
iSeries

IBM Connect for iSeries 2.0

ERserver
���

iSeries

IBM Connect for iSeries 2.0

ERserver
���

© Copyright International Business Machines Corporation 1998, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. IBM Connect for iSeries 2.0 . 1
What’s new in iSeries Connect 2.0 . 2

Chapter 2. B2B and iSeries Connect concepts . 3
Partner and provider model . 3
iSeries Connect solution . 6

The iSeries Connect delivery gateway . 7
Delivery gateway servlets . 7
Incoming request processing in the delivery gateway 7

Processing a cXML request . 9
Outbound request processing in the delivery gateway 12

Response shells for outbound requests . 13
The iSeries Connect flow manager . 16

Initialization and termination exit processing. 17
iSeries Connect tools . 17
WebSphere Commerce Suite extensions . 18

Assumptions for WebSphere Commerce Suite (WCS) extensions 18
WebSphere Commerce Suite (WCS) extensions configuration services. 19
Run-time services for iSeries Connect . 20
WebSphere Commerce Suite considerations for iSeries Connect 23

Chapter 3. Plan for iSeries Connect . 25
Plan for handling requests with your business applications 25

Choose a way to process requests . 25
Choose an application server to support iSeries Connect 25
Choose an iSeries Connect application connector 26
Choose a protocol . 26
Define a business process flow . 26

Plan for the marketplace . 26

Chapter 4. Install iSeries Connect. 29
V5R1 prerequisites for iSeries Connect 2.0 . 29
V5R2 prerequisites for iSeries Connect 2.0 . 30
Ensure TCP/IP is ready . 31
Install IBM MQSeries . 31

MQSeries supported languages . 32
Install fixes for the prerequisite products . 33
Install the iSeries Connect product . 34
Install fixes for iSeries Connect . 35
Perform post-installation steps. 35

Change the coded character set identifier (CCSID) 36
Coded character set identifier (CCSID) values for EBCDIC 37

Uninstall iSeries Connect . 37

Chapter 5. Configure iSeries Connect . 39
Start the iSeries Connect configuration tool . 39
Roadmap for configuring iSeries Connect . 40

Create an instance . 40
Create a provider . 41

Tips for registering provider and partner organizations for the cXML protocol. 41
Exit programs . 42

Register partner organizations . 42
Create a catalog . 42

© Copyright IBM Corp. 1998, 2002 iii

Set up Lotus Domino for importing catalogs . 43
Configure an application connector . 44

Program call connector . 44
Java connector . 45
JDBC connector . 46

JDBC connector properties . 50
MQSeries queue connectors . 52

MQSeries queue connector properties . 53
MQSeries AMI connector properties. 56

OS/400 data queue connector . 59
OS/400 data queue connector properties . 60
Define messages for queue connectors . 62
Application connector document field set (ACDFieldSet) 68

Create business process flows . 69
Deploy your business process flows . 70
Start your instance . 70
Test your instance . 70

Configure WebSphere Commerce Suite . 70
Copy digital certificates for remote WebSphere Commerce Suite (WCS) instances 72
Enabling a WebSphere Commerce Suite 5.1 store for remote catalog support 72

Details: InFashionWithConnect sample store implementation 74
WebSphere Commerce Suite B2BNewQuote command 77
WebSphere Commerce Suite WCSB2BShop command 79

Enabling a WebSphere Commerce Suite 5.4 store for remote catalog support 80
Details: InFashionWithConnect54 sample store implementation 81

Deploy process flows for WebSphere Commerce Suite (WCS) 84
Run the PCML verification sample . 85

Flow of the PCML verification sample . 85
PCML sample: Create an instance . 86
PCML sample: Register a new provider . 87
PCML sample: Register a new partner. 87
PCML sample: Deploy the process flow . 88
PCML sample: Start the instance. 88
PCML sample: Test the sample configuration . 89

Chapter 6. Migrate iSeries Connect . 91
Migrate the iSeries Connect product . 91
Migrate iSeries Connect middleware . 92
Considerations for migrating instances for WebSphere Commerce Suite (WCS) support 93

Chapter 7. Customize iSeries Connect . 95
Customize the iSeries Connect configuration tool . 95
User defined protocols . 96
Customize WebSphere Commerce Suite . 96
Create an outbound message handler . 99

Set up outbound request initiation . 100
Grant authorities for outbound message handler. 101
Configure delivery methods for outbound message handler 102

Chapter 8. Manage iSeries Connect . 103
Start and stop iSeries Connect . 103
Manage instances . 104
Monitor B2B transactions . 105
Troubleshoot iSeries Connect . 106

Find error information . 106
Troubleshoot request errors . 107

iv iSeries: IBM Connect for iSeries 2.0

Diagnose and solve iSeries Connect problems using trace 108
WebSphere Commerce Suite extensions runtime return codes 110
Apply program temporary fixes (PTFs) for iSeries Connect 113
Get support for iSeries Connect . 114
Collect useful data for an authorized program analysis report 114

iSeries Connect backup and recovery . 114

Chapter 9. Reference . 117
API Javadoc . 117
iSeries Connect Customization Guide . 117
Samples for iSeries Connect . 117

Contents v

vi iSeries: IBM Connect for iSeries 2.0

Chapter 1. IBM Connect for iSeries 2.0

IBM(R) Connect for iSeries(TM) is a software integration framework for business-to-business (B2B). A
trained service provider can extend the framework to securely integrate your existing core business
applications with the business applications of your trading partners. The framework is built on industry
standards such as Java(TM), Extensible Markup Language (XML), and IBM MQSeries(R).

See these topics for more information about Connect for iSeries:

Print this topic
Provides a PDF file of this information that you can print.

“What’s new in iSeries Connect 2.0” on page 2
Highlights the product features that are new in version 2.0.

Chapter 2, “B2B and iSeries Connect concepts” on page 3
Introduces key concepts such as B2B models, iSeries Connect architecture, and related terminology.

See these topics for task-based information about setting up and running iSeries Connect:

Chapter 3, “Plan for iSeries Connect” on page 25
Provides details about preparing for B2B and iSeries Connect.

Chapter 4, “Install iSeries Connect” on page 29
Guides you through installing iSeries Connect.

Chapter 5, “Configure iSeries Connect” on page 39
Guides you through the process of configuring iSeries Connect.

Chapter 6, “Migrate iSeries Connect” on page 91
Describes how to migrate iSeries Connect and prerequisite middleware.

Chapter 7, “Customize iSeries Connect” on page 95
Describes iSeries Connect features that you can customize for your particular business situation.

Chapter 8, “Manage iSeries Connect” on page 103
Provides information about managing and administering iSeries Connect, including managing
instances, troubleshooting, monitoring requests, tuning performance, backing up your data, and
recovering from errors.

Use this topic to quickly find specific information about using Connect for iSeries:

Chapter 9, “Reference” on page 117
Contains API documentation, code examples, and other reference information that pertains to iSeries
Connect.

This product includes software developed by the Apache Software Foundation (http://www.apache.org)

.

© Copyright IBM Corp. 1998, 2002 1

print.htm
http://www.apache.org/

What’s new in iSeries Connect 2.0
These functions are new in Connect for iSeries 2.0:

v Enhanced B2B supplier enablement function through:

– Support for Application-to-Application (A2A) transactions

– Support for the ability to handle any XML protocol

v Improved custom protocol development tools and e-catalog support

v New set of wizards for developing user-defined protocols

v Support for IBM’s latest middleware

v Support for WebSphere Application Server 4.0 and WebSphere Commerce Suite 5.4

2 iSeries: IBM Connect for iSeries 2.0

Chapter 2. B2B and iSeries Connect concepts

Business-to-business (B2B) is the use of Web-based technologies to conduct business between two or
more companies. Conducting business can mean buying or selling, or it can mean exchanging information.
B2B transactions can take place directly between companies or through a third party who helps match
buyers and sellers.

See these topics for conceptual information about B2B and iSeries Connect:

iSeries Connect B2B primer
Introduces basic B2B concepts and scenarios.

“Partner and provider model”
Provides information about the partner and provider model.

“iSeries Connect solution” on page 6
Describes the architecture of iSeries Connect and how it works.

Partner and provider model
The partner and provider model consists of two main scenarios for conducting business:

v The commerce scenario is a buy and sell specific type of scenario. In the commerce scenario, providers
supply a catalog of products which the partner can browse and from which the partner can purchase
items. Early B2B marketplace vendors (such as Ariba) developed this type of scenario.

v The non-commerce scenario is a more general scenario. In the non-commerce scenario, partners and
providers exchange business data between business applications. For example, an independent
insurance agent may request a life insurance quote from an insurance broker.

The commerce scenario supports different types of catalogs, which are named according to the catalog’s
location, relative to the partner:

v Local catalog: Providers upload catalogs to the partner organization or marketplace server.

v Remote catalog: Providers host a catalog and the shopping experience on their Web site.

Local catalog: Hosted by the partner

In the partner and provider model, shown in Figure 1, a partner organization has purchased procurement
software from a third party vendor, such as Ariba.

Figure 1: Partner and provider model for local catalog

© Copyright IBM Corp. 1998, 2002 3

http://publib.boulder.ibm.com/pubs/html/as400/v5r2/ic2924/index.htm?info/rzalg/overview.htm

This procurement software allows an individual in the partner organization (a requisitioner) to use a
browser to make purchases. The requisitioner can choose from a list of approved catalogs that are hosted
locally at the partner organization and shop for needed items. Each provider is responsible for uploading
the catalog information to the partner site. The requisitioner selects the items and quantities needed. When
finished, the order is submitted and captured by the procurement software.

The procurement software then notifies a designated approver that a new order request has been placed.
This approver uses their browser to view the order and make any necessary changes in price or
quantities. If the request looks satisfactory, the approver approves the order request.

An approved order request results in a purchase order message being sent by the procurement software
to the appropriate provider of the goods. The provider accepts the purchase order, processes it as
necessary, and sends a purchase order response message to indicate that the order was accepted.

This last step in the process of accepting a purchase order request, processing it, and responding with a
purchase order response is the job of iSeries Connect. iSeries Connect is responsible for accepting the
various versions of this request message (for example, cXML for Ariba) and mapping the data from the
request message to a format that is understandable by a flow manager application. It then maps the
response from the flow manager application to a response format that is acceptable by the procurement
software. iSeries Connect also helps build, upload, and manage the catalog information that the partner
sees. This catalog information can be generated from the existing database tables of the provider.

Remote catalog: Hosted by the provider

4 iSeries: IBM Connect for iSeries 2.0

Figure 2 shows a variation of the partner and provider model where the catalog and shopping experience
is hosted at the provider site.

Figure 2: Partner and provider model for remote catalog

In this scenario, the requisitioner again uses his browser to choose an approved catalog to shop from. In
this case, the procurement software indicates that the catalog is hosted remotely. The procurement
software knows, or obtains directly from the provider site, the URL to use for shopping the catalog and
returns this information to the browser. The requisitioner then shops the remote catalog and places items
in his shopping cart. When he is done shopping, he confirms the contents of his shopping cart and checks
out. A quote is sent to the procurement software.

When the requisitioner confirms his quote, the provider sends the shopping cart contents to the
procurement system of the partner organization. The shopping cart contents contain all of the information
about the items contained in the quote, and can be sent to the procurement system in one of two ways. It
can be sent directly to the system as a separate message, or it can be sent as a redirect request to the
browser of the requisitioner where it is redirected to the procurement system. The latter approach is
usually selected, because it is the easiest way through various firewall systems.

The remaining steps are the same, as in the local catalog scenario, where a designated approver
approves the quote and causes a purchase order to be sent to the provider system. A quote does not
become an order until it is approved and sent to the provider. The provider processes the order by
integrating it with the flow manager applications or by directing it to the commerce application (such as
WebSphere Commerce Suite) for processing.

Chapter 2. B2B and iSeries Connect concepts 5

In the remote catalog scenario, iSeries Connect configures and extends the commerce application (such
as WebSphere Commerce Suite) to handle the remote browsing requests and to generate the shopping
cart contents. It also handles the resulting purchase order and integrates it with the flow manager
application or routes it to the commerce application for completion.

iSeries Connect solution
iSeries Connect provides a highly configurable and pluggable architecture that is easy to use and extend.
A series of graphical functions support this extendible framework. Use these graphical tools to install and
configure iSeries Connect and to develop, deploy, and manage customized solutions.

Figure 3 shows a high-level overview of the components which comprise the iSeries Connect solution:

Figure 3: iSeries Connect solution

These are the iSeries Connect components:

v A “The iSeries Connect delivery gateway” on page 7 handles interfacing with various trading
partners over a variety of connectivity mechanisms and protocols. A collection of protocol connectors
support the mechanisms that partner organizations and e-marketplaces use to submit requests, such as
order placement, order status checking, and catalog maintenance.

v A “The iSeries Connect flow manager” on page 16 deals primarily with processing requests by
connecting them to existing enterprise resource planning (ERP), supply chain management (SCM), and
other core business applications. The flow manager uses connectors that act as integrators between
iSeries Connect and your business applications.

v The “iSeries Connect tools” on page 17 are used to implement the iSeries Connect product.
Primarily, you use the tools to install, configure, and manage the other iSeries Connect components and
the solution in general.

v IBM MQSeries handles communication between the delivery gateway and the flow manager. A version
of MQSeries is available on the iSeries Connect CD-ROM for use with the product. If you already have
MQSeries, you can use your version if it meets the necessary prerequisites. For more information, see
Chapter 4, “Install iSeries Connect” on page 29.

v Business applications are the part of the solution that process requests. iSeries Connect does not
perform processing, so this responsibility falls to your business applications. iSeries Connect provides a
variety of application connectors that the flow manager uses to convert XML-based request messages

6 iSeries: IBM Connect for iSeries 2.0

into a format that is compatible with your application. For more information on supported application
connector types, see “The iSeries Connect flow manager” on page 16.

iSeries Connect also supports the use of WebSphere Commerce Suite as an order processing
application. For more information, see “WebSphere Commerce Suite extensions” on page 18.

The iSeries Connect delivery gateway
The delivery gateway is a flexible framework that prepares protocol requests for the flow manager to
process and communicate responses back to the requester. The delivery gateway handles the interfaces
with various partners over a variety of connectivity mechanisms and protocols.

The delivery gateway is implemented as a set of Java servlets and a set of MQSeries message queues
that communicate with the flow manager. For details about servlets that communicate with the flow
manager, see “Delivery gateway servlets”.

The delivery gateway servlets run in an instance of a prerequisite IBM WebSphere Application Server (and
IBM HTTP Server)

The delivery gateway uses a set of connectors to process protocol requests. Depending on the needs of
the protocol, there could be a single set of connectors or multiple sets of connectors for a single protocol.
Collectively, the connectors perform the protocol-specific work of the delivery gateway.

For information about how the delivery gateway processes requests, see these topics:

v “Incoming request processing in the delivery gateway”

v “Outbound request processing in the delivery gateway” on page 12

Delivery gateway servlets
The delivery gateway uses these servlets to communicate with the flow manager. The servlets run in the
IBM WebSphere Application Server servlet engine.

v AdminServlet

Serves as the anchor point for common resources that the delivery gateway and the delivery gateway
connectors use to process the B2B protocols. To see the status of the AdminServlet, enter this URL on
your browser:
http://server_name:port/BtoB/instance_name/Admin

where server_name is the name of your server, port is the port number, and instance_name is the name
of your iSeries Connect instance.

If the AdminServlet was set up correctly, you receive a response page that shows the status of the
services that the delivery gateway started.

v HTTPServlet

Receives and responds to B2B protocol requests. Many instances of this servlet may be running, all
with different names, depending on the needs of the B2B protocol. You can determine the URLs of the
servlets that are servicing requests for your instance by displaying the properties of the configured
instance.

v AsynchMessageServlet

Serves as the internal entry point for the instance’s OMH requests sent from the OutboundRequest API.

Incoming request processing in the delivery gateway
The delivery gateway performs certain processing steps when it receives incoming requests. These steps
may differ based on the requirements of the B2B protocol request. For more information on how the
delivery gateway handles incoming requests for specific protocols, see “Processing a cXML request” on
page 9.

Generally, this is how a protocol flow running in the delivery gateway processes incoming requests:

Chapter 2. B2B and iSeries Connect concepts 7

1. Parses the incoming request and, optionally, validates the contents of the incoming request.
Transforms the request into an internal usable form. Some data in the B2B request may be copied to
the sendable message header that is sent to the flow manager.

2. Authenticates the request. The delivery gateway authenticates the request using information from the
request and information that is contained in the partner and provider repository. The protocol
connectors use the information that is stored in the partner and provider repository to process the B2B
protocol request. The information that is required and how it is used depends on the B2B protocol. The
WebSphere Commerce Suite (WCS) connector also uses information in the repository and additional
required information may be needed. For more information about WCS connectors, see “Run-time
services for iSeries Connect” on page 20.

3. Performs authorization checks. The delivery gateway checks to see if the requester is authorized to
this request. This step also involves using the information in the partner and provider repository.

4. Logs the request to the delivery gateway audit file. The delivery gateway logs requests to files with
this naming format:
/QIBM/UserData/Connect200/Commerce/instance_name/Logs/GW_Audit_timestamp.log

where instance_name is the name of your instance, and timestamp is the data when the file is created.
You can view these files in the iSeries Connect configuration tool. (View the Tracing properties for your
instance. Then, under Delivery Gateway, click View Audit File.) You can also use the B2B Activiy
Monitor to search the audit files. For more information, see “Monitor B2B transactions” on page 105.

5. Sends the request to the flow manager. If the expected response to the requester is an XML
document, the delivery gateway connectors build a shell response document to send to the flow
manager. Some B2B protocols may expect a simple return code so no shell response is needed.

The shell document, along with the B2B protocol request and the header, are packaged and sent to
the flow manager. The header summarizes information that may be present in the request and also
contains information that may need to be communicated between the delivery gateway and the flow
manager that might not be present in the B2B protocol request.

6. Receives the response document from the flow manager. The delivery gateway connectors check
for errors from the flow manager or from the connected application.

7. Optionally, validates the response document. If the response to the request is an XML document,
the delivery gateway connectors validate that the application called by the flow manager generated a
valid response. Validation ensures that only syntactically correct responses are returned to the
requester; it does not validate the data in the response.

When you develop and test applications that connect to the iSeries Connect product, turn on
validation. When you have thoroughly tested the application and put it into production, you can turn off
validation. However, you may want to leave validation enabled if the resulting performance is
acceptable.

8. Logs and sends the response to the requester.

NewQuote Request

The NewQuote request acts as an incoming request, so the delivery gateway framework and flow
manager framework can send shopping cart contents back to the procurement application. This allows the
catalog application to be more protocol-independent, allows use of the powerful capabilities of the flow
manager, and allows all of the requests and responses to be logged together in the same delivery gateway
log files. The catalog application calls the NewQuote request and passes these name value pairs:
PostBackURL, SupplierNumber, SupplierNumberDomain, BuyerNumber, and BuyerNumberDomain.
Additionally, the catalog application sends any other name value pairs that it needs to process the request.
The delivery gateway connectors convert these name value pairs into an XML form and pass the request
to the flow manager.

Example: Name value pairs

8 iSeries: IBM Connect for iSeries 2.0

<NameValuePairs>
<NameValuePair name="SupplierNumber">1234567890</NameValuePair>
<NameValuePair name="SupplierNumberDomain">DUNS</NameValuePair>
<NameValuePair name="BuyerNumber">0987654321</NameValuePair>
<NameValuePair name="BuyerNumberDomain">DUNS</NameValuePair>
<NameValuePair name="PostBackURL">http://server:port/ariba</NameValuePair>

</NameValuePairs>

Processing a cXML request: iSeries Connect contains a delivery gateway flow implementation that
handles both cXML version 1.1 and version 1.2. cXML is the B2B protocol used by Ariba. For more

information about the cXML protocol, see the Commerce XML Resources Web site.

The delivery gateway performs these functions when processing a cXML request:

1. Parses the incoming request and optionally validates the contents of the incoming request.
Information from the cXML header is copied into the internal header.

2. Authenticates the request. The delivery gateway authenticates the request using information from the
request and information that is contained in the partner and provider repository. The cXML delivery
gateway connectors make use of the information contained in the partner and provider repository to
process the B2B protocol request. You must enter a provider ID and domain for the provider that
matches what is in the marketplace protocol request by using the provider registration function of the
iSeries Connect configuration tool. You must enter a partner organization ID and domain for the partner
organization that matches what is in the marketplace protocol request by using the partner organization
registration function of the iSeries Connect configuration tool.

When you register as an Ariba provider you register with your company DUNS number and a
password. This password is your shared secret (in cXML terms) with the Ariba marketplace. When a
request is submitted by a partner organization, it first goes to the Ariba Network. The Ariba Network
validates the request by using the shared secret of the buying organization. The Ariba Network then
removes the shared secret of the buying organization and inserts the shared secret of the provider into
the request. Therefore, the information that is validated by the delivery gateway authentication
connector is the provider DUNS number and shared secret. This method of authentication relieves the
provider of having to maintain a shared secret (or password) for every buying organization. All the
provider must do is be sure to put the correct DUNS number and shared secret in the repository when
associating the provider with the marketplace.

3. Performs authorization checks. This checks to see if the requester is authorized to this request. This
step also involves using the information in the partner and provider repository.

4. Logs the request to the delivery gateway audit file. The delivery gateway logs requests in files with
this naming format:
/QIBM/UserData/Connect200/Commerce/instance_name/Logs/GW_Audit_timestamp.log

where instance_name is the name of your instance, and timestamp is the date on which the file is
created.

5. Sends the request to the flow manager. The appropriate cXML response shell document is built. The
shell response along with the cXML request and the internal header is packaged and sent to the flow
manager. For more information, see “Response shells for the request” on page 10.

6. Receives the response document from the flow manager. The delivery gateway connectors check
for errors from the flow manager or from the connected application.

7. Optionally, validates the response document. If validation is turned on, the cXML response is
validated.

8. Logs and sends the response to the requester.

Chapter 2. B2B and iSeries Connect concepts 9

http://www.cxml.org/

The cXML flow implementation handles these requests and request types:

Request Request types Description

ProfileRequest The ProfileRequest is handled entirely
by the delivery gateway. It determines
the supported request and request
types based on the configuration and
authorization of the partner
organization. It does not pass the
request to the flow manager.

PunchOutSetupResponse Create
Edit
Inspect

The PunchOutSetupResponse returns
the URL of the provider catalog to the
requester. For more information about
the cXML protocol, see the

Commerce XML Resources
Web site. The delivery gateway builds
this “Example:
PunchOutSetupResponse shell
document” on page 11.

PunchOutOrderMessage The PunchoutOrderMessage is used
by the provider to send a quote back
to the partner application. This quote
is based upon the contents of an
online shopping cart which was filled
in by the partner during the B2B
shopping experience.

OrderRequest New
Update
Delete

The OrderRequest request receives a
purchase order from a buying
organization. The response is a cXML
response. The delivery gateway
connectors build this “Example:
OrderRequest shell response” on
page 11.

NewQuote 1 The response to the NewQuote is the
PunchOutOrderMessage. The
delivery gateway connectors build this
“Example: PunchOutOrderMessage
shell response” on page 11.

1 Additionally, a request called NewQuote, which is not part of the cXML protocol, is implemented.

The flow manager connector that you choose may not be capable of handling all of the requests and
request types of the delivery gateway flow implementation.

Response shells for the request: The delivery gateway connectors create the response shell in the
request before sending the request to the flow manager if the response is to be an Extensible Markup
Language (XML) document.

The shell document is a partially completed XML document that contains both XML elements and
attributes that the delivery gateway can either determine or not determine. The elements and attributes
that cannot be determined still need to be completed by steps in a business process flow. This relieves the
application and flow manager from having to perform this work and can be helpful in isolating the
protocol-specific information in the delivery gateway instead of in the application. You should try to keep
the applications as protocol-independent as possible.

10 iSeries: IBM Connect for iSeries 2.0

http://www.cxml.org/

Here are some examples of requests that contain a response shell:

v “Example: PunchOutSetupResponse shell document”

v “Example: OrderRequest shell response”

v “Example: PunchOutOrderMessage shell response”

Example: PunchOutSetupResponse shell document: The delivery gateway builds this shell document for
the PunchOutSetupResponse when it returns the URL of the provider catalog to the requester.

The element and attribute values are sample values from the examples provided in the cXML specification.
Actual values are determined at run time.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.1.009/cXML.dtd">
<cXML payloadID="456778-199@cxml.workchairs.com"

xml:lang="en-US" timestamp="1999-03-12T18:39:09-08:00">
<Response>

<Status code="200" text="OK"/>
<PunchOutSetupResponse>

<StartPage>
<URL></URL>

</StartPage>
</PunchOutSetupResponse>

</Response>
</cXML>

Example: OrderRequest shell response: The delivery gateway connectors build this shell cXML response
when the OrderRequest request receives an order from a provider organization.

The element and attribute values are sample values from the examples provided in the cXML specification.
Actual values are determined at run time.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.1.009/cXML.dtd">
<cXML payloadID="9949494@cxml.workchairs.com" xml:lang="en-US"

timestamp="1999-03-12T18:39:09-08:00">
<Response>

<Status code="200" text="OK"/>
</Response>

</cXML>

Example: PunchOutOrderMessage shell response: The delivery gateway connectors build this shell
response when the NewQuote request acts as an incoming request so that the delivery gateway and flow
manager can send the PunchOutOrderMessage.

The element and attribute values are sample values from the examples provided in the cXML specification.
Actual values are determined at run time.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.1.009/cXML.dtd">
<cXML payloadID="456778-198@premier.workchairs.com"

xml:lang="en-US" timestamp="1999-03-12T18:39:09-08:00">
<Header>

<From>
<Credential domain="DUNS">

<Identity>942888711</Identity>
</Credential>

</From>
<To>

<Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
</To>
<Sender>

<Credential domain="DUNS">

Chapter 2. B2B and iSeries Connect concepts 11

<Identity>942888711</Identity>
</Credential>
<UserAgent>Workchairs cXML V1.1</UserAgent>

</Sender>
</Header>
<Message>

<PunchOutOrderMessage>
<PunchOutOrderMessageHeader operationAllowed="edit">

<Total>
<Money currency=""></Money>

</Total>
</PunchOutOrderMessageHeader>

</PunchOutOrderMessage>
</Message>

</cXML>

Outbound request processing in the delivery gateway
As opposed to inbound requests (which are sent by remote trading partners), outbound requests are
originated by iSeries Connect—particularly, by the delivery gateway. An outbound request can be a
confirmation that an order was successfully processed or notice that an order was shipped.

Outbound requests require the use of an outbound message handler. For more information, see “Create
an outbound message handler” on page 99.

Here is how the delivery gateway processes an outbound request:

1. An inbound request is received. See “Incoming request processing in the delivery gateway” on
page 7 for the how the delivery gateway handles an incoming request. Note that information from the
inbound request is stored in the sendable message header. (You can later map this information to
fields in the outbound request through a request token.)

2. The outbound request process is initiated. The process is initiated by either a step in the business
process flow or by your business application. If your business application initiates the outbound request
process, you need to provide a proxy application that builds the appropriate data and calls the
outbound request API. See “Create an outbound message handler” on page 99 for detailed information
about these options.

3. The outbound request is sent to the delivery gateway.

4. The delivery gateway receives the request and runs the protocol flow for the outbound request.
The protocol connectors transform the request into an internal usable form. Some data in the B2B
request may be copied to the sendable message header that is sent to the flow manager. For
example, an application token sent through the API is copied into the sendable message header under
the com_ibm_connect_header_appToken value. The application token can then be retrieved by a
connector in your process flow.

5. The delivery gateway authorizes the request. The delivery gateway authorizes the request using
information from the request and information that is contained in the partner and provider repository.
The protocol connectors use the information that is stored in the partner and provider repository to
process the B2B protocol request. The information that is required and how it is used depends on the
B2B protocol.

6. The delivery gateway logs the request. The delivery gateway logs requests to files with this naming
format:
/QIBM/UserData/Connect200/Commerce/instance_name/Logs/GW_Audit_timestamp.log

where instance_name is the name of your instance, and timestamp is the data when the file is created.

7. The delivery gateway sends the request to the flow manager. If the expected response to the
requester is an XML document, the delivery gateway connectors build a shell response document to
send to the flow manager. See “Response shells for outbound requests” on page 13 for examples of
these shell documents.

12 iSeries: IBM Connect for iSeries 2.0

Not all of the required data for the outbound request is accessible to the delivery gateway. In the
example of a StatusUpdateRequest, the shell document contains a Status element. The flow manager
must gather information from the back-end business application to complete this portion of the shell
document.

To configure the flow manager to handle outbound requests, you create and deploy a process flow for
the specific outbound request type. This includes defining a connector instance (and mapping fields to
the business application) and processing flow. Thus, when the flow manager receives the outbound
request (which contains the incomplete shell document), the flow manager can query the business
application for the data that is required.

8. The delivery gateway receives the completed response document from the flow manager. The
delivery gateway connectors check for errors from the flow manager or from the connected application.

9. The delivery gateway logs and sends the response. The delivery gateway sends the completed
outbound request to one of two places, depending on the protocol that is used:

v To the remote trading partner. This is known as push technology. The Ariba marketplace, which
supports the cXML protocol, uses this method for handling outbound requests.

v To a message database on the local system. A remote trading partner then periodically checks for
messages and retrieves them. This is known as pull technology. Currently, none of the officially
supported protocols use the pull method; however, if you define and install a customized protocol,
you can use the pull messaging support in iSeries Connect.

Outbound request types for cXML

The outbound request types for the cXML protocol are tied to incoming OrderRequest. When the flow
manager processes an OrderRequest, it sends a response to the delivery gateway. The response is sent
either through response step in the process flow or at the end of processing if an explicit response step is
not defined. The delivery gateway then forwards the response to the requester.

