UNIX-Type APIs (V5R2)

Environment Variable APIs

Table of Contents

Environment Variable APIs

« getenv() (Get value of environment variable)

« putenv() (Change or add environment variable)

o QpOzDItEnv() (Delete an environment variable)
Qp0zDItSysEnv() (Delete a system-level environment variable)
QpOozGetAllSysEnv() (Get al system-level environment variables)
Qp0zGetEnv() (Get value of environment variable (extended))
Qp0zGetSysEnv() (Get value of system-level environment variable)
QpOzlInitEnv() (Initialize environment for variables)
o QpOzPutEnv() (Change or add environment variable (extended))
o QpOzPutSysEnv() (Change or add a system-level environment variable)

Header Filesfor UNIX-Type Functions
Errno Values for UNIX-Type Functions

Environment Variable APIs

Environment variables are character strings of the form "name=value'. There are two types of
environment variables:

« Job-level environment variables. The job-level environment variables are stored in an environment
space outside of the program associated with the job. They can be manipulated by using the
getenv(), putenv(), Qp0zDItEnv(), Qp0zGetEnv(), QpO0zl nitEnv(), and Qp0zPutEnv() APIs, as
well asthe CL commands ADDENVVAR, CHGENVVAR, RMVENVVAR, and WRKENVVAR.
These variables exist for the duration of the job or until they are deleted. Thereisalimit of 4095
job-level environment variables.

« System-leve environment variables. The system-level environment variables are stored in a global
environment space that is persistent across |PLs and is not associated to a particular job. They can
be manipulated by using the Qp0zDItSysEnv(), Qp0zGetAllSysEnv(), Qp0zGetSysEnv(), and
QpO0zPutSysEnv() APIs, aswell asthe CL commands ADDENVVAR, CHGENVVAR,
RMVENVVAR, and WRKENVVAR. These variables exist until they are deleted. Thereisalimit
of 4095 system-level environment variables.

When ajob calls one of the job-level environment variable APIs or CL commands for the first time, it
inherits the system-level environment variables onto its job-level environment space. Any changes to
job-level and system-level environment variables are then independent of one another.

The temporary space where the job-level environment variables are stored allows read and write access.
Therefore, it is possible for the space to be corrupted. This could occur if a programmer accesses the space
directly using the environ array rather than using the environment variable APIs. If the space is corrupted,
subsequent calls using the APIswill have unpredictable results.

The environment variable APIs are;

« getenv() (Get value of environment variable) searches the job-level environment list for a string of

the form name=value, where name is the environment variable and value is the value of the
variable.

«» putenv() (Change or add environment variable) sets the value of ajob-level environment variable
by changing an existing variable or creating a new one.

o Qp0zDItEnv() (Delete an environment variable) deletes a single job-level environment variable or
deletes all environment variables from the current job.

o Qp0zDItSysEnv() (Delete a system-level environment variable) deletes a single system-level
environment variable or deletes all system-level environment variables.

o Qp0zGetAllSysEnv() (Get all system-level environment variables) fillsin the list_buf with alist of
al the system-level environment variables.

o QpOzGetEnv() (Get value of environment variable (extended)) is an OS/400 extension to the
standard getenv() function.

o QpO0zGetSysEnv() (Get value of system-level environment variable) getsthe value of a

system-level environment variable name by searching the system-level environment variable list
for astring of the form name=value.

» QpOzinitEnv() (Initialize environment for variables) sets the external variable environ to a pointer
to the current environment list.

o Qp0zPutEnv() (Change or add environment variable (extended)) is an OS/400 extension to the
standard putenv() function.

o Qp0zPutSyskEnv() (Change or add a system-level environment variable) setsthe value of a

system-level environment variable by altering an existing variable or creating anew variable.

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions. See Header Files for

UNIX-Type Functions for the file and member name of each header file.

Top | UNIX-Type APIs| APIs by category

getenv()--Get Value of Environment Variable

Syntax
#i ncl ude <stdlib. h>

char *getenv(const char *nane);

Service Program Name: QPOZCPA
Default Public Authority: *USE

Threadsafe: Y es. See Usage Notes for more information.

The getenv() function searches the job-level environment list for astring of the form name=value, where name is the environment
variable and value is the value of the variable.

The name parameter does not include the equal (=) symbol or the value of the environment variable name=value pair.

Parameters

name
(Input) The name of an environment variable.

Return Value

value getenv() successfully found the environment string. The value returned is a pointer to the string
containing the value for the specified name in the current environment.

NULL getenv() could not find the environment string. The errno variable is set to indicate the error.

Error Conditions
If getenv() is not successful, errno indicates one of the following errors.
[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[[EFAULT]] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that
isnot valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

[ENOENT] No such path or directory.
The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

No entry found for name specified.
[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messagesin
the job log and correct any errors that are indicated, then retry the operation.

Usage Notes

1. Although getenv() isthreadsafe, if athread calls an environment variable function while another thread is accessing an
environment variable from the environ array the thread may see undefined results. The environ array can be accessed directly or
by using a pointer returned from the getenv() or Qp0zGetEnv() functions. The environment contents are only protected during
callsto the environment variable functions.

2. All environment variables are stored with an associated CCSID (coded character set identifier). Unless adifferent CCSID is
specified, such as by using Qp0zPutEnv(), the default CCSID for the job is used as the CCSID associated with each
environment variable string.

3. No trandlation is done based on the CCSID. The CCSID isjust stored and retrieved as an integer value associated with each
environment variable.

Related Information

« putenv()--Change or Add Environment Variable

o QpOzDItEnv()--Delete an Environment Variable

o QpOzDItSysEnv()--Delete a System-L evel Environment Variable

o OQp0zGetAllSysEnv()--Get All System-Level Environment Variables
« Qp0zGetEnv()--Get Value of Environment Variable (Extended)

o Qp0zGetSysEnv()--Get Vaue of System-Level Environment Variable
o QpOzlnitEnv()--Initialize Environment for Variables

» QpOzPutEnv()--Change or Add Environment Variable (Extended)

o OQp0zPutSysEnv()--Change or Add a System-L evel Environment

Example

See the example of using getenv() in putenv()--Change or Add Environment Variable.

