UNIX-Type APIs (V5R2)

Process-Related APIs

Table of Contents

Process-Related APls
¢ APIs

[}

getopt() (Get flag letters from argument vector)
getparp() (Get process group I1D)
getpid() (Get process ID)
getppid() (Get process ID of parent process)
o Agetrlimit() (Get resource limit)<
o pipe) (Create interprocess channel)
o QlgSpawn() (Spawn process (using NL S-enabled path name))
o QlgSpawnp() (Spawn process with path (using NL S-enabled file name))
0 QpOwChkChld() (Check status for child processes)
o QpOwChkPgarp() (Check status for process group)
o QpOwChkPid() (Check status for process ID)
o QpOwGetJoblD() (Get qualified job name and ID for process ID)
0 QpOwGetPgrp() (Get process group I1D)
0 QpOwGetPid() (Get process D)
o QpOwGetPidNolnit (Get process ID without initializing for signals)
o QpOwGetPPid() (Get process ID of parent process)
o QpOzPipe() (Create interprocess channel with sockets)
o Qp0zSystem() (Run a CL command)
o setpaid() (Set process group 1D for job control)
o Arsetrlimit() (Set resource limit)<4
o spawn() (Spawn process)
o spawnp() (Spawn process with path)
o Zulimit() (Get and set process limits)&
o wait() (Wait for child process to end)
o waitpid() (Wait for specific child process)
» About shell scripts

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

O

O

0O

Process-Related APIs

The process-related APIs perform process-related or other general operations. These APIs are C language
functions that can be used in ILE C programs.

The process-related APIs are:

getopt() (Get flag letters from argument vector) returns the next flag letter in the argv list that
matches a letter in optionstring.

getparp() (Get process group ID) returns the process group 1D of the calling process.

getpid() (Get process D) returns the process ID of the calling process.

getppid() (Get process ID of parent process) returns the parent process ID of the calling process.
#rgetrlimit() (Get resource limit) returns the resource limit for the specified resource.

pipe() (Create interprocess channel) creates a data pipe and places two file descriptors, one each

into the arguments fildes[0] and fildeg[1], that refer to the open file descriptions for the read and
write ends of the pipe, respectively.

QlgSpawn() (Spawn process (using NL S-enabled path name)) creates a child process that inherits
specific attributes from the parent.

QlgSpawnp() (Spawn process with path (using NLS-enabled file name)) creates a child process that
inherits specific attributes from the parent.

QpOwChkChld() (Check status for child processes) returns the status and process table entry
information for the child processes of the specified process ID.

QpOowChkPgrp() (Check status for process group) returns the status and process table entry

information for the processes that are members of the process group identified by pid in the
structure QPOW_PID_Entry T.

QpOwChkPid() (Check status for process ID) returns the status and process table entry information
for the process specified by the process ID pid.

QpOwGetJobl D() (Get qualified job name and ID for process ID) returns the qualified job name
and internal job identifier for the process whose process ID matches pid.

QpowGetPgrp() (Get process group D) returns the process group 1D of the calling process.
QpowGetPid() (Get process ID) returns the process ID of the calling process.
QpOowGetPidNolnit (Get process ID without initializing for signals) returns the process ID of the
calling process without enabling the process to receive signals.

QpowGetPPid() (Get process ID of parent process) returns the parent process ID of the calling
process.

QpOzPipe() (Create interprocess channel with sockets) creates a data pipe that can be used by two
processes.

QpozSystem() (Run a CL command) spawns a new process, passes CL.command to the CL
command processor in the new process, and waits for the command to compl ete.

setpgid() (Set process group 1D for job contral) is used to either join an existing process group or
create a new process group within the session of the calling process.

“rsetrlimit() (Set resource limit) sets the resource limit for the specified resource. &

spawn() (Spawn process) creates a child process that inherits specific attributes from the parent.

spawnp() (Spawn process with path) creates a child process that inherits specific attributes from the
parent.

#ulimit() (Get and set process limits) provides away to get and set process resource limits.4%

wait() (Wait for child process to end) suspends processing until a child process has ended.

waitpid() (Wait for specific child process) allows the calling thread to obtain status information for
one of its child processes.

For additional information, see About shell scripts.

Top | UNIX-Type APIs| APIs by category

getopt()--Get Flag Letters from Argument
Vector

Syntax

#i ncl ude <uni std. h>

int getopt(int argc, char * const argv|[],
const char *optionstring);

Service Program Name: QPOZCPA
Default Public Authority: * USE

Threadsafe: No

The getopt() function returns the next flag letter in the argv list that matches a letter in optionstring. The
optarg external variable is set to point to the start of the flag's parameter on return from getopt()

getopt() places the argv index of the next argument to be processed in optind. The optind variable is
external. It isinitialized to 1 before the first call to getopt().

getopt() can be used to help a program interpret command line flags that are passed to it.

Parameters

argc
(Input) The number of parameters passed by the function.

argv
(Input) Thelist of parameters passed to the function.

optionstring

(Input) A string of flag letters. The string must contain the flag letters that the program using
getopt() recognizes. If aletter isfollowed by a colon, the flag is expected to have an argument or
group of arguments, which can be separated from it by blank spaces.

The special flag "--" (two hyphens) can be used to delimit the end of the options. When thisflag is
encountered, the "--" is skipped and EOF is returned. Thisflag is useful in delimiting arguments
beginning with a hyphen that are not options.

Authorities

None.

Return Value

EOF getopt() processed al flags (that is, up to the first argument that is not a flag).

7 getopt() encountered aflag letter that was not included in optionstring. The variable optopt is set
to the real option found in argv regardless of whether the flag isin optionstring of not. An error
message is printed to st der r . The generation of error messages can be suppressed by setting
opterr to O.

Error Conditions

The getopt() function does not return an error.

Example

See Code disclaimer information for information pertaining to code examples.

The following example processes the flags for a command that can take the mutually exclusive flags a and
b, and the flags f and o, both of which require parameters.

#i ncl ude <uni std. h>

int main(int argc, char *argv[])
{

int c;

extern int optind,

extern char *optarg;

Mile ((c = getopt(argc, argv, "abf:o0:")) !'= EOF)
switch (c)

case 'a':
if (bflg)
errfl g++;
el se
af | g++;
br eak;
case 'b':
if (aflg)
errfl g++;
el se

bf | g++;

br eak;

case 'f'
ifile = optarg;
br eak;

case '0':
ofile = optarg;
br eak;

case '?':
errfl g++;

} /* case */

if (errflg)
fprintf(stderr, "usage: . . . ");
exit(2);

}

}I* while */

for (; optind < argc; optind++)

if (access(argv[optind], R OK))

}
} /* for */
} /* main */

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

getpgrp()--Get Process Group ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

pid_t getpgrp(void);
Service Program Name: QPOWSRV 1

Default Public Authority: * USE

Threadsafe: Yes

The getpgrp() function returns the process group 1D of the calling process.

Parameters

None

Authorities

None.

Return Value

pid_t Thevaue returned by getpgrp() isthe process group ID of the calling process.

Error Conditions

The getpgrp() function is aways successful and does not return an error.

Usage Notes

The getpgrp() function enables a process for signalsif the processis not already enabled for signals. For
details, see QpOsEnableSignal s()--Enable Process for Signals.

Related Information

o The <syd/types.h> file (see Header Files for UNIX-Type Functions)

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

o OpOwGetParp()--Get Process Group ID

Example

For an example of using this function, see the child program in Using the Spawn Process and wait for Child
Process APIsin Appendix A, Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

getpid()--Get Process ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

pid t getpid(void);

Service Program Name: QPOWSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The getpid() function returns the process ID of the calling process.

Parameters

None

Authorities

None.

Return Value

pid_t Thevaue returned by getpid() isthe process ID of the calling process.

Error Conditions

The getpid() function is always successful and does not return an error.

Usage Notes

The getpid() function enables a process for signals if the process is not already enabled for signals. For
details, see QpOsEnableSignal s()--Enable Process for Signals.

Related Information

o The <syd/types.h> file (see Header Files for UNIX-Type Functions)

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

Op0sDisableSignal s()--Disable Process for Signals

OpOsEnableSignals()--Enable Process for Signals

QpOwGetPid()--Get Process ID

QpOwGetPidNol nit()--Get Process ID without Initidlizing for Signals

Example

For an example of using this function, see the child program in Using the Spawn Process and Wait for the
Child Process APIsin Appendix A, Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

getppid()--Get Process ID of Parent Process

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

pid t getppid(void);

Service Program Name: QPOWSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The getppid() function returns the parent process ID of the calling process.

Parameters

None

Authorities

None.

Return Value

pid_t Thevaue returned by getppid() isthe process ID of the parent process for the calling process. A
process ID value of 1 indicates that there is no parent process associated with the calling process.

Error Conditions

The getppid() function is always successful and does not return an error.

Related Information

o The <sydtypes.h> file (see Header Files for UNIX-Type Functions)

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

o OpOwGetPPid()--Get Process | D of Parent Process

Example

For an example of using this function, see the child program in Using the Spawn Process and Wait for
Child Process APIsin Appendix A, Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

»getrlimit()--Get resource limit

Syntax

#i ncl ude <sys/resource. h>

int getrlimt(int resource, struct rlinmt *rlp);
Service Program Name: QPOWSRV 1

Default Public Authority: *USE

Threadsafe: Yes

The getrlimit() function returns the resource limit for the specified resource. A resource limit isaway for
the operating system to enforce alimit on a variety of resources used by a process. A resource limit is
represented by arlimit structure. The rlim_cur member specifies the current or soft limit and the rlim_max
member specifies the maximum or hard limit.

The getrlimit() function supports the following resources:
RLIMIT_FSZE (0) The maximum size of afilein bytesthat can be created by a process.
RLIMIT_NOFILE (1) The maximum number of file descriptors that can be opened by a process.
RLIMIT_CORE (2) The maximum size of acorefile in bytes that can be created by a process.
RLIMIT_CPU (3) The maximum amount of CPU time in seconds that can be used by a process.
RLIMIT_DATA (4) The maximum size of a process data segment in bytes.
RLIMIT_STACK (5) The maximum size of a process stack in bytes.

RLIMIT_AS(6) The maximum size of aprocess total available storage in bytes.

Thevaue of RLIM_INFINITY isconsidered to be larger than any other limit value. If the value of the limit
isRLIM_INFINITY, then alimit is not enforced for that resource. The getrlimit() function always returns
RLIM_INFINITY for the following resources: RLIMIT_AS, RLIMIT_CORE, RLIMIT_CPU,
RLIMIT_DATA, and RLIMIT_STACK.

Parameters

resource
(Input)
The resource to get the limitsfor.

*rip
(Output)

Pointer to astruct rlim_t where the values of the hard and soft limits are returned.

Authorities and Locks

None.

Return Value

0 getrlimit() was successful.

-1 getrlimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If getrlimit() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.
In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINVAL] Aninvalid parameter was found.

Aninvalid resource was specified.

Related Information

« The<sys/resource.h> file (see Header Files for UNIX-Type Functions)

o Setrlimit()-Set resource limit

o ulimit()-Get and set process limits

Example

#i ncl ude <sys/resource. h>
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <errno. h>

int main (int argc, char *argv[])

{

struct rlimt limt;

/* Set the file size resource limt. */

limt.rlimecur 65535;

limt.rlimnmax 65535;

if (setrlimt(RLIMT_FSIZE, & imt) !'=0) {
printf("setrlimt() failed with errno=%\n", errno);
exit(1);

/* Get the file size resource limt. */
if (getrlimt(RLIMT_FSIZE, &imt) !'=0) {
printf("getrlimt() failed with errno=%\n", errno);

exit(1);
}
printf("The soft Iimt is %lu\n", limt.rlimcur);
printf("The hard Iimt is %lu\n", limt.rlimmx);
exit(0);

}
Example Output:

The soft limt is 65535
The hard limt is 65535

&

Introduced: V5R2

Top | UNIX-Type APIs| APIs by category

pipe()--Create an Interprocess Channel

Syntax

#i ncl ude <uni std. h>

int pipe(int fildes[2]);
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Yes

The pipe() function creates a data pipe and places two file descriptors, one each into the arguments
fildeg O] and fildeq] 1], that refer to the open file descriptions for the read and write ends of the pipe,
respectively. Their integer values will be the two lowest available at the time of the pipe() call. The
O_NONBLOCK and FD_CLOEXEC flags will be clear on both descriptors. NOTE: these flags can,
however, be set by the fentl() function.

Data can be written to the file descriptor fildes[1] and read from file descriptor fildes[0]. A read on the file
descriptor fildeg 0] will access datawritten to the file descriptor fildeg[1] on afirst-in-first-out basis. File
descriptor fildeg Q] is open for reading only. File descriptor fildes[1] is open for writing only.

The pipe() function is often used with the spawn() function to allow the parent and child processes to send
data to each other.

Upon successful completion, pipe() will update the access time, change time, and modification time of the
pipe.

Parameters

fildeq 2]
(Output) Aninteger array of size 2 that will receive the pipe descriptors.

Authorities

None.

Return Value

0 pipe() was successful.

-1 pipeg() was not successful. The errno variableis set to indicate the error.

Error Conditions

If pipe() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT]

[EMFILE]

[ENFILE]

[ENOMEM]

[EUNKNOWN]

The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors aready open (see the sysconf()
function).

Too many open filesin the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job
log and correct any errors that are indicated, then retry the operation.

Related Information

» The<unistd.h> file (see Header Filesfor UNIX-Type Functions)
« The<fcntl.h> file (see Header Files for UNIX-Type Functions)

o fentl()--Perform File Control Command

o fstat()--Get File Information by Descriptor

o Op0zPipe()--Create I nterprocess Channel with Sockets

« read()--Read from Descriptor

o spawn()--Spawn Process

o write()--Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a pipe, writes 10 bytes of data to the pipe, and then reads those 10 bytes of
data from the pipe.

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <string. h>

void nmain()

int fildes[2];

int rc;

char writeData[10];
char readbDat a[10];
int bytesWitten;

i nt bytesRead;

nenset (witeData,' A, 10);

if (-1 == pipe(fildes))

{
perror("pipe error");
return;
}
if (-1 == (bytesWitten = wite(fildes[1],
wr it eDat a,
{ 10)))
perror("wite error");
el se
printf("wote % bytes\n", bytesWitten);
if (-1 == (bytesRead = read(fildes[0],
readDat a,
{ 10)))
perror("read error");
el se
printf("read % bytes\n", byt esRead);
}
}

cl ose(fildes[0]);
close(fildes[1]);

return;

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QlgSpawn()--Spawn Process (using NLS-enabled path
name)

Syntax

#i ncl ude <spawn. h>
#i ncl ude <ql g. h>

pid t Q gSpawn(const Qg Path_Nanme_ T *pat h,
const int fd_count,
const int fd_map[],
const struct inheritance *inherit,
char * const argv[],
char * const envp[]);

Service Program Name: QPOZSPWN
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgSpawn() function, like the spawn() function, creates a child process that inherits specific attributes from the parent. The
difference isthat for the path parameter, the QlgSpawn() function takes a pointer to a Qlg_Path_Name_T structure, while the spawn()
function takes a pointer to a character string in the CCSID of the job.

Limited information on the path parameter is provided here. For more information on the path parameter and for a discussion of other
parameters, authorities required, and return values, see spawn()--Spawn Process.

Parameters
path
(Input) A pointer to aQIg_Path_Name_T structure that contains a specific path name or a pointer to a specific path name of an

executable file that will run in the new (child) process. For more information on the Qlg_Path_Name_T structure, see Path
name format.

Usage Notes
See spawn()--Spawn Process for a compl ete discussion of usage information for QIgSpawn(). In addition, the following should be

noted specifically for QlgSpawn().
1. Shell scripts are supported; however, the interpreter path in the shell script itself cannot be a Qlg_Path_Name T structure.

Related Information

« The<qglg.h> file (see Header Filesfor UNIX-Type Functions)

o spawn()--Spawn Process

o QlgSpawnp()--Spawn Process with Path (using NL S-enabled file name)

Example

See Code disclaimer information for information pertaining to code examples.

Parent Program

The following ILE C for OS/400 program can be created in any library. This parent program assumes the corresponding child program
will be created with the name CHILD in the library QGPL. Call this parent program with no parameters to run the example.

