
UNIX-Type APIs (V5R2)

Resource Reservation Setup Protocol APIs

Table of Contents

Resource Reservation Setup Protocol APIs

qtoq_accept() (Accept QoS Sockets Connection)●

qtoq_close() (Close QoS Sockets Connection)●

qtoq_connect() (Make QoS Sockets Connection)●

qtoq_ioctl() (Set QoS Sockets Control Options)●

QgyOpenListQoSMonitorData (Open List of QoS Monitor Data)●

QtoqDeleteQoSMonitorData (Delete QoS Monitor Data)●

QtoqEndQoSMonitor (End QoS Monitor)●

QtoqListSavedQoSMonitorData (List Saved QoS Monitor Data)●

QtoqSaveQoSMonitorData (Save QoS Monitor Data)●

QtoqStartQoSMonitor (Start QoS Monitor)●

rapi_dispatch() (Dispatch the RAPI message handling routine defined in the rapi_session() call)●

rapi_fmt_adspec() (Format a RAPI Adspec into a string suitable for printing)●

rapi_fmt_filtspec() (Format a RAPI Filter spec into a string suitable for printing)●

rapi_fmt_flowspec() (Format a RAPI Flowspec into a string suitable for printing)●

rapi_fmt_tspec() (Format a RAPI Tspec into a string suitable for printing)●

rapi_getfd() (Get a descriptor to wait on before dispatching the RAPI message handling routine)●

rapi_release() (Release the currently active RAPI reservation and close the open sessions)●

rapi_reserve() (Make, modify, or delete a RAPI reservation)●

rapi_sender() (Identify a RAPI sender)●

rapi_session() (Create a RAPI session)●

rapi_version() (Retrieve the current RAPI version)●

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Resource Reservation Setup Protocol APIs
The resource reservation protocol (RSVP), along with the RAPI APIs, perform your integrated services
reservation. This protocol is part of the Quality of service (QoS) function that allows you to request
network priority and bandwidth for TCP/IP applications. The RSVP protocol is used to load rules to the
TCP/IP stack that controls these requests. These rules are called IntServ rules. QoS also allows the user to
define DiffServ rules that request special handling in the network for groups of applications or connections.
See Quality of service (QoS) for more information.

The six monitor APIs can be used to retrieve information on both IntServ and DiffServ rules.

Note: A thorough understanding of the RSVP protocol and the contents of Internet RFC 2205 is required to
be able to use the RAPI APIs correctly. These APIs will not function unless the proper sequencing of
events between the client and server is observed.

The Resource Reservation Setup Protocol APIs are:

qtoq_accept() (Accept QoS Sockets Connection) provides simplified Quality of Service support
for connection-oriented sockets communications between RSVP aware applications on a client and
server.

●

qtoq_close() (Close QoS Sockets Connection) is called to close the socket and QoS session that
was created using the other qtoq_ sockets-type APIs.

●

qtoq_connect() (Make QoS Sockets Connection) provides simplified Quality of Service
functionality for connection-oriented sockets communications between RSVP aware applications
on a client and server.

●

qtoq_ioctl() (Set QoS Sockets Control Options) provides simplified Quality of Service
functionality for connectionless sockets communications between RSVP aware applications on a
client and server.

●

QgyOpenListQoSMonitorData (Open List of QoS Monitor Data) allows the user to gathering
information related to QoS services.

●

QtoqDeleteQoSMonitorData (Delete QoS Monitor Data) allows the user to delete a particular
and/or a group of collected QoS monitor data.

●

QtoqEndQoSMonitor (End QoS Monitor) allows the user to stop gathering information related to
QoS services.

●

QtoqListSavedQoSMonitorData (List Saved QoS Monitor Data) allows the user to return a list of
all collected monitor data that was saved previously.

●

QtoqSaveQoSMonitorData (Save QoS Monitor Data) allows the user to save a copy of the
collected QoS monitor data for future use.

●

QtoqStartQoSMonitor (Start QoS Monitor) allows the user to gathering information related to QoS
services.

●

rapi_dispatch() (Dispatch the RAPI message handling routine defined in the rapi_session() call)
dispatches the RAPI message-handling routine defined in the rapi_session() call.

●

rapi_fmt_adspec() (Format a RAPI Adspec into a string suitable for printing) formats a RAPI
Adspec into a string suitable for printing by converting the RAPI Adspec information that has been
passed to the API into a string in the supplied buffer.

●

rapi_fmt_filtspec() (Format a RAPI Filter spec into a string suitable for printing) formats a RAPI
Filter spec into a string suitable for printing by converting the RAPI filtspec information that has
been passed to the API into a string in the buffer that has been passed to the API.

●

rapi_fmt_flowspec() (Format a RAPI Flowspec into a string suitable for printing) formats a RAPI
Flowspec into a string suitable for printing by converting the RAPI flowspec information that has
been passed to the API into a character string in the buffer that was passed to the API.

●

rapi_fmt_tspec() (Format a RAPI Tspec into a string suitable for printing) formats a RAPI Tspec
into a string suitable for printing by converting the RAPI Tspec information that has been passed to
the API into a string in the buffer that has been passed to the API.

●

rapi_getfd() (Get a descriptor to wait on before dispatching the RAPI message handling routine)
returns the file descriptor associated with a successful rapi_session() call.

●

rapi_release() (Release the currently active RAPI reservation and close the open sessions) releases
the RAPI reservation that is active currently and closes the open sessions.

●

rapi_reserve() (Make, modify, or delete a RAPI reservation) used to make, modify, or delete an
RSVP reservation in the network.

●

rapi_sender() (Identify a RAPI sender) identifies an RSVP sender to potential receivers of the data.●

rapi_session() (Create a RAPI session) returns an API session ID that is unique to this request.●

rapi_version() (Retrieve the current RAPI version) returns the RAPI version currently being used
by the RSVP agent.

●

Top | UNIX-Type APIs | APIs by category

qtoq_accept()--Accept QoS Sockets Connection
API

 Syntax

 #include <qtoqsapi.h>

 int qtoq_accept(
 int socket_descriptor,
 int req_type,
 struct sockaddr *address,
 int *address_length,
 qos_req *qos_data,
 unsigned int *qos_session,
 int *qos_descriptor,
)

 Service Program Name: QSYS/QTOQSAPI

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The qtoq_accept() API provides simplified Quality of Service support for connection-oriented sockets
communications between RSVP aware applications on a client and server. The standard accept() sockets call can be
replaced with this API.

Parameters

socket_descriptor

(Input) Required

An opened socket descriptor that has been bound to the IP address and port from which the application will
accept connection requests.

req_type

Input) Required

The type of QoS service being requested. The possible values are:

REQ_SIGNAL_RET_EVENTS (1) Use normal RSVP signaling and return RSVP events to the calling
program.

REQ_SIGNAL_NORET_EVENTS (2) Use normal RSVP signaling without returning events to the
calling program.

REQ_NOSIGNAL (3) See if the RSVP rule for the requested connection has been
defined as "no signaling." If yes, then load the requested rule.

address

(Output) Required

Pointer to a sockaddr structure where the IP address and port of the client requesting the connection will be
stored.

Address_length

(Input/Output) Required

Pointer to an integer where the size of the address variable is given to the API and the length of the returned
client address will be stored.

qos_data

(Input) Required

Pointer to a qos_req data structure that defines the type of service being requested and the source and
destination addresses of the request.

The qos_req data structure is defined as follows:

typedef struct

{
int service; /* Values can be GUARANTEED_SERV (2)
 or CONTROLLED_LOAD_SERV (5) */
union
 {
 struct CL_spec /* Controlled-Load service */
 {
 float TB_Tspec_r; /* token bucket rate in bytes/sec */
 float TB_Tspec_b; /* token bucket depth in bytes */
 float TB_Tspec_p; /* token bucket peak in bytes/sec */
 unsigned long TB_Tspec_m; /* min policed unit in bytes */
 unsigned long TB_Tspec_M; /* max packet size in bytes */
 } CL_spec;
 struct Guar_spec /* Guaranteed service */
 {
 float Guar_R; /* guaranteed rate in bytes/sec */
 unsigned long Guar_S; /* slack term in microsecs */
 } Guar_spec;
 } spec_u;
} qos_spec_t;

typedef struct
 {
 struct sockaddr dest; /* Destination address/port */
 int d_length; /* Destination address length*/
 struct sockaddr source; /* Source address/port */
 int s_length; /* Source address length */
 int style; /* Style of Reservation. */
 qos_spec_t Spec; /* Flow info */
 unsigned char result; /* API status */
 } qos_req; /* End of QoS request structure */\

qos_session

(Output) Required

Pointer to an integer value where the unique QoS session ID can be stored. This ID is required for all future
QoS API calls.

qos_descriptor

(Output) Optional

Pointer to an integer where the value of the descriptor that the application can wait on for RSVP events is

stored. This value is set to NULL if it is not used.