For other examples, see the following:
« Using Environment Variables

« Using the Spawn Process and Wait for Child Process APIs
« Using the Spawn Process (using NL S-enabled path name)

API Introduced: V3R6

Top | Environment Variable APIs | APIs by category

putenv()--Change or Add Environment Variable

Syntax

#i ncl ude <stdlib. h>

i nt putenv(const char *string);;

Threadsafe: Y es. See Usage Notes for more information.

The putenv() function sets the value of ajob-level environment variable by changing an existing variable
or creating a new one. The string parameter points to astring of the form name=value, where name is the
environment variable and value is the new value for it.

The name cannot contain a blank. For example,

PATH NAME=/ny_li b/ oe_user
is not valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol,

but the system interprets all characters following the first equal symbol as being the value of the
environment variable. For example,

PATH=NAME=/ ny_| i b/ j oe_user

will result in avalue of 'NAME=/my_lib/joe_user' for the variable PATH.

Parameters

string
(Input) A pointer to the name=value string.

Return Value

0
putenv() was successful.
-1
putenv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If putenv() is not successful, errno indicates one of the following errors.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

For example, the string may not be in the correct format.
[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.

Thereis not enough memory to perform the requested function. (Thereisalimit of 4095
environment variables per job.)

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

Usage Notes

1. Although putenv() isthreadsafe, if athread calls an environment variable function while another
thread is accessing an environment variable from the environ array the thread may see undefined
results. The environ array can be accessed directly or by using a pointer returned from the getenv()
or Qp0zGetEnv() functions. The environment contents are only protected during callsto the
environment variable functions.

2. All environment variables are stored with an associated CCSID (coded character set identifier).
Because putenv() does not specify a CCSID, the default CCSID for the job is used asthe CCSID
associated with strings that are stored using putenv().

3. No trandation is done based on the CCSID. The CCSID isjust stored and retrieved as an integer
value associated with each environment variable.

Related Information

« getenv()--Get Vaue of Environment Variable

o QpOzDItEnv()--Delete an Environment Variable

o« Op0zDItSysEnv()--Delete a System-L evel Environment Variable

o QpOzGetAllSysEnv()--Get All System-L evel Environment Variables
o Op0zGetEnv()--Get Vaue of Environment V ariable (Extended)

o QpO0zGetSysEnv()--Get Value of System-Level Environment Variable
« QpOzlInitEnv()--Initialize Environment for Variables

o QpOzPutEnv()--Change or Add Environment Variable (Extended)

o Op0zPutSysEnv()--Change or Add a System-Level Environment

Example
The following example uses putenv() and getenv().

#i ncl ude <stdi o. h>
#i ncl ude <errno. h>
#i ncl ude <stdlib. h>

int main(int argc, char **argv)

{

char *varl = "PATH=/:/home/userid";
char *nanel = "PATH';

char *val 1 = NULL;

i nt rc;

rc = putenv(varl);
if (rc <0) {
printf("Error inserting <%> in environ, errno = %\n",
varl, errno);
return 1;

}

printf("<%> inserted in environ\n", varl);
val 1 = getenv(nanel);
if (vall == NULL) {
printf("Error retrieving <> fromenviron, errno = %\ n",
namel, errno);
return 1;

}

printf("<%> retrieved fromenviron, value is <%>\n",
nanmel, val 1l);
return O;

}
Output:

<PATH=/: / hone/ userid> inserted in environ
<PATH> retrieved fromenviron, value is </:/hone/userid>

For other examples, see the following:
« Using Environment Variables.
» Using the Spawn Process and Wait for Child Process APIs.
« Using the Spawn Process (using NL S-enabled path name)

Top | Environment Variable APIs | APIs by category

QpO0zDItEnv()--Delete an Environment Variable

Syntax

#i ncl ude <gqp0z1170. h>

int QO0zD t Env(const char *name);

Threadsafe: Yes. See Usage Notes for more information.

The Qp0zDItEnv() function deletes a single job-level environment variable or deletes all environment variables from the current job. If
the name parameter isNULL, all environment variablesin the job are deleted.

The name parameter does not include the equal (=) symbol or the value of the environment variable name=value pair.

Parameters
name

(Input) A pointer to the name part of the environment variable name=val ue string.
Authorities

None.

Return Value

0
QpO0zDItEnv() was successful.
-1
QpO0zDItEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOzDItEnv() is not successful, errno indicates one of the following errors.
[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

The parameter nameis not NULL and does not point to an environment variable name that currently existsin the environment
list.

Usage Notes

1. Although QpOzDItEnv() isthreadsafe, if athread calls an environment variable function while another thread is accessing an
environment variable from the environ array the thread may see undefined results. The environ array can be accessed directly or
by using a pointer returned from the getenv() or Qp0zGetEnv() functions. The environment contents are only protected during
callsto the environment variable functions.

Related Information

« getenv()--Get Value of Environment Variable

« putenv()--Change or Add Environment Variable

o QpOzDItSysEnv()--Delete a System-L evel Environment Variable

o OQp0zGetAllSysEnv()--Get All System-Level Environment Variables
o QpOzGetEnv()--Get Value of Environment Variable (Extended)

o Qp0zGetSysEnv()--Get Vaue of System-Level Environment Variable
o QpOzInitEnv()--Initialize Environment for Variables

« QpOzPutEnv()--Change or Add Environment Variable (Extended)

o QpOzPutSysEnv()--Change or Add a System-L evel Environment

Example

The following example uses Qp0zDItEnv(), putenv() and the environ array.

