
UNIX-Type APIs (V5R2)

Process-Related APIs

Table of Contents

Process-Related APIs

APIs

getopt() (Get flag letters from argument vector)❍

getpgrp() (Get process group ID)❍

getpid() (Get process ID)❍

getppid() (Get process ID of parent process)❍

getrlimit() (Get resource limit)❍

pipe() (Create interprocess channel)❍

QlgSpawn() (Spawn process (using NLS-enabled path name))❍

QlgSpawnp() (Spawn process with path (using NLS-enabled file name))❍

Qp0wChkChld() (Check status for child processes)❍

Qp0wChkPgrp() (Check status for process group)❍

Qp0wChkPid() (Check status for process ID)❍

Qp0wGetJobID() (Get qualified job name and ID for process ID)❍

Qp0wGetPgrp() (Get process group ID)❍

Qp0wGetPid() (Get process ID)❍

Qp0wGetPidNoInit (Get process ID without initializing for signals)❍

Qp0wGetPPid() (Get process ID of parent process)❍

Qp0zPipe() (Create interprocess channel with sockets)❍

Qp0zSystem() (Run a CL command)❍

setpgid() (Set process group ID for job control)❍

setrlimit() (Set resource limit)❍

spawn() (Spawn process)❍

spawnp() (Spawn process with path)❍

ulimit() (Get and set process limits)❍

wait() (Wait for child process to end)❍

waitpid() (Wait for specific child process)❍

●

About shell scripts●

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Process-Related APIs
The process-related APIs perform process-related or other general operations. These APIs are C language
functions that can be used in ILE C programs.

The process-related APIs are:

getopt() (Get flag letters from argument vector) returns the next flag letter in the argv list that
matches a letter in optionstring.

●

getpgrp() (Get process group ID) returns the process group ID of the calling process.●

getpid() (Get process ID) returns the process ID of the calling process.●

getppid() (Get process ID of parent process) returns the parent process ID of the calling process.●

getrlimit() (Get resource limit) returns the resource limit for the specified resource.●

pipe() (Create interprocess channel) creates a data pipe and places two file descriptors, one each
into the arguments fildes[0] and fildes[1], that refer to the open file descriptions for the read and
write ends of the pipe, respectively.

●

QlgSpawn() (Spawn process (using NLS-enabled path name)) creates a child process that inherits
specific attributes from the parent.

●

QlgSpawnp() (Spawn process with path (using NLS-enabled file name)) creates a child process that
inherits specific attributes from the parent.

●

Qp0wChkChld() (Check status for child processes) returns the status and process table entry
information for the child processes of the specified process ID.

●

Qp0wChkPgrp() (Check status for process group) returns the status and process table entry
information for the processes that are members of the process group identified by pid in the
structure QP0W_PID_Entry_T.

●

Qp0wChkPid() (Check status for process ID) returns the status and process table entry information
for the process specified by the process ID pid.

●

Qp0wGetJobID() (Get qualified job name and ID for process ID) returns the qualified job name
and internal job identifier for the process whose process ID matches pid.

●

Qp0wGetPgrp() (Get process group ID) returns the process group ID of the calling process.●

Qp0wGetPid() (Get process ID) returns the process ID of the calling process.●

Qp0wGetPidNoInit (Get process ID without initializing for signals) returns the process ID of the
calling process without enabling the process to receive signals.

●

Qp0wGetPPid() (Get process ID of parent process) returns the parent process ID of the calling
process.

●

Qp0zPipe() (Create interprocess channel with sockets) creates a data pipe that can be used by two
processes.

●

Qp0zSystem() (Run a CL command) spawns a new process, passes CLcommand to the CL
command processor in the new process, and waits for the command to complete.

●

setpgid() (Set process group ID for job control) is used to either join an existing process group or
create a new process group within the session of the calling process.

●

setrlimit() (Set resource limit) sets the resource limit for the specified resource.●

spawn() (Spawn process) creates a child process that inherits specific attributes from the parent.●

spawnp() (Spawn process with path) creates a child process that inherits specific attributes from the
parent.

●

ulimit() (Get and set process limits) provides a way to get and set process resource limits.●

wait() (Wait for child process to end) suspends processing until a child process has ended.●

waitpid() (Wait for specific child process) allows the calling thread to obtain status information for
one of its child processes.

●

For additional information, see About shell scripts.

Top | UNIX-Type APIs | APIs by category

getopt()--Get Flag Letters from Argument
Vector

 Syntax

 #include <unistd.h>

 int getopt(int argc, char * const argv[],
 const char *optionstring);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: No

The getopt() function returns the next flag letter in the argv list that matches a letter in optionstring. The
optarg external variable is set to point to the start of the flag's parameter on return from getopt()

getopt() places the argv index of the next argument to be processed in optind. The optind variable is
external. It is initialized to 1 before the first call to getopt().

getopt() can be used to help a program interpret command line flags that are passed to it.

Parameters

argc

(Input) The number of parameters passed by the function.

argv

(Input) The list of parameters passed to the function.

optionstring

(Input) A string of flag letters. The string must contain the flag letters that the program using
getopt() recognizes. If a letter is followed by a colon, the flag is expected to have an argument or
group of arguments, which can be separated from it by blank spaces.

The special flag "--" (two hyphens) can be used to delimit the end of the options. When this flag is
encountered, the "--" is skipped and EOF is returned. This flag is useful in delimiting arguments
beginning with a hyphen that are not options.

Authorities

None.

Return Value

EOF getopt() processed all flags (that is, up to the first argument that is not a flag).

'?' getopt() encountered a flag letter that was not included in optionstring. The variable optopt is set
to the real option found in argv regardless of whether the flag is in optionstring of not. An error
message is printed to stderr. The generation of error messages can be suppressed by setting
opterr to 0.

Error Conditions

The getopt() function does not return an error.

Example

See Code disclaimer information for information pertaining to code examples.

The following example processes the flags for a command that can take the mutually exclusive flags a and
b, and the flags f and o, both of which require parameters.

#include <unistd.h>

int main(int argc, char *argv[])
{
 int c;
 extern int optind;
 extern char *optarg;
 .
 .
 .
 while ((c = getopt(argc, argv, "abf:o:")) != EOF)
 {
 switch (c)
 {
 case 'a':
 if (bflg)
 errflg++;
 else
 aflg++;
 break;
 case 'b':
 if (aflg)
 errflg++;
 else

 bflg++;
 break;
 case 'f':
 ifile = optarg;
 break;
 case 'o':
 ofile = optarg;
 break;
 case '?':
 errflg++;
 } /* case */
 if (errflg)
 {
 fprintf(stderr, "usage: . . . ");
 exit(2);
 }
 } /* while */
 for (; optind < argc; optind++)
 {
 if (access(argv[optind], R_OK))
 {
 .
 .
 .
 }
 } /* for */
} /* main */

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

getpgrp()--Get Process Group ID

 Syntax

 #include <sys/types.h>
 #include <unistd.h>

 pid_t getpgrp(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getpgrp() function returns the process group ID of the calling process.

Parameters

None

Authorities

None.

Return Value

pid_t The value returned by getpgrp() is the process group ID of the calling process.

Error Conditions

The getpgrp() function is always successful and does not return an error.

Usage Notes

The getpgrp() function enables a process for signals if the process is not already enabled for signals. For
details, see Qp0sEnableSignals()--Enable Process for Signals.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Qp0wGetPgrp()--Get Process Group ID●

Example

For an example of using this function, see the child program in Using the Spawn Process and wait for Child
Process APIs in Appendix A, Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

getpid()--Get Process ID

 Syntax

 #include <sys/types.h>
 #include <unistd.h>

 pid_t getpid(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getpid() function returns the process ID of the calling process.

Parameters

None

Authorities

None.

Return Value

pid_t The value returned by getpid() is the process ID of the calling process.

Error Conditions

The getpid() function is always successful and does not return an error.

Usage Notes

The getpid() function enables a process for signals if the process is not already enabled for signals. For
details, see Qp0sEnableSignals()--Enable Process for Signals.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Qp0sDisableSignals()--Disable Process for Signals●

Qp0sEnableSignals()--Enable Process for Signals●

Qp0wGetPid()--Get Process ID●

Qp0wGetPidNoInit()--Get Process ID without Initializing for Signals●

Example

For an example of using this function, see the child program in Using the Spawn Process and Wait for the
Child Process APIs in Appendix A, Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

getppid()--Get Process ID of Parent Process

 Syntax

 #include <sys/types.h>
 #include <unistd.h>

 pid_t getppid(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getppid() function returns the parent process ID of the calling process.

Parameters

None

Authorities

None.

Return Value

pid_t The value returned by getppid() is the process ID of the parent process for the calling process. A
process ID value of 1 indicates that there is no parent process associated with the calling process.

Error Conditions

The getppid() function is always successful and does not return an error.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

Qp0wGetPPid()--Get Process ID of Parent Process●

Example

For an example of using this function, see the child program in Using the Spawn Process and Wait for
Child Process APIs in Appendix A, Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

getrlimit()--Get resource limit

 Syntax

 #include <sys/resource.h>

 int getrlimit(int resource, struct rlimit *rlp);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getrlimit() function returns the resource limit for the specified resource. A resource limit is a way for
the operating system to enforce a limit on a variety of resources used by a process. A resource limit is
represented by a rlimit structure. The rlim_cur member specifies the current or soft limit and the rlim_max
member specifies the maximum or hard limit.

The getrlimit() function supports the following resources:

RLIMIT_FSIZE (0) The maximum size of a file in bytes that can be created by a process.

RLIMIT_NOFILE (1) The maximum number of file descriptors that can be opened by a process.

RLIMIT_CORE (2) The maximum size of a core file in bytes that can be created by a process.

RLIMIT_CPU (3) The maximum amount of CPU time in seconds that can be used by a process.

RLIMIT_DATA (4) The maximum size of a process' data segment in bytes.

RLIMIT_STACK (5) The maximum size of a process' stack in bytes.

RLIMIT_AS (6) The maximum size of a process' total available storage in bytes.

The value of RLIM_INFINITY is considered to be larger than any other limit value. If the value of the limit
is RLIM_INFINITY, then a limit is not enforced for that resource. The getrlimit() function always returns
RLIM_INFINITY for the following resources: RLIMIT_AS, RLIMIT_CORE, RLIMIT_CPU,
RLIMIT_DATA, and RLIMIT_STACK.

Parameters

resource

(Input)

The resource to get the limits for.

*rlp

(Output)

Pointer to a struct rlim_t where the values of the hard and soft limits are returned.

Authorities and Locks

None.

Return Value

0 getrlimit() was successful.

-1 getrlimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If getrlimit() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINVAL] An invalid parameter was found.

An invalid resource was specified.

Related Information

The <sys/resource.h> file (see Header Files for UNIX-Type Functions)●

setrlimit()-Set resource limit●

ulimit()-Get and set process limits●

Example

#include <sys/resource.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main (int argc, char *argv[])
{

 struct rlimit limit;

 /* Set the file size resource limit. */
 limit.rlim_cur = 65535;
 limit.rlim_max = 65535;
 if (setrlimit(RLIMIT_FSIZE, &limit) != 0) {
 printf("setrlimit() failed with errno=%d\n", errno);
 exit(1);
 }

 /* Get the file size resource limit. */
 if (getrlimit(RLIMIT_FSIZE, &limit) != 0) {
 printf("getrlimit() failed with errno=%d\n", errno);
 exit(1);
 }

 printf("The soft limit is %llu\n", limit.rlim_cur);
 printf("The hard limit is %llu\n", limit.rlim_max);
 exit(0);
}

Example Output:

The soft limit is 65535
The hard limit is 65535

Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

pipe()--Create an Interprocess Channel

 Syntax

 #include <unistd.h>

 int pipe(int fildes[2]);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The pipe() function creates a data pipe and places two file descriptors, one each into the arguments
fildes[0] and fildes[1], that refer to the open file descriptions for the read and write ends of the pipe,
respectively. Their integer values will be the two lowest available at the time of the pipe() call. The
O_NONBLOCK and FD_CLOEXEC flags will be clear on both descriptors. NOTE: these flags can,
however, be set by the fcntl() function.

Data can be written to the file descriptor fildes[1] and read from file descriptor fildes[0]. A read on the file
descriptor fildes[0] will access data written to the file descriptor fildes[1] on a first-in-first-out basis. File
descriptor fildes[0] is open for reading only. File descriptor fildes[1] is open for writing only.

The pipe() function is often used with the spawn() function to allow the parent and child processes to send
data to each other.

Upon successful completion, pipe() will update the access time, change time, and modification time of the
pipe.

Parameters

fildes[2]

(Output) An integer array of size 2 that will receive the pipe descriptors.

Authorities

None.

Return Value

0 pipe() was successful.

-1 pipe() was not successful. The errno variable is set to indicate the error.

Error Conditions

If pipe() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf()
function).

[ENFILE] Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job
log and correct any errors that are indicated, then retry the operation.

Related Information

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

The <fcntl.h> file (see Header Files for UNIX-Type Functions)●

fcntl()--Perform File Control Command●

fstat()--Get File Information by Descriptor●

Qp0zPipe()--Create Interprocess Channel with Sockets●

read()--Read from Descriptor●

spawn()--Spawn Process●

write()--Write to Descriptor●

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a pipe, writes 10 bytes of data to the pipe, and then reads those 10 bytes of
data from the pipe.

#include <stdio.h>
#include <unistd.h>
#include <string.h>

void main()
{
 int fildes[2];
 int rc;
 char writeData[10];
 char readData[10];
 int bytesWritten;
 int bytesRead;

 memset(writeData,'A',10);

 if (-1 == pipe(fildes))
 {
 perror("pipe error");
 return;
 }

 if (-1 == (bytesWritten = write(fildes[1],
 writeData,
 10)))
 {
 perror("write error");
 }
 else
 {
 printf("wrote %d bytes\n",bytesWritten);

 if (-1 == (bytesRead = read(fildes[0],
 readData,
 10)))
 {
 perror("read error");
 }
 else
 {
 printf("read %d bytes\n",bytesRead);
 }
 }

 close(fildes[0]);
 close(fildes[1]);

 return;
}

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QlgSpawn()--Spawn Process (using NLS-enabled path
name)

 Syntax

 #include <spawn.h>
 #include <qlg.h>

 pid_t QlgSpawn(const Qlg_Path_Name_T *path,
 const int fd_count,
 const int fd_map[],
 const struct inheritance *inherit,
 char * const argv[],
 char * const envp[]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgSpawn() function, like the spawn() function, creates a child process that inherits specific attributes from the parent. The
difference is that for the path parameter, the QlgSpawn() function takes a pointer to a Qlg_Path_Name_T structure, while the spawn()
function takes a pointer to a character string in the CCSID of the job.

Limited information on the path parameter is provided here. For more information on the path parameter and for a discussion of other
parameters, authorities required, and return values, see spawn()--Spawn Process.