Authorities

None.

Return Values

0 if successful.

-1 if function failed. Errno indicates error reason.

Error Conditions

When qtoq_accept() fails errno can be set to one of the following:

[EBADF]

Descriptor not valid.

[EFAULT]

Bad address.

[ECONNABORTED]

Connection ended abnormally. An accept() was issued on a socket for which receives have been disallowed
(due to a shutdown() call).

This also could be encountered if time elapsed since a successful Rbind() is greater than the margin allowed
by the associated SOCKS server.

[EFAULT]

Bad address. System detected an address that was not valid while attempting to access the address or
address_length parameters.

[EINTR]

Interrupted function call.

[EINVAL]

Parameter not valid. This error code indicates one of the following:

The address_length parameter is set to a value that is less than zero, and the address parameter is set
to a value other than a NULL pointer.

❍

A listen() has not been issued against the socket referenced by the socket_descriptor parameter.❍

[EIO]

Input/output error.

[EMFILE]

Too many descriptions for this process.

[ENFILE]

Too many descriptions in system.

[ENOBUFS]

There is not enough buffer space for the requested operation.

[ENOTSOCK]

The specified descriptor does not reference a socket.

[EOPNOTSUPP]

Operation not supported. The socket_descriptor parameter references a socket that does not support the
accept(). The accept() is valid only on sockets that are connection-oriented (for example, type of
SOCK_STREAM).

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

Unknown system state.

[EWOULDBLOCK]

Operation would have caused the thread to be suspended.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The application program can choose to be signaled when RSVP events occur or allow the QoS server to
handle the events. If the server handles the events, the application program will not be informed if the RSVP
signaling fails or if the requested reservations have been changed by the network.

1.

The REQ_NOSIGNAL request type will be honored only if a policy exists that matches the requested
connection and it is marked as a "no signaling" policy. Otherwise, an [ENOTSUPPORT] error will be
returned.

2.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task Force.

API Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

qtoq_close()--Close QoS Sockets Connection
API

 Syntax

 #include <qtoqsapi.h>

 int qtoq_close(
 int socket_descriptor,
 int *qos_descriptor,
 unsigned int *qos_session,
)

 Service Program Name: QSYS/QTOQSAPI

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

qtoq_close() is called to close the socket and QoS session that was created using the other qtoq_
sockets-type APIs. It performs a standard sockets close(); on the socket descriptor, close the QoS session
for this connection and inform the QoS server that the connection should be closed and the rule unloaded.

Parameters

socket_descriptor

(Input) Required

The socket descriptor that was created to perform the TCP/IP communications for this connection.

qos_descriptor

(Input) Optional

Pointer to an integer for the value of the descriptor that the application used to wait on QoS events.

qos_session

(Input) Required

Pointer to an integer containing the QoS session ID that was returned when the QoS connection
was established.

Authorities

None.

Return Values

0 if successful.

-1 if function failed. Errno indicates error reason.

Error Conditions

When this function call fails, the errno value is set to one of the following:

[EBADF]

Descriptor not valid.

[EIO]

Input/output error.

[ENOBUFS]

There is not enough buffer space for the requested operation.

[EUNKNOWN]

Unknown system state.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The qtoq_close() API must be used in place of the normal close() sockets call in an application
using the QTOQ APIs. If it is not used, the results are unpredictable.

1.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

API Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

qtoq_connect()--Make QoS Sockets Connection
API

 Syntax

 #include <qtoqsapi.h>

 int qtoq_connect(
 int socket_descriptor,
 struct sockaddr *address,
 int address_length,
 int req_type,
 qos_conn_req *qos_data,
 unsigned int *qos_session,
 int *qos_descriptor,
)

 Service Program Name: QSYS/QTOQSAPI

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The qtoq_connect() API provides simplified Quality of Service functionality for connection-oriented sockets
communications between RSVP aware applications on a client and server. The standard connect() sockets call can
be replaced with this API.

Parameters

socket_descriptor

(Input) Required

An opened socket descriptor that has been bound to the IP address and port from which the application will
accept connection requests.

destination_address

(Input) Required

A pointer to a sockaddr structure containing the IP address and port of the server to connect to.

address_length

(Input) Required

Integer containing the length of the destination address structure.

req_type

(Input) Required

The type of QoS service being requested. The possible values are:

REQ_SIGNAL_RET_EVENTS(1) Use normal RSVP signaling and return RSVP events to the
calling program.

REQ_SIGNAL_NORET_EVENTS(2) Use normal RSVP signaling without returning events to the
calling program.

qos_data

(Input) Required

Pointer to a qos_conn_req data structure that defines the type of service being requested and the source and
destination addresses of the request.

The qos_conn_req data structure is defined below:

typedef struct
 {
 int service; ; /* Values can be GUARANTEED_SERV (2)
 or CONTROLLED_LOAD_SERV (5) */
 union
 {
 struct CL_spec /* Controlled-Load service */
 {
 float TB_Tspec_r; /* token bucket rate in bytes/sec */
 float TB_Tspec_b; /* token bucket depth in bytes */
 float TB_Tspec_p; /* token bucket peak in bytes/sec */
 unsigned long TB_Tspec_m; /* min policed unit in bytes */
 unsigned long TB_Tspec_M; /* max packet size in bytes */
 } CL_spec;
 struct Guar_spec /* Guaranteed service */
 {
 float Guar_R; /* guaranteed rate in bytes/sec */
 unsigned long Guar_S; /* slack term in microsecs */
 } Guar_spec;
 } spec_u;
 } qos_spec_t;

 typedef struct
 {
 struct sockaddr source; /* Source address/port */
 int s_length; /* Source address length */
 int style; /* Style of Reservation. */
 qos_spec_t Spec; /* Flow info */
 unsigned char result; /* API status */
 } qos_conn_req; /* End of QoS connection request structure */

qos_session

(Output) Required

Pointer to an integer value where the unique QoS session ID can be stored. This ID is required for all future
QoS API calls.

qos_descriptor

(Output) Optional

Pointer to an integer where the value of the descriptor that the application can wait on for RSVP events is
stored. This value is set to NULL if it is not used.

Authorities

None.

Return Values

0 if successful.

-1 if function failed. Errno indicates error reason.

Error Conditions

When this function call fails, the errno value is set to one of the following:

[EACCES]

Permission denied. This error code indicates one of the following:

The process does not have the appropriate privileges to connect to the address pointed to by the
destination_address parameter.

❍

The socket pointed to by socket_descriptor is using a connection-oriented transport service, and the
destination_address parameter specifies a TCP/IP limited broadcast address (internet address of all
ones).

❍

[EADDRINUSE]

Address already in use. This error code indicates one of the following:

The socket_descriptor parameter points to a connection-oriented socket that has been bound to a
local address that contained no wildcard values, and the destination_address parameter specified an
address that matched the bound address.

❍

The socket_descriptor parameter points to a socket that has been bound to a local address that
contained no wildcard values, and the destination_address parameter (also containing no wildcard
values) specified an address that would have resulted in a connection with an association that is not
unique.

❍

[EADDRNOTAVAIL]

Address not available. This error code indicates one of the following:

The socket_descriptor parameter points to a socket with an address family of AF_INET and either
a port was not available or a route to the address specified by the destination_address parameter
could not be found.

❍

[EAFNOSUPPORT]

The type of socket is not supported in this protocol family. The address family specified in the address
structure pointed to by the destination_address parameter cannot be used with the socket pointed to by the
socket_descriptor parameter. This error also will be reported if the API is called with a socket type that is
not AF_INET and SOCK_DGRAM or SOCK_STREAM.

[EALREADY]

Operation already in progress. A previous connect() function had already been issued for the socket pointed
to by the socket_descriptor parameter, and has yet to be completed. This error code is returned only on
sockets that use a connection-oriented transport service.

[EBADF]

Descriptor not valid.

[ECONNREFUSED]

The destination socket refused an attempted connect operation. This error occurs when there is no
application that is bound to the address specified by the destination_address parameter.

[EFAULT]

Bad address. The system detected an address that was not valid while attempting to access the
destination_address parameter.

[EHOSTUNREACH]

A route to the remote host is not available.