/*************************'k**************'k************************/

/**7\'******'k*******7\'******'k*******7\'******'k*************************/

/* */
/* FUNCTION: This programacts as a parent to a child program */
/* */
/* LANGUAGE: |ILE C for OS/400 */
/* */
/* APl's USED: Q gSpawn(), waitpid(), */
I QgCGeat(), Qgunlink(), QgQen() *!
/* */

/***/
/***/

#i ncl ude <errno. h>

#i ncl ude <fcntl. h>

#i ncl ude <spawn. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#i ncl ude <sys/stat. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>
#i ncl ude <uni std. h>
#i ncl ude <ql g. h>

#i ncl ude <@OIl stdi. h>

#defi ne ARGV_NUM 6

#define ENVP_NUM 1

#define CH LD PGV "QGPL/CHI LD"

#define spwpath "/ QSYS. LI B/ QGPL. LI B/ CHI LD. PGW'
#define fpath "A File"

typedef struct pnstruct
Q g_Path_Nane_T gl g_struct;

char pn[100]; /* This size nust be >= the path */
/* nanme length or this nust be a */

/* pointer to the path nane. */

b

/[* This is a parent programthat will use QgSpawn() to start a */
/* child. Afileis created that is witten to, both by the parent */
/* and the child. The end result of the file will | ook something */
/* like the follow ng: */
[* Parent wites Child wites */
/* __ */
I 1 argv[0] getppid() getpgrp() getpid() 1

/* The parent uses waitpid() to wait for the child to return and to */
/* retrieve the resulting status of the child when it does return. */

int main(int argc, char *argv[])

{
i nt rc; /* APl return code */
i nt fd, fd_read; /* parent file descriptors */
char fd_str[4]; /* file descriptor string */

const char US const[3]= "US";

const char Language_const[4] ="ENU";

const char Path_Name_Del const[2]= "/"

struct pnstruct f_path_nane; /* file pathname */

i nt buf _int; /* wite(), read() buffer */
char buf _pgm nane[22] ; /* read() program name buffer */

struct pnstruct spw_path;
i nt spw_fd_count = 0;
struct

i nheritance spw_inherit;

/* QgSpawn() *path */
/* QgSpawn() fd_count */
i* Q gSpawn()

*inherit */

char *spw_ar gv[ARGV_NUM ; /* QgSpawn() *argv[] */
char *spw_envp[ENVP_NUM ; /* Q gSpawn() *envp[] */

i nt seq_num /* sequence nunber */

char seq_numstr[4]; /* sequence nunber string */
pid_t pid; /* parent pid */

char pid_str[11]; /* parent pid string */
pid_t pgrp; /* parent process group */
char pgrp_str[11]; /* parent process group string */
pid_t spw.child_pid; /* QgSpawn() child pid */
pid_t w_child_pid; /[* waitpid() child pid */

i nt wt _stat_| oc; /* waitpid() *stat_|loc */

i nt wt _pid_opt = 0; /* waitpid() option */

/* Get the pid and pgrp for the parent. */
pid = getpid();
pgrp = getpgrp();

/* Format the pid and pgrp value into null-term nated strings.

sprintf(pid_str, "%",
sprintf(pgrp_str, "%l",

pi d);
pgrp);

/* Initialize @ g_Path_Nane_T paraneters */
nenset (& _pat h_nane, 0x00, si zeof (struct pnstruct));
f _path_nanme. gl g_struct.CCSID = 37;
nmencpy(f _path_nane. gl g_struct. Country_I D, US_const, 2);
mencpy(f_pat h_nane. gl g_struct. Language_| D, Language_const, 3);
f_path_nane. gl g_struct. Path_Type = QLG CHAR_SI NGLE;
f_path_nane. gl g_struct.Path_Length = sizeof (fpath)-1;
nmencpy(f_pat h_nane. gl g_struct. Path_Nane_Deliniter,

Pat h_Nanme_Del _const, 1);
mencpy(f _pat h_nanme. pn, f pat h, si zeof (fpath)-1);

/* Create a file and naintain the file descriptor. */
fd = QgCreat ((Q@ g_Path_Nane_T *)& path_nane, S _|RWU);
if (fd == -1)

{

printf("FAILURE: Q@ gCreat() with errno = %\ n", errno);
return -1,

/* Format the file descriptor
sprintf(fd_str, "%l", fd);

into null-termnated string. */

/* Initialize Qg_Path_Nane_T paraneters */
nmenset (&pw_pat h, 0x00, si zeof (struct pnstruct));
spw_pat h. gl g_struct.CCSID = 37;
nmencpy(spw_pat h. ql g_struct. Country_I D, US _const, 2);
mencpy(spw_pat h. ql g_struct. Language_| D, Language_const, 3);
spw_pat h. gl g_struct. Pat h_Type = Q.G _CHAR_SI NGLE;
spw_pat h. ql g_struct. Path_Length = sizeof (spwpath)-1;
mencpy(spw_pat h. gl g_struct. Path_Nanme_Delimter,

Pat h_Nanme_Del const, 1);
mencpy(spw_pat h. pn, spwpat h, si zeof (spwpat h) - 1) ;
/* Wite a 'l out to the file. */
seq_num = 1;
sprintf(seq_numstr, "%",
buf _int = seq_num
wite(fd, &buf _int,

seq_nun ;
si zeof (int));

/* Set the QgSpawn() child argunents for the child. */
/* NOTE: The child will always get argv[0] in the */
/* LI BRARY/ PROGRAM not ati on, but the Q gSpawn() argv[0] */
/* (spw_argv[0] in this case) nust be non-NULL in order */
/* to allow additional arguments. For this exanple, the */
/* CH LD_PGM was chosen. */
/* NOTE: The parent pid and the parent process group are */
/* passed to the child for denonstration purposes only. */
spw_argv[0] = CH LD _PGM

*/

spw_argv[1l] = pid_str;
spw_argv[2] = pgrp_str;
spw_argv[3] = seq_numstr;
spw_argv[4] = fd_str;
spw_argv[5] = NULL;

/* This Q@ gSpawn() will use sinple inheritance for file */
/* descriptors (fd_map[] value is NULL). */
menset (&spw_i nherit, 0x00, si zeof (spw_i nherit));
spw_envp[0] = NULL;
spw_child_pid = Q gSpawn((Q g_Pat h_Nanme_T *) &pw_pat h,
spw_fd_count, NULL, &spw_inherit, spw_ argv, spw_envp);

if (spw._child pid == -1)

{

printf("FA LURE: Q gSpawn() with errno = %\ n", errno);

cl ose(fd);
Q gUnlink((Q g_Path_Nane_T *) & path_name);
return -1;
}
/* The parent no |onger needs to use the file descriptor, so */
/* it can close it, nowthat it has issued Q gSpawn(). */
rc = close(fd);
if (rc !1=0)

printf("FAILURE: close(fd) with errno = %\ n", errno);

/* NOTE: The parent can continue processing while the child is */

/* also processing. In this exanple, though, the parent will */
/* simply wait until the child finishes processing. */
/* lIssue waitpid() in order to wait for the child to return. */

wt_child_pid = waitpid(spw_child_pid, &t _stat | oc,wt_pid_opt);
if (wt_child_pid == -1)
{

printf("FAILURE: waitpid() with errno = %\ n", errno);

cl ose(fd);
QgUnlink((Q g_Path_Narme_T *)&f _path_nane);
return -1;
}
/* Check to ensure the child did not encounter an error */
/* condition. */

if (WFEXI TED(w _stat _| oc))

i f (VEXI TSTATUS(wt _stat_loc) != 1)
printf("FAILURE: waitpid() exit status = %\ n",
VEXI TSTATUS(wt _stat | oc));
}
el se
printf("FAI LURE: unknown child status\n");

/* Open the file for read to verify what the child wote. */
fd read = Q gOpen((Q g_Path_Nane_T *)&f path_nanme, O _RDONLY);
if (fd_read == -1)

{

printf("FAI LURE: open() for read with errno = %\ n", errno);
QgUnlink((Q g_Path_Name_T *)&f _path_nane);
return -1;

}

/* Verify what child wote. */

rc = read(fd_read, &buf_int, sizeof(int));

if ((rc !=sizeof(int)) || (buf_int I'=1))
printf("FAI LURE: read()\n");

nmenset (buf _pgm nane, 0x00, si zeof (buf _pgm nane));

rc = read(fd_read, buf_pgmnane, strlen(CH LD PGY);

if ((rc!=strlen(CH LD PGY) ||

(strcnmp(buf _pgm name, CH LD PGM) != 0))
printf("FAILURE: read() child argv[0]\n");
rc = read(fd_read, &bouf_int, sizeof(int));
if ((rc !=sizeof(int)) || (buf_int I'= pid))

printf("FAILURE: read() child getppid()\n");
rc = read(fd_read, &buf_int, sizeof(int));
if ((rc !=sizeof(int)) || (buf_int I'= pgrp))
printf("FAILURE: read() child getpgrp()\n");
= read(fd_read, &buf_int, sizeof(int));
((rc !'=sizeof(int)) || (buf_int '= spw.child_pid) ||
(buf_int !'= wt_child_pid))
printf("FA LURE: read() child getpid()\n");

rc
if

/* Attenpt one nore read() to ensure there is no nore data. */
rc = read(fd_read, &buf_int, sizeof(int));
if (rc !=0)

printf("FAILURE: read() past end of data\n");

/* The parent no |onger needs to use the read() file descriptor, */
/* so it can close it. */
rc = close(fd_read);
if (rc !'=0)

printf("FAILURE: close(fd_read) with errno = %\ n",errno);

/* Clean up by performng unlink(). */
rc = QgUnlink((Q g_Path_Narme_T *)&f _pat h_nane);
if (rc !'=0)

printf("FAILURE: @gUnlink() with errno = %\n", errno);
return -1;

printf("conpleted successfully\n");
return O;

Child Program

Thefollowing ILE C for OS/400 program must be created with the name CHILD in the library QGPL in order to be found by the parent
program. This program is not to be called directly, asit is run through the use of QlgSpawn() in the parent program.

/*****************'k***/

/***/

/* */
/* FUNCTION: This programacts as a child to a parent program */
/* */
/* LANGUAGE: |ILE C for 0S/400 */
/* */
/* APls USED: getpid(), getppid(), getpgrp() */
/* */

/***/
/*****'k**************'k**************'k*******************************/

#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

/* This is a child programthat gets control froma parent program*/
/* that issues QgSpawn(). This particular child program expects */

/* the following 5 arguments (all are null-termnated strings): */
[* argv[0] - child program name */
/* argv[1l] - parent pid (for denpnstration only) */
[* argv[2] - parent process group (for denonstration only) */
/* argv[3] - sequence nunber */
/* argv[4] - parent file descriptor */
/* If the child programencounters an error, it returns with a */
/* value greater than 50. |If the parent uses wait() or waitpid(), */
/* this return value can be interrogated using the WFEXI TED and */
/* WEXI TSTATUS macros on the resulting wait() or waitpid() */

/* *stat _loc field. */

int main(int argc, char *argv[])

{
pid_t p_pid, /* parent pid argv[1] */
pid_t p_pgrp; /* parent process group argv[2] */
i nt seq_num /* parent sequence num argv[3] */
i nt fd; /* parent file desc argv[4] */
i nt rc; /* APl return code */
pid_t pid; /* getpid() - child pid */
pid_t ppid; /* getppid() - parent pid */
pid_t pgrp; /* getpgrp() - process group */
/* Get the pid, ppid, and pgrp for the child. */
pid = getpid();
ppid = getppid();
pgrp = getpgrp();
/* Verify 5 paraneters were passed to the child. */
if (argc !'=5)
return 60;
/* Since the paraneters passed to the child using Q gSpawn() are */
/* pointers to strings, convert the parent pid, parent process */
/* group, sequence nunber, and the file descriptor fromstrings */
/* to integers. */
p_pid = atoi (argv[1]);
p_pgrp = atoi(argv[2]);
seq_num = atoi (argv[3]);
fd = atoi (argv[4]);
/* Verify the getpid() value of the parent is the sane as the */
/* getppid() value of the child. */
if (p_pid != ppid)
return 61,
/* |If the sequence nunber is 1, sinple inheritance was used in */
/* this case. First, verify the getpgrp() value of the parent */
/* is the same as the getpgrp() value of the child. Next, the */
/* child will use the file descriptor passed in to wite the */
/* child' s values for argv[0], getppid(), getpgrp(), */
/* and getpid(). Finally, the child returns, which will satisfy */
/* the parent's wait() or waitpid(). */
if (seq_num == 1)
{
if (p_pgrp !'= pgrp)
return 70;
rc = wite(fd, argv[0], strlen(argv[O0]));
if (rc !=strlen(argv[0]))
return 71;
rc = wite(fd, &ppid, sizeof(pid_t));
if (rc = sizeof(pid_t))
return 72;
rc = wite(fd, &pgrp, sizeof(pid_t));
if (rc != sizeof(pid_t))
return 73;
rc = wite(fd, &pid, sizeof(pid_t));
if (rc !'= sizeof(pid_t))
return 74;
return seq_num
}
/* |If the sequence nunber is an unexpected value, return */
/* indicating an error. */
el se
return 99;
}

API introduced: V5R1

Top | Process-Related APIs | APIs by category

QlgSpawnp()--Spawn Process with Path (using
NLS-enabled file name)

Syntax

#i ncl ude <spawn. h>
#i ncl ude <gl g. h>

pid t Q gSpawnp(const Qg _Path Nanme T *file,
const int fd_count,
const int fd map[],
const struct inheritance *inherit,
char * const argv[],
char * const envp[]);

Service Program Name: QPOZSPWN
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The QlgSpawnp() function, like the spawnp() function, creates a child process that inherits specific
attributes from the parent. The difference isthat for the file parameter, the QlgSpawnp() function takes a
pointer to aQlg_Path Name_T structure, while the spawnp() function takes a pointer to a character string
in the ccsid of the job.

Limited information on the file parameter is provided here. For more information on the file parameter and
for adiscussion of other parameters, authorities required, and return values, see spawnp()--Spawn Process

with Path.

Parameters

file

(Input) A pointer to aQlg_Path Name T structure that contains afile name or a pointer to afile
name that is used with the search path to find an executable file that will run in the new (child)
process. For more information on the Qlg_Path Name T structure, see Path name format.

Usage Notes

See spawnp()--Spawn Process with Path for a complete discussion of usage information for QlgSpawnp().
In addition, the following should be noted specifically for QlgSpawnp().

1. #The PATH environment variable is used; however, the PATH environment variable cannot be a
Qlg_Path_Name T structure. 4

2. Shell scripts are supported; however, the interpreter path in the shell script itself cannot be a
Qlg_Path_Name T structure.

Related Information

o The<qlg.h> file (see Header Files for UNIX-Type Functions)

o spawnp()--Spawn Process with Path

o QlgSpawn()--Spawn Process (using NL S-enabled path name)

Note: All of the related information for spawnp() applies to QlgSpawn().

Example

For an example of using this function, see the example in the QlgSpawn--Spawn Process (using
NL S-enabled path name) API.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QpOwChkChld()--Check Status for Child
Processes

Syntax

#i ncl ude <gpOwpi d. h>
i nt QOWChKChl d(QPOW PID Entries T *chl dinfo);

Service Program Name: QPOWPID
Default Public Authority: * USE

Threadsafe: Yes

The QpOwChkChld() function returns the status and process table entry information for the child processes
of the specified processID.

Parameters

*chldinfo

(1/O) A pointer to the QPOW_PID_Entry_T structure. This structure contains the process table
entry information for the children processes identified by pid.

The structure QPOW_PID_Entry_T is defined in the <qpOwpid.h> header file as follows:

typedef struct QPOWPID Entries T {

i nt entries_prov;

i nt entries_coul d;
i nt entries_return;
pid_t pi d;

QPOWPID Data_ T entry[1];
} QPOWPID Entries_T,;

The members of the QPOW_PID_Entry T structure are as follows:

int entries_prov;, (Input) The number of entries of type QPOW_PID_Data T for which
that the caller has allocated storage to contain the status and process
table entry information.

int entries_could; (Output) The number of entries of type QPOW_PID_Data T that could
be returned. If the entries_could value exceeds the entries_prov value,
the QpOwChkChld() function should be called again with sufficient
storage to contain the number of entries returned in entries_could
(entries_prov must be greater than or equal to entries_could).

int entries _return;

pid_t pid;

(Output) The number of entries of type QPOW_PID_Data T that were
returned. If the entries_return valueisless than the entries_prov value,
the content of the excess number of entries provided is unchanged by
QpOwChkChlid().

(Input) The process ID of the process for which information about its
child processesisto be returned.

QPOW PID Data Tentry[1]; (Output) The processtableinformation for child processes. Thereisone

QPOW_PID_Data T structure entry for each child process, limited by
the value of entries_prov.

The structure QPOW_PID_Data T is defined in the <qpOwpid.h> header file as follows:

typedef struct QPOWPID Data T {

pidt

pid t

pidt

i nt

unsi gned int

pi d;

ppi d;

pgrp;

st at us;
exit_status;

} QPOWPID Data_T,;

The members of the QPOW_PID_Data T structure are as follows:

pid_t pid;
pid_t ppid;

pid_t pgrp;

int status;

unsigned int
exit_status;

The process ID of the process.

The process ID of the parent process. If ppid has avalue of binary 1, thereisno
parent process associated with the process.

The process group 1D of the process.