Parameters

path

(Input) A pointer to a Qlg_Path_Name_T structure that contains a specific path name or a pointer to a specific path name of an
executable file that will run in the new (child) process. For more information on the Qlg_Path_Name_T structure, see Path
name format.

Usage Notes

See spawn()--Spawn Process for a complete discussion of usage information for QlgSpawn(). In addition, the following should be
noted specifically for QlgSpawn().

Shell scripts are supported; however, the interpreter path in the shell script itself cannot be a Qlg_Path_Name_T structure.1.

Related Information

The <qlg.h> file (see Header Files for UNIX-Type Functions)●

spawn()--Spawn Process●

QlgSpawnp()--Spawn Process with Path (using NLS-enabled file name)●

Example

See Code disclaimer information for information pertaining to code examples.

Parent Program

The following ILE C for OS/400 program can be created in any library. This parent program assumes the corresponding child program
will be created with the name CHILD in the library QGPL. Call this parent program with no parameters to run the example.

/***/
/***/
/* */
/* FUNCTION: This program acts as a parent to a child program. */
/* */
/* LANGUAGE: ILE C for OS/400 */
/* */
/* APIs USED: QlgSpawn(), waitpid(), */
/* QlgCreat(), QlgUnlink(), QlgOpen() */
/* */
/***/
/***/
#include <errno.h>
#include <fcntl.h>
#include <spawn.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <qlg.h>
#include <Qp0lstdi.h>

#define ARGV_NUM 6
#define ENVP_NUM 1
#define CHILD_PGM "QGPL/CHILD"
#define spwpath "/QSYS.LIB/QGPL.LIB/CHILD.PGM"
#define fpath "A_File"

typedef struct pnstruct
{
 Qlg_Path_Name_T qlg_struct;
 char pn[100]; /* This size must be >= the path */
 /* name length or this must be a */
 /* pointer to the path name. */
};

/* This is a parent program that will use QlgSpawn() to start a */
/* child. A file is created that is written to, both by the parent */
/* and the child. The end result of the file will look something */
/* like the following: */
/* Parent writes Child writes */
/* ------------- --------------------------------------- */
/* 1 argv[0] getppid() getpgrp() getpid() */
/* The parent uses waitpid() to wait for the child to return and to */
/* retrieve the resulting status of the child when it does return. */

int main(int argc, char *argv[])
{
 int rc; /* API return code */
 int fd, fd_read; /* parent file descriptors */
 char fd_str[4]; /* file descriptor string */
 const char US_const[3]= "US";
 const char Language_const[4]="ENU";
 const char Path_Name_Del_const[2]= "/";
 struct pnstruct f_path_name; /* file pathname */
 int buf_int; /* write(), read() buffer */
 char buf_pgm_name[22]; /* read() program name buffer */

 struct pnstruct spw_path; /* QlgSpawn() *path */
 int spw_fd_count = 0; /* QlgSpawn() fd_count */
 struct inheritance spw_inherit; /* QlgSpawn() *inherit */
 char *spw_argv[ARGV_NUM]; /* QlgSpawn() *argv[] */
 char *spw_envp[ENVP_NUM]; /* QlgSpawn() *envp[] */
 int seq_num; /* sequence number */
 char seq_num_str[4]; /* sequence number string */
 pid_t pid; /* parent pid */
 char pid_str[11]; /* parent pid string */
 pid_t pgrp; /* parent process group */
 char pgrp_str[11]; /* parent process group string */
 pid_t spw_child_pid; /* QlgSpawn() child pid */
 pid_t wt_child_pid; /* waitpid() child pid */
 int wt_stat_loc; /* waitpid() *stat_loc */
 int wt_pid_opt = 0; /* waitpid() option */

 /* Get the pid and pgrp for the parent. */
 pid = getpid();
 pgrp = getpgrp();
 /* Format the pid and pgrp value into null-terminated strings. */
 sprintf(pid_str, "%d", pid);
 sprintf(pgrp_str, "%d", pgrp);

 /* Initialize Qlg_Path_Name_T parameters */
 memset(&f_path_name,0x00,sizeof(struct pnstruct));
 f_path_name.qlg_struct.CCSID = 37;
 memcpy(f_path_name.qlg_struct.Country_ID,US_const,2);
 memcpy(f_path_name.qlg_struct.Language_ID,Language_const,3);
 f_path_name.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 f_path_name.qlg_struct.Path_Length = sizeof(fpath)-1;
 memcpy(f_path_name.qlg_struct.Path_Name_Delimiter,
 Path_Name_Del_const,1);
 memcpy(f_path_name.pn,fpath,sizeof(fpath)-1);

 /* Create a file and maintain the file descriptor. */
 fd = QlgCreat((Qlg_Path_Name_T *)&f_path_name, S_IRWXU);
 if (fd == -1)
 {
 printf("FAILURE: QlgCreat() with errno = %d\n",errno);
 return -1;
 }
 /* Format the file descriptor into null-terminated string. */
 sprintf(fd_str, "%d", fd);

 /* Initialize Qlg_Path_Name_T parameters */
 memset(&spw_path,0x00,sizeof(struct pnstruct));
 spw_path.qlg_struct.CCSID = 37;
 memcpy(spw_path.qlg_struct.Country_ID,US_const,2);
 memcpy(spw_path.qlg_struct.Language_ID,Language_const,3);
 spw_path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;
 spw_path.qlg_struct.Path_Length = sizeof(spwpath)-1;
 memcpy(spw_path.qlg_struct.Path_Name_Delimiter,
 Path_Name_Del_const,1);
 memcpy(spw_path.pn,spwpath,sizeof(spwpath)-1);

 /* Write a '1' out to the file. */
 seq_num = 1;
 sprintf(seq_num_str, "%d", seq_num);
 buf_int = seq_num;
 write(fd, &buf_int, sizeof(int));

 /* Set the QlgSpawn() child arguments for the child. */
 /* NOTE: The child will always get argv[0] in the */
 /* LIBRARY/PROGRAM notation, but the QlgSpawn() argv[0] */
 /* (spw_argv[0] in this case) must be non-NULL in order */
 /* to allow additional arguments. For this example, the */
 /* CHILD_PGM was chosen. */
 /* NOTE: The parent pid and the parent process group are */
 /* passed to the child for demonstration purposes only. */
 spw_argv[0] = CHILD_PGM;

 spw_argv[1] = pid_str;
 spw_argv[2] = pgrp_str;
 spw_argv[3] = seq_num_str;
 spw_argv[4] = fd_str;
 spw_argv[5] = NULL;

 /* This QlgSpawn() will use simple inheritance for file */
 /* descriptors (fd_map[] value is NULL). */
 memset(&spw_inherit,0x00,sizeof(spw_inherit));
 spw_envp[0] = NULL;
 spw_child_pid = QlgSpawn((Qlg_Path_Name_T *)&spw_path,
 spw_fd_count, NULL, &spw_inherit, spw_argv, spw_envp);
 if (spw_child_pid == -1)
 {
 printf("FAILURE: QlgSpawn() with errno = %d\n",errno);
 close(fd);
 QlgUnlink((Qlg_Path_Name_T *)&f_path_name);
 return -1;
 }

 /* The parent no longer needs to use the file descriptor, so */
 /* it can close it, now that it has issued QlgSpawn(). */
 rc = close(fd);
 if (rc != 0)
 printf("FAILURE: close(fd) with errno = %d\n",errno);

 /* NOTE: The parent can continue processing while the child is */
 /* also processing. In this example, though, the parent will */
 /* simply wait until the child finishes processing. */
 /* Issue waitpid() in order to wait for the child to return. */
 wt_child_pid = waitpid(spw_child_pid,&wt_stat_loc,wt_pid_opt);
 if (wt_child_pid == -1)
 {
 printf("FAILURE: waitpid() with errno = %d\n",errno);
 close(fd);
 QlgUnlink((Qlg_Path_Name_T *)&f_path_name);
 return -1;
 }

 /* Check to ensure the child did not encounter an error */
 /* condition. */
 if (WIFEXITED(wt_stat_loc))
 {
 if (WEXITSTATUS(wt_stat_loc) != 1)
 printf("FAILURE: waitpid() exit status = %d\n",
 WEXITSTATUS(wt_stat_loc));
 }
 else
 printf("FAILURE: unknown child status\n");

 /* Open the file for read to verify what the child wrote. */
 fd_read = QlgOpen((Qlg_Path_Name_T *)&f_path_name, O_RDONLY);
 if (fd_read == -1)
 {
 printf("FAILURE: open() for read with errno = %d\n",errno);
 QlgUnlink((Qlg_Path_Name_T *)&f_path_name);
 return -1;
 }

 /* Verify what child wrote. */
 rc = read(fd_read, &buf_int, sizeof(int));
 if ((rc != sizeof(int)) || (buf_int != 1))
 printf("FAILURE: read()\n");
 memset(buf_pgm_name,0x00,sizeof(buf_pgm_name));
 rc = read(fd_read, buf_pgm_name, strlen(CHILD_PGM));
 if ((rc != strlen(CHILD_PGM)) ||
 (strcmp(buf_pgm_name,CHILD_PGM) != 0))
 printf("FAILURE: read() child argv[0]\n");
 rc = read(fd_read, &buf_int, sizeof(int));
 if ((rc != sizeof(int)) || (buf_int != pid))

 printf("FAILURE: read() child getppid()\n");
 rc = read(fd_read, &buf_int, sizeof(int));
 if ((rc != sizeof(int)) || (buf_int != pgrp))
 printf("FAILURE: read() child getpgrp()\n");
 rc = read(fd_read, &buf_int, sizeof(int));
 if ((rc != sizeof(int)) || (buf_int != spw_child_pid) ||
 (buf_int != wt_child_pid))
 printf("FAILURE: read() child getpid()\n");

 /* Attempt one more read() to ensure there is no more data. */
 rc = read(fd_read, &buf_int, sizeof(int));
 if (rc != 0)
 printf("FAILURE: read() past end of data\n");

 /* The parent no longer needs to use the read() file descriptor, */
 /* so it can close it. */
 rc = close(fd_read);
 if (rc != 0)
 printf("FAILURE: close(fd_read) with errno = %d\n",errno);

 /* Clean up by performing unlink(). */
 rc = QlgUnlink((Qlg_Path_Name_T *)&f_path_name);
 if (rc != 0)
 {
 printf("FAILURE: QlgUnlink() with errno = %d\n",errno);
 return -1;
 }
 printf("completed successfully\n");
 return 0;
}

Child Program

The following ILE C for OS/400 program must be created with the name CHILD in the library QGPL in order to be found by the parent
program. This program is not to be called directly, as it is run through the use of QlgSpawn() in the parent program.

/***/
/***/
/* */
/* FUNCTION: This program acts as a child to a parent program. */
/* */
/* LANGUAGE: ILE C for OS/400 */
/* */
/* APIs USED: getpid(), getppid(), getpgrp() */
/* */
/***/
/***/
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

/* This is a child program that gets control from a parent program */
/* that issues QlgSpawn(). This particular child program expects */
/* the following 5 arguments (all are null-terminated strings): */
/* argv[0] - child program name */
/* argv[1] - parent pid (for demonstration only) */
/* argv[2] - parent process group (for demonstration only) */
/* argv[3] - sequence number */
/* argv[4] - parent file descriptor */
/* If the child program encounters an error, it returns with a */
/* value greater than 50. If the parent uses wait() or waitpid(), */
/* this return value can be interrogated using the WIFEXITED and */
/* WEXITSTATUS macros on the resulting wait() or waitpid() */
/* *stat_loc field. */

int main(int argc, char *argv[])
{
 pid_t p_pid; /* parent pid argv[1] */
 pid_t p_pgrp; /* parent process group argv[2] */
 int seq_num; /* parent sequence num argv[3] */
 int fd; /* parent file desc argv[4] */
 int rc; /* API return code */
 pid_t pid; /* getpid() - child pid */
 pid_t ppid; /* getppid() - parent pid */
 pid_t pgrp; /* getpgrp() - process group */

 /* Get the pid, ppid, and pgrp for the child. */
 pid = getpid();
 ppid = getppid();
 pgrp = getpgrp();

 /* Verify 5 parameters were passed to the child. */
 if (argc != 5)
 return 60;

 /* Since the parameters passed to the child using QlgSpawn() are */
 /* pointers to strings, convert the parent pid, parent process */
 /* group, sequence number, and the file descriptor from strings */
 /* to integers. */
 p_pid = atoi(argv[1]);
 p_pgrp = atoi(argv[2]);
 seq_num = atoi(argv[3]);
 fd = atoi(argv[4]);

 /* Verify the getpid() value of the parent is the same as the */
 /* getppid() value of the child. */
 if (p_pid != ppid)
 return 61;

 /* If the sequence number is 1, simple inheritance was used in */
 /* this case. First, verify the getpgrp() value of the parent */
 /* is the same as the getpgrp() value of the child. Next, the */
 /* child will use the file descriptor passed in to write the */
 /* child's values for argv[0], getppid(), getpgrp(), */
 /* and getpid(). Finally, the child returns, which will satisfy */
 /* the parent's wait() or waitpid(). */
 if (seq_num == 1)
 {
 if (p_pgrp != pgrp)
 return 70;
 rc = write(fd, argv[0], strlen(argv[0]));
 if (rc != strlen(argv[0]))
 return 71;
 rc = write(fd, &ppid, sizeof(pid_t));
 if (rc != sizeof(pid_t))
 return 72;
 rc = write(fd, &pgrp, sizeof(pid_t));
 if (rc != sizeof(pid_t))
 return 73;
 rc = write(fd, &pid, sizeof(pid_t));
 if (rc != sizeof(pid_t))
 return 74;
 return seq_num;
 }

 /* If the sequence number is an unexpected value, return */
 /* indicating an error. */
 else
 return 99;
}

API introduced: V5R1

Top | Process-Related APIs | APIs by category

QlgSpawnp()--Spawn Process with Path (using
NLS-enabled file name)

 Syntax

 #include <spawn.h>
 #include <qlg.h>

 pid_t QlgSpawnp(const Qlg_Path_Name_T *file,
 const int fd_count,
 const int fd_map[],
 const struct inheritance *inherit,
 char * const argv[],
 char * const envp[]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The QlgSpawnp() function, like the spawnp() function, creates a child process that inherits specific
attributes from the parent. The difference is that for the file parameter, the QlgSpawnp() function takes a
pointer to a Qlg_Path_Name_T structure, while the spawnp() function takes a pointer to a character string
in the ccsid of the job.

Limited information on the file parameter is provided here. For more information on the file parameter and
for a discussion of other parameters, authorities required, and return values, see spawnp()--Spawn Process
with Path.

Parameters

file

(Input) A pointer to a Qlg_Path_Name_T structure that contains a file name or a pointer to a file
name that is used with the search path to find an executable file that will run in the new (child)
process. For more information on the Qlg_Path_Name_T structure, see Path name format.

Usage Notes

See spawnp()--Spawn Process with Path for a complete discussion of usage information for QlgSpawnp().
In addition, the following should be noted specifically for QlgSpawnp().