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i ncl ude <gqp0z1170. h>
#i ncl ude <stdlib. h>

extern char **environ;

#defi ne ASSERT(x, Y)

{

}

it (1)) {
printf("Assertion Failed: " #x
", Description: " vy
", errno=%l", errno);
exit (EXI T_FAI LURE) ;

}

—— — - - — —

int main(int argc, char **argv)

{

i nt rc=0;
i nt e=0;
printf("Enter Testcase - %\n", argv[O0]);

rc = putenv("PATH=/ usr/bi n:/home/ ne: %.1 BL%) ;
ASSERT((rc == 0), "putenv(PATH");

rc = putenv("TEST0=42");

ASSERT((rc == 0), "putenv(TESTO)");

rc = putenv("TEST1=42");

ASSERT((rc == 0), "putenv(TEST1)");

printf("Before del ete, these environnment variables are set:

while (environ[e] != NULL) {
printf(" 9%\n", environ[e]);
++e;

}

printf("Delete the environment variables\n");
rc = QOzD t Env(" TEST0");

ASSERT((rc==0), "Q@O0zD tEnv(TESTO)");

rc = QuOzDi t Env(" TEST1");

ASSERT((rc==0), "QO0zD tEnv(TEST1)");

printf("After delete, these environnment variables are set:
e=0;
while (environ[e] != NULL) {

\n");

printf(" 9%\n", environ[e]);
++e;

}
printf("Main conpleted\n");
return O;

}

Output:

Ent er Testcase - QPOWEST/ TPZDLTEO

Before del ete, these environnent variables are set:
PATH=/ usr/ bi n: / hone/ ne: %.1 BL%
TEST0=42
TEST1=42

Del ete the environnment vari abl es

After delete, these environnent variables are set:
PATH=/ usr/ bi n: / hone/ ne: %.1 BL%

Mai n conpl et ed

Top | Environment Variable APIs | APIs by category

Qp0zDItSysEnv()--Delete a System-Level Environment
Variable

Syntax

#i ncl ude <qp0z1170. h>

int @QO0zD tSysEnv(const char *name, void *reserved);
Threadsafe: Yes

The Qp0zDItSysEnv() function deletes a single system-level environment variable or deletes all system-level environment variables. If
the name parameter isNULL, all system-level environment variables are deleted.

The name parameter does not include the equal (=) symbol or the value part of the environment variable name=value pair.

Parameters

name
(Input) The name of the environment variable to delete.
reserved
(Input) Reserved for future use. Currently, the only value allowed isNULL.

Authorities

*JOBCTL specia authority isrequired to delete a system-level environment variable.

Return Value

0
Qp0zDItSysEnv() was successful.
errval
QpO0zDItSysEnv() was not successful. errval is set to indicate the error.

Error Conditions

If Qp0zDItSysEnv() is not successful, errval indicates one of the following errors.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.
[EINVAL]
An invalid parameter was found.

A parameter passed to this function is not valid.

The value for the reserved parameter was not NULL.
[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

The parameter nameis not NULL and does not point to an environment variable name that currently existsin the environment
list.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the requested operation.

Y ou must have * JOBCTL special authority to delete a system-level environment variable.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Related Information

« The <gp0z1170.h> file (see Header Files for UNIX-Type Functions)
« getenv()--Get Value of Environment Variable

« putenv()--Change or Add Environment Variable

o OQp0zDItEnv()--Delete an Environment Variable

o Qp0zGetAllSysEnv()--Get All System-Level Environment Variables
o QpOzGetEnv()--Get Value of Environment Variable (Extended)

o Qp0zGetSysEnv()--Get Vaue of System-Level Environment Variable
o QpOzlnitEnv()--Initialize Environment for Variables

« QpOzPutEnv()--Change or Add Environment Variable (Extended)

o OQp0zPutSysEnv()--Change or Add a System-L evel Environment

Example

See the example of using Qp0zDItSysEnv() in Qp0zPutSysEnv()--Change or Add a System-L evel Environment.

Top | Environment Variable APIs | APIs by category

Qp0zGetAllSysEnv()--Get All System-Level Environment
Variables

Syntax

#i ncl ude <qp0z1170. h>
int QO0zGet All SysEnv(char *list_buf, int *list_buf_size,

int *ccsid_buf, int *ccsid_buf_size,
voi d *reserved);

Threadsafe: Yes

The Qp0zGetAllSysEnv() function fillsin the list_buf with alist of al the system-level environment variables. The list consists of
multiple null-terminated name=value strings followed by an ending null-terminator. The coded character set identifier (CCSID)
associated with each name=value string is returned in the ccsid_buf buffer.

Authorities

None

Parameters

list_buf
(Input/Output) The address of the buffer to receive the null-terminated name=val ue list.
list_buf_size

(Input/Output) A pointer to an integer that contains the information about the size (in bytes) of the list_buf buffer. Before
calling Qp0zGetAllSysEnv(), this parameter should be set to the size of list_buf. If the size of this parameter is large enough to
receive thelist, then thisfield will be set to the exact size of the list upon returning from Qp0zGetAllSysEnv(). If the size of
this parameter is not large enough to receive the list, then thisfield will contain the exact size required and ENOSPC will be the
return value. In this case, the list_buf is not modified.

ccsid_buf

(Input/Output) The address of the buffer to receive the CCSIDs of the environment variables. The order of the CCSIDs returned
corresponds to the order of the variables returned in the list_buf

ccsid buf size

(Input/Output) A pointer to an integer that contains the information about the size (in bytes) of the ccsid_buf buffer. Before
calling Qp0zGetAllSysEnv(), this should be set to the size of ccsid_buf. If this size is enough to receive the CCSID list, then
thisfield will contain the exact size of the CCSIDs received upon returning from Qp0zGetAllSysEnv(). If thissizeis not
enough to receive the CCSID list, then thisfield will contain the exact size required and ENOSPC will be the return value. In
this case, the ccsid_buf is not modified.

reserved
(Input) Reserved for future use. Currently, the only allowed valueis NULL.

