
UNIX-Type APIs (V5R2)

Environment Variable APIs

Table of Contents

Environment Variable APIs

getenv() (Get value of environment variable)●

putenv() (Change or add environment variable)●

Qp0zDltEnv() (Delete an environment variable)●

Qp0zDltSysEnv() (Delete a system-level environment variable)●

Qp0zGetAllSysEnv() (Get all system-level environment variables)●

Qp0zGetEnv() (Get value of environment variable (extended))●

Qp0zGetSysEnv() (Get value of system-level environment variable)●

Qp0zInitEnv() (Initialize environment for variables)●

Qp0zPutEnv() (Change or add environment variable (extended))●

Qp0zPutSysEnv() (Change or add a system-level environment variable)●

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Environment Variable APIs
Environment variables are character strings of the form "name=value". There are two types of
environment variables:

Job-level environment variables. The job-level environment variables are stored in an environment
space outside of the program associated with the job. They can be manipulated by using the
getenv(), putenv(), Qp0zDltEnv(), Qp0zGetEnv(), Qp0zInitEnv(), and Qp0zPutEnv() APIs, as
well as the CL commands ADDENVVAR, CHGENVVAR, RMVENVVAR, and WRKENVVAR.
These variables exist for the duration of the job or until they are deleted. There is a limit of 4095
job-level environment variables.

●

System-level environment variables. The system-level environment variables are stored in a global
environment space that is persistent across IPLs and is not associated to a particular job. They can
be manipulated by using the Qp0zDltSysEnv(), Qp0zGetAllSysEnv(), Qp0zGetSysEnv(), and
Qp0zPutSysEnv() APIs, as well as the CL commands ADDENVVAR, CHGENVVAR,
RMVENVVAR, and WRKENVVAR. These variables exist until they are deleted. There is a limit
of 4095 system-level environment variables.

●

When a job calls one of the job-level environment variable APIs or CL commands for the first time, it
inherits the system-level environment variables onto its job-level environment space. Any changes to
job-level and system-level environment variables are then independent of one another.

The temporary space where the job-level environment variables are stored allows read and write access.
Therefore, it is possible for the space to be corrupted. This could occur if a programmer accesses the space
directly using the environ array rather than using the environment variable APIs. If the space is corrupted,
subsequent calls using the APIs will have unpredictable results.

The environment variable APIs are:

getenv() (Get value of environment variable) searches the job-level environment list for a string of
the form name=value, where name is the environment variable and value is the value of the
variable.

●

putenv() (Change or add environment variable) sets the value of a job-level environment variable
by changing an existing variable or creating a new one.

●

Qp0zDltEnv() (Delete an environment variable) deletes a single job-level environment variable or
deletes all environment variables from the current job.

●

Qp0zDltSysEnv() (Delete a system-level environment variable) deletes a single system-level
environment variable or deletes all system-level environment variables.

●

Qp0zGetAllSysEnv() (Get all system-level environment variables) fills in the list_buf with a list of
all the system-level environment variables.

●

Qp0zGetEnv() (Get value of environment variable (extended)) is an OS/400 extension to the
standard getenv() function.

●

Qp0zGetSysEnv() (Get value of system-level environment variable) gets the value of a
system-level environment variable name by searching the system-level environment variable list
for a string of the form name=value.

●

Qp0zInitEnv() (Initialize environment for variables) sets the external variable environ to a pointer
to the current environment list.

●

Qp0zPutEnv() (Change or add environment variable (extended)) is an OS/400 extension to the
standard putenv() function.

●

Qp0zPutSysEnv() (Change or add a system-level environment variable) sets the value of a●

system-level environment variable by altering an existing variable or creating a new variable.

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. See Header Files for
UNIX-Type Functions for the file and member name of each header file.

Top | UNIX-Type APIs | APIs by category

getenv()--Get Value of Environment Variable

 Syntax

 #include <stdlib.h>

 char *getenv(const char *name);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes. See Usage Notes for more information.

The getenv() function searches the job-level environment list for a string of the form name=value, where name is the environment
variable and value is the value of the variable.

The name parameter does not include the equal (=) symbol or the value of the environment variable name=value pair.

Parameters

name

(Input) The name of an environment variable.