The PATH environment variable is used; however, the PATH environment variable cannot be a
Qlg_Path_Name_T structure.

1.

Shell scripts are supported; however, the interpreter path in the shell script itself cannot be a
Qlg_Path_Name_T structure.

2.

Related Information

The <qlg.h> file (see Header Files for UNIX-Type Functions)●

spawnp()--Spawn Process with Path●

QlgSpawn()--Spawn Process (using NLS-enabled path name)●

Note: All of the related information for spawnp() applies to QlgSpawn().

Example

For an example of using this function, see the example in the QlgSpawn--Spawn Process (using
NLS-enabled path name) API.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

Qp0wChkChld()--Check Status for Child
Processes

 Syntax

 #include <qp0wpid.h>

 int Qp0wChkChld(QP0W_PID_Entries_T *chldinfo);

 Service Program Name: QP0WPID

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wChkChld() function returns the status and process table entry information for the child processes
of the specified process ID.

Parameters

*chldinfo

(I/O) A pointer to the QP0W_PID_Entry_T structure. This structure contains the process table
entry information for the children processes identified by pid.

The structure QP0W_PID_Entry_T is defined in the <qp0wpid.h> header file as follows:

typedef struct QP0W_PID_Entries_T {
 int entries_prov;
 int entries_could;
 int entries_return;
 pid_t pid;
 QP0W_PID_Data_T entry[1];
} QP0W_PID_Entries_T;

The members of the QP0W_PID_Entry_T structure are as follows:

int entries_prov; (Input) The number of entries of type QP0W_PID_Data_T for which
that the caller has allocated storage to contain the status and process
table entry information.

int entries_could; (Output) The number of entries of type QP0W_PID_Data_T that could
be returned. If the entries_could value exceeds the entries_prov value,
the Qp0wChkChld() function should be called again with sufficient
storage to contain the number of entries returned in entries_could
(entries_prov must be greater than or equal to entries_could).

int entries_return; (Output) The number of entries of type QP0W_PID_Data_T that were
returned. If the entries_return value is less than the entries_prov value,
the content of the excess number of entries provided is unchanged by
Qp0wChkChld().

pid_t pid; (Input) The process ID of the process for which information about its
child processes is to be returned.

QP0W_PID_Data_T entry[1]; (Output) The process table information for child processes. There is one
QP0W_PID_Data_T structure entry for each child process, limited by
the value of entries_prov.

The structure QP0W_PID_Data_T is defined in the <qp0wpid.h> header file as follows:

typedef struct QP0W_PID_Data_T {
 pid_t pid;
 pid_t ppid;
 pid_t pgrp;
 int status;
 unsigned int exit_status;
} QP0W_PID_Data_T;

The members of the QP0W_PID_Data_T structure are as follows:

pid_t pid; The process ID of the process.

pid_t ppid; The process ID of the parent process. If ppid has a value of binary 1, there is no
parent process associated with the process.

pid_t pgrp; The process group ID of the process.

int status; A collection of flag bits that describe the current state of the process. The
following flag bits can be set in status:

QP0W_PID_TERMINATED The process has ended.

QP0W_PID_STOPPED The process has been stopped by a signal.

QP0W_PID_CHILDWAIT The process is waiting for a child process to be
ended or stopped by a signal.

QP0W_PID_SIGNALSTOP The process has requested that the SIGCHLD
signal be generated for the process when one of
its child processes has been stopped by a signal.

unsigned int
exit_status;

Exit status of the process. This member only has meaning if the status has been
set to QP0W_PID_TERMINATED. Refer to the wait() function for a description
of the exit status for a process.

Authorities

The process calling Qp0wChkChld() must have the appropriate authority to the process being examined. A
process is allowed to examine the process table information for a process if at least one of the following
conditions is true:

The process is calling Qp0wChkChld() for its own process.●

The process has *JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

●

The process is the parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling Qp0wChkChld()).

●

The real or effective user ID of the process matches the real or effective user ID of the process
calling Qp0wChkChld().

●

Return Value

0 Qp0wChkChld() was successful.

value Qp0wChkChld() was not successful. The value returned indicates one of the following errors.
Under some conditions, value could indicate an error other than those listed here.

[EINVAL] An invalid parameter was found.

A parameter passed to this function is not valid.

[EPERM] Operation not permitted.

You must have appropriate privileges or be the owner of the object or other
resource to do the requested operation.

[ESRCH] No item could be found that matches the specified value.

Usage Notes

The Qp0wChkChld() function provides an OS/400-specific way to obtain the process table information for
the child processes of the specified process.

Related Information

The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)●

The <signal.h> file (see Header Files for UNIX-Type Functions)●

getpgrp()--Get Process Group ID●

getpid()--Get Process ID●

getppid()--Get Process ID of Parent Process●

Qp0wGetPgrp()--Get Process Group ID●

Qp0wGetPid()--Get Process ID●

Qp0wGetPPid()--Get Process ID of Parent Process●

wait()--Wait for Child Process to End●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Qp0wChkPgrp()--Check Status for Process
Group

 Syntax

 #include <qp0wpid.h>

 int Qp0wChkPgrp(QP0W_PID_Entries_T *mbrinfo);

 Service Program Name: QP0WPID

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wChkPgrp() function returns the status and process table entry information for the processes that
are members of the process group identified by pid in the structure QP0W_PID_Entry_T.

Parameters

*mbrinfo

(I/O) A pointer to the QP0W_PID_Entry_T structure. This structure contains the process table
entry information for the processes that are members of the process group identified by pid.

The structure QP0W_PID_Entry_T is defined in the <qp0wpid.h> header file as follows:

typedef struct QP0W_PID_Entries_T {
 int entries_prov;
 int entries_could;
 int entries_return;
 pid_t pid;
 QP0W_PID_Data_T entry[1];
} QP0W_PID_Entries_T;

The members of the QP0W_PID_Entry_T structure are as follows:

int entries_prov; (Input) The number of entries of type QP0W_PID_Data_T for which
the caller has allocated storage to contain the status and process table
entry information.

int entries_could; (Output) The number of entries of type QP0W_PID_Data_T that could
be returned. If the entries_could value exceeds the entries_prov value,
the Qp0wChkPgrp() function should be called again with sufficient
storage to contain the number of entries returned in entries_could
(entries_prov must be greater than or equal to entries_could).

int entries_return; (Output) The number of entries of type QP0W_PID_Data_T that were
returned. If the entries_return value is less than the entries_prov value,
the content of the excess number of entries provided is unchanged by
Qp0wChkPgrp().

pid_t pid; (Input) The process group ID of the group of processes for which the
process information is to be returned.

QP0W_PID_Data_T entry[1]; (Output) The process table information for the process group members.
There is one QP0W_PID_Data_T structure entry for each process
group member, limited by the value of entries_prov.

The structure QP0W_PID_Data_T is defined in the <qp0wpid.h> file as follows:

typedef struct QP0W_PID_Data_T {
 pid_t pid;
 pid_t ppid;
 pid_t pgrp;
 int status;
 unsigned int exit_status;
} QP0W_PID_Data_T;

The members of the QP0W_PID_Data_T structure are as follows:

pid_t pid; The process ID of the process.

pid_t ppid; The process ID of the parent process. If ppid has a value of binary 1, there is no
parent process associated with the process.

pid_t pgrp; The process group ID of the process.

int status; A collection of flag bits that describe the current state of the process. The
following flag bits can be set in status:

QP0W_PID_TERMINATED The process has ended.

QP0W_PID_STOPPED The process was stopped by a signal.

QP0W_PID_CHILDWAIT The process is waiting for a child process to be
ended or stopped by a signal.

QP0W_PID_SIGNALSTOP The process has requested that the SIGCHLD
signal be generated for the process when one of
its child processes is stopped by a signal.

unsigned int
exit_status;

Exit status of the process. This member only has meaning if the status is set to
QP0W_PID_TERMINATED. Refer to the wait() function for a description of
the exit status for a process.

Authorities

The process calling Qp0wChkPgrp() must have the appropriate authority to the processes being examined.
A process is allowed to examine the process table information for a process if at least one of the following
conditions is true:

The process is calling Qp0wChkPgrp() for its own process.●

The process has *JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

●

The process is the parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling Qp0wChkPgrp()).

●

The real or effective user ID of the process matches the real or effective user ID of the process
calling Qp0wChkPgrp().

●

Return Value

0 Qp0wChkPgrp() was successful.

value Qp0wChkPgrp() was not successful. The value returned indicates one of the following errors.
Under some conditions, value could indicate an error other than those listed here.

[EINVAL] An invalid parameter was found.

A parameter passed to this function is not valid.

[EPERM] Operation not permitted.

You must have appropriate privileges or be the owner of the object or other
resource to do the requested operation.

[ESRCH] No item could be found that matches the specified value.

Usage Notes

The Qp0wChkPgrp() function provides an OS/400-specific way to obtain the process table information for
the members of a process group.

Related Information

The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)●

The <signal.h> file (see Header Files for UNIX-Type Functions)●

getpgrp()--Get Process Group ID●

getpid()--Get Process ID●

getppid()--Get Process ID of Parent Process●

Qp0wGetPgrp()--Get Process Group ID●

Qp0wGetPid()--Get Process ID●

Qp0wGetPPid()--Get Process ID of Parent Process●

wait()--Wait for Child Process to End●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Qp0wChkPid()--Check Status for Process ID

 Syntax

 #include <sys/types.h>
 #include <qp0wpid.h>

 int Qp0wChkPid(pid_t pid,
 QP0W_PID_Data_T *pidinfo);

 Service Program Name: QP0WPID

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wChkPid() function returns the status and process table entry information for the process
specified by the process ID pid.

Parameters

pid

(Input) The process ID of the process whose process table information is to be returned. When pid
has a value of binary 0, the process table information for the current process is returned.

*pidinfo

(Output) A pointer to the QP0W_PID_Data_T structure. The process table entry information for the
process identified by pid is stored in the location pointed to by the pidinfo parameter.

The structure QP0W_PID_Data_T is defined in <qp0wpid.h> header file as follows:

typedef struct QP0W_PID_Data_T {
 pid_t pid;
 pid_t ppid;
 pid_t pgrp;
 int status;
 unsigned int exit_status;
} QP0W_PID_Data_T;

The members of the QP0W_PID_Data_T structure are as follows:

pid_t pid; The process ID of the process.

pid_t ppid; The process ID of the parent process. If ppid has a value of binary 1, there is no
parent process associated with the process.

pid_t pgrp; The process group ID of the process.

int status; A collection of flag bits that describe the current state of the process. The
following flag bits can be set in status:

QP0W_PID_TERMINATED The process has ended.

QP0W_PID_STOPPED The process has been stopped by a signal.

QP0W_PID_CHILDWAIT The process is waiting for a child process to be
ended or stopped by a signal.

QP0W_PID_SIGNALSTOP The process has requested that the SIGCHLD
signal be generated for the process when one of
it's child processes has been stopped by a
signal.

unsigned int
exit_status;

Exit status of the process. This member only has meaning if the status has been
set to QP0W_PID_TERMINATED. Refer to the wait() function for a description
of the exit status for a process.

Authorities

The process calling Qp0wChkPid() must have the appropriate authority to the process being examined. A
process is allowed to examine the process table information for a process if at least one of the following
conditions is true:

The process is calling Qp0wChkPid() for its own process.●

The process has *JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

●

The process is the parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling Qp0wChkPid()).

●

The real or effective user ID of the process matches the real or effective user ID of the process
calling Qp0wChkPid().

●

Return Value

0 Qp0wChkPid() was successful.

value Qp0wChkPid() was not successful. The value returned indicates one of the following errors.
Under some conditions, value could indicate an error other than those listed here.

[EINVAL] An invalid parameter was found.

A parameter passed to this function is not valid.

[EPERM] Operation not permitted.

You must have appropriate privileges or be the owner of the object or other
resource to do the requested operation.

[ESRCH] No item could be found that matches the specified value.

Usage Notes

The Qp0wChkPid() function provides an OS/400-specific way to obtain the process table information for
the specified process.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)●

The <signal.h> file (see Header Files for UNIX-Type Functions)●

getpgrp()--Get Process Group ID●

getpid()--Get Process ID●

getppid()--Get Process ID of Parent Process●

Qp0wGetPgrp()--Get Process Group ID●

Qp0wGetPid()--Get Process ID●

Qp0wGetPPid()--Get Process ID of Parent Process●

wait()--Wait for Child Process to End●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Qp0wGetJobID()--Get Qualified Job Name and
ID for Process ID

 Syntax

 #include <qp0wpid.h>

 int Qp0wGetJobID(pid_t pid, QP0W_Job_ID_T *jobinfo);

 Service Program Name: QP0WPID

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetJobID() function returns the qualified job name and internal job identifier for the process
whose process ID matches pid.

Parameters

pid

(Input) The process ID of the process whose job number is to be returned. When pid has a value of
zero, the process ID of the calling process is used.

*jobinfo

(Output) A pointer to the QP0W_Job_ID_T structure. This structure contains the qualified OS/400
job name and internal job identifier for the process identified by pid.

The structure QP0W_Job_ID_T is defined in the <qp0wpid.h> header file as follows:

typedef struct QP0W_Job_ID_T {
 char jobname[10];
 char username[10];
 char jobnumber[6];
 char jobid[16];
} QP0W_Job_ID_T;

The members of the QP0W_Job_ID_T structure are as follows:

char jobname[10] The name of the job as identified to the system. For an interactive job, the system
assigns the job the name of the work station where the job started. For a batch job,
you specify the name in the command when you submit the job.

char username[10] The user name under which the job runs. The user name is the same as the user
profile name and can come from several different sources, depending on the type
of job.

char jobnumber[6] The system-generated job number.

char jobid[16] The internal job identifier. This value is sent to other APIs to speed the process of
locating the job on the system. The identifier is not valid following an initial
program load (IPL). If you attempt to use it after an IPL, an exception occurs.

Authorities

The process calling Qp0wGetJobID() must have the appropriate authority to the process whose job
number is to be returned. A process is allowed to access the job number for a process if at least one of the
following conditions is true:

The process is calling Qp0wGetJobID() for its own process.●

The process has *JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

●

The process is the parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling Qp0wGetJobID()).

●

The real or effective user ID of the process matches the real or effective user ID of the process
calling Qp0wGetJobID().

●

Return Value

0 Qp0wGetJobID() was successful.

value Qp0wGetJobID() was not successful. The value returned indicates one of the following errors.
Under some conditions, value could indicate an error other than those listed here.

[EINVAL] An invalid parameter was found.

A parameter passed to this function is not valid.

[EPERM] Operation not permitted.

You must have appropriate privileges or be the owner of the object or other
resource to do the requested operation.

[ESRCH] No item could be found that matches the specified value.