A collection of flag bits that describe the current state of the process. The
following flag bits can be set in status:

QPOW_PID_TERMINATED The process has ended.
QPOW _PID_STOPPED The process has been stopped by asignal.

QPOW _PID_CHILDWAIT The processiswaiting for a child processto be
ended or stopped by asignal.

QPOW_PID_SIGNALSTOP The process has requested that the SIGCHLD
signal be generated for the process when one of
its child processes has been stopped by asignal.

Exit status of the process. This member only has meaning if the status has been
set to QPOW_PID_TERMINATED. Refer to the wait() function for a description
of the exit status for a process.

Authorities

The process calling QpOwChkChld() must have the appropriate authority to the process being examined. A
processis allowed to examine the process table information for a process if at least one of the following
conditionsistrue:

o Theprocessis calling QpOwChkChld() for its own process.

« The process has * JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

« The processisthe parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling QpOwChkChld()).

« Thereal or effective user ID of the process matches the real or effective user ID of the process
calling QpOwChkChld().

Return Value

0 QpOwChkChld() was successful.

value QpOwChkChld() was not successful. The value returned indicates one of the following errors.
Under some conditions, value could indicate an error other than those listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.
[EPERM] Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other
resource to do the regquested operation.

[ESRCH] Noitem could be found that matches the specified value.

Usage Notes
The QpOwChkChld() function provides an OS/400-specific way to obtain the process table information for

the child processes of the specified process.

Related Information

o The <gpOwpid.h> file (see Header Files for UNIX-Type Functions)

» The<signal.h> file (see Header Files for UNIX-Type Functions)

o getparp()--Get Process Group | D

o getpid()--Get Process ID

o getppid()--Get Process |D of Parent Process

o OpOwGetParp()--Get Process Group ID

o OpOwGetPid()--Get Process ID

o OpOwGetPPid()--Get Process ID of Parent Process

« wait()--Wait for Child Processto End

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

QpOwChkPgrp()--Check Status for Process
Group

Syntax

#i ncl ude <gpOwpi d. h>
i nt QOWChkPgrp(QPOWPID Entries T *nbrinfo);

Service Program Name: QPOWPID
Default Public Authority: * USE

Threadsafe: Yes

The QpOwChkPgrp() function returns the status and process table entry information for the processes that
are members of the process group identified by pid in the structure QPOW_PID _Entry T.

Parameters

*mbrinfo

(1/O) A pointer to the QPOW_PID_Entry_T structure. This structure contains the process table
entry information for the processes that are members of the process group identified by pid.

The structure QPOW_PID_Entry_T is defined in the <qpOwpid.h> header file as follows:

typedef struct QPOWPID Entries T {

i nt entries_prov;

i nt entries_coul d;
i nt entries_return;
pid_t pi d;

QPOWPID Data_ T entry[1];
} QPOWPID Entries_T,;

The members of the QPOW_PID_Entry T structure are as follows:

int entries_prov;, (Input) The number of entries of type QPOW_PID_Data T for which
the caller has allocated storage to contain the status and process table
entry information.

int entries_could; (Output) The number of entries of type QPOW_PID_Data T that could
be returned. If the entries_could value exceeds the entries_prov value,
the QpOwChkPgr p() function should be called again with sufficient
storage to contain the number of entries returned in entries_could
(entries_prov must be greater than or equal to entries_could).

int entries _return; (Output) The number of entries of type QPOW_PID_Data T that were
returned. If the entries_return valueisless than the entries_prov value,
the content of the excess number of entries provided is unchanged by
QpOwChkPgrp().

pid_t pid; (Input) The process group 1D of the group of processes for which the
process information is to be returned.

QPOW PID Data Tentry[1]; (Output) The processtable information for the process group members.
Thereisone QPOW_PID_Data T structure entry for each process
group member, limited by the value of entries_prov.

The structure QPOW_PID_Data T is defined in the <qpOwpid.h> file as follows:

typedef struct QPOWPID Data T {

pidt pi d;

pi d_t ppi d;
pid_t pgrp;

i nt st at us;

unsigned int exit_status;
} QPOWPID Data_T;

The members of the QPOW_PID_Data T structure are as follows:

pid_t pid; The process ID of the process.

pid_t ppid; The process ID of the parent process. If ppid has avalue of binary 1, thereisno
parent process associated with the process.

pid_t pgrp; The process group 1D of the process.

int status; A collection of flag bits that describe the current state of the process. The

following flag bits can be set in status:

QPOW_PID_TERMINATED The process has ended.
QPOW _PID_STOPPED The process was stopped by asignal.

QPOW _PID_CHILDWAIT The processiswaiting for a child processto be
ended or stopped by asignal.

QPOW_PID_SIGNALSTOP The process has requested that the SIGCHLD
signal be generated for the process when one of
its child processesis stopped by asignal.

unsigned int Exit status of the process. This member only has meaning if the status is set to
exit_status; QPOW_PID_TERMINATED. Refer to the wait() function for a description of
the exit status for a process.

Authorities

The process calling QpOwChkPgr p() must have the appropriate authority to the processes being examined.
A processis allowed to examine the process table information for aprocessif at least one of the following
conditionsistrue:

o Theprocessis calling QpOwChkPgrp() for its own process.

« The process has * JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

« The processisthe parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling QpOwChkPgrp()).

« Thereal or effective user ID of the process matches the real or effective user ID of the process
calling QpOwChkPgr p().

Return Value

0 QpOwChkPgrp() was successful.

value QpOwChkPgrp() was not successful. The value returned indicates one of the following errors.
Under some conditions, value could indicate an error other than those listed here.
[EINVAL] Aninvalid parameter was found.

A parameter passed to this function is not valid.
[EPERM] Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other
resource to do the regquested operation.

[ESRCH] Noitem could be found that matches the specified value.

Usage Notes

The QpOwChkPgrp() function provides an OS/400-specific way to obtain the process table information for
the members of a process group.

Related Information

o The <gpOwpid.h> file (see Header Files for UNIX-Type Functions)

» The<signal.h> file (see Header Files for UNIX-Type Functions)

o getparp()--Get Process Group | D

o getpid()--Get Process ID

o getppid()--Get Process |D of Parent Process

o OpOwGetParp()--Get Process Group ID

o OpOwGetPid()--Get Process ID

o OpOwGetPPid()--Get Process ID of Parent Process

« wait()--Wait for Child Processto End

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

QpOwChkPid()--Check Status for Process ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <gpOwpi d. h>

int QpOWChkPi d(pid_t pid,
QPOWPID Data_ T *pidinfo);

Service Program Name: QPOWPID
Default Public Authority: *USE

Threadsafe: Yes

The QpOwChkPid() function returns the status and process table entry information for the process
specified by the process ID pid.

Parameters

pid
(Input) The process ID of the process whose process table information is to be returned. When pid
has avalue of binary 0O, the process table information for the current processiis returned.

-
pidinfo
(Output) A pointer to the QPOW_PID_Data T structure. The process table entry information for the
processidentified by pid is stored in the location pointed to by the pidinfo parameter.

The structure QPOW_PID_Data T is defined in <gpOwpid.h> header file as follows:

typedef struct QPOWPID Data T {

pidt pi d;

pi d_t ppi d;

pi d_t pgr p;

I nt stat us;

unsigned int exit_status;
} QPOWPID Data_T;

The members of the QPOW_PID_Data T structure are as follows:
pid_t pid; The process ID of the process.

pid_t ppid; The process ID of the parent process. If ppid has avalue of binary 1, thereisno
parent process associated with the process.

pid_t pgrp; The process group 1D of the process.

int status; A collection of flag bits that describe the current state of the process. The
following flag bits can be set in status:

QPOW_PID_TERMINATED The process has ended.
QPOW_PID_STOPPED The process has been stopped by asignal.

QPOW _PID_CHILDWAIT The processiswaiting for a child processto be
ended or stopped by asignal.

QPOW _PID_SIGNALSTOP The process has requested that the SIGCHLD
signal be generated for the process when one of
it's child processes has been stopped by a

signal.
unsigned int Exit status of the process. This member only has meaning if the status has been
exit_status; set to QPOW_PID_TERMINATED. Refer to the wait() function for a description

of the exit status for a process.

Authorities

The process calling QpOwChkPid() must have the appropriate authority to the process being examined. A
process is allowed to examine the process table information for a processif at least one of the following
conditionsistrue:

o Theprocessis calling QpOwChkPid() for its own process.

« The process has * JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

« Theprocessisthe parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling QpOwChkPid()).

o Therea or effective user ID of the process matches the real or effective user ID of the process
calling QpOwChkPid().

Return Value

0 QpOwChkPid() was successful.

value QpOwChkPid() was not successful. The value returned indicates one of the following errors.
Under some conditions, value could indicate an error other than those listed here.
[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.
[EPERM] Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other
resource to do the requested operation.

[ESRCH] Noitem could be found that matches the specified value.

Usage Notes

The QpOwChkPid() function provides an OS/400-specific way to obtain the process table information for
the specified process.

Related Information

« The <syd/types.h> file (see Header Files for UNIX-Type Functions)

« The<gpOwpid.h> file (see Header Files for UNIX-Type Functions)

« The<signal.h> file (see Header Files for UNIX-Type Functions)

o getparp()--Get Process Group ID

o getpid()--Get Process ID

o getppid()--Get Process |D of Parent Process

o OpOwGetPgrp()--Get Process Group |ID

o OpOwGetPid()--Get Process ID

o OpOwGetPPid()--Get Process ID of Parent Process

« wait()--Wait for Child Processto End

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

QpOwGetJobID()--Get Qualified Job Name and
ID for Process ID

Syntax

#i ncl ude <gpOwpi d. h>
int QOwGetJoblD(pid t pid, QPOWJob ID T *jobinfo);

Service Program Name: QPOWPID
Default Public Authority: * USE

Threadsafe: Yes

The QpOwGetJobl D() function returns the qualified job name and internal job identifier for the process
whose process | D matches pid.

Parameters

pid
(Input) The process ID of the process whose job number is to be returned. When pid has a value of
zero, the process ID of the calling processis used.

*jobinfo
(Output) A pointer to the QPOW Job_| D _T structure. This structure contains the qualified OS/400
job name and internal job identifier for the process identified by pid.

The structure QPOW Job_| D_T isdefined in the <qpOwpid.h> header file as follows:

typedef struct QPOWJob ID T {

char j obnane[10] ;
char user nange[10] ;
char j obnumber [6] ;
char j obi d[16];

} QPOWJob_ID T;
The members of the QPOW Job_| D T structure are as follows:

char jobname[10] The name of the job asidentified to the system. For an interactive job, the system
assigns the job the name of the work station where the job started. For a batch job,
you specify the name in the command when you submit the job.

char username{10] The user name under which the job runs. The user name is the same as the user
profile name and can come from several different sources, depending on the type
of job.

char jobnumber[6] The system-generated job number.

char jobid[16] Theinternal job identifier. Thisvalueis sent to other APIsto speed the process of
locating the job on the system. The identifier is not valid following an initial
program load (IPL). If you attempt to use it after an IPL, an exception occurs.

Authorities

The process calling QpOwGetJobl D() must have the appropriate authority to the process whose job
number isto be returned. A processis allowed to access the job number for a processif at least one of the
following conditionsis true:

o Theprocessis caling QpOwGetJobl D() for its own process.

« The process has * JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

« The processisthe parent of the process (the process being examined has a parent process ID equal
to the process I D of the process calling QpOwGetJabl D()).

« Therea or effective user 1D of the process matches the real or effective user ID of the process
caling QpOwGetJobl D).

Return Value

0 QpOwGetJobl D() was successful.
value QpOwGetJobl D() was not successful. The value returned indicates one of the following errors.
Under some conditions, value could indicate an error other than those listed here.
[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.
[EPERM] Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other
resource to do the requested operation.

[ESRCH] Noitem could be found that matches the specified value.

Related Information

o The <gpOwpid.h> file (see Header Files for UNIX-Type Functions)

o Qetpid()--Get Process ID

o OpOwGetPid()--Get Process ID

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

QpOwGetPgrp()--Get Process Group ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <gpOwpi d. h>

pid t QOwGet Pgrp(void);

Service Program Name: QPOWSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The QpOwGetPgrp() function returns the process group 1D of the calling process.

Parameters

None.

Authorities

None.

Return Value

pid_t Thevaue returned by QpOwGetPgrp() isthe process group ID of the calling process.

Error Conditions

The QpOwGetPgrp() function is always successful and does not return an error.

Usage Notes

1. The QpOwGetPgrp() function provides an OS/400-specific way to obtain the process group 1D of
the calling process. It performs the same function as getpgr p().

2. QpOwGetPgrp() enables aprocess for signalsif the processis not aready enabled for signals. For
details, see QpOsEnableSignal s()--Enable Process for Signals.

Related Information

o The<sydtypes.h> file (see Header Files for UNIX-Type Functions)

o getparp()--Get Process Group |D

o OQpOsDisableSignals()--Disable Process for Signals

o OpOsEnableSignals()--Enable Process for Signals

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

QpOwGetPid()--Get Process ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <gpOwpi d. h>

pid t QOwGet Pid(void);

Service Program Name: QPOWSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The QpOwGetPid() function returns the process ID of the calling process.

Parameters

None.

Authorities

None.

Return Value

pid_t Thevaue returned by QpOwGetPid() isthe process ID of the calling process.

Error Conditions

The QpOwGetPid() function is always successful and does not return an error.

Usage Notes

1. The QpOwGetPid() function provides an OS/400-specific way to obtain the process ID of the
calling process. It performs the same function as getpid().

2. QpOwGetPid() enables aprocess for signalsif the processis not already enabled for signals. For
details, see (see QpOsEnableSignals()--Enable Process for Signals.

Related Information

o The<sydtypes.h> file (see Header Files for UNIX-Type Functions)

The <gpOwpid.h> file (see Header Files for UNIX-Type Functions)

getpid()--Get Process |ID

Op0sDisableSignal s()--Disable Process for Signals

OpO0sEnableSignals()--Enable Process for Signals

OpOwGetPidNol nit()--Get Process | D without Initializing for Signals

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

QpOwGetPidNolnit()--Get Process ID without
Initializing for Signals

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <gpOwpi d. h>

pid t QOwGet Pi dNol nit(void);

Service Program Name: QPOWSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The QpOwGetPidNol nit() function returns the process ID of the calling process without enabling the
process to receive signals.

Parameters

None.

Authorities

None.

Return Value

pid_t Thevaue returned by QpOwGetPidNol nit() isthe process ID of the calling process.

Error Conditions

The QpOwGetPidNol nit() function is always successful and does not return an error.

Usage Notes

The QpOwGetPidNol nit() function provides an OS/400-specific way to obtain the process ID of the calling
process. It performs the same function as the getpid() function without enabling the process to receive
signals.

Related Information

o The <sydltypes.h> file (see Header Files for UNIX-Type Functions)

The <qpOwpid.h> file (see Header Files for UNIX-Type Functions)

getpid()--Get Process |ID

QpOwGetPid()--Get Process ID

Op0sDisableSigna s()--Disable Process for Signals

OpO0sEnableSignals()--Enable Process for Signals

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

QpOwGetPPid()--Get Process ID of Parent
Process

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <gpOwpi d. h>

pid t QOwGet PPid(void);

Service Program Name: QPOWSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The QpOwGetPPid() function returns the parent process ID of the calling process.

Parameters

None.

Authorities

None.

Return Value

pid_t Thevaue returned by QpOwGetPPid() isthe process ID of the parent process for the calling
process. A process ID value of 1 indicates that there is no parent process associated with the
calling process.

Error Conditions

The QpOwGetPPid() function is always successful and does not return an error.

Usage Notes

The QpOwGetPPid() function provides an OS/400-specific way to obtain the parent process ID of the
calling process. It performs the same function as getppid().

Related Information

o The <sydltypes.h> file (see Header Files for UNIX-Type Functions)

» The <gpOwpid.h> file (see Header Files for UNIX-Type Functions)

o getppid()--Get Process |D of Parent Process

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

QpO0zPipe()--Create Interprocess Channel with
Sockets

Syntax

#i ncl ude <spawn. h>

int QOzPipe(int fildes[2]);
Service Program Name: QPOZSPWN

Default Public Authority: *USE

Threadsafe: Yes

The Qp0zPipe() function creates a data pipe that can be used by two processes. One end of the pipeis
represented by the file descriptor returned in fildes[0] . The other end of the pipe is represented by the file
descriptor returned in fildeg[1] . Data that is written to one end of the pipe can be read from the other end of
the pipein afirst-in-first-out basis. Both ends of the pipe are open for reading and writing.

The Qp0zPipe() function is often used with the spawn() function to allow the parent and child processes to
send data to each other.

Parameters

fildeq[2]
(Input) An integer array of size 2 that will contain the pipe descriptors.

Authorities

None.

Return Value

0 QpO0zPipe() was successful.

-1 Qp0zPipeg() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOzPipe() isnot successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected
an address that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is hot valid, out of range, or NULL.
[EIQ] Input/output error.