The cXML protocol defines these outbound requests that can occur after an OrderRequest response is
sent:

v StatusUpdateRequest

A StatusUpdateRequest informs the requester of the original OrderRequest when the status of the order
changes. For example, the request can be sent when the order is queued for processing by the
business application, when the back-end business application processes the order, or if order
processing fails for some reason.

v ConfirmationRequest

The ConfirmationRequest contains more detailed information than the StatusUpdateRequest, which can
also be used to report that an order was successfully processed. Data included in this request type can
be detailed item information and shipping addresses. ConfirmationRequest is only supported in cXML
1.2.

v ShipNoticeRequest

The ShipNoticeRequest can be sent when an order is shipped. This request is initiated by the business
application through an outbound message handler proxy application. For more information, see “Create
an outbound message handler” on page 99. ShipNoticeRequest is only supported in cXML 1.2.

For more information about the cXML outbound request types, see the cXML specification at Commerce

XML Resources

Response shells for outbound requests: The delivery gateway connectors create the response shell in
the request before sending the request to the flow manager if the response is to be an Extensible Markup
Language (XML) document.

The shell document is a partially completed XML document that contains both XML elements and
attributes that the delivery gateway can either determine or not determine. The elements and attributes

Chapter 2. B2B and iSeries Connect concepts 13

http://www.cxml.org
http://www.cxml.org

that cannot be determined still need to be completed by steps in a business process flow. This relieves the
application and flow manager from having to perform this work and can be helpful in isolating the
protocol-specific information in the delivery gateway instead of in the application. You should try to keep
the applications as protocol-independent as possible.

Here are some examples of cXML requests that contain a response shell:

v “Example: StatusUpdateRequest shell document”

v “Example: ConfirmationRequest shell document”

v “Example: ShipNoticeRequest shell document” on page 15

For further information about the request types and shell documents, see the cXML specification at

Commerce XML Resources

Example: StatusUpdateRequest shell document: The delivery gateway builds this shell document for the
StatusUpdateRequest when it returns the status of order processing.

The element and attribute values are sample values from the examples provided in the cXML specification.
Actual values are determined at run time.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "gateway/connectors/cXML12Ariba/CXML12004.DTD">
<cXML payloadID="9983986241291@cxml.workchairs.com"

timestamp="2001-08-21T12:57:04+00:00" version="1.2">
<Header>

<From>
<Credential domain="DUNS">

<Identity>123456789</Identity>
</Credential>

</From>
<To>

<Credential domain="DUNS">
<Identity>987654321</Identity>

</Credential>
</To>
<Sender>

<Credential domain="DUNS">
<Identity>123456789</Identity>
<SharedSecret>********</SharedSecret>

</Credential>
<UserAgent>Connect for iSeries</UserAgent>

</Sender>
</Header>
<Request>

<StatusUpdateRequest>
<DocumentReference/>
<Status/>

</StatusUpdateRequest>
</Request>

</cXML>

If the an OrderRequest is successfully submitted for processing, the flow manager returns updates the
Status element with code 201/Accepted.

Example: ConfirmationRequest shell document: The delivery gateway builds this shell document for the
ConfirmationRequest when it returns a detailed status update.

The element and attribute values are sample values from the examples provided in the cXML specification.
Actual values are determined at run time.

14 iSeries: IBM Connect for iSeries 2.0

http://www.cxml.org

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/1.2.004/Fulfill.dtd">
<cXML payloadID="9983987253612@cxml.workchairs.com"

timestamp="2001-08-21T12:58:45+00:00" version="1.2">
<Header>

<From>
<Credential domain="DUNS">

<Identity>123456789</Identity>
</Credential>

</From>
<To>

<Credential domain="DUNS">
<Identity>987654321</Identity>

</Credential>
</To>
<Sender>

<Credential domain="DUNS">
<Identity>123456789</Identity>
<SharedSecret>********</SharedSecret>

</Credential>
<UserAgent>Connect for iSeries</UserAgent>

</Sender>
</Header>
<Request>

<ConfirmationRequest/>
</Request>

</cXML>

When the flow manager completes the shell document, it updates the ConfirmationRequest element with
detailed information about the order.

Example: ShipNoticeRequest shell document: The delivery gateway builds this shell document for the
ShipNoticeRequest when it sends notification that an order has shipped.

The element and attribute values are sample values from the examples provided in the cXML specification.
Actual values are determined at run time.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/1.2.004/Fulfill.dtd">
<cXML payloadID="9983987852833@cxml.workchairs.com"

timestamp="2001-08-21T12:59:45+00:00" version="1.2">
<Header>

<From>
<Credential domain="DUNS">

<Identity>123456789</Identity>
</Credential>

</From>
<To>

<Credential domain="DUNS">
<Identity>987654321</Identity>

</Credential>
</To>
<Sender>

<Credential domain="DUNS">
<Identity>123456789</Identity>
<SharedSecret>********</SharedSecret>

</Credential>
<UserAgent>Connect for iSeries</UserAgent>

</Sender>
</Header>
<Request>

<ShipNoticeRequest/>
</Request>

</cXML>

Chapter 2. B2B and iSeries Connect concepts 15

The flow manager completes the ShipNoticeRequest element in the shell document with information about
the shipped order.

The iSeries Connect flow manager
The flow manager is a flexible framework that accepts requests from the delivery gateway, invokes a
multi-step business process flow to implement the request and generate a response, and passes the
response back to the delivery gateway.

The flow manager is implemented as a Java application and a set of MQSeries message queues that
communicate with the delivery gateway.

With the business process flow, the flow mananger uses application connectors to interface with business
applications. These connector types are supported:

v The program call connector uses Program Call Markup Language (PCML) to run a program or service
program.

v The JDBC connector accesses a database.

v The MQSeries queue connectors format messages and place them on an MQSeries queue.

v The data queue connector formats messages and places them on OS/400 data queue.

v The Java connector invokes methods on a defined Java class.

The flow manager performs these functions when processing a request:

1. Receives an incoming request from the delivery gateway. Incoming requests are sent by the
delivery gateway. The delivery gateway places a message on the queue that contains common header
information from the protocol-specific request.

2. Finds the defined business process flow that corresponds to the request. The flow manager
determines the business process flow that was defined to handle this specific request based on
protocol, protocol group, request, partner, and provider.

3. Logs the request to the flow manager log file. By default, the flow manager logs the request in files
with this naming format:
/QIBM/ProdData/Connect200/Commerce/instance_name/Logs/FM_Audit_timestamp.log

where instance_name is the name of your instance, and timestamp is the date on which the file is
created. You can view these files in the iSeries Connect configuration tool. (View the Tracing properties
for your instance. Then, under Flow Manager, click View Audit File.) You can also use the
Management Central B2B Transaction Manager to search the log files. For more information, see
“Monitor B2B transactions” on page 105.

4. Processes each step defined in the business process flow. The business process flow can contain
these step types: connector, decision, copy, or response. For more information about the step types,
see “Create business process flows” on page 69. The flow manager performs each function that is
defined by the step types.

The connector step type defines these functions that the flow manager performs:

a. Maps the incoming request fields, header fields, or constants to the application defined
inputs. Based on the selected flow, the input mappings that are defined for that flow are
performed. This allows protocol-specific information to be made available to applications in a non
protocol-specific manner. This results in common applications that handle multiple protocols.

b. Calls the application. Depending on the application connector type, the defined application is
called through the defined connector.

Some applications called from the flow manager require initialization processing that must occur
before processing requests. For more information, see “Initialization and termination exit
processing” on page 17.

c. Maps the application output fields to the response document. Based on the selected flow, the
output mappings that are defined for that flow are performed.

16 iSeries: IBM Connect for iSeries 2.0

In a response step, the flow manager passes return information to the delivery gateway. This
information includes the results of processing this request and any mapped response data. The
delivery gateway takes this return information and sends it back to the originator in the appropriate
format for the specific protocol that the originator used.

5. The flow manager stops processing the flow when all steps have been processed.

6. Logs the request to the flow manager log file. The flow manager logs the request in a files with this
naming format:
/QIBM/ProdData/Connect200/Commerce/instance_name/Logs/FM_Audit_timestamp.log

where instance_name is the name of your instance, and timestamp is the date on which the file is
created.

7. (Optional) Sends the result to the delivery gateway. If an explicit response step is not defined in the
business process flow, the flow manager sends a response to the delivery gateway when it completes
processing of the request.

Initialization and termination exit processing
Some applications that the flow manager calls require initialization processing that must occur prior to
processing requests.

For example, if you are using a flow that uses the data queue connector when requests come in, a
message is placed on the defined queue. You might have to start the application that takes requests from
the defined queue and processes them. You also might have to provide termination or cleanup when
requests no longer need to be processed. In this example, when the flow manager is shut down, you can
shut down the application that was listening for requests on the defined queue.

The flow manager framework provides a facility (the B2BExit class) so you can define Java classes that
are called when the flow manager framework is started and stopped. The Java classes need to implement
the B2BExit class that is provided in the flowmanagerapi.jar file in the
/QIBM/ProdData/Connect200/Classes directory.

The B2BExit interface is defined as follows:
package com.ibm.connect.flowmanager.interfaces;
public interface B2BExit {

void initialize() throws java.lang.Exception;
void terminate() throws java.lang.Exception;

}

The initialize() method implementation runs when the flow manager starts up. If the call throws an
exception, it is logged, and the initialization of the flow manager fails.

The terminate() method implementation runs when the flow manager shuts down. If the call throws an
exception, it is logged, and shutdown continues.

You specify the user classes on the instance properties for your B2B instance.

iSeries Connect tools
Use the iSeries Connect tools to install, configure, customize, and manage the product.

iSeries Connect configuration tool

The Web-based configuration tool is a set of wizards, functions, and editors that you use to implement
iSeries Connect. The configuration tool provides utilities to accomplish these general tasks:

v Configure and manage (start, stop, edit, and migrate) instances.

v Register partner and provider organizations with iSeries Connect.

v Create, manage, and publish product catalogs.

Chapter 2. B2B and iSeries Connect concepts 17

v Configure application connectors that convert requests into data that your business application expects.

v Configure business process flow processing.

v Deploy your business process flows.

v Configure and install user-defined protocols.

For more information about the configuration tool, see Chapter 5, “Configure iSeries Connect” on page 39.

B2B Activity Monitor

You can use the B2B Activity Monitor (part of iSeries Navigator - Management Central) to monitor requests
that come into iSeries Connect. You can search your requests for specific criteria, such as date received
and status.

The B2B Activity Monitor is not included with the iSeries Connect product. For more information about the
B2B Activity Monitor and how to get it, see “Monitor B2B transactions” on page 105.

WebSphere Commerce Suite extensions
WebSphere Commerce Suite (WCS) extensions allow the existing WebSphere Commerce Suite 5.1 or 5.4
business-to-consumer (B2C) offering to participate in B2B transactions within the iSeries Connect
framework. The WCS extensions provide the ability to use WCS for communicating with marketplaces to
perform local catalog or remote catalog and purchase order processing using B2B protocols.

Note: It is assumed that you or someone you are working with are familiar with the WCS product
and its documentation. Installing and configuring a WCS instance is beyond the scope of the iSeries
Connect information.

For more information about the implementation of the WCS extensions (including current limitations),
“Assumptions for WebSphere Commerce Suite (WCS) extensions”.

The WCS extensions support these main functions:

v “WebSphere Commerce Suite (WCS) extensions configuration services” on page 19
Provide the connection between the iSeries Connect configuration data and the existing WCS
configuration support. This topic describes the tools you use to configure your WCS and instances.

v “Run-time services for iSeries Connect” on page 20
Utilize the configuration information to support the various transactions that are required to support
remote catalog shopping and purchase order processing.

For specific WCS information about security, migration and coexistence, and troubleshooting concerns,
see “WebSphere Commerce Suite considerations for iSeries Connect” on page 23.

Assumptions for WebSphere Commerce Suite (WCS) extensions
Here are some of the assumptions regarding the iSeries Connect WCS extensions support:

v System topology
The WCS instance can reside on a system remote to the flow manager.

v Instances
An iSeries Connect instance is associated with a maximum of one WCS instance. This single iSeries
Connect instance supports the configuration of multiple providers, marketplaces, and partner
organizations. You can use the provider registration function and partner organization registration
function of the iSeries Connect configuration tool to configure these items. If you have multiple WCS
instances on a single iSeries that trading partners need to access, multiple instances are required.

A WCS instance can be used for B2B and B2C shopping environments concurrently. For more
information, see these topics:

– “Enabling a WebSphere Commerce Suite 5.1 store for remote catalog support” on page 72

18 iSeries: IBM Connect for iSeries 2.0

– “Enabling a WebSphere Commerce Suite 5.4 store for remote catalog support” on page 80

v Providers and partners
A key WebSphere Commerce Suite extension assumption, regardless of which B2B protocol is used to
communicate with the trading partner, is that for each of the transactions that WCS extensions supports,
there is a means of identifying the correct provider and partner organization. This provider and partner
organization information is used to identify the corresponding WCS merchant and WCS shopper.

A single provider maps to a single WCS merchant (or store). A single partner organization maps to a
single WCS shopper entry. Use the iSeries Connect configuration tool to create these mappings:

– The provider registration function defines mappings between providers and WCS merchants.

– The partner organization registration function provides a mechanism for you to configure partner
organizations and have those partner organizations automatically registered as WCS shoppers.

v Catalog
Use the WCS administrative functions to configure your stores, products, and list prices before you use
the catalog management function of the iSeries Connect configuration tools.

v Maintenance
To perform its functions, the WCS extensions support queries the iSeries Connect instance registry for
key environment information, such as the WCS instance name, WCS hostname (which is required for
sending HTTP requests to WCS), and WCS database location. If you change these WCS configuration
values, you must use the iSeries Connect configuration tool to update your iSeries Connect instance
registry.

v Communication
Generally, WCS extensions communicate with the WCS product by sending HTTP requests and
receiving HTTP responses (similar to how a browser interacts with a WCS electronic store front).

However, in cases where extensive amounts of data are accessed (such as when the WCS catalog is
extended), the WCS extensions support uses JDBC to directly access the WCS instance database
tables. The WCS extensions configuration services directly access databases only during configuration
of an instance. The runtime services do not access the WCS database tables directly.

WebSphere Commerce Suite (WCS) extensions configuration services
The WCS extensions configuration services for iSeries Connect provide the connection between the
iSeries Connect configuration data and the existing WCS configuration support. To set up this connection,
you must configure both your existing WCS instance (or create a new one) and your iSeries Connect
instance. Thus, you use a combination of WebSphere Commerce Suite and iSeries Connect configuration
tools.

Note: When you configure your WCS and instances, it is important that you follow the steps
described in “Configure WebSphere Commerce Suite” on page 70.

WCS configuration tools

Use the WCS configuration tools to perform these tasks:

v Configure the WCS instance. This configuration step creates the WCS instance, associated database
tables, and other resources. You can also incorporate a sample store into the WCS instance.

v Populate your WCS instance with merchant and product information using existing methods.

For more information about the WCS configuration tools, see these resources:

v Installation Guide: WebSphere Commerce Suite Professional Edition for e-server iSeries, Version 5.1

v Installation Guide: WebSphere Commerce Suite Professional Edition for e-server iSeries, Version 5.4

Chapter 2. B2B and iSeries Connect concepts 19

http://www.ibm.com/software/webservers/commerce/wcs_pro/WCSuiteInstallGuidePro_iseries.pdf
http://www.ibm.com/software/webservers/commerce/wcs_pro/WCSuiteInstallGuidePro_iseries.pdf

iSeries Connect configuration tool

The iSeries Connect configuration tool performs these tasks:

v Allows an iSeries Connect instance to be associated with a WCS instance.

v Maps providers to their corresponding WCS merchants with the provider registration function.

v Allows a partner organization to become automatically registered in the WCS environment (as a
registered shopper) with the partner organization registration function. Also, use the partner organization
registration function to administer address and password information for these shoppers. If you use
tools within the WCS environment to modify this information, you must update the corresponding
information in the iSeries Connect environment (with the iSeries Connect configuration tool) to make the
changes known to the WCS extensions services.

v Extends the product catalog data that is contained within the WCS instance. This step is necessary for
both local catalog and remote catalog processing. This extended product data includes manufacturer
name, manufacturer part number, Universal Standard Products and Services Classification (UNSPSC)
code, United Nations Units of Measure (UNUOM) specifications, and lead time for each product that can
be sold through the B2B marketplace. You define this information for all products that are offered in the
B2B shopping experience.

If you provide a subset of your B2C products for your remote B2B catalog, you need only provide
extended product data for the B2B products. You can define separate catalogs to support a different
product list for your B2C and B2B shoppers.

For more information about the iSeries Connect configuration tool, see Chapter 5, “Configure iSeries
Connect” on page 39.

Run-time services for iSeries Connect
The WebSphere Commerce Suite runtime services for iSeries Connect utilize the configuration information
to support the various transactions that are required to support remote catalog shopping and purchase
order processing.

All of the WCS extensions configuration information provided by the administrator is performed so that
various B2B requests supported by the WCS extensions can be accomplished. These runtime requests
involve the various messages (request and request type) exchanged between the B2B trading partners to
carry out business transactions.

Note: The WCS extensions runtime support is designed to be B2B protocol independent. This means that
the same business logic is run when processing the supported B2B transactions, regardless of the B2B
protocol being used between the local system and the B2B trading partner. All of the protocol differences
are handled by supplying different protocol flow models for the different protocols supported.

WCS extensions supports handling requests for both local and remote catalog processing. For local
catalog processing, the request involved is called OrderRequest for the cXML 1.1 and 1.2 protocols.
PurchaseOrder is used for discussing this request if you are describing an aspect of processing that is
B2B protocol independent. For remote catalog processing using the cXML protocol, requests that can be
used include: PunchOutSetupRequest, NewQuote, and OrderRequest. Remote catalog processing is
sometimes referred to as PunchOut processing. The cXML PunchOutSetupRequest is used to initiate a
remote catalog session between the B2B trading partner and the local system. RemoteCatalogInitiation is
used for discussing this request if you are describing an aspect of processing that is B2B protocol
independent.

Note: WCS extensions support new, update, and delete PurchaseOrder requests. For remote catalog
processing, two additional requests are involved. For cXML the two additional requests are
PunchoutSetupRequest and NewQuote. WCS extensions support the different request types associated
with the cXML PunchoutSetupRequest (create, edit, and inspect). The NewQuote request does not have
additional request types associated with it.

20 iSeries: IBM Connect for iSeries 2.0

Request processing for WCS extensions can be further broken down into these steps:

v Mapping incoming messages (XML data) into parameters understood by the WCS extensions Java
objects that support these various B2B requests.

v Using the parameters received in the previous step to drive WCS to perform the function requested. For
example, a valid incoming PurchaseOrder request causes a new order to be added to the WCS
ORDERS database table, and that order is associated with the partner organization that sent in the
PurchaseOrder.

Here are details regarding the mapping of incoming messages:

There are several WCS extensions Java connectors that are shipped as part of the iSeries Connect
product. There is one of these WCS extensions Java connectors for each B2B request supported by WCS
extensions. These connectors are designed to provide protocol independent mapping of incoming and
outgoing B2B protocol data. As with any other customer or IBM Business Partner supplied iSeries Connect
connector implementation, there are application connector document and protocol flow model definitions
associated with the WCS extensions Java connector. These WCS extensions application connector
document and process flow model definitions are shipped with the iSeries Connect product. For
information about how to update these files, see “Customize WebSphere Commerce Suite” on page 96.

The general idea is that data that is understood and can be used by the WCS extensions Java objects
that support the B2B requests (PurchaseOrder, RemoteCatalogInitiation, and NewQuote) is defined as
fields in the application connector documents. The application connector document provides a protocol
independent description of the parameters that the WCS extensions Java objects need to fill in for
processing a given B2B request. The process flow model document is used to describe the protocol
dependent mapping of these fields from the incoming XML message (for example, a cXML OrderRequest)
into the WCS extensions Java object that supports the particular B2B transaction. Once these WCS
extensions Java objects are filled in, the WCS extensions Java object interprets the data and determines
the appropriate action to take. For example, the provider identity is determined so the correct WCS
merchant can be identified. The partner organization is determined so the correct WCS shopper can be
identified. The provider part number is identified so the correct WCS product is identified. Once it has been
determined that all of the data required to perform the B2B PurchaseOrder has been received, the WCS
extensions Java object interfaces with the WCS instance to cause the order to get placed into the WCS
database tables.

Here is some additional information regarding the processing that occurs in the WCS extensions runtime
code and within the WCS environment when processing an incoming PurchaseOrder.

The successful processing of a PurchaseOrder request results in an order entry being added into the WCS
ORDERS table. PurchaseOrder processing represents an actual agreement for the partner organization to
pay for the products that are listed in the PurchaseOrder. Once the order has been placed, the other
processes regarding order fulfillment and supply chain management can proceed.

A PurchaseOrder results in a new entry being added to the WCS Orders table. The Orders table records
the order level information, such as store, shopper number, billing address, and total price of the order.
Each item in the PurchaseOrder is inserted into the WCS Shipto (Order Item) table. Order item information
includes product number and quantity ordered. An Order Item table entry provides a means of storing the
shipping address on a per item basis. The cXML protocol allows specification of a shipping address for an
entire order or on a per item basis. The WCS extensions runtime services is designed to be protocol
independent. If the shipping address is provided on a per item basis, then it uses that address. Otherwise,
the shipping address affecting the entire order will be used. In either case, shipping information is stored
on a per item basis. Upon successful addition of the order into WCS tables, the status of the entry in the
WCS ORDERS table is set to complete, which indicates that the order was successfully placed. If all of
the PurchaseOrder processing is successful, a good response is returned to the partner organization. If
runtime services encounters an error in the processing of this PurchaseOrder, then the response provides
an error code that reflects the type of error that was encountered.

Chapter 2. B2B and iSeries Connect concepts 21

As mentioned earlier, WCS extensions supports OrderRequest update and OrderRequest delete flows for
cXML. For OrderRequest delete, the WCS extensions verifies that a WCS administrator user ID and
password has been configured in the instance, and that the iSeries Connect support can log in to WCS
using this user ID. It will also determine the WCS order number that corresponds to the orderID field
received in the incoming OrderRequest. This information is determined using the QABECORDMP
database table. After the WCS order number has been determined, a request is sent to WCS to cause that
previous order to be cancelled. The processing of this command requires logging in with a user ID that
has customer service representative authority in WCS. The WCS extensions support will process the
cancel request if it is determined that the WCS Order has an order status of Complete. If the order status
has already been moved to something other than Complete, such as Shipped, then the Cancel request will
not be processed. If WCS extensions determines that the Cancel request can be honored, it will modify
the status of the WCS order to indicate the request has been cancelled.

The OrderRequest Update flow is processed in a similar fashion to the OrderRequest delete. This flow
also requires logging into WCS with a user ID having customer service representative authority. The
update is actually handled by changing the status of the previous order to Cancelled, and then creating a
new WCS Order entry based upon the information received in the OrderRequest update. If a problem is
encountered in either modifying the previous order to cancelled status or in the processing of the new
order, then the state of the WCS Orders database will be rolled back to the state it was in prior to
receiving the OrderRequest update.

An additional point to make regarding PurchaseOrder processing has to deal with the way the runtime
services handles duplicate purchase orders. A duplicate PurchaseOrder can occur when the partner side
application or marketplace resends the exact same XML message that it had previously sent, because for
some reason, it had not received a response from the provider (possibly due to a network outage). By
default, the WCS extensions runtime services code detects these duplicate PurchaseOrder requests and
handles the situation based upon its own knowledge of what has occurred regarding that PurchaseOrder.
For example, if the order had been successfully placed within WCS previously, then upon receiving this
duplicate PurchaseOrder, a response is returned to the marketplace or partner side application to indicate
that the order was successfully placed (without actually placing the order a second time within WCS).
There is a database table that is created as part of the instance, called QABECORDMP, which is used to
implement this functionality. By default, the maximum number of distinct order mapping entries in this
database table is 3000. See “Customize WebSphere Commerce Suite” on page 96 for information about
how this function can be disabled or the number of table entries modified.

The processing involved in supporting a remote catalog shopping experience between a B2B trading
partner and a WCS store is a little more complicated than purchase order processing. There are more
requests sent and received between the parties involved.

The remote catalog shopping experience begins by having a requisitioner initiate the remote shopping
experience by selecting a remote catalog to punchout to. The assumption here is that all of the
configuration steps involved on the local (provider side system) and the partner systems have been
performed. The partner sends in the RemoteCatalogInitiation request. This request validates that this
partner organization is authorized to shop at this provider site. This authorization process actually ensures
that this B2B buying organization is authorized to access this provider using the iSeries Connect support
and also ensures that this partner organization has a WCS shopper table entry that has been configured
and associated with this partner organization. The RemoteCatalogInitiation is also used by the partner to
retrieve a URL, called the StartPageURL, which contains the actual website that it needs to access to
begin the shopping experience. For cXML, this StartPageURL is returned to the partner application in the
PunchOutSetupResponse cXML message.

For cXML, the partner application then launches a new browser session that directs the requisitioner
directly to the WCS store to begin browsing the catalog, inserting items into a quote, and so on. At the end
of the shopping experience, the requisitioner has the option of causing the quote to be generated or to end
the shopping experience without generating a quote. In either case, this ending of the shopping experience
causes a NewQuote message to get redirected to the iSeries Connect delivery gateway. This NewQuote

22 iSeries: IBM Connect for iSeries 2.0

request contains information that allows the WCS extensions support to correlate this NewQuote with the
previous RemoteCatalogInitiation request, and it will also have information that identifies the quote number
that had been generated within WCS. As part of this processing, the WCS extensions support interacts
with the WCS instance to retrieve all of the detailed information regarding the quote, such as products
selected, quantities, prices, and so on.

The WCS extensions runtime services uses this information to generate a message containing the quote.
For cXML, the message generated is a PunchOutOrderMessage. It is important to note that from the WCS
extensions perspective, it does not matter which message is being generated. All of the protocol specifics
are handled by using the appropriate Protocol Flow Model within the Connect Flow Manager. The
appropriate message containing the quote is then packaged by the delivery gateway that supports this
iSeries Connect instance and is returned to the partner application. The partner can then decide to submit
this quote for approval, and if the quote is approved by their organization, a PurchaseOrder can be
submitted.

Note: The PurchaseOrder processing performed by the WCS extensions and the WCS support is the
same as described above. The processing does not differ based on whether the PurchaseOrder was
preceded by the remote catalog shopping experience or not. For cXML, after a quote is returned to the
partner application, it is possible for the partner application to either inspect or edit the previous quote. The
flows involved for these inspection or edit requests are the same as when the initial quote generation was
performed. In these cases, the PunchOutSetupRequest is qualified with a different request type (either
inspect or edit). The authorization and generation of the StartPageURL occurs. If the option specified was
edit, then the requisitioner is allowed to continue shopping, add items, delete items, change quantities, and
so on. If the option is inspect, then the requisitioner is only allowed to view information regarding the quote
that was previously generated. For example, no modifications of the quote are allowed.

WebSphere Commerce Suite considerations for iSeries Connect
Other things to consider when using WebSphere Commerce Suite (WCS) and iSeries Connect are
security, migration, coexistence, and troubleshooting.

Security

The iSeries Connect configuration tool functions, specifically provider registration, partner organization
registration, and catalog management, run under a user profile on iSeries that has all object authority.
When the WebSphere Commerce Suite (WCS) Extensions configuration services runs on their behalf, the
instance database tables and the WCS instance database tables are directly accessible through JDBC.
However, when WCS extensions runtime services is running, functions run under the user profile of the
iSeries Connect instance. This profile has access to the instance database tables, but does not have direct
access to the WCS database tables.

When runtime services is running, it only runs commands that are related to remote catalog shopping or
order placement on behalf of a particular partner organization. The WCS shopper logon ID and password
needs to be accessible to runtime services. WCS extensions runtime services determine the shopper
logon ID that is associated with the partner organization. The WCS extensions support has access to the
WCS shopper logon ID and password to perform functions within WCS on the behalf of the B2B trading
partner.

The WCS administrator ID and password are optional parameters that can be used when an iSeries
Connect instance is associated with a WCS instance. The WCS administrator userID and password must
be provided if WCS extensions are providing support for OrderRequest Update and OrderRequest Delete
process flows. The WCS administrator ID and password entered needs to have customer service
representative authority in the associated WCS instance. It is recommended that you specifically create a
user ID with this authority get created for use by iSeries Connect, using the Websphere Commerce Suite
administrator tool.

Chapter 2. B2B and iSeries Connect concepts 23

The reason for creating a separate user ID to be used by Connect (as opposed to using the same
administrator userID and password that you use in WCS for performing the administrator, accelerator, and
store services functions) is to avoid cases where iSeries Connect is attempting to login to WCS at the
same time someone is performing WCS administration using the service tools shipped with WCS. If both
Connect and WCS were attempting to use the same administrator user ID concurrently, unpredictable
results will occur.

Migration and coexistence

An administrator is required to create a new WCS instance and create a new store definition to participate
in B2B transactions. This is required to force the ending of the shopping experience to work properly. For
example, when a partner organization has finished selecting the items to be included in a quote, the
iSeries Connect framework must gain control, so the quote can be generated and returned in the correct
message format to the partner organization. The implementation of the store controls what happens at the
end of the shopping experience. Existing WCS store definitions that are only set up for B2C shopping
experiences are not set up to handle this.

iSeries Connect supports upgrading your iSeries Connect instance support from WCS 5.1 to WCS 5.4. For
more information, see “Migrate iSeries Connect middleware” on page 92.