Return Value

0
Qp0zGetAllSysEnv() was successful. Thel i st _buf contains the null-terminated system-level environment variable strings,
and the ccsid_buf contains the CCSID of each variable in the same order. The list_buf_size contains the exact size of the
environment variable list, and the ccsid_buf_size contains the exact size of the CCSID list.

errval

Qp0zGetAllSysEnv() was not succesful. errval indicates the error.

Error Conditions

If Qp0zGetAllSysEnv() is not successful, errval indicates one of the following errors.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.
[EINVAL]
An invalid parameter was found.

A parameter passed to this function is not valid.

The value for the reserved parameter was not NULL.
[ENOENT]
No such path or directory.

The directory or a component of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

There were no system-level environment variables.
[ENOSPC]
No space available.

The reguested operations required additional space on the device and thereis no space left. This could also be caused by
exceeding the user profile storage limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

The size of the buffersto receive the list and the CCSIDs was not enough. The list_buf_size and ccsid_buf_size parameters
indicate the exact size needed for the list_buf ccsid_buf respectively.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Usage Notes
1. Notrandation is done based on the CCSID. The CCSID isjust stored and retrieved as an integer value associated with each
environment variable.

Related Information

« The<qp0z1170.h> file (see Header Files for UNIX-Type Functions)
« getenv()--Get Value of Environment Variable

« putenv()--Change or Add Environment Variable

o QpOzDItEnv()--Delete an Environment Variable

o Qp0zDItSysEnv()--Delete a System-Level Environment Variable

o OQp0zGetEnv()--Get Vaue of Environment Variable (Extended)

o Qp0zGetSysEnv()--Get Value of System-Level Environment Variable
o QpOzlnitEnv()--Initialize Environment for Variables

« QpOzPutEnv()--Change or Add Environment Variable (Extended)

o QpOzPutSysEnv()--Change or Add a System-L evel Environment

Example

1. Seethe examplein QpOzPutSysEnv()--Change or Add a System-L evel Environment.

2. Seethetwo-part examplein Appendix A for saving and restoring system-level environment variables.

Top | Environment Variable APIs | APIs by category

Qp0zGetEnv()--Get Value of Environment Variable
(Extended)

Syntax

#i ncl ude <qp0z1170. h>

char *Q0zGet Env(const char *name, int *ccsid);
Threadsafe: Y es. See Usage Notes for more information.

The Qp0zGetEnv() function is an OS/400 extension to the standard getenv() function. QpOzGetEnv() searches the job-level
environment list for a string of the form name=value. The value and the CCSID (coded character set identifier) associated with the
environment variable name are returned.

Parameters

name
(Input) The name of an environment variable.
ccsid
(Output) The CCSID for the named environment variable.

Return Value

value

Qp0zGetEnv() successfully found the environment string. The value returned is a pointer to the string containing the value for
the specified name in the current environment.

NULL
Qp0zGetEnv() could not find the environment string. The errno variable is set to indicate the error.

Error Conditions

If Qp0zGetEnv() is not successful, errno indicates one of the following errors.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acal, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.
[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

No entry found for name specified.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and correct any errorsthat are
indicated, then retry the operation.

Usage Notes

1. Although Qp0zGetEnv() isthreadsafe, if athread calls an environment variable function while another thread is accessing an
environment variable from the environ array the thread may see undefined results. The environ array can be accessed directly or
by using a pointer returned from the getenv() or Qp0zGetEnv() functions. The environment contents are only protected during
callsto the environment variable functions.

2. Notrandation is done based on the CCSID. The CCSID isjust stored and retrieved as an integer value associated with each
environment variable.

Related Information

« The<qgp0z1170.h> file (see Header Filesfor UNIX-Type Functions)

« getenv()--Get Value of Environment Variable

« putenv()--Change or Add Environment Variable

« QpOzDItEnv()--Delete an Environment Variable

o OQp0zDItSysEnv()--Delete a System-Level Environment Variable

o Qp0zGetAllSysEnv()--Get All System-Level Environment Variables
o Qp0zGetSysEnv()--Get Vaue of System-Level Environment Variable
o QpOzlnitEnv()--Initialize Environment for Variables

« QpOzPutEnv()--Change or Add Environment Variable (Extended)

o OQp0zPutSysEnv()--Change or Add a System-L evel Environment

Example

See the exampl e of using getenv() in putenv()--Change or Add Environment Variable.

Top | Environment Variable APIs | APIs by category

Qp0zGetSysEnv()--Get Value of System-Level Environment
Variable

Syntax

#i ncl ude <qp0z1170. h>

int @QO0zGet SysEnv(const char *nane,
char *val ue, int *val ue_si ze,
int *ccsid, void *reserved);

Threadsafe: Yes

The Qp0zGetSysEnv() function gets the value of a system-level environment variable name by searching the system-level environment
variablelist for astring of the form name=vaue. The value and the coded character set identifier (CCSID) associated with the
environment variable name are returned.

Authorities

None

Parameters

name

(Input) The name of an environment variable.
value

(Input/Output) The address of the buffer to receive the value.
value size

(Input/Output) A pointer to an integer that contains the information about the size of the value buffer. Before calling
Qp0zGetSysEnv(), this parameter should contain the size of the value buffer. If the size of this parameter is large enough to
receive the value, then this field will contain the exact size of value upon returning from Qp0zGetSysEnv(). If the size of this
parameter is not large enough to receive the value, then this field will contain the exact size required and ENOSPC will be the
return value. In this case, the value buffer is not modified.

ccsid

(Input/Output) The address of the variable to receive the CCSID associated with this variable.
reserved

(Input) Reserved for future use. Currently, the only allowed valueis NULL.