A physical 1/0 error occurred.

A referenced object may be damaged.
[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf()
function).

[ENFILE] Too many open filesin the system.

A system limit has been reached for the number of filesthat are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

[ENOBUFY There is not enough buffer space for the requested operation.

[EOPNOTSUPP] Operation not supported.

The operation, though supported in general, is not supported for the requested object
or the requested arguments.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

Usage Notes

The 0S/400 implementation of the Qp0zPipe()function is based on sockets rather than pipes and, therefore,
uses socket descriptors. There are several differences:

1. After caling the fstat() function using one of the file descriptors returned on a QpOzPipe() cal,
when the st_mode from the stat structure is passed to the S_|SFIFO() macro, the return value
indicates FAL SE. When the st_mode from the stat structureis passed to S_|SSOCK(), the return
value indicates TRUE.

2. Thefile descriptors returned on a Qp0zPipe() call can be used with the send(), recv(), sendto(),
recvfrom(), sendmsg(), and recvmsg() functions.

If you want to use the traditional implementation of pipes, in which the descriptors returned are pipe
descriptors instead of socket descriptors, use the pipe() function.

Related Information

« The<spawn.h> file (see Header Filesfor UNIX-Type Functions)

o fstat()--Get File Information by Descriptor

« pipe()--Create an Interprocess Channel

o spawn()--Spawn Process

o socketpair()--Create a Pair of Sockets

o stat()--Get File Information

API introduced: V4R1

Top | UNIX-Type APIs| APIs by category

Qp0zSystem()--Run a CL Command

Syntax

#i ncl ude <gqp0z1170. h>

int QO0zSystem const char *CLconmand);

Service Program Name: QPOZTRML
Default Public Authority: *USE

Threadsafe: Yes

The Qp0zSystem() function spawns a new process, passes CLcommand to the CL command processor in
the new process, and waits for the command to complete. The command runsin a batch job so it does not
have accessto aterminal.

This function is similar to the system() function provided by ILE C, but allows a program to safely run a

CL command from a multithreaded process. Note that if CLcommand fails, the global variable
_EXCP_MSGID is not set with the exception message id.

Parameters

*CLcommand
(Input) Pointer to null-terminated CL command string.

Authorities

The user calling Qp0zSystem() must have * USE authority to the specified CL command.

Return Value

0 The specified CL command was successful.
1 The specified CL command was not successful.

-1 Qp0zSystem() was not successful.

Related Information

o The<qgp0z1170.h> file (see Header Files for UNIX-Type Functions)

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how to use the Qp0zSystem() function to create alibrary.

#i ncl ude <stdio. h>
#i ncl ude <qp0z1170. h>

int main(int argc, char *argv[])
if (Q0zSysten("CRTLIB LIB(XYZ)") != 0)
printf("Error creating library XYZ.\n");
el se
printf("Library XYZ created.\n");

return(0);

Output:

Li brary XYZ created

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

setpgid()--Set Process Group ID for Job
Control

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

int setpgid(pid t pid, pid_t pgid);

Service Program Name: QPOWSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The setpgid() function is used to either join an existing process group or create a new process group within
the session of the calling process.

See the Usage Notes for considerations in using setpgid().

Parameters

pid
(Input) The process ID of the process whose process group 1D is to be changed. When pid has a
value of zero, the process group ID of the calling processis changed.

pgid
(Input) The process group ID to be assigned to the process whose process ID matches pid. The
value of pgid must be within the range of zero through the maximum signed integer. When pgid has
avalue of zero, the process group ID is set to the process ID of the process indicated by pid.
Authorities

The process calling setpgid() must have the appropriate authority to the process being changed. A process
is allowed to access the process group 1D for aprocessif at |east one of the following conditionsistrue:

« Theprocessiscalling setpgid() for its own process.

« The process has * JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

« Theprocessisthe parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling setpgid()).

o Therea or effective user 1D of the process matches the real or effective user ID of the process
calling setpgid()).

Return Value

0 setpgid() was successful.

-1 setpgid() was not successful. The errno variable is set to indicate the error.

Error Conditions

If setpgid() isnot successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.
[EPERM] Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do
the requested operation.

[ESRCH] Noitem could be found that matches the specified value.

Usage Notes

1. OS/400 does not support sessions. Until session support is available on OS/400, the restriction that
the process group must be within the session of the calling process will not be enforced.

2. Thesetpgid() function failsif a nonzero process group 1D is specified and that process group does

not exist. If this occurs, the return valueis set to -1 and errnois set to [EPERM].

Related Information

The <systypes.h> file (see Header Files for UNIX-Type Functions)

» The<unistd.h> file (see Header Files for UNIX-Type Functions)

getparp()--Get Process Group 1D

QpOowGetPgrp()--Get Process Group 1D

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

»setrlimit()--Set resource limit

Syntax

#i ncl ude <sys/resource. h>

int setrlimt(int resource, const struct rlimt *rlp);
Service Program Name: QPOWSRV 1

Default Public Authority: *USE

Threadsafe: Yes

The setrlimit() function sets the resource limit for the specified resource. A resource limit is away for the
operating system to enforce alimit on avariety of resources used by a process. A resource limit is
represented by arlimit structure. The rlim_cur member specifies the current or soft limit and the rlim_max
member specifies the maximum or hard limit.

A soft [imit can be changed to any value that is less than or equal to the hard limit. The hard limit can be
changed to any value that is greater than or equal to the soft limit. Only a process with appropriate
authorities can increase a hard limit.

The setrlimit() function supports the following resources:

RLIMIT_FSZE (0) The maximum size of afilein bytesthat can be created by a process.

The setrlimit() function does not support setting the following resources: RLIMIT_AS, RLIMIT_CORE,
RLIMIT_CPU, RLIMIT_DATA, RLIMIT_NOFILE, and RLIMIT_STACK. The setrlimit() function
returns -1 and sets errno to ENOTSUP when called with one of these resources.

Thevaue of RLIM_INFINITY is considered to be larger than any other limit value. If the value of the limit
issetto RLIM_INFINITY, then alimit is not enforced for that resource. If the value of the limit is set to
RLIM_SAVED_MAX, the new limit is the corresponding saved hard limit. If the value of the limit is
RLIM_SAVED_CUR, the new limit is the corresponding saved soft limit.

Parameters

resource

(Input)

The resource to set the limitsfor.
*rip

(Input)

Pointer to astruct rlim_t that contains the new values for the hard and soft limits.

Authorities and Locks

The current user profile must have * JOBCTL specia authority to increase the hard limit.

Return Value

0 setrlimit() was successful.

-1 setrlimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If setrlimit() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] Theaddress used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINVAL] Aninvalid parameter was found.
Aninvalid resource was specified.
The new soft limit is greater the new hard limit.

The new hard limit is lower than the new soft limit.

[EPERM] Permission denied.

An attempt was made to increase the hard limit and the current user profile does not have
*JOBCTL special authority.

[ENOTSUP] Operation not supported.

The operation, though supported in general, is not supported for the requested resource.

Related Information

» The <sys/resource.h> file (see Header Files for UNIX-Type Functions)

o getrlimit()-Get resource limit

o ulimit()-Get and set process limits

Example

#i ncl ude <sys/resource. h>
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <errno. h>

int main (int argc, char *argv[])

{

}

struct rlimt limt;

/* Set the file size resource limt. */
limt.rlimcur = 65535;
limt.rlimmax = 65535;

if (setrlimt(RLIMT_FSIZE, & imt) !'=0) {

printf("setrlimt() failed with errno=%\n", errno);
exit(l);

/* CGet the file size resource Iimt. */

if (getrlimt(RLIMT_FSIZE, &imt) !'=0) {
printf("getrlimt() failed with errno=%\n", errno);
exit(l);

}

printf("The soft limt is %Wlu\n", limt.rlimcur);

printf("The hard Iimt is %Blu\n", limt.rlimmx);

exit(0);

Example Output:

The soft limt is 65535
The hard limt is 65535

&

Introduced: V5R2

Top | UNIX-Type APIs| APIs by category

spawn()--Spawn Process

Syntax

#i ncl ude <spawn. h>

pid t spawn(const char *pat h,
const int fd_count,
const int fd map[],
const struct inheritance *inherit,
char * const argv[],
char * const envp[]);

Service Program Name: QPOZSPWN

Default Public Authority: * USE

Threadsafe: Conditional; see Usage Notes.

The spawn() function creates a child process that inherits specific attributes from the parent. The attributes
inherited by the child process are file descriptors, the signal mask, the signal action vector, and environment
variables, among others.

Parameters

path

(Input) Specific path to an executable file that will run in the new (child) process. The path nameis
expected to be in the CCSID of the job.

See QlgSpawn()--Spawn Process (using NL S-enabled path name) for a description and an example
of supplying the path in any CCSID.

fd_count

(Input) The number of file descriptors the child process can inherit. It can have avalue from zero to
the value returned from acall to sysconf(_SC_OPEN_MAX).

fd_map|]
(Input) An array that maps the parent process file descriptor numbers to the child processfile
descriptor numbers. If thisvalueis NULL, it indicates simple inheritance. Simple inheritance
means that the child process inherits all eligible open file descriptors of the parent process. In
addition, the file descriptor number in the child processis the same as the file descriptor number in
the parent process. Refer to Attributes Inherited for details of file descriptor inheritance.

inherit
(Input) A pointer to an area of type struct inheritance. If the pointer isNULL, an error occurs. The

inheritance structure contains control information to indicate attributes the child process should
inherit from the parent. The following is an example of the inheritance structure, as defined in the

<gpawn.h> header file:

struct inheritance {

flagset t flags;

i nt
si gset _t
si gset _t

H

pgr oup;
si gnask;
si gdef aul t;

The flags field specifies the manner in which the child process should be created. Only the
constants defined in <spawn.h> are allowed; otherwise, spawn returns -1 with errno set to

EINVAL. The alowed constants follow:

SPAWN_SETPGROUP

SPAWN_SETIGMAXK

SPAWN_SETSGDEF

If thisflag is set ON, spawn() sets the process group 1D
of the child process to the value in pgroup. In this case,
the process group field, pgroup, must be valid. If itis
not valid, an error occurs. If thisflag is set OFF, the
pgroup field is checked to determine what the process
group 1D of the child processis set to. If the pgroup
field is set to the constant SPAWN_NEWPGROUP, the
child process group ID is set to the child process ID. If
the pgroup field is not set to SPAWN_NEWPGROUP
and the flagsfield is not set to SPAWN_SETPGROUP,
the process group I1D of the child processis set to the
process group 1D of the parent process. If the pgroup
field is set to SPAWN_NEWPGROUP and the flags
field is set to SPAWN_SETPGROUP, an error occurs.

If thisflag is set ON, spawn() setsthe signal blocking
mask of the child process to the value in sigmask. In
this case, the signal blocking mask must be valid. If itis
not valid, an error occurs. If thisflag is set OFF,
spawn() setsthe signal blocking mask of the child
process to the signal blocking mask of the calling
thread.

If thisflag is set ON, spawn() sets the child process
signals identified in sigdefault to the default actions.
The sigdefault must be valid. If it isnot valid, an error
occurs. If thisflag is set OFF, spawn() sets the child
process signal actions to those of the parent process.
Any signals of the parent process that have a catcher
specified are set to default in the child process. The
child process signal actionsinherit the parent process
ignore and default signal actions.

SPAWN_SETTHREAD_NP

SPAWN_SETPJ NP

If thisflag is set ON, spawn() will create the child
process as multithread capable. The child process will
be alowed to create threads. If thisflag is set OFF, the
child process will not be allowed to create threads.

Note: The SPAWN_SETTHREAD_NPflagisa
non-standard, OS/400-pl atform-specific extension to
the inheritance structure. Applications that wish to
avoid using platform-specific extensions should not use
thisflag.

If thisflag is set ON, spawn() attempts to use available
0OS/400 prestart jobs. The prestart job entries that may
be used follow:

1 QSYS/QPOZSPWP, if the flag
SPAWN_SETTHREAD NPis set OFF.

0 QSYS/QPOZSPWT, if the flag
SPAWN_SETTHREAD NPisset ON.

The OS/400 prestart jobs must have been started using
either QSY SIQPOZSPWP or QSY SIQPOZSPWT asthe
program that identifies a prestart job entry for the
0S/400 subsystem that the parent process is running
under. If aprestart job entry is not defined, the child
process will run as a batch immediate job under the
same subsystem as the parent process.

If thisflag (SPAWN_SETPJ_NP) is set OFF, the child
process will run as a batch immediate job under the
same subsystem as the parent process.

Notes:

1. Inorder to more closely emulate POSIX
semantics, spawn() will ignore the Maximum
number of uses (MAXUSE) value specified for
the prestart job entry. The prestart job will only
be used once, behaving as if MAXUSE(1) was
specified.

2. The SPAWN_SETPJ NPflagisa
non-standard, OS/400-platform-specific
extension to the inheritance structure.
Applications that wish to avoid using
platform-specific extensions should not use this

flag.

SPAWN_SETCOMPMSG_NP If thisflag is set ON, spawn() causes the child process
to send a compl etion message to the user's message
gueue when the child process ends. If thisflagis set
OFF, no completion message is sent to the user's
message gueue when the child process ends. If both the
SPAWN_SETCOMPMSG_NP and
SPAWN_SETPJ NP flags are set ON, an error occurs.

Note: The SPAWN_SETCOMPMSG_NPflagisa
non-standard, OS/400-pl atform-specific extension to
the inheritance structure. Applications that wish to
avoid using platform-specific extensions should not use
thisflag.

SPAWN_SETJOBNAMEPARENT_NP If thisflag is set ON, spawn() set the child's OS/400
simple job name to that of the parent's. If thisflag is set
OFF, spawn() sets the child's OS/400 simple job name
based on the path input parameter.

argv(]

(Input) An array of pointersto strings that contain the argument list for the executable file. The last
element in the array must be the NULL pointer. If this parameter isNULL, an error occurs.

envp(]

(Input) An array of pointers to strings that contain the environment variable lists for the executable
file. Thelast element in the array must be the NULL pointer. If this parameter isNULL, an error
occurs.

Authorities

Figure 1-3. Authorization Required for spawn()

Authority
Object Referred to Required | errno
Each directory in the path name preceding the executable file that will runin *X EACCES
the new process
Executable file that will run in the new process *X EACCES
If executable file that will run in the new processis a shell script *RX EACCES

Return Value

value spawn() was successful. The value returned is the process ID of the child process.

-1 spawn() was not successful. The errno variableis set to indicate the error.

Error Conditions

If spawn() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[E2BIG]

[EACCES

[EAPAR]

[EBADFUNC]

[EBADNAME]

[ECANCEL]

[ECONVERT]

[EFAULT]

Argument list too long.

Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or
path.

If you are accessing aremote file through the Network File System, update
operationsto file permissions at the server are not reflected at the client until
updates to data that is stored locally by the Network File System take place.
(Severa options on the Add Mounted File System (ADDMFS) command
determine the time between refresh operations of local data.) Accessto aremote
file may aso fail due to different mappings of user IDs (UID) or group IDs
(GID) on the local and remote systems.

Possible APAR condition or hardware failure.

Function parameter in the signal function is not set.

A given file descriptor or directory pointer isnot valid for this operation. The
specified descriptor isincorrect, or does not refer to an open file.

The object name specified is not correct.

Operation canceled.

Conversion error.

One or more characters could not be converted from the source CCSID to the
target CCSID.

The specified path nameis not in the CCSID of the job.
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is
not valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

[EINVAL]

[EIO]

[ELOOP]

[ENAMETOOLONG]

[ENFILE]

[ENOENT]

[ENOMEM]

[ENOTDIR]

[ENOTSAFE]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted
on an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
Theflagsfield in the inherit parameter contains an invalid value.
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

A loop existsin the symbolic links.

Thiserror isissued if the number of symbolic links encountered is more than
POSIX_SYMLOORP (defined in the limits.h header file). Symbolic links are
encountered during resolution of the directory or path name.

A path nameistoo long.

A path name islonger than PATH_MAX characters or some component of the
nameislonger than NAME_MAX characterswhile _POSIX_NO_TRUNC isin
effect. For symboalic links, the length of the name string substituted for a
symbolic link exceeds PATH_MAX. The PATH_MAX and NAME_MAX
values can be determined using the pathconf() function.

Too many open filesin the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

Storage alocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.

Not adirectory.

A component of the specified path name existed, but it was not a directory when
adirectory was expected.

Some component of the path name is not a directory, or is an empty string.

Function is not alowed in ajob that is running with multiple threads.

[ENOTSUP] Operation not supported.

The operation, though supported in general, is not supported for the requested
object or the requested arguments.

[ETERM] Operation terminated.

[ENOSYSRC] System resources not available to complete request.