Troubleshooting

WCS extensions detect errors, exceptions, and other trace information, and use the flow manager logging
support when the WCS extensions runtime services is running. When troubleshooting problems that occur
between iSeries Connect and WCS, the log files that are associated with the WCS instance may also
provide useful information and should be collected by service personnel. For WCS 5.1, these log files are
located in the /QIBM/UserData/CommerceSuite5/instances/instance_name/logs directory. (instance_name
is the name of your WCS instance.)

The WCS extensions trace and exception entries are logged into the same files that the flow manager
uses. The WCS extensions runtime services does not create any audit log entries. When the WCS
extensions configuration services function is running on behalf of the B2B catalog management function or
provider registration function and partner organization registration function of the iSeries Connect
configuration tool, error messages, exception data, and tracing information are logged into the same file
into which the configuration tool is logging. These files are located in the
QIBM/UserData/Connect200/Commerce/servlet/logs directory.

See the “WebSphere Commerce Suite extensions runtime return codes” on page 110 for additional
troubleshooting information.

The QABECORDMP database table

WCS extensions use the QABECORDMP database table to provide mappings. The table detects duplicate
purchase orders that are received from a B2B trading partner and handles them accordingly. This table is
also used for keeping track of the previous orders that have been placed so that cXML OrderRequest
Update and OrderRequest Delete requests can be processed.

The QABECORDMP database table is part of the instance library—not a new database table within the
WCS database collection. The table requires no special processing.

24 iSeries: IBM Connect for iSeries 2.0

Chapter 3. Plan for iSeries Connect

See these topics for information on planning for your iSeries Connect implementation:

“Migrate the iSeries Connect product” on page 91
If you have implemented iSeries Connect 1.1, see this topic for information about migrating to version
2.0.

“Plan for handling requests with your business applications”
See this topic for information about preparing your business for B2B and iSeries Connect.

“Plan for the marketplace” on page 26
This topic describes planning steps to take to meet requirements for the marketplace.

Plan for handling requests with your business applications
Many businesses find themselves being rushed by their partners to enter the world of
business-to-business (B2B). These businesses have a tendency to start implementing their solution before
making sure that their business processes are properly set up to handle this new way of doing business.
This could be a costly mistake.

Before you install and configure iSeries Connect, you have several decisions to make about how iSeries
Connect is implemented. A good understanding of B2B concepts, iSeries Connect, and your business
processes and applications is important to making the best decisions for your situation.

See these topics for information about the key decisions in planning for your iSeries Connect
implementation.

v “Choose a way to process requests”.

v “Choose an application server to support iSeries Connect”.

v “Choose an iSeries Connect application connector” on page 26.

v “Choose a protocol” on page 26.

v “Define a business process flow” on page 26.

Choose a way to process requests
B2B integration products, such as iSeries Connect, provide the connectivity that is needed to accept
requests from external trading partners and pass them on to your business processes. It is ultimately the
responsibility of your existing business applications, such as your order processing application, to process
these requests. iSeries Connect does not process these requests directly.

More than likely, you have a variety of existing business applications that support order transactions.
Analyze your business applications for possible integration points to iSeries Connect.

Note: iSeries Connect also supports WebSphere Commerce Suite (WCS) as a back-end application
through the iSeries Connect “WebSphere Commerce Suite extensions” on page 18. If you have
implemented a WCS instance to handle online shopping and order requests, you can leverage your
existing WCS implementation for B2B transactions.

Choose an application server to support iSeries Connect
iSeries Connect requires a Web application server (IBM WebSphere Application Server Version 4.0,
Advanced Single Server Edition for iSeries or IBM WebSphere Application Server Version 4.0, Advanced

© Copyright IBM Corp. 1998, 2002 25

Edition for iSeries) as prerequisite software. iSeries Connect automatically configures an application server
instance with the necessary support, so technical experience with an application server is not required to
implement iSeries Connect.

Choose an iSeries Connect application connector
iSeries Connect uses components called application connectors to access back-end applications.
Choose an application connector that best fits your applications. See “Configure an application connector”
on page 44 for a list of currently supported application connectors.

If your application cannot be accessed by the application connectors (such as, your application cannot be
externally called), you will most likely have to create a proxy application that can be accessed by one of
the connectors. The proxy application would then be responsible for accessing the business application.

Choose a protocol
You and your partners determine which protocol your iSeries Connect instance uses. It is important that
you understand the protocol and how the data in the requests are formatted.

iSeries Connect supports the following protocols:

Protocol name Description

cXML 1.1 or 1.2
For more information, see the cXML Web page .

User defined You can use iSeries Connect tools to define your
protocol. For more information, see “User defined
protocols” on page 96.

Define a business process flow
A process flow defines the sequence of processing steps that are required to handle a request. These
steps may include the starting of connectors and other steps. For more information about process flow
step types, see “Create business process flows” on page 69.

You need to define a process flow to handle each type of request that your iSeries Connect instance is
configured to handle. To plan for the process flows, analyze your current business logic. For example, if
your order processing application performs a database call to check the inventory of a particular product,
you may want to define a decision step in your iSeries Connect process flow that performs the same
function.

Plan for the marketplace
See these topics for information about supporting your B2B marketplace.

Order a DUNS number

If you plan to use a B2B marketplace, make sure your company has a Data Universal Numbering System
(DUNS) number. B2B marketplaces require that each company has a unique DUNS number. A DUNS
number is a nine-digit number that Dun & Bradstreet issues to identify each corporate location of a

business. You can order a DUNS number from the Dun & Bradstreet Web site.

Choose your catalog method

Determine how to make your available products and services known to your partner organizations. This
helps you determine the best way to configure and use iSeries Connect. iSeries Connect can build and
maintain electronic catalogs for you and distribute them to your partner organizations or provider system to

26 iSeries: IBM Connect for iSeries 2.0

http://www.cxml.org
http://www.dnb.com

host. This determination is often made on a per partner organization basis as each has its own preference.
In fact, some partner organizations may prefer to work from printed catalog numbers or spreadsheets.
Knowing how you are going to handle this ahead of time helps with your planning.

For more information about the iSeries Connect catalog services, see “Create a catalog” on page 42.

Chapter 3. Plan for iSeries Connect 27

28 iSeries: IBM Connect for iSeries 2.0

Chapter 4. Install iSeries Connect

This topic guides you through installing iSeries Connect, the prerequisite software that is shipped in the
Connect for iSeries CD-ROM package, and product fixes.

Tip: Before you install iSeries Connect, check the iSeries Connect 2.0 Release Notes for any
special instructions.

To install iSeries Connect on your system, perform these steps:

1. Based on your operating system version, ensure that your iSeries system meets all iSeries Connect
prerequisites:

v “V5R1 prerequisites for iSeries Connect 2.0”

v “V5R2 prerequisites for iSeries Connect 2.0” on page 30

2. “Ensure TCP/IP is ready” on page 31.

3. “Install IBM MQSeries” on page 31.

4. “Install fixes for the prerequisite products” on page 33.

5. “Install the iSeries Connect product” on page 34.

6. “Install fixes for iSeries Connect” on page 35.

7. “Perform post-installation steps” on page 35.

8. To verify the installation of iSeries Connect, “Run the PCML verification sample” on page 85.

If you want to remove iSeries Connect from your system either permanently or so you can re-install the
product, see “Uninstall iSeries Connect” on page 37 for instructions.

V5R1 prerequisites for iSeries Connect 2.0
Check to see that your iSeries and workstation systems meet these hardware and software requirements.

iSeries hardware
These models and processor features are the minimum recommended requirements:

v iSeries 400 Model 270 with processor feature 2250

v iSeries 400 Model 820 with processor feature 2395

v 512 MB of memory

Connect for iSeries 2.0 also operates with all earlier RISC hardware models that meet comparable
performance specifications and that run OS/400 Version 5 Release 1.

iSeries software
These licensed programs are necessary to install and run iSeries Connect:

v OS/400 Version 5 Release 1 (5722-SS1) with cumulative PTF package C2134510 or later

v Qshell Interpreter (5722-SS1, Option 30)

v IBM Digital Certificate Manager (5722-SS1, Option 34)

v Cryptographic Access Provider for AS/400 (5722-AC3)

v IBM HTTP Server for AS/400 (5722-DG1)

v IBM Developer Kit for Java 1.3 (5722-JV1, Option 5)

v TCP/IP Connectivity Utilities (5722-TC1)

v One of these Web application servers:

– IBM WebSphere Application Server Version 4.0 or later, Advanced Edition (5733-WA4)

© Copyright IBM Corp. 1998, 2002 29

http://www.ibm.com/servers/eserver/iseries/btob/connect/relnotesv20.html

– IBM WebSphere Application Server Version 4.0 or later, Advanced Edition Single Server Edition
(5733-WS4)

v (Optional) IBM WebSphere Commerce Suite 5.4 (5733-WC5) or 5.1 (5798-WC5)

Notes:

1. If WebSphere Commerce Suite (WCS) 5.1 (5798-WC5) is installed, then IBM WebSphere
Application Server (WAS) Version 3.5.4, Advanced Edition (5733-WA3) must be installed in
addition to WAS 4.0.

2. WCS does not need to be locally installed. iSeries Connect supports WCS on a remote
system. Also note that installing and configuring a WCS instance is beyond the scope of the
iSeries Connect documentation. You or someone working with you needs to be familiar with
the WCS product and its documentation.

v The latest PTF levels for all prerequisite software products. See Connect for iSeries: Program

Temporary Fixes (PTFs) for information and instructions to ensure you have the correct PTF levels
for each product.

Workstation hardware
These are the minimum recommended workstation hardware requirements for running the Web-based
configuration tool:

v 300 MHz processor

v 64 MB of memory

Workstation software configuration tool:

v Microsoft Internet Explorer 5.x with JavaScript and cookies enabled.

V5R2 prerequisites for iSeries Connect 2.0
Check to see that your iSeries and workstation systems meet these hardware and software requirements.

iSeries hardware
These models and processor features are the minimum recommended requirements:

v iSeries 400 Model 270 with processor feature 2250

v iSeries 400 Model 820 with processor feature 2395

v 512 MB of memory

Connect for iSeries 2.0 also operates with all earlier RISC hardware models that meet comparable
performance specifications and that run OS/400 Version 5 Release 2.

iSeries software
These licensed programs are necessary to install and run iSeries Connect:

v OS/400 Version 5 Release 2 (5722-SS1) with cumulative PTF package C2211520 or later

v Qshell Interpreter (5722-SS1, Option 30)

v IBM Digital Certificate Manager (5722-SS1, Option 34)

v Cryptographic Access Provider for iSeries (5722-AC3)

v IBM HTTP Server for iSeries (5722-DG1)

v IBM Developer Kit for Java 1.3 (5722-JV1, Option 5)

v TCP/IP Connectivity Utilities (5722-TC1)

v One of these Web application servers:

– IBM WebSphere Application Server Version 4.0 or later, Advanced Edition (5733-WA4)

30 iSeries: IBM Connect for iSeries 2.0

http://www.ibm.com/servers/eserver/iseries/btob/connect/ptfv20v5r1.html
http://www.ibm.com/servers/eserver/iseries/btob/connect/ptfv20v5r1.html

– IBM WebSphere Application Server Version 4.0 or later, Advanced Edition Single Server Edition
(5733-WS4)

v (Optional) IBM WebSphere Commerce Suite 5.4 (5733-WC5)

Note: WebSphere Commerce Suite (WCS) does not need to be locally installed. iSeries Connect
supports WCS on a remote system. Also note that installing and configuring a WCS instance is
beyond the scope of the iSeries Connect documentation. You or someone working with you needs
to be familiar with the WCS product and its documentation.

v The latest PTF levels for all prerequisite software products. See Connect for iSeries: Program

Temporary Fixes (PTFs) for information and instructions to ensure you have the correct PTF levels
for each product.

Workstation hardware
These are the minimum recommended workstation hardware requirements for running the Web-based
configuration tool:

v 300 MHz processor

v 64 MB of memory

Workstation software configuration tool:

v Microsoft Internet Explorer 5.x with JavaScript and cookies enabled.

Ensure TCP/IP is ready
The iSeries Connect installation relies on TCP/IP utilities. Follow these steps to ensure that the TCP/IP
utilities are configured and started:

1. TCP/IP must be started before you install the iSeries Connect product. If it is not started, run the Start
TCP/IP (STRTCP) command from the iSeries command line.

2. The TCP/IP loopback interface must be configured and active. To check the status of the loopback
interface, follow these steps:

a. On the iSeries command line, enter the Configure TCP/IP (CFGTCP) command.

b. Select Option 1 (Work with TCP/IP Interfaces).

c. In the Work with TCP/IP Interfaces display, look for an entry that has these values:

v Internet Address: 127.0.0.1

v Subnet Mask: 255.0.0.0

v Line Description: *LOOPBACK

v Line Type: *NONE

If this entry does not exist, select Option 1 (Add) to add it with the values that are specified.

d. In the Work with TCP/IP Interfaces display, press F11 to display interface status. If Active does not
appear as the value of Interface Status for the loopback interface, select Option 9 (Start) to start
it.

Install IBM MQSeries
iSeries Connect requires these IBM MQSeries products:

v MQSeries 5.2 (5733-A38)

v MQSeries Classes for Java Product Extension Support Pac (5648-C60)

v MQSeries Application Messaging Interface (AMI) Product Extension Support Pac (5724-A23)

If these MQSeries products are already installed on your server, you may skip this step.

Chapter 4. Install iSeries Connect 31

http://www.ibm.com/servers/eserver/iseries/btob/connect/ptfv20v5r2.html
http://www.ibm.com/servers/eserver/iseries/btob/connect/ptfv20v5r2.html

If your server does not have these product installed, MQSeries 5.2 and the required Support Pacs are
provided on your iSeries Connect product CD-ROM.

To install the MQSeries products, follow these steps:

1. If you have version prior to MQSeries 5.1, you must delete it before you install MQSeries 5.2. To
determine if you have an earlier version, run the Display Software Resource (DSPSFWRSC) command
from the iSeries command line.

If you have a previous version, use the Delete Licensed Program (DLTLICPGM) command to remove
the earlier version. For example, to uninstall MQSeries Version 4.2, run this command:
DLTLICPGM LICPGM(5769MQ2) RLS(V4R2M0)

2. If you have MQSeries 5.1, you can install MQSeries 5.2 over it. You do not need to delete version 5.1.

3. Insert the Connect for iSeries 5733-CO2 V2.0 CD-ROM (which contains the MQSeries 5.2 products)
in your iSeries CD-ROM drive. If you are installing MQSeries on a non-English system, see “MQSeries
supported languages”.

Note: These instructions assume that your iSeries CD-ROM drive is named OPT01. If it is not,
replace OPT01 in the commands with the name of your CD-ROM drive.

4. Install the base MQSeries product. If the primary language of your system is supported by MQSeries,
enter these commands on an iSeries command line:
RSTLICPGM LICPGM(5733A38) DEV(OPT01) RLS(V5R2M0) RSTOBJ(*PGM)
RSTLICPGM LICPGM(5733A38) DEV(OPT01) RLS(V5R2M0) RSTOBJ(*LNG)

The appropriate language objects are installed.

If your system’s primary language is not supported by MQSeries, then use the language (LNG)
parameter to override the system default and install the English version:
RSTLICPGM LICPGM(5733A38) DEV(OPT01) RLS(V5R2M0) RSTOBJ(*PGM) LNG(2924)
RSTLICPGM LICPGM(5733A38) DEV(OPT01) RLS(V5R2M0) RSTOBJ(*LNG) LNG(2924)

5. To install MQSeries Classes for Java Support Pac, run this command:
RSTLICPGM LICPGM(5648C60) DEV(OPT01) RLS(*FIRST)

The Support Pac is only available in the English language. When you install the Support Pac on a
system with a primary language other than 2924, use the language (LNG) parameter to override the
system default and install the English language version:
RSTLICPGM LICPGM(5648C60) DEV(OPT01) RLS(*FIRST) LNG(2924)

6. To install the MQSeries AMI Support Pac, run this command:
RSTLICPGM LICPGM(5724A23) DEV(OPT01) RLS(*FIRST)

The Support Pac is only available in the English language. When you install the Support Pac on a
system with a primary language other than 2924, use the language (LNG) parameter to override the
system default and install the English language version:
RSTLICPGM LICPGM(5724A23) DEV(OPT01) RLS(*FIRST) LNG(2924)

Note: To support iSeries Connect, you need to install fixes for MQSeries and perform some steps after the
fixes have been applied. Installing the fixes and the post-installation steps are documented later in the
“Install fixes for the prerequisite products” on page 33 topic.

MQSeries supported languages
These languages are supported by IBM MQSeries:

v Belgian English (2909)

v Belgian French (2966)

v Canadian French (2981)

32 iSeries: IBM Connect for iSeries 2.0

v English Uppercase (2950)

v English Uppercase and Lowercase (2924)

v English Uppercase DBCS (2938)

v English Uppercase and Lowercase DBCS (2984)

v French (2928)

v French MNCS (2940)

v Italian (2932)

v Italian MNCS (2942)

v Spanish (2931)

v Japanese (2962)

v Korean (2986)

v Simplified Chinese (2989)

Install fixes for the prerequisite products
Before you install the iSeries Connect product, you must install certain critical fixes to the prerequsitie
software products to ensure that they function correctly with iSeries Connect. These fixes are included in
the iSeries Connect Group PTF.

Note: The fixes in the iSeries Connect Group PTF do not contain every fix you need to apply for the
prerequisite products. It is recommended that you install all current fixes that are available for these

products. See Connect for iSeries Support Information for links to support pages for the
prerequisite products.

To install fixes for the prerequisite products, follow these steps:

1. Install all product prerequisites and the fixes that are available for these products.

2. Install the fixes that are necessary to support iSeries Connect. Insert the iSeries Connect Group PTF
CD-ROM in your iSeries CD-ROM drive. The CD-ROM you use depends on your operating system
version:

v For V5R1, the Group PTF number is SF99165.

v For V5R2, the Group PTF number is SF99166.

3. From the iSeries command line, run the Program Temporary Fix (GO PTF) command.

4. In the Program Temporary Fix display, specify option 8 (Install program temporary fix package).

5. In the Install Options for Program Temporary Fixes display, specify these values and press Enter:

v Device: OPT01 (or the name of your CD-ROM drive)

v Automatic IPL:

– Specify Y if you want an initial program load (IPL) performed automatically)

– Specify N if you want to manually perform the IPL or wait for a scheduled IPL)

v Restart type: *SYS

v PTF type: 1 (All PTFs)

v Other options: N

Note: You must perform an IPL to apply the fixes. If you want to wait for a scheduled IPL, do not try to
install the iSeries Connect product before the scheduled IPL completes.

6. To view installation messages, run the Work with Licensed Programs (GO LICPGM) command and
select option 50 (Display log for messages).

7. To verify the status of the fixes, run the Display PTF Status (DSPPTF) command.

Chapter 4. Install iSeries Connect 33

http://www.ibm.com/servers/eserver/iseries/btob/connect/support.htm

8. The MQSeries 5.2 fixes require that you update the user profiles that run MQSeries. To update the
user profiles, follow these steps:

a. On an iSeries command line, run these commands:
CHGUSRPRF USRPRF(QMQM) STATUS(*ENABLED) PWDEXPITV(*NOMAX)
CHGUSRPRF USRPRF(QMQMADM) STATUS(*ENABLED) PWDEXPITV(*NOMAX)

b. To verify this fix, run the Work with MQM Queues (WRKMQM) command. If the Work with MQM
Queues display appears, the fix was successful.

9. See the Connect for iSeries Support Information page for a current list of required fixes.

Install the iSeries Connect product
Before you install iSeries Connect, follow these steps to prepare your system for the installation:

Notes:

v If iSeries Connect Version 1.0 is installed, it is deleted when iSeries Connect Version 2.0 is
installed. Version 1.0 instances and user data are preserved, but they cannot be directly migrated
to version 2.0. Version 1.0 instances and user data must first be migrated using iSeries Connect
1.1.

v If iSeries Connect Version 1.1 is installed, it is not deleted when iSeries Connect Version 2.0 is
installed. The two products can both exist on the same system, and they both can be functioning
at the same time. Version 1.1 instances can be migrated to Version 2.0.

1. If you have iSeries Connect 1.0 or 1.1 installed, follow these steps:

a. In the iSeries Connect 1.0 or 1.1 configuration tool, stop all of your instances.

b. End the QCONNECT subsystem. Run this command from an iSeries command line:
ENDSBS QCONNECT

c. Make sure that the QCONNECT subsystem has ended. Run the Work with Active Jobs
(WRKACTJOB) command to verify. If QCONNECT is still running, use option 4 (End) to stop it.

2. End the MQSeries subsystem. Run this command:
ENDSBS QMQM

3. If you have installed WebSphere Application Server, end the QEJBSBS subsystem. Run this
command:
ENDSBS QEJBSBS

4. If the HTTP Server administrative instance is not ended, end the HTTP Server administrative instance:
ENDTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

To install the Connect for iSeries licensed program, follow these steps:

1. Insert the Connect for iSeries 5733-CO2 V2.0 CD-ROM in your iSeries CD-ROM drive.

2. Install the base option of iSeries Connect. iSeries Connect is currently only available in the English
language version. If the primary language of your system is English (2924), English Uppercase (2950),
English DBCS Uppercase (2938), or English DBCS Uppercase and Lowercase, enter this command on
the iSeries command line:
RSTLICPGM LICPGM(5733CO2) DEV(OPT01) RLS(V2R0M0) OPTION(*BASE)

If the primary language of your system is not English, use the language (LNG) parameter to override
the default language. On the iSeries command line, enter this command:
RSTLICPGM LICPGM(5733CO2) DEV(OPT01) RLS(V2R0M0) OPTION(*BASE) LNG(2924)

3. Install option 1 of iSeries Connect. If the primary language of your system is a version of English, enter
this command:
RSTLICPGM LICPGM(5733CO2) DEV(OPT01) RLS(V2R0M0) OPTION(1)

34 iSeries: IBM Connect for iSeries 2.0

http://www.ibm.com/servers/eserver/iseries/btob/connect/support.htm

For non-English systems, enter this command:
RSTLICPGM LICPGM(5733CO2) DEV(OPT01) RLS(V2R0M0) OPTION(1) LNG(2924)

Notes:

a. You may receive the message AMQ7010 - The queue manager does not exist. You can
ignore this message.

b. If you have not previously installed iSeries Connect 1.0 or 1.1 on your system, you may
receive the message CPD3D91. You can ignore this message.

Before you configure iSeries Connect, you must install the necessary fixes for the product. See “Install
fixes for iSeries Connect” for more information.

Install fixes for iSeries Connect
Before you configure iSeries Connect, you must install fixes for the product.

Note: It is strongly recommended that you install these fixes before you configure an instance.

To install fixes for iSeries Connect, follow these steps:

1. Insert the iSeries Connect Group PTF CD-ROM in your iSeries CD-ROM drive. The CD-ROM you
use depends on your operating system version:

v For V5R1, the Group PTF number is SF99165.

v For V5R2, the Group PTF number is SF99166.

2. From the OS/400 command line, run the Program Temporary Fix (GO PTF) command.

3. In the Program Temporary Fix display, specify option 8 (Install program temporary fix package).

4. In the Install Options for Program Temporary Fixes display, specify these values and press Enter:

v Device: OPT01 (or the name of your CD-ROM drive)

v Automatic IPL: N

v PTF type: 1 (All PTFs)

v Other options: Y

Note: You do not need to perform an initial program load (IPL) to apply these fixes.

5. In the Other Install Options display, specify these values and press Enter:

v Omit PTFs: N

v Apply Type: 3 (Apply only immediate PTFs)

6. To verify the correct group PTF level, follow the instructions on the iSeries Connect Support

Information Web page.

7. To verify the status of the fixes, run the Display PTF Status (DSPPTF) command.

Perform post-installation steps
This topic describes steps you need to perform to complete your installation.

1. To add the MQSeries Support Pac libraries (QMQMJAVA and QMQMAMI) to the user library list, follow
these steps:

a. From the iSeries command line, run this command:
WRKSYSVAL QUSRLIBL

b. In the Work with System Values display, select option 2 (Change).

c. In the Change System Value display, add QMQMJAVA and QMQMAMI in separate Library fields.
You can add the libraries anywhere within the list. Press Enter.

Chapter 4. Install iSeries Connect 35

http://www.ibm.com/servers/eserver/iseries/btob/connect/support.htm
http://www.ibm.com/servers/eserver/iseries/btob/connect/support.htm

2. If your system runs with a coded character set identifier (CCSID) value of 65535, see “Change the
coded character set identifier (CCSID)”.

3. The installation wizard normally starts all required subsystems and jobs. However, to ensure that
iSeries Connect is properly started, you can manually start them. If the subsystems and jobs are
already started, the system ignores these commands. See “Start and stop iSeries Connect” on
page 103 for a list of commands.

4. If you are using WebSphere Commerce Suite (WCS), check the WCS support page for fixes and
follow any special instructions listed there.

v For WCS Pro Edition, see WCS Pro Edition Support

v For WCS Business Edition, see WCS Business Edition Support

5. Check your iSeries system QUTCOFFSET value. Run this command from the iSeries command line:
WRKSYSVAL SYSVAL(QUTCOFFSET)

The value depends on your time zone offset from Greenwich Mean Time (GMT). It is important to set
this properly so that integrated file system files have proper time stamps.

To change the value, select option 2 (Change) in the Work with System Values display.

Change the coded character set identifier (CCSID)
Because of database support limitations, it is necessary to run the IBM HTTP Server administrative
instance and the iSeries Connect flow manager with a coded character set identifier (CCSID) other than
65535 so that data is tagged appropriately. 65535 is the default value that instructs the operating system
not to perform data conversions, which causes problems when iSeries Connect tries to access data from a
database table because it cannot properly convert the data.

You can either change the CCSID setting on the system level, or manually change the necessary CCSID
values.

Change the system-wide CCSID value

Follow these steps to change the default CCSID value for your system:

1. On the iSeries command line, run this command:
WRKSYSVAL SYSVAL(QCCSID)

2. In the Work with System Values display, select option 2 (Change) to change the CCSID to a value
other than 65535. Specify an EBCDIC CCSID value. For English systems, specify a value of 37. For
non-English systems, see “Coded character set identifier (CCSID) values for EBCDIC” on page 37 for
a list appropriate values.

Manually change the necessary CCSID values

If you do not want to change the system-wide CCSID setting, you can instead specify the -fsccsid
parameter when you start the HTTP Server administrative instance. Specify an EBCDIC CCSID value
other than 65535 (such as 37 for English systems). For a list of non-English EBCDIC CCSID values, see
“Coded character set identifier (CCSID) values for EBCDIC” on page 37.

For example, if you system runs in an English language environment, use this command:
STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN ’-fsccsid 37’)

Additionally, the user profile under which your instance runs must not use CCSID 65535. The user profile
name is the same as the instance name. For example, if your instance is named MYINST, change the
CCSID value for the MYINST user profile.

36 iSeries: IBM Connect for iSeries 2.0

http://www-3.ibm.com/software/webservers/commerce/wcs_pro/support.html
http://www.ibm.com/software/webservers/commerce/wc_be/support.html

To change the CCSID value for a user profile, use the Change User Profile (CHGUSRPRF) command with
the Coded character set ID (CCSID) parameter. Specify an EBCDIC CCSID value other than 65535. For a
list of non-English EBCDIC CCSID values, see “Coded character set identifier (CCSID) values for
EBCDIC”.

For example, to change the MYINST user profile to use a CCSID of 37, run this command from the iSeries
command line:
CHGUSRPRF USRPRF(MYINST) CCSID(37)

Coded character set identifier (CCSID) values for EBCDIC
This list contains EBCDIC coded character set identifier (CCSID) values by language:

v Simplified Chinese: 00935

v Traditional Chinese: 00937

v Swiss German: 00500

v German: 00273

v United States English: 00037

v Spanish: 00284

v French: 00297

v Belgian French: 00500

v Canadian French: 00500

v Swiss French: 00500

v Italian: 00280

v Swiss Italian: 00500

v Korean: 00933

v Belgian Dutch: 00500

v Dutch: 00037

v Brazilian Portuguese: 00037

v Portuguese: 00037

v Japanese Katakana: 05035

Uninstall iSeries Connect
Follow these steps to uninstall iSeries Connect:

1. Stop all of your instances. Use the iSeries Connect configuration tool to do this.

Note: If you are uninstalling iSeries Connect and do not plan to re-install it, use the iSeries
Connect configuration tool to delete all of your instances. This facilitates in removing all objects
that were created as part of your instances.

2. End the MQSeries queue manager. When you do this, you remove all the queues under this queue
manager.

Note: If the queue manager was created under a user profile that is different than the one you
are using to end it, you may need to give yourself authority to the queue manager. The queue
manager name is QIBM.ICONNECT.unique_name.QUEUE.MANAGER, where unique_name is a
unique name for the queue manager.

To end the MQSeries queue manager, follow these steps:

a. On the iSeries command line, run the Work with Queues (WRKMQM) command.

b. In the Work with Queues display, locate the QIBM.ICONNECT.unique_name.QUEUE.MANAGER
queue. Specify option 18 (Work with Queues) for that queue.

Chapter 4. Install iSeries Connect 37

c. Clear the queues for each instance. In the Work with MQM Queues display, specify option 13
(Clear) for all queues names that start with QIBM.ICONNECT.instance_name, where instance_name is
the name of your instance. Press Enter.

d. End the queue manager. In the Work with Queues display, specify option 15 (End) and press F4 to
prompt the option. In the End Message Queue Manager display, specify *IMMED in the Option
field.

e. After the queue manager has ended, delete the queue manager by specifying option 4 (Delete).

f. End the MQSeries subsystem. Run this command from the iSeries command line:
ENDSBS QMQM

3. To delete the iSeries Connect product, run this command from the iSeries command line:
DLTLICPGM LICPGM(5733CO2)

38 iSeries: IBM Connect for iSeries 2.0

Chapter 5. Configure iSeries Connect

Configure iSeries Connect with the Web-based configuration tool. Use the tool to set up iSeries Connect to
handle requests.