Return Value

value getenv() successfully found the environment string. The value returned is a pointer to the string
containing the value for the specified name in the current environment.

NULL getenv() could not find the environment string. The errno variable is set to indicate the error.

Error Conditions

If getenv() is not successful, errno indicates one of the following errors.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[[EFAULT]] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that
is not valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

[ENOENT] No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

No entry found for name specified.
[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in
the job log and correct any errors that are indicated, then retry the operation.

Usage Notes

Although getenv() is threadsafe, if a thread calls an environment variable function while another thread is accessing an
environment variable from the environ array the thread may see undefined results. The environ array can be accessed directly or
by using a pointer returned from the getenv() or Qp0zGetEnv() functions. The environment contents are only protected during
calls to the environment variable functions.

1.

All environment variables are stored with an associated CCSID (coded character set identifier). Unless a different CCSID is
specified, such as by using Qp0zPutEnv(), the default CCSID for the job is used as the CCSID associated with each
environment variable string.

2.

No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer value associated with each
environment variable.

3.

Related Information

putenv()--Change or Add Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetEnv()--Get Value of Environment Variable (Extended)●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Qp0zPutSysEnv()--Change or Add a System-Level Environment●

Example

See the example of using getenv() in putenv()--Change or Add Environment Variable.

For other examples, see the following:

Using Environment Variables●

Using the Spawn Process and Wait for Child Process APIs●

Using the Spawn Process (using NLS-enabled path name)●

API Introduced: V3R6

Top | Environment Variable APIs | APIs by category

putenv()--Change or Add Environment Variable

 Syntax

 #include <stdlib.h>

 int putenv(const char *string);;

 Threadsafe: Yes. See Usage Notes for more information.

The putenv() function sets the value of a job-level environment variable by changing an existing variable
or creating a new one. The string parameter points to a string of the form name=value, where name is the
environment variable and value is the new value for it.

The name cannot contain a blank. For example,

 PATH NAME=/my_lib/joe_user

is not valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol,
but the system interprets all characters following the first equal symbol as being the value of the
environment variable. For example,

 PATH=NAME=/my_lib/joe_user

will result in a value of 'NAME=/my_lib/joe_user' for the variable PATH.

Parameters

string

(Input) A pointer to the name=value string.

Return Value

0

putenv() was successful.

-1

putenv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If putenv() is not successful, errno indicates one of the following errors.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

For example, the string may not be in the correct format.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function. (There is a limit of 4095
environment variables per job.)

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Usage Notes

Although putenv() is threadsafe, if a thread calls an environment variable function while another
thread is accessing an environment variable from the environ array the thread may see undefined
results. The environ array can be accessed directly or by using a pointer returned from the getenv()
or Qp0zGetEnv() functions. The environment contents are only protected during calls to the
environment variable functions.

1.

All environment variables are stored with an associated CCSID (coded character set identifier).
Because putenv() does not specify a CCSID, the default CCSID for the job is used as the CCSID
associated with strings that are stored using putenv().

2.

No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer
value associated with each environment variable.

3.

Related Information

getenv()--Get Value of Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetEnv()--Get Value of Environment Variable (Extended)●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Qp0zPutSysEnv()--Change or Add a System-Level Environment●

Example

The following example uses putenv() and getenv().

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
 char *var1 = "PATH=/:/home/userid";
 char *name1 = "PATH";
 char *val1 = NULL;
 int rc;

 rc = putenv(var1);
 if (rc < 0) {
 printf("Error inserting <%s> in environ, errno = %d\n",
 var1, errno);
 return 1;
 }

 printf("<%s> inserted in environ\n", var1);
 val1 = getenv(name1);
 if (val1 == NULL) {
 printf("Error retrieving <%s> from environ, errno = %d\n",
 name1, errno);
 return 1;
 }

 printf("<%s> retrieved from environ, value is <%s>\n",
 name1, val1);
 return 0;
}

Output:

 <PATH=/:/home/userid> inserted in environ
 <PATH> retrieved from environ, value is </:/home/userid>

For other examples, see the following:

Using Environment Variables.●

Using the Spawn Process and Wait for Child Process APIs.●

Using the Spawn Process (using NLS-enabled path name)●

Top | Environment Variable APIs | APIs by category

Qp0zDltEnv()--Delete an Environment Variable

 Syntax

 #include <qp0z1170.h>

 int Qp0zDltEnv(const char *name);

 Threadsafe: Yes. See Usage Notes for more information.