Related Information

The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)●

getpid()--Get Process ID●

Qp0wGetPid()--Get Process ID●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Qp0wGetPgrp()--Get Process Group ID

 Syntax

 #include <sys/types.h>
 #include <qp0wpid.h>

 pid_t Qp0wGetPgrp(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetPgrp() function returns the process group ID of the calling process.

Parameters

None.

Authorities

None.

Return Value

pid_t The value returned by Qp0wGetPgrp() is the process group ID of the calling process.

Error Conditions

The Qp0wGetPgrp() function is always successful and does not return an error.

Usage Notes

The Qp0wGetPgrp() function provides an OS/400-specific way to obtain the process group ID of
the calling process. It performs the same function as getpgrp().

1.

Qp0wGetPgrp() enables a process for signals if the process is not already enabled for signals. For
details, see Qp0sEnableSignals()--Enable Process for Signals.

2.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

getpgrp()--Get Process Group ID●

Qp0sDisableSignals()--Disable Process for Signals●

Qp0sEnableSignals()--Enable Process for Signals●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Qp0wGetPid()--Get Process ID

 Syntax

 #include <sys/types.h>
 #include <qp0wpid.h>

 pid_t Qp0wGetPid(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetPid() function returns the process ID of the calling process.

Parameters

None.

Authorities

None.

Return Value

pid_t The value returned by Qp0wGetPid() is the process ID of the calling process.

Error Conditions

The Qp0wGetPid() function is always successful and does not return an error.

Usage Notes

The Qp0wGetPid() function provides an OS/400-specific way to obtain the process ID of the
calling process. It performs the same function as getpid().

1.

Qp0wGetPid() enables a process for signals if the process is not already enabled for signals. For
details, see (see Qp0sEnableSignals()--Enable Process for Signals.

2.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)●

getpid()--Get Process ID●

Qp0sDisableSignals()--Disable Process for Signals●

Qp0sEnableSignals()--Enable Process for Signals●

Qp0wGetPidNoInit()--Get Process ID without Initializing for Signals●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Qp0wGetPidNoInit()--Get Process ID without
Initializing for Signals

 Syntax

 #include <sys/types.h>
 #include <qp0wpid.h>

 pid_t Qp0wGetPidNoInit(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetPidNoInit() function returns the process ID of the calling process without enabling the
process to receive signals.

Parameters

None.

Authorities

None.

Return Value

pid_t The value returned by Qp0wGetPidNoInit() is the process ID of the calling process.

Error Conditions

The Qp0wGetPidNoInit() function is always successful and does not return an error.

Usage Notes

The Qp0wGetPidNoInit() function provides an OS/400-specific way to obtain the process ID of the calling
process. It performs the same function as the getpid() function without enabling the process to receive
signals.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)●

getpid()--Get Process ID●

Qp0wGetPid()--Get Process ID●

Qp0sDisableSignals()--Disable Process for Signals●

Qp0sEnableSignals()--Enable Process for Signals●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Qp0wGetPPid()--Get Process ID of Parent
Process

 Syntax

 #include <sys/types.h>
 #include <qp0wpid.h>

 pid_t Qp0wGetPPid(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetPPid() function returns the parent process ID of the calling process.

Parameters

None.

Authorities

None.

Return Value

pid_t The value returned by Qp0wGetPPid() is the process ID of the parent process for the calling
process. A process ID value of 1 indicates that there is no parent process associated with the
calling process.

Error Conditions

The Qp0wGetPPid() function is always successful and does not return an error.

Usage Notes

The Qp0wGetPPid() function provides an OS/400-specific way to obtain the parent process ID of the
calling process. It performs the same function as getppid().

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)●

getppid()--Get Process ID of Parent Process●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Qp0zPipe()--Create Interprocess Channel with
Sockets

 Syntax

 #include <spawn.h>

 int Qp0zPipe(int fildes[2]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zPipe() function creates a data pipe that can be used by two processes. One end of the pipe is
represented by the file descriptor returned in fildes[0]. The other end of the pipe is represented by the file
descriptor returned in fildes[1]. Data that is written to one end of the pipe can be read from the other end of
the pipe in a first-in-first-out basis. Both ends of the pipe are open for reading and writing.

The Qp0zPipe() function is often used with the spawn() function to allow the parent and child processes to
send data to each other.

Parameters

fildes[2]

(Input) An integer array of size 2 that will contain the pipe descriptors.

Authorities

None.

Return Value

0 Qp0zPipe() was successful.

-1 Qp0zPipe() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zPipe() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected
an address that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EMFILE] Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf()
function).

[ENFILE] Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

[ENOBUFS] There is not enough buffer space for the requested operation.

[EOPNOTSUPP] Operation not supported.

The operation, though supported in general, is not supported for the requested object
or the requested arguments.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, then retry the operation.

Usage Notes

The OS/400 implementation of the Qp0zPipe()function is based on sockets rather than pipes and, therefore,
uses socket descriptors. There are several differences:

After calling the fstat() function using one of the file descriptors returned on a Qp0zPipe() call,
when the st_mode from the stat structure is passed to the S_ISFIFO() macro, the return value
indicates FALSE. When the st_mode from the stat structure is passed to S_ISSOCK(), the return
value indicates TRUE.

1.

The file descriptors returned on a Qp0zPipe() call can be used with the send(), recv(), sendto(),
recvfrom(), sendmsg(), and recvmsg() functions.

2.

If you want to use the traditional implementation of pipes, in which the descriptors returned are pipe
descriptors instead of socket descriptors, use the pipe() function.

Related Information

The <spawn.h> file (see Header Files for UNIX-Type Functions)●

fstat()--Get File Information by Descriptor●

pipe()--Create an Interprocess Channel●

spawn()--Spawn Process●

socketpair()--Create a Pair of Sockets●

stat()--Get File Information●

API introduced: V4R1

Top | UNIX-Type APIs | APIs by category

Qp0zSystem()--Run a CL Command

 Syntax

 #include <qp0z1170.h>

 int Qp0zSystem(const char *CLcommand);

 Service Program Name: QP0ZTRML

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zSystem() function spawns a new process, passes CLcommand to the CL command processor in
the new process, and waits for the command to complete. The command runs in a batch job so it does not
have access to a terminal.

This function is similar to the system() function provided by ILE C, but allows a program to safely run a
CL command from a multithreaded process. Note that if CLcommand fails, the global variable
_EXCP_MSGID is not set with the exception message id.

Parameters

*CLcommand

(Input) Pointer to null-terminated CL command string.

Authorities

The user calling Qp0zSystem() must have *USE authority to the specified CL command.

Return Value

0 The specified CL command was successful.

1 The specified CL command was not successful.

-1 Qp0zSystem() was not successful.

Related Information

The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)●

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how to use the Qp0zSystem() function to create a library.

#include <stdio.h>
#include <qp0z1170.h>

int main(int argc, char *argv[])
{
 if (Qp0zSystem("CRTLIB LIB(XYZ)") != 0)
 printf("Error creating library XYZ.\n");
 else
 printf("Library XYZ created.\n");

 return(0);
}

Output:

 Library XYZ created

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

setpgid()--Set Process Group ID for Job
Control

 Syntax

 #include <sys/types.h>
 #include <unistd.h>

 int setpgid(pid_t pid, pid_t pgid);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The setpgid() function is used to either join an existing process group or create a new process group within
the session of the calling process.

See the Usage Notes for considerations in using setpgid().

Parameters

pid

(Input) The process ID of the process whose process group ID is to be changed. When pid has a
value of zero, the process group ID of the calling process is changed.

pgid

(Input) The process group ID to be assigned to the process whose process ID matches pid. The
value of pgid must be within the range of zero through the maximum signed integer. When pgid has
a value of zero, the process group ID is set to the process ID of the process indicated by pid.

Authorities

The process calling setpgid() must have the appropriate authority to the process being changed. A process
is allowed to access the process group ID for a process if at least one of the following conditions is true:

The process is calling setpgid() for its own process.●

The process has *JOBCTL special authority defined in the process user profile or in a current
adopted user profile.

●

The process is the parent of the process (the process being examined has a parent process ID equal
to the process ID of the process calling setpgid()).

●

The real or effective user ID of the process matches the real or effective user ID of the process
calling setpgid()).

●

Return Value

0 setpgid() was successful.

-1 setpgid() was not successful. The errno variable is set to indicate the error.

Error Conditions

If setpgid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than that listed here.

[EINVAL] An invalid parameter was found.

A parameter passed to this function is not valid.

[EPERM] Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do
the requested operation.

[ESRCH] No item could be found that matches the specified value.

Usage Notes

OS/400 does not support sessions. Until session support is available on OS/400, the restriction that
the process group must be within the session of the calling process will not be enforced.

1.

The setpgid() function fails if a nonzero process group ID is specified and that process group does
not exist. If this occurs, the return value is set to -1 and errno is set to [EPERM].

2.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <unistd.h> file (see Header Files for UNIX-Type Functions)●

getpgrp()--Get Process Group ID●

Qp0wGetPgrp()--Get Process Group ID●

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

setrlimit()--Set resource limit

 Syntax

 #include <sys/resource.h>

 int setrlimit(int resource, const struct rlimit *rlp);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The setrlimit() function sets the resource limit for the specified resource. A resource limit is a way for the
operating system to enforce a limit on a variety of resources used by a process. A resource limit is
represented by a rlimit structure. The rlim_cur member specifies the current or soft limit and the rlim_max
member specifies the maximum or hard limit.

A soft limit can be changed to any value that is less than or equal to the hard limit. The hard limit can be
changed to any value that is greater than or equal to the soft limit. Only a process with appropriate
authorities can increase a hard limit.

The setrlimit() function supports the following resources:

RLIMIT_FSIZE (0) The maximum size of a file in bytes that can be created by a process.

The setrlimit() function does not support setting the following resources: RLIMIT_AS, RLIMIT_CORE,
RLIMIT_CPU, RLIMIT_DATA, RLIMIT_NOFILE, and RLIMIT_STACK. The setrlimit() function
returns -1 and sets errno to ENOTSUP when called with one of these resources.

The value of RLIM_INFINITY is considered to be larger than any other limit value. If the value of the limit
is set to RLIM_INFINITY, then a limit is not enforced for that resource. If the value of the limit is set to
RLIM_SAVED_MAX, the new limit is the corresponding saved hard limit. If the value of the limit is
RLIM_SAVED_CUR, the new limit is the corresponding saved soft limit.

Parameters

resource

(Input)

The resource to set the limits for.

*rlp

(Input)

Pointer to a struct rlim_t that contains the new values for the hard and soft limits.

Authorities and Locks

The current user profile must have *JOBCTL special authority to increase the hard limit.

Return Value

0 setrlimit() was successful.

-1 setrlimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If setrlimit() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINVAL] An invalid parameter was found.

An invalid resource was specified.

The new soft limit is greater the new hard limit.

The new hard limit is lower than the new soft limit.

[EPERM] Permission denied.

An attempt was made to increase the hard limit and the current user profile does not have
*JOBCTL special authority.

[ENOTSUP] Operation not supported.

The operation, though supported in general, is not supported for the requested resource.

Related Information

The <sys/resource.h> file (see Header Files for UNIX-Type Functions)●

getrlimit()-Get resource limit●

ulimit()-Get and set process limits●

Example

#include <sys/resource.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main (int argc, char *argv[])
{
 struct rlimit limit;

 /* Set the file size resource limit. */
 limit.rlim_cur = 65535;
 limit.rlim_max = 65535;
 if (setrlimit(RLIMIT_FSIZE, &limit) != 0) {
 printf("setrlimit() failed with errno=%d\n", errno);
 exit(1);
 }

 /* Get the file size resource limit. */
 if (getrlimit(RLIMIT_FSIZE, &limit) != 0) {
 printf("getrlimit() failed with errno=%d\n", errno);
 exit(1);
 }

 printf("The soft limit is %llu\n", limit.rlim_cur);
 printf("The hard limit is %llu\n", limit.rlim_max);
 exit(0);
}

Example Output:

The soft limit is 65535
The hard limit is 65535

Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

spawn()--Spawn Process

 Syntax

 #include <spawn.h>

 pid_t spawn(const char *path,
 const int fd_count,
 const int fd_map[],
 const struct inheritance *inherit,
 char * const argv[],
 char * const envp[]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The spawn() function creates a child process that inherits specific attributes from the parent. The attributes
inherited by the child process are file descriptors, the signal mask, the signal action vector, and environment
variables, among others.

Parameters

path

(Input) Specific path to an executable file that will run in the new (child) process. The path name is
expected to be in the CCSID of the job.

See QlgSpawn()--Spawn Process (using NLS-enabled path name) for a description and an example
of supplying the path in any CCSID.

fd_count

(Input) The number of file descriptors the child process can inherit. It can have a value from zero to
the value returned from a call to sysconf(_SC_OPEN_MAX).

fd_map[]

(Input) An array that maps the parent process file descriptor numbers to the child process file
descriptor numbers. If this value is NULL, it indicates simple inheritance. Simple inheritance
means that the child process inherits all eligible open file descriptors of the parent process. In
addition, the file descriptor number in the child process is the same as the file descriptor number in
the parent process. Refer to Attributes Inherited for details of file descriptor inheritance.

inherit

(Input) A pointer to an area of type struct inheritance. If the pointer is NULL, an error occurs. The

inheritance structure contains control information to indicate attributes the child process should
inherit from the parent. The following is an example of the inheritance structure, as defined in the
<spawn.h> header file:

 struct inheritance {
 flagset_t flags;
 int pgroup;
 sigset_t sigmask;
 sigset_t sigdefault;
};

The flags field specifies the manner in which the child process should be created. Only the
constants defined in <spawn.h> are allowed; otherwise, spawn returns -1 with errno set to
EINVAL. The allowed constants follow:

SPAWN_SETPGROUP If this flag is set ON, spawn() sets the process group ID
of the child process to the value in pgroup. In this case,
the process group field, pgroup, must be valid. If it is
not valid, an error occurs. If this flag is set OFF, the
pgroup field is checked to determine what the process
group ID of the child process is set to. If the pgroup
field is set to the constant SPAWN_NEWPGROUP, the
child process group ID is set to the child process ID. If
the pgroup field is not set to SPAWN_NEWPGROUP
and the flags field is not set to SPAWN_SETPGROUP,
the process group ID of the child process is set to the
process group ID of the parent process. If the pgroup
field is set to SPAWN_NEWPGROUP and the flags
field is set to SPAWN_SETPGROUP, an error occurs.

SPAWN_SETSIGMASK If this flag is set ON, spawn() sets the signal blocking
mask of the child process to the value in sigmask. In
this case, the signal blocking mask must be valid. If it is
not valid, an error occurs. If this flag is set OFF,
spawn() sets the signal blocking mask of the child
process to the signal blocking mask of the calling
thread.

SPAWN_SETSIGDEF If this flag is set ON, spawn() sets the child process'
signals identified in sigdefault to the default actions.
The sigdefault must be valid. If it is not valid, an error
occurs. If this flag is set OFF, spawn() sets the child
process' signal actions to those of the parent process.
Any signals of the parent process that have a catcher
specified are set to default in the child process. The
child process' signal actions inherit the parent process'
ignore and default signal actions.