[EINPROGRESS]

Operation in progress. The socket_descriptor parameter points to a socket that is marked as non blocking
and the connection could not be completed immediately. This error code is returned only on sockets that
use a connection-oriented transport service.

[EINTR]

Interrupted function call.

[EINVAL]

Parameter not valid. This error code indicates one of the following:

The address_length parameter specifies a length that is negative or not valid for the address family.❍

The AF_INET socket is of type SOCK_STREAM, and a previous connect() has already completed
unsuccessfully. Only one connection attempt is allowed on a connection-oriented socket.

❍

[EIO]

Input/output error.

[EISCONN]

A connection has already been established. This error code is returned only on sockets that use a
connection-oriented transport service.

[ENETUNREACH]

Cannot reach the destination network. This error code indicates the following:

For sockets that use the AF_INET address family, the address specified by the destination_address
parameter requires the use of a router, and the socket option SO_DONTROUTE is currently set on.

❍

[ENOBUFS]

There is not enough buffer space for the requested operation.

[ENOTDIR]

Not a directory.

[EOPNOTSUPP]

Operation not supported.

[ETIMEDOUT]

A remote host did not respond within the timeout period. This error code is returned when connection
establishment times out. No connection is established. A possible cause may be that the partner application
is bound to the address specified by the destination_address parameter, but the partner application has not
yet issued a listen().

[EUNKNOWN]

Unknown system state.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

[EPROTO]

An underlying protocol error has occurred.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The qtoq_connect() API can be used to replace the normal connect() sockets call in an application using
connection oriented sockets.

1.

The application program can choose to be signaled when RSVP events occur or allow the QoS server to
handle the events. If the server handles the events, the application program will not be informed if the
RSVP signaling fails or if the requested reservations have been changed by the network.

2.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task Force.

API Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

qtoq_ioctl()--Set QoS Sockets Control Options API

 Syntax

 #include <qtoqsapi.h>

 int qtoq_ioctl(
 int descriptor,
 int req_type,
 qos_req *qos_data,
 unsigned int *qos_session,
 int *qos_descriptor,
)

 Service Program Name: QSYS/QTOQSAPI

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The qtoq_ioctl() API provides simplified Quality of Service functionality for connectionless sockets communications
between RSVP aware applications on a client and server. This API can be used to initiate RSVP signaling, as well as to
determine the status of the RSVP connection. The NO SIGNALLING option for loading RSVP rules also is supported.

Parameters

descriptor

(Input) Required

An opened socket descriptor that has been bound to the IP address and port that the application will use for
connectionless communications.

req_type

(Input) Required

The type of QoS service being requested. The possible values are:

REQ_SIGNAL_RET_EVENTS(1) Use normal RSVP signaling and return RSVP events to the calling
program.

REQ_SIGNAL_NORET_EVENTS(2) Use normal RSVP signaling without returning events to the calling
program.

REQ_NOSIGNAL(3) Load specified QoS policy if admission control allows it.

REQ_GET_RSVP_DATA(4) Get the RSVP flowspec that has been returned as the result of an
RSVP event. This request is valid only if a previous
REQ_SIGNAL_RET_EVENTS request has been sent to the server.

qos_data

(Input) Required

Pointer to a qos_req data structure that defines the type of service being requested and the source and

destination addresses of the request.

The qos_req data structure is defined below:

typedef struct
 {
 int service; ; /* Values can be GUARANTEED_SERV (2)
 or CONTROLLED_LOAD_SERV (5)
*/
 union
 {
 struct CL_spec /* Controlled-Load service */
 {
 float TB_Tspec_r; /* token bucket rate in bytes/sec */
 float TB_Tspec_b; /* token bucket depth in bytes */
 float TB_Tspec_p; /* token bucket peak in bytes/sec */
 unsigned long TB_Tspec_m; /* min policed unit in bytes */
 unsigned long TB_Tspec_M; /* max packet size in bytes */
 } CL_spec;
 struct Guar_spec /* Guaranteed service */
 {
 float Guar_R; /* guaranteed rate in bytes/sec */
 unsigned long Guar_S; /* slack term in microsecs */
 } Guar_spec;
 } spec_u;
 } qos_spec_t;

typedef struct
 {
 struct sockaddr dest; /* Destination address/port */
 int d_length; /* Destination address length*/
 struct sockaddr source; /* Source address/port */
 int s_length; /* Source address length */
 int style; /* Style of Reservation. */
 qos_spec_t Spec; /* Flow info */
 unsigned char result; /* API status */
 } qos_req; /* End of QoS request structure */

qos_session

(Output) Required

Pointer to an integer value where the unique QoS session ID can be stored. This ID is required for all future
QoS API calls.

qos_descriptor

(Output) Optional

Pointer to an integer where the value of the descriptor that the application can wait on for RSVP events is
stored. this value is set to NULL if it is not used.

Authorities

None.

Return Values

0 if successful.

-1 if function failed. Errno indicates error reason.

Error Conditions

When this function call fails, the errno value is set to one of the following:

[EACCES]

Permission denied. This error code indicates one of the following:

The process does not have the appropriate privileges to connect to the address pointed to by the
destination_address parameter.

❍

The socket pointed to by socket_descriptor is using a connection-oriented transport service, and the
destination_address parameter specifies a TCP/IP limited broadcast address (internet address of all
ones).

❍

[EADDRINUSE]

Address already in use. This error code indicates one of the following:

The socket_descriptor parameter points to a connection-oriented socket that has been bound to a local
address that contained no wildcard values, and the destination_address parameter specified an address
that matched the bound address.

❍

The socket_descriptor parameter points to a socket that has been bound to a local address that contained
no wildcard values, and the destination_address parameter (also containing no wildcard values)
specified an address that would have resulted in a connection with an association that is not unique.

❍

[EADDRNOTAVAIL]

Address not available. This error code indicates one of the following:

The socket_descriptor parameter points to a socket with an address family of AF_INET and either a
port was not available or a route to the address specified by the destination_address parameter could not
be found.

❍

[EAFNOSUPPORT]

The type of socket is not supported in this protocol family. The address family specified in the address structure
pointed to by destination_address parameter cannot be used with the socket pointed to by the socket_descriptor
parameter. This error also will be reported if the API is called with a socket type that is not AF_INET and
SOCK_DGRAM or SOCK_STREAM.

[EALREADY]

Operation already in progress. A previous connect() function had already been issued for the socket pointed to
by the socket_descriptor parameter, and has yet to be completed. This error code is returned only on sockets that
use a connection-oriented transport service.

[EBADF]

Descriptor not valid.

[ECONNREFUSED]

The destination socket refused an attempted connect operation. This error occurs when there is no application
that is bound to the address specified by the destination_address parameter.

[EFAULT]

Bad address. The system detected an address which was not valid while attempting to access the
destination_address parameter.

[EHOSTUNREACH]

A route to the remote host is not available.

[EINPROGRESS]

Operation in progress. The socket_descriptor parameter points to a socket that is marked as non blocking and
the connection could not be completed immediately. This error code is returned only on sockets that use a
connection-oriented transport service.

[EINTR]

Interrupted function call.

[EINVAL]

Parameter not valid. This error code indicates one of the following:

The address_length parameter specifies a length that is negative or not valid for the address family.❍

The AF_INET socket is of type SOCK_STREAM, and a previous connect() has already completed
unsuccessfully. Only one connection attempt is allowed on a connection-oriented socket.

❍

[EIO]

Input/output error.

[EISCONN]

A connection has already been established.

This error code is returned only on sockets that use a connection-oriented transport service.

[ENETUNREACH]

Cannot reach the destination network. This error code indicates the following:

For sockets that use the AF_INET address family, the address specified by the destination_address
parameter requires the use of a router, and the socket option SO_DONTROUTE is currently set on.

❍

[ENOBUFS]

There is not enough buffer space for the requested operation.

[ENOTDIR]

Not a directory.

[EOPNOTSUPP]

Operation not supported.

[ETIMEDOUT]

A remote host did not respond within the timeout period. This error code is returned when connection
establishment times out. No connection is established. A possible cause may be that the partner application is
bound to the address specified by the destination_address parameter, but the partner application has not yet
issued a listen().

[EUNKNOWN]

Unknown system state.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

[EPROTO]

An underlying protocol error has occurred.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The application program can choose to be signaled when RSVP events occur or it can choose to allow the QoS
server to handle the events. If the server handles the events, the application program will not be informed if the
RSVP signaling failed or if the requested reservations was changed by the network.

1.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task Force.

API Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

Open List of QoS Monitor Data
(QgyOpenListQoSMonitorData) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 List information Output Char(80)
4 Number of records to return Input Binary(4)
5 Format name Input Char(8)

 Omissible Parameter Group:

6 Filter Input Char(*)
7 Error code I/O Char(*)

 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The Open List of QoS Monitor Data (QgyOpenListQoSMonitorData) API allows the user to gather
information related to QoS services. Each entry is returned according to the particular FORMAT or type of
filter selected. There are three types of data that can be retrieved: Instantaneous QoS Manager Data (stack),
accumulated QoS Manager Data, or an aggregate of the accumulated QoS Manager Data.

Authorities and Locks

Special Authority

NONE

Required Parameter Group

Receiver Variable

OUTPUT; CHAR(*)
The receiver variable that receives the information requested.

Length of receiver variable

INPUT; BINARY(4)
The length of the receiver variable.

List information

OUTPUT; CHAR(80)
The variable used to return status information about the list of QoS monitor data that was opened.
For a description of this parameter, see Format of Open List Information.

Number of returned records

INPUT; BINARY(4)
The number of records in the list to put into the receiver variable after filtering has been performed.

Format name

INPUT; CHAR(8)

The format of the space information to be returned. The format names supported are:

QOSM0100 IntServ controlled load and IntServ controlled load with DiffServ markings.

QOSM0150 IntServ controlled load and IntServ controlled load with DiffServ markings.
This format is used with 8-byte counters.

QOSM0200 IntServ guaranteed rate and IntServ guaranteed rate with DiffServ markings.

QOSM0250 IntServ guaranteed rate and IntServ guaranteed rate with DiffServ markings.
This format is used with 8-byte counters.

QOSM0300 DiffServ per hop behavior.

QOSM0350 DiffServ per hop behavior. This format is used with 8-byte counters.

AGGR0100 IntServ controlled load and IntServ controlled load with DiffServ markings.
Used for aggregated trace data only.

AGGR0150 IntServ controlled load and IntServ controlled load with DiffServ markings.
Used for aggregated trace data only. This format is used with 8-byte counters.

AGGR0200 IntServ guaranteed rate and IntServ guaranteed rate with DiffServ markings.
Used for aggregated trace data only.

AGGR0250 IntServ guaranteed rate and IntServ guaranteed rate with DiffServ markings.
Used for aggregated trace data only. This format is used with 8-byte counters.

AGGR0300 DiffServ per hop behavior. Used for aggregated trace data only.

AGGR0350 DiffServ per hop behavior. Used for aggregated trace data only. This format is
used with 8-byte counters.

INBC0100 Connection information related to inbound IP policies.

INBC0200 Connection information related to URI inbound policies.

Omissible Parameter Group

Filter

INPUT; CHAR(*)
The structure that defines which QoS filtered data is returned from the API.

Error code

I/O; CHAR(*)
The structure in which to return error information. For the format of the structure, see Error Code
Parameter .

Filter Format Section

The following information is used for the filtering format. For detailed descriptions of the fields in this
table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of filter

4 4 BINARY(4) Filter flag

8 8 CHAR(14) Start time

22 16 CHAR(14) End time

36 24 BINARY(4) Policy flag

40 28 BINARY(4) System aggregation flag

44 2C CHAR(128) Policy name

172 AC CHAR(10) Saved collected name

Field Descriptions

End time. All data in the trace buffer between a given time interval. The format is
YYYYMMDDHHMMSS, and HH should be represented with a 24-hour clock. If this parameter is set to a
value, then the start time also must be set to some time less then the end time. This character string must be
set to x'00' if not being used and other filtering parameters are needed.

Filter flag. Turns the filtering function on and off. The following values may be specified:

0 Turns off filtering option. If 0, the data is taken from the QoS manager (instantaneous stack data -
QOSMxxxx format only).

1 Turns on filtering option. If 1, the data is taken from the trace buffer.

Length of filter. The length of the filtering structure.

Policy flag. Returns information for a specific policy for a given format. This option can be used in two
ways. If it is used, Policy name must be set to some value.

1 Returns all entries for a specific policy within the user data for a given format. This option is used
with the QOSMxxxx formats.

2 Return an aggregated list of a specific policy for given format. This option is used with AGGRxxxx
formats.

The following values may be specified:

0 Turns off the policy option.

1 Turns on the policy option. System aggregation must be 0.

Policy name. Returns a list of entries associated with a given name. This option can be used only when the
Policy flag is set to a value of 1. This character string must be set to x'00' if not being used and other
filtering parameters are needed.

Start time. Returns all data in the trace buffer between a given time interval. The format is
YYYYMMDDHHMMSS, and HH should be represented with a 24-hour clock. If this parameter is set to a
value, the end time also must be set to some time greater than the start time. This character string must be
set to x'00' if not being used and other filtering parameters are needed.

System aggregation flag. Returns a list of all aggregated policies within a given architecture. This filter
option can be used with any of the AGGRxxxx formats only. The following values may be specified:

0 The system aggregation option is turned off. This value must be specified for QOSMxxxx formats.

1 The system aggregation option is turned on. Policy must be 0.

Saved collected name. The collection data the user wishes to retrieve. If this value is blanks, or not
supplied in the filter, then all data will be retrieved from the current data collection.

QOSM0100 Format

The QOSM0100 format includes the basic format of Integrated Services (IntServ) controlled load, and
IntServ controlled load with Differentiated Services (DiffServ) markings. For detailed descriptions of the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Protocol

148 94 CHAR(15) Source IP address (start) - dotted decimal

163 A3 CHAR(15) Destination IP address (start) - dotted decimal

178 B2 CHAR(15) Source IP address (end) - dotted decimal

193 C1 CHAR(15) Destination IP address (end) - dotted decimal

208 D0 BINARY(4) Source port (start)

212 D4 BINARY(4) Destination port (start)

216 D8 BINARY(4) Source port (end)

220 DC BINARY(4) Destination port (end)

224 E0 BINARY(4) Token bucket rate - bytes per second

228 E4 BINARY(4) Token bucket depth - bytes

232 E8 BINARY(4) Peak data rate - bytes per second

236 EC BINARY(4) Minimum policed unit - bytes

240 F0 BINARY(4) Maximum packet size - bytes

244 F4 BINARY(4) Total connections serviced - connections

248 F8 BINARY(4) Total packets transmitted - packets

252 FC BINARY(4) Total bytes transmitted - bytes

256 100 BINARY(4) Total in profile packets - packets

260 104 BINARY(4) Total in profile bytes - bytes

QOSM0150 Format

The QOSM0150 format includes the basic format of Integrated Services (IntServ) controlled load, and
IntServ controlled load with Differentiated Services (DiffServ) markings. For detailed descriptions of the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Protocol

148 94 CHAR(15) Source IP address - dotted decimal

163 A3 CHAR(15) Destination IP address - dotted decimal

178 B2 CHAR(2) Reserved - alignment

180 B4 BINARY(4) Source port (start)

184 B8 BINARY(4) Destination port (start)

188 BC BINARY(4) Token bucket rate - kbits per second

192 C0 BINARY(4) Token bucket depth - kbits

196 C4 BINARY(4) Peak data rate - kbits per second

200 C8 BINARY(4) Minimum policed unit - kbits

204 CC BINARY(4) Maximum packet size -kbits

208 D0 BINARY(8) Total packets transmitted long - packets

216 D8 BINARY(8) Total kbits transmitted long - kbits

224 E0 BINARY(8) Total in profile packets long - packets

232 E8 BINARY(8) Total in profile kbits long - kbits

240 F0 BINARY(4) Duration - seconds

244 F4 BINARY(4) Policy handle identifier

248 F8 BINARY(4) Offset to additional information

252 FC BINARY(4) Length of additional information

QOSM0200 Format

The QOSM0200 format includes the basic format of IntServ guaranteed rate and IntServ guaranteed rate
with DiffServ markings (both). For detailed descriptions of the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 Returns everything from QOSM0100

264 108 BINARY(4) Guaranteed rate - bytes per second

268 10C BINARY(4) Slack term - second

QOSM0250 Format

The QOSM0250 format includes the basic format of IntServ guaranteed rate and IntServ guaranteed rate
with DiffServ markings (both). For detailed descriptions of the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

Offset from format QOSM0150

0 0 BINARY(4) Guaranteed rate - kbits per second

4 4 BINARY(4) Slack term - second

QOSM0300 Format

The QOSM0300 format includes the basic format of DiffServ per hop behavior. For detailed descriptions of
the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Priority