The Qp0zDltEnv() function deletes a single job-level environment variable or deletes all environment variables from the current job. If
the name parameter is NULL, all environment variables in the job are deleted.

The name parameter does not include the equal (=) symbol or the value of the environment variable name=value pair.

Parameters

name

(Input) A pointer to the name part of the environment variable name=value string.

Authorities

None.

Return Value

0

Qp0zDltEnv() was successful.

-1

Qp0zDltEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zDltEnv() is not successful, errno indicates one of the following errors.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

The parameter name is not NULL and does not point to an environment variable name that currently exists in the environment
list.

Usage Notes

Although Qp0zDltEnv() is threadsafe, if a thread calls an environment variable function while another thread is accessing an
environment variable from the environ array the thread may see undefined results. The environ array can be accessed directly or
by using a pointer returned from the getenv() or Qp0zGetEnv() functions. The environment contents are only protected during
calls to the environment variable functions.

1.

Related Information

getenv()--Get Value of Environment Variable●

putenv()--Change or Add Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetEnv()--Get Value of Environment Variable (Extended)●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Qp0zPutSysEnv()--Change or Add a System-Level Environment●

Example

The following example uses Qp0zDltEnv(), putenv() and the environ array.

#include <stdio.h>
#include <errno.h>
#include <qp0z1170.h>
#include <stdlib.h>

extern char **environ;

#define ASSERT(x, y) \
{ if (!(x)) { \
 printf("Assertion Failed: " #x \
 ", Description: " y \
 ", errno=%d", errno); \
 exit(EXIT_FAILURE); \
 } \
}

int main(int argc, char **argv)
{
 int rc=0;
 int e=0;
 printf("Enter Testcase - %s\n", argv[0]);

 rc = putenv("PATH=/usr/bin:/home/me:%LIBL%");
 ASSERT((rc == 0), "putenv(PATH)");
 rc = putenv("TEST0=42");
 ASSERT((rc == 0), "putenv(TEST0)");
 rc = putenv("TEST1=42");
 ASSERT((rc == 0), "putenv(TEST1)");
 printf("Before delete, these environment variables are set: \n");

 while (environ[e] != NULL) {
 printf(" %s\n", environ[e]);
 ++e;
 }

 printf("Delete the environment variables\n");
 rc = Qp0zDltEnv("TEST0");
 ASSERT((rc==0), "Qp0zDltEnv(TEST0)");
 rc = Qp0zDltEnv("TEST1");
 ASSERT((rc==0), "Qp0zDltEnv(TEST1)");

 printf("After delete, these environment variables are set: \n");
 e=0;
 while (environ[e] != NULL) {

 printf(" %s\n", environ[e]);
 ++e;
 }
 printf("Main completed\n");
 return 0;
}

Output:

Enter Testcase - QP0WTEST/TPZDLTE0
Before delete, these environment variables are set:
 PATH=/usr/bin:/home/me:%LIBL%
 TEST0=42
 TEST1=42
Delete the environment variables
After delete, these environment variables are set:
 PATH=/usr/bin:/home/me:%LIBL%
Main completed

Top | Environment Variable APIs | APIs by category

Qp0zDltSysEnv()--Delete a System-Level Environment
Variable

 Syntax

 #include <qp0z1170.h>

 int Qp0zDltSysEnv(const char *name, void *reserved);

 Threadsafe: Yes

The Qp0zDltSysEnv() function deletes a single system-level environment variable or deletes all system-level environment variables. If
the name parameter is NULL, all system-level environment variables are deleted.

The name parameter does not include the equal (=) symbol or the value part of the environment variable name=value pair.

Parameters

name

(Input) The name of the environment variable to delete.

reserved

(Input) Reserved for future use. Currently, the only value allowed is NULL.

Authorities

*JOBCTL special authority is required to delete a system-level environment variable.

Return Value

0

Qp0zDltSysEnv() was successful.

errval

Qp0zDltSysEnv() was not successful. errval is set to indicate the error.