Return Value

0

Qp0zGetSysEnv() successfully found the environment string. value and ccsid contain the value and CCSID for the variable
name in the system-level environment variable list.

errval
Qp0zGetEnv() was not successful. errval indicates the error.

Error Conditions

If Qp0zGetSysEnv() is not successful, errval indicates one of the following errors.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.
[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.

The value for the reserved parameter was not NULL.
[ENOENT]
No such path or directory.

The directory or acomponent of the path name specified does not exist.
A named file or directory does not exist or is an empty string.

No entry found for name specified.
[ENOSPC]
No space available.

The requested operations required additional space on the device and there is no space left. This could also be caused by
exceeding the user profile storage limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

The size of the value buffer was not big enough to receive the value.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and correct any errorsthat are
indicated, then retry the operation.

Usage Notes
1. Notrandation is done based on the CCSID. The CCSID isjust stored and retrieved as an integer value associated with each
environment variable.

Related Information

« The<qp0z1170.h> file (see Header Files for UNIX-Type Functions)
« getenv()--Get Vaue of Environment Variable

« putenv()--Change or Add Environment Variable

o QpOzDItEnv()--Delete an Environment Variable

o QpOzDItSysEnv()--Delete a System-L evel Environment Variable

o OQp0zGetAllSysEnv()--Get All System-Level Environment Variables
o Qp0zGetEnv()--Get Vaue of Environment Variable (Extended)

« QpOzInitEnv()--Initialize Environment for Variables

« QpOzPutEnv()--Change or Add Environment Variable (Extended)

o QpOzPutSysEnv()--Change or Add a System-L evel Environment

Example

See the example of using Qp0zGetSysEnv() in QpOzPutSysEnv()--Change or Add a System-L evel Environment.

Top | Environment Variable APIs | APIs by category

QpOzInitEnv()--Initialize Environment for Variables

Syntax

#i ncl ude <qp0z1170. h>

int QOzlnitEnv(void);;
Threadsafe: Yes

The QpO0zI nitEnv() function sets the external variable environ to a pointer to the current environment list. (On the i Series server,
environisinitialized to NULL when an activation group is started.)

Note: Although it is possible for a user's program to directly read the environ array, use of the getenv() or Qp0zGetEnv() functionsis
recommended.

Parameters

None.

Return Value

0
QpO0zl nitEnv() successfully initialized the environment.
-1
QpOzl nitEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOzl nitEnv() is not successful, errno indicates the following error.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and correct any errorsthat are
indicated, then retry the operation.

Related Information

« The <gp0z1170.h> file (see Header Filesfor UNIX-Type Functions)

« getenv()--Get Value of Environment Variable

« putenv()--Change or Add Environment Variable

o QpOzDItEnv()--Delete an Environment Variable

o OQp0zDItSysEnv()--Delete a System-Level Environment Variable

o Qp0zGetAllSysEnv()--Get All System-Level Environment Variables
o QpOzGetEnv()--Get Value of Environment Variable (Extended)

o Qp0zGetSysEnv()--Get Vaue of System-Level Environment Variable
« QpOzPutEnv()--Change or Add Environment Variable (Extended)

o OQp0zPutSysEnv()--Change or Add a System-L evel Environment

Top | Environment Variable APIs | APIs by category

QpO0zPutEnv()--Change or Add Environment Variable
(Extended)

Syntax

#i ncl ude <qp0z1170. h>

i nt @QOzPut Env(const char *string, int ccsid);;
Threadsafe: Y es. See Usage Notes for more information.

The Qp0zPutEnv() function is an OS/400 extension to the standard putenv() function. QpOzPutEnv() sets the value of an environment
variable by altering an existing variable or creating a new variable. In addition, it specifiesa CCSID (coded character set identifier) to
be associated with the environment variable.

The string parameter points to a string of the form name=value, where name is the environment variable and value is the new value for
it.

The name cannot contain ablank. For example,

PATH NAME=/ny_| i b/ j oe_user

isnot valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol, but the system interprets all
characters following the first equal symbol as being the value of the environment variable. For example,

PATH=NAME=/ my _| i b/ j oe_user

will result in avalue of 'NAME=/my_lib/joe_user' for the variable PATH.

Parameters

string
(Input) A pointer to the name=value string.
ccsid
(Input) A CCSID to be associated with this environment variable. If 0 is specified, the default CCSID for the job is used.

Return Value

0
QpO0zPutEnv() was successful.
-1
QpO0zPutEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOzPutEnv() is not successful, errno indicates one of the following errors.
[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.
[EINVAL]
An invalid parameter was found.

A parameter passed to this function is not valid.

For example, the string may not be in the correct format.
[ENOMEM]
Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function. (Thereis alimit of 4095 environment variables per job.)
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Usage Notes

1. Although QpOzPutEnv() isthreadsafe, if athread calls an environment variable function while another thread is accessing an
environment variable from the environ array the thread may see undefined results. The environ array can be accessed directly or
by using a pointer returned from the getenv() or Qp0zGetEnv() functions. The environment contents are only protected during
calls to the environment variable functions.

2. No trandation is done based on the CCSID. The CCSID isjust stored and retrieved as an integer value associated with each
environment variable.

Related Information

« The <gp0z1170.h> file (see Header Filesfor UNIX-Type Functions)

« getenv()--Get Value of Environment Variable

« putenv()--Change or Add Environment Variable

o Op0zDItEnv()--Delete an Environment Variable

« QpOzDItSysEnv()--Delete a System-L evel Environment Variable

o OQp0zGetAllSysEnv()--Get All System-Level Environment Variables

o Qp0zGetSysEnv()--Get Vaue of System-Level Environment Variable

o QpOzlnitEnv()--Initialize Environment for Variables

o Qp0zPutSysEnv()--Change or Add a System-L evel Environment Variable

Example

See the example of using putenv() in putenv()--Change or Add Environment Variable.