Note: This topic provides an overview for using the configuration tool. Concepts and fields of the tool
are documented in the configuration tool online help text. To display the help text for a particular

page in the configuration tool, click the help icon at the top of the page.

See these topics for information about configuring iSeries Connect with the configuration tool:

“Start the iSeries Connect configuration tool”
Describes prerequisites for running the configuration tool and how to start it.

“Roadmap for configuring iSeries Connect” on page 40
Guides you through creating and configuring an iSeries Connect instance.

“Configure WebSphere Commerce Suite” on page 70
If you are using WebSphere Commerce Suite (WCS) for remote catalog support, see this topic for
steps to configure your WCS instance and your iSeries Connect instance.

“Run the PCML verification sample” on page 85
Shows you how to configure an iSeries Connect instance from start to finish. The PCML verification
sample ships with the Connect for iSeries product. Running the sample is a good place to start for
learning how to configure iSeries Connect.

Start the iSeries Connect configuration tool
Follow these steps to access the configuration tool:

1. Make sure you meet these prerequisites for running the configuration tool:

v If you have not done so, install iSeries Connect and all the prerequisite software on your iSeries
system. See Chapter 4, “Install iSeries Connect” on page 29 for more information.

v Start the administrative server of the HTTP Server. Enter this command on the OS/400 command
line:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

v Because of database support limitations, do not run the IBM HTTP Server administrative server
instance with a CCSID value of 65535. For more information, including instructions for changing
CCSID values, see “Change the coded character set identifier (CCSID)” on page 36.

v You access the configuration tool from a browser on your workstation. Make sure your browser
meets the minimum requirements:

– Microsoft Internet Explorer 5.x with JavaScript and cookies enabled

v The user profile you use to access the tool must have these authorities:

– *ALLOBJ special authority

– *IOSYSCFG special authority

– *JOBCTL special authority

– *SECADM special authority

– *USER user class

2. Enter the following URL in your browser: http://system_name:2001/Connect/Commerce

Enter your iSeries user profile name and password when prompted.

© Copyright IBM Corp. 1998, 2002 39

Roadmap for configuring iSeries Connect
To configure iSeries Connect with the configuration tool, follow these steps:

1. “Start the iSeries Connect configuration tool” on page 39.
The configuration tool is a Web-based configuration utility. See this topic for prerequisites for running
the tool and how to start it.

2. “Create an instance”.
An instance is an entity that has customized configuration data associated with it. You can create
multiple instances of iSeries Connect.

Note: After you create your instance, make sure it is selected in the Manage Connect Instances
page before you continue with the next steps.

3. “Create a provider” on page 41.
A provider is an organization that sells products or services to buying organizations. Generally, the
provider is the organization that is receiving requests from the marketplace. Use the iSeries Connect
configuration tool to register a provider and associate that provider with a particular marketplace.

4. “Register partner organizations” on page 42.
Partners are the provider’s customers. Register your partners with iSeries Connect so it can
determine authorized partners and retrieve information about the partners when a request is
processed.

5. “Create a catalog” on page 42.
Create a catalog to provide marketplace partners with a list of services and goods to purchase. In the
configuration tool, you can manually create a catalog or import one from sources such as Domino,
WCS, and DB2. You then publish the catalog to your marketplace of choice.

6. “Configure an application connector” on page 44.
An application connector connects your business application to iSeries Connect and enables your
application to process B2B requests. You configure the application connector by creating an
application connector document, which defines the inputs and outputs to your applications and any
additional properties.

7. “Create business process flows” on page 69.
Create a process flow model to define how a request is processed by iSeries Connect. For each
request, you specify the application connector instance to use, define how request fields are mapped
to your application, and define how your application output is mapped to response fields.

8. “Deploy your business process flows” on page 70.
To complete the configuration, you must integrate (or deploy) the process flow models and application
connector documents into your B2B instance’s runtime environment.

9. “Start your instance” on page 70.
Start your configured instance.

10. “Test your instance” on page 70.
Run the Test Drive Connect utility to test your instance configuration.

Create an instance
The first step you perform when configuring iSeries Connect is to create an instance. An instance is a
collection of software that works together to process traffic. It contains the customized configuration that
supports your protocol and your business environment.

To create an instance, click the Instances tab in the iSeries Connect configuration tool. If you have not
previously created any instances, the New Instance wizard automatically starts. If one or more instances
are already defined, click New Instance to start the wizard. The wizard guides you through the steps you
need to perform to configure a new instance.

40 iSeries: IBM Connect for iSeries 2.0

Note: If you migrated from version 1.1 and have existing 1.1 instances, the first time you access the
Instances tab in the configuration tool, you are prompted to either create a new instance or migrate
your 1.1 instances.

After you create your instance, you can modify the instance properties (the properties you specified in the
wizard and other properties, such as performance, classpath, and trace settings. To edit the instance
properties, select your instance in the Manage Instances page and click Properties.

Before you start
Before you create an instance, you should have completed these tasks:

v Install iSeries Connect and validate the installation. See Chapter 4, “Install iSeries Connect” on page 29
for details.

v Determine your system topology. The delivery gateway component can reside on a system that is
remote to the flow manager component. This configuration option allows you to protect the flow
manager and your back-end business applications with a firewall. If you plan to integrate WebSphere
Commerce Suite (WCS) with iSeries Connect, your WCS instance can reside on a system that is
remote from the flow manager component. (For more information about integrating WCS, see
“Configure WebSphere Commerce Suite” on page 70.)

If you plan to use more than one system, you should have a valid user profile and password on each
system. In a split-instance configuration, the user profile on the gateway system must have the same
authorities as the user profile that you use to access the iSeries Connect configuration tool on the flow
manager system.

v Determine to which marketplace you are connecting (if applicable), which protocols are required, and
which requests that you want to support. For more information, see “Plan for handling requests with
your business applications” on page 25 and “Plan for the marketplace” on page 26.

Create a provider
A provider is an organization that sells products or services to buying organizations. Registering a provider
in your instance serves these purposes:

v Provides basic information about the provider that can be made available to the partner organizations
through catalog management services. This includes information such as provider name, address
information, and contact information.

v Associates the provider with one or more protocols and provides information about how the protocol
identifies itself to the provider (access information), what functions (request and request types) are
allowed, and what the preferred order methods (phone, fax, e-mail, Web address) are as specified in
the catalog.

v Associates a provider with a WebSphere Commerce Suite (WCS) merchant if WCS is configured for the
instance. This allows requests coming in for the provider, which the provider ID and domain identify, to
be associated with a back-end WCS merchant.

To create a provider, use the iSeries Connect configuration tool. Click the Providers tab to start the
provider management functions. This allows you to create providers and associate them with protocols that
are known to your instance.

If your instance supports the cXML protocol, see “Tips for registering provider and partner organizations for
the cXML protocol”.

You can register a provider exit program to integrate the iSeries Connect provider services with a different
application. For more information, see “Exit programs” on page 42.

Tips for registering provider and partner organizations for the cXML protocol
If you are registering a provider or partner organization for association with a marketplace that uses the
cXML protocol, here is specific information that you should understand:

Chapter 5. Configure iSeries Connect 41

v Both the provider and the partner organization are identified in the cXML protocol by an ID value (which
is a DUNS number) and a domain (which is the DUNS domain). The DUNS number is a required input
when you register a provider. When you make a provider to marketplace association, the ID and domain
are automatically populated for you. When you register a partner organization, DUNS is optional, but
highly recommended. If provided, the ID and domain are automatically populated with the DUNS
number when you make a marketplace association for partner organization, otherwise you must
manually provide the DUNs number and a domain value of DUNS.

v With cXML, when you select Logon Information when associating a marketplace for a partner
organization, the authentication of the marketplace request to access the provider system occurs on the
provider system. Therefore, you must provide the necessary authentication information. You must select
that logon authentication is required by the marketplace protocol on the Available marketplaces dialog,
and provide a logon ID, domain, and shared secret or password. For cXML, the logon ID and domain
match the provider ID and domain. You just need to provide the shared secret or password that was
determined when registering with marketplaces. Remember that the password is case sensitive.

v With cXML, you do not need to check Logon Information when associating a marketplace for a partner
organization. Partner organizations are authenticated at the marketplace and not authenticated on the
provider system. However, you need to identify each partner organization by ID and domain coming
from that marketplace, because that information is necessary for verifying the authorization of a partner
organization to provider services through a marketplace request.

Exit programs
In the Providers and Partners tabs of the configuration tool, you can register an exit program (click
Registered Exit Program), which allows iSeries Connect to interact with back-end applications (such as
WebSphere Commerce Suite). For example, you could register an exit program that changes WCS
Shopper data when you update iSeries Connect partner data.

The exit program is a Java class that uses iSeries Connect application programming interfaces (APIs). For

more information on these APIs, see the iSeries Connect Customization Guide .

Register partner organizations
Click Partners to start the partner organization management function. A partner organization uses a
procurement system to buy products or services from providers.

Registering a partner organization serves these purposes:

v Provides basic information about the partner organization that can be made available to the providers
through catalog management services. This includes information such as partner organization name,
address information, and contact information.

v Associates the partner organization with a provider and protocol, and indicates access information about
how the partner organization is identified in the protocol.

v Associates the partner organization by its partner organization ID and domain with a WebSphere
Commerce Suite (WCS) shopper if WCS is associated with the instance. By making this association,
you create a WCS shopper or customer with information that reflects the information that is provided
when you register a partner organization.

If your instance supports the cXML protocol, see “Tips for registering provider and partner organizations for
the cXML protocol” on page 41.

You can register a partner exit program to integrate the iSeries Connect partner organization services with
a different application. For more information, see “Exit programs”.

Create a catalog
Use the catalog management function in the iSeries Connect configuration tool to to create or manage
catalogs in the current instance. You then integrate your catalog with the B2B marketplace.

42 iSeries: IBM Connect for iSeries 2.0

pgmguide.pdf

In the configuration tool, click the Catalog tab to access the catalog management functions.

Creating a catalog

The iSeries Catalog services provides these methods for creating a catalog:

v Import a catalog from one or more local or remote database tables.

v Import a catalog from a local Lotus Domino database. For more information, see “Set up Lotus Domino
for importing catalogs”.

v Import a catalog from a WebSphere Commerce Suite (WCS).

v Import a catalog from a Catalog Interchange Format (CIF) version 2.1 or 3.0 file.

v Create a catalog manually.

Publishing a catalog

The iSeries Connect catalog services support these methods for publishing a catalog:

v Local catalog
A local catalog resides on a server that is local to the partner (and remote from the provider). The
catalog is published on the B2B marketplace Web site.

v Remote catalog
A remote catalog resides on a server that is remote from the partner (and local to the provider). The
catalog is hosted on the provider’s Web site. The URL for the provider’s Web site is published to the
B2B marketplace. When partners want to view products from a remote catalog provider, they ″punch
out″ from the marketplace to the provider’s site.

v Detailed remote catalog
The detailed remote catalog is similar to the remote catalog in that a partner punches out to the
provider Web site. However, in detailed remote catalog implementations, partners punch out of the
marketplace to individual product listings on the provider’s Web site, not to the main entry point of the
provider’s store.

Set up Lotus Domino for importing catalogs
To use Domino as a source for the catalog, follow these steps:

1. Install Domino 5.0.7 or later on the same iSeries machine on which iSeries Connect is running.

2. Enable Domino HTTP and DIIOP servers through iSeries Operations Navigator or by running this
command on the iSeries command line:
CHGDOMSVR SERVER(domino_server_name) WEB(*HTTP *IIOP)

where domino_server_name is the name of your Domino server.

3. The Domino HTTP server must be configured to be listening on the default port, port 80. The Domino
server name must resolve (from the iSeries) to this HTTP server listening on port 80. For the name to
resolve, it must be added either to the iSeries host table or added to the DNS.

If port 80 is already in use by another application, another logical interface (IP address) must be
defined for Domino HTTP server. Both the Domino server and the other application must be configured
to bind specific in order for both to share port 80.

Use the Domino Administrator client to set the binding information for Domino. Under Internet
Protocols, locate HTTP. Enter the Host name, and set Bind to host name to Enabled.

4. Open the Domino Administrator client. Under Internet Protocols, locate HTTP. Set Allow HTTP
clients to browse databases to Yes.

5. Use the Domino Adminstrator client to set the proper authorities. Under the Security tab, add your
Domino user profile (that you are using to access the iSeries Connect configuration tool) to the
Access server and Run unrestricted Java/Javascript/COM settings.

Chapter 5. Configure iSeries Connect 43

Configure an application connector
iSeries Connect uses components called application connectors to access back-end applications.
Currently, iSeries Connect provides these application connectors:

v “Program call connector”
Use the program call connector to call iSeries programs and service programs written in languages
such as C, RPG, and COBOL.

v “Java connector” on page 45
Use the Java connector to make method calls to Java programs.

v “JDBC connector” on page 46
Use the JDBC connector to access local or remote databases with JDBC.

v “MQSeries queue connectors” on page 52
Use the MQSeries queue connector to work with MQSeries-enabled applications. The MQSeries queue
connector supports these interfaces: MQSeries Queueing Interface (MQI) and MQSeries Application
Messaging Interface (AMI).

v “OS/400 data queue connector” on page 59
Use the OS/400 data queue connector to access queue-enabled applications.

In the iSeries Connect configuration tool, click the Tools tab. Click Application Connectors to configure
your application connector instance.

Before you start

Before you configure your application connector instance, you should have completed these tasks:

v Select an application connector type that works best with your back-end application.

v If necessary, modify your back-end application to facilitate your chosen application connector. This may
include writing an intermediary (or proxy) application.

v If it is required by your chosen application connector, create an input file and optionally, an output file.
See information about your application connector for more information.

Program call connector
The program call connector starts iSeries programs or service programs with Program Call Markup
Language (PCML). For more information about PCML, see Program Call Markup Language (PCML) in the
iSeries Information Center.

To create an instance of the program call connector (that calls your specific application), first create a
PCML document to describe the interface to your application. You can use any method (such as using a
text editor) to create a PCML document.

Note: iSeries Connect does not create PCML documents for you. iSeries Connect assumes that you
have already created the PCML documents that you need.

Use the iSeries Connect configuration tool (click Application Connectors under the Tools tab) to create
and update instances of the program call connector.

This table describes the properties that are used by the program call connector to use an iSeries program
in response to a B2B request.

Property name Description Default Set by

Host system
(system)

iSeries server hosting the program to be used for this connector
instance.

localhost Application
connector
editor in the
configuration
tool

44 iSeries: IBM Connect for iSeries 2.0

http://publib.boulder.ibm.com/pubs/html/as400/v5r2/ic2924/index.htm?info/rzahh/pcml.htm

Property name Description Default Set by

PCML document
(pcmldocument)

File that contains the PCML definition of the program or service
program and its interface. The PCML document is used to
gather the information about input and output fields for the
application connector. If the PCML document does not reside in
the default directory
(/QIBM/UserData/Connect200/Commerce/instance_name/Connector)
the non-default must have a corresponding entry in the flow
manager classpath. (You can update the classpath from your
instance’s properties page.)

Application
connector
editor in the
configuration
tool

Description A description of the connector. Application
connector
editor in the
configuration
tool

User ID (userid) User ID used when the iSeries Connect program runs. Deployment
function of the
configuration
tool

Password
(password)

Password associated with user ID. Deployment
function of the
configuration
tool

For information about tracing a PCML connector, see “Diagnose and solve iSeries Connect problems using
trace” on page 108.

Java connector
The implementation of the Java connector differs from the other iSeries Connect connector types. Other
connector types drive the mappings for applications and then use the flow manager application with a
fully-resolved parameter list. This design is successful for those connector types because they provide a
consistent, generic way to describe the application interface through an XML-based grammar.

Instead, the Java connector allows you to write the application logic in Java (as opposed existing RPG or
C applications), which provides much more flexibility. The other connector types require you to describe
structure with Program Call Markup Language (PCML), Extensible Markup Language (XML), or XML
document type definition (DTD). The Java connector can directly access all of the mapping information.
For the Java connector type, this access technique is necessary because Java parameters can be objects.
Objects are more complex and there is no consistent, generic way to build all of the diverse parameter
types for all user-defined objects.

The Java connector application is a Java class that implements the JavaConnectorInterface The flow
manager Java connector code calls the run() method of the JavaConnectorInterface. The Java connector
application provides the implementation of the run() method. In the run() method, you can access the input

fields passed in the ConnectorParm object. It can then call any other Java classes that are
necessary to perform the processing for this request. The ConnectorParm object can then be used to pass
back any output fields to be mapped to the response message. The run() method has to be written with
very specific knowledge of the interface to the targeted flow manager application.

The Java connector utilizes an interface class to describe the interaction between the Java connector and
a Java method. The interface class definition is as follows:
package com.ibm.connect.flowmanager.interfaces;
import com.ibm.connect.flowmanager.connector.ConnectorResult; import
com.ibm.connect.flowmanager.interfaces.ConnectorParm;

Chapter 5. Configure iSeries Connect 45

javadoc/com/ibm/connect/flowmanager/interfaces/JavaConnectorInterface.html
javadoc/com/ibm/connect/flowmanager/interfaces/ConnectorParm.html

/**
* JavaConnectorInterface is the interface that must be implemented by connector classes written in Java.
*
* The JavaConnectorInterface interface allows users to write Java code that can be executed in the Java Connector.
*
*/ public interface JavaConnectorInterface {
/**
* execute the user Java code..
* @param parameters The ConnectorParm object that can be used to extract any mapped parms.
* @returns A JavaConnectorResult object that allows a non zero return code to indicate an error and an error string
* to describe the error.
*/ public JavaConnectorResult run (ConnectorParm parameters);}

When you compile the Java connector application, you need to include
/QIBM/ProdData/Connect200/Classes/flowmanagerapi.jar in your classpath.

As the flow manager processes requests, it needs to access your Java connector application class and
any other classes that your class references. To make your classes available to the flow manager, update
the Java classpath that the flow manager uses to include your classes. Use the iSeries Connect
configuration tool to update the flow manager Java virtual machine classpath (under the flow manager tab
of the Instance Properties page).

For more specific information, see the iSeries Connect Javadoc index.

The Java connector has properties to define the user-written Java connector application class, and an
optional properties file that is made available to that class.

This table describes the properties that are used by the Java connector to use a method on a Java class
in response to a B2B request.

Property name Description Default Set by

Class name (classname) Name of the class that the
Java connector uses.

Application connector editor
in the configuration tool

Property file name File that defines the set of
properties used by the Java
class when called by the
Java connector.

blank Application connector editor
in the configuration tool

For more detailed information about developing a Java connector application, see the Connect for iSeries

Developer Resources Web site.

JDBC connector
The JDBC connector allows connector instances to access a local or remote database with JDBC.

When you create a JDBC connector in the application connector editor of the iSeries Connect
configuration tool (under the Tools tab), you specify information that is used to connect to the database
(such as JDBC driver, JDBC URL, user ID, and password).

To access a local database, it is recommended that you use the iSeries IBM Developer Kit for Java JDBC
driver (com.ibm.db2.jdbc.app.DB2Driver). To access a remote iSeries database, the IBM Toolbox for Java
JDBC driver is recommended (com.ibm.as400.access.AS400JDBCDriver).

You provide an SQL statement that is executed when the process flow is invoked for a request. Input fields
are mapped as the parameter markers in the SQL statement. Any output parameter markers or result set
data may also be mapped.

46 iSeries: IBM Connect for iSeries 2.0

javadoc/index.html
http://www.ibm.com/eserver/iseries/btob/connect/devtools.htm
http://www.ibm.com/eserver/iseries/btob/connect/devtools.htm

Input and output fields

Input fields represent parameter markers and are designated with ?. Output fields include any data that is
generated by the SQL statement, such as fields returned in a result set or output fields from a stored
procedure call.

In the application connector editor, you also specify input and output fields for the connector with a SQL
statement or an “Application connector document field set (ACDFieldSet)” on page 68.

If you are accessing an iSeries DB2 database with either the iSeries IBM Developer Kit for Java JDBC
driver or the IBM Toolbox for Java JDBC driver, you can use an SQL statement to define input and output
fields. When the connector instance is created, the database is accessed to gather information about input
and output fields for the SQL statement.

Note: The application connector editor generates parameter names in the format of ″Parm1″,
″Parm2″, and so on. It is recommended that you rename these fields (using the editor) to more
meaningful names. The meaningful names make it easier to map fields later.

You can also use an ACDFieldSet document to define input and output fields. If you are accessing a
remote non-iSeries database, use an ACDFieldSet document to define input and output fields.

Input fields for the JDBC connector are grouped under a structure, typically called InputParms. The fields
within the InputParms structure correspond to the parameter markers or the input parameters (IN or
INOUT) for a stored procedure. If the mulit-statement execution property is set to Yes or the InputParms
structure was defined as repeating in the ACDFieldSet, the SQL statement provided is executed for each
set of repeating input provided. That is, the input parameters are set for the first element of each of the
fields in the InputParms structure and the SQL statement is run. Then, the next set of field values are set
and it is again run. And so on.

Fields under the InputParms structure can be mapped from multiple places and structures, but only one of
the associated structures can be repeating, and this is to what the InputParms structure should be
mapped. For example, some of the input parameters may be mapped from the request header and others
from fields within a repeating structure in the request. In this case, the InputParms should be mapped to
the repeating structure.

The JDBC connector has three possible output fields:

v Row
A Row structure is returned for a query. The items in the result set are set into the fields defined under
the Row structure. Generally, the Row structure is repeating, since a query can return multiple records.
If the multi-row result set property is set to No for an input type of SQL or the Row structure is defined
as non-repeating in an ACDFieldSet, the JDBC connector signals an exception if multiple rows are
returned from JDBC. If the InputParms structure is repeating, that Row is an accumulation of the result
set from each execution of the query.

v RowCount
A RowCount in an integer that is the number of rows affected by an INSERT, UPDATE, or DELETE
statement or the number of rows returned from a SELECT statement. If the InputParms structure is
repeating, RowCount is an accumulation of the row count values for each execution of the SQL
statement.

v OutputParms
The OutputParms structure contains field definitions for the output parameters markers (OUT or INOUT)
from a stored procedure call. If the multi-statement execution property is set to Yes for an input type of
SQL or the OutputParms structure is set to repeating in the ACDFieldSet, the OutputParms structure will
contain results from each invocation of the stored procedure call. When an ACDFieldSet is specified,
the repeating attribute of the InputParms and OutputParms structures must match.

Chapter 5. Configure iSeries Connect 47

ACDFieldSet and the JDBC connector

If you are creating your own ACDFieldSet document, you should follow these guidelines. (For an input type
of SQL, this information is automatically generated.)

The location values in the Field definition are numeric values for the JDBC connector. The names of the
pre-defined fields may vary, but the location values for the pre-defined fields must be as follows:

v -1 for RowCount

v -2 for Row

v -3 for InputParms

v -4 for OutputParms

The location values for the InputParms and OutputParms structure are the location of the parameter
marker (?) in the SQL statement. That is, the first parameter marker would have a location of 1, the
second would have a location of 2 and so on. The location value of the fields within the Row structure
should be the location of the field in the result set. For example, if you have a query that returns two
columns, the location of the first column is 1 and the location of the second column is 2.

If InputParms, Row, or OutputParms structures are repeating, a mapping must be provided for them when
creating the process flow. If they are non-repeating, a mapping is optional.

The field definitions within the InputParms, OutputParms, and Row structures must also contain the
SubType attribute. The SubType should be the defined as the SQL type for the parameter marker or result
set field. For example, the subtype for a field in the Row structure may be VarChar if the underlying
database column is defined as a VARCHAR. Also, in a manually created ACDFieldSet for a query, the
RowCount should be listed as the CountField for the Row structure.

Supported data subtypes

When you specify SQL as the Input parameter for the JDBC connector, the connector generates a data
type based on the SQL data type. Also, when you create an ACDFieldSet document to define input fields,
the connector data type is what you should specify for the Type attribute on the Field definition.

The valid SubType attributes are listed in the table below. They are case-sensitive. Match the data type to
the type that the JDBC connector expects.

Here is a list of SQL data types and the corresponding type that is generated by the JDBC connector:

SQL type Connector type

Char
VarChar
LongVarChar

String

CLOB String

Graphic
VarGraphic
LongVarGraphic

String

DBCLOB String

Numeric
Decimal

BigDecimal

SmallInt short

Integer int

BigInt long

48 iSeries: IBM Connect for iSeries 2.0

SQL type Connector type

Real float

Float double

Double double

Binary
VarBinary
LongBinary

byte[]

BLOB byte[]

Date 1 (See 49) long

Time 1 (See 49) long

Timestamp 1 (See 49) long

Bit Boolean

TinyInt byte

1 Date, time, and timestamp fields are treated as long values in iSeries Connect. The long value is
the number of milleseconds since January 1, 1970 00:00:00.000 GMT. There are operators available
to convert the long values to and from String values in JDBC escape format. For Date, this format is
″yyyy-mm-dd″ format. For Time, the format is ″hh:mm:ss″ format. For Timestamp, the format is
″yyyy-mm-dd hh:mm:ss.fffffffff″ format (where fffffffff represents nanoseconds).

Limitations

At this time, use of the JDBC connector is restricted by these limitations:

v You can specify only one SQL statement for a JDBC connector instance.

v The JDBC connector supports only these SQL statement types: SELECT, INSERT, UPDATE, DELETE,
and CALL.

v The JDBC connector does not support result sets from stored procedures. If you need this function,
create another connector type (such as a Java connector) that uses JDBC directly to run the stored
procedure and manipulate the result sets.

v Binary fields can only be mapped to other binary fields, and are therefore only available between
intermediate steps in the process flow model. This is an overall limitation and does not only apply to the
JDBC connector.

v Individual input and output fields cannot be repeatable. The JDBC connector does support the set of
InputParms as repeating and will iterate through the array, running the SQL statement that is provided
on each individual ″row″ in the array.

v Do not run the JDBC connector (and database operations in general) under a job that uses a CCSID of
65535. This specifies that data conversions are not to be performed, which can cause critical problems
in the iSeries Connect environment. If you have not changed the system-wide CCSID value to a value
other than 65535 (as described in “Change the coded character set identifier (CCSID)” on page 36,
change the CCSID value of the job under which database operations are being performed.

JDBC connector properties

For information about properties that the JDBC connector uses, see “JDBC connector properties” on
page 50.

Sample ACDFieldSet document for the JDBC connector

This ACDField set document applies to an SQL statement that queries a customer ID from the DUNS
number in the B2B request:

Chapter 5. Configure iSeries Connect 49

SELECT CUSTOMER_ID FROM collection.tablename WHERE BUYER_ID = ?

<?xml version="1.0"?>
<acdfieldset version="2.0" >

<input >
<field display="yes" location="-3" name="InputParms" repeating="no" type="struct" >

<children >
<field display="yes" location="1" name="BUYER_ID" repeating="no" type="string" >

<length >9</length>
<subtype >char</subtype>

</field>
</children>

</field>
</input>
<output >

<field display="yes" location="-1" name="RowCount" repeating="no" type="int" >
<length >4</length>

</field>
<field display="yes" location="-2" name="Row" repeating="yes" type="struct" >

<countfield >RowCount</countfield>
<children >

<field display="yes" location="1" name="CUSTOMER_ID" repeating="no" type="string" >
<length >10</length>
<subtype >char</subtype>

</field>
</children>

</field>
</output>

</acdfieldset>

JDBC connector properties: When you create a JDBC connector instance in the application connector
editor of the iSeries Connect configuration tool (under the Tools tab), here are properties you specify:

Property
name

Description Required or
optional

Default Set by

JDBC
driver

Specifies the JDBC driver to use. For
more information see the
documentation for the JDBC driver.

Required com.ibm.db2.jdbc.app.DB2Driver
(IBM Developer Kit for Java
JDBC driver)

Application
connector
editor in the
configuration
tool

JDBC URL Specifies the URL of the JDBC driver.
For more information see the
documentation for the JDBC driver.

Required jdbc:db2:localhost Application
connector
editor in the
configuration
tool

Input type Specifies either SQL or ACDFieldSet,
the type of input that is used to derive
input and output fields for the
application connector. The SQL input
type is only allowed when either the
iSeries IBM Developer Kit for Java
JDBC driver or the IBM Toolbox for
Java JDBC driver is specified. When an
input type of SQL is specified, the input
and output field definitions are gathered
from the SQL statement and the
database. For ACDFieldSet, you
manually specify all of the field
information in an ACDFieldSet
document.

Required SQL Application
connector
editor in the
configuration
tool

50 iSeries: IBM Connect for iSeries 2.0

Property
name

Description Required or
optional

Default Set by

Transaction
isolation
level

Specifies the commitment control level
for the database transaction.

Required None Application
connector
editor in the
configuration
tool

SQL
statement

Specifies an SQL statement to use to
execute for this JDBC connector
instance. The SQL statement is also
used to derive input and output field for
the application connector.

Required Application
connector
editor in the
configuration
tool

Multi
statement
execution

Specifies to support running supplied
SQL statement multiple times and to
support a repeating set of input and
output parameters.

Required No Application
connector
editor in the
configuration
tool

Multi row
result set

By default, the database can return
multiple rows from an SQL SELECT
statement. If no is specified and multiple
rows are returned from the database,
the JDBC connector treats this as an
error. This value should only be set to
no when it is guarunteed that only one
row should match the selection criterea.
You cannot specify this field if the Multi
statement execution property is set to
Yes.

Required Yes Application
connector
editor in the
configuration
tool

ACD field
set

Path name of the ACDFieldSet
document to be used for the message if
Message Type is ACD field set.

Required
when input
type is
ACDFieldSet.
(SQL input
type
automatically
generates
the
equivalent
field
information.)