The child process failed to start. The maximum active jobsin a subsystem may
have been reached. CHGSBSD and CHGJOBQE CL commands can be used to
change the maximum active jobs.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messagesin
the job log and correct any errors that are indicated, then retry the operation.

Usage Notes

1. spawn() isthreadsafe, except this function will fail and errno ENOTSAFE will be set if itiscalled
in any of the following ways:

o From amultithreaded process and path refers to a shell script that does not exist in a
threadsafe file system.

2. There are performance considerations when using spawn() and spawnp() concurrently among
threads in the same process. spawn() and spawnp() serialize against other spawn() and spawnp()
callsfrom other threads in the same process.

3. Thechild processis enabled for signals. A side effect of this function isthat the parent processis
also enabled for signalsif it was not enabled for signals before this function was called.

4. If thisfunction is called from a program running in user state and it specifies a system-domain
program as the executable program for the child process, an exception occurs. In this case, spawn()
returns the process ID of the child process. On a subsequent call to wait() or waitpid(), the status
information returned indicates that an exception occurred in the child process.

5. #The program that will be run in the child process must be either a program object in the
QSYS.LIB file system or an independent ASP QSY S.LIB file system (* PGM abject) or a shell
script (see About Shell Scripts).4% The syntax of the name of the file to run must be the proper
syntax for the file system in which the file resides. For example, if the program MY PROG resides
in the QSY S.LIB file system and in library MY LIB, the specification for spawn(). would be the
following:

| @SYS. LI B/ MYLI B. LI B/ MYPROG. PGM

See QlgSpawn()--Spawn Process (using NL S-enabled path name) for an example specifying the
program using the Qlg_Path_Name T structure. The Qlg_Path_Name T structure is supported by

QlgSpawn() and alows the program name to be specified in any CCSID.

Note: For more information about path syntaxes for the different file systems, see the Integrated
File System book.

. Spawned child processes are batch jobs or prestart jobs. As such, they do not have the ability to do
5250-typeinteractive /0.

. Spawned child processes that are OS/400 prestart jobs are similar to batch jobs. Due to the nature
of prestart jobs, only the following OS/400-specific attributes are explicitly inherited in a child
process when you use prestart jobs:

o Library list

o Language identifier

o Country or region identifier

o Coded character set identifier

o Default coded character set identifier

o Locale (as specified in the user profile)

The child process has the same user profile as the calling thread. However, the OS/400 job
attributes come from the job description specified for the prestart job entry, and the run attributes
come from the class that is associated with the OS/400 subsystem used for the prestart job entry.

Notes:

1. The prestart job entry QPOZSPWP is used with prestart jobs that will not be creating
threads. The prestart job entry QPOZSPWT is used with prestart jobs that will allow
multiple threads. Both types of prestart jobs may be used in the same subsystem. The
prestart job entry must be defined for the subsystem that the spawn() parent process runs
under in order for it to be used.

2. Thefollowing example defines a prestart job entry (QPOZSPWP) for use by spawn() under
the subsystem QINTER. The spawn() APl must have the SPAWN_SETPJ_NP flag set (but
not SPAWN_SETTHREAD_NP) in order to use these prestart jobs:

ADDPJE SBSD(QSYS/ Q NTER) PGM QSYS/ QPOZSPWP)
| NLJOBS(20) THRESHOLD(5) ADLJOBS(5)
JOBD(QGPL/ QDFTJOBD) MAXUSE(1)
CLS(QGPL/ QI NTER)

3. Thefollowing example defines a prestart job entry (QPOZSPWT) that will create prestart
jobs that are multithread capable for use by spawn() under the subsystem QINTER. The
spawn() APl must have both SPAWN_SETPJ NP and SPAWN_SETTHREAD_ NP flags
set in order to use these prestart jobs. Also, the JOBD parameter must be a job description
that allows multiple threads as follows:

ADDPJE SBSD{ QSYS/ Q NTER) PGM QSYS/ QPOZSPWI)
| NLJOBS(20) THRESHOLD(5) ADLJOBS(5)
JOBD(QSYS/ QAMIIOBD) MAXUSE(1)
CLS(QGPL/ Q NTER)

Refer to the Work M anaqement@ book on the V5R1 Supplemental Manuals Web site for
complete details on prestart jobs.

8. Shell scripts are allowed for the child process. If a shell script is specified, the appropriate shell
interpreter program is called. The shell script must be atext file and must contain the following
format on the first line of thefile:

#linterpreter_path <options>
where interpreter_path is the path to the shell interpreter program.

If the calling process is multithreaded, path (the first parameter to spawn()) must reference a
threadsafe file system.

spawn() calls the shell interpreter, passing in the shell options and the arguments passed in as a
parameter to spawn(). The argument list passed into the shell interpreter will look like Figure 1-4.

Figure 1-4. Argumentsto Shell Interpreter

argvj

0 — path of shell interpreter

1 — 1 shell options

2 — ' path of shell script

5 — P argy [1] from spawn parameters
4 — argy [2] from spawn parameters
r ML

See About Shell Scripts for an example using spawn() and shell scripts.

9. Only programs that expect arguments as NUL L-terminated strings can be spawned.

The program that isrun in the child's processis called at itsinitial entry point. The linkage to the
program is C-like. The following example describes the linkage in C language terms.

int main(int argc, char *argv[])
[
]

where there following are true:
o argcisthe number of argumentsin argv[].

10.

11.

o argv[] isan array of arguments represented as strings. The last entry in the array isSNULL.
The first entry in the array, by convention, is the name of the program. spawn() setsthe
element argv[Q] to the path name of the child process program. spawn() does not move
any elements of the argv array when it sets argv[0Q] to the path name of the child process
program. If that element of the array contains an argument value, the value is overwritten.

argv] is specified by the user on the interface to spawn(). When spawn() is called in the child's
process, it passes the array to the program.

The child process does not inherit any of the environment variables of the parent process. That is,
the default environment variable environment is empty. If the child processisto inherit all the
parent process environment variables, the extern variable environ can be used as the value for
envp[] when spawn() is called. If a specific set of environment variablesisrequired in the child
process, the user must build the envp[] array with the "name=value" strings. In the child process,
spawn() does the equivalent of a putenv on each element of the envp[] array. Then the extern
variable environ will be set and available to the child process program.

Note: If the user of spawn() specifies the extern variable environ as the envp[] parameter, the user
must successfully call one of the following APIs before calling spawn():
o getenv()
putenv()
QpO0zGetEnv()
QpOzInitEnv()
QpOzPutEnv()

O

[}

[}

0

The extern variable environ is not initialized until one of these APIsis called in the current
activation group. If environisused in acall to spawn() without first caling one of these APIs,
spawn() returns an error.

0S/400 handles stdin, stdout, and stderr differently than most UNIX systems. On most UNIX
systems, stdin, stdout, and stderr have file descriptors 0, 1, and 2 reserved and allocated for them.
On OS/400, thisis not the case. There are two ramifications of this difference:

1. Filedescriptor 0, 1, and 2 are allocated to the first three files that have descriptors allocated
to them. If an application writesto file descriptor 1 assuming it is stdout, the result will not
be as expected.

2. Any API that assumes stdin, stdout, and stderr are file descriptors 0, 1, and 2 will not
behave as expected.

Users and applications can enable descriptor-based standard /O for child processes by setting
environment variable QIBM_USE_DESCRIPTOR_STDIO to thevalue Y in the child process. This
can be accomplished on the call to spawn() by either of the following:

1. Specifying the extern variable environ as the envp[] parameter. This assumes that the
QIBM_USE_DESCRIPTOR_STDIO environment variable exists in the calling process.
The environment variable can be set by using one of the following:

= APl putenv("QIBM_USE_DESCRIPTOR_STDIO=Y");

= Command ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO)
VALUE(Y)

= Command CHGENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO)
VALUE(Y)

12.

2. Explicitly include"QIBM_USE_DESCRIPTOR_STDIO=Y" in the user-defined envp[]
array with the "name=value" strings.

If you enable descriptor-based standard 1/0 for child processes, file descriptors 0, 1, and 2 are
automatically used for stdin, stdout, and stderr, respectively. However, spawn() must be called
using afd_map that hasfile descriptors 0, 1, and 2 properly allocated. See About Shell Scripts for

an example that enables descriptor-based standard 1/O for a child process. Refer to the WebSphere

Development Studio: |LE C/C++ Programmer's Gui de@ for complete details on this support.

Spawn users have afacility to aid in debugging child processes.

To help the user start a debug session (when spawn() is the mechanism used to start the process),
the user setsthe environment variable QIBM_CHILD_JOB_SNDINQMSG.

If the environment variable is assigned a numerical value, it indicates the number of descendent
levelsthat will be enabled for debugging. This support can be used to debug applications that create
children, grandchildren, great-grandchildren, and so forth. When the environment variable has a
value of 1, it enables debugging of all subsequent child processes. A value of 2 enables debugging
of all subsequent child processes and grandchild processes.

When the environment variable has a value less than or equal to 0, or any hon-numerical value,
debugging will not occur.

Here are the steps a user would take to debug an application by using spawn():

Assume the user wants to debug child processes in an application called CHILDAPP found in
library MY APPLIB.

o Setthe QIBM_CHILD JOB_SNDINQMSG environment variable to 1.

The environment variable can be set by using one of the following:
= AP putenv("QIBM_CHILD_JOB_SNDINQMSG=1");

= Command ADDENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG)
VALUE()

= Command CHGENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG)
VALUE(1)

o Cal or run the application that specifies/QSY S.LIB/MYAPPLIB.LIB/CHILDAPP.PGM
as the pathon the spawn() invocation. CHILDAPP will start running, send a CPAA980
*INQUIRY message to the user's message queue, and then will block, waiting for areply
to the message. Issue a Work with Active Jobs (WRKACTJOB) command and find the
CHILDAPPin aMSGW job status. Option 7 (Display message) performed against this job
will display the CPAA980 *INQUIRY message that was sent. As part of this message, the
Qualified Job Name will be displayed in the proper format to passto the Start Service Job
(STRSRVJOB) command (for example, 145778/RANDY R/CHILDAPP).

Note: Alternatively, a Display Messages (DSPM SG) command can be issued for the user,
and the output searched for the specific CPAA980 *INQUIRY message.

Note: If the job's inquiry message reply specifies using the default message reply, the child
process will not block since the default reply for the CPAA980 *INQUIRY message is G.

0 Issue a Start Service Job against the child process: STRSRVJOB
JOB(145778/RANDY R/CHILDAPP).

o Issue a Start Debug Command: STRDBG PGM (MY APPLIB/CHILDAPP).

o Set whatever breakpoints are needed in CHILDAPP. When ready to continue, find the
CPAA980 message and reply with G. Thiswill unblock CHILDAPP, which allowsit to run
until a breakpoint is reached, at which time CHILDAPP will again stop.

Note: If you reply with C to the CPAA980 message, the child processis ended before the
child process program ever receives control. In this case, on a subsequent call to wait() or
waitpid(), the status information returned indicates WIFEXCEPTION(), which evaluates

to anonzero value, and WEXCEPTNUMBER() will evaluate to 0.

o Theapplication is now stopped at a breakpoint and debugging can proceed.

13. The child's OS/400 simple job name is derived directly from the path input parameter. If pathisa
symbolic link to another object, the OS/400 simple job name is derived from the symbolic link
itself. For example, if path was set to /QSYS.LIB/MYLIB.LIB/CHILD.PGM, the child's OS/400
simple job name would be CHILD. If /usr/bin/daughter was a symbolic link to
/QSYS.LIB/MYLIB.LIB/CHILD.PGM and path was set to /usr/bin/daughter, the child's 0S/400
simple job name would be DAUGHTER.

Attributes Inherited

The child process inherits the following POSI X attributes from the parent:
1. File descriptor table (mapped according to fd_map).
o If fd_map isNULL, al file descriptors are inherited without being reordered.

Note: File descriptors that have the FD_CLOEXEC file descriptor flag set are not
inherited. Refer to for additional information about the FD_CL OEXEC flag. File
descriptors that are created as aresult of the opendir () API (to implement open directory
streams) are not inherited.

o If fd_mapisnot NULL, it isamapping from the file descriptor table of the parent process
to the file descriptor table of the child process. fd_count specifies the number of file
descriptors the child process will inherit. Except for those file descriptors designated by
SPAWN_FDCLOSED, file descriptor i in the child processis specified by fd_map[i]. For
example, fd_map[5] = 7 sets the child process file descriptor 5 to the parent process file
descriptor 7. File descriptors fd_count through OPEN_MAX are closed in the child
process, as are any file descriptors designated by SPAWN_FDCLOSED.

Note: File descriptorsthat are specified in the fd_map array are inherited even if they have
the FD_CLOEXEC file descriptor flag set. After inheritance, the FD_CLOEXEC flagin
the child process file descriptor is cleared.

o For files descriptors that remain open, no attributes are changed.

o If afile descriptor refersto an open instance in afile system that does not support file
descriptors in two different processes pointing to the same open instance of afile, thefile
descriptor is closed in the child process.

Only open files managed by the Root, QOpenSys, or user-defined file systems support
inheritance of their file descriptors. All other file systems will have their file descriptors
closed in the child process.

2. Processgroup ID

10.

11.

12.
13.

14.

o If inherit.flagsis set to SPAWN_SETPGROUP, the child process group ID is set to the
value in inherit.pgroup.

Note: OS/400 does not support the ability to set the process group 1D for the child process
to auser-specified group ID. Thisis adeviation from the POSIX standard.

o If inherit.pgroup is set to SPAWN_NEWPGROUP, the child processis put in anew
process group with a process group 1D equal to the process ID.

o If inherit.pgroup is not set to SPAWN_NEWPGROUP, the child process inherits the
process group of the parent process.

If the process group that the child process is attempting to join has received the SIGKILL signal,
the child process is ended.

Real user 1D of the calling thread.

Real group ID of the calling thread.

Supplementary group 1Ds (group profilelist) of the calling thread.

Current working directory of the parent process.

Root directory of the parent process.

File mode creation mask of the parent process.

. Signal mask of the calling thread, except if the SPAWN_SETSIGMASK flag is set in inherit.flags.

Then the child process will initially have the signal mask specified in inherit.mask.

Signal action vector, as determined by the following:

o If the SPAWN_SETSIGDEF flag is set in inherit.flags, the signal specified in
inherit.sigdefault is set to the default actions in the child process. Signals set to the default
action in the parent process are set to the default action in the child process.

o Signals set to be caught in the parent process are set to the default action in the child
process.

o Signals set to be ignored in the parent process are set to ignore in the child process, unless
set to default by the above rules.

Priority of the parent process.

Note: OS/400 prestart jobs do not inherit priority.

Scheduling policy (the OS/400 scheduling policy) of the parent process.

0S/400-specific attributes of the parent, such as jaob attributes, run attributes, library list, and user
profile.

Note: OS/400 prestart jobs inherit a subset of OS/400-specific attributes.

#»*Resource limits of the parent process. 4

Related Information

o The <spawn.h> file (see Header Files for UNIX-Type Functions)

OlgSpawn()--Spawn Process (using NL S-enabled path name)

spawnp()--Spawn Process with Path

wait()--Wait for Child Processto End

waitpid()--Wait for Specific Child Process

Example

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIsin the
API Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

spawnp()--Spawn Process with Path

Syntax

#i ncl ude <spawn. h>

pid t spawnp(const char *file,
const int fd_count,
const int fd map[],
const struct inheritance *inherit,
char * const argv[],
char * const envp[]);

Service Program Name: QPOZSPWN

Default Public Authority: * USE

Threadsafe: Conditional; see Usage Notes.

The spawnp() function creates a child process that inherits specific attributes from the parent. The
attributes inherited by the child process are file descriptors, the signal mask, the signal action vector, and
environment variables, among others. spawnp() takes the file parameter and searches the environment
variable PATH. The file parameter is concatenated to each path defined in the PATH environment variable.
It uses the first occurrence of the file parameter that is found with a mode of execute.

If the PATH environment variable does not contain avalue, an error occurs. If the file parameter contains a
"[" character, the value of file is used as a path and a search of the PATH or library list is not performed.
Specifying afile parameter containing a"/" is the same as calling spawn().

To search the library list, a special value for the PATH environment variable is used. The string %L1BL%
can be the entire PATH value or a component of the PATH vaue. When the string %LIBL% is
encountered, the library list is searched. For example, the following path searches the directory /usr/bin
first, searchesthe library list next, and then searches the /tobrien/bin directory for thefile:

PATH=/ usr/ bi n: %.1 BL% / t obri en/ bi n

Parameters

file
(Input) A file name used with the search path to find an executable file that will run in the new
(child) process. The file name is expected to bein the CCSID of the job.