Top | Environment Variable APIs | APIs by category

Qp0zPutSyskEnv()--Change or Add a
System-Level Environment Variable

Syntax

#i ncl ude <gp0z1170. h>

i nt QOzPut SysEnv(const char *string, int ccsid,
voi d *reserved);

Threadsafe: Yes

Qp0zPutSysEnv() function sets the value of a system-level environment variable by altering an existing
variable or creating a new variable. In addition, it specifies a CCSID (coded character set identifier) to be
associated with the environment variable.

The string parameter points to astring of the form name=value, where name is the environment variable
and valueisthe new valuefor it.

The name cannot contain a blank. For example,

PATH NAME=/ny_li b/j oe_user

is not valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol,
but the system interprets all characters following the first equal symbol as being the value of the
environment variable. For example,

PATH=NAME=/ ny_| i b/ j oe_user

will result in avalue of 'NAME=/my_lib/joe_user' for the variable PATH.

Parameters

string
(Input) A pointer to the name=value string.
ccsid
(Input) A CCSID to be associated with this environment variable. If 0 is specified, the default
CCSID for thejob is used.
reserved
(Input) Reserved for future use. Currently, the only allowed valueis NULL.

Authorities

*JOBCTL specia authority is required to add or change a system-level environment variable.

Return Value

0
QpO0zPutSysEnv() was successful.
errval
Qp0zPutSysEnv() was not successful. errval is set to indicate the error.

Error Conditions

If QpOzPutSysEnv() isnot successful, errval indicates one of the following errors.
[EFAULT]
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that is not valid.
While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[EINVAL]
Aninvalid parameter was found.

A parameter passed to this function is not valid.
For example, the string parameter was not in the correct format or the value for the reserved
parameter was not NULL.

[ENOMEM]
Storage alocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function. (Thereisalimit of 4095
system-level environment variables.)
[EOPNOTSUPP]
Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

Thiserror isreturned if the environment variable that is being added is
QIBM_CHILD_JOB_SNDINQMSG. See spawn() in or spawnp() in for details on
QIBM_CHILD_JOB_SNDINQMSG.

[EPERM]
Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the
regquested operation.

Y ou must have * JOBCTL special authority to add or change system-level environment variables.
[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errorsthat are indicated, then retry the operation.

Usage Notes

1. Notranglation is done based on the CCSID. The CCSID isjust stored and retrieved as an integer
value associated with each environment variable.

Related Information

o The<gp0z1170.h> file (see Header Files for UNIX-Type Functions)
« getenv()--Get Vaue of Environment Variable

« putenv()--Change or Add Environment Variable

o Op0zDItEnv()--Delete an Environment Variable

« Qp0zDItSysEnv()--Delete a System-L evel Environment Variable

o QpOzGetAllSysEnv()--Get All System-Level Environment Variables
o QpOzGetEnv()--Get Value of Environment Variable (Extended)

o Op0zGetSysEnv()--Get Vaue of System-Level Environment Variable
o QpOzlnitEnv()--Initialize Environment for Variables

o Qp0zPutEnv()--Change or Add Environment Variable (Extended)

Example
The following example uses QpO0zPutSysEnv(), Qp0zGetSysEnv(), and Qp0zDItSysEnv().

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i ncl ude <stdlib. h>
#i ncl ude <gp0z1170. h>

int main(int argc, char **argv)

{

char *varl = "PATH=/:/home";
char *nanmel = "PATH';

char *val 1 = NULL;

i nt rc, ccsid, size;

/* Add the system |l evel variable PATH */
/* using default ccsid */
ccsid = O;

rc = QO0zPut SyskEnv(varl1, ccsid, NULL);
if(rc 1= 0)

printf("Error from QOzPut Sysenv while addi ng <%>\n",varl);
printf("errno = %@\ n",rc);
return rc;

}

printf("<%> added to systemlevel env var list\n",varl);

/* Get the value of the variable PATH */
si ze 100;
val 1 (char *)nmal |l oc(size);

rc = QO0zGet SyskEnv(nanel, vall, &size, &ccsid, NULL);
i f(rc == ENGCSPC)

/* The buffer size was not enough to get the value */
/* Increase the buffer to size */
vall = (char *)realloc(vall, size);

rc = Q0zGet Sysknv(nanel, vall, &size, &ccsid, NULL);
}

if(rc 1= 0)
{

printf("Error from QO0zGet SyseEnv while retrieving");
printf("<%s>, errno = %\ n", nanel, rc);
return rc;

}
printf("<%> retrieved, value is <%>\n", nanel, val 1);

/* Delete the PATH variable */
rc = @QO0zD t SysEnv(nanel, NULL);
if(rc 1= 0)

printf("Error from Q0OzD t SysEnv whil e del eting");
printf("<%>, errno = %\ n", nanel, rc);
return rc;

}

printf("<%> deleted fromsystemlevel env var list\n", nanel);

return O;

}
Output:

<PATH=/:/ home> added to system| evel variable |ist
<PATH> retrieved, value is </:/home>
<PATH> del eted from system | evel variable |ist

For other examples, see the two-part example in APl Examples for saving and restoring system-level
environment variables.

Top | Environment Variable APIs | APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

« Macro definitions
« Datatype definitions
« Structure definitions
« Function prototypes
The header files are provided in the QSY SINC library, which is optionally installable. Make sure

QSY SINC ison your system before compiling programs that use these header files. For information on
installing the QSY SINC library, see Data structures and the QSY SINC Library.

The table below shows the file and member name in the QSY SINC library for each header file used by the
UNIX-type APIsin this publication.