Application
connector
editor in the
configuration
tool

Admin
Logon

Specifies a user ID for accessing the
configuration tool. The user ID is used
to gather field information when input
type is SQL.

Required
when input
type is SQL.

Application
connector
editor in the
configuration
tool

Admin
Password

Password for the Logon ID Required
when input
type is SQL.

Application
connector
editor in the
configuration
tool

Admin Port Specifies the port number on which the
iSeries configuration tool runs.

Required
when input
type is SQL.

2001 Application
connector
editor in the
configuration
tool

Chapter 5. Configure iSeries Connect 51

Property
name

Description Required or
optional

Default Set by

Database
user

Specifies the user ID that is used to
connect to the database to gather the
information about input and output
fields when the input type is SQL. The
user ID must have the authority to run
the SQL statement provided. You are
prompted again to provide the database
user ID and password when you deploy
your process flow. The values gathered
at deployment are saved to be used at
runtime to connect to the database with
JDBC.

Required Application
connector
editor
gathers it
when input
type is SQL,
but it is
stored during
deployment.

Database
password

Password for the userID Required Application
connector
editor
gathers it
when input
type is SQL,
but it is
stored during
deployment.

MQSeries queue connectors
There are two forms of connectors for accessing an application through MQSeries: the MQSeries queue
connector and the MQSeries Application Messaging Interface (AMI) connector.

Each of these queuing methods can use one of these message definition techniques, either Program Call
Markup Language (PCML), Extensible Markup Language (XML), Comma Separated Variables (CSV), or
Application Connector Document Field Set (ACDFieldSet). The MQSeries queue connectors transform
B2B requests into messages of these formats and place them on the queue. Therefore, the properties
define a send message transformation, send queue, receive queue, and receive message transformation.
Use the application connector editor in the iSeries Connect configuration tool (under the Tools tab) to set
the properties for the MQSeries queue connector.

An IBM Business Partner or customer that wants to create an instance of the MQSeries queue connector
to pass a message to their application has to define queue identification information and has a choice of
specifying the message format as an XML document, a CSV stream, or a structured buffer described by
PCML or an ACDFieldSet document.

When you use the application connector editor in the iSeries Connect configuration tool (under the Tools
tab), you specify the name and location of your document.

Selecting a queue connector type

When selecting between MQSeries queues or MQSeries AMI queues, both connectors send and receive
messages to MQSeries queues. However, they each offer different methods of configuring the queueing
interface. MQSeries queue directly configures queue usage information. MQSeries AMI indirectly
configures queue usage through a policy.

MQSeries queue usage requires that the connector is configured with MQSeries information that defines
the queue manager, queue names, and message options directly in the connector properties. If the
MQSeries configuration changes, the connector must be redeployed with matching configuration changes.

52 iSeries: IBM Connect for iSeries 2.0

MQSeries AMI allows a user-defined AMI repository to be used, which can insulate the queue connector
from MQSeries configuration information. The AMI policy allows the connector to be decoupled from a
specific MQSeries configuration. The information in the policy can be changed without requiring any
connector changes. The AMI policy also offers some additional control over how the connector uses the
MQSeries. An MQSeries configuration tool for Windows NT is available for creating and changing AMI
repositories. The tool is available as an MQSeries product extension MA0G at

http://www.software.ibm.com/ts/mqseries/txppacs/ma0g.html.

You can use MQSeries queue connectors in these modes:

v Send queue only
Sends a message to a queue that is identified in the connector properties. No response message is
received. This mode is only appropriate for flows that do not require any response data, such as a
cXML PunchOut message.

v Receive queue only
Allows send and receive to be performed in separate steps of a process flow. For this option, mapping
of message and correlation IDs to intermediate fields may be useful.

v Send and receive queues
Generates a message to send to the queue that is identified in the connector properties and waits for a
response message on another queue that is identified in the connector properties. The flow manager is
multithreaded, so it is possible for multiple threads to wait on a common receive queue. This requires
the responses to be received with a queueing method that can select a specific response. Response
messages to MQSeries queues should use message-id or correlation-id matching through appropriate
queue connector properties. The simplest method for keys is to use the GENERATE value for these
properties.

Queue connector properties

For information about properties that the queue connectors use:

v “MQSeries queue connector properties”
To use MQSeries, you must grant the instance profile MQI authority to the queue manager and queues.

v “MQSeries AMI connector properties” on page 56
To use MQSeries AMI, you must grant the instance profile MQI authority to the queue manager and
queues.

MQSeries queue connector properties: This table describes the properties that are used by the
MQSeries queue connector to call an application through an MQSeries queue.

Property
name

Description Required
or optional

Default Set by

MQSeries
Manager

Name of the
MQSeries message
queue manager.

Required Application
connector
editor in the
configuration
tool.

MQSeries
host name

Name of the system
on which the
MQSeries manager
runs.

Required localhost Application
connector
editor in the
configuration
tool.

MQSeries
server port

Port number with
which to access the
MQSeries manager.

Optional If not defined, a default of 1414 is used. Application
connector
editor in the
configuration
tool.

Chapter 5. Configure iSeries Connect 53

http://www.software.ibm.com/ts/mqseries/txppacs/ma0g.html

Property
name

Description Required
or optional

Default Set by

MQSeries
server
channel

Specifies a channel
for communications
between two queue
managers.

Optional For MQSeries 5.1, if this attribute is not defined,
bindings mode is used. Otherwise, the default is
SYSTEM.DEF.SVRCONN.

Application
connector
editor in the
configuration
tool.

Message
Type

Specifies the type of
message to send or
receive. Valid values
are PCML, XML, CSV,
and ACDFieldSet 1

Required Application
connector
editor in the
configuration
tool.

Tracing Specifies whether to
turn on MQSeries
client for Java trace
facility. Valid values
are ENABLED and
DISABLED.

Required DISABLED Application
connector
editor in the
configuration
tool.

Trace File Specifies the trace file
name and directory
path, if tracing is
enabled. For example,
/home/trace/mqb2b.trc.

Optional /QIBM/UserData/mqm/trace/B2BMQ.trc Application
connector
editor in the
configuration
tool.

Send
Queue

Name of the
MQSeries queue to
send the request
message.

Required Application
connector
editor in the
configuration
tool.

Send
Message
Persistence

Specifies the
MQSeries persistence
of the message. Valid
values are YES and
NO.

Required Persistence will be as the Send Queue is defined Application
connector
editor in the
configuration
tool.

Send
Message
Priority

Specifies the
MQSeries message
priority. Valid values
are 0 through 9.

Required Priority will be as the SendQueue is defined Application
connector
editor in the
configuration
tool.

Send
Message Id

Specifies the
MQSeries message
identifier to use when
sending the message.
Valid values are
NONE, GENERATED,
and MAPPED 2

Required NONE Application
connector
editor in the
configuration
tool.

Send
Message
Correlation
Id

Specifies the
MQSeries correlation
identifier to use when
sending the message.
Valid values are
NONE, GENERATED,
and MAPPED 2

Required NONE Application
connector
editor in the
configuration
tool.

54 iSeries: IBM Connect for iSeries 2.0

Property
name

Description Required
or optional

Default Set by

Receive
Queue

Name of the
MQSeries queue to
receive the response
message.

Required for
receiving a
response
message.
Empty
property
means send
only.

Application
connector
editor in the
configuration
tool.

Receive
queue
name prefix

Prefix name of the
MQSeries queue to
receive the response
message.

Optional Application
connector
editor in the
configuration
tool.

Receive
Message
Wait Time

Specifies the length of
time, in milliseconds,
to wait on the receive
queue for a message.
Valid values are
nnnnn and
UNLIMITED

Optional 300000 milliseconds (for example, 5 minutes) Application
connector
editor in the
configuration
tool.

Receive
message ID
match

Specifies how a
receiving application
should set the
message ID when
sending a reply
message.

Required None Application
connector
editor in the
configuration
tool.

Receive
correlation
ID match

Specifies how a
receiving application
should set the
correlation ID when
sending a reply
message.

Required MessageIdSent Application
connector
editor in the
configuration
tool.

PCML
Document

Name of the PCML
document to be used
for the message if
message type is
PCML or CSV.

Required for
PCML
message
type

Application
connector
editor in the
configuration
tool.

PCML
system

Name of the system
on which the PCML
document is located.

Required for
PCML
message
type

localhost Application
connector
editor in the
configuration
tool.

Input field
template

Specifies the
fully-qualified path
name of an XML,
DTD, or XSD
document that is used
to derive input fields
for the application
connector.

Required for
XML
message
type

Application
connector
editor in the
configuration
tool.

Chapter 5. Configure iSeries Connect 55

Property
name

Description Required
or optional

Default Set by

Output field
template

Specifies the
fully-qualified path
name of an XML,
DTD, or XSD
document that is used
to derive input fields
for the application
connector.

Required for
the XML
message
type

Application
connector
editor in the
configuration
tool.

ACD field
set

Name of the
ACDFieldSet
document to be used
for the message if
message type is
ACDFieldSet or CSV.

Required for
ACDFieldSet
message
type.

Application
connector
editor in the
configuration
tool.

Default
CCSID

Specifies the Coded
Character Set ID
(CCSID) to be used
for conversion of
property values and
inputs when the
CCSID is not
otherwise specified.

Optional If this attribute is omitted, the default CCSID of the
host environment is used.

Application
connector
editor in the
configuration
tool.

iSeries
System

System used for
PCML documents or
CSV text conversions.

Required localhost Application
connector
editor in the
configuration
tool.

iSeries
Userid

Userid used for the
iSeries system.

Required Deployment
function of
the iSeries
Connect
configuration
tool

iSeries
Password

Password used for the
iSeries system.

Required Deployment
function of
the iSeries
Connect
configuration
tool

1 PCML is Program Call Markup Language. XML is Extensible Markup Language. CSV is Comma
Separated Variables. ACDFieldSet is Application Connector Document Field Set. The PCML method of
mapping IDs should be considered deprecated. Instead, they can be mapped to fixed fields.

2 GENERATED has MQSeries generate a new value for each message. MAPPED extracts the value from
the PCML document with the appropriate structure or data name. MAPPED is supported for message type
XML only with fixed fields. For more information, see “Define messages for queue connectors” on page 62.

MQSeries AMI connector properties: This table describes the properties that are used by the
MQSeries application messaging interface (AMI) connector to call an application through the MQSeries
AMI interface.

56 iSeries: IBM Connect for iSeries 2.0

Property
name

Description Required or
optional

Default Set by

Message
Type

Specifies the type of
message to send or
receive. Valid values
are PCML, XML,
CSV, and
ACDFieldSet 1

Required Application
connector
editor in the
configuration
tool.

Directory
Path

Specifies the directory
for the local host and
repository files.

Optional /QIBM/UserData/mqm/amt Application
connector
editor in the
configuration
tool.

Repository
File Name

Specifies the name
for the AMI repository
file.

Optional amt.xml Application
connector
editor in the
configuration
tool.

AMI Tracing Specifies whether to
turn on the AMI client
for Java trace facility.
Valid values are
ENABLED and
DISABLED

Optional DISABLED Application
connector
editor in the
configuration
tool.

Trace Level Specifies the AMI
trace level to use if
AMI Tracing is
enabled. Valid values
are 0 through 9.

Optional 9 Application
connector
editor in the
configuration
tool.

Trace
Location

Specifies the trace
location directory, if
tracing is enabled.
The filenames are
generated by AMI and
will be
AMTnnnnn.TRC.

Optional /QIBM/UserData/mqm/amt/trace Application
connector
editor in the
configuration
tool.

Policy
Name

Specifies the name of
the AMI AMPolicy to
use for processing the
messages.

Required Application
connector
editor in the
configuration
tool.

Sender
Name

Specifies the AMI
AMSender name.
This represents an
MQSeries queue on a
local queue manager.

Not required
for receive
only.

Application
connector
editor in the
configuration
tool.

Receive Specifies if a
AMIReceiver is used.

Optional Yes Application
connector
editor in the
configuration
tool.

Chapter 5. Configure iSeries Connect 57

Property
name

Description Required or
optional

Default Set by

Receiver
Name

Specifies the AMI
AMReceiver name.
This represents an
MQSeries queue on a
local queue manager.

Required for
receiving a
response
message.
Empty
property
means send
only.

Application
connector
editor in the
configuration
tool.

Correlation
Id

Specifies the
MQSeries correlation
identifier to use when
sending the message.
Valid values are
NONE, GENERATED,
and MAPPED 2

Optional GENERATED Application
connector
editor in the
configuration
tool.

Receive
correlation
ID match

Specifies how
correlation ID
matching should be
done when receiving
a reply message.
Possible values are
None,
MessageIdSent,
CorrelationIdSent, or
Mapped.

Required MessageIdSent Application
connector
editor in the
configuration
tool.

PCML
Document

Name of the PCML
document to be used
for the message if
message type is
PCML.

Required for
PCML
message
type

Application
connector
editor in the
configuration
tool.

PCML
system

Name of the system
on which the PCML
document is located.

Required for
PCML
message
type

localhost Application
connector
editor in the
configuration
tool.

Input field
template

Specifies the
fully-qualified path
name of an XML,
DTD, or XSD
document that is used
to derive input fields
for the application
connector.

Required for
XML
message
type

Application
connector
editor in the
configuration
tool.

Output field
template

Specifies the
fully-qualified path
name of an XML,
DTD, or XSD
document that is used
to derive input fields
for the application
connector.

Required for
the XML
message
type

Application
connector
editor in the
configuration
tool.

58 iSeries: IBM Connect for iSeries 2.0

Property
name

Description Required or
optional

Default Set by

ACD field
set

Name of the
ACDFieldSet
document to be used
for the message if
message type is
ACDFieldSet or CSV.

Required for
ACDFieldSet
message
type.

Application
connector
editor in the
configuration
tool.

Default
CCSID

Specifies the Coded
Character Set ID
(CCSID) to be used
for conversion of
property values and
inputs when the
CCSID is not
otherwise specified.

Optional If this attribute is omitted, the default CCSID of
the host environment is used.

Application
connector
editor in the
configuration
tool.

iSeries
System

System used for
PCML documents or
CSV text conversions.

Required localhost Application
connector
editor in the
configuration
tool.

iSeries
Userid

Userid used for the
iSeries system.

Required Deployment
function of
the iSeries
Connect
configuration
tool

iSeries
Password

Password used for
the iSeries system.

Required Deployment
function of
the iSeries
Connect
configuration
tool

1 PCML is Program Call Markup Language. XML is Extensible Markup Language. CSV is Comma
Separated Variables.

2 GENERATED has MQSeries generate a new value for each message. The PCML method of mapping
IDs should be considered deprecated. Instead, they can be mapped to fixed fields. MAPPED is supported
for message type XML only with fixed fields. For more information, see “Define messages for queue
connectors” on page 62.

OS/400 data queue connector
The OS/400 data queue connector supports OS/400 data queues. This queuing method can use one of
these message definition techniques, either Program Call Markup Language (PCML), Extensible Markup
Language (XML), Comma Separated Variables (CSV), or Application Connector Field Set (ACDFieldSet).
Therefore, the properties define a sending message transformation, sending queue, receiving queue, and
received message transformation. The application connector editor in the iSeries Connect configuration
tool (under the Tools tab) sets these properties.

An IBM Business Partner or customer that wants to create an instance of the OS/400 data queue
connector to pass a message to their application has to define queue identification information and has a
choice of specifying the message format as an XML document, a structured buffer with PCML, a CSV
stream, or an ACDFieldSet document. To put a structured message on the queue, specify the input and

Chapter 5. Configure iSeries Connect 59

output with PCML or ACDFieldSet by using the application Connector editor. To put XML on the queue,
use XML to define the input and outputs. To put CSV on the queue, use PCML to specify the inputs and
outputs.

You can use an OS/400 data queue connector in these modes:

v Send queue only
Sends a message to a queue that is identified in the connector properties. No response message is
received. This mode is only appropriate for flows that do not require any response data, such as a
cXML PunchOut message.

v Receive queue only
Allows send and receive to be performed in separate steps of a process flow. For this option, mapping
of message and correlation IDs to intermediate fields may be useful.

v Send and receive queues
Generates a message to send to the queue that is identified in the connector properties and waits for a
response message on another queue that is identified in the connector properties. The flow manager is
multithreaded, so it is possible for multiple threads to wait on a common receive queue. This requires
the responses to be received with a queueing method that can select a specific response. Response
messages to iSeries data queues should be keyed. The simplest method for keys is to use the
GENERATE value for these properties.

Queue connector properties

For information about properties that the OS/400 data queue connector uses, see “OS/400 data queue
connector properties”. To use OS/400 data queues, you must grant the instance user profile *USE
authority to the library and queues.

OS/400 data queue connector properties: This table describes the properties that are used by the data
queue connector to call an application through an iSeries data queue.

Property name Description Required or optional Default Set by

Message Type Specifies the type of
message to send or
receive. Valid values
are PCML, XML,
CSV, and
ACDFieldSet 1

Required Application connector
editor in the
configuration tool.

Keyed Send Queue Specifies whether or
not the send queue
name is a keyed data
queue. Valid values
are YES and NO

Required for sending
a message

Application connector
editor in the
configuration tool.

Send Queue Key Specifies the method
or the value of the
key, if keyed send
queue is set to YES.
Valid values are
GENERATED,
MAPPED, or xxxxxxx
2 where xxxxxxx is
your user-defined key
value.

Required if Keyed
Send Queue is set to
YES

Application connector
editor in the
configuration tool.

Send Queue Name Specifies the name of
the iSeries data
queue (*DTAQ) object
to send the request
message.

Required for sending
a message

Application connector
editor in the
configuration tool.

60 iSeries: IBM Connect for iSeries 2.0

Property name Description Required or optional Default Set by

Send Queue Library Specifies the iSeries
library name which
contains the *DTAQ
object.

Required for sending
a message

Application connector
editor in the
configuration tool.

Keyed Receive
Queue

Specifies whether or
not the receive queue
name is a keyed data
queue. Valid values
are YES and NO

Required for receiving
a response message.
Empty property
means Receive only.

Yes Application connector
editor in the
configuration tool.

Receive Queue Key Specifies the method
or the value of the
key, if keyed receive
queue is set to YES.
Valid values are
GENERATED,
MAPPED, and
xxxxxxx 2 where
xxxxxxx is your
user-defined key
value. Read off the
queue uses
searchType of EQ for
equal key compare.

Required if Keyed
Receive Queue is set
to YES

Application connector
editor in the
configuration tool.

Receive Queue Name Specifies the name of
the iSeries data
queue (*DTAQ) object
to receive the
response message
from.

Required for receiving
a message

Application connector
editor in the
configuration tool.

Receive Queue
Library

Specifies the iSeries
library name that
contains the *DTAQ
object.

Required for receiving
a message

Application connector
editor in the
configuration tool.

Receive Queue Wait
Time

Specifies the length of
time, in seconds, to
wait on the receive
queue for a message.
Valid values are
nnnnn and
UNLIMITED

Optional 300 (5 minutes) Application connector
editor in the
configuration tool.

Receive queue
operator

Specifies the operator
to use for comparing
keyed messages to
the receive key.

Required for keyed
receive queue.

EQ (equals) Application connector
editor in the
configuration tool.

Key padding
character

Specifies the
character with which
to pad keys that are
less than the
specified key length
of the queue.

Optional, however key
values must be the
appropriate length if
this is not specified.

Application connector
editor in the
configuration tool.

PCML Document Name of the PCML
document to be used
for the message if
Message Type is
PCML.

Required for PCML
and CSV message
types

Application connector
editor in the
configuration tool.

Chapter 5. Configure iSeries Connect 61

Property name Description Required or optional Default Set by

ACD field set Path name of the
ACDFieldSet
document to be used
for the message if
Message Type is ACD
field set.

Required for
ACDFieldSet
message type

Application connector
editor in the
configuration tool.

Send-Receive Queue
System

Specifies the name of
the iSeries system
that contains the
*DTAQ object.

Required localhost Application connector
editor in the
configuration tool.

Input field template Specifies the
fully-qualified path
name of an XML,
DTD, or XSD
document that is used
to derive input fields
for the application
connector.

Required for XML
message type

Application connector
editor in the
configuration tool.

Output field template Specifies the
fully-qualified path
name of an XML,
DTD, or XSD
document that is used
to derive input fields
for the application
connector.

Required for the XML
message type

Application connector
editor in the
configuration tool.

Default CCSID Specifies the Coded
Character Set ID
(CCSID) to be used
for conversion of
property values and
inputs when the
CCSID is not
otherwise specified.

Optional If this attribute is
omitted, the default
CCSID of the host
environment is used.

Application connector
editor in the
configuration tool.

Send-Receive Queue
Userid

User ID that the
program uses to
connect to the *DTAQ
object.

Required if
Send-Receive Queue
System is not local
host or the name of
the iSeries system

Deployment function
of the iSeries Connect
configuration tool.

Send-Receive Queue
Password

Password associated
with the
Send-Receive Queue
Userid.

Required if
Send-Receive Queue
System is not local
host or the name of
the iSeries system

Deployment function
of the iSeries Connect
configuration tool.

1 PCML is Program Call Markup Language. XML is Extensible Markup Language. CSV is Comma
Separated Variables.

2 GENERATED generates a value by using the unique transaction value that the flow manager provides.
The PCML method of mapping IDs should be considered deprecated. Instead, they can be mapped to
fixed fields. MAPPED is supported for message type XML only with fixed fields. For more information, see
“Define messages for queue connectors”.

Define messages for queue connectors: There are a few things that you need to be aware of when
defining messages for each of the queue connectors. Follow these guidelines for defining Extensible

62 iSeries: IBM Connect for iSeries 2.0

Markup Language (XML) messages (See 63), Program Call Markup Language (PCML) messages (See
63), Comma Separated Variable (CSV) messages (See 64), and “Application connector document field set
(ACDFieldSet)” on page 68. See the code examples that follow for additional information.

Each application connector defines a fixed set of input and output fields in addition to those that are
derived from a PCML or XML document. These fixed fields are used to map additional information used to
control the runtime behavior of a given connector instance. The additional information varies according to
what connector type is used. For example, a MQSeries connector can use input fields to define the
MQSeries message identifier or correlation identifier. iSeries data queue connectors use input fields to
construct a message key. This technique allows each call of the connector to generate different values for
these fields. In contrast, the properties for a connector instance provide constant values for each call of a
connector.

Defining XML messages

You must define input and output fields for XML messages by using a sample XML document with the
application connector editor in the iSeries Connect configuration tool (under the Tools tab). The
pcmldocument property is not used when specifying XML message types. Incoming messages with
DOCTYPE information specified are validated. Incoming messages without DOCTYPE information are not
validated.

For document type information that is in the document used for input mapping, the following occurs:

v <!DOCTYPE docname publicId systemId /> element is generated in outgoing messages to the
SendQueue. The ″docname″, ″publicId″, and ″systemId″ values are copied from the input mapping
document.

v Incoming messages are validated, thus requiring the document DTD to be available as indicated in the
DOCTYPE information. A simple DTD name, such as systemID cXML.dtd, requires the DTD file to be
located in the flow manager classpath. The default flow manager classpath includes the
/QIBM/UserData/Connect200/Commerce/instance_name/Connector directory. You can place DTD
documents in this directory. iSeries Connect deployment does not automatically copy DTD files to this
location.

For document type information that is not in the document used for input mapping, the following occurs:

v No <!DOCTYPE /> information is generated on outgoing messages.

v Incoming messages are not validated with a validating parser for document validity. Parsing the XML
message is still performed in non-validating mode, which requires the XML document to be well formed.

v There is no requirement for a DTD to be available.

When using the application connector editor to create the input and output mappings these guidelines
apply:

v Repeating elements in the source must be mapped to repeating elements in the target. Any repeated
element which occurs in a source message creates repeating elements in the target.

v All elements in a target should be mapped to ensure that the correct XML is generated.

v The sample XML document must contain elements for each element that is to be mapped.

v Element attributes may be mapped to or from elements, such as a source element attribute can be
mapped to a target element. For example, you can map <sourcetag srcattr=″xxx″ /> to
<targettag>xxx</targettag>.

XML messages support MAPPED values for key, message ID, and correlation ID fields only through fixed
fields.

Defining PCML messages

Chapter 5. Configure iSeries Connect 63

You must create the PCML document as described here to ensure correct operation of the queue
connectors using PCML described messages:

v You must use the same PCML document for input and output fields.

v The PCML document must contain a <program> element with the same name as the document. For
example, Message.pcml must contain a <program name=″Message″> element.

v The path attribute in the <program> element is not used and can have any value.

v The structure and data elements for the program must match the entries specified by and elements
defined in the PCML document.

The SendMessage structure is required to define the message to be sent and must have usage=″input″
attribute (for example, <struct name=″SendMessage″ usage=″input″ ...>). SendMessage must not have
a countfield.

The ReceiveMessage structure is required to define the message to be received and must be
usage=″output″ (for example, <struct name=″ReceiveMessage″ usage=″output″...>). ReceiveMessage
must not have a countfield.

Other data elements listed in the table are deprecated and are overridden if the corresponding fixed
fields are used.

v The structure and data elements that describe input and output can be in any order. The recommended
order is to put the SendMessage structure first and ReceiveMessage structure second.

v Names of structure and data elements within any defined name structure are not restricted. Elements
with count fields are allowed.

v The contents of the input fields are converted to a stream of bytes that are used as described for the
element name. For example, a SendMessage structure is converted to a byte stream used as the
message placed on a queue.

v The contents of the output fields are populated from the data generated by the queueing method and
are then mapped to flow manager response fields. For example, a ReceiveMessage structure is
populated from the byte stream of a message received from a queue.

Defining CSV messages

CSV messages implement messages as a series of characters that represent a field with commas
between each field. The message characters are placed on the queue as converted to the CCSID
specified in the properties, or the default CCSID of the host environment.

Input and output fields for CSV messages use a PCML document to describe how input and output fields
are mapped to a CSV message. The document is only used for mapping. It is not used when running a
connector. As a result, you can use a different PCML document for input and output field definition. The
pcmldocument property is used to determine the set of input and output fields to be represented in CSV
format, but it is not directly used at runtime. PCML documents must follow the rules described in defining
PCML messages regarding the PCML document structure and names.

Here are additional restrictions on PCML documents that are used for CSV definition:

v All fields are inserted in the CSV message as strings in the CCSID specified by the CCSID property. If
no CCSID is specified, the default CCSID of the host environment is used.

v Commas are inserted between CSV fields, where a field is a data element (for example, <data
name=item...>). Structure elements do not create any input or output.

v Input data elements with types of int, double, and float are converted to the respective type and then
back to a string to ensure the values are the correct type. Other types are mapped directly from input to
output without conversion and put in quoted form..

v Repeating fields are allowed. Repeating fields have count fields associated with them that provide the
application with the number of repeating fields at runtime. (Thus, defining a Countfield is required when
you have repeating fields.) At runtime, the count for a repeating field is always placed immediately
before the repeating data. For example, a <data name=″mychar″ type=″char″ countfield=″mycount″

64 iSeries: IBM Connect for iSeries 2.0

usage=″input″/> when mapped to an input field with three instances ″a″,″b″, and ″c″ produce a CSV
string 3,a,b,c. The location of the Countfield in the PCML document is ignored.

PCML structure or data names

The queue connectors use a PCML document to describe the message and optional parameters to the
queue process. The document must contain a <program> element with a name attribute that matches the
name of the PCML document and contains highest level structure or data elements that are described in
the following table. Elements with other names are ignored.