Error Conditions

If Qp0zDltSysEnv() is not successful, errval indicates one of the following errors.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

The value for the reserved parameter was not NULL.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

The parameter name is not NULL and does not point to an environment variable name that currently exists in the environment
list.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the requested operation.

You must have *JOBCTL special authority to delete a system-level environment variable.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Related Information

The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)●

getenv()--Get Value of Environment Variable●

putenv()--Change or Add Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetEnv()--Get Value of Environment Variable (Extended)●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Qp0zPutSysEnv()--Change or Add a System-Level Environment●

Example

See the example of using Qp0zDltSysEnv() in Qp0zPutSysEnv()--Change or Add a System-Level Environment.

Top | Environment Variable APIs | APIs by category

Qp0zGetAllSysEnv()--Get All System-Level Environment
Variables

 Syntax

 #include <qp0z1170.h>

 int Qp0zGetAllSysEnv(char *list_buf, int *list_buf_size,
 int *ccsid_buf, int *ccsid_buf_size,
 void *reserved);

 Threadsafe: Yes

The Qp0zGetAllSysEnv() function fills in the list_buf with a list of all the system-level environment variables. The list consists of
multiple null-terminated name=value strings followed by an ending null-terminator. The coded character set identifier (CCSID)
associated with each name=value string is returned in the ccsid_buf buffer.

Authorities

None

Parameters

list_buf

(Input/Output) The address of the buffer to receive the null-terminated name=value list.

list_buf_size

(Input/Output) A pointer to an integer that contains the information about the size (in bytes) of the list_buf buffer. Before
calling Qp0zGetAllSysEnv(), this parameter should be set to the size of list_buf. If the size of this parameter is large enough to
receive the list, then this field will be set to the exact size of the list upon returning from Qp0zGetAllSysEnv(). If the size of
this parameter is not large enough to receive the list, then this field will contain the exact size required and ENOSPC will be the
return value. In this case, the list_buf is not modified.

ccsid_buf

(Input/Output) The address of the buffer to receive the CCSIDs of the environment variables. The order of the CCSIDs returned
corresponds to the order of the variables returned in the list_buf

ccsid_buf_size

(Input/Output) A pointer to an integer that contains the information about the size (in bytes) of the ccsid_buf buffer. Before
calling Qp0zGetAllSysEnv(), this should be set to the size of ccsid_buf. If this size is enough to receive the CCSID list, then
this field will contain the exact size of the CCSIDs received upon returning from Qp0zGetAllSysEnv(). If this size is not
enough to receive the CCSID list, then this field will contain the exact size required and ENOSPC will be the return value. In
this case, the ccsid_buf is not modified.

reserved

(Input) Reserved for future use. Currently, the only allowed value is NULL.

Return Value

0

Qp0zGetAllSysEnv() was successful. The list_buf contains the null-terminated system-level environment variable strings,
and the ccsid_buf contains the CCSID of each variable in the same order. The list_buf_size contains the exact size of the
environment variable list, and the ccsid_buf_size contains the exact size of the CCSID list.

errval

Qp0zGetAllSysEnv() was not succesful. errval indicates the error.

Error Conditions

If Qp0zGetAllSysEnv() is not successful, errval indicates one of the following errors.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

The value for the reserved parameter was not NULL.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

There were no system-level environment variables.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This could also be caused by
exceeding the user profile storage limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

The size of the buffers to receive the list and the CCSIDs was not enough. The list_buf_size and ccsid_buf_size parameters
indicate the exact size needed for the list_buf ccsid_buf respectively.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Usage Notes

No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer value associated with each
environment variable.

1.

Related Information

The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)●

getenv()--Get Value of Environment Variable●

putenv()--Change or Add Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetEnv()--Get Value of Environment Variable (Extended)●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Qp0zPutSysEnv()--Change or Add a System-Level Environment●

Example

See the example in Qp0zPutSysEnv()--Change or Add a System-Level Environment.1.

See the two-part example in Appendix A for saving and restoring system-level environment variables.2.

Top | Environment Variable APIs | APIs by category

Qp0zGetEnv()--Get Value of Environment Variable
(Extended)

 Syntax

 #include <qp0z1170.h>

 char *Qp0zGetEnv(const char *name, int *ccsid);

 Threadsafe: Yes. See Usage Notes for more information.