SPAWN_SETTHREAD_NP If this flag is set ON, spawn() will create the child
process as multithread capable. The child process will
be allowed to create threads. If this flag is set OFF, the
child process will not be allowed to create threads.

Note: The SPAWN_SETTHREAD_NP flag is a
non-standard, OS/400-platform-specific extension to
the inheritance structure. Applications that wish to
avoid using platform-specific extensions should not use
this flag.

SPAWN_SETPJ_NP If this flag is set ON, spawn() attempts to use available
OS/400 prestart jobs. The prestart job entries that may
be used follow:

QSYS/QP0ZSPWP, if the flag
SPAWN_SETTHREAD_NP is set OFF.

❍

QSYS/QP0ZSPWT, if the flag
SPAWN_SETTHREAD_NP is set ON.

❍

The OS/400 prestart jobs must have been started using
either QSYS/QP0ZSPWP or QSYS/QP0ZSPWT as the
program that identifies a prestart job entry for the
OS/400 subsystem that the parent process is running
under. If a prestart job entry is not defined, the child
process will run as a batch immediate job under the
same subsystem as the parent process.

If this flag (SPAWN_SETPJ_NP) is set OFF, the child
process will run as a batch immediate job under the
same subsystem as the parent process.

Notes:

In order to more closely emulate POSIX
semantics, spawn() will ignore the Maximum
number of uses (MAXUSE) value specified for
the prestart job entry. The prestart job will only
be used once, behaving as if MAXUSE(1) was
specified.

1.

The SPAWN_SETPJ_NP flag is a
non-standard, OS/400-platform-specific
extension to the inheritance structure.
Applications that wish to avoid using
platform-specific extensions should not use this
flag.

2.

SPAWN_SETCOMPMSG_NP If this flag is set ON, spawn() causes the child process
to send a completion message to the user's message
queue when the child process ends. If this flag is set
OFF, no completion message is sent to the user's
message queue when the child process ends. If both the
SPAWN_SETCOMPMSG_NP and
SPAWN_SETPJ_NP flags are set ON, an error occurs.

Note:The SPAWN_SETCOMPMSG_NP flag is a
non-standard, OS/400-platform-specific extension to
the inheritance structure. Applications that wish to
avoid using platform-specific extensions should not use
this flag.

SPAWN_SETJOBNAMEPARENT_NP If this flag is set ON, spawn() set the child's OS/400
simple job name to that of the parent's. If this flag is set
OFF, spawn() sets the child's OS/400 simple job name
based on the path input parameter.

argv[]

(Input) An array of pointers to strings that contain the argument list for the executable file. The last
element in the array must be the NULL pointer. If this parameter is NULL, an error occurs.

envp[]

(Input) An array of pointers to strings that contain the environment variable lists for the executable
file. The last element in the array must be the NULL pointer. If this parameter is NULL, an error
occurs.

Authorities

Figure 1-3. Authorization Required for spawn()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the executable file that will run in
the new process

*X EACCES

Executable file that will run in the new process *X EACCES

If executable file that will run in the new process is a shell script *RX EACCES

Return Value

value spawn() was successful. The value returned is the process ID of the child process.

-1 spawn() was not successful. The errno variable is set to indicate the error.

Error Conditions

If spawn() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[E2BIG] Argument list too long.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or
path.

If you are accessing a remote file through the Network File System, update
operations to file permissions at the server are not reflected at the client until
updates to data that is stored locally by the Network File System take place.
(Several options on the Add Mounted File System (ADDMFS) command
determine the time between refresh operations of local data.) Access to a remote
file may also fail due to different mappings of user IDs (UID) or group IDs
(GID) on the local and remote systems.

[EAPAR] Possible APAR condition or hardware failure.

[EBADFUNC] Function parameter in the signal function is not set.

A given file descriptor or directory pointer is not valid for this operation. The
specified descriptor is incorrect, or does not refer to an open file.

[EBADNAME] The object name specified is not correct.

[ECANCEL] Operation canceled.

[ECONVERT] Conversion error.

One or more characters could not be converted from the source CCSID to the
target CCSID.

The specified path name is not in the CCSID of the job.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is
not valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted
on an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The flags field in the inherit parameter contains an invalid value.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP] A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than
POSIX_SYMLOOP (defined in the limits.h header file). Symbolic links are
encountered during resolution of the directory or path name.

[ENAMETOOLONG] A path name is too long.

A path name is longer than PATH_MAX characters or some component of the
name is longer than NAME_MAX characters while _POSIX_NO_TRUNC is in
effect. For symbolic links, the length of the name string substituted for a
symbolic link exceeds PATH_MAX. The PATH_MAX and NAME_MAX
values can be determined using the pathconf() function.

[ENFILE] Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

[ENOENT] No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTDIR] Not a directory.

A component of the specified path name existed, but it was not a directory when
a directory was expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[ENOTSUP] Operation not supported.

The operation, though supported in general, is not supported for the requested
object or the requested arguments.

[ETERM] Operation terminated.

[ENOSYSRSC] System resources not available to complete request.

The child process failed to start. The maximum active jobs in a subsystem may
have been reached. CHGSBSD and CHGJOBQE CL commands can be used to
change the maximum active jobs.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in
the job log and correct any errors that are indicated, then retry the operation.

Usage Notes

spawn() is threadsafe, except this function will fail and errno ENOTSAFE will be set if it is called
in any of the following ways:

From a multithreaded process and path refers to a shell script that does not exist in a
threadsafe file system.

❍

1.

There are performance considerations when using spawn() and spawnp() concurrently among
threads in the same process. spawn() and spawnp() serialize against other spawn() and spawnp()
calls from other threads in the same process.

2.

The child process is enabled for signals. A side effect of this function is that the parent process is
also enabled for signals if it was not enabled for signals before this function was called.

3.

If this function is called from a program running in user state and it specifies a system-domain
program as the executable program for the child process, an exception occurs. In this case, spawn()
returns the process ID of the child process. On a subsequent call to wait() or waitpid(), the status
information returned indicates that an exception occurred in the child process.

4.

The program that will be run in the child process must be either a program object in the
QSYS.LIB file system or an independent ASP QSYS.LIB file system (*PGM object) or a shell
script (see About Shell Scripts). The syntax of the name of the file to run must be the proper
syntax for the file system in which the file resides. For example, if the program MYPROG resides
in the QSYS.LIB file system and in library MYLIB, the specification for spawn(). would be the
following:

 /QSYS.LIB/MYLIB.LIB/MYPROG.PGM

See QlgSpawn()--Spawn Process (using NLS-enabled path name) for an example specifying the
program using the Qlg_Path_Name_T structure. The Qlg_Path_Name_T structure is supported by

5.

QlgSpawn() and allows the program name to be specified in any CCSID.

Note: For more information about path syntaxes for the different file systems, see the Integrated
File System book.

Spawned child processes are batch jobs or prestart jobs. As such, they do not have the ability to do
5250-type interactive I/O.

6.

Spawned child processes that are OS/400 prestart jobs are similar to batch jobs. Due to the nature
of prestart jobs, only the following OS/400-specific attributes are explicitly inherited in a child
process when you use prestart jobs:

Library list❍

Language identifier❍

Country or region identifier❍

Coded character set identifier❍

Default coded character set identifier❍

Locale (as specified in the user profile)❍

The child process has the same user profile as the calling thread. However, the OS/400 job
attributes come from the job description specified for the prestart job entry, and the run attributes
come from the class that is associated with the OS/400 subsystem used for the prestart job entry.

Notes:

The prestart job entry QP0ZSPWP is used with prestart jobs that will not be creating
threads. The prestart job entry QP0ZSPWT is used with prestart jobs that will allow
multiple threads. Both types of prestart jobs may be used in the same subsystem. The
prestart job entry must be defined for the subsystem that the spawn() parent process runs
under in order for it to be used.

1.

The following example defines a prestart job entry (QP0ZSPWP) for use by spawn() under
the subsystem QINTER. The spawn() API must have the SPAWN_SETPJ_NP flag set (but
not SPAWN_SETTHREAD_NP) in order to use these prestart jobs:

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWP)
 INLJOBS(20) THRESHOLD(5) ADLJOBS(5)
 JOBD(QGPL/QDFTJOBD) MAXUSE(1)
 CLS(QGPL/QINTER)

2.

The following example defines a prestart job entry (QP0ZSPWT) that will create prestart
jobs that are multithread capable for use by spawn() under the subsystem QINTER. The
spawn() API must have both SPAWN_SETPJ_NP and SPAWN_SETTHREAD_NP flags
set in order to use these prestart jobs. Also, the JOBD parameter must be a job description
that allows multiple threads as follows:

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWT)
 INLJOBS(20) THRESHOLD(5) ADLJOBS(5)
 JOBD(QSYS/QAMTJOBD) MAXUSE(1)
 CLS(QGPL/QINTER)

3.

Refer to the Work Management book on the V5R1 Supplemental Manuals Web site for
complete details on prestart jobs.

7.

Shell scripts are allowed for the child process. If a shell script is specified, the appropriate shell
interpreter program is called. The shell script must be a text file and must contain the following
format on the first line of the file:

 #!interpreter_path <options>

where interpreter_path is the path to the shell interpreter program.

If the calling process is multithreaded, path (the first parameter to spawn()) must reference a
threadsafe file system.

spawn() calls the shell interpreter, passing in the shell options and the arguments passed in as a
parameter to spawn(). The argument list passed into the shell interpreter will look like Figure 1-4.

Figure 1-4. Arguments to Shell Interpreter

See About Shell Scripts for an example using spawn() and shell scripts.

8.

Only programs that expect arguments as NULL-terminated strings can be spawned.

The program that is run in the child's process is called at its initial entry point. The linkage to the
program is C-like. The following example describes the linkage in C language terms.

 int main(int argc, char *argv[])
 [
]

where there following are true:

argc is the number of arguments in argv[].❍

9.

argv[] is an array of arguments represented as strings. The last entry in the array is NULL.
The first entry in the array, by convention, is the name of the program. spawn() sets the
element argv[0] to the path name of the child process' program. spawn() does not move
any elements of the argv array when it sets argv[0] to the path name of the child process'
program. If that element of the array contains an argument value, the value is overwritten.

❍

argv[] is specified by the user on the interface to spawn(). When spawn() is called in the child's
process, it passes the array to the program.

The child process does not inherit any of the environment variables of the parent process. That is,
the default environment variable environment is empty. If the child process is to inherit all the
parent process' environment variables, the extern variable environ can be used as the value for
envp[] when spawn() is called. If a specific set of environment variables is required in the child
process, the user must build the envp[] array with the "name=value" strings. In the child process,
spawn() does the equivalent of a putenv on each element of the envp[] array. Then the extern
variable environ will be set and available to the child process' program.

Note: If the user of spawn() specifies the extern variable environ as the envp[] parameter, the user
must successfully call one of the following APIs before calling spawn():

getenv()❍

putenv()❍

Qp0zGetEnv()❍

Qp0zInitEnv()❍

Qp0zPutEnv()❍

The extern variable environ is not initialized until one of these APIs is called in the current
activation group. If environ is used in a call to spawn() without first calling one of these APIs,
spawn() returns an error.

10.

OS/400 handles stdin, stdout, and stderr differently than most UNIX systems. On most UNIX
systems, stdin, stdout, and stderr have file descriptors 0, 1, and 2 reserved and allocated for them.
On OS/400, this is not the case. There are two ramifications of this difference:

File descriptor 0, 1, and 2 are allocated to the first three files that have descriptors allocated
to them. If an application writes to file descriptor 1 assuming it is stdout, the result will not
be as expected.

1.

Any API that assumes stdin, stdout, and stderr are file descriptors 0, 1, and 2 will not
behave as expected.

2.

Users and applications can enable descriptor-based standard I/O for child processes by setting
environment variable QIBM_USE_DESCRIPTOR_STDIO to the value Y in the child process. This
can be accomplished on the call to spawn() by either of the following:

Specifying the extern variable environ as the envp[] parameter. This assumes that the
QIBM_USE_DESCRIPTOR_STDIO environment variable exists in the calling process.

The environment variable can be set by using one of the following:

API putenv("QIBM_USE_DESCRIPTOR_STDIO=Y");■

Command ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO)
VALUE(Y)

■

Command CHGENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO)
VALUE(Y)

■

1.

11.

Explicitly include "QIBM_USE_DESCRIPTOR_STDIO=Y" in the user-defined envp[]
array with the "name=value" strings.

2.

If you enable descriptor-based standard I/O for child processes, file descriptors 0, 1, and 2 are
automatically used for stdin, stdout, and stderr, respectively. However, spawn() must be called
using a fd_map that has file descriptors 0, 1, and 2 properly allocated. See About Shell Scripts for
an example that enables descriptor-based standard I/O for a child process. Refer to the WebSphere

Development Studio: ILE C/C++ Programmer's Guide for complete details on this support.

Spawn users have a facility to aid in debugging child processes.

To help the user start a debug session (when spawn() is the mechanism used to start the process),
the user sets the environment variable QIBM_CHILD_JOB_SNDINQMSG.

If the environment variable is assigned a numerical value, it indicates the number of descendent
levels that will be enabled for debugging. This support can be used to debug applications that create
children, grandchildren, great-grandchildren, and so forth. When the environment variable has a
value of 1, it enables debugging of all subsequent child processes. A value of 2 enables debugging
of all subsequent child processes and grandchild processes.

When the environment variable has a value less than or equal to 0, or any non-numerical value,
debugging will not occur.

Here are the steps a user would take to debug an application by using spawn():

Assume the user wants to debug child processes in an application called CHILDAPP found in
library MYAPPLIB.

Set the QIBM_CHILD_JOB_SNDINQMSG environment variable to 1.

The environment variable can be set by using one of the following:

API putenv("QIBM_CHILD_JOB_SNDINQMSG=1");■

Command ADDENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG)
VALUE(1)

■

Command CHGENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG)
VALUE(1)

■

❍

Call or run the application that specifies /QSYS.LIB/MYAPPLIB.LIB/CHILDAPP.PGM
as the pathon the spawn() invocation. CHILDAPP will start running, send a CPAA980
*INQUIRY message to the user's message queue, and then will block, waiting for a reply
to the message. Issue a Work with Active Jobs (WRKACTJOB) command and find the
CHILDAPP in a MSGW job status. Option 7 (Display message) performed against this job
will display the CPAA980 *INQUIRY message that was sent. As part of this message, the
Qualified Job Name will be displayed in the proper format to pass to the Start Service Job
(STRSRVJOB) command (for example, 145778/RANDYR/CHILDAPP).

Note: Alternatively, a Display Messages (DSPMSG) command can be issued for the user,
and the output searched for the specific CPAA980 *INQUIRY message.

Note: If the job's inquiry message reply specifies using the default message reply, the child
process will not block since the default reply for the CPAA980 *INQUIRY message is G.

