the access, change, and modification times
for the new directory. It also sets the change and modification times of the directory
that contains the new directory (parent directory).

5.

A successful mkfifo() or QlgMkfifo() sets the access, change, and modification times
for the new FIFO (first-in-first-out) special file. It also sets the change and
modification times of the parent directory that contains the new FIFO file.

6.

When O_CREAT is specified and the file did not previously exist, a successful open()
or QlgOpen() sets the access, change, and modification times for the new file. It also
sets the change and modification times of the directory that contains the new file
(parent directory).

7.

When O_TRUNC is specified and the file previously existed, a successful open() or
QlgOpen() sets the change and modification times for the file.

8.

When O_CREAT and O_TRUNC are not specified, open() or QlgOpen() does not
update any time stamps.

9.

A successful Qp0lGetPathFromFileID() or QlgGetPathFromFileID() sets the
access time of each directory in the absolute path name to the file.

10.

A successful symlink() or QlgSymlink() sets the access, change, and modification
times for the new symbolic link. It also sets the change and modification times of the
directory that contains the new directory (parent directory).

11.

A successful unlink() or QlgUnlink() sets the change and modification times of the
directory that contains the file being unlinked (parent directory). If the link count for
the file is not zero, the change time for the file is set.

12.

A successful utime() or QlgUtime() sets the access and modify times of the file as
specified by the application. The change time of the file is set to the current time.

13.

Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Integrated File System (IFS) APIs, Volume 1 (V5R2)
	Table of Contents
	Integrated File System APIs -- access() through pwrite64()
	APIs
	access()--Determine File Accessibility
	accessx()--Determine File Accessibility for a Class of Users
	chdir()--Change Current Directory
	chmod()--Change File Authorizations
	chown()--Change Owner and Group of File
	close()--Close File or Socket Descriptor
	closedir()--Close Directory
	creat()--Create or Rewrite File
	creat64()--Create or Rewrite a File (Large File Enabled)
	DosSetFileLocks()--Lock and Unlock a Byte Range of an Open File
	DosSetFileLocks64()--Lock and Unlock a Byte Range of an Open File (Large File Enabled)
	DosSetRelMaxFH()--Change Maximum Number of File Descriptors
	dup()--Duplicate Open File Descriptor
	dup2()--Duplicate Open File Descriptor to Another Descriptor
	faccessx()--Determine File Accessibility for a Class of Users
	fchdir()--Change Current Directory by Descriptor
	fchmod()--Change File Authorizations by Descriptor
	fchown()--Change Owner and Group of File by Descriptor
	fcntl()--Perform File Control Command
	fpathconf()--Get Configurable Path Name Variables by Descriptor
	fstat()--Get File Information by Descriptor
	fstat64()--Get File Information by Descriptor (Large File Enabled)
	fstatvfs()--Get File System Information by Descriptor
	fstatvfs64()--Get File System Information by Descriptor (64-Bit Enabled)
	fsync()--Synchronize Changes to File
	ftruncate()--Truncate File
	ftruncate64()--Truncate File (Large File Enabled)
	getcwd()--Get Current Directory
	getegid()--Get Effective Group ID
	geteuid()--Get Effective User ID
	getgid()--Get Real Group ID
	getgrgid()--Get Group Information Using Group ID
	getgrgid_r()--Get Group Information Using Group ID
	getgrgid_r_ts64()--Get Group Information Using Group ID
	getgrnam()--Get Group Information Using Group Name
	getgrnam_r()--Get Group Information Using Group Name
	getgrnam_r_ts64()--Get Group Information Using Group Name
	getgroups()--Get Group IDs
	getpwnam()--Get User Information for User Name
	getpwnam_r()--Get User Information for User Name
	getpwnam_r_ts64()--Get User Information for User Name
	getpwuid()--Get User Information for User ID
	getpwuid_r()--Get User Information for User ID
	getpwuid_r_ts64()--Get User Information for User ID
	getuid()--Get Real User ID
	ioctl()--Perform I/O Control Request
	lchown()--Change Owner and Group of Symbolic Link
	link()--Create Link to File
	lseek()--Set File Read/Write Offset
	lseek64()--Set File Read/Write Offset (Large File Enabled)
	lstat()--Get File or Link Information
	lstat64()--Get File or Link Information (Large File Enabled)
	mkdir()--Make Directory
	mkfifo()--Make FIFO Special File
	mmap()--Memory Map a File
	mmap64()--Memory map a Stream File (Large File Enabled)
	mprotect()--Change Access Protection for Memory Mapping
	msync()--Synchronize Modified Data with Mapped File
	munmap()--Remove Memory Mapping
	open()--Open File
	open64()--Open File (Large File Enabled)
	opendir()--Open Directory
	pathconf()--Get Configurable Path Name Variables
	pipe()--Create an Interprocess Channel
	pread()--Read from Descriptor with Offset
	pread64()--Read from Descriptor with Offset (large file enabled)
	pwrite()--Write to Descriptor with Offset
	pwrite64()--Write to Descriptor with Offset (large file enabled)

	Integrated File System APIs--Time Stamp Updates

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