The Qp0zGetEnv() function is an OS/400 extension to the standard getenv() function. Qp0zGetEnv() searches the job-level
environment list for a string of the form name=value. The value and the CCSID (coded character set identifier) associated with the
environment variable name are returned.

Parameters

name

(Input) The name of an environment variable.

ccsid

(Output) The CCSID for the named environment variable.

Return Value

value

Qp0zGetEnv() successfully found the environment string. The value returned is a pointer to the string containing the value for
the specified name in the current environment.

NULL

Qp0zGetEnv() could not find the environment string. The errno variable is set to indicate the error.

Error Conditions

If Qp0zGetEnv() is not successful, errno indicates one of the following errors.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

No entry found for name specified.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Usage Notes

Although Qp0zGetEnv() is threadsafe, if a thread calls an environment variable function while another thread is accessing an
environment variable from the environ array the thread may see undefined results. The environ array can be accessed directly or
by using a pointer returned from the getenv() or Qp0zGetEnv() functions. The environment contents are only protected during
calls to the environment variable functions.

1.

No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer value associated with each
environment variable.

2.

Related Information

The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)●

getenv()--Get Value of Environment Variable●

putenv()--Change or Add Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Qp0zPutSysEnv()--Change or Add a System-Level Environment●

Example

See the example of using getenv() in putenv()--Change or Add Environment Variable.

Top | Environment Variable APIs | APIs by category

Qp0zGetSysEnv()--Get Value of System-Level Environment
Variable

 Syntax

 #include <qp0z1170.h>

 int Qp0zGetSysEnv(const char *name,
 char *value, int *value_size,
 int *ccsid, void *reserved);

 Threadsafe: Yes

The Qp0zGetSysEnv() function gets the value of a system-level environment variable name by searching the system-level environment
variable list for a string of the form name=value. The value and the coded character set identifier (CCSID) associated with the
environment variable name are returned.

Authorities

None

Parameters

name

(Input) The name of an environment variable.

value

(Input/Output) The address of the buffer to receive the value.

value_size

(Input/Output) A pointer to an integer that contains the information about the size of the value buffer. Before calling
Qp0zGetSysEnv(), this parameter should contain the size of the value buffer. If the size of this parameter is large enough to
receive the value, then this field will contain the exact size of value upon returning from Qp0zGetSysEnv(). If the size of this
parameter is not large enough to receive the value, then this field will contain the exact size required and ENOSPC will be the
return value. In this case, the value buffer is not modified.

ccsid

(Input/Output) The address of the variable to receive the CCSID associated with this variable.

reserved

(Input) Reserved for future use. Currently, the only allowed value is NULL.

Return Value

0

Qp0zGetSysEnv() successfully found the environment string. value and ccsid contain the value and CCSID for the variable
name in the system-level environment variable list.

errval

Qp0zGetEnv() was not successful. errval indicates the error.

Error Conditions

If Qp0zGetSysEnv() is not successful, errval indicates one of the following errors.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

The value for the reserved parameter was not NULL.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

No entry found for name specified.

[ENOSPC]

No space available.

The requested operations required additional space on the device and there is no space left. This could also be caused by
exceeding the user profile storage limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

The size of the value buffer was not big enough to receive the value.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Usage Notes

No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer value associated with each
environment variable.

1.

Related Information

The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)●

getenv()--Get Value of Environment Variable●

putenv()--Change or Add Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetEnv()--Get Value of Environment Variable (Extended)●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Qp0zPutSysEnv()--Change or Add a System-Level Environment●

Example

See the example of using Qp0zGetSysEnv() in Qp0zPutSysEnv()--Change or Add a System-Level Environment.

Top | Environment Variable APIs | APIs by category

Qp0zInitEnv()--Initialize Environment for Variables

 Syntax

 #include <qp0z1170.h>

 int Qp0zInitEnv(void);;

 Threadsafe: Yes

The Qp0zInitEnv() function sets the external variable environ to a pointer to the current environment list. (On the iSeries server,
environ is initialized to NULL when an activation group is started.)