Structure or data name Usage Connector

SendMessage Input MQSeries queue, MQSeries application
messaging interface (AMI), and data queue

ReceiveMessage Output MQSeries queue, MQSeries AMI, and data
queue

Defining ACDFieldSet messages

See “Application connector document field set (ACDFieldSet)” on page 68

Example: PCML document

This PCML Document (checkinvio.pcml) contains SendMessage and ReceiveMessage definitions. You can
use this document for input and output fields with PCML or CSV messages and any queue connector type.
Any field that is not mapped must have an init attribute for PCML messages.
<pcml version="1.0">

<!-- PCML source for Inventory Check, document name must match program name -->
<program name="checkinvio" path="not_used">

<!-- INPUT struct defining the message to receive, name must be SendMessage-->
<struct name="SendMessage" usage="input" >
<data name="msglabel" type="char"length="8" usage="input" init="REQUEST " />
<data name="incount" type="int" length="4" usage="input" />
<data name="hdrdesc" type="char" length="64" usage="input" init="n/a" />
<struct name="item" usage="input" count="checkinvio.SendMessage.incount" >

<data name="identifier" type="int" length="4" usage="input" />
<data name="quantity" type="int" length="4" usage="input" />
<data name="price" type="float" length="4" usage="input" />
<data name="description" type="char" length="64" usage="input"/>

</struct>
</struct>

<!-- OUTPUT struct defining message to receive, name must be ReceiveMessage-->
<struct name="ReceiveMessage" usage="output" >

<data name="msglabel" type="char"length="8" usage="input" init="RESPONSE" />
<data name="outcount" type="int" length="4" usage="output" />
<struct name="itemout" usage="output"

count="checkinvio.ReceiveMessage.outcount" outputsize="1024" >
<data name="identifier" type="int" length="4" usage="output" />
<data name="quantity" type="int" length="4" usage="output" />
<data name="price" type="float" length="4" usage="output" />
<data name="status" type="char" length="64" usage="output" />

</struct>
<data name="ostatus" type="int" length="4" usage="output" />

</struct>

</program>

</pcml>

Chapter 5. Configure iSeries Connect 65

Example: MQSeries queue connector

This connector allows you map input values to send and receive values to match through PCML structure
or data elements. In addition, the values that you use to send or receive can be mapped into your output
document. This is an example of all independent possibilities. They can be specified in any combination
and any order. Only the highest level structure or data names must match what is specified in the
example.
<pcml version="1.0">

<!-- PCML source for Inventory Check, document name must match program name -->
<program name="checkinvio" path="not used">

<!-- INPUT struct defining the message to receive, name must be SendMessage-->
<struct name="SendMessage" usage="input" >

<data name="incount" type="int" length="4" usage="input" />
<data name="hdrdesc" type="char" length="64" usage="input" init="n/a" />
<struct name="item" usage="input" count="checkinvio.SendMessage.incount" >

<data name="identifier" type="int" length="4" usage="input" />
<data name="quantity" type="int" length="4" usage="input" />
<data name="price" type="float" length="4" usage="input" />
<data name="description" type="char" length="64" usage="input" init="n/a" />

</struct>
<data name="istatus" type="int" length="4" usage="input" init="0" />

</struct>

<!-- OUTPUT struct defining message to receive, name must be ReceiveMessage-->
<struct name="ReceiveMessage" usage="output" >

<data name="outcount" type="int" length="4" usage="output" />
<data name="hdroutdsc" type="char" length="64" usage="output" />
<struct name="itemout" usage="output" count="checkinvio.ReceiveMessage.outcount" outputsize="1024" >

<data name="code" type="int" length="4" usage="output" />
<data name="quant" type="int" length="4" usage="output" />
<data name="outprice" type="float" length="4" usage="output" />
<data name="status" type="char" length="64" usage="output" />

</struct>
<data name="msgoend" type="char" length="12" usage="output" />
<data name="ostatus" type="int" length="4" usage="output" />

</struct>
</program>

</pcml>

Example: MQSeries AMI

QueueConnectorMQAMI allows mappings for the MQSeries AMI CorrelationId and MessageId. You can
map input values to send and receive values to match. In addition, the values that you use to send or
receive can be mapped into your output document. This an example of all independent possibilities. They
can be specified in any combination and any order. Only the highest level structure or data names must
match what is specified in the example.
<pcml version="1.0">

<!-- PCML source for Inventory Check, document name must match program name -->
<program name="checkinvio" path="not used">

<!-- INPUT struct defining the message to receive, name must be SendMessage-->
<struct name="SendMessage" usage="input" >

<data name="incount" type="int" length="4" usage="input" />
<data name="hdrdesc" type="char" length="64" usage="input" init="n/a" />
<struct name="item" usage="input" count="checkinvio.SendMessage.incount" >

<data name="identifier" type="int" length="4" usage="input" />
<data name="quantity" type="int" length="4" usage="input" />
<data name="price" type="float" length="4" usage="input" />
<data name="description" type="char" length="64" usage="input" init="n/a" />

</struct>

66 iSeries: IBM Connect for iSeries 2.0

<data name="istatus" type="int" length="4" usage="input" init="0" />
</struct>

<!-- OUTPUT struct defining message to receive, name must be ReceiveMessage-->
<struct name="ReceiveMessage" usage="output" >

<data name="outcount" type="int" length="4" usage="output" />
<data name="hdroutdsc" type="char" length="64" usage="output" />
<struct name="itemout" usage="output" count="checkinvio.ReceiveMessage.outcount" outputsize="1024" >

<data name="code" type="int" length="4" usage="output" />
<data name="quant" type="int" length="4" usage="output" />
<data name="outprice" type="float" length="4" usage="output" />
<data name="status" type="char" length="64" usage="output" />

</struct>
<data name="msgoend" type="char" length="12" usage="output" />
<data name="ostatus" type="int" length="4" usage="output" />

</struct>
</program>

</pcml>

Example: Data queue

QueueConnectorDQ allows mappings for the DataQueue key. You can map input values to send and
receive values to match. In addition, the value that you use to send can be mapped into your output
document. Here is an example of all independent possibilities. They can be specified in any combination,
or any order. Only the highest level structure or data names must match what is specified in the example.
<pcml version="1.0">

<!-- PCML source for Inventory Check, document name must match program name -->
<program name="checkinvio" path="not used">

<!-- INPUT struct defining the message to receive, name must be SendMessage-->
<struct name="SendMessage" usage="input" >

<data name="incount" type="int" length="4" usage="input" />
<data name="hdrdesc" type="char" length="64" usage="input" init="n/a" />
<struct name="item" usage="input" count="checkinvio.SendMessage.incount" >

<data name="identifier" type="int" length="4" usage="input" />
<data name="quantity" type="int" length="4" usage="input" />
<data name="price" type="float" length="4" usage="input" />
<data name="description" type="char" length="64" usage="input" init="n/a" />

</struct>
<data name="istatus" type="int" length="4" usage="input" init="0" />

</struct>

<!-- OUTPUT struct defining message to receive, name must be ReceiveMessage-->
<struct name="ReceiveMessage" usage="output" >

<data name="outcount" type="int" length="4" usage="output" />
<data name="hdroutdsc" type="char" length="64" usage="output" />
<struct name="itemout" usage="output" count="checkinvio.ReceiveMessage.outcount" outputsize="1024" >

<data name="code" type="int" length="4" usage="output" />
<data name="quant" type="int" length="4" usage="output" />
<data name="outprice" type="float" length="4" usage="output" />
<data name="status" type="char" length="64" usage="output" />

</struct>
<data name="msgoend" type="char" length="12" usage="output" />
<data name="ostatus" type="int" length="4" usage="output" />

</struct>

<!-- INPUT struct for mapping iSeries data queue key to use for receiving msg.
Only used when Keyed Receive Queue property is YES and the Receive Queue Key property is MAPPED -->

<struct name="DQKeyToReceive" usage="input" >
<data name="dqrcvkey" type="char" length="10" usage="input" init=" " />

</struct>

Chapter 5. Configure iSeries Connect 67

</program>
</pcml>

Application connector document field set (ACDFieldSet): ACDFieldSet is an XML grammar that is
designed for use with iSeries Connect. ACDFieldSet provides a mechanism to fully specify application
connector fields and their attributes, such as attributes that define the type, length, precision, name, and
repetition of each field.

The ACDFieldSet grammar provides certain advantages over the PCML grammar: ACDFieldSet is not
restricted to the semantics and type scheme supported by the iSeries platform, and you can define type
information for each field.

ACDFieldSet documents are used for message construction, buffer layout, and field descriptions.

Syntax

Here is the syntax for the ACDFieldSet format. When you create an ACDFieldSet document, use the file
extension ACDFieldSet.
<field name="name" location="input or output message field name" display="yes | no"
[type = "int | float | byte | struct | double | bigdecimal | long | short | bytearray | string | boolean"]
[repeating ="yes | no"]
>
[<length> "number" </length>]
[<precision> "number" </precision]
[<countfield> "reference to a previous int,short,or long field"</countfield>]
</field>

These are the attributes on the Field element:

name Specifies the name of the field element.

location
Specifies the path to the field.

display
Indicates if this field should be displayed in the deployment editor.

type Indicates the data type of the field being used.

repeating
Indicates if the input field is a repeating field.

length Specifies the length of the data element.

precision
Specifies the precision (in bytes) for some numeric data types. It is used to define the explicitly
understood number of decimal positions. Output fields only reflect these number of digits. The
connector’s processing code must use the same number of decimal digits.

countfield
Specifies a field where a count (the actual number of repeated fields) is stored. The count is an
int, short, or long data type field. If there is a repeating field already within a repeating structure,
then the countfield must reference a field within that structure.

Example: ACDFieldSet document

Here is a sample ACDFieldSet document, named sample.ACDFieldSet:
<?xml version="1.0"?>
<acdfieldset version="2.0" >

<input >

68 iSeries: IBM Connect for iSeries 2.0

<field display="yes" location="/Order"
name="Order" repeating="no" type="struct" >
<children >

<field display="no" location="/Order/item_count"
name="item_count" repeating="no" type="int" />

<field display="yes" location="/Order/Item"
name="Item" repeating="yes" type="struct" >

<countfield >/Order/item_count</countfield>
<children >

<field display="yes" location="/Order/Item/itemNumber"
name="itemNumber" repeating="no" type="string" >

<length >7</length>
</field>
<field display="yes" location="/Order/Item/price"

name="price" repeating="no" type="float" />
<field default="1" display="yes" location="/Order/Item/quantity"

name="quantity" repeating="no" type="int" />
<field display="no" location="/Order/Item/line_count"

name="line_count" repeating="no" type="int" />
<field display="yes" location="/Order/Item/Description"

name="Description" repeating="yes" type="string" >
<length >80</length>
<countfield >/Order/Item/line_count</countfield>

</field>
</children>

</field>
<field display="yes" location="/Order/Buyer"

name="Buyer" repeating="no" type="string" >
<length >9</length>

</field>
</children>

</field>
</input>
<output />

</acdfieldset>

Create business process flows
A process flow defines the sequence of processing steps that are required to handle a B2B request.
These steps may include invocation of connectors and the other steps outlined below. These are the step
types that are supported in iSeries Connect process flows:

v Decision
The decision step can evaluate one or more conditional expressions. The conditional expression are
listed with corresponding step indicators. The conditional expressions are evaluated in order and the
first expression that evaluates to True has its corresponding step taken. If no conditional expressions
are evaluated to True, then the default step is taken. The result of the condition expression must be a
boolean type.

v Copy
You can use the copy step to copy data or perform data operations on fields to generate a new value.
The resultant data type of the source expression must be the same data type as the target reference.
The copy step does not support copying repeating elements or structures.

v Response
You can use the response step to initiate a synchronous response to the delivery gateway. You can
execute only one response step when processing a flow. If you do not define a response step, a
response is sent at the end of the flow processing.

v Connector
The connector step invokes an application connector instance that you have configured. You map fields
(defined by your protocol type) to fields in your back-end application.

To configure your business process flows, use the iSeries Connect configuration tool. Click the Tools tab
and then click Process Flows.

Chapter 5. Configure iSeries Connect 69

Before you start

Before you configure your business process flows, you should have completed these tasks:

v Determine the request types that are supported by your protocol.

v For each request type, define the steps included in the process flow.

v Configure an application connector for any back-end applications.

Deploy your business process flows
A business process flow is made up of process flow models and associated application connector
documents. You need to deploy your business process flow to create the runtime configuration data format
that iSeries Connect uses.

To deploy your process flows, click the Deployment tab in the iSeries Connect configuration tool. Click
Add Flow to start the deployment wizard.

After you complete the deployment wizard, you must update the flow manager component with your
process flow data. If the flow manager is running, click Update flow manager (under the Deployment tab)
to refresh it. Otherwise, the changes you have made do not take effect until the next time you start the
flow manager.

Start your instance
To start your instance, follow these steps:

1. In the iSeries Connect configuration tool, click the Instances tab. Select your instance.

2. Click Start.

3. On the Start B2B Instance page, select all listed components.

4. Click Start. It may take a few minutes for your instance to start. Wait until all components show a
status of Started and you receive a message that the instance was successfully started.

Test your instance
iSeries Connect provides a utility, called Test Drive Connect, that simulates requests from a B2B
marketplace. You can use this utility to ensure that your instance is correctly configured to process B2B
requests.

To run the Test Drive Connect wizard, do the following: S and click Test Drive Connect.

1. Click the Instances tab and select your instance on the Manage Connect Instances page.

2. Click the Tools tab and then click Test Drive Connect.

For an example of using the Test Drive Connect utility, see “Run the PCML verification sample” on
page 85.

Configure WebSphere Commerce Suite
To configure the “WebSphere Commerce Suite extensions” on page 18 instance and the instance to allow
WCS stores to participate as providers in a B2B environment, follow these steps:

1. Create a new WCS instance on iSeries. See these resources for information about creating WCS
instances:

v Installation Guide: WebSphere Commerce Suite Professional Edition for e-server iSeries, Version

5.1

v Installation Guide: WebSphere Commerce for e-server iSeries, Version 5.4

2. Before you start your new WCS instance follow these steps:

70 iSeries: IBM Connect for iSeries 2.0

http://www.ibm.com/software/webservers/commerce/wcs_pro/WCSuiteInstallGuidePro_iseries.pdf
http://www.ibm.com/software/webservers/commerce/wcs_pro/WCSuiteInstallGuidePro_iseries.pdf
ftp://ftp.software.ibm.com/software/websphere/commerce/54/en/400/WCiSeriesInstallGuide.pdf

a. If you are using a remote WCS instance, an entry must be added to the relational database
directory on the iSeries server where iSeries Connect is installed. Use the WRKRDBDIRE CL
command to add the entry.

b. Your WCS instance has an associated HTTP Server. This HTTP Server must support Secure
Sockets Layer (SSL) protocol. See these iSeries Information Center resources for more
information about changing your HTTP Server configuration:

v For V5R1, Configure a secure server on HTTP Server

v For V5R2, Configure a secure server on HTTP Server

c. To support the iSeries Connect WCS extensions, a digital certificate must be associated with the
HTTP Server instance. Use digital certificate manager (DCM) to associate the digital certificate.

For WCS instances that reside on the same system as iSeries Connect, the digital certificate must
have a common host name. For example, if the host name of the WCS instance is
myhost.mydomain.mycompany.com, the digital certificate that is assigned to the HTTP Server
instance must have a common name of myhost.mydomain.mycompany.com. Associate the digital
certificate after the instance has been created, but before you start the instance. See these
Information Center resources for more information:

v For V5R1, Digital Certificate Management

v For V5R2, Digital Certificate Management

d. For WCS instances that reside on a system remote to iSeries Connect, a copy of the certificate
for the Certificate Authority that signed the server certificate for the WCS instance must be
imported into the *SYSTEM key store on the system that runs iSeries Connect. If iSeries Connect
is split into separate systems for running the delivery gateway and flow manager functions, the
Certificate Authority certificate must be copied to the flow manager system. See “Copy digital
certificates for remote WebSphere Commerce Suite (WCS) instances” on page 72.

e. If you are using a remote WCS instance, copy the JAR file that contains the WCS extensions
support for WCS to the remote server:

If you are using WCS 5.1, do the following:

1) Transfer /QIBM/ProdData/Connect200/Classes/wcsiconnect.jar (in binary mode) to the remote
system’s /QIBM/UserData/CommerceSuite5/Instances/instance_name/lib directory.

Note: You can put the jar file in a different directory as long as you update the class
path to refer to that location.

2) On the remote system, update the classpath of the WebSphere Application Server instance
that is associated with the WCS instance. Append this path to the front of the classpath:
/QIBM/UserData/CommerceSuite5/Instances/wcsiconnect.jar. For more information about
updating the classpath, see the ″Update class paths″ topic in Chapter 8 of the IBM

WebSphere Commerce Suite Programmer’s Guide, Version 5.1

If you are using WCS 5.4, do the following:

1) Transfer /QIBM/ProdData/Connect200/Classes/wcsiconnect54.jar (in binary mode) to the
remote system’s
/QIBM/UserData/WebASAdv4/WASAdminServer/InstalledApps/
WC_Enterprise_App_wcsinstancename.ear/wcstores.war/WEB-INF/lib/ directory.

3. Use existing methods for populating your WCS instance with merchant and product information. If you
plan to support remote catalog requests between B2B trading partners and this WCS instance, you
need to use a B2B enabled store. For information about using a model B2B-enabled WCS store
(which is supplied as part of iSeries Connect), see these topics:

v For WCS 5.1, see “Enabling a WebSphere Commerce Suite 5.1 store for remote catalog support”
on page 72.

v For WCS 5.4, see “Enabling a WebSphere Commerce Suite 5.4 store for remote catalog support”
on page 80.

Chapter 5. Configure iSeries Connect 71

http://publib.boulder.ibm.com/pubs/html/as400/v5r1/ic2924/index.htm?info/rzaie/rzaie9setupssl.htm
http://publib.boulder.ibm.com/pubs/html/as400/v5r1/ic2924/index.htm?info/rzahu/rzahurazhudigitalcertmngmnt.htm
http://www.ibm.com/software/webservers/commerce/wcs_pro/ProgrammersGuide.pdf
http://www.ibm.com/software/webservers/commerce/wcs_pro/ProgrammersGuide.pdf

4. “Create an instance” on page 40.

5. Start your WCS instance.

6. Configure provider information using the provider registration function. During this step, you can make
associations between the provider and a WCS merchant.

7. Configure partner organizations using the partner organization registration function. When you
associate a partner organization to a provider and marketplace association, you can also indicate that
the partner organization is allowed to participate as a WCS shopper. During this configuration step,
the WCS extensions configuration services automatically adds a unique shopper table entry into the
WCS shopper table, and the associations between partner organizations and WCS shoppers are
made.

8. (Optional) Make shopper or customer group assignments by using the WCS configuration tools if the
administrator decides to allow special pricing for some of the partner organizations.

9. Augment the products that are associated with the B2B providers that have an association with WCS
merchants by using the catalog services tool. The catalog services tool uses methods that the WCS
extensions catalog services provides to perform this function.

10. Create the local catalog or remote catalog image that is required for downloading to the partner
organization site. If you want to use WCS Partnumber or Manufacturer’s Partnumber values, see
“Customize WebSphere Commerce Suite” on page 96.

11. “Deploy process flows for WebSphere Commerce Suite (WCS)” on page 84.

12. Start the instance.

13. Follow the instructions required to download the local or remote catalog image onto your trading
partner system or network.

Now, iSeries Connect and WCS can receive B2B requests from partner organizations.

Note: If a partner organization with WCS shopper associations is deleted, the shoppers are not
removed from WCS.

For additional information about WCS customization, see “Customize WebSphere Commerce Suite” on
page 96.

Copy digital certificates for remote WebSphere Commerce Suite (WCS)
instances
For authentication purposes between the iSeries Connect system and the remote WCS system, it is
necessary to obtain a copy of the Certificate Authority (CA) certificate that signed the server certificate that
is being used by the HTTP server supporting the WCS instance. Use IBM Digital Certificate Manager to
copy the certificate. For more information about Digital Certificate Manager, see these iSeries Information
Center resources:

v For V5R1, Digital Certificate Management

v For V5R2, Digital Certificate Management

Note: If you created the iSeries Connect instance before the *SYSTEM certificate store was created
on that same system, you must grant additional authority to the instance user profile (named
instance_name). The instance user profile must have Read and Execute (*RX) authority to the entire
path of the /QIBM/UserData/icss/cert/server/default.kdb *SYSTEM certificate store file.

Enabling a WebSphere Commerce Suite 5.1 store for remote catalog
support
Remote catalog support requires a WebSphere Commerce Suite (WCS) store enabled for use with
Connect for iSeries. The easiest way to create a WCS store enabled for remote catalog support is to look

72 iSeries: IBM Connect for iSeries 2.0

http://publib.boulder.ibm.com/pubs/html/as400/v5r1/ic2924/index.htm?info/rzahu/rzahurazhudigitalcertmngmnt.htm
http://publib.boulder.ibm.com/pubs/html/as400/v5r2/ic2924/index.htm?info/rzahu/rzahurazhudigitalcertmngmnt.htm

at the InFashionWithConnect sample provided with Connect for iSeries in the store archive named
InFashionWithConnect_en_US_es_ES.sar in the
/QIBM/ProdData/Connect200/Commerce/Samples/WCSStore directory. InFashionWithConnect is based on
the InFashion sample provided with WCS, with changes made to allow it to concurrently participate in both
B2C and B2B environments.

If you have an existing WCS store that you want to enable for use as a remote catalog with Connect for
iSeries, you can learn how the InFashion sample was modified to produce the InFashionWithConnect
sample by reading “Details: InFashionWithConnect sample store implementation” on page 74. You may
also want to look at the actual implementation of the InFashionWithConnect sample, by looking at the
contents of the store archive.

If you do not have an existing WCS store, but want to create a new WCS store that is enabled for use as
a remote catalog, you could use the InFashionWithConnect sample as the starting point for your own
customization or you could just use it as a source of ideas for how you want to implement your store. If
you are creating a store only for remote catalog support with no need to support B2C users, then your
implementation would not need to use the conditional logic that is in InFashionWithConnect to behave
differently depending on whether the user is B2B or B2C.

If you want to publish a new store using the shipped InFashionWithConnect sample, follow these steps:

1. To make InFashionWithConnect available as a sample in WCS Store Services, follow the instructions
in Chapter 4 ″Create a sample store archive″ of the IBM WebSphere Commerce Suite Store

Developer: Building a Store Archive, Version 5.1 Follow all steps except for the first (the store
archive is shipped, so you don’t need to build it), using InFashionWithConnect as the store name.

2. Use StoreServices to create a new store archive specifying the sample named
InFashionWithConnect_en_US_es_ES.sar. For detailed instructions, see the ″Create a store archive
using Store Services″ topic in Chapter 5 of the IBM WebSphere Commerce Suite Store Developer:

Creating a Store Using the Store Services, Version 5.1 information.

3. Before publishing the store, change the store name to whatever name you want, and make whatever
other modifications you want. For detailed instructions, see Chapters 6 through 12 of the IBM
WebSphere Commerce Suite Store Developer: Creating a Store Using the Store Services, Version 5.1

information.

4. Use StoreServices to publish the new store. For detailed instructions, see the ″Publish a store archive
from Store Services″ topic in Chapter 13 of the IBM WebSphere Commerce Suite Store Developer:

Creating a Store Using the Store Services, Version 5.1 information.

5. Use the WCS Configuration Manager to disable caching for the WCS instance you are using, if it is
currently enabled.

By default, WCS does caching of the sample store web pages. The default caching does not look at
the new b2bShopperType and b2bLogonMode parameters being used by the InFashionWithConnect
sample. With caching enabled, that will cause all users to see the same pages, rather than seeing
pages tailored based on those parameters. The simplest way to avoid that problem is to just disable
caching for your WCS instance.

For more information about WCS caching, see the ″Cache administration″ topic in Chapter 8 of the

IBM WebSphere Commerce Suite Fundamentals, Version 5.1 information.

For better performance, you may want to batch compile your JSPs. For information about how to do
that, see the ″Compile the JavaServer Pages files″ topic in Chapter 7 of the Installation Guide:

WebSphere Commerce Suite Professional Edition for e-server iSeries, Version 5.1

Chapter 5. Configure iSeries Connect 73

http://www-4.ibm.com/software/webservers/commerce/wcs_pro/StoreDeveloperSAR.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/StoreDeveloperSAR.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/StoreDeveloperStoreServices.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/StoreDeveloperStoreServices.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/StoreDeveloperStoreServices.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/StoreDeveloperStoreServices.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/StoreDeveloperStoreServices.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/StoreDeveloperStoreServices.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/FundamentalsGuide.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/WCSuiteInstallGuidePro_iseries.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/WCSuiteInstallGuidePro_iseries.pdf

Details: InFashionWithConnect sample store implementation
The InFashionWithConnect sample store was created based on the WCS InFashion sample store, with
modifications to support concurrent use by both B2C and B2B customers. As much as possible, the
existing interface and implementation of the WCS InFashion sample were preserved as is or modified in a
way that is meant to be consistent with the approach taken in the InFashion sample.
InFashionWithConnect is just one sample, and you may have different implementation approaches that
work better for you, so do not feel that your store needs to work the same as this sample.

Changes for B2C

The following are changes relative to the original WCS InFashion sample which are relevant to a B2C user
of InFashionWithConnect:

v The PaymentManager checking was disabled in order to make it easier to run the sample. That means
that the sample allows orders to be placed without validating payment information. For any production
store you would create, you would want to make sure to implement payment validation that meets your
requirements. See details below.

v The version of InFashion available at the time the InFashionWithConnect sample was created
mistakenly had both products and items being marked as ″Buyable″. That mistake was corrected by
changing the catalog.xml file to specify Buyable=″0″ for all ProductBeans.

Changes for B2B

The following are changes relative to the original WCS InFashion sample which are relevant to a B2B user
of InFashionWithConnect:

v The Java Server Pages (JSPs) that support the browser pages a B2B user will see have been modified
to support additional parameters passed with the url string. When invoking the WCS store for a
punchout request, the Connect for iSeries support passes the first two of these parameters set to the
appropriate values for the request. The JSP implementations then use these parameters to produce the
appropriate output, and they propagate these parameters to other pages reachable from themselves in
order to get the right behavior on those pages too.

– b2bShopperType

This parameter indicates whether the shopper type is B2B or B2C. The Connect for iSeries support
always specifies this parameter with a value of b2b. The JSPs are implemented to interpret any other
value or the complete absence of this parameter to mean the shopper type is B2C.

– b2bLogonMode

For B2B shoppers, this parameter is used to indicate whether the request is to create a new quote
(b2bLogonMode=create), to edit an existing quote (b2bLogonMode=edit), or to inspect an existing
quote (b2bLogonMode=inspect). The pages behave about the same for create and edit modes, but
for inspect mode there are significant changes to prevent the user from making any modifications to
the existing quote. For example, editable fields are made read-only, and buttons related to making
changes are not shown.

– b2bOrderId

For B2B shoppers editing or inspecting an existing order, this parameter is used to propagate the
order identifier from the punchout request through all the JSP pages so that it can be returned on the
call to the B2BNewQuote command.

v A new properties file is provided, named infashiontext_connect_en_US.properties. This file contains the
translatable text shown to the B2B shopper. Like the InFashion sample, the InFashionWithConnect
sample is enabled for multiple languages, and the InFashionWithConnect sample store archive is
configured for English and Spanish, and a B2C user can view the pages in Spanish, but the new
infashiontext_connect_en_US.properties file has not been translated into Spanish so a B2B user always
sees English. All it would take to enable the InFashionWithConnect sample store to be displayable in
Spanish would be for you to create an infashiontext_connect_es_ES.properties file that contained the
properties translated into Spanish.

74 iSeries: IBM Connect for iSeries 2.0

v An implementation of the ItemDisplay JSP was provided to support punchout request for a specific item.
The implementation is based on the ProductDisplay JSP, with appropriate modifications.

v Various functions are not shown on the pages for B2B users. For example, the ″My account″ options in
the header and footer are not shown, and the ″Register now″ option in the sidebar is not shown.

v Appropriate changes were made to the terminology. For example, references to the term order were
changed to quote.

v The text shown on the Help page was changed to be more appropriate for the B2B user.

v Function not considered appropriate or necessary for a B2B user in this sample was suppressed. This
includes the billing address, ship-to address, shipping method, shipping charges, taxes, and payment
information.

v A button has been added to the header and footer to support cancelling the B2B operation. The
implementation uses the “WebSphere Commerce Suite B2BNewQuote command” on page 77 to ensure
that the transaction is closed appropriately. For a create request, it simply cancels the operation so that
no new quote is created. For an inspect request, it cancels the operation and there is no change made
to the existing quote. For an edit request, it deletes the existing quote.

If an edit is performed and no changes are to be made, the shopper must complete the edit transaction
with the choice of items and quantities shown matching the existing quote and without using the cancel
option.

v When a create or edit quote operation is completed, the JSP uses the “WebSphere Commerce Suite
B2BNewQuote command” on page 77 to ensure that the transaction is performed appropriately. Instead
of then showing the same confirmation page that a B2C shopper would see, the implementation
redirects the browser to the appropriate partner page.

Disabling the Payment Manager

The Payment Manager checking was disabled in order to make it easier to run the sample. That means
that the sample allows orders to be placed without validating payment information. For any production
store you would create, you would want to make sure to implement payment validation that meets your
requirements.

The payment manager was disabled by doing the following:

1. In the paymentinfo.xml file in the data/es_ES directory, on the line specifying <PaymentManager
enable=″yes″/>, changed ″yes″ to ″no″.

2. In the command.xml file in the data directory, in the section specifying the command for the interface
named ″com.ibm.commerce.payment.commands.DoCancelCmd″, changed the classname setting from
″com.ibm.commerce.payment.commands.DoCancelPMCmdImpl″ to
″com.ibm.commerce.payment.commands.DoCancelCmdImpl″.

3. In the command.xml file in the data directory, in the section specifying the command for the interface
named ″com.ibm.commerce.payment.commands.DoPaymentCmd″, changed the classname setting
from ″com.ibm.commerce.payment.commands.DoPaymentMPFCmdImpl″ to
″com.ibm.connect.wcsext.environment.Qbecb2bDoPaymentCmdImpl″.

4. Implemented the Qbecb2bDoPaymentCmdImpl Java class specified in the command.xml file above.
This class implements the DoPaymentCmd interface and extends the TaskCommandImpl class. Since
the sample intentionally is not performing any validation of payment information, the implementation of
the performExecute method in this class simply returns without doing anything. For general
information, see the ″Task command customization″ topic in Chapter 6 of the IBM WebSphere

Commerce Suite Programmer’s Guide, Version 5.1 information.

Modified JSPs

These are the specific JSPs from the InFashion sample that were modified in producing the
InFashionWithConnect sample. The files include comments describing the changes made. In general, if
you scan for the string ″B2B″, you will find the changes.

Chapter 5. Configure iSeries Connect 75

http://www-4.ibm.com/software/webservers/commerce/wcs_pro/ProgrammersGuide.pdf
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/ProgrammersGuide.pdf

v confirmation.jsp

v emptyshoppingcart.jsp

v footer.jsp

v getresource.jsp

v header.jsp

v help.jsp

v InventoryError.jsp

v ItemDisplay.jsp

v newarrivals.jsp

v OrderDisplayPending.jsp

v ProductDisplay.jsp

v shoppingcart.jsp

v sidebar.jsp

v StoreCatalogDisplay.jsp

v subcategory.jsp

v topcategory.jsp

New WebSphere Commerce Suite (WCS) commands to support iSeries Connect

These commands provide communication between WCS and iSeries Connect:

Command Name Interface Implementation Description

WCSB2BCatalog Qbecb2bcatCmd Qbecb2bcatCmdImpl Provides WCS catalog
information using WCS 5.1
data access beans.

WCSB2BCatalog Qbecb2bcatsqlCmd Qbecb2bcatsqlCmdImpl Provides WCS catalog
information using direct
SQL into the WCS 5.1
database.

B2BLogon Qbecb2blogCmd Qbecb2blogCmdImpl Used by the internal iSeries
Connect processes to log
onto the WCS instance to
perform transactions.