❍

Issue a Start Service Job against the child process: STRSRVJOB
JOB(145778/RANDYR/CHILDAPP).

❍

12.

Issue a Start Debug Command: STRDBG PGM(MYAPPLIB/CHILDAPP).❍

Set whatever breakpoints are needed in CHILDAPP. When ready to continue, find the
CPAA980 message and reply with G. This will unblock CHILDAPP, which allows it to run
until a breakpoint is reached, at which time CHILDAPP will again stop.

Note: If you reply with C to the CPAA980 message, the child process is ended before the
child process' program ever receives control. In this case, on a subsequent call to wait() or
waitpid(), the status information returned indicates WIFEXCEPTION(), which evaluates
to a nonzero value, and WEXCEPTNUMBER() will evaluate to 0.

❍

The application is now stopped at a breakpoint and debugging can proceed.❍

The child's OS/400 simple job name is derived directly from the path input parameter. If path is a
symbolic link to another object, the OS/400 simple job name is derived from the symbolic link
itself. For example, if path was set to /QSYS.LIB/MYLIB.LIB/CHILD.PGM, the child's OS/400
simple job name would be CHILD. If /usr/bin/daughter was a symbolic link to
/QSYS.LIB/MYLIB.LIB/CHILD.PGM and path was set to /usr/bin/daughter, the child's OS/400
simple job name would be DAUGHTER.

13.

Attributes Inherited

The child process inherits the following POSIX attributes from the parent:

File descriptor table (mapped according to fd_map).

If fd_map is NULL, all file descriptors are inherited without being reordered.

Note: File descriptors that have the FD_CLOEXEC file descriptor flag set are not
inherited. Refer to for additional information about the FD_CLOEXEC flag. File
descriptors that are created as a result of the opendir() API (to implement open directory
streams) are not inherited.

❍

If fd_map is not NULL, it is a mapping from the file descriptor table of the parent process
to the file descriptor table of the child process. fd_count specifies the number of file
descriptors the child process will inherit. Except for those file descriptors designated by
SPAWN_FDCLOSED, file descriptor i in the child process is specified by fd_map[i]. For
example, fd_map[5]= 7 sets the child process' file descriptor 5 to the parent process' file
descriptor 7. File descriptors fd_count through OPEN_MAX are closed in the child
process, as are any file descriptors designated by SPAWN_FDCLOSED.

Note: File descriptors that are specified in the fd_map array are inherited even if they have
the FD_CLOEXEC file descriptor flag set. After inheritance, the FD_CLOEXEC flag in
the child process' file descriptor is cleared.

❍

For files descriptors that remain open, no attributes are changed.❍

If a file descriptor refers to an open instance in a file system that does not support file
descriptors in two different processes pointing to the same open instance of a file, the file
descriptor is closed in the child process.

Only open files managed by the Root, QOpenSys, or user-defined file systems support
inheritance of their file descriptors. All other file systems will have their file descriptors
closed in the child process.

❍

1.

Process group ID2.

If inherit.flags is set to SPAWN_SETPGROUP, the child process group ID is set to the
value in inherit.pgroup.

Note: OS/400 does not support the ability to set the process group ID for the child process
to a user-specified group ID. This is a deviation from the POSIX standard.

❍

If inherit.pgroup is set to SPAWN_NEWPGROUP, the child process is put in a new
process group with a process group ID equal to the process ID.

❍

If inherit.pgroup is not set to SPAWN_NEWPGROUP, the child process inherits the
process group of the parent process.

❍

If the process group that the child process is attempting to join has received the SIGKILL signal,
the child process is ended.

Real user ID of the calling thread.3.

Real group ID of the calling thread.4.

Supplementary group IDs (group profile list) of the calling thread.5.

Current working directory of the parent process.6.

Root directory of the parent process.7.

File mode creation mask of the parent process.8.

Signal mask of the calling thread, except if the SPAWN_SETSIGMASK flag is set in inherit.flags.
Then the child process will initially have the signal mask specified in inherit.mask.

9.

Signal action vector, as determined by the following:

If the SPAWN_SETSIGDEF flag is set in inherit.flags, the signal specified in
inherit.sigdefault is set to the default actions in the child process. Signals set to the default
action in the parent process are set to the default action in the child process.

❍

Signals set to be caught in the parent process are set to the default action in the child
process.

❍

Signals set to be ignored in the parent process are set to ignore in the child process, unless
set to default by the above rules.

❍

10.

Priority of the parent process.

Note: OS/400 prestart jobs do not inherit priority.

11.

Scheduling policy (the OS/400 scheduling policy) of the parent process.12.

OS/400-specific attributes of the parent, such as job attributes, run attributes, library list, and user
profile.

Note: OS/400 prestart jobs inherit a subset of OS/400-specific attributes.

13.

Resource limits of the parent process.14.

Related Information

The <spawn.h> file (see Header Files for UNIX-Type Functions)●

QlgSpawn()--Spawn Process (using NLS-enabled path name)●

spawnp()--Spawn Process with Path●

wait()--Wait for Child Process to End●

waitpid()--Wait for Specific Child Process●

Example

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIs in the
API Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

spawnp()--Spawn Process with Path

 Syntax

 #include <spawn.h>

 pid_t spawnp(const char *file,
 const int fd_count,
 const int fd_map[],
 const struct inheritance *inherit,
 char * const argv[],
 char * const envp[]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The spawnp() function creates a child process that inherits specific attributes from the parent. The
attributes inherited by the child process are file descriptors, the signal mask, the signal action vector, and
environment variables, among others. spawnp() takes the file parameter and searches the environment
variable PATH. The file parameter is concatenated to each path defined in the PATH environment variable.
It uses the first occurrence of the file parameter that is found with a mode of execute.

If the PATH environment variable does not contain a value, an error occurs. If the file parameter contains a
"/" character, the value of file is used as a path and a search of the PATH or library list is not performed.
Specifying a file parameter containing a "/" is the same as calling spawn().

To search the library list, a special value for the PATH environment variable is used. The string %LIBL%
can be the entire PATH value or a component of the PATH value. When the string %LIBL% is
encountered, the library list is searched. For example, the following path searches the directory /usr/bin
first, searches the library list next, and then searches the /tobrien/bin directory for the file:

PATH=/usr/bin:%LIBL%:/tobrien/bin

Parameters

file

(Input) A file name used with the search path to find an executable file that will run in the new
(child) process. The file name is expected to be in the CCSID of the job.

See QlgSpawnp()--Spawn Process with Path (using NLS-enabled file name) for a description and
an example of supplying the file in any CCSID.

fd_count

(Input) The number of file descriptors the child process can inherit. It can have a value from zero to
the value returned from a call to sysconf(_SC_OPEN_MAX).

fd_map[]

(Input) An array that maps the parent process file descriptor numbers to the child process file
descriptor numbers. If this value is NULL, it indicates simple inheritance. Simple inheritance
means that the child process inherits all eligible open file descriptors of the parent process. In
addition, the file descriptor number in the child process is the same as the file descriptor number in
the parent process. Refer to Attributes Inherited for details of file descriptor inheritance.

inherit

(Input) A pointer to an area of type struct inheritance. If the pointer is NULL, an error occurs. The
inheritance structure contains control information to indicate attributes the child process should
inherit from the parent. The following is an example of the inheritance structure, as defined in the
<spawn.h> header file:

 struct inheritance {
 flagset_t flags;
 int pgroup;
 sigset_t sigmask;
 sigset_t sigdefault;
};

The flags field specifies the manner in which the child process should be created. Only the
constants defined in <spawn.h> are allowed; otherwise, spawn returns -1 with errno set to
EINVAL. The allowed constants follow:

SPAWN_SETPGROUP If this flag is set ON, spawnp() sets the process group
ID of the child process to the value in pgroup. In this
case, the process group field, pgroup, must be valid. If it
is not valid, an error occurs. If this flag is set OFF, the
pgroup field is checked to determine what the process
group ID of the child process is set to. If the pgroup
field is set to the constant SPAWN_NEWPGROUP, the
child process group ID is set to the child process ID. If
the pgroup field is not set to SPAWN_NEWPGROUP
and the flags field is not set to SPAWN_SETPGROUP,
the process group ID of the child process is set to the
process group ID of the parent process. If the pgroup
field is set to SPAWN_NEWPGROUP and the flags
field is set to SPAWN_SETPGROUP, an error occurs.

SPAWN_SETSIGMASK If this flag is set ON, spawnp() sets the signal blocking
mask of the child process to the value in sigmask. In
this case, the signal blocking mask must be valid. If it is
not valid, an error occurs. If this flag is set OFF,
spawnp() sets the signal blocking mask of the child
process to the signal blocking mask of the calling
thread.

SPAWN_SETSIGDEF If this flag is set ON, spawnp() sets the child process'
signals identified in sigdefault to the default actions.
The sigdefault must be valid. If it is not valid, an error
occurs. If this flag is set OFF, spawnp() sets the child
process' signal actions to those of the parent process.
Any signals of the parent process that have a catcher
specified are set to default in the child process. The
child process' signal actions inherit the parent process'
ignore and default signal actions.

SPAWN_SETTHREAD_NP If this flag is set ON, spawnp() will create the child
process as multithread capable. The child process will
be allowed to create threads. If this flag is set OFF, the
child process will not be allowed to create threads.

Note: The SPAWN_SETTHREAD_NP flag is a
non-standard, OS/400-platform-specific extension to
the inheritance structure. Applications that wish to
avoid using platform-specific extensions should not use
this flag.

SPAWN_SETPJ_NP If this flag is set ON, spawnp() attempts to use
available OS/400 prestart jobs. The prestart job entries
that may be used follow:

QSYS/QP0ZSPWP, if the flag
SPAWN_SETTHREAD_NP is set OFF.

❍

QSYS/QP0ZSPWT, if the flag
SPAWN_SETTHREAD_NP is set ON.

❍

The OS/400 prestart jobs must have been started using
either QSYS/QP0ZSPWP or QSYS/QP0ZSPWT as the
program that identifies a prestart job entry for the
OS/400 subsystem that the parent process is running
under. If a prestart job entry is not defined, the child
process will run as a batch immediate job under the
same subsystem as the parent process.

If this flag (SPAWN_SETPJ_NP) is set OFF, the child
process will run as a batch immediate job under the
same subsystem as the parent process.

Notes:

In order to more closely emulate POSIX
semantics, spawnp() will ignore the Maximum
number of uses (MAXUSE) value specified for
the prestart job entry. The prestart job will only
be used once, behaving as if MAXUSE(1) was
specified.

1.

The SPAWN_SETPJ_NP flag is a
non-standard, OS/400-platform-specific
extension to the inheritance structure.

2.

Applications that wish to avoid using
platform-specific extensions should not use this
flag.

SPAWN_SETCOMPMSG_NP If this flag is set ON, spawnp() causes the child process
to send a completion message to the user's message
queue when the child process ends. If this flag is set
OFF, no completion message is sent to the user's
message queue when the child process ends. If both the
SPAWN_SETCOMPMSG_NP and
SPAWN_SETPJ_NP flags are set ON, an error occurs.

Note: The SPAWN_SETCOMPMSG_NP flag is a
non-standard, OS/400-platform-specific extension to
the inheritance structure. Applications that wish to
avoid using platform-specific extensions should not use
this flag.

SPAWN_SETJOBNAMEPARENT_NP If this flag is set ON, spawnp() set the child's OS/400
simple job name to that of the parent's. If this flag is set
OFF, spawnp() sets the child's OS/400 simple job name
based on the file input parameter.

argv[]

(Input) An array of pointers to strings that contain the argument list for the executable file. The last
element in the array must be the NULL pointer. If this parameter is NULL, an error occurs.

envp[]

(Input) An array of pointers to strings that contain the environment variable lists for the executable
file. The last element in the array must be the NULL pointer. If this parameter is NULL, an error
occurs.

Authorities

Figure 1-5. Authorization Required for spawnp()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the executable file that will run in
the new process

*X EACCES

Executable file that will run in the new process *X EACCES

If executable file that will run in the new process is a shell script *RX EACCES

Return Value

value spawnp() was successful. The value returned is the process ID of the child process.

-1 spawnp() was not successful. The errno variable is set to indicate the error.

Error Conditions

If spawnp() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[E2BIG] Argument list too long.

[EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or
path.

If you are accessing a remote file through the Network File System, update
operations to file permissions at the server are not reflected at the client until
updates to data that is stored locally by the Network File System take place.
(Several options on the Add Mounted File System (ADDMFS) command
determine the time between refresh operations of local data.) Access to a remote
file may also fail due to different mappings of user IDs (UID) or group IDs
(GID) on the local and remote systems.

[EAPAR] Possible APAR condition or hardware failure.

[EBADFUNC] Function parameter in the signal function is not set.

A given file descriptor or directory pointer is not valid for this operation. The
specified descriptor is incorrect, or does not refer to an open file.

[EBADNAME] The object name specified is not correct.

[ECANCEL] Operation canceled.

[ECONVERT] Conversion error.

One or more characters could not be converted from the source CCSID to the
target CCSID.

The specified path name is not in the CCSID of the job.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is
not valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted
on an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

The flags field in the inherit parameter contains an invalid value.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP] A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than
POSIX_SYMLOOP (defined in the limits.h header file). Symbolic links are
encountered during resolution of the directory or path name.

[ENAMETOOLONG] A path name is too long.

A path name is longer than PATH_MAX characters or some component of the
name is longer than NAME_MAX characters while _POSIX_NO_TRUNC is in
effect. For symbolic links, the length of the name string substituted for a
symbolic link exceeds PATH_MAX. The PATH_MAX and NAME_MAX
values can be determined using the pathconf() function.

[ENFILE] Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be
concurrently open in the system.

The entire system has too many other file descriptors already open.

[ENOENT] No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTDIR] Not a directory.

A component of the specified path name existed, but it was not a directory when
a directory was expected.

Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[ENOTSUP] Operation not supported.

The operation, though supported in general, is not supported for the requested
object or the requested arguments.

[ETERM] Operation terminated.

[ENOSYSRSC] System resources not available to complete request.

The child process failed to start. The maximum active jobs in a subsystem may
have been reached. CHGSBSD and CHGJOBQE CL commands can be used to
change the maximum active jobs.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in
the job log and correct any errors that are indicated, then retry the operation.

Usage Notes

spawnp() is threadsafe, except this function will fail and errno ENOTSAFE will be set if it is called
in any of the following ways:

From a multithreaded process and file refers to a shell script that does not exist in a
threadsafe file system.

❍

From a multithreaded process with a current working directory that is not in a threadsafe
file system, and the PATH environment variable causes spawnp() to check the current
working directory.

❍

1.

There are performance considerations when using spawn() and spawnp() concurrently among
threads in the same process. spawn() and spawnp() serialize against other spawn() and spawnp()
calls from other threads in the same process.

2.

The child process is enabled for signals. A side effect of this function is that the parent process is
also enabled for signals if it was not enabled for signals before this function was called.