Note: Although it is possible for a user's program to directly read the environ array, use of the getenv() or Qp0zGetEnv() functions is
recommended.

Parameters

None.

Return Value

0

Qp0zInitEnv() successfully initialized the environment.

-1

Qp0zInitEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zInitEnv() is not successful, errno indicates the following error.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Related Information

The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)●

getenv()--Get Value of Environment Variable●

putenv()--Change or Add Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetEnv()--Get Value of Environment Variable (Extended)●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Qp0zPutSysEnv()--Change or Add a System-Level Environment●

Top | Environment Variable APIs | APIs by category

Qp0zPutEnv()--Change or Add Environment Variable
(Extended)

 Syntax

 #include <qp0z1170.h>

 int Qp0zPutEnv(const char *string, int ccsid);;

 Threadsafe: Yes. See Usage Notes for more information.

The Qp0zPutEnv() function is an OS/400 extension to the standard putenv() function. Qp0zPutEnv() sets the value of an environment
variable by altering an existing variable or creating a new variable. In addition, it specifies a CCSID (coded character set identifier) to
be associated with the environment variable.

The string parameter points to a string of the form name=value, where name is the environment variable and value is the new value for
it.

The name cannot contain a blank. For example,

 PATH NAME=/my_lib/joe_user

is not valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol, but the system interprets all
characters following the first equal symbol as being the value of the environment variable. For example,

 PATH=NAME=/my_lib/joe_user

will result in a value of 'NAME=/my_lib/joe_user' for the variable PATH.

Parameters

string

(Input) A pointer to the name=value string.

ccsid

(Input) A CCSID to be associated with this environment variable. If 0 is specified, the default CCSID for the job is used.

Return Value

0

Qp0zPutEnv() was successful.

-1

Qp0zPutEnv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zPutEnv() is not successful, errno indicates one of the following errors.

[EDAMAGE]

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

For example, the string may not be in the correct format.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function. (There is a limit of 4095 environment variables per job.)

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

Usage Notes

Although Qp0zPutEnv() is threadsafe, if a thread calls an environment variable function while another thread is accessing an
environment variable from the environ array the thread may see undefined results. The environ array can be accessed directly or
by using a pointer returned from the getenv() or Qp0zGetEnv() functions. The environment contents are only protected during
calls to the environment variable functions.

1.

No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer value associated with each
environment variable.

2.

Related Information

The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)●

getenv()--Get Value of Environment Variable●

putenv()--Change or Add Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutSysEnv()--Change or Add a System-Level Environment Variable●

Example

See the example of using putenv() in putenv()--Change or Add Environment Variable.

Top | Environment Variable APIs | APIs by category

Qp0zPutSysEnv()--Change or Add a
System-Level Environment Variable

 Syntax

 #include <qp0z1170.h>

 int Qp0zPutSysEnv(const char *string, int ccsid,
 void *reserved);

 Threadsafe: Yes

Qp0zPutSysEnv() function sets the value of a system-level environment variable by altering an existing
variable or creating a new variable. In addition, it specifies a CCSID (coded character set identifier) to be
associated with the environment variable.

The string parameter points to a string of the form name=value, where name is the environment variable
and value is the new value for it.

The name cannot contain a blank. For example,

 PATH NAME=/my_lib/joe_user

is not valid because of the blank between PATH and NAME. The name can contain an equal (=) symbol,
but the system interprets all characters following the first equal symbol as being the value of the
environment variable. For example,

 PATH=NAME=/my_lib/joe_user

will result in a value of 'NAME=/my_lib/joe_user' for the variable PATH.

Parameters

string

(Input) A pointer to the name=value string.

ccsid

(Input) A CCSID to be associated with this environment variable. If 0 is specified, the default
CCSID for the job is used.

reserved

(Input) Reserved for future use. Currently, the only allowed value is NULL.

Authorities

*JOBCTL special authority is required to add or change a system-level environment variable.

Return Value

0

Qp0zPutSysEnv() was successful.

errval

Qp0zPutSysEnv() was not successful. errval is set to indicate the error.

Error Conditions

If Qp0zPutSysEnv() is not successful, errval indicates one of the following errors.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

For example, the string parameter was not in the correct format or the value for the reserved
parameter was not NULL.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function. (There is a limit of 4095
system-level environment variables.)