B2BNewQuote Qbecb2bnqCmd Qbecb2bnqCmdImpl See “WebSphere
Commerce Suite
B2BNewQuote command”
on page 77 for more
information.

B2BOrder Qbecb2borderCmd Qbecb2borderCmdImpl Tools to process a purchase
order request in WCS.

WCSPunchOut Qbecb2bpoCmd Qbecb2bpoCmdImpl Authenticates a shopper to
WCS.

B2BShopperAdmin Qbecb2bsaCmd Qbecb2bsaCmdImpl Administrative tools that
maintain B2B shoppers in
WCS.

WCSB2BShop Qbecb2bshopCmd Qbecb2bshopCmdImpl See “WebSphere
Commerce Suite
WCSB2BShop command”
on page 79 for more
information.

76 iSeries: IBM Connect for iSeries 2.0

Command Name Interface Implementation Description

B2BVerify Qbecb2bvfyCmd Qbecb2bvfyCmdImpl Verification tools that
provide access to WCS
information.

WebSphere Commerce Suite B2BNewQuote command: B2BNewQuote is a command used by the
BtoB store and iSeries Connect to pass control back to iSeries Connect to allow the quote transaction to
be processed. A WebSphere Commerce Suite (WCS) order is transformed into the quote. The order must
exist and be in pending (″P″) status prior to starting this command. Typically, it can be called after the
completion of an OrderDisplay command.

Parameters

These parameters are passed into B2BNewQuote during the punchout process:

Parameter name Description Required Optional

order_rn WCS order reference
number that is used as the
quote

X

merchant_rn WCS merchant reference
number

X

nq_mode Activity code (create,
cancel) to determine how to
complete the transaction

X

The nq_mode parameter (used in conjunction with the shopper logon_mode parameter) determines the
process that is used to complete the transaction.

Logon mode Nq mode Process

create create Update status = ’q’, pass
order_rn=new order reference number

create cancel No update to status, pass order_rn=-1

edit create Update status = ’q’, pass
order_rn=new order reference number

edit cancel Update status = ’q’, pass order_rn=-1

inspect create Update status = ’q’, pass
order_rn=new order reference number

inspect cancel Update status = ’q’, pass order_rn=-1

For example:
<A HREF="/webapp/wcs/stores/servlet/B2BNewQuote?merchant_rn=$(merfnbr)&order_rn=

$(order_rn)&nq_mode=cancel" TARGET="homes">

<center>Cancel Transaction</center>

The logon_mode and nq_mode parameters determine the parameter values that are passed.

Chapter 5. Configure iSeries Connect 77

Logon
mode

Nq
mode

URL

create create http://server_name/webapp/wcs/stores/servlet/
B2BNewQuote?order_rn=XXXX&merchant_rn=XXXXX&nq_mode=create

create cancel http://server_name/webapp/wcs/stores/servlet/
B2BNewQuote?order_rn=XXXX&merchant_rn=XXXXX&nq_mode=cancel

edit create http://server_name/webapp/wcs/stores/servlet/
B2BNewQuote?order_rn=XXXX&merchant_rn=XXXXX&nq_mode=create

edit cancel http://server_name/webapp/wcs/stores/servlet/
B2BNewQuote?order_rn=XXXX&merchant_rn=XXXXX&nq_mode=cancel

inspect create http://server_name/webapp/wcs/stores/servlet/
B2BNewQuote?order_rn=XXXX&merchant_rn=XXXXX&nq_mode=create

inspect cancel http://server_name/webapp/wcs/stores/servlet/
B2BNewQuote?order_rn=XXXX&merchant_rn=XXXXX&nq_mode=cancel

Processing

When the command has successfully completed processing the transaction, the OrderOkView task is
called. OrderOkView redirects to ConfirmationView which has confirmation.jsp as the assigned view.

These parameters are passed to confirmation.jsp:

Parameter name Description Required Optional

SupplierNumber Internal iSeries Connect X

SupplierDomainNumber Internal iSeries Connect X

Buyer Number Internal iSeries Connect X

BuyerDomainNumber Internal iSeries Connect X

SupplierCookie Unique shopper identifier X

QuoteNumber WCS order number X

PostBackURL Internal iSeries Connect X

NewQuoteURL Internal iSeries Connect X

nqMode create or cancel X

logonMode create, edit, or inspect X

shopper_type BtoB shopper identifier b2b X

The confirmation.jsp file contains JavaScript code that redirects the browser to the iSeries Connect
delivery gateway and passes the required parameters for processing.

For example:
<script language="JavaScript">

location.href="<%=newQuoteURL%>
?SupplierNumber=<%=supplierNumber%>
&SupplierNumberDomain=<%=supplierNumberDomain%>
&BuyerNumber=<%=buyerNumber%>
&BuyerNumberDomain=<%=buyerNumberDomain%>
&SupplierCookie=<%=supplierCookie%>
&QuoteNumber=<%=quoteNumber%>
&PostBackURL=<%=postBackURL%>";

</script>

78 iSeries: IBM Connect for iSeries 2.0

WebSphere Commerce Suite WCSB2BShop command: WCSB2BShop is a command used by the
BtoB store and iSeries Connect in the remote catalog punchout process to allow the user to logon to the
WCS store. Store entry is controlled by the logon mode of either create, edit, or inspect. If the mode is
create and no catalog entry id is specified, the user is directed to the store page that allows them to create
a new quote. If the mode is create and a catalog entry id is specified, the user is directed to that item
page and is allowed to create a new quote. If it is either edit or inspect, the existence of the quote is
confirmed, the status of the quote is updated, and the user is directed to either a store page that allows
edit functions or a page for inspection of the existing quote.

Parameters

These parameters are passed into WCSB2Bhop during the punchout process:

Parameter name Description Required Optional

SupplierCookie Unique shopper identifier X

NewQuoteURL Internal iSeries Connect X

PostBackURL Internal iSeries Connect X

SupplierCode Internal iSeries Connect X

SupplierDomain Internal iSeries Connect X

BuyOrgCode Internal iSeries Connect X

BuyOrgDomain Internal iSeries Connect X

B2B_Logon_Mode Transaction type (create, edit, or inspect) X

shiptoRN WCS ShipTo reference number for an item in a quote edit or inspect create

B2B_Merchant_RN Used to determine the redirect URL X

catEntryId Used for detailed remote catalog punchout detailed non-detailed

The B2B_Logon_Mode and catEntryId parameters determine the processing and redirection to the store
home page.

Logon mode catEntryId Process

create Specified Redirect to item page.

create Not specified Redirect to store home page.

edit Not applicable Update quote status = ’P,’ redirect to display the quote.

inspect Not applicable Update quote status = ’P,’ redirect to display the quote.

The WCSB2BShop command determines what page to load (WCS command to process) based on the
logon mode. The redirect parameters are determined by the B2B_Logon_Mode parameter.

Logon mode catEntryId Redirect URL

create Specified http://server_name/webapp/wcs/stores/servlet/ProductDisplay
?storeId=XX&langId=XX&catalogId=XX&productId=XXXX
&b2bShopperType=b2b&b2bLogonMode=create

create Not
specified

http://server_name/webapp/wcs/stores/servlet/StoreCatalogDisplay
?storeId=XXXX&langId=XX&catalogId=XX
&b2bShopperType=b2b&b2bLogonMode=create

edit Not
applicable

http://server_name/webapp/wcs/stores/servlet/OrderItemDisplay
?storeId=XX&langId=XX&catalogId=XX&orderId=XXXX
&b2bShopperType=b2b&b2bLogonMode=edit

Chapter 5. Configure iSeries Connect 79

Logon mode catEntryId Redirect URL

inspect Not
applicable

http://server_name/webapp/wcs/stores/servlet/OrderItemDisplay
?storeId=XX&langId=XX&catalogId=XX&orderId=XXXX
&b2bShopperType=b2b&b2bLogonMode=inspect

Enabling a WebSphere Commerce Suite 5.4 store for remote catalog
support
Remote catalog support requires a WebSphere Commerce Suite (WCS) store enabled for use with
Connect for iSeries. The easiest way to create a WCS store enabled for remote catalog support is to look
at the InFashionWithConnect sample provided with Connect for iSeries in the store archive named
InFashionWithConnect54_en_US_es_ES.sar in the
/QIBM/ProdData/Connect200/Commerce/Samples/WCSStore directory. InFashionWithConnect is based on
the InFashion sample provided with WCS, with changes made to allow it to concurrently participate in both
B2C and B2B environments.

If you have an existing WCS store that you want to enable for use as a remote catalog with Connect for
iSeries, you can learn how the InFashion sample was modified to produce the InFashionWithConnect
sample by reading “Details: InFashionWithConnect54 sample store implementation” on page 81. You may
also want to look at the actual implementation of the InFashionWithConnect sample, by looking at the
contents of the store archive.

If you do not have an existing WCS store, but want to create a new WCS store that is enabled for use as
a remote catalog, you could use the InFashionWithConnect sample as the starting point for your own
customization or you could just use it as a source of ideas for how you want to implement your store. If
you are creating a store only for remote catalog support with no need to support B2C users, then your
implementation would not need to use the conditional logic that is in InFashionWithConnect to behave
differently depending on whether the user is B2B or B2C.

If you want to publish a new store using the shipped InFashionWithConnect sample, follow these steps:

1. To make InFashionWithConnect available as a sample in WCS Store Services, follow the instructions
in ″Creating a store using a sample store archive″ topic in Chapter 6 of the IBM WebSphere

Commerce Fundamentals, Version 5.4 .

a. Use StoreServices to create a new store archive specifying the sample named
InFashionWithConnect54_en_US_es_ES.sar.

b. Before publishing the store, change the store name to whatever name you want, and make
whatever other modifications you want.

c. Use StoreServices to publish the new store.

2. Use the WCS Configuration Manager to disable caching for the WCS instance you are using, if it is
currently enabled.

By default, WCS does caching of the sample store Web pages. The default caching does not look at
the new b2bShopperType and b2bLogonMode parameters being used by the InFashionWithConnect
sample. With caching enabled, that will cause all users to see the same pages, rather than seeing
pages tailored based on those parameters. The simplest way to avoid that problem is to just disable
caching for your WCS instance.

For more information about WCS caching, see the ″Dynamic page caching″ topic in Chapter 10 of the

IBM WebSphere Commerce Fundamentals, Version 5.4 information.

For better performance, you may want to batch compile your JSPs. For information about how to do
that, see the ″Compile the JavaServer Pages files″ topic in Chapter 8 of the Installation Guide:

WebSphere Commerce for e-server iSeries, Version 5.4

80 iSeries: IBM Connect for iSeries 2.0

ftp://ftp.software.ibm.com/software/websphere/commerce/54/en/Fundamentals.pdf
ftp://ftp.software.ibm.com/software/websphere/commerce/54/en/Fundamentals.pdf
ftp://ftp.software.ibm.com/software/websphere/commerce/54/en/Fundamentals.pdf
ftp://ftp.software.ibm.com/software/websphere/commerce/54/en/400/WCiSeriesInstallGuide.pdf
ftp://ftp.software.ibm.com/software/websphere/commerce/54/en/400/WCiSeriesInstallGuide.pdf

Details: InFashionWithConnect54 sample store implementation
The InFashionWithConnect sample store was created based on the WCS InFashion sample store, with
modifications to support concurrent use by both B2C and B2B customers. As much as possible, the
existing interface and implementation of the WCS InFashion sample were preserved as is or modified in a
way that is meant to be consistent with the approach taken in the InFashion sample.
InFashionWithConnect is just one sample, and you may have different implementation approaches that
work better for you, so do not feel that your store needs to work the same as this sample.

Changes for B2C

The following are changes relative to the original WCS InFashion sample which are relevant to a B2C user
of InFashionWithConnect:

v The PaymentManager checking was disabled in order to make it easier to run the sample. That means
that the sample allows orders to be placed without validating payment information. For any production
store you would create, you would want to make sure to implement payment validation that meets your
requirements. See details below.

v The version of InFashion available at the time the InFashionWithConnect sample was created
mistakenly had both products and items being marked as ″Buyable″. That mistake was corrected by
changing the catalog.xml file to specify Buyable=″0″ for all ProductBeans.

Changes for B2B

The following are changes relative to the original WCS InFashion sample which are relevant to a B2B user
of InFashionWithConnect:

v The Java Server Pages (JSPs) that support the browser pages a B2B user will see have been modified
to support additional parameters passed with the url string. When invoking the WCS store for a
punchout request, the Connect for iSeries support passes the first two of these parameters set to the
appropriate values for the request. The JSP implementations then use these parameters to produce the
appropriate output, and they propagate these parameters to other pages reachable from themselves in
order to get the right behavior on those pages too.

– b2bShopperType

This parameter indicates whether the shopper type is B2B or B2C. The Connect for iSeries support
always specifies this parameter with a value of b2b. The JSPs are implemented to interpret any other
value or the complete absence of this parameter to mean the shopper type is B2C.

– b2bLogonMode

For B2B shoppers, this parameter is used to indicate whether the request is to create a new quote
(b2bLogonMode=create), to edit an existing quote (b2bLogonMode=edit), or to inspect an existing
quote (b2bLogonMode=inspect). The pages behave about the same for create and edit modes, but
for inspect mode there are significant changes to prevent the user from making any modifications to
the existing quote. For example, editable fields are made read-only, and buttons related to making
changes are not shown.

– b2bOrderId

For B2B shoppers editing or inspecting an existing order, this parameter is used to propagate the
order identifier from the punchout request through all the JSP pages so that it can be returned on the
call to the B2BNewQuote command.

v A new properties file is provided, named infashiontext_connect_en_US.properties. This file contains the
translatable text shown to the B2B shopper. Like the InFashion sample, the InFashionWithConnect
sample is enabled for multiple languages, and the InFashionWithConnect sample store archive is
configured for English and Spanish, and a B2C user can view the pages in Spanish, but the new
infashiontext_connect_en_US.properties file has not been translated into Spanish so a B2B user always
sees English. All it would take to enable the InFashionWithConnect sample store to be displayable in
Spanish would be for you to create an infashiontext_connect_es_ES.properties file that contained the
properties translated into Spanish.

Chapter 5. Configure iSeries Connect 81

v An implementation of the ItemDisplay JSP was provided to support punchout request for a specific item.
The implementation is based on the ProductDisplay JSP, with appropriate modifications.

v Various functions are not shown on the pages for B2B users. For example, the ″My account″ options in
the header and footer are not shown, and the ″Register now″ option in the sidebar is not shown.

v Appropriate changes were made to the terminology. For example, references to the term order were
changed to quote.

v The text shown on the Help page was changed to be more appropriate for the B2B user.

v Function not considered appropriate or necessary for a B2B user in this sample was suppressed. This
includes the billing address, ship-to address, shipping method, shipping charges, taxes, and payment
information.

v A button has been added to the header and footer to support cancelling the B2B operation. The
implementation uses the “WebSphere Commerce Suite B2BNewQuote command” on page 77 to ensure
that the transaction is closed appropriately. For a create request, it simply cancels the operation so that
no new quote is created. For an inspect request, it cancels the operation and there is no change made
to the existing quote. For an edit request, it deletes the existing quote.

If an edit is performed and no changes are to be made, the shopper must complete the edit transaction
with the choice of items and quantities shown matching the existing quote and without using the cancel
option.

v When a create or edit quote operation is completed, the JSP uses the “WebSphere Commerce Suite
B2BNewQuote command” on page 77 to ensure that the transaction is performed appropriately. Instead
of then showing the same confirmation page that a B2C shopper would see, the implementation
redirects the browser to the appropriate partner page.

Disabling the Payment Manager

The Payment Manager checking was disabled in order to make it easier to run the sample. That means
that the sample allows orders to be placed without validating payment information. For any production
store you would create, you would want to make sure to implement payment validation that meets your
requirements.

The payment manager was disabled by doing the following:

1. In the paymentinfo.xml file in the data/es_ES directory, on the line specifying <PaymentManager
enable=″yes″/>, changed ″yes″ to ″no″.

2. In the command.xml file in the data directory, in the section specifying the command for the interface
named ″com.ibm.commerce.payment.commands.DoCancelCmd″, changed the classname setting from
″com.ibm.commerce.payment.commands.DoCancelPMCmdImpl″ to
″com.ibm.commerce.payment.commands.DoCancelCmdImpl″.

3. In the command.xml file in the data directory, in the section specifying the command for the interface
named ″com.ibm.commerce.payment.commands.DoPaymentCmd″, changed the classname setting
from ″com.ibm.commerce.payment.commands.DoPaymentMPFCmdImpl″ to
″com.ibm.connect.wcsext.environment.Qbecb2bDoPaymentCmdImpl″.

4. Implemented the Qbecb2bDoPaymentCmdImpl Java class specified in the command.xml file above.
This class implements the DoPaymentCmd interface and extends the TaskCommandImpl class. Since
the sample intentionally is not performing any validation of payment information, the implementation of
the performExecute method in this class simply returns without doing anything. For general
information, see the ″Customizing existing task commands″ topic in Chapter 6 of the IBM WebSphere

Commerce Programmer’s Guide, Version 5.4 information.

Modified JSPs

These are the specific JSPs from the InFashion sample that were modified in producing the
InFashionWithConnect sample. The files include comments describing the changes made. In general, if
you scan for the string ″B2B″, you will find the changes.

82 iSeries: IBM Connect for iSeries 2.0

ftp://ftp.software.ibm.com/software/websphere/commerce/54/en/ProgrammersGuide.pdf
ftp://ftp.software.ibm.com/software/websphere/commerce/54/en/ProgrammersGuide.pdf

v confirmation.jsp

v emptyshoppingcart.jsp

v help.jsp

v InventoryError.jsp

v ItemDisplay.jsp

v newarrivals.jsp

v OrderDisplayPending.jsp

v ProductDisplay.jsp

v shoppingcart.jsp

v StoreCatalogDisplay.jsp

v subcategory.jsp

v topcategory.jsp

v include/footer.jsp

v include/getresource.jsp

v include/header.jsp

v include/sidebar.jsp

New WebSphere Commerce Suite (WCS) commands to support iSeries Connect

These commands provide communication between WCS and iSeries Connect:

Command Name Interface Implementation Description

WCSB2BCatalog Qbecb2bcatCmd Qbecb2bcatCmdImpl Provides WCS catalog
information using WCS data
access beans.

WCSB2BCatalog Qbecb2bcatsqlCmd Qbecb2bcatsqlCmdImpl Provides WCS catalog
information using direct
SQL into the WCS
database.

B2BLogon Qbecb2blogCmd Qbecb2blogCmdImpl Used by the internal iSeries
Connect processes to log
onto the WCS instance to
perform transactions.

B2BNewQuote Qbecb2bnqCmd Qbecb2bnqCmdImpl See “WebSphere
Commerce Suite
B2BNewQuote command”
on page 77 for more
information.

B2BOrder Qbecb2borderCmd Qbecb2borderCmdImpl Tools to process a purchase
order request in WCS.

WCSPunchOut Qbecb2bpoCmd Qbecb2bpoCmdImpl Authenticates a shopper to
WCS.

B2BShopperAdmin Qbecb2bsaCmd Qbecb2bsaCmdImpl Administrative tools that
maintain B2B shoppers in
WCS.

WCSB2BShop Qbecb2bshopCmd Qbecb2bshopCmdImpl See “WebSphere
Commerce Suite
WCSB2BShop command”
on page 79 for more
information.

Chapter 5. Configure iSeries Connect 83

Command Name Interface Implementation Description

B2BVerify Qbecb2bvfyCmd Qbecb2bvfyCmdImpl Verification tools that
provide access to WCS
information.

Deploy process flows for WebSphere Commerce Suite (WCS)
Deploy the process flows that support WebSphere Commerce Suite (WCS). The protocol flows you select
for accessing the WCS extensions vary depending upon which protocol is being used. If more than one
protocol is used to access the WCS extensions support, then each set of protocol flow mappings need to
be selected.

These process flows do not need to be changed, however some customization is possible. See
“Customize WebSphere Commerce Suite” on page 96 for more information.

Deploy flows based on the protocol your instance supports:

cXML 1.1

For deploying the support necessary to implement WCS local catalog support using the cXML 1.1 protocol,
select the process flow for OrderRequest and the request type of new. For the cXML 1.1 protocol, the
name of the process flow that is shipped with the system for supporting WCS local catalog is
qwcscxmlorderrequestnew200.

If the iSeries Connect instance is associated with an WCS instance, then the process flows for
OrderRequest and request types of update and delete are also supported. For the cXML 1.1 protocol, the
names of these process flows are qwcscxmlorderrequestupdate200 and qwcscxmlorderrequestdelete200.
Support of these update and delete flows are optional.

For deploying the support necessary to implement WCS remote catalog support using the cXML 1.1
protocol, select the process flow for NewQuote and PunchOutSetupRequest with all of the request types
(create, edit, and inspect). Additionally, select the process flows for OrderRequest. Select all OrderRequest
types (new, deleted, and update). The names of the process flows that are shipped with the system for
supporting WCS remote catalog using the cXML 1.1 protocol are:

v qwcscxmlnewquote200

v qwcscxmlorderrequestnew200

v qwcscxmlorderrequestdelete200

v qwcscxmlorderrequestupdate200

v qwcscxmlpunchoutcreate200

v qwcscxmlpunchoutedit200

v qwcscxmlpunchoutinspect200

cXML 1.2

For deploying the support necessary to implement WCS local catalog support using the cXML 1.2 protocol,
select the process flow for OrderRequest and the request type of new. For the cXML 1.2 protocol, the
name of the process flow that is shipped with the system for supporting WCS local catalog is
qwcscxml12orderrequestnew200.

If the iSeries Connect instance is associated with a WCS instance, then the process flows for
OrderRequest and request types of update and delete are also supported. For the cXML 1.2 protocol, the
names of these process flows are qwcscxml12orderrequestupdate200 and
qwcscxml12orderrequestdelete200. Support of these update and delete flows are optional.

84 iSeries: IBM Connect for iSeries 2.0

For deploying the support necessary to implement WCS remote catalog support using the cXML 1.2
protocol, select the process flow for NewQuote and PunchOutSetupRequest with all of the request types
(create, edit, and inspect). Additionally, select the process flows for OrderRequest. Select all OrderRequest
types (new, deleted, and update). The names of the process flows that are shipped with the system for
supporting WCS remote catalog using the cXML 1.2 protocol are:

v qwcscxml12newquote200

v qwcscxml12orderrequestnew200

v qwcscxml12orderrequestdelete200

v qwcscxml12orderrequestupdate200

v qwcscxml12punchoutcreate200

v qwcscxml12punchoutedit200

v qwcscxml12punchoutinspect200

Run the PCML verification sample
The objective of this verification sample is to verify the successful installation and configuration of the
Connect for iSeries sample instance. For detailed information about how the sample works, see “Flow of
the PCML verification sample”.

Note: The iSeries Connect catalog and WebSphere Commerce Suite (WCS) extensions are not
demonstrated in this sample.

To configure and test the PCML verification sample, follow these steps:

1. If you have not done so, install Connect for iSeries, all prerequisite products, and necessary fixes. See
Chapter 4, “Install iSeries Connect” on page 29 for more information.

2. “Start the iSeries Connect configuration tool” on page 39.

3. “PCML sample: Create an instance” on page 86.

4. “PCML sample: Register a new provider” on page 87.

5. “PCML sample: Register a new partner” on page 87.

6. “PCML sample: Deploy the process flow” on page 88.

7. “PCML sample: Start the instance” on page 88.

8. “PCML sample: Test the sample configuration” on page 89.

Flow of the PCML verification sample
Here is the processing flow of the PCML verification sample:

1. The Test Drive Connect tool is started using the Tools tab in the iSeries Connect configuration tool.
You specify which type of request to simulate. The available test requests provided by this sample
program are ProfileRequest and OrderRequest.

Note: Test Drive Connect also supports the PunchOutSetup request, which is outside of the
scope of this sample.

2. Based on the type of request, the Test Drive Connect tool sends a simulated request (in the form of an
XML document) to the iSeries Connect front-end delivery gateway. In this sample, the tool simulates
two of the cXML documents that the Ariba Network can send to the Connect for iSeries instance:

v ProfileRequest
Sends a cXML message to the Connect for iSeries delivery gateway which handles the request
(without involving the back-end flow manager). Successful completion of this request verifies that the
delivery gateway is correctly installed and configured.

v OrderRequest
Simulates an Ariba order request that flows through the delivery gateway to the flow manager.
Successful completion of this request verifies that both the delivery gateway and the flow manager

Chapter 5. Configure iSeries Connect 85

(and the intermediate MQSeries infrastructure) are correctly installed and configured. In addition, the
OrderRequest simulation requires that the sample Application Connector Document and Process
Flow Model are deployed, so you gain experience with the iSeries Connect deployment utilities.

3. Before you run the test, you deploy a process flow instance using the sample application connector
document, process flow model (PFM), and Program Call Markup Language (PCML) files.

4. The PCML connector invokes the sample back-end business application, OrderReq (a program written
in the C programming language).

5. In this scenario, the sample OrderReq program simulates an order entry application. It accepts input
parameters and sends its output to a spool file. (In a real-world scenario, this back-end application
would handle the actual processing of the order request.) The sample program does not return any
parameters.

6. The flow manager sends a response to the delivery gateway that signals that the request was
received.

7. The results (response) of the simulated request is displayed in the Results page of the Test Drive
Connect tool.

PCML sample: Create an instance
To create an instance, follow these steps in the iSeries Connect configuration tool:

1. Click the Instances tab.

2. If you have no instances configured, click Next to start the New Instance wizard.

If you have previously configured instances, click New Instance to start the wizard.

Note: If you are migrating from version 1.1 and you have not migrated your version 1.1
instances, you see a page that asks if you want to create a new instance or migrate an existing
(1.1) instance. Select Create a new instance.

3. On the Create a New iSeries Connect Instance page, click Next.

4. On the Instance Servers page, select Run the delivery gateway on this server. Click Next.

5. On the Protocol Information page:

Field Value

Instance name sampInst

Instance description PCML sample instance

Protocols cxml:Ariba:1.1

Protocol group name Default

Click Next.

6. On the Protocol Request Information page, select OrderRequest:new. Click Next.

7. On the IBM HTTP Web Server Information page, select Create a new IBM HTTP server. Click Next.

8. On the next IBM HTTP Web Server Information page, enter these fields:

Field Value

HTTP server name SAMPINST

HTTP port (Type the number of an available port, such as 7080. Use
the NETSTAT *CNN command to verify that the port
number that is not already used by another application on
your system.)

HTTPS port (Leave this field blank.)

Click Next.

86 iSeries: IBM Connect for iSeries 2.0

9. On the IBM WebSphere Commerce Suite Server page, select No. Click Next.

10. On the Configuration Summary page, click Finish. Connect for iSeries now creates your instance.

Note: This may take a few minutes. Wait until the Manage Connect Instances page appears.

11. On the Manage Connect Instances page, select sampInst if it is not already selected.

Note: Do not start your instance until after you deploy your process flows.

PCML sample: Register a new provider
To register a new provider, follow these steps in the iSeries Connect configuration tool:

1. In the Manage Connect Instances page (click the Instances tab to see the page), select sampInst.

2. Click the Providers tab. On the Registered Providers page, click Next.

3. On the Provider Information page, enter these values:

v Provider: Sample Provider Co.

v DUNS: 123222888

Click Next

4. On the Provider Address page, click Next.

5. On the Contact Information page, enter these values:

v First Name: First_Name

v Last Name: Last_Name

Click Next.

6. On the Associate Protocol with New Provider page, select Yes, associate a protocol now. Click
Next.

7. On the Protocol for New Provider page, select Default protocol group. Click Next.

8. On the Protocol Access Information page, enter these values:

Field Value

Provider Id 123222888

Provider Id Domain DUNS

Logon Id 123222888

Domain DUNS

Password/Shared Secret secret

Click Next.

9. On the Message Delivery Method Setup page, click Next.

10. On the Requests Available to this Provider page, select all of the requests that are listed. Click Next.

11. On the Order Request Method Preferences page, select first for the Web method. Click Next.

12. On the Summary for New Provider page, click Finish. Connect for iSeries now registers your new
provider. The Registered Providers page appears after the process is completed.

13. On the Registered Providers page, select Sample Provider Co. if it is not already selected.

PCML sample: Register a new partner
To register a new partner, follow these steps in the iSeries Connect configuration tool:

1. Click the Partners tab. On the Registered partners page, click Next.

Chapter 5. Configure iSeries Connect 87

2. On the Partner Information page, type Sample Partner Co. in the Partner field. Leave the rest of the
fields blank. Click Next.

3. On the Partner Address page, click Next.

4. On the Contact Information page, enter these values:

v First Name: First_Name

v Last Name: Last_Name

Click Next.

5. On the Partner Billing page, click Next.

6. On the Partner Shipping page, click Next.

7. On the Partner Cost Center page, click Next.

8. On the Associate Protocol with New Partner page, select Yes, associate a marketplace now. Click
Next.

9. On the Protocol for New Partner page, select Sample Provider Co. and the corresponding
cxml:Ariba:1.1 protocol. Click Next.

10. On the Protocol Access Information page, enter these values:

v Partner Id: 321222888

v Partner Id Domain: DUNS

Click Next.

11. On the Summary for New Partner page, click Finish. Connect for iSeries now registers your new
partner. The Registered Partners page appears when the process is completed.

PCML sample: Deploy the process flow
To deploy the process flow for the OrderRequest request, follow these steps:

1. Copy the sample process flow files (orderreq.pcml, orderreq.AppConnector, and
orderreq.ProcessFlow) from the /QIBM/ProdData/Connect200/Commerce/Samples/Application
directory to the /QIBM/UserData/Connect200/Commerce/sampInst/Connector directory. It is
recommended that you use a network drive mapped to your server to copy and paste the files.

2. In the iSeries Connect configuration tool, click the Instances tab and select sampInst in the Manage
Connect Instances page.