148 94 BINARY(4) Protocol

152 98 CHAR(15) Source IP address (start) - dotted decimal

167 A7 CHAR(15) Destination IP address (start) - dotted decimal

182 B6 CHAR(15) Source IP address (end) - dotted decimal

197 C5 CHAR(15) Destination IP address (end) - dotted decimal

212 D4 BINARY(4) Source port (start)

216 D8 BINARY(4) Destination port (start)

220 DC BINARY(4) Source port (end)

224 E0 BINARY(4) Destination port (end)

228 E4 BINARY(4) Token bucket rate - bytes per second

232 E8 BINARY(4) Token bucket depth - bytes

236 EC BINARY(4) Peak data rate - bytes per second

240 F0 CHAR(1) InDSCP

241 F1 CHAR(1) OutDSCP

242 F2 CHAR(2) Reserved - alignment

244 F4 BINARY(4) Total packets transmitted - packets

248 F8 BINARY(4) Total bytes transmitted - bytes

252 FC BINARY(4) Total in profile packets - packets

256 100 BINARY(4) Total in profile bytes - bytes

260 104 BINARY(4) Total active connections - connections

264 108 BINARY(4) Traffic profile

QOSM0350 Format

The QOSM0350 format includes the basic format of DiffServ per hop behavior. For detailed descriptions of
the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Priority

148 94 BINARY(4) Protocol

152 98 CHAR(15) Source IP address (start) - dotted decimal

167 A7 CHAR(15) Destination IP address (start) - dotted decimal

182 B6 CHAR(15) Source IP address (end) - dotted decimal

197 C5 CHAR(15) Destination IP address (end) - dotted decimal

212 D4 BINARY(4) Source port (start)

216 D8 BINARY(4) Destination port (start)

220 DC BINARY(4) Source port (end)

224 E0 BINARY(4) Destination port (end)

228 E4 BINARY(4) Token bucket rate - kbits per second

232 E8 BINARY(4) Token bucket depth - kbits

236 EC BINARY(4) Peak data rate - kbits per second

240 F0 CHAR(1) InDSCP

241 F1 CHAR(1) OutDSCP

242 F2 CHAR(2) Reserved - alignment

244 F4 BINARY(8) Total packets transmitted long - packets

252 FC BINARY(8) Total kbits transmitted long - kbits

260 104 BINARY(8) Total in profile packets long - packets

268 10C BINARY(8) Total in profile kbits long - kbits

276 114 BINARY(8) Total active connections long - connections

284 11C BINARY(4) Traffic profile

288 120 BINARY(4) Duration - seconds

292 124 BINARY(4) Policy handle identifier

AGGR0100 Format

The AGGR0100 format includes the basic format of IntServ controlled load and IntServ controlled load
with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields in
this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 BINARY(4) Token bucket rate - bytes per second

132 84 BINARY(4) Total connects serviced - connections

136 88 BINARY(4) Total packets transmitted - packets

140 8C BINARY(4) Total bytes transmitted - bytes

144 90 BINARY(4) Total in profile packets - packets

148 94 BINARY(4) Total in profile bytes - bytes

152 98 CHAR(14) Start time

166 A6 CHAR(14) End time

AGGR0150 Format

The AGGR0150 format includes the basic format of IntServ controlled load and IntServ controlled load
with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields in
this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 BINARY(4) Token bucket rate - kbits per second

132 84 BINARY(4) Total connections serviced - connections

136 88 BINARY(8) Total packets transmitted long - packets

144 90 BINARY(8) Total kbits transmitted long - kbits

152 98 BINARY(8) Total in profile packets long - packets

160 A0 BINARY(8) Total in profile kbits long - kbits

168 A8 CHAR(14) Start time

182 B6 CHAR(14) End time

196 C4 BINARY(4) Offset to additional information

200 C8 BINARY(4) Length of additional information

AGGR0200 Format

The AGGR0200 format includes the basic format of IntServ guaranteed rate and IntServ guaranteed rate
with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields in
this table, see Field Descriptions.

Offset

Type FieldDec Hex

Returns everything from AGGR0100

180 B4 BINARY(4) Guaranteed rate - bytes per second

184 B8 BINARY(4) Actual calculated rate - bytes per second

AGGR0250 Format

The AGGR0250 format includes the basic format of IntServ guaranteed rate and IntServ guaranteed rate
with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields in
this table, see Field Descriptions.

Offset

Type FieldDec Hex

Offset from format AGGR0150

0 0 BINARY(4) Guaranteed rate - kbits per second

4 4 BINARY(4) Actual calculated rate - kbits per second

AGGR0300 Format

The AGGR0300 Format includes the basic format of IntServ controlled load and IntServ controlled load
with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields in
this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 BINARY(4) Token bucket rate - bytes per second

132 84 BINARY(4) Token bucket depth - bytes

136 88 CHAR(1) InDSCP

137 89 CHAR(1) OutDSCP

138 8A CHAR(2) Reserved - alignment

140 8C BINARY(4) Total active connections - connections

144 90 BINARY(4) Total packets transmitted - packets

148 94 BINARY(4) Total bytes transmitted - bytes

152 98 BINARY(4) Total in profile packets - packets

156 9C BINARY(4) Total in profile bytes - bytes

160 A0 BINARY(4) Traffic profile

164 A4 CHAR(14) Start time

178 B2 CHAR(14) End time

AGGR0350 Format

The AGGR0350 Format includes the basic format of IntServ controlled load and IntServ controlled load
with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields in
this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 BINARY(4) Token bucket rate - kbits per second

132 84 BINARY(4) Token bucket depth - kbits

136 88 CHAR(1) InDSCP

137 89 CHAR(1) OutDSCP

138 8A CHAR(2) Reserved - alignment

140 8C BINARY(8) Total active connections long - connections

148 94 BINARY(8) Total packets transmitted long - packets

156 9C BINARY(8) Total kbits transmitted long - kbits

164 A4 BINARY(8) Total in profile packets long - packets

172 AC BINARY(8) Total in profile kbits long - kbits

180 B4 BINARY(4) Traffic profile

184 B8 CHAR(14) Start time

198 C6 CHAR(14) End time

INBC0100 Format

The INBC0100 Format includes connection information related to inbound IP policies. For detailed
descriptions of the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Priority

148 94 CHAR(15) Source IP address (start) - dotted decimal

163 A3 CHAR(15) Destination IP address (start) - dotted decimal

178 B2 CHAR(15) Source IP address (end) - dotted decimal

193 C1 CHAR(15) Destination IP address (end) - dotted decimal

208 D0 BINARY(4) Source port (start)

212 D4 BINARY(4) Destination port (start)

216 D8 BINARY(4) Source port (end)

220 DC BINARY(4) Destination port (end)

224 E0 BINARY(4) Average connection rate - connections per
second

228 E4 BINARY(4) Connection burst - connections

232 E8 BINARY(4) Peak connection rate - connections per second

236 EC BINARY(4) Prioritized queue

240 F0 BINARY(8) Total connections transmitted - connections

248 F8 BINARY(8) Total in profile connections - connections

256 100 BINARY(4) Duration - seconds

260 104 BINARY(4) Policy handle identifier

INBC0200 Format

The INBC0200 Format includes connection information related to URI inbound policies. For detailed
descriptions of the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Priority

148 94 CHAR(15) Destination IP address (start) - dotted decimal

163 A3 CHAR(15) Destination IP address (end) - dotted decimal

178 B2 CHAR(2) Reserved - alignment

180 B4 BINARY(4) Destination port (start)

184 B8 BINARY(4) Average URI rate - URIs per second

188 BC BINARY(4) URI burst - number of URIs

192 C0 BINARY(4) Peak URI rate - URIs per second

196 C4 BINARY(4) Prioritized queue

200 C8 BINARY(8) Total URIs transmitted - number of URIs

208 D0 BINARY(8) Total in profile URIs - number of URIs

216 D8 BINARY(4) Duration - seconds

220 DC BINARY(4) Policy handle identifier

224 E0 CHAR(128) URI name

Field Descriptions

The field descriptions returned by this API for the various format types follows.

Actual calculated rate.. Actual calculated rate in bytes per second.

Average connection rate - connections per second. The average number of new requests (connections)
admitted per second.

Average URI rate - URIs per second. The average number of new URIs admitted per second.

Connection burst - number of connections. The maximum number of new requests (connections)
accepted concurrently.

Destination IP address (end). The end of destination IP address range. IP address is in dotted decimal
format.

Destination IP address (start). The start of the destination IP address range. IP address is in dotted
decimal format. This value will be used if only one destination IP address is selected

Destination port (end). The end of the destination port range.