See QlgSpawnp()--Spawn Process with Path (using NL S-enabled file name) for a description and
an example of supplying the filein any CCSID.

fd_count

(Input) The number of file descriptors the child process can inherit. It can have avalue from zero to
the value returned from a call to sysconf(_ SC_OPEN_MAX).

fd_map|[]

inherit

(Input) An array that maps the parent process file descriptor numbers to the child processfile
descriptor numbers. If thisvalueis NULL, it indicates smple inheritance. Simple inheritance
means that the child process inherits all eligible open file descriptors of the parent process. In
addition, the file descriptor number in the child processis the same as the file descriptor number in
the parent process. Refer to Attributes Inherited for details of file descriptor inheritance.

(Input) A pointer to an area of type struct inheritance. If the pointer isNULL, an error occurs. The
inheritance structure contains control information to indicate attributes the child process should
inherit from the parent. The following is an example of the inheritance structure, as defined in the
<gpawn.h> header file:

struct inheritance {
flagset _t flags;
i nt pgr oup;
si gset _t si gmask;
si gset _t si gdef aul t;

s

The flags field specifies the manner in which the child process should be created. Only the
constants defined in <spawn.h> are allowed; otherwise, spawn returns -1 with errno set to
EINVAL. The allowed constants follow:

SPAWN_SETPGROUP If thisflag is set ON, spawnp() sets the process group
ID of the child processto the valuein pgroup. In this
case, the process group field, pgroup, must be valid. If it
isnot valid, an error occurs. If thisflag is set OFF, the
pgroup field is checked to determine what the process
group 1D of the child processis set to. If the pgroup
field is set to the constant SPAWN_NEWPGROUP, the
child process group ID is set to the child process ID. If
the pgroup field is not set to SPAWN_NEWPGROUP
and the flags field is not set to SPAWN_SETPGROUP,
the process group I1D of the child processis set to the
process group ID of the parent process. If the pgroup
field is set to SPAWN_NEWPGROUP and the flags
field is set to SPAWN_SETPGROUP, an error occurs.

SPAWN_SETIGMASK If thisflag is set ON, spawnp() setsthe signal blocking
mask of the child processto the valuein sigmask. In
this case, the signal blocking mask must be valid. If itis
not valid, an error occurs. If thisflag is set OFF,
spawnp() setsthe signal blocking mask of the child
process to the signal blocking mask of the calling
thread.

SPAWN_SETS GDEF

SPAWN_SETTHREAD NP

SPAWN_SETPJ_NP

If thisflag is set ON, spawnp() sets the child process
signalsidentified in sigdefault to the default actions.
The sigdefault must be valid. If it isnot valid, an error
occurs. If thisflag is set OFF, spawnp() sets the child
process signal actions to those of the parent process.
Any signals of the parent process that have a catcher
specified are set to default in the child process. The
child process signal actions inherit the parent process
ignore and default signal actions.

If thisflag is set ON, spawnp() will create the child
process as multithread capable. The child process will
be allowed to create threads. If thisflag is set OFF, the
child process will not be allowed to create threads.

Note: The SPAWN_SETTHREAD_NPflagisa
non-standard, OS/400-pl atform-specific extension to
the inheritance structure. Applications that wish to
avoid using platform-specific extensions should not use
thisflag.

If thisflag is set ON, spawnp() attempts to use
available OS/400 prestart jobs. The prestart job entries
that may be used follow:

0 QSYS/QPOZSPWP, if the flag
SPAWN_SETTHREAD_NP s set OFF.

0 QSYSQPOZSPWT, if the flag
SPAWN_SETTHREAD_ NPis set ON.

The OS/400 prestart jobs must have been started using
either QSY S/IQPOZSPWP or QSY SIQPOZSPWT as the
program that identifies a prestart job entry for the
0S/400 subsystem that the parent processis running
under. If aprestart job entry is not defined, the child
process will run as a batch immediate job under the
same subsystem as the parent process.

If thisflag (SPAWN_SETPJ_NP) is set OFF, the child
process will run as a batch immediate job under the
same subsystem as the parent process.

Notes:

1. Inorder to more closely emulate POSIX
semantics, spawnp() will ignore the Maximum
number of uses (MAXUSE) value specified for
the prestart job entry. The prestart job will only
be used once, behaving asif MAXUSE(1) was
specified.

2. The SPAWN_SETPJ NPflagisa
non-standard, OS/400-platform-specific
extension to the inheritance structure.

Applications that wish to avoid using
platform-specific extensions should not use this

flag.

SPAWN_SETCOMPMSG_NP If thisflag is set ON, spawnp() causes the child process
to send a compl etion message to the user's message
gueue when the child process ends. If thisflag is set
OFF, no completion message is sent to the user's
message queue when the child process ends. If both the
SPAWN_SETCOMPMSG_NP and
SPAWN_SETPJ NP flags are set ON, an error occurs.

Note: The SPAWN_SETCOMPMSG_NPflagisa
non-standard, OS/400-pl atform-specific extension to
the inheritance structure. Applications that wish to
avoid using platform-specific extensions should not use
thisflag.

SPAWN_SETJOBNAMEPARENT NP If thisflag isset ON, spawnp() set the child's 0OS/400
simple job name to that of the parent's. If thisflag is set
OFF, spawnp() sets the child's 0OS/400 simple job name
based on the file input parameter.

argv(]

(Input) An array of pointersto strings that contain the argument list for the executablefile. The last
element in the array must be the NULL pointer. If this parameter isNULL, an error occurs.

envp(]

(Input) An array of pointersto strings that contain the environment variable lists for the executable
file. The last element in the array must be the NULL pointer. If this parameter isNULL, an error
OCCUrsS.

Authorities

Figure 1-5. Authorization Required for spawnp()

Authority
Object Referred to Required | errno
Each directory in the path name preceding the executable file that will run in *X EACCES
the new process
Executable file that will run in the new process *X EACCES
If executable file that will runin the new processis ashell script *RX EACCES

Return Value

value spawnp() was successful. The value returned is the process ID of the child process.

-1 spawnp() was not successful. The errno variable is set to indicate the error.

Error Conditions

If spawnp() is not successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[E2BIG] Argument list too long.

[EACCEY Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or
path.

If you are accessing aremote file through the Network File System, update
operationsto file permissions at the server are not reflected at the client until
updates to data that is stored locally by the Network File System take place.
(Severa options on the Add Mounted File System (ADDMFS) command
determine the time between refresh operations of local data.) Accessto aremote
file may aso fail due to different mappings of user IDs (UID) or group IDs
(GID) on the local and remote systems.

[EAPAR] Possible APAR condition or hardware failure.

[EBADFUNC] Function parameter in the signal function is not set.

A given file descriptor or directory pointer isnot valid for this operation. The
specified descriptor isincorrect, or does not refer to an open file.

[EBADNAME] The object name specified is not correct.
[ECANCEL] Operation canceled.
[ECONVERT] Conversion error.

One or more characters could not be converted from the source CCSID to the
target CCSID.

The specified path nameis not in the CCSID of the job.

[EFAULT]

[EINVAL]

[EIO]

[ELOOP]

[ENAMETOOLONG]

[ENFILE]

[ENOENT]

[ENOMEM]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is
not valid.

While attempting to access a parameter passed to this function, the system
detected an addressthat is not valid.

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted
on an object and the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.

Theflagsfield in the inherit parameter contains an invalid value.
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

A loop existsin the symboalic links.

Thiserror isissued if the number of symbolic links encountered is more than
POSIX_SYMLOORP (defined in the limits.h header file). Symbolic links are
encountered during resolution of the directory or path name.

A path nameistoo long.

A path nameislonger than PATH_MAX characters or some component of the
nameislonger than NAME_MAX characterswhile _POSIX_NO TRUNC isin
effect. For symboalic links, the length of the name string substituted for a
symbolic link exceeds PATH_MAX. The PATH_MAX and NAME_MAX
values can be determined using the pathconf() function.

Too many open filesin the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTDIR] Not adirectory.

A component of the specified path name existed, but it was not a directory when
adirectory was expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE] Function is not alowed in ajob that is running with multiple threads.

[ENOTSUP] Operation not supported.

The operation, though supported in general, is not supported for the requested
object or the requested arguments.

[ETERM] Operation terminated.

[ENOSYSRC] System resources not available to complete request.

The child process failed to start. The maximum active jobsin a subsystem may
have been reached. CHGSBSD and CHGJOBQE CL commands can be used to
change the maximum active jobs.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messagesin
the job log and correct any errors that are indicated, then retry the operation.

Usage Notes

1. spawnp() isthreadsafe, except this function will fail and errno ENOTSAFE will be set if it iscalled
in any of the following ways:

o From amultithreaded process and file refersto a shell script that does not exist in a
threadsafe file system.

o From amultithreaded process with a current working directory that is not in athreadsafe
file system, and the PATH environment variable causes spawnp() to check the current
working directory.

2. There are performance considerations when using spawn() and spawnp() concurrently among
threads in the same process. spawn() and spawnp() serialize against other spawn() and spawnp()
calls from other threads in the same process.

3. Thechild processis enabled for signals. A side effect of this function is that the parent processis
also enabled for signalsif it was not enabled for signals before this function was called.

4. If thisfunction is called from a program running in user state and it specifies a system-domain
program as the executable program for the child process, an exception occurs. In this case,
spawnp() returns the process ID of the child process. On a subsequent call to wait() or waitpid(),

the status information returned indicates that an exception occurred in the child process.

. #The program that will be run in the child process must be either a program object in the
QSYS.LIB file system or an independent ASP QSY S.LIB file system (* PGM abject) or a shell
script (see About Shell Scripts).4% The syntax of the name of the file to run must be the proper
syntax for the file system in which the file resides. For example, if the program MY PROG resides
in the QSYS.LIB file system and in library MY LIB, the specification for spawnp(). would be the
following:

MYPROG. PGM

See QlgSpawn()--Spawn Process (using NL S-enabled path name) for an exampl e specifying the
program using the Qlg_Path_Name_T structure. The Qlg_Path_Name T structure is supported by
QlgSpawn() and alows the program name to be specified in any CCSID.

Note: For more information about path syntaxes for the different file systems, see the Integrated
File System book.

. Spawned child processes are batch jobs or prestart jobs. As such, they do not have the ability to do
5250-typeinteractive /0.

. Spawned child processes that are OS/400 prestart jobs are similar to batch jobs. Due to the nature
of prestart jobs, only the following OS/400-specific attributes are explicitly inherited in a child
process when you use prestart jobs:

o Library list

o Languageidentifier

o Country or region identifier

o Coded character set identifier

o Default coded character set identifier

o Locale (as specified in the user profile)

The child process has the same user profile as the calling thread. However, the OS/400 job
attributes come from the job description specified for the prestart job entry, and the run attributes
come from the class that is associated with the OS/400 subsystem used for the prestart job entry.

Notes:

1. The prestart job entry QPOZSPWP is used with prestart jobs that will not be creating
threads. The prestart job entry QPOZSPWT is used with prestart jobs that will allow
multiple threads. Both types of prestart jobs may be used in the same subsystem. The
prestart job entry must be defined for the subsystem that the spawnp() parent process runs
under in order for it to be used.

2. Thefollowing example defines a prestart job entry (QPOZSPWHP) for use by spawnp()
under the subsystem QINTER. The spawnp() APl must have the SPAWN_SETPJ NP flag
set (but not SPAWN_SETTHREAD_NP) in order to use these prestart jobs:

ADDPJE SBSD{ QSYS/ Q NTER) PGM QSYS/ QPOZSPWP)
| NLJOBS(20) THRESHOLD(5) ADLJOBS(5)
JOBD(QGPL/ QDFTJOBD) MAXUSE(1)
CLS(QGPL/ Q NTER)

3. Thefollowing example defines a prestart job entry (QPOZSPWT) that will create prestart
jobs that are multithread capable for use by spawnp() under the subsystem QINTER. The
spawnp() APl must have both SPAWN_SETPJ NP and SPAWN_SETTHREAD_NP flags
set in order to use these prestart jobs. Also, the JOBD parameter must be a job description
that allows multiple threads as follows:

ADDPJE SBSD{ QSYS/ Q NTER) PGM QSYS/ QPOZSPWI)
| NLJOBS(20) THRESHOLD(5) ADLJOBS(5)
JOBD(QSYS/ QAMIIOBD) MAXUSE(1)
CLS(QGPL/ Q NTER)

Refer to the Work M anaqement@l book on the V5R1 Supplemental Manuals Web site for
complete details on prestart jobs.
. Shell scripts are allowed for the child process. If a shell script is specified, the appropriate shell

interpreter program is called. The shell script must be atext file and must contain the following
format on thefirst line of thefile:

#linterpreter_path <options>
where interpreter_path is the path to the shell interpreter program.

If the calling process is multithreaded, file (the first parameter to spawnp()) must reference a
threadsafe file system.

spawnp() callsthe shell interpreter, passing in the shell options and the arguments passed in as a
parameter to spawnp(). The argument list passed into the shell interpreter will look like Figure 1-6.

Figure 1-6. Argumentsto Shell Interpreter

argw—i

a — path of shell interpreter

1 —p shell options

2 — 1 path of shell script

3 — g argy [1] from spawn parameters
4 — argy [2] from spawn parameters

1 M LULL

10.

11.

See About Shell Scripts for an example using spawn() and shell scripts.

Only programs that expect arguments as NUL L-terminated strings can be spawned.

The program that isrun in the child's process is called at itsinitial entry point. The linkage to the
program is C-like. The following example describes the linkage in C language terms.

int main(int argc, char *argv[])
[
]

where the following is true:
o argcisthe number of argumentsin argv(].

o argv[] isan array of arguments represented as strings. The last entry in the array isSNULL.
Thefirst entry in the array, by convention, is the name of the program. spawnp() setsthe
element argv[Q] to the path name of the child process program. spawnp() does not move
any elements of the argv array when it sets argv[0] to the path name of the child process
program. If that element of the array contains an argument value, the value is overwritten.

argv[] is specified by the user on the interface to spawnp(). When spawnp() is called in the child's
process, it passes the array to the program.

The child process does not inherit any of the environment variables of the parent process. That is,
the default environment variable environment is empty. If the child processisto inherit al the
parent process environment variables, the extern variable environ can be used as the value for
envp[] when spawnp() is caled. If aspecific set of environment variablesisrequired in the child
process, the user must build the envp[] array with the "name=value" strings. In the child process,
spawnp() does the equivalent of a putenv on each element of the envp[] array. Then the extern
variable environ will be set and available to the child process program.

Note: If the user of spawnp() specifies the extern variable environ asthe envp[] parameter, the
user must successfully call one of the following APIs before calling spawnp():

o getenv()

o putenv()

0 QpO0zGetEnv()

o QpOzInitEnv()

o QpOzPutEnv()
The extern variable environ is not initialized until one of these APIsis called in the current

activation group. If environ isused in acall to spawnp() without first calling one of these APIs,
spawnp() returns an error.

0S/400 handles stdin, stdout, and stderr differently than most UNIX systems. On most UNIX
systems, stdin, stdout, and stderr have file descriptors 0, 1, and 2 reserved and allocated for them.
On OS/400, thisis not the case. There are two ramifications of this difference:

1. Filedescriptor O, 1, and 2 are allocated to the first three "files" that have descriptors
allocated to them. If an application writesto file descriptor 1 assuming it is stdout, the
result will not be as expected.

2. Any API that assumes stdin, stdout, and stderr are file descriptors 0, 1, and 2 will not
behave as expected.

Users and applications can enable descriptor-based standard 1/0 for child processes by setting
environment variable QIBM_USE_DESCRIPTOR_STDIO to thevalue Y in the child process. This
can be accomplished on the call to spawnp() by either of the following:

1. Specifying the extern variable environ as the envp[] parameter. This assumes that the
QIBM_USE DESCRIPTOR_STDIO environment variable exists in the calling process.

The environment variable can be set by using one of the following:
= API putenv("QIBM_USE_DESCRIPTOR_STDIO=Y");

= Command ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO)
VALUE(Y)

= Command CHGENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO)
VALUE(Y)

2. Explicitly include "QIBM_USE_DESCRIPTOR_STDIO=Y" in the user-defined envpl[]
array with the "name=value" strings.

If you enable descriptor-based standard 1/0 for child processes, file descriptors 0, 1, and 2 are
automatically used for stdin, stdout, and stderr, respectively. However, spawnp() must be called
using afd_map that hasfile descriptors 0, 1, and 2 properly allocated. See About Shell Scripts for

an example that enables descriptor-based standard /O for a child process. Refer to WebSphere

Development Studio: ILE C/C++ Programmer's Gui de@ for complete details on this support.

12. Spawn users have afacility to aid in debugging child processes.

To help the user start a debug session (when spawnp() is the mechanism used to start the process),
the user sets the environment variable QIBM_CHILD_JOB_SNDINQMSG.

If the environment variable is assigned anumerical value, it indicates the number of descendent
levelsthat will be enabled for debugging. This support can be used to debug applications that create
children, grandchildren, great-grandchildren, and so forth. When the environment variable has a
value of 1, it enables debugging of all subsequent child processes. A value of 2 enables debugging
of all subsequent child processes and grandchild processes.