[EOPNOTSUPP]

Operation not supported.

The operation, though supported in general, is not supported for the requested object or the
requested arguments.

This error is returned if the environment variable that is being added is
QIBM_CHILD_JOB_SNDINQMSG. See spawn() in or spawnp() in for details on
QIBM_CHILD_JOB_SNDINQMSG.

[EPERM]

Operation not permitted.

You must have appropriate privileges or be the owner of the object or other resource to do the
requested operation.

You must have *JOBCTL special authority to add or change system-level environment variables.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Usage Notes

No translation is done based on the CCSID. The CCSID is just stored and retrieved as an integer
value associated with each environment variable.

1.

Related Information

The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)●

getenv()--Get Value of Environment Variable●

putenv()--Change or Add Environment Variable●

Qp0zDltEnv()--Delete an Environment Variable●

Qp0zDltSysEnv()--Delete a System-Level Environment Variable●

Qp0zGetAllSysEnv()--Get All System-Level Environment Variables●

Qp0zGetEnv()--Get Value of Environment Variable (Extended)●

Qp0zGetSysEnv()--Get Value of System-Level Environment Variable●

Qp0zInitEnv()--Initialize Environment for Variables●

Qp0zPutEnv()--Change or Add Environment Variable (Extended)●

Example

The following example uses Qp0zPutSysEnv(), Qp0zGetSysEnv(), and Qp0zDltSysEnv().

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <qp0z1170.h>

int main(int argc, char **argv)
{
 char *var1 = "PATH=/:/home";
 char *name1 = "PATH";
 char *val1 = NULL;
 int rc, ccsid, size;

 /* Add the system-level variable PATH */
 /* using default ccsid */
 ccsid = 0;
 rc = Qp0zPutSysEnv(var1, ccsid, NULL);
 if(rc != 0)
 {
 printf("Error from Qp0zPutSysEnv while adding <%s>\n",var1);
 printf("errno = %d\n",rc);
 return rc;
 }

 printf("<%s> added to system-level env var list\n",var1);

 /* Get the value of the variable PATH */
 size = 100;
 val1 = (char *)malloc(size);

 rc = Qp0zGetSysEnv(name1, val1, &size, &ccsid, NULL);
 if(rc == ENOSPC)
 {
 /* The buffer size was not enough to get the value */
 /* Increase the buffer to size */
 val1 = (char *)realloc(val1, size);
 rc = Qp0zGetSysEnv(name1, val1, &size, &ccsid, NULL);
 }

 if(rc != 0)
 {
 printf("Error from Qp0zGetSysEnv while retrieving");
 printf("<%s>, errno = %d\n", name1, rc);
 return rc;
 }

 printf("<%s> retrieved, value is <%s>\n",name1,val1);

 /* Delete the PATH variable */
 rc = Qp0zDltSysEnv(name1, NULL);
 if(rc != 0)
 {
 printf("Error from Qp0zDltSysEnv while deleting");
 printf("<%s>, errno = %d\n", name1, rc);
 return rc;
 }

 printf("<%s> deleted from system-level env var list\n",name1);

 return 0;
}

Output:

 <PATH=/:/home> added to system-level variable list
 <PATH> retrieved, value is </:/home>
 <PATH> deleted from system-level variable list

For other examples, see the two-part example in API Examples for saving and restoring system-level
environment variables.

Top | Environment Variable APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Environment Variable APIs (V5R2)
	Table of Contents
	Environment Variable APIs
	getenv()--Get Value of Environment Variable
	putenv()--Change or Add Environment Variable
	Qp0zDltEnv()--Delete an Environment Variable
	Qp0zDltSysEnv()--Delete a System-Level Environment Variable
	Qp0zGetAllSysEnv()--Get All System-Level Environment Variables
	Qp0zGetEnv()--Get Value of Environment Variable (Extended)
	Qp0zGetSysEnv()--Get Value of System-Level Environment Variable
	Qp0zInitEnv()--Initialize Environment for Variables
	Qp0zPutEnv()--Change or Add Environment Variable (Extended)
	Qp0zPutSysEnv()--Change or Add a System-Level Environment Variable

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