Destination port (start) The start of the destination port range. This value is used if only one port is
selected

Duration. The Duration is the amount of time between the last query and the present qurey. This value is
only set for Collected date.

End time. The ending time over which the aggregation was performed.

Guaranteed rate - bytes per second. The guaranteed rate in bytes per second.

InDSCP. The field used to select the per hop behavior (PHB) a packet will experience at each node.

Maximum packet size - bytes. The largest datagram that conforms to the traffic specifications.

Minimum policed unit - bytes. The smallest number of bytes that will be removed from the token bucket.

OutDSCP. The field used to select the per hop behavior (PHB) a packet will experience at each node.

Peak connection rate - connections per second. The maximum allowable rate at which the source can
inject connections into the network.

Peak data rate - bytes per second. The maximum rate at which the source and any reshaping point may
inject burst of traffic into the network.

Peak URI rate - URI per second. The maximum allowable rate at which the source can inject
connections into the network.

Policy handle identifier. Is a unique handle for any given policy.

Policy name. The name of the policy with which the data is associated.

Priority. The priority assigned to each rule loaded in the QoS Manager.

Prioritized queue - The order the listen queue of the server processes incoming connections.

Protocol. The message protocol. Protocols may include:

6 TCP

17 UDP

255 RAW

Reserved - alignment. An ignored field.

Slack term - seconds. The difference between the desired delay and the delay obtained.

Source IP address (end). The end of the source IP address range. IP address is in dotted decimal format.

Source IP address (start). The start of the source IP address range. IP address is in dotted decimal format.
This value is used if only one source IP address is selected

Source port (end). The end of the source port range.

Source port (start). The start of the source port range. This value is used if only one port is selected

Start time. The starting time over which the aggregation was performed.

Time stamp. The date and time the data was retrieved from the QoS Manager. The time is formatted with a
24-hour clock, and is in the format YYYYMMDDHHMMSS.

Token bucket depth - bytes. The number of tokens that can be stored in a given bucket.

Token bucket rate - bytes per second. The rate at which tokens can be sent into the network.

Total active connections. The total number of active connections.

Total active connections long - connections The total number of active connections. If this value is
greater then 4,294,967,295 then the counter will wrap and start back at 1.

Total bytes transmitted - bytes. The total number of bytes transmitted. If this value is greater then
4,294,967,295 then the counter will wrap and start back at 1.

Total bytes transmitted long - bytes The total number of bytes transmitted.

Total connections serviced - number of connections. The total number of connections serviced.

Total connections transmitted - number of connections The total number of bytes transmitted.

Total in profile bytes - bytes. The total number of bytes transmitted in the profile. If this value is greater
then 4,294,967,295 then the counter will wrap and start back at 1.

Total in profile bytes long - bytes The total number of bytes transmitted in profile.

Total in profile connections - connections. The total number of connection in the profile.

Total in profile packets - number of packets. The total number of in profile packets transmitted. If this
value is greater then 4,294,967,295 then the counter will wrap and start back at 1.

Total in profile packets long - number of packets The total number of in profile packets transmitted.

Total in profile URIs - number of URIs. Total number of in profile URIs transmitted.

Total packets transmitted - number of packets. The total number of packets transmitted. If this value is
greater then 4,294,967,295 then the counter will wrap and start back at 1.

Total packets transmitted long - number of packets The total number of packets transmitted.

Total URIs transmitted - number of URIs. The total number of URIs transmitted.

Traffic profile. The type of packet conditioning used on out-of-profile packets. The format may include:

1 Marking

2 Shaping

3 Dropping

4 Single marking

URI burst - number of URIs. The maximum number of new pages accepted concurrently.

URI name. A string of characters that repersents the URI.

Error Messages

Message ID Error Message Text

TCP9215 E QoS Monitor is active (not a valid state).

CPF0F03 E Error in retrieving the user space that was created by the caller.

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter 1 omitted.

CPF3C21 E Format name 1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF9802 E Not authorized to object 2 in 3.

CPF9810 E Library 1 not found.

CPF9820 E Not authorized to use library 1.

CPF9872 E Program or service program 1 in library 2 ended. Reason code 3.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

Delete QoS Monitor Data
(QtoqDeleteQoSMonitorData) API

 Required Parameter Group:

1 QoS collection name or names Input Array of Char(10)
2 Length of QoS collection name or names Input Binary(4)
3 Error code I/O Char(*)

 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The Delete QoS Monitor Data (QtoqDeleteQoSMonitorData) API allows the user to delete one or more
sets of collected QoS monitor data.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

QoS collection name or names

INPUT; CHAR(*)

The QoS collected name or names is an array of names the user wishes to delete.

Number of QoS collection name or names

INPUT; BINARY(4)

The length of the QoS collection names array. This value should be in multiples of 10.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9810 E Library &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

End QoS Monitor (QtoqEndQoSMonitor) API

 Required Parameter Group:

1 Error Code I/O Char(*)

 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The End QoS Monitor (QtoqEndQoSMonitor) API allows the user to stop gathering information related
to QoS services.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

TCP9216 E QoS Monitor is not active (not a valid state).

CPF24B4 E Severe error addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error (s) occurred during running of &1 API.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

List Saved QoS Monitor Data
(QtoqListSavedQoSMonitorData) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 List information Output Char(80)
4 Number of records to return Input Binary(4)
5 Format name Input Char(8)
6 Error code I/O Char(*)

 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The List Saved QoS Monitor Data (QtoqListSavedQoSMonitorData) API allows the user to return a list
of all collected monitor data that was saved previously.

Authorities and Locks

Special Authority

NONE.

Required Parameter Group

Receiver Variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

List information

OUTPUT; CHAR(80)

The variable used to return status information about the list of QoS monitor data that was opened.
For a description of this parameter, see Format of open list information.

Number of returned records

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

The format of the space information to be returned. The format name supported is:

QTOQ0100 Returns a list of names which are user spaces that contains QoS Monitor Data.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

QTOQ0100 Format

The QTOQ0100 format includes the complete information for a saved QoS collected data object. For
detailed descriptions of the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) QoS collection name

10 A CHAR(50) QoS collection description text

Field Descriptions

QoS collection description text. The QoS collection description text is a user-defined string of characters
that are associated with each QoS collected monitor data.

QoS collection name. The name of each QoS collected monitor data found.

Error Messages

Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9810 E Library &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

Save QoS Monitor Data
(QtoqSaveQoSMonitorData) API

 Required Parameter Group:

1 QoS collection name Output Char(10)
2 Description text Input Char(50)
3 Error code I/O Char(*)

 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The Save QoS Monitor Data (QtoqSaveQoSMonitorData) API allows the user to save a copy of the
collected QoS monitor data for future use. The user is allowed to apply a description text field to the saved
object of up to 50 characters. The actual name of the object is generated automatically by the API and
returned to the user.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

QoS collection name

OUTPUT; CHAR(10)

The QoS collection name automatically generated by the save command.

Description Text

INPUT; CHAR(50)

A user-friendly description of the collected data object that the user wishes to save.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9810 E Library &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

Start QoS Monitor (QtoqStartQoSMonitor) API

 Required Parameter Group:

1 Wrap Input Binary(4)
2 Buffer size Input Binary(4)
3 Granularity Input Binary(4)
4 Error Code I/O Char(*)

 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The Start QoS Monitor (QtoqStartQoSMonitor) API allows the user to gathering information related to
QoS services.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

Wrap

INPUT; BINARY(4)

Allows the user the option to continuously wrap the data buffer. The following values may be
specified:

0 Do not wrap the buffer

1 Wrap the buffer

Buffer size

INPUT; BINARY(4)

The size of the buffer that will contain the user data.

Note: The buffer size is in kilobytes and can range from 16 to 16384.

Granularity

INPUT; BINARY(4)

The interval in seconds to update the trace information.

Note: The granularity is in seconds and can range from 5 to 86400.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

TCP9215 E QoS Monitor is active (not a valid state).

CPF24B4 E Severe error addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error (s) occurred during running of &1 API.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_dispatch()--Dispatch the RAPI
message-handling routine

 Syntax

 #include <rapi.h>
 int rapi_dispatch(void)

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi-dispatch() API dispatches the RAPI message-handling routine defined in the rapi_session() call.
The application should call this routine whenever a read event is signaled on a file descriptor returned by
the rapi_getfd() API call. This routine may be called at any time, but generally it has no effect unless there
is a pending event.

Calling this routine may result in one or more RAPI message-handling routines to the application from any
of the Open API sessions known to this instance of the library.

Parameters

None.

Authorities

None.

Return Value

Returns 0 if successful.

RAPI error code if it fails.