When the environment variable has a value less than or equal to 0, or any hon-numerical value,
debugging will not occur.

Here are the steps a user would take to debug an application by using spawnp():
Assume the user wants to debug child processesin an application called CHILDAPP found in

library MY APPLIB.
o Setthe QIBM_CHILD JOB_SNDINQMSG environment variable to 1.

The environment variable can be set by using one of the following:
= APl putenv("QIBM_CHILD_JOB_SNDINQMSG=1");

= Command ADDENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG)
VALUE(1)

= Command CHGENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG)
VALUE()

o Cal or run the application that specifies CHILDAPP.PGM as the fileon the spawnp()
invocation. CHILDAPP will start running, send a CPAA980 *INQUIRY message to the
user's message queue, and then will block, waiting for areply to the message. 1ssue a Work

with Active Jobs (WRKACTJOB) command and find the CHILDAPP in aMSGW job
status. Option 7 (Display message) performed against this job will display the CPAA980
*INQUIRY message that was sent. As part of this message, the Qualified Job Name will be
displayed in the proper format to passto the Start Service Job (STRSRVJOB) command
(for example, 145778/RANDY R/CHILDAPP).

Note: Alternatively, a Display Messages (DSPM SG) command can be issued for the user,
and the output searched for the specific CPAA980 *INQUIRY message.

Note: If the job'sinquiry message reply specifies using the default message reply, the child
process will not block since the default reply for the CPAA980 *INQUIRY message is G.

0 Issue a Start Service Job against the child process: STRSRVJOB
JOB(145778/RANDY R/CHILDAPP).

o Issue a Start Debug Command: STRDBG PGM (MY APPLIB/CHILDAPP).

o Set whatever breakpoints are needed in CHILDAPP. When ready to continue, find the
CPAA980 message and reply with G. Thiswill unblock CHILDAPP, which allowsit to run
until a breakpoint is reached, at which time CHILDAPP will again stop.

Note: If you reply with C to the CPAA980 message, the child processis ended before the
child process program ever receives control. In this case, on a subsequent call to wait() or
waitpid(), the status information returned indicates WIFEX CEPTIONY(), which evaluates

to anonzero value, and WEXCEPTNUMBER() will evaluate to 0.

o The application is now stopped at a breakpoint and debugging can proceed.

13. The child's OS/400 simple job name is derived directly from the file input parameter. If fileisa
symbolic link to another object, the OS/400 simple job name is derived from the symbolic link
itself. For example, if file was set to CHILD.PGM, the child's OS/400 simple job name would be
CHILD. If /usr/bin/daughter was a symbolic link to /QSY S.LIB/MYLIB.LIB/CHILD.PGM, and
file was set to daughter, the child's OS/400 simple job name would be DAUGHTER.

Attributes Inherited

The child process inherits the following POSI X attributes from the parent:
1. File descriptor table (mapped according to fd_map).

o If fd_map isNULL, all file descriptors are inherited without being reordered.

Note: File descriptors that have the FD_CLOEXEC file descriptor flag set are not
inherited. Refer to for additional information about the FD_CLOEXEC flag. File
descriptors that are created as aresult of the opendir () API (to implement open directory
streams) are not inherited.

o If fd_map isnot NULL, it isamapping from the file descriptor table of the parent process
to the file descriptor table of the child process. fd_count specifies the number of file
descriptors the child process will inherit. Except for those file descriptors designated by
SPAWN_FDCLOSED, file descriptor i in the child processis specified by fd_mapli]. For
example, fd_map[5]= 7 sets the child process file descriptor 5 to the parent process file
descriptor 7. File descriptors fd_count through OPEN_MAX are closed in the child
process, as are any file descriptors designated by SPAWN_FDCLOSED.

2.

10.

Note: File descriptors that are specified in the fd_map array are inherited even if they have
the FD_CLOEXEC file descriptor flag set. After inheritance, the FD_CLOEXEC flag in
the child process file descriptor is cleared.

o For files descriptors that remain open, no attributes are changed.

o If afile descriptor refersto an open instance in afile system that does not support file
descriptors in two different processes pointing to the same open instance of afile, thefile
descriptor is closed in the child process.

Only open files managed by the Root, QOpenSys, or user-defined file systems support

inheritance of their file descriptors. All other file systems will have their file descriptors
closed in the child process.

Process group 1D

o If inherit.flagsis set to SPAWN_SETPGROUP, the child process group ID is set to the
valueininherit.pgroup.

Note: OS/400 does not support the ability to set the process group 1D for the child process
to auser-specified group ID. Thisis adeviation from the POSIX standard.

o If inherit.pgroup is set to SPAWN_NEWPGROUP, the child processis put in a new
process group with a process group 1D equal to the process ID.

o If inherit.pgroup isnot set to SPAWN_NEWPGROUP, the child process inherits the
process group of the parent process.

If the process group that the child process is attempting to join has received the SIGKILL signal,
the child process is ended.

Real user 1D of the calling thread.

Real group 1D of the calling thread.

Supplementary group 1Ds (group profilelist) of the calling thread.

Current working directory of the parent process.

Root directory of the parent process.

. File mode creation mask of the parent process.

. Signal mask of the calling thread, except if the SPAWN_SETSIGMASK flag isset in inherit.flags.

Then the child process will initially have the signal mask specified in inherit.mask.
Signal action vector, as determined by the following:

o If the SPAWN_SETSIGDEF flag is set in inherit.flags, the signal specified in
inherit.sigdefault is set to the default actions in the child process. Signal's set to the default
action in the parent process are set to the default action in the child process.

o Signals set to be caught in the parent process are set to the default action in the child

process.

o Signals set to be ignored in the parent process are set to ignore in the child process, unless
set to default by the above rules.
11. Priority of the parent process.
Note: OS/400 prestart jobs do not inherit priority.
12. Scheduling policy (the OS/400 scheduling policy) of the parent process.

13. 0S/400-specific attributes of the parent, such as job attributes, run attributes, library list, and user
profile.

Note: OS/400 prestart jobs inherit a subset of OS/400-specific attributes.
14. #*Resource limits of the parent process. %

Related Information

» The<spawn.h> file (see Header Files for UNIX-Type Functions)

QlgSpawnp()--Spawn Process with Path (using NL S-enabled file name)

o spawn()--Spawn Process

o sysconf()--Get System Configuration Variables

« wait()--Wait for Child Processto End

« waitpid()--Wait for Specific Child Process

Example

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIsin
Examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

»ulimit()--Get and set process limits

Syntax

#include <ulimt. h>

long int ulimt(int cnd, ...);
Service Program Name: QPOWSRV 1

Default Public Authority: *USE

Threadsafe: Yes

The ulimit() function provides away to get and set process resource limits. A resource limit isaway for
the operating system to enforce alimit on a variety of resources used by a process. A resource limit has a
current or soft limit and a maximum or hard limit.

The ulimit() function is provided for compatibility with older applications. The getrlimit() and setrlimit()
functions should be used for working with resource limits.

A soft limit can be changed to any value that is less than or equal to the hard limit. The hard limit can be
changed to any value that is greater than or equal to the soft limit. Only a process with appropriate
authorities can increase a hard limit.

The ulimit() function supports the following cmd values:

UL _GETFSZE (0) Returnthe current or soft limit for the file size resource limit. The returned limit is
in 512-byte blocks. The return value is the integer part of the file size resource
limit divided by 512.

UL_SETFSZE (1) Setthe current or soft limit and the maximum or hard limit for the file size resource
limit. The second argument is taken as along int that represents the limit in
512-byte blocks. The specified valueis multiplied by 512 to set the resource limit.
If the result overflows an rlim_t, ulimit() returns -1 and setserrno to EINVAL.
The new file size resource limit is returned.

Parameters

cmd
(Input)

The command to be performed.

(Input)
When thecmd isUL_SETFSIZE, along int that represents the limit in 512-byte blocks.

Authorities and Locks

The current user profile must have * JOBCTL specia authority to increase the hard limit.

Return Value

value ulimit() was successful. The value is the requested limit.

-1 ulimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If ulimit() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL]

[EPERM]

Aninvalid parameter was found.
Aninvalid cmd was specified.
Permission denied.

An attempt was made to increase the hard limit and the current user profile does not have
*JOBCTL specia authority.

Related Information

» The<ulimit.h> file (see Header Files for UNIX-Type Functions)

o getrlimit()-Get resource limit

o setrlimit()-Set resource limit

Example

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

int main

{

<ulimt. h>
<stdi 0. h>
<stdlib. h>
<errno. h>

(int argc, char *argv[])

| ong int val ue;
long int limt;

/* Set the file size resource limt. */

[imt
errno

65535;
0;

value = ulimt(UL_SETFSI ZE, limt);

if ((value == -1) && (errno !'= 0))
printf("ulimt() failed with errno=%d\n", errno);
exit(1);

printf("The limt is set to %d\n", value);

/* Get the file size resource limt. */
value = ulimt(UL_GETFSI ZE);

if ((value == -1) && (errno !'= 0))
printf("ulimt() failed with errno=%\n", errno);
exit(1l);

}
printf("The limt is %d\n", value);

exit(0);
}
Example Output:

The limt is set to 65535
The limt is 65535

&

Introduced: V5R2

Top | UNIX-Type APIs| APIs by category

wait()--Wait for Child Process to End

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>

pidt wait(int *stat _|oc);

Service Program Name: QPOZSPWN
Default Public Authority: *USE

Threadsafe: Yes

The wait() function suspends processing until a child process has ended. The calling thread will suspend
processing until status information is available for a child process that ended. A suspended wait() function
call can be interrupted by the delivery of asignal whose action is either to run a signal-catching function or
to terminate the process. When wait() is successful, status information about how the child process ended
(for example, whether the process ended normally) is stored in the location specified by stat_loc.

Parameters

stat_loc

(Input) Pointer to an area where status information about how the child process ended is to be
placed.

The status referenced by the stat_|oc argument is interpreted using macros defined in the <sys/wait.h>
header file. The macros use an argument stat_val, which is the integer value pointed to by stat_loc. When
wait() returns with avalid process ID (pid), the macros analyze the status referenced by the stat_loc
argument. The macros are as follows:

WIFEXITED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended normally.

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the
low-order 8 bits of the status argument that the child process passed to
exit(), or to the value the child process returned from main().

WIFSIGNALED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended because of the receipt of aterminating signal that
was not caught by the process.

WTERMS G(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the
number of the signal that caused the child processto end.

WIFSTOPPED(stat_val) Evaluates to a nonzero value if the status was returned for a child
processthat is currently stopped.

WSTOPS G(stat_val) If the value of the WIFSTOPPED(stat_val) is nonzero, evaluates to the
number of the signal that caused the child process to stop.

WIFEXCEPTION(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended because of an error condition.

Note: The WIFEXCEPTION macro is unigue to the OS/400
implementation. See the Usage Notes.

WEXCEPTNUMBER(stat_val) If the value of the WIFEXCEPTION(stat_val) is nonzero, this macro
evaluates to the last OS/400 exception number related to the child
process.

Note: The WEXCEPTNUMBER macro is unique to the 0S/400
implementation. See the Usage Notes.

Authorities

None

Return Value

value wait() was successful. The value returned indicates the process ID of the child process whose
status information was recorded in the storage pointed to by stat_|oc.

-1 wait() was not successful. The errno value is set to indicate the error.

Error Conditions

If wait() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[ECHILD] Calling process has no remaining child processes on which wait operation can be
performed.
[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
vaid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINTR] Interrupted function call.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messagesin thejob
log and correct any errors that are indicated, then retry the operation.

Usage Notes

1. The WIFEXCEPTION macro is unique to the OS/400 implementation. This macro can be used to
determine whether the child process has ended because of an exception. When WIFEXCEPTION
returns a nonzero value, the value returned by the WEXCEPTNUMBER macro corresponds to the
last OS/400 exception number related to the child process.

2. When a child process ends because of an exception, the ILE C run-time library catches and handles
the original exception. The value returned by WEXCEPTNUMBER indicates that the exception
was CEE9901. Thisisacommon exception ID. If you want to determine the original exception
that ended the child process, look at the job log for the child process.

3. If the child processis ended by any of the following:

o ENDJOB OPTION(*IMMED)
o ENDJOB OPTION(*CNTRLD) and delay time was reached
o Debugging a child process (environment variable QIBM_CHILD_JOB_SNDINQMSG is
used) and the resulting CPAA980 *INQUIRY message isreplied to using C,
then the parent's wait() stat_loc value indicates that:
o WIFEXCEPTION(stat val) evaluates to a nonzero value
o WEXCEPTNUMBER(stat_val) evaluates to zero.

Related Information

o The <sydltypes.h> file (see Header Files for UNIX-Type Functions)

o The <syswait.h> file (see Header Files for UNIX-Type Functions)

« spawn()--Spawn Process

« spawnp()--Spawn Process with Path

o waitpid()--Wait for Specific Child Process

« Signal Concepts

Example

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIsin the
APl examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

waitpid()--Wait for Specific Child Process

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>

pidt waitpid(pid t pid, int *stat _loc, int options);
Service Program Name: QPOZSPWN

Default Public Authority: * USE

Threadsafe: Yes

The waitpid() function allows the calling thread to obtain status information for one of its child processes.
The calling thread suspends processing until status information is available for the specified child process,
if the options argument is 0. A suspended waitpid() function call can be interrupted by the delivery of a
signal whose action is either to run a signal-catching function or to terminate the process. When waitpid()
is successful, status information about how the child process ended (for example, whether the process
ended normally) is stored in the location specified by stat_|oc.

The waitpid() function behaves the same as wait() if the pid argument is (pid_t)-1 and the options
argument is 0.

Parameters

pid
(Input) A process ID or aprocess group ID to identify the child process or processes on which
waitpid() should operate.

stat_loc

(Input) Pointer to an area where status information about how the child process ended isto be
placed.

options
(Input) An integer field containing flags that define how waitpid() should operate.

The pid argument specifies a set of child processes for which status is requested. The waitpid() function
only returns the status of a child process from the following set:

« If pidisequal to (pid_t)-1, statusis requested for any child process. In this respect, waitpid() is
then equivalent to wait().

« If pidisgreater than (pid_t)0, it specifiesthe process ID of asingle child process for which statusis
requested.

o If pidis(pid t)0, statusis requested for any child process whose process group ID is equal to that

of the calling thread.

o If pidislessthan (pid_t)-1, statusis requested for any child process whose process group ID is
equal to the absolute value of pid.

The status referenced by the stat_|oc argument is interpreted using macros defined in the <sys/wait.h>
header file. The macros use an argument stat_val, which is the integer value pointed to by stat_loc. When
waitpid() returns with avalid process ID (pid), the macros analyze the status referenced by the stat_loc
argument. The macros are as follows:

WIFEXITED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended normally.

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the
low-order 8 hits of the status argument that the child process passed to
exit(), or to the value the child process returned from main().

WIFSIGNALED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended because of the receipt of aterminating signal that
was not caught by the process.

WTERMS G(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the
number of the signal that caused the child process to end.

WIFSTOPPED(stat_val) Evaluates to a nonzero value if the status was returned for a child
processthat is currently stopped.

WSTOPS G(stat_val) If the value of the WIFSTOPPED(stat_val) is nonzero, evaluates to the
number of the signal that caused the child process to stop.

WIFEXCEPTION(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended because of an error condition.

Note: The WIFEXCEPTION macro is unique to the OS/400
implementation. See the Usage Notes.

WEXCEPTNUMBER(stat_val) If the value of the WIFEXCEPTION(stat_val) is nonzero, this macro
evaluates to the last OS/400 exception number related to the child
process.

Note: The WEXCEPTNUMBER macro is unique to the 0S/400
implementation. See the Usage Notes.

The options argument can be set to either 0 or WNOHANG. WNOHANG indicates that the waitpid()
function should not suspend processing of the calling thread if statusis not immediately available for one of
the child processes specified by pid. If WNOHANG is specified and no child process isimmediately
available, waitpid() returns 0.

Authorities

None

Return Value

value waitpid() was successful. The value returned indicates the process ID of the child process whose
status information was recorded in the storage pointed to by stat_loc.

0 WNOHANG was specified on the options parameter, but no child process was immediately

avalable.

-1 waitpid() was not successful. The errno value is set to indicate the error.

Error Conditions

If waitpid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[ECHILD]

[EINVAL]

[EFAULT]

[EINTR]

[EOPNOTSUPP]

[EUNKNOWN]

Calling process has no remaining child processes on which wait operation can be
performed.

Aninvalid parameter was found.

A parameter passed to this function is not valid.

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected
an address that is not valid.

Interrupted function call.

Operation not supported.

The operation, though supported in general, is not supported for the requested object
or the requested arguments.

Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

Usage Notes

1. The WIFEXCEPTION macro is unique to the OS/400 implementation. This macro can be used to
determine whether the child process has ended because of an exception. When WIFEXCEPTION
returns a nonzero value, the value returned by the WEXCEPTNUMBER macro corresponds to the
last OS/400 exception number related to the child process.