Nameof Filein

Name of Header File QSYSINC Name of M ember
| arpalinet.h | ARPA | INET
| apanameserh | ARPA | NAMESER
| bse.h | H | BSE
| bsedos.h | H | BSEDOS
| bseerr.h | H | BSEERR
| dirent.h | H | DIRENT
| errno.h | H | ERRNO
| fentl.h | H | FCNTL
| grp.h | H | GRP
| Zinttypes.h | H | INTTYPES®
| limits.h | H | LIMITS
| #mman.h | H | MMAN
| netdbh.h | H | NETDB
| Pnetinet/icmpé.h | NETINET | ICMP6&
| net/if.h | NET | IF
| netinet/in.h | NETINET | IN
| netinet/ip_icmp.h | NETINET | IP_ICMP
| netinet/ip.h | NETINET | IP
| Pnetinet/ipph | NETINET | IP6
| netinet/tcp.h | NETINET | TCP
| netinet/udp.h | NETINET | UDP
| netns/idp.h | NETNS | IDP
| netns/ipx.h | NETNS | IPX
| netngns.h | NETNS | NS
| netns/sp.h | NETNS | SP
| net/route.h | NET | ROUTE
| nettel/tel.h | NETTEL | TEL

| 0s2.h | H | 02

| 0s2def h | H | OS2DEF

| pwd.h | H | PWD

| Qigh | H | QLG

| qpOlflop.h | H | QPOLFLOP
| Zqpoljrnl.h | H | QPOLJRNL
| #qpOiror.h | H | QPOLROR%
[Qpoistdih | H [QPOLSTDI
[opOwpidh | H [QPOWPID
| qpOzdipc.h | H | QPOZDIPC

| gpO0zipc.h | H | QPOZIPC

| gpOzolip.h | H | QPOZOLIP

| gpOzolsm.h | H | QPOZOLSM
| gpOzripc.h | H | QPOZRIPC

| gpOztrc.h | H | QPOZTRC

| qpOztrml.h | H | QPOZTRML
[gpozi170h | H | QPOZ1170
| Pgsoasynch | H | QSOASYNCX
[anxapih | H [QTNXAAPI
| gtnxadtp.h | H | QTNXADTP
| qgtomeapi.h | H | QTOMEAPI
| qgtossapi.h | H | QTOSSAPI

| resolv.h | H | RESOLVE

| semaphore.h | H | SEMAPHORE
| signal.h | H | SIGNAL

| spawn.h | H | SPAWN

| ss.h | H | SSL

| syslerrno.h | H | ERRNO

[sysioctih | SYS | IOCTL

| syslipc.h | SYS | IPC

| sys/layout.h | H | LAYOUT

| sys/limits.h | H | LIMITS

| sys/msg.h | SYS | MSG

| sys/param.h | SYS | PARAM

| Psysresourceh | SYS | RESOURCE#
| sys/sem.h | SYS | SEM

[syesimph | SYS | SETIMP

| sys/shm.h | SYS | SHM

[sys/signah | SYS | SIGNAL

[syssocketh | SYS [SOCKET

| sys/stat.h | SYs | STAT

[gesavfsh | SYS [STATVFS

| sys/time.h | SYS | TIME

| sysitypes.h | SYS | TYPES

| sys/uio.h | SYS | ulo

| sys/un.h | SYS | UN

| syswait.h | SYs | WAIT

| Zulimith | H | ULIMIT
| unistd.h | H | UNISTD
| utime.h | H | UTIME

You can display a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(5)

« Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FI LE(QSYSI NC/ SYS) MBR(STAT)

Y ou can print a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(6)

« Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROVFI LE(QSYSI NC/ SYS) TOFI LE(* PRI NT) FROMVBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs| APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

IName |Value | Text

EDOM 3001 A domain error occurred in a math
function.

|ERANGE |3002 |A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

|[ENOTOPEN 13004 |Fileis not open.

|[ENOTREAD |3005 |Fileis not opened for read operations.

|EIO 13006 |Input/output error.

|ENODEV 13007 INo such device.

ERECIO ’3008 Cannot get single character for files
opened for record 1/0.

|[ENOTWRITE 13009 |Fileis not opened for write operations.

|ESTDIN 13010 | The stdin stream cannot be opened.

|ESTDOUT 13011 | The stdout stream cannot be opened.

|ESTDERR 13012 | The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

|EBADNAME 13014 | The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

|EBADPOS 13017 | The position specifier is not correct.

ENOPOS 3018 Thereis no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 ngﬁ current record position istoo long for
tell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 _Functi on parameter in the signal function
is not set.

|ENOENT 13025 INo such path or directory.

|[ENOREC 13026 |Record is not found.

|EPERM 13027 |The operation is not permitted.

|EBADDATA 13028 |Message datais not valid.

|EBUSY 13029 |Resource busy.

|EBADOPT 13040 |Option specified is not valid.

|[ENOTUPD 13041 |Fileis not opened for update operations.

|[ENOTDLT |3042 |Fileis not opened for delete operations.

EPAD 3043 The number of characterswritten is
shorter than the expected record length.
EBADKEYLN 3044 A length that was not valid was specified
for the key.
EPUTANDGET 3080 A read operation should not immediately
follow awrite operation.
EGETANDPUT 3081 A write operation should not immediately
follow aread operation.
|EIOERROR 3101 |A nonrecoverable 1/O error occurred.
|EIORECERR 3102 |A recoverable /O error occurred.
|EACCES 3401 |Permission denied.
|ENOTDIR 3403 INot adirectory.
|ENOSPC 3404 INo spaceis available.
|EXDEV 3405 |Improper link.
EAGAIN 3406 Operation would have caused the process
to be suspended.
EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.
|EINTR 3407 |Interrupted function call.
EFAULT 3408 The address used for an argument was not
correct.
|ETIME 3409 |Operation timed out.
|ENXIO 3415 INo such device or address.
EAPAR 3418 Possible APAR condition or hardware
failure.
|ERECURSE 13419 |Recursive attempt rejected.
|EADDRINUSE 3420 |Address already in use.
|[EADDRNOTAVAIL 3421 |Address is not available.
EAFNOSUPPORT 3422 The type of socket isnot supported in this
protocol family.
|EALREADY 3423 |Operation is already in progress.
|[ECONNABORTED 3424 |Connection ended abnormally.
ECONNREFUSED 3425 A remote host refused an attempted
connect operation.
ECONNRESET 3426 A connection with a remote socket was
reset by that socket.
|EDESTADDRREQ |3427 |Operation requires destination address.
|EHOSTDOWN 3428 |A remote host is not available.
|[EHOSTUNREACH 3429 |A route to the remote host is not available.
|EINPROGRESS 3430 |Operation in progress.
|EISCONN 3431 |A connection has already been established.
|EMSGSIZE 3432 |Message size is out of range.
|[ENETDOWN 3433 |The network currently is not available.
ENETRESET A socket is connected to a host that is no