Error Conditions

[RAPI_ERR_NORSVP] RSVP server was not detected. Make sure the RSVP server is running.

[RAPI_ERR_MEMFULL] Unable to allocate memory. Check the system memory status.

[RAPI_ERR_INVAL] Error detected in the RSVP specifications being handled by the RAPI
message-handling routine.

Usage Notes

The rapi_session() API must be called to create a valid session before this API is called. This API typically
is called to respond to an event received on the file descriptor returned by the rapi_getfd() API call.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_fmt_adspec()--Format a RAPI Adspec

 Syntax

 #include <rapi.h>
 void rapi_fmt_addspec(
 rapi_adspec_t *pAdspec,
 char *pBuffer,
 int size
)

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_fmt_adspec() API formats a RAPI Adspec into a string suitable for printing by converting the
RAPI Adspec information that has been passed to the API into a string in the supplied buffer. The Adspec
is a data element in the RSVP "path" message that carries a package of OPWA advertising information.
This information contains data about the available end-to-end service available to the receivers of data and
can be used to predict what service is available. The output string is truncated if the length of the string
exceeds the buffer size.

Parameters

pAdspec

(Input) Required
A pointer to the Adspec to be formatted.

pBuffer

(Input/Output) Required
A pointer to the buffer to be used.

size

(Input) Required
The length of the supplied buffer.

Authorities

None.

Return Value

None.

Error Conditions

None.

Usage Notes

This API can be used to format the contents of the Adspec information that has been to the API into a string
that can be displayed at the local output device.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_fmt_filtspec()--Format a RAPI Filter spec

 Syntax

 #include <rapi.h>
 void rapi_fmt_filtspec(
 rapi_filter_t *pFiltspec,
 char *pBuffer,
 int size

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_fmt_filtspec() API formats a RAPI Filter spec into a string suitable for printing by converting the
RAPI filtspec information that has been passed to the API into a string in the buffer that has been passed to
the API. The filtspec defines the set of data packets that should receive the QoS defined in the flowspec.
The output string is truncated if the length exceeds the buffer size.

Parameters

pFiltspec

(Input) Required
A pointer to the filter spec structure to be formatted.

pBuffer

(Input/Output) Required
A pointer to the buffer to be used.

size

(Input) Required
The length of the supplied buffer.

Authorities

None.

Return Value

None.

Error Conditions

None.

Usage Notes

This API can be used to format the contents of the filter spec information that has been passed to the API
into a string that can be displayed at the local output device.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_fmt_flowspec()--Format a RAPI Flowspec

 Syntax

 #include <rapi.h>
 void rapi_fmt_flowspec(
 rapi_flowspec_t *pFlowspec,
 char *pBuffer,
 int size

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_fmt_flowspec() API formats a RAPI Flowspec into a string suitable for printing by converting
the RAPI flowspec information that has been passed to the API into a character string in the buffer that was
passed to the API. The flowspec defines the QoS that is to be provided to the data flow. The output string is
truncated if the length of the string exceeds the buffer size.

Parameters

pFlowspec

(Input) Required
A pointer to the flowspec to be formatted.

pBuffer

(Input/Output) Required
A pointer to the buffer to be used.

size

(Input) Required
The length of the supplied buffer.

Authorities

None.

Return Value

None.

Error Conditions

None.

Usage Notes

This API can be used to format the contents of the Flowspec information that has been passed to the API
into a string that can be displayed at the local output device.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_fmt_tspec()--Format a RAPI Tspec

 Syntax

 #include <rapi.h>

 void rapi_fmt_tspec(
 rapi_tspec_t *pTspec,
 char *pBuffer,
 int size

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_fmt_tspec() formats a RAPI Tspec into a string suitable for printing by converting the RAPI
Tspec information that has been passed to the API into a string in the buffer that has been passed to the
API. The Tspec defines the traffic parameter set that defines a flow. The output string is truncated if the
length of the string exceeds the buffer size.

Parameters

pTspec

(Input) Required
A pointer to the Tspec to be formatted.

pBuffer

(Input/Output) Required
A pointer to the buffer to be used.

size

(Input) Required
The length of the supplied buffer.

Authorities

None.

Return Value

None.

Error Conditions

None.

Usage Notes

This API can be used to format the contents of the Tspec information that has been passed to the API into a
string that can be displayed at the local output device.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_getfd()--Get descriptor to wait on

 Syntax

 #include <rapi.h>
 int rapi_getfd(rapi_sid_t SessID)

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_getfd() API returns the file descriptor associated with a successful rapi_session() call. This
descriptor is valid until rapi_release() has been called. When a read event is signaled on this file descriptor,
the application should userapi_dispatch() to call the RAPI message-handling routine to handle the event.

Parameters

SessID

(Input) Required
The session ID returned by a successful rapi_session() call.

Authorities

None.

Return Value

Returns a valid file descriptor if the SessID is valid.

Returns -1 if the SessID is not valid.

Error Conditions

None.

Usage Notes

The returned file descriptor can be used to wait on a select() or poll() call; it also can be used to wait on a
select() call for a response from an API request. When the response is received, the rapi_dispatch() API
can be used to call the RAPI message-handling routine defined in the rapi_session() call.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_release()--Release the currently active
RAPI reservation

 Syntax

 #include <rapi.h>
 int rapi_release(rapi_sid_t SessID)

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_release() API releases the RAPI reservation that is active currently and closes the open sessions.
This call is made implicitly if the application terminates without closing its RSVP sessions.

Parameters

SessID

(Input) Required
The session ID returned by a successful rapi_session() call.

Authorities

None.

Return Value

Returns 0 if successful.

Returns a RAPI error code if not successful.

Error Conditions

[RAPI_ERR_BADSID] The session ID passed to the API did not correspond to a valid RAPI session.

[RAPI_ERR_NORSVP] The RSVP server was not detected. Make sure the server has been started.

Usage Notes

The rapi_session() API must be called to establish a session ID to be used with the other RAPI
APIs.

1.

The RSVP server must be running before any of the RAPI APIs are called.2.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_reserve()--Make, modify, or delete a RAPI
reservation

 Syntax

 #include <rapi.h>
 int rapi_reserve(
 rapi_sid_t SessID
 int flags
 rapi_addr_t *SessAddr
 rapi_styleid_t style
 rapi_stylex_t *style_ext
 rapi_policy_t *RcvPol
 int numFilt
 rapi_filter_t *FspecLst
 int numFlow
 rapi_flowspec_t *Flowlst

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The RSVP receiver uses the the rapi_reserve() API to make, modify, or delete an RSVP reservation in the
network. This call causes an RSVP RESERVE message to be sent to the sender through the network. This
API should be called after a PATH message has been received from the sender.

Parameters

SessID

(Input) Required
Session ID returned by a successful rapi_session() call.

flags

(Input) Required
Set to 0 if not used.
RAPI_REQ_CONFIRM 32

Requests confirmation of the reservation by means of a confirmation RAPI
message-handling routine (type RAPI_RESV_CONFIRM).

❍

SessAddr

(Input) Required
A pointer to a rapi_addr_t structure that defines the interface address to receive data for multicast
flows. If omitted or the host address is INADDR_ANY, the default interface is assumed. It is set to

0 if not used.

style

(Input) Required
A reservation style ID (see table below).

style_ext

(Input) Optional
A pointer to a style-dependent extension to the parameter list if there is one. Otherwise, it is NULL.

RcvPol

(Input) Optional
A pointer to a policy data structure. It is set to NULL if not used.

NumFilt

(Input) Required
The number of filter specs. If the NumFilt parameter is 0, the FspecLst parameter is ignored.

FspecLst

(Input) Optional
A pointer to an area containing a sequential vector of RAPI filter spec objects. It is set to NULL if
not used.

numFlow

(Input) Required
The number of flow specs. If numFlow is zero, the call removes the current reservations for the
specified session and FSpecLst. The FlowLst parameter will be ignored.

FlowLst

(Input) Optional
A pointer to an area containing a sequential vector of RAPI flowspec objects. The number of
objects is specified in the numFlow parameter. If the numFlow parameter is 0, this input is ignored
and should be set to NULL.

RAPI Styles

Style Type Style ID Description

Wildcard Filter(WF) RAPI_RSTYLE_WILDCARD The Flowspec_list parameter may be empty
(to delete the reservation) or else point to a
single flowspec. The FilterSpec_list parameter
may be empty or it may point to a single filter
spec containing appropriate wildcard(s).

Fixed Filter(FF) RAPI_RSTYLE_FIXED FilterSpecNo must equal FlowspecNo. Entries
Flowspec_list and FilterSpedc_list parameters
will correspond in pairs.