3.

If this function is called from a program running in user state and it specifies a system-domain
program as the executable program for the child process, an exception occurs. In this case,
spawnp() returns the process ID of the child process. On a subsequent call to wait() or waitpid(),

4.

the status information returned indicates that an exception occurred in the child process.

The program that will be run in the child process must be either a program object in the
QSYS.LIB file system or an independent ASP QSYS.LIB file system (*PGM object) or a shell
script (see About Shell Scripts). The syntax of the name of the file to run must be the proper
syntax for the file system in which the file resides. For example, if the program MYPROG resides
in the QSYS.LIB file system and in library MYLIB, the specification for spawnp(). would be the
following:

 MYPROG.PGM

See QlgSpawn()--Spawn Process (using NLS-enabled path name) for an example specifying the
program using the Qlg_Path_Name_T structure. The Qlg_Path_Name_T structure is supported by
QlgSpawn() and allows the program name to be specified in any CCSID.

Note: For more information about path syntaxes for the different file systems, see the Integrated
File System book.

5.

Spawned child processes are batch jobs or prestart jobs. As such, they do not have the ability to do
5250-type interactive I/O.

6.

Spawned child processes that are OS/400 prestart jobs are similar to batch jobs. Due to the nature
of prestart jobs, only the following OS/400-specific attributes are explicitly inherited in a child
process when you use prestart jobs:

Library list❍

Language identifier❍

Country or region identifier❍

Coded character set identifier❍

Default coded character set identifier❍

Locale (as specified in the user profile)❍

The child process has the same user profile as the calling thread. However, the OS/400 job
attributes come from the job description specified for the prestart job entry, and the run attributes
come from the class that is associated with the OS/400 subsystem used for the prestart job entry.

Notes:

The prestart job entry QP0ZSPWP is used with prestart jobs that will not be creating
threads. The prestart job entry QP0ZSPWT is used with prestart jobs that will allow
multiple threads. Both types of prestart jobs may be used in the same subsystem. The
prestart job entry must be defined for the subsystem that the spawnp() parent process runs
under in order for it to be used.

1.

The following example defines a prestart job entry (QP0ZSPWP) for use by spawnp()
under the subsystem QINTER. The spawnp() API must have the SPAWN_SETPJ_NP flag
set (but not SPAWN_SETTHREAD_NP) in order to use these prestart jobs:

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWP)
 INLJOBS(20) THRESHOLD(5) ADLJOBS(5)
 JOBD(QGPL/QDFTJOBD) MAXUSE(1)
 CLS(QGPL/QINTER)

2.

7.

The following example defines a prestart job entry (QP0ZSPWT) that will create prestart
jobs that are multithread capable for use by spawnp() under the subsystem QINTER. The
spawnp() API must have both SPAWN_SETPJ_NP and SPAWN_SETTHREAD_NP flags
set in order to use these prestart jobs. Also, the JOBD parameter must be a job description
that allows multiple threads as follows:

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWT)
 INLJOBS(20) THRESHOLD(5) ADLJOBS(5)
 JOBD(QSYS/QAMTJOBD) MAXUSE(1)
 CLS(QGPL/QINTER)

3.

Refer to the Work Management book on the V5R1 Supplemental Manuals Web site for
complete details on prestart jobs.

Shell scripts are allowed for the child process. If a shell script is specified, the appropriate shell
interpreter program is called. The shell script must be a text file and must contain the following
format on the first line of the file:

 #!interpreter_path <options>

where interpreter_path is the path to the shell interpreter program.

If the calling process is multithreaded, file (the first parameter to spawnp()) must reference a
threadsafe file system.

spawnp() calls the shell interpreter, passing in the shell options and the arguments passed in as a
parameter to spawnp(). The argument list passed into the shell interpreter will look like Figure 1-6.

Figure 1-6. Arguments to Shell Interpreter

8.

See About Shell Scripts for an example using spawn() and shell scripts.

Only programs that expect arguments as NULL-terminated strings can be spawned.

The program that is run in the child's process is called at its initial entry point. The linkage to the
program is C-like. The following example describes the linkage in C language terms.

 int main(int argc, char *argv[])
 [
]

where the following is true:

argc is the number of arguments in argv[].❍

argv[] is an array of arguments represented as strings. The last entry in the array is NULL.
The first entry in the array, by convention, is the name of the program. spawnp() sets the
element argv[0] to the path name of the child process' program. spawnp() does not move
any elements of the argv array when it sets argv[0] to the path name of the child process'
program. If that element of the array contains an argument value, the value is overwritten.

❍

argv[] is specified by the user on the interface to spawnp(). When spawnp() is called in the child's
process, it passes the array to the program.

9.

The child process does not inherit any of the environment variables of the parent process. That is,
the default environment variable environment is empty. If the child process is to inherit all the
parent process' environment variables, the extern variable environ can be used as the value for
envp[] when spawnp() is called. If a specific set of environment variables is required in the child
process, the user must build the envp[] array with the "name=value" strings. In the child process,
spawnp() does the equivalent of a putenv on each element of the envp[] array. Then the extern
variable environ will be set and available to the child process' program.

Note: If the user of spawnp() specifies the extern variable environ as the envp[] parameter, the
user must successfully call one of the following APIs before calling spawnp():

getenv()❍

putenv()❍

Qp0zGetEnv()❍

Qp0zInitEnv()❍

Qp0zPutEnv()❍

The extern variable environ is not initialized until one of these APIs is called in the current
activation group. If environ is used in a call to spawnp() without first calling one of these APIs,
spawnp() returns an error.

10.

OS/400 handles stdin, stdout, and stderr differently than most UNIX systems. On most UNIX
systems, stdin, stdout, and stderr have file descriptors 0, 1, and 2 reserved and allocated for them.
On OS/400, this is not the case. There are two ramifications of this difference:

File descriptor 0, 1, and 2 are allocated to the first three "files" that have descriptors
allocated to them. If an application writes to file descriptor 1 assuming it is stdout, the
result will not be as expected.

1.

Any API that assumes stdin, stdout, and stderr are file descriptors 0, 1, and 2 will not
behave as expected.

2.

11.

Users and applications can enable descriptor-based standard I/O for child processes by setting
environment variable QIBM_USE_DESCRIPTOR_STDIO to the value Y in the child process. This
can be accomplished on the call to spawnp() by either of the following:

Specifying the extern variable environ as the envp[] parameter. This assumes that the
QIBM_USE_DESCRIPTOR_STDIO environment variable exists in the calling process.

The environment variable can be set by using one of the following:

API putenv("QIBM_USE_DESCRIPTOR_STDIO=Y");■

Command ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO)
VALUE(Y)

■

Command CHGENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO)
VALUE(Y)

■

1.

Explicitly include "QIBM_USE_DESCRIPTOR_STDIO=Y" in the user-defined envp[]
array with the "name=value" strings.

2.

If you enable descriptor-based standard I/O for child processes, file descriptors 0, 1, and 2 are
automatically used for stdin, stdout, and stderr, respectively. However, spawnp() must be called
using a fd_map that has file descriptors 0, 1, and 2 properly allocated. See About Shell Scripts for
an example that enables descriptor-based standard I/O for a child process. Refer to WebSphere

Development Studio: ILE C/C++ Programmer's Guide for complete details on this support.

Spawn users have a facility to aid in debugging child processes.

To help the user start a debug session (when spawnp() is the mechanism used to start the process),
the user sets the environment variable QIBM_CHILD_JOB_SNDINQMSG.

If the environment variable is assigned a numerical value, it indicates the number of descendent
levels that will be enabled for debugging. This support can be used to debug applications that create
children, grandchildren, great-grandchildren, and so forth. When the environment variable has a
value of 1, it enables debugging of all subsequent child processes. A value of 2 enables debugging
of all subsequent child processes and grandchild processes.

When the environment variable has a value less than or equal to 0, or any non-numerical value,
debugging will not occur.

Here are the steps a user would take to debug an application by using spawnp():

Assume the user wants to debug child processes in an application called CHILDAPP found in
library MYAPPLIB.

Set the QIBM_CHILD_JOB_SNDINQMSG environment variable to 1.

The environment variable can be set by using one of the following:

API putenv("QIBM_CHILD_JOB_SNDINQMSG=1");■

Command ADDENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG)
VALUE(1)

■

Command CHGENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG)
VALUE(1)

■

❍

Call or run the application that specifies CHILDAPP.PGM as the fileon the spawnp()
invocation. CHILDAPP will start running, send a CPAA980 *INQUIRY message to the
user's message queue, and then will block, waiting for a reply to the message. Issue a Work

❍

12.

with Active Jobs (WRKACTJOB) command and find the CHILDAPP in a MSGW job
status. Option 7 (Display message) performed against this job will display the CPAA980
*INQUIRY message that was sent. As part of this message, the Qualified Job Name will be
displayed in the proper format to pass to the Start Service Job (STRSRVJOB) command
(for example, 145778/RANDYR/CHILDAPP).

Note: Alternatively, a Display Messages (DSPMSG) command can be issued for the user,
and the output searched for the specific CPAA980 *INQUIRY message.

Note: If the job's inquiry message reply specifies using the default message reply, the child
process will not block since the default reply for the CPAA980 *INQUIRY message is G.

Issue a Start Service Job against the child process: STRSRVJOB
JOB(145778/RANDYR/CHILDAPP).

❍

Issue a Start Debug Command: STRDBG PGM(MYAPPLIB/CHILDAPP).❍

Set whatever breakpoints are needed in CHILDAPP. When ready to continue, find the
CPAA980 message and reply with G. This will unblock CHILDAPP, which allows it to run
until a breakpoint is reached, at which time CHILDAPP will again stop.

Note: If you reply with C to the CPAA980 message, the child process is ended before the
child process' program ever receives control. In this case, on a subsequent call to wait() or
waitpid(), the status information returned indicates WIFEXCEPTION(), which evaluates
to a nonzero value, and WEXCEPTNUMBER() will evaluate to 0.

❍

The application is now stopped at a breakpoint and debugging can proceed.❍

The child's OS/400 simple job name is derived directly from the file input parameter. If file is a
symbolic link to another object, the OS/400 simple job name is derived from the symbolic link
itself. For example, if file was set to CHILD.PGM, the child's OS/400 simple job name would be
CHILD. If /usr/bin/daughter was a symbolic link to /QSYS.LIB/MYLIB.LIB/CHILD.PGM, and
file was set to daughter, the child's OS/400 simple job name would be DAUGHTER.

13.

Attributes Inherited

The child process inherits the following POSIX attributes from the parent:

File descriptor table (mapped according to fd_map).

If fd_map is NULL, all file descriptors are inherited without being reordered.

Note: File descriptors that have the FD_CLOEXEC file descriptor flag set are not
inherited. Refer to for additional information about the FD_CLOEXEC flag. File
descriptors that are created as a result of the opendir() API (to implement open directory
streams) are not inherited.

❍

If fd_map is not NULL, it is a mapping from the file descriptor table of the parent process
to the file descriptor table of the child process. fd_count specifies the number of file
descriptors the child process will inherit. Except for those file descriptors designated by
SPAWN_FDCLOSED, file descriptor i in the child process is specified by fd_map[i]. For
example, fd_map[5]= 7 sets the child process' file descriptor 5 to the parent process' file
descriptor 7. File descriptors fd_count through OPEN_MAX are closed in the child
process, as are any file descriptors designated by SPAWN_FDCLOSED.

❍

1.

Note: File descriptors that are specified in the fd_map array are inherited even if they have
the FD_CLOEXEC file descriptor flag set. After inheritance, the FD_CLOEXEC flag in
the child process' file descriptor is cleared.

For files descriptors that remain open, no attributes are changed.❍

If a file descriptor refers to an open instance in a file system that does not support file
descriptors in two different processes pointing to the same open instance of a file, the file
descriptor is closed in the child process.

Only open files managed by the Root, QOpenSys, or user-defined file systems support
inheritance of their file descriptors. All other file systems will have their file descriptors
closed in the child process.

❍

Process group ID

If inherit.flags is set to SPAWN_SETPGROUP, the child process group ID is set to the
value in inherit.pgroup.

Note: OS/400 does not support the ability to set the process group ID for the child process
to a user-specified group ID. This is a deviation from the POSIX standard.

❍

If inherit.pgroup is set to SPAWN_NEWPGROUP, the child process is put in a new
process group with a process group ID equal to the process ID.

❍

If inherit.pgroup is not set to SPAWN_NEWPGROUP, the child process inherits the
process group of the parent process.

❍

If the process group that the child process is attempting to join has received the SIGKILL signal,
the child process is ended.

2.

Real user ID of the calling thread.3.

Real group ID of the calling thread.4.

Supplementary group IDs (group profile list) of the calling thread.5.

Current working directory of the parent process.6.

Root directory of the parent process.7.

File mode creation mask of the parent process.8.

Signal mask of the calling thread, except if the SPAWN_SETSIGMASK flag is set in inherit.flags.
Then the child process will initially have the signal mask specified in inherit.mask.

9.

Signal action vector, as determined by the following:

If the SPAWN_SETSIGDEF flag is set in inherit.flags, the signal specified in
inherit.sigdefault is set to the default actions in the child process. Signals set to the default
action in the parent process are set to the default action in the child process.

❍

Signals set to be caught in the parent process are set to the default action in the child❍

10.

process.

Signals set to be ignored in the parent process are set to ignore in the child process, unless
set to default by the above rules.

❍

Priority of the parent process.

Note: OS/400 prestart jobs do not inherit priority.

11.

Scheduling policy (the OS/400 scheduling policy) of the parent process.12.

OS/400-specific attributes of the parent, such as job attributes, run attributes, library list, and user
profile.

Note: OS/400 prestart jobs inherit a subset of OS/400-specific attributes.

13.

Resource limits of the parent process.14.

Related Information

The <spawn.h> file (see Header Files for UNIX-Type Functions)

QlgSpawnp()--Spawn Process with Path (using NLS-enabled file name)

●

spawn()--Spawn Process●

sysconf()--Get System Configuration Variables●

wait()--Wait for Child Process to End●

waitpid()--Wait for Specific Child Process●

Example

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIs in
Examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

ulimit()--Get and set process limits

 Syntax

 #include <ulimit.h>

 long int ulimit(int cmd, ...);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The ulimit() function provides a way to get and set process resource limits. A resource limit is a way for
the operating system to enforce a limit on a variety of resources used by a process. A resource limit has a
current or soft limit and a maximum or hard limit.

The ulimit() function is provided for compatibility with older applications. The getrlimit() and setrlimit()
functions should be used for working with resource limits.

A soft limit can be changed to any value that is less than or equal to the hard limit. The hard limit can be
changed to any value that is greater than or equal to the soft limit. Only a process with appropriate
authorities can increase a hard limit.

The ulimit() function supports the following cmd values:

UL_GETFSIZE (0) Return the current or soft limit for the file size resource limit. The returned limit is
in 512-byte blocks. The return value is the integer part of the file size resource
limit divided by 512.