=

longer available.

|[ENETUNREACH 3435 |Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
regquested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

|[ENOTSUP 3440 |Operation is not supported.
|EOPNOTSUPP 3440 |Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT (3442 No protocol of the specified type and
domain exists.

EPROTOTY PE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

|ESHUTDOWN 3445 |Cannot send data after a shutdown.
|ESOCKTNOSUPPORT |3446 | The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
thistime.

|EBADF 3450 |Descriptor is not valid.

|EMFILE 3452 |Too many open files for this process.
|ENFILE 3453 |Too many open filesin the system.
|EPIPE 3455 |Broken pipe.

|ECANCEL 3456 |Operation cancelled.

|EEXIST 3457 |File exists.

|EDEADLK 3459 |Resource deadlock avoided.
|[ENOMEM 3460 | Storage all ocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

|ETERM 3464 |Operation was terminated.
|ENOENT1 3465 INo such file or directory.

ENOEQFLOG 3466 Object is aready linked to a dead
directory.

|[EEMPTYDIR 3467 |Directory is empty.

EMLINK 3468 Maximum link count for afile was
exceeded.

|ESPIPE 3469 | Seek request is not supported for object.

|ENOSYS 3470 |Function not implemented.

|EISDIR 3471 |Specified target is adirectory.

|EROFS 3472 |Read-only file system.

|[EUNKNOWN 3474 |Unknown system state.

|EITERBAD 3475 |Iterator is not valid.

|EITERSTE 3476 |Iterator isin wrong state for operation.

|EHRICLSBAD |3477 |HRI classisnot valid.

|EHRICLBAD 3478 IHRI subclass is not valid.

|EHRITYPBAD |3479 |HRI typeisnot valid.

|ENOTAPPL 3480 |Data requested is not applicable.

|EHRIREQTYP 3481 IHRI request type s not valid.

|[EHRINAMEBAD 3482 IHRI resource name is not valid.

|EDAMAGE 3484 |A damaged object was encountered.

|ELOOP 3485 |A loop exists in the symbolic links.

IENAMETOOLONG 3486 |A path name is too long.

|ENOLCK 3487 INo locks are available.

|[ENOTEMPTY 3488 |Directory is not empty.

|ENOSY SRSC 3489 |System resources are not available.

|[ECONVERT 13490 |Conversion error.

|E2BIG 3491 |Argument list istoo long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

|ETYPE 3493 |Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

|ESOFTDAMAGE 3497 |Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

|EOFFLINE 13499 |Object is suspended.

|EROOBJ 13500 |Object is aread-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDS 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 | Duplicate extended attribute record.

ELOCKED 3506 Areabeing read from or writtentois

locked.

EFBIG 3507 |Object too large.

EIDRM 3509 The semaphore, shared memory, or
message gqueue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of

the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

|EFILECVT 3511 |File ID conversion of adirectory failed.

EBADFID 3512 A file 1D could not be assigned when
linking an object to a directory.

|ESTALE 3513 |File handle was rejected by server.

|ESRCH 3515 INo such process.

|IENOTSIGINIT 3516 |Process is not enabled for signals.

|ECHILD 3517 INo child process.

|EBADH 13520 IHandleis not valid.

ETOOMANY REFS 3523 The operation would have exceeded the

maximum number of references allowed
for a descriptor.

|ENOTSAFE 3524 |Function is not allowed.

|[EOVERFLOW 3525 |Object istoo large to process.

|EIRNDAMAGE 3526 \Journal is damaged.

|EJRNI NACTIVE |3527 |Journa| isinactive.

|EJRNRCVSPC 3528 |Journal space or system storage error.

|EIRNRMT 3529 |Journal is remote.

|ENEWJRNRCV 3530 INew journal receiver is needed.

|ENEWJRN 3531 INew journal is needed.

|EJOURNALED 3532 |Object already journaled.

|[EJRNENTTOOLONG 3533 |Entry istoo large to send.

|EDATALINK 3534 |Object is adatalink object.

|[ENOTAVAIL 3535 |IASPisnot available.

|ENOTTY 3536 |10 control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

|ETXTBSY 3543 | Text file busy.

|[EASPGRPNOTSET 3544 |ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs| APIs by category

	Environment Variable APIs (V5R2)
	Table of Contents
	Environment Variable APIs
	getenv()--Get Value of Environment Variable
	putenv()--Change or Add Environment Variable
	Qp0zDltEnv()--Delete an Environment Variable
	Qp0zDltSysEnv()--Delete a System-Level Environment Variable
	Qp0zGetAllSysEnv()--Get All System-Level Environment Variables
	Qp0zGetEnv()--Get Value of Environment Variable (Extended)
	Qp0zGetSysEnv()--Get Value of System-Level Environment Variable
	Qp0zInitEnv()--Initialize Environment for Variables
	Qp0zPutEnv()--Change or Add Environment Variable (Extended)
	Qp0zPutSysEnv()--Change or Add a System-Level Environment Variable

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