Shared Explicit(SE) _RSTYLE_SE The Flowspec_list parameter should point to a
single flowspec. The FilterSpec_list parameter
may point to a list of any length.

Authorities

None.

Return Value

Returns 0 if successful.

RAPI error code if it fails.

Error Conditions

[RAPI_ERR_INVAL] One or more of the parameters that was passed to the API was not valid.

[RAPI_ERR_BADSID] The session ID that was passed to the API did not correspond to an active
RAPI session.

[RAPI_ERR_NORSVP] The RSVP server was not detected. Make sure the RSVP server is running.

Usage Notes

If this call is successful, the application RAPI message-handling routine of type RAPI_RESV_ERROR or
RAPI_RESV_CONFIRM may be generated. A rejection of the reservation request or other failure is
reported by an RAPI message-handling routine of type API_RESV_ERROR. An error code of
RSPV_Err_NO_PATH indicates that the RSVP state from one or more of the senders specified in filter_list
has not yet propagated all the way to the receiver; it may also indicate that one or more of the specified
senders has closed its API session and that its RSVP state has been deleted from the routers.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_sender()--Identify a RAPI sender

 Syntax

 #include <rapi.h><

 int rapi_sender (
 rapi_sid_t SessID,
 int flags,
 rapi_addr_t *LocalAddr,
 rapi_filter_t *Filter,
 rapi_tspec_t *SndTspec,
 rapi_adspec_t *SndAdspec,
 rapi_policy_t *SndPol,
 int Ttl

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_sender() API identifies an RSVP sender to potential receivers of the data. This API causes an
RSVP path message to be sent to the receiver defined by the SessID value obtained by a rapi_session call.

Parameters

SessID

(Input) Required
The session ID returned by a successful rapi_session() call. A session ID that is not valid will
cause the API to fail.

flags

(Input) Required
Either a zero or the following flags may be used.

2 TC_QOS_POLICE Turn traffic policing on.

4 TC_QOS_NOPOLICE Turn traffic policing off.

8 TC_QOS_SHAPE Turn traffic shaping on.

16 TC_QOS_NOSHAPE Turn traffic shaping off.

LocalAddr

(Input) Optional
A pointer to a rapi_addr_t structure defining the IP source address and, if needed, the source port or
flow label from which data will be sent. It is set to NULL if not used. The format of a rapi_addr_t
is implementation-dependent.

Filter

(Input) Optional
A pointer to a RAPI filter spec structure defining the format of the data packets to be sent. It is set
to NULL if not used. If this parameter is NULL, a sender template is created internally from the
Dest and LocalAddr parameters. The Dest parameter was provided as part of the rapi_session()
call. If the Filter parameter is present, the LocalAddr parameter is ignored.

If the session is using IPSEC, this parameter is required.

SndTspec

(Input) Required
A pointer to a Tspec that defines the traffic this sender will create.

SndAdspec

(Input) Optional
A pointer to a RAPI Adspec structure. It is set to NULL if not used.

SndPol

(Input) Optional
A pointer to a sender policy data structure. It is set to NULL if not used.

Ttl

(Input) Required
The IP TTL (Time-to-Live) value for sending multicast data. It allows RSVP to send its control
messages with the same TTL scope as the data packets. It is set to 0 if not used.

Authorities

None.

Return Value

Returns 0 if successful.

A RAPI error code is returned if it fails.

Error Conditions

[RAPI_ERR_INVAL] A parameter that is not valid was passed to the API.

[RAPI_ERR_BADSID] The session ID passed to the API was valid.

[RAPI_ERR_NOTSPEC] No sender Tspec was defined for the API call.

[RAPI_ERR_NORSVP] The RSVP server did not respond to the API request. Make sure the RSVP
server is running.

Usage Notes

The rapi_session() API must be called to establish a session ID to be used with the other RAPI
API's.

1.

The RSVP server must be running before any of the RAPI APIs are called.2.

The formats of the parameter structures are defined in the <rapi.h> header file.3.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_session()--Create a RAPI session

 Syntax

 #include <rapi.h>
 rapi_sid_t rapi_session(
 rapi_addr_t *Dest,
 int Protid,
 int flags,
 rapi_event_rtn_t Event_rtn,
 void *Event_arg,
 int *errnop

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_session() API returns an API session ID that is unique to this request. This ID is used in calling
the other RAPI APIs to identify which RSVP session is being requested.

Parameters

Dest

(Input) Required
A pointer to a rapi_addr_t structure defining the destination IP address and a port number that is the
target of the data. The dest and protid parameters are used to identify an RSVP session. If the
protid specifies UDP or TCP transport, the port value identifies the appropriate transport port
number. The format of the rapi_addr_t structure is implementation-dependent.

Protid

(Input) Required
The IP protocol ID for the session. This value can be either 17(UDP) or 6(TCP). If is is zero, then
17(UDP) is assumed.

flags

(Input) Required
The flags value is set as follows:

1 RAPI_USE_INTSERV Currently, the only flag supported. If this flag is set, IntServ
formats are used in the RAPI message-handling routines. I f this
flag is not set, the simplified format is used.

Event_rtn

(Input) Required
A pointer to a RAPI message-handling routine that is called to communicate RSVP errors and state
change events to the calling application. The RAPI message-handling routine is called when the
rapi_dispatch() API is called as the result of events. This pointer is used with select() or poll().
This routine must be supplied by the application calling the API.

Event_arg

(Input/Output) Optional
An argument data that is passed to the RAPI message-handling routine function when it is called. It
is set to NULL if not used.

errnop

(Input/Output) Required
A pointer to an integer in which a RAPI error code will be returned.

Authorities

None

Return Value

Successful completion of this function returns a nonzero session handle that can be used in further RAPI
calls for this session. If the call fails, it returns zero (RAPI_NULL_SID) and stores a RAPI error code in the
integer errnop parameter.

Error Conditions

[RAPI_ERR_NORSVP] The RSVP server did not respond to the API request. Make sure the
RSVP server is running.

[RAPI_ERR_UNSUPPORTED] The flags parameter was set to an unsupported value.

[RAPI_ERR_SYSCALL] There was a problem calling a system function. Check the system
errno for further information.

[RAPI_ERR_INVAL] A parameter that is not valid was used in the API call.

[RAPI_ERR_MAXSESS] The maximum number of available RAPI sessions has been exceeded.

Usage Notes

The rapi_session() API must be called to establish a session ID to be used with the other RAPI
APIs.

1.

The RSVP server must be running before any of the RAPI APIs are called.2.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

rapi_version()--Retrieve the current RAPI
version

 Syntax

 #include <rapi.h>
 int rapi_version(void)

 Service program name: QSYS/QTOQRAPI

 Default public authority: *USE

 Threadsafe: Yes

The rapi_version() API returns the RAPI version currently being used by the RSVP agent.

Parameters

None.

Authorities

None.

Return Value

An integer representing the version number of the RAPI interface. The value defines a major and minor
number that is encoded as "100*major + minor".

Error Conditions

None.

Usage Note

None.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Resource Reservation Setup Protocol APIs (V5R2)
	Table of Contents
	Resource Reservation Setup Protocol APIs
	qtoq_accept()--Accept QoS Sockets Connection API
	qtoq_close()--Close QoS Sockets Connection API
	qtoq_connect()--Make QoS Sockets Connection API
	qtoq_ioctl()--Set QoS Sockets Control Options API
	Open List of QoS Monitor Data (QgyOpenListQoSMonitorData) API
	Delete QoS Monitor Data (QtoqDeleteQoSMonitorData) API
	End QoS Monitor (QtoqEndQoSMonitor) API
	List Saved QoS Monitor Data (QtoqListSavedQoSMonitorData) API
	Save QoS Monitor Data (QtoqSaveQoSMonitorData) API
	Start QoS Monitor (QtoqStartQoSMonitor) API
	rapi_dispatch()--Dispatch the RAPI message-handling routine
	rapi_fmt_adspec()--Format a RAPI Adspec
	rapi_fmt_filtspec()--Format a RAPI Filter spec
	rapi_fmt_flowspec()--Format a RAPI Flowspec
	rapi_fmt_tspec()--Format a RAPI Tspec
	rapi_getfd()--Get descriptor to wait on
	rapi_release()--Release the currently active RAPI reservation
	rapi_reserve()--Make, modify, or delete a RAPI reservation
	rapi_sender()--Identify a RAPI sender
	rapi_session()--Create a RAPI session
	rapi_version()--Retrieve the current RAPI version

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