2. When a child process ends because of an exception, the ILE C run-time library catches and handles
the original exception. The value returned by WEXCEPTNUMBER indicates that the exception
was CEE9901. Thisisacommon exception ID. If you want to determine the original exception
that ended the child process, look at the job log for the child process.

3. If the child processis ended by any of the following:
o ENDJOB OPTION(*IMMED),
o ENDJOB OPTION(*CNTRLD) and delay time was reached, or
o Debugging a child process (environment variable QIBM_CHILD _JOB_SNDINQMSG is

used) and the resulting CPAA980 *INQUIRY messageisreplied to using C,
then the parent's wait() stat_|loc value indicates that:

o WIFEXCEPTION(stat_val) evaluates to a nonzero value, and
o WEXCEPTNUMBER(stat_val) evaluates to zero.

Related Information

« The<sys/types.h> file (see Header Filesfor UNIX-Type Functions)

« The<sys/wait.h> file (see Header Files for UNIX-Type Functions)

o spawn()--Spawn Process

« spawnp()--Spawn Process with Path

« wait()--Wait for Child Processto End

« Signal Concepts

Example

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIsin
APl examples.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

About Shell Scripts

A shéell (or shell interpreter) isacommand interpreter. The shell interprets text strings and performs some function for each string. As
part of interpreting the string, the shell may do variable or wildcard replacement or change the string in some way. Typically, the shell
itself performs functions specified by internal commands and spawns a child process to perform processing on the external commands.
Depending on the command, the shell then does one of the following:

« Waitsfor the child process to complete
« Continues processing with the next command

A shell script isatext file whose format defines the following:
« A shell interpreter (path and program)
« Options or arguments to pass to the shell
« Textto beinterpreted as a series of commands to the shell

The format of ashell script, starting on line one and column one, is as follows:

#linterpreter_path <options>
text to be interpreted
text to be interpreted

where
interpreter_path is the shell interpreter.
options are the options to pass to the shell interpreter.

The spawn() and spawnp() functions support shell scripts. OS/400 currently provides the Qshell Interpreter. The Qshell Interpreter isa
standard command interpreter for OS/400 based on the POSIX 1003.2 standard and X/Open CAE Specification for Shell and Utilities.

Examples

The following is an example of using spawn() to run a shell script written for the Qshell Interpreter:

#i ncl ude <stdio. h>

#i ncl ude <spawn. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>

int main(int argc, char *argv[])

{
int fd_map[3], stdoutFds[2];
char *xnp_argv[4], *xnmp_envp[3];
struct inheritance xnp_inherit = {0};
char buffer[20];
pid_t child_pid, wait_rv;
int wait_stat loc, rc;

xnp_argv[0] = "/hone/ myuserid/ myscript";
xnp_argv[1l] = "Hello";

xnp_argv[2] = "world!";

xnp_argv[3] = NULL;

xnp_envp[0] =

"NLSPATH=/ Q BM Pr odDat a/ OS400/ Shel | / MRl 2924/ %" ;
xnp_envp[1] = "Q BM USE_DESCRI PTOR_STDI O=Y";
xnp_envp[2] = NULL;

if (pipe(stdoutFds) !'= 0) {
printf("failure on pipe\n");
return 1;

}

fd_map[0]
fd_map[1]
fd_map[2]

st dout Fds[1] ;
st dout Fds[1] ;
st dout Fds[1] ;

if ((child_pid = spawn("/hone/ myuserid/ nyscript", 3,

}

fd_map, &np_inherit, xnp_argyv,
xnp_envp)) == -1) {
printf("failure on spawn\n");
return 1;

if ((wait_rv = waitpid(child_pid,

&mait_stat _loc, 0)) == -1) {
printf("failure on waitpidin");
return 1,

}
cl ose(stdout Fds[1]);

while ((rc = read(stdoutFds[0],

buffer, sizeof(buffer))) > 0) {
buffer[rc] = "'\0";
printf("%", buffer);

}
cl ose(st dout Fds[0]);
return O;

where "/home/myuserid/myscript" could look like the following:

#!/usr/bin/gsh
print $1 $2

Example Output:

Hel |l o worl d!

Top | Process-Related APIs | APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

« Macro definitions
« Datatype definitions
« Structure definitions
« Function prototypes
The header files are provided in the QSY SINC library, which is optionally installable. Make sure

QSY SINC ison your system before compiling programs that use these header files. For information on
installing the QSY SINC library, see Data structures and the QSY SINC Library.

The table below shows the file and member name in the QSY SINC library for each header file used by the
UNIX-type APIsin this publication.

Nameof Filein

Name of Header File QSYSINC Name of M ember
| arpalinet.h | ARPA | INET
| apanameserh | ARPA | NAMESER
| bse.h | H | BSE
| bsedos.h | H | BSEDOS
| bseerr.h | H | BSEERR
| dirent.h | H | DIRENT
| errno.h | H | ERRNO
| fentl.h | H | FCNTL
| grp.h | H | GRP
| Zinttypes.h | H | INTTYPES®
| limits.h | H | LIMITS
| #mman.h | H | MMAN
| netdbh.h | H | NETDB
| Pnetinet/icmpé.h | NETINET | ICMP6&
| net/if.h | NET | IF
| netinet/in.h | NETINET | IN
| netinet/ip_icmp.h | NETINET | IP_ICMP
| netinet/ip.h | NETINET | IP
| Pnetinet/ipph | NETINET | IP6
| netinet/tcp.h | NETINET | TCP
| netinet/udp.h | NETINET | UDP
| netns/idp.h | NETNS | IDP
| netns/ipx.h | NETNS | IPX
| netngns.h | NETNS | NS
| netns/sp.h | NETNS | SP
| net/route.h | NET | ROUTE
| nettel/tel.h | NETTEL | TEL

| 0s2.h | H | 02

| 0s2def h | H | OS2DEF

| pwd.h | H | PWD

| Qigh | H | QLG

| qpOlflop.h | H | QPOLFLOP
| Zqpoljrnl.h | H | QPOLJRNL
| #qpOiror.h | H | QPOLROR%
[Qpoistdih | H [QPOLSTDI
[opOwpidh | H [QPOWPID
| qpOzdipc.h | H | QPOZDIPC

| gpO0zipc.h | H | QPOZIPC

| gpOzolip.h | H | QPOZOLIP

| gpOzolsm.h | H | QPOZOLSM
| gpOzripc.h | H | QPOZRIPC

| gpOztrc.h | H | QPOZTRC

| qpOztrml.h | H | QPOZTRML
[gpozi170h | H | QPOZ1170
| Pgsoasynch | H | QSOASYNCX
[anxapih | H [QTNXAAPI
| gtnxadtp.h | H | QTNXADTP
| qgtomeapi.h | H | QTOMEAPI
| qgtossapi.h | H | QTOSSAPI

| resolv.h | H | RESOLVE

| semaphore.h | H | SEMAPHORE
| signal.h | H | SIGNAL

| spawn.h | H | SPAWN

| ss.h | H | SSL

| syslerrno.h | H | ERRNO

[sysioctih | SYS | IOCTL

| syslipc.h | SYS | IPC

| sys/layout.h | H | LAYOUT

| sys/limits.h | H | LIMITS

| sys/msg.h | SYS | MSG

| sys/param.h | SYS | PARAM

| Psysresourceh | SYS | RESOURCE#
| sys/sem.h | SYS | SEM

[syesimph | SYS | SETIMP

| sys/shm.h | SYS | SHM

[sys/signah | SYS | SIGNAL

[syssocketh | SYS [SOCKET

| sys/stat.h | SYs | STAT

[gesavfsh | SYS [STATVFS

| sys/time.h | SYS | TIME

| sysitypes.h | SYS | TYPES

| sys/uio.h | SYS | ulo

| sys/un.h | SYS | UN

| syswait.h | SYs | WAIT

| Zulimith | H | ULIMIT
| unistd.h | H | UNISTD
| utime.h | H | UTIME

You can display a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(5)

« Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FI LE(QSYSI NC/ SYS) MBR(STAT)

Y ou can print a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(6)

« Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROVFI LE(QSYSI NC/ SYS) TOFI LE(* PRI NT) FROMVBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs| APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

IName |Value | Text

EDOM 3001 A domain error occurred in a math
function.

|ERANGE |3002 |A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

|[ENOTOPEN 13004 |Fileis not open.

|[ENOTREAD |3005 |Fileis not opened for read operations.

|EIO 13006 |Input/output error.

|ENODEV 13007 INo such device.

ERECIO ’3008 Cannot get single character for files
opened for record 1/0.

|[ENOTWRITE 13009 |Fileis not opened for write operations.

|ESTDIN 13010 | The stdin stream cannot be opened.

|ESTDOUT 13011 | The stdout stream cannot be opened.

|ESTDERR 13012 | The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

|EBADNAME 13014 | The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

|EBADPOS 13017 | The position specifier is not correct.

ENOPOS 3018 Thereis no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 ngﬁ current record position istoo long for
tell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 _Functi on parameter in the signal function
is not set.

|ENOENT 13025 INo such path or directory.

|[ENOREC 13026 |Record is not found.

|EPERM 13027 |The operation is not permitted.

|EBADDATA 13028 |Message datais not valid.

|EBUSY 13029 |Resource busy.

|EBADOPT 13040 |Option specified is not valid.

|[ENOTUPD 13041 |Fileis not opened for update operations.

|[ENOTDLT |3042 |Fileis not opened for delete operations.

EPAD 3043 The number of characterswritten is
shorter than the expected record length.
EBADKEYLN 3044 A length that was not valid was specified
for the key.
EPUTANDGET 3080 A read operation should not immediately
follow awrite operation.
EGETANDPUT 3081 A write operation should not immediately
follow aread operation.
|EIOERROR 3101 |A nonrecoverable 1/O error occurred.
|EIORECERR 3102 |A recoverable /O error occurred.
|EACCES 3401 |Permission denied.
|ENOTDIR 3403 INot adirectory.
|ENOSPC 3404 INo spaceis available.
|EXDEV 3405 |Improper link.
EAGAIN 3406 Operation would have caused the process
to be suspended.
EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.
|EINTR 3407 |Interrupted function call.
EFAULT 3408 The address used for an argument was not
correct.
|ETIME 3409 |Operation timed out.
|ENXIO 3415 INo such device or address.
EAPAR 3418 Possible APAR condition or hardware
failure.
|ERECURSE 13419 |Recursive attempt rejected.
|EADDRINUSE 3420 |Address already in use.
|[EADDRNOTAVAIL 3421 |Address is not available.
EAFNOSUPPORT 3422 The type of socket isnot supported in this
protocol family.
|EALREADY 3423 |Operation is already in progress.
|[ECONNABORTED 3424 |Connection ended abnormally.
ECONNREFUSED 3425 A remote host refused an attempted
connect operation.
ECONNRESET 3426 A connection with a remote socket was
reset by that socket.
|EDESTADDRREQ |3427 |Operation requires destination address.
|EHOSTDOWN 3428 |A remote host is not available.
|[EHOSTUNREACH 3429 |A route to the remote host is not available.
|EINPROGRESS 3430 |Operation in progress.
|EISCONN 3431 |A connection has already been established.
|EMSGSIZE 3432 |Message size is out of range.
|[ENETDOWN 3433 |The network currently is not available.
ENETRESET A socket is connected to a host that is no

=

longer available.

|[ENETUNREACH 3435 |Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
regquested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

|[ENOTSUP 3440 |Operation is not supported.
|EOPNOTSUPP 3440 |Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT (3442 No protocol of the specified type and
domain exists.

EPROTOTY PE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

|ESHUTDOWN 3445 |Cannot send data after a shutdown.
|ESOCKTNOSUPPORT |3446 | The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
thistime.

|EBADF 3450 |Descriptor is not valid.

|EMFILE 3452 |Too many open files for this process.
|ENFILE 3453 |Too many open filesin the system.
|EPIPE 3455 |Broken pipe.

|ECANCEL 3456 |Operation cancelled.

|EEXIST 3457 |File exists.

|EDEADLK 3459 |Resource deadlock avoided.
|[ENOMEM 3460 | Storage all ocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

|ETERM 3464 |Operation was terminated.
|ENOENT1 3465 INo such file or directory.

ENOEQFLOG 3466 Object is aready linked to a dead
directory.

|[EEMPTYDIR 3467 |Directory is empty.

EMLINK 3468 Maximum link count for afile was
exceeded.

|ESPIPE 3469 | Seek request is not supported for object.

|ENOSYS 3470 |Function not implemented.

|EISDIR 3471 |Specified target is adirectory.

|EROFS 3472 |Read-only file system.

|[EUNKNOWN 3474 |Unknown system state.

|EITERBAD 3475 |Iterator is not valid.

|EITERSTE 3476 |Iterator isin wrong state for operation.

|EHRICLSBAD |3477 |HRI classisnot valid.

|EHRICLBAD 3478 IHRI subclass is not valid.

|EHRITYPBAD |3479 |HRI typeisnot valid.

|ENOTAPPL 3480 |Data requested is not applicable.

|EHRIREQTYP 3481 IHRI request type s not valid.

|[EHRINAMEBAD 3482 IHRI resource name is not valid.

|EDAMAGE 3484 |A damaged object was encountered.

|ELOOP 3485 |A loop exists in the symbolic links.

IENAMETOOLONG 3486 |A path name is too long.

|ENOLCK 3487 INo locks are available.

|[ENOTEMPTY 3488 |Directory is not empty.

|ENOSY SRSC 3489 |System resources are not available.

|[ECONVERT 13490 |Conversion error.

|E2BIG 3491 |Argument list istoo long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

|ETYPE 3493 |Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

|ESOFTDAMAGE 3497 |Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

|EOFFLINE 13499 |Object is suspended.

|EROOBJ 13500 |Object is aread-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDS 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 | Duplicate extended attribute record.

ELOCKED 3506 Areabeing read from or writtentois

locked.

EFBIG 3507 |Object too large.

EIDRM 3509 The semaphore, shared memory, or
message gqueue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of

the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

|EFILECVT 3511 |File ID conversion of adirectory failed.

EBADFID 3512 A file 1D could not be assigned when
linking an object to a directory.

|ESTALE 3513 |File handle was rejected by server.

|ESRCH 3515 INo such process.

|IENOTSIGINIT 3516 |Process is not enabled for signals.

|ECHILD 3517 INo child process.

|EBADH 13520 IHandleis not valid.

ETOOMANY REFS 3523 The operation would have exceeded the

maximum number of references allowed
for a descriptor.

|ENOTSAFE 3524 |Function is not allowed.

|[EOVERFLOW 3525 |Object istoo large to process.

|EIRNDAMAGE 3526 \Journal is damaged.

|EJRNI NACTIVE |3527 |Journa| isinactive.

|EJRNRCVSPC 3528 |Journal space or system storage error.

|EIRNRMT 3529 |Journal is remote.

|ENEWJRNRCV 3530 INew journal receiver is needed.

|ENEWJRN 3531 INew journal is needed.

|EJOURNALED 3532 |Object already journaled.

|[EJRNENTTOOLONG 3533 |Entry istoo large to send.

|EDATALINK 3534 |Object is adatalink object.

|[ENOTAVAIL 3535 |IASPisnot available.

|ENOTTY 3536 |10 control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

|ETXTBSY 3543 | Text file busy.

|[EASPGRPNOTSET 3544 |ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs| APIs by category

	Process-Related APIs
	Table of Contents
	Process-Related APIs
	APIs
	getopt()--Get Flag Letters from Argument Vector
	getpgrp()--Get Process Group ID
	getpid()--Get Process ID
	getppid()--Get Process ID of Parent Process
	getrlimit()--Get resource limit
	pipe()--Create an Interprocess Channel
	QlgSpawn()--Spawn Process (using NLS-enabled path name)
	QlgSpawnp()--Spawn Process with Path (using NLS-enabled file name)
	Qp0wChkChld()--Check Status for Child Processes
	Qp0wChkPgrp()--Check Status for Process Group
	Qp0wChkPid()--Check Status for Process ID
	Qp0wGetJobID()--Get Qualified Job Name and ID for Process ID
	Qp0wGetPgrp()--Get Process Group ID
	Qp0wGetPid()--Get Process ID
	Qp0wGetPidNoInit()--Get Process ID without Initializing for Signals
	Qp0wGetPPid()--Get Process ID of Parent Process
	Qp0zPipe()--Create Interprocess Channel with Sockets
	Qp0zSystem()--Run a CL Command
	setpgid()--Set Process Group ID for Job Control
	setrlimit()--Set resource limit
	spawn()--Spawn Process
	spawnp()--Spawn Process with Path
	ulimit()--Get and set process limits
	wait()--Wait for Child Process to End
	waitpid()--Wait for Specific Child Process

	About Shell Scripts

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