UL_SETFSIZE (1) Set the current or soft limit and the maximum or hard limit for the file size resource
limit. The second argument is taken as a long int that represents the limit in
512-byte blocks. The specified value is multiplied by 512 to set the resource limit.
If the result overflows an rlim_t, ulimit() returns -1 and sets errno to EINVAL.
The new file size resource limit is returned.

Parameters

cmd

(Input)

The command to be performed.

...

(Input)

When the cmd is UL_SETFSIZE, a long int that represents the limit in 512-byte blocks.

Authorities and Locks

The current user profile must have *JOBCTL special authority to increase the hard limit.

Return Value

value ulimit() was successful. The value is the requested limit.

-1 ulimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If ulimit() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL] An invalid parameter was found.

An invalid cmd was specified.

[EPERM] Permission denied.

An attempt was made to increase the hard limit and the current user profile does not have
*JOBCTL special authority.

Related Information

The <ulimit.h> file (see Header Files for UNIX-Type Functions)●

getrlimit()-Get resource limit●

setrlimit()-Set resource limit●

Example

#include <ulimit.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main (int argc, char *argv[])
{
 long int value;
 long int limit;

 /* Set the file size resource limit. */
 limit = 65535;
 errno = 0;

 value = ulimit(UL_SETFSIZE, limit);
 if ((value == -1) && (errno != 0)) {
 printf("ulimit() failed with errno=%d\n", errno);
 exit(1);
 }
 printf("The limit is set to %ld\n", value);

 /* Get the file size resource limit. */
 value = ulimit(UL_GETFSIZE);
 if ((value == -1) && (errno != 0)) {
 printf("ulimit() failed with errno=%d\n", errno);
 exit(1);
 }
 printf("The limit is %ld\n", value);

 exit(0);
}

Example Output:

The limit is set to 65535
The limit is 65535

Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

wait()--Wait for Child Process to End

 Syntax

 #include <sys/types.h>
 #include <sys/wait.h>

 pid_t wait(int *stat_loc);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Yes

The wait() function suspends processing until a child process has ended. The calling thread will suspend
processing until status information is available for a child process that ended. A suspended wait() function
call can be interrupted by the delivery of a signal whose action is either to run a signal-catching function or
to terminate the process. When wait() is successful, status information about how the child process ended
(for example, whether the process ended normally) is stored in the location specified by stat_loc.

Parameters

stat_loc

(Input) Pointer to an area where status information about how the child process ended is to be
placed.

The status referenced by the stat_loc argument is interpreted using macros defined in the <sys/wait.h>
header file. The macros use an argument stat_val, which is the integer value pointed to by stat_loc. When
wait() returns with a valid process ID (pid), the macros analyze the status referenced by the stat_loc
argument. The macros are as follows:

WIFEXITED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended normally.

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the
low-order 8 bits of the status argument that the child process passed to
exit(), or to the value the child process returned from main().

WIFSIGNALED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended because of the receipt of a terminating signal that
was not caught by the process.

WTERMSIG(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the
number of the signal that caused the child process to end.

WIFSTOPPED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that is currently stopped.

WSTOPSIG(stat_val) If the value of the WIFSTOPPED(stat_val) is nonzero, evaluates to the
number of the signal that caused the child process to stop.

WIFEXCEPTION(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended because of an error condition.

Note: The WIFEXCEPTION macro is unique to the OS/400
implementation. See the Usage Notes.

WEXCEPTNUMBER(stat_val) If the value of the WIFEXCEPTION(stat_val) is nonzero, this macro
evaluates to the last OS/400 exception number related to the child
process.

Note: The WEXCEPTNUMBER macro is unique to the OS/400
implementation. See the Usage Notes.

Authorities

None

Return Value

value wait() was successful. The value returned indicates the process ID of the child process whose
status information was recorded in the storage pointed to by stat_loc.

-1 wait() was not successful. The errno value is set to indicate the error.

Error Conditions

If wait() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[ECHILD] Calling process has no remaining child processes on which wait operation can be
performed.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

[EINTR] Interrupted function call.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job
log and correct any errors that are indicated, then retry the operation.

Usage Notes

The WIFEXCEPTION macro is unique to the OS/400 implementation. This macro can be used to
determine whether the child process has ended because of an exception. When WIFEXCEPTION
returns a nonzero value, the value returned by the WEXCEPTNUMBER macro corresponds to the
last OS/400 exception number related to the child process.

1.

When a child process ends because of an exception, the ILE C run-time library catches and handles
the original exception. The value returned by WEXCEPTNUMBER indicates that the exception
was CEE9901. This is a common exception ID. If you want to determine the original exception
that ended the child process, look at the job log for the child process.

2.

If the child process is ended by any of the following:

ENDJOB OPTION(*IMMED)❍

ENDJOB OPTION(*CNTRLD) and delay time was reached❍

Debugging a child process (environment variable QIBM_CHILD_JOB_SNDINQMSG is
used) and the resulting CPAA980 *INQUIRY message is replied to using C,

❍

then the parent's wait() stat_loc value indicates that:

WIFEXCEPTION(stat_val) evaluates to a nonzero value❍

WEXCEPTNUMBER(stat_val) evaluates to zero.❍

3.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <sys/wait.h> file (see Header Files for UNIX-Type Functions)●

spawn()--Spawn Process●

spawnp()--Spawn Process with Path●

waitpid()--Wait for Specific Child Process●

Signal Concepts●

Example

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIs in the
API examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

waitpid()--Wait for Specific Child Process

 Syntax

 #include <sys/types.h>
 #include <sys/wait.h>

 pid_t waitpid(pid_t pid, int *stat_loc, int options);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Yes

The waitpid() function allows the calling thread to obtain status information for one of its child processes.
The calling thread suspends processing until status information is available for the specified child process,
if the options argument is 0. A suspended waitpid() function call can be interrupted by the delivery of a
signal whose action is either to run a signal-catching function or to terminate the process. When waitpid()
is successful, status information about how the child process ended (for example, whether the process
ended normally) is stored in the location specified by stat_loc.

The waitpid() function behaves the same as wait() if the pid argument is (pid_t)-1 and the options
argument is 0.

Parameters

pid

(Input) A process ID or a process group ID to identify the child process or processes on which
waitpid() should operate.

stat_loc

(Input) Pointer to an area where status information about how the child process ended is to be
placed.

options

(Input) An integer field containing flags that define how waitpid() should operate.

The pid argument specifies a set of child processes for which status is requested. The waitpid() function
only returns the status of a child process from the following set:

If pid is equal to (pid_t)-1, status is requested for any child process. In this respect, waitpid() is
then equivalent to wait().

●

If pid is greater than (pid_t)0, it specifies the process ID of a single child process for which status is
requested.

●

If pid is (pid_t)0, status is requested for any child process whose process group ID is equal to that●

of the calling thread.

If pid is less than (pid_t)-1, status is requested for any child process whose process group ID is
equal to the absolute value of pid.

●

The status referenced by the stat_loc argument is interpreted using macros defined in the <sys/wait.h>
header file. The macros use an argument stat_val, which is the integer value pointed to by stat_loc. When
waitpid() returns with a valid process ID (pid), the macros analyze the status referenced by the stat_loc
argument. The macros are as follows:

WIFEXITED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended normally.

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the
low-order 8 bits of the status argument that the child process passed to
exit(), or to the value the child process returned from main().

WIFSIGNALED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended because of the receipt of a terminating signal that
was not caught by the process.

WTERMSIG(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the
number of the signal that caused the child process to end.

WIFSTOPPED(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that is currently stopped.

WSTOPSIG(stat_val) If the value of the WIFSTOPPED(stat_val) is nonzero, evaluates to the
number of the signal that caused the child process to stop.

WIFEXCEPTION(stat_val) Evaluates to a nonzero value if the status was returned for a child
process that ended because of an error condition.

Note: The WIFEXCEPTION macro is unique to the OS/400
implementation. See the Usage Notes.

WEXCEPTNUMBER(stat_val) If the value of the WIFEXCEPTION(stat_val) is nonzero, this macro
evaluates to the last OS/400 exception number related to the child
process.

Note: The WEXCEPTNUMBER macro is unique to the OS/400
implementation. See the Usage Notes.

The options argument can be set to either 0 or WNOHANG. WNOHANG indicates that the waitpid()
function should not suspend processing of the calling thread if status is not immediately available for one of
the child processes specified by pid. If WNOHANG is specified and no child process is immediately
available, waitpid() returns 0.

Authorities

None

Return Value

value waitpid() was successful. The value returned indicates the process ID of the child process whose
status information was recorded in the storage pointed to by stat_loc.

0 WNOHANG was specified on the options parameter, but no child process was immediately
available.

-1 waitpid() was not successful. The errno value is set to indicate the error.

Error Conditions

If waitpid() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[ECHILD] Calling process has no remaining child processes on which wait operation can be
performed.

[EINVAL] An invalid parameter was found.

A parameter passed to this function is not valid.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected
an address that is not valid.

[EINTR] Interrupted function call.

[EOPNOTSUPP] Operation not supported.

The operation, though supported in general, is not supported for the requested object
or the requested arguments.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, then retry the operation.

Usage Notes

The WIFEXCEPTION macro is unique to the OS/400 implementation. This macro can be used to
determine whether the child process has ended because of an exception. When WIFEXCEPTION
returns a nonzero value, the value returned by the WEXCEPTNUMBER macro corresponds to the
last OS/400 exception number related to the child process.

1.

When a child process ends because of an exception, the ILE C run-time library catches and handles
the original exception. The value returned by WEXCEPTNUMBER indicates that the exception
was CEE9901. This is a common exception ID. If you want to determine the original exception
that ended the child process, look at the job log for the child process.

2.

If the child process is ended by any of the following:

ENDJOB OPTION(*IMMED),❍

ENDJOB OPTION(*CNTRLD) and delay time was reached, or❍

Debugging a child process (environment variable QIBM_CHILD_JOB_SNDINQMSG is
used) and the resulting CPAA980 *INQUIRY message is replied to using C,

❍

then the parent's wait() stat_loc value indicates that:

WIFEXCEPTION(stat_val) evaluates to a nonzero value, and❍

WEXCEPTNUMBER(stat_val) evaluates to zero.❍

3.

Related Information

The <sys/types.h> file (see Header Files for UNIX-Type Functions)●

The <sys/wait.h> file (see Header Files for UNIX-Type Functions)●

spawn()--Spawn Process●

spawnp()--Spawn Process with Path●

wait()--Wait for Child Process to End●

Signal Concepts●

Example

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIs in
API examples.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

About Shell Scripts
A shell (or shell interpreter) is a command interpreter. The shell interprets text strings and performs some function for each string. As
part of interpreting the string, the shell may do variable or wildcard replacement or change the string in some way. Typically, the shell
itself performs functions specified by internal commands and spawns a child process to perform processing on the external commands.
Depending on the command, the shell then does one of the following:

Waits for the child process to complete●

Continues processing with the next command●

A shell script is a text file whose format defines the following:

A shell interpreter (path and program)●

Options or arguments to pass to the shell●

Text to be interpreted as a series of commands to the shell●

The format of a shell script, starting on line one and column one, is as follows:

 #!interpreter_path <options>
 text to be interpreted
 text to be interpreted
 .
 .
 .

where

interpreter_path is the shell interpreter.

options are the options to pass to the shell interpreter.

The spawn() and spawnp() functions support shell scripts. OS/400 currently provides the Qshell Interpreter. The Qshell Interpreter is a
standard command interpreter for OS/400 based on the POSIX 1003.2 standard and X/Open CAE Specification for Shell and Utilities.

Examples

The following is an example of using spawn() to run a shell script written for the Qshell Interpreter:

#include <stdio.h>
#include <spawn.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main(int argc, char *argv[])
{
 int fd_map[3], stdoutFds[2];
 char *xmp_argv[4], *xmp_envp[3];
 struct inheritance xmp_inherit = {0};
 char buffer[20];
 pid_t child_pid, wait_rv;
 int wait_stat_loc, rc;

 xmp_argv[0] = "/home/myuserid/myscript";
 xmp_argv[1] = "Hello";
 xmp_argv[2] = "world!";
 xmp_argv[3] = NULL;

 xmp_envp[0] =
 "NLSPATH=/QIBM/ProdData/OS400/Shell/MRI2924/%N";
 xmp_envp[1] = "QIBM_USE_DESCRIPTOR_STDIO=Y";
 xmp_envp[2] = NULL;

 if (pipe(stdoutFds) != 0) {
 printf("failure on pipe\n");
 return 1;
 }

 fd_map[0] = stdoutFds[1];
 fd_map[1] = stdoutFds[1];
 fd_map[2] = stdoutFds[1];

 if ((child_pid = spawn("/home/myuserid/myscript", 3,
 fd_map, &xmp_inherit, xmp_argv,
 xmp_envp)) == -1) {
 printf("failure on spawn\n");
 return 1;
 }

 if ((wait_rv = waitpid(child_pid,
 &wait_stat_loc, 0)) == -1) {
 printf("failure on waitpid\n");
 return 1;
 }
 close(stdoutFds[1]);

 while ((rc = read(stdoutFds[0],
 buffer, sizeof(buffer))) > 0) {
 buffer[rc] = '\0';
 printf("%s", buffer);
 }
 close(stdoutFds[0]);
 return 0;
}

where "/home/myuserid/myscript" could look like the following:

 #!/usr/bin/qsh
 print $1 $2

Example Output:

 Hello world!

Top | Process-Related APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Process-Related APIs
	Table of Contents
	Process-Related APIs
	APIs
	getopt()--Get Flag Letters from Argument Vector
	getpgrp()--Get Process Group ID
	getpid()--Get Process ID
	getppid()--Get Process ID of Parent Process
	getrlimit()--Get resource limit
	pipe()--Create an Interprocess Channel
	QlgSpawn()--Spawn Process (using NLS-enabled path name)
	QlgSpawnp()--Spawn Process with Path (using NLS-enabled file name)
	Qp0wChkChld()--Check Status for Child Processes
	Qp0wChkPgrp()--Check Status for Process Group
	Qp0wChkPid()--Check Status for Process ID
	Qp0wGetJobID()--Get Qualified Job Name and ID for Process ID
	Qp0wGetPgrp()--Get Process Group ID
	Qp0wGetPid()--Get Process ID
	Qp0wGetPidNoInit()--Get Process ID without Initializing for Signals
	Qp0wGetPPid()--Get Process ID of Parent Process
	Qp0zPipe()--Create Interprocess Channel with Sockets
	Qp0zSystem()--Run a CL Command
	setpgid()--Set Process Group ID for Job Control
	setrlimit()--Set resource limit
	spawn()--Spawn Process
	spawnp()--Spawn Process with Path
	ulimit()--Get and set process limits
	wait()--Wait for Child Process to End
	waitpid()--Wait for Specific Child Process

	About Shell Scripts

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