3. Click the Deployment tab.

4. On the Deployment Flows page, click Add Flow.

5. On the Add Deployment Flow - Protocol page, select cxml:Ariba:1.1. Click Next.

6. On the Add Deployment Flow - Process Flows page, select OrderRequest:new. From the Process
Flow pull-down menu for OrderRequest:new, select orderreq.ProcessFlow. Click Next.

7. On the Add Deployment Flow - Providers page, select Selected Providers and Sample Provider
Co. Click Next.

8. On the Add Deployment Flow - Partners page, select Selected Partners and Sample Partner Co.
Click Next.

9. On the Add Deployment Flow - Summary page, select Deploy. Click Finish.

10. On the Connector Prompts page, enter your iSeries user profile name and password. Click OK.

PCML sample: Start the instance
Follow these steps in the iSeries Connect configuration tool to start your instance:

1. Click the Instances tab.

2. On the Manage Connect Instances page, select sampInst. Click Start.

3. On the Start Instance page, select all components. Click Start.

88 iSeries: IBM Connect for iSeries 2.0

Note: Starting your instance may take some time. Do not continue until all components show a
status of ″Started.″

4. Click Close.

PCML sample: Test the sample configuration
Use the Drive Connect sample application to simulate a ProfileRequest and an OrderRequest.

Note: The Drive Connect application can also simulate a PunchOutSetupRequest. This sample is
configured only to test the ProfileRequest and OrderRequest.

To test the ProfileRequest request, follow these steps in the iSeries Connect configuration tool:

1. On the Manage Connect Instances page (click the Instances tab to view this page), select sampInst.

2. On the iSeries Connect Tools page (click the Tools tab to view this page), click Test Drive Connect.

3. On the Test Drive Connect page, click Next.

4. On the Request Type page, select ProfileRequest. Click Next.

5. On the Request Options page, select No, I will specify the partner and provider information. Click
Next.

6. On the Select Provider page, select or enter these values:

v Provider: Sample Provider Co.

v Provider Password: secret

Click Next.

7. On the Select Partner page, select Sample Partner Co. Click Next.

8. On the Request to Test page, click Next.

9. On the Send Request page, click Send Request. The Drive Connect application sends the request
through your instance.

10. The Test Results page appears with the results of the request. See Sample ProfileRequest response
below for an example of a successful response.

Sample ProfileRequest response
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.1.009/cXML.dtd">
<cXML

payloadID="1030545632932.sampInst.1945764792@MYSYSTEM.IBM.COM" timestamp="2002-08-28T14:40:32+00:00">
<Response>

<Status code="200" text="OK"/>
<ProfileResponse effectiveDate="2002-08-28T14:40:33+00:00">

<Transaction requestName="ProfileRequest">
<URL>http://MYSYSTEM.IBM.COM:7080/BtoB/sampInst/Ariba11</URL>

</Transaction>
<Transaction requestName="OrderRequest">

<URL>http://MYSYSTEM.IBM.COM:7080/BtoB/sampInst/Ariba11</URL>
<Option name="allowedOperation">new</Option>
<Option name="attachments">No</Option>

</Transaction>
</ProfileResponse>

</Response>
</cXML>

To test the OrderRequest request, follow these steps in the iSeries Connect configuration tool:

1. After you have completed running the ProfileRequest test, click New Request on the Test Results
page.

2. On the Request Type page, select OrderRequest:new. Click Next.

Chapter 5. Configure iSeries Connect 89

3. On the Request Options page, select No, I will specify the partner and provider information. Click
Next.

4. On the Select Provider page, select or enter these values:

v Provider: Sample Provider Co.

v Provider Password: secret

Click Next.

5. On the Select Partner page, select Sample Partner Co. Click Next.

6. On the Items to Order page, you can specify a product to be included in the OrderRequest. Select C1
and enter whatever data you want in the remaining fields. For example, Description - Blender, Price -
20.00, Qty - 1. Click Next.

7. On the Request to Test page, click Next.

8. On the Send Request page, click Send Request. The Drive Connect application sends the request
through your instance.

9. The Test Results page appears with the results of the request. Here is an example of a successful
response:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cXML.org/schemas/cXML/1.1.009/cXML.dtd">
<cXML

payloadID="1030546137977.sampInst.1254236671@MYSYSTEM.IBM.COM" timestamp="2002-08-28T14:48:57+00:00">
<Response>

<Status code="200" text="OK"/>
</Response>

</cXML>

10. Display the spool file to which the back-end application wrote its output:

a. On the iSeries command line, run this command:
WRKSPLF user_profile_name

where user_profile_name is the name of the user profile that you specified when you deployed
the process flow.

b. In the Work with All Spooled Files display, specify option 5 (Display) for the last spool file in the
list. Here are the contents of an example spool file:
******In ORDERREQ ***********
Number of arguments, argc = 3
Name of the program called, argv[0] = QCON200SAM/ORDERREQ
The following are input parameters from PCML Connector
Number of items to process is 1
Input element [0]

identifier = C1
quantity = 1
price = 20.000000
description = Blender

11. On the Test Results page, click Close.

90 iSeries: IBM Connect for iSeries 2.0

Chapter 6. Migrate iSeries Connect

See these topics for information about migrating iSeries Connect and its prerequisite software:

“Migrate the iSeries Connect product”
Describes migration from iSeries Connect 1.1 to 2.0.

“Migrate iSeries Connect middleware” on page 92
Provides information about migrating middleware (prerequisite products) between releases of iSeries
Connect.

“Considerations for migrating instances for WebSphere Commerce Suite (WCS) support” on
page 93
Lists considerations for migrating instances that use the WebSphere Commerce Suite (WCS)
extensions.

Migrate the iSeries Connect product
You do not have to uninstall iSeries Connect 1.1 before you install version 2.0. Both iSeries Connect 1.1
and 2.0 can exist on the same system, and they can both be functioning at the same time.

iSeries Connect Version 2.0 deletes Version 1.0 (if installed) as part of the installation process. Version 1.0
instances and user data are preserved, but they cannot be directly migrated to version 2.0. Version 1.0
instances and user data must first be migrated using iSeries Connect 1.1.

Protocols

Only iSeries Connect instances using the cXML 1.1 or 1.2 protocols are migrated.

WebSphere Commerce Suite

The iSeries Connect 2.0 Migration wizard will prompt you to migrate your WebSphere Commerce Suite 5.1
instances to WebSphere Commerce Suite 5.4 or WebSphere Commerce Suite Business Edition 5.4
instances if one of these products is installed.

Note: iSeries Connect instances that use WebSphere Commerce Suite (WCS) 4.1 do not appear as
instances that are available to migrate in the configuration tool. These instances must first be
migrated from WebSphere Commerce Suite 4.1 to WebSphere Commerce Suite 5.1 using iSeries
Connect 1.1.

To migrate an instance using WebSphere Commerce Suite 4.1 to 5.1 in iSeries Connect 1.1, do the
following:

1. Click the Instances tab.

2. Click Migrate Configurations.

3. Specify Migrate instances to use new versions of MQ Series, WAS, or WCS.

4. Click Next.

5. Specify WebSphere Commerce Suite.

6. Specify the WebSphere Commerce Suite 5.1 instance.

7. Click Next.

8. Click Finish.

See “Considerations for migrating instances for WebSphere Commerce Suite (WCS) support” on page 93
for additional WCS migration considerations.

© Copyright IBM Corp. 1998, 2002 91

Domino

iSeries Connect 1.1 instances that use Domino as the Web application server are not migrated.

HTTP Server

A Connect 1.1 HTTP server will be migrated if Connect 1.1 has been uninstalled. If Connect 1.1 is still
installed, then a new HTTP server is created for the migrated instance.

Migrating 1.1 instances

Use the iSeries Connect configuration tool to migrate your iSeries Connect 1.1 instances to version 2.0.
Start the migration process by doing the following:

1. Click the Instances tab. If you have not created any 2.0 instances and you have existing 1.1
instances, you are prompted to migrate your 1.1 instances or create a new instance. Follow the
prompts to complete the migration.

If you already have created 2.0 instances or migrated a 1.1 instance, you will not be prompted to migrate
your instances. If you are not prompted to migrate your instances, you can still migrate your instances by
doing the following:

1. Click the Instances tab.

2. Click Migrate Configurations and follow the prompts to complete the migration.

If you migrate a 1.1 instance to version 2.0 and subsequently delete the 2.0 instance, your 1.1 instance
can be migrated again unless you explicitly deleted it. A 1.1 instance can be deleted in the following ways:

v If iSeries Connect 1.1 is installed, you can use the iSeries Connect configuration tool.

v If iSeries Connect 1.1 is no longer installed, and you choose to migrate the 1.1 instance, the migration
wizard will ask if you want to delete the 1.1 instance upon successful migration.

v If iSeries Connect 1.1 is installed when you migrate, and then subsequently uninstalled, you can choose
to migrate the 1.1 instance. The migration wizard will not migrate the instance since it already has been
migrated, but will ask if you want to delete the 1.1 instance.

Migrate iSeries Connect middleware
iSeries Connect runs in conjunction with several middleware products, such as IBM WebSphere
Application Server, IBM MQSeries, and IBM WebSphere Commerce Suite. iSeries Connect requires
certain levels of these products; however, new versions of these products may be released between
versions of iSeries Connect.

To support these middleware changes, iSeries Connect provides a utility to upgrade middleware support.

Note: You must upgrade middleware support at the instance level. If you have multiple instances,
you must migrate each instance separately. If, for some reason, migrating the first instance fails, you
have better recovery options because your other instances have not changed. Also, migration
problem are easier to isolate when they affect only one instance.

Here is an overview of the process for migrating middleware in iSeries Connect:

1. iSeries Connect announces support for the new product. Check the product home page at

http://www.ibm.com/servers/eserver/iseries/btob/connect/ for middleware support announcements.

Note: Do not upgrade the middleware products when a new version is released. iSeries Connect
must be able to support the new version before you migrate the product, or iSeries Connect will

92 iSeries: IBM Connect for iSeries 2.0

http://www.ibm.com/servers/eserver/iseries/btob/connect/

not work properly. See the middleware support announcement for details on whether you need to
perform the middleware migration function or not. Some middleware upgrades may not require
special migration steps for iSeries Connect.

2. Support for a new middleware version may require changes to the iSeries Connect product. Check the
middleware support announcement for fixes you need to apply to iSeries Connect and any special
instructions you must follow.

3. Use the iSeries Connect configuration tool to stop all your instances before you upgrade the
middleware product.

4. Install the new version of the middleware product according to instructions included in the fix package
or on the iSeries Connect home page.

5. Install support for the new middleware version with the iSeries Connect configuration tool. Click the
Instances tab, and click Migrate Configurations.

The Migrate Instance Configuration wizard starts. Specify the information that is appropriate to your
environment, including which middleware product and instance you want to migrate.

6. If the migration is successful, migrate your other instances. If it is not successful, see “Troubleshoot
iSeries Connect” on page 106 for information about troubleshooting—including how to report problems
to IBM Support.

Considerations for migrating instances for WebSphere Commerce
Suite (WCS) support
WebSphere Commerce Suite (WCS) 4.1 is not supported in iSeries Connect 2.0. Migration of WCS 4.1 to
WCS 5.1 must be performed in iSeries Connect 1.1.

If you have iSeries Connect 1.1 with WCS 4.1 and install iSeries Connect 2.0 and WCS 5.4, you are not
allowed to perform middleware migration from WCS 4.1 to WCS 5.4.

If you have iSeries Connect 1.1 with WCS 5.1 and install iSeries Connect 2.0 and WCS 5.4, then you
must do the following:

1. Migrate the iSeries Connect 1.1 WCS 5.1 instances to iSeries Connect 2.0 with WCS 5.1.

2. Perform middleware migration on iSeries Connect to WCS 5.4.

When following the Migrate Instance Configuration wizard, select the iSeries Connect instance that is
currently linked to the WebSphere Commerce Suite 5.1 instance. Then, select which WebSphere
Commerce Suite 5.4 instance with which you want the iSeries Connect instance to be associated. Make
sure that both instances are currently active.

Chapter 6. Migrate iSeries Connect 93

94 iSeries: IBM Connect for iSeries 2.0

Chapter 7. Customize iSeries Connect

See these topics for information about customizing iSeries Connect:

“Customize the iSeries Connect configuration tool”
Describes how to customize pages in the configuration tool.

“User defined protocols” on page 96
Documents customizing iSeries Connect protocol support.

“Customize WebSphere Commerce Suite” on page 96
Documents WebSphere Commerce Suite (WCS) extensions support that you can customize.

“Initialization and termination exit processing” on page 17
Provides information about creating and registering Java classes that are called when the flow
manager starts or stops. You can use these classes to start and stop applications with which the flow
manager interacts.

“Exit programs” on page 42
Describes provider and partner exit programs, which can be used to integrate iSeries Connect
provider and partner services with another application.

“Create an outbound message handler” on page 99
Describes using an outbound message handler to support asynchronous messages in iSeries
Connect.

iSeries Connect API Javadoc
Documents the iSeries Connect application programming interfaces (APIs).

iSeries Connect Customization Guide
Describes the iSeries Connect application programming interfaces (APIs) and contains information
about creating user defined protocols.

Customize the iSeries Connect configuration tool
You can customize the appearance of the iSeries Connect configuration tool and specify other
preferences.

Application preferences

In the Home tab of the configuration tool, click Preferences. You can specify preferences such as:

v The first page that appears when you load the tool

v The default instance

v Trace levels

v Cache expiration and validation mapping for the entity resolver

The entity resolver locates XML validation documents. Protocol designers can use the entity resolver
and XML validation documents to validate that XML documents are syntactically and semantically

correct. The iSeries Connect Customization Guide contains additional information about creating
your own protocol and extending iSeries Connect to support user defined protocols.

Customize tabs

© Copyright IBM Corp. 1998, 2002 95

javadoc/index.html
pgmguide.pdf
pgmguide.pdf

Some of the tabbed sections of the configuration tool contain Customize functions:

v Providers and Partners: Use the Customize function to control which properties are gathered for
providers and partners. You can add or remove pages and fields.

v Catalog: Use the Customize function to specify units of measure and currencies to be used in your
catalogs. You can also customize the way products are displayed in the Edit Products wizard.

User defined protocols
iSeries Connect currently supports the cXML 1.1, and cXML 1.2 protocols. If your business scenario
requries a different protocol, it is possible to extend iSeries Connect to support your own user defined
protocol.

Creating protocols

To use the iSeries Connect configuration tool to create your protocol, click Create and Edit Protocols
under the Tools tab. If you do not use the iSeries Connect configuration tool to create your protocol, place
your protocol files in the /QIBM/UserData/Connect200/Protocols/protocol_name directory.

See the Connect for iSeries: Developer Resources for a sample of how to create a custom protocol.
Instructions and sample files are included.

The iSeries Connect Customization Guide contains additional information about creating your own
protocol. It is recommended that you work with a trained IBM Business Partner to develop a customized
protocol.

Deploying protocols

To deploy a protocol to iSeries Connect, do the following:

1. Click Create and Edit Protocols under the Tools tab.

2. Select the protocol that you want to add and click Publish.

3. Select the protocol that you want to add and click Add Support.

4. Select the instance where you want to deploy the protocol under the Instances tab and click
Properties.

5. Click Protocols.

6. Select the protocol group where you would like to add the protocol (for example click Default) and
then click Add Protocol.

7. Select the protocol that you want to add and click Next.

8. Select the protocol requests for the protocol that you want to add. You may need to click on the
triangle to view the protocol requests.

9. Click Finish.

If you change your deployed protocol, do the following to update your protocol:

1. Click Manage Protocols under the Tools tab.

2. Select the protocol and click Update.

Note: If you had an update to or a deletion of an RMF, then you need to remove support for the
protocol, add support for the protocol, and change the instance properties to add the protocol.

Customize WebSphere Commerce Suite
Customizing runtime services

96 iSeries: IBM Connect for iSeries 2.0

http://www.ibm.com/eserver/iseries/btob/connect/devtools.htm
pgmguide.pdf

Application connector documents and process flow models that are shipped with iSeries Connect to
support integration with WebSphere Commerce Suite (WCS) do not require modification. However, there
are several fields within the application connector documents for processing NewQuote and
PurchaseOrder that can be customized to affect some of the runtime characteristics of the WCS
extensions support. You can make these modifications by using the Application Connector and Process
Flow editors in the iSeries Connect configuration tool (under the Tools tab).

Changing locale returned during NewQuote processing

For the cXML protocol, there is a field in the application connector document for NewQuote called
productDescriptionLanguage. When the WCS extensions Java connector is constructing a cXML
PunchOutOrderMessage to return a quote at the end of a remote catalog shopping experience, there
is an XML element called Description which carries a language specification to indicate what
language the description of the product is in. By default, the value en-US is sent when using the
WCS application connector documents that are shipped with the system. A partner application can
use this information to determine if it needs to perform any sort of textual translation on the product
description as information is presented through their application. The value that the iSeries Connect
product sends for WCS is governed by a configurable default field, which can be modified in the
appropriate application connector document.

To change the language value sent in the PunchOutOrderMessage, follow these steps:

1. Copy the qwcsnewquote200.AppConnector file from the
/QIBM/ProdData/Connect200/classes/connectors directory to
/QIBM/UserData/Connect200/Commerce/instance_name/connector directory (where
instance_name is the name of your instance.

2. In the iSeries Connect configuration tool, select your instance and click the Tools tab.

3. Click Application Connectors.

4. Select Create a new application connector document.

5. Change the default setting for FieldId ProductDescriptionLanguage to a value other than en-US.

6. Click Save.

7. Click Add Flow to deploy your changes.

8. Click Update flow manager.

Changing fields that affect PurchaseOrder processing

The WCS extensions uses a database table called QABECORDMP to maintain order information.
One field (maxOrderMapEntries) that can be modified is used to control the size of the
QABECORDMP database table. This field also controls whether the duplicate transaction detection
processing of the WCS extensions support is used or note.

The default value of maxOrderMapEntries is 3000, which means the QABECORDMP table will grow
to a maximum size of 3000. (Note that this table is also used to support OrderRequest update and
OrderRequest delete processing, so a value of at least 3000 entries is suggested.) When the number
of orders received during the life of the instance exceeds this number, entries are removed from the
table using a First In First Out (FIFO) scheme. To turn off the duplicate transaction processing, you
can set the default value for this field to 0. (Note that this action also turns off the delete and update
functions.) If the default setting for this maxOrderMapEntries is modified, you must specify an integer
value.

The respondAfterValidation field controls whether or not WCS extensions fully processes a purchase
order prior to sending a response to the B2B trading partner. By specifying a value of 0 (the default
value) in this field, WCS extensions will validate the incoming purchase order request, and also wait

Chapter 7. Customize iSeries Connect 97

for a response from Websphere Commerce Suite indicating the success or failure of processing the
received order. A response will not be sent to the B2B trading partner until this response is received
from WCS.

If a value of 1 is specified in the respondAfterValidation field, then the WCS extensions support will
cause a response to get sent to the B2B trading partner after initial validation of the purchase order
has occurred, but before having received a response from Websphere Commerce Suite. This option
could be used in cases where a large number of items are being processed in a single purchase
order, and the B2B trading partner is experiencing timeouts due to the amount of time required to
process the large orders. This option should only be used in rare cases as it is possible that some
failure could occur after successfully validating the incoming purchase order, but before WCS is able
to complete purchase order processing.

The other fields in the application connector document, which can be modified, pertaining to
Purchase Order processing affect the billing and shipping address entries which are recorded in the
WCS SHADDR database table as part of order processing. These fields can be thought of as
eye-catchers for identifying these billing and shipping addresses as B2B transactions. In the fields
orderShipToAddress, billToAddress, and itemShipping, there are subfields called firstName and
lastName. By default, firstName is set to B2B and lastName is set to SHIPPING or BILLING. When
orders are received from B2B trading partners, the firstName setting is recorded in the SAFNAME
column and the lastName setting is set in the SALNAME column of the SHADDR table. These fields
can be modified in the application connector document to cause different values to get recorded in
the SHADDR table. The default value specified must be a valid value that WCS understands. These
fields are limited to 30 characters in length.

To change fields that affect PurchaseOrder processing, follow these steps:

1. Copy the qwcsorderrequest200.AppConnector document from the
/QIBM/ProdData/Connect200/Classes/Connectors directory to the
/QIBM/UserData/Connect200/Commerce/instance_name/Connector directory (where
instance_name is the name of your iSeries Connect instance).

2. In the iSeries Connect configuration tool, select your instance.

3. Click the Tools tab.

4. Click Application Connectors.

5. Select Create a new application connector document.

6. Change the default values for the fields that you want to change. This depends on whether you
are attempting to change the duplicate transaction processing, address information, or both.

7. Click Save.

8. Click Add Flow to deploy your changes.

9. Click Update flow manager.

External URL

If the WCS server is behind a firewall, the firewall may expose a different URL for the WCS instance. To
direct the partner’s (buyer’s) server to the correct URL, you can specify an external URL in the External
URL field under the WebSphere Commerce Suite tab of the Instance Properties page.

For example, company XYZ has a WCS instance on a server named wcssys and this sserver is behind a
firewall. The internal address for the server is wcssys.xyz.com, and the internal URL is
https://wcssys.xyz.com/. Since the firewall causes the wcssys server to be seen from the outside as
https://www.xyz.com/mywcs/, the External URL should be set to: https://www.xyz.com/mywcs/.

Allow WCS Partnumber or Manufacturer’s Partnumber

98 iSeries: IBM Connect for iSeries 2.0

If you want the WCS Partnumber (SKU) or Manufacturer’s Partnumber values to be recognized by iSeries
Connect in the cXML SupplierPartId field on the NewQuote and OredrRequest flows, you must do the
following:

1. Create the iSeries Connect catalog using the option to create the catalog from an existing database. A
view table can be created in WCS that uses both the CATENTRY ProductReference Number
(CATENTRY_ID) and the PARTNUMBER or MFPARTNUMBER. The iSeries Connect catalog can then
be created based on this view table. When setting the iSeries Connect catalog mapping fields, the
WCS PARTNUMBER or MFPARTNUMBER field in the view table should be linked to the iSeries
Connect catalog’s product number.

2. Under the WebSphere Commerce Suite tab of the Provider Properties page, specify the following
values:

Mapping Table
The view table created in the WCS collection.

Collection
The name of the WCS instance. This is the same name as the WCD database collection.

Internal Product Reference Field
The field for the WCS product reference number from the WCS view table (CATENTRY_ID).

External Part Number Field
PARTNUMBER or MFPARTNUMBER.

Create an outbound message handler
iSeries Connect provides a component called the outbound message handler that supports outbound
requests—that is, requests that originate from iSeries Connect rather than from remote trading partners.

For conceptual information about outbound requests, see “Outbound request processing in the delivery
gateway” on page 12.

To configure outbound message handling, perform these steps:

1. Decide how outbound requests are initiated. You have two options:

v From a step in your business process flow. A process flow that is deployed in the flow manager
uses a Java application connector instance. The process flow contains a step that builds the
required outbound request fields and calls the outbound request API. It passes the field information
that the delivery gateway uses to process the outbound request.

v From your business application. Data from the request has been sent (through a flow manager
Java connector instance) to the business application for order processing. The business application
calls a proxy application. The proxy application gathers information (through parsing a message or
querying the application) that is required for processing the outbound request. The proxy application
then calls the outbound request API and sends the required information.

The figure below shows the processing flow when an outbound request is initiated by the business
application after an incoming request is received.

Chapter 7. Customize iSeries Connect 99

2. “Set up outbound request initiation”.

3. If necessary, “Grant authorities for outbound message handler” on page 101.

4. “Configure delivery methods for outbound message handler” on page 102.

Classpath requirements

These JAR files should be in your classpath to support calling the OutboundRequest API:
/QIBM/ProdData/Connect200/Gateway/gateway.jar
/QIBM/ProdData/Connect200/Gateway/gatewayAPI.jar
/QIBM/ProdData/Connect200/Tools/Runtime/util.jar
/QIBM/ProdData/Connect200/Classes/xalan220.jar
/QIBM/ProdData/Connect200/Classes/loggingapi.jar
/QIBM/ProdData/Connect200/Classes/logging.jar
/QIBM/ProdData/Connect200/Classes/log.jar
/QIBM/ProdData/Connect200/Classes/comibmconnect.jar
/QIBM/ProdData/Connect200/Classes/xerces321.jar
/QIBM/ProdData/Connect200/Classes/config.jar
/QIBM/ProdData/Connect200/Classes/bridge.jar
/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar

Set up outbound request initiation

To initiate an outbound request, you must construct an OutboundRequest object and set the required

fields. You then call the initiateRequest() method (which throws an OutboundMessageException
exception if an error occurs).

Initiating the request from a business process flow

Here is the recommended scenario for initiating an outbound request from a step in your business process
flow:

1. Define an additional connector step in the business process flow for the purchase order request. You
must use a Java connector instance.

2. Construct an OutboundRequest object.

100 iSeries: IBM Connect for iSeries 2.0

javadoc/com/ibm/connect/gateway/interfaces/OutboundRequest.html
javadoc/com/ibm/connect/gateway/interfaces/OutboundRequest.html#HDRINITIATEREQUEST()
javadoc/com/ibm/connect/gateway/interfaces/OutboundMessageException.html

3. Set the required fields. You have two options:

v Manually define the fields as parameters on the API call or through methods on the
OutboundRequest object.

v Automatically define the fields with a request token. A request token is usually generated on an
incoming request during delivery gateway processing. It is stored in the sendable message header.
You can retrieve this information with a flow manager connector that is defined to handle the
outbound request processing.

For more information on the required fields, see ″Sending Outbound Messages″ in the iSeries Connect

Customization Guide .

4. Call the initiateRequest() method.

5. Define a new connector instance to support the outbound request. The connector maps fields from the
back-end application into the outbound request.

For example, for a StatusUpdateRequest, the delivery gateway sends a shell document in the request
to the flow manager. Here is a portion of the shell document:
<Request>

<StatusUpdateRequest>
<DocumentReference/>
<Status/>

</StatusUpdateRequest>
</Request>

You must map fields in your application to the DocumentReference and Status fields to complete the
shell document. Here is an example of the same portion of code that has been filled in with data from
the application:
<Request>

<StatusUpdateRequest>
<DocumentReference

payloadID="0c300508b7863dcclb_14999"/>
<Status code="200" text="OK" xml:lang="en-US">Forwarded to supplier</Status>

</StatusUpdateRequest>
</Request>

Initiating the request from the proxy application

If you want a proxy application to initiate the request, the steps are the same as except that your
application calls the OutboundRequest API. For more information on creating the proxy application
(including code examples), see ″Sending Outbound Messages″ in the iSeries Connect Customization

Guide .

Grant authorities for outbound message handler
Because of security restrictions in accessing the delivery gateway, the user profile under which the
outbound message handler is initiated may need additional authorities. In these cases, you do not need to
make any changes:

v The outbound request is initiated by a step in your business process flow that is running under the
iSeries Connect instance user profile.

v The user profile under which your proxy application runs has *ALLOBJ authority.

If your user profile does not have *ALLOBJ authority, it is not recommended that you grant it this authority
if you do not otherwise need it. Instead, you can authorize your user profile to the
QIBM_QBEG_OUTBOUNDMESSAGES function through iSeries Navigator.

Chapter 7. Customize iSeries Connect 101

pgmguide.pdf
pgmguide.pdf
pgmguide.pdf
pgmguide.pdf

Note: If you are running a split-system configuration (that is, the delivery gateway is on a system that
is remote to the flow manager system), both systems must have the same user profile defined if the
API is initiated from the flow manager system. For example, if the user profile FRED calls the
outbound request API from the flow manager system, a user profile FRED must also exist on the
delivery gateway system.

To authorize your user profile for outbound message handling, perform these steps:

1. Under your system in iSeries Navigator, expand Users and Groups, and select Users.

2. In the user profile list that appears in the main window, double-click your user profile.

3. In the Properties dialog, click Capabilities.

4. Select the Applications tab.

5. In the Access for field, select Host applications.

6. In the resulting display, expand QIBM_QBEX_CONNECT and then QIBM_QBEG_GATEWAY.

7. Click the checkbox that corresponds to the QIBM_QBEG_OUTBOUNDMESSAGES function, and click
OK

8. Click OK.

Configure delivery methods for outbound message handler
To set up the delivery methods, perform these steps in the iSeries Connect configuration tool:

1. On the Manage B2B Instances page, select your instance.

2. Click the Providers tab.

3. Select the provider and click Protocol Association.

4. In the Provider Protocol Associations page, click Properties.

5. Select the Message Delivery Method Setup tab.

6. Specify the values that are required by the protocol you are using. Here is an example when cXML is
the protocol:

v Outbound message address (URL): Specify a URL provided by your trading partners to which
they require messages sent. If you are using pull technology, you do not need to specify anything in
this field.

v Protocol to use: This value depends on the requirements of your protocol and trading partners:

– To use push technology (which is when the delivery gateway sends or ″pushes″ the requests to
the remote trading partners), type HTTP or HTTPS in the field.

– To use pull technology (which is when the delivery gateway sends the request to a local mailbox
database and the trading partners retrieve or ″pull″ the messages, type Mailbox. (This value is
case-sensitive.) Note, cXML currently does not support this method.

7. Click OK.

102 iSeries: IBM Connect for iSeries 2.0

Chapter 8. Manage iSeries Connect

See these topics for information about managing the iSeries Connect product and associated objects:

“Start and stop iSeries Connect”
Provides information on stopping and starting iSeries Connect and other system objects.

“Manage instances” on page 104
Lists considerations for managing your instances (and other resources) with the iSeries Connect
configuration tool.

“Monitor B2B transactions” on page 105
Describes the Search Transaction History function

“Troubleshoot iSeries Connect” on page 106
Shows you how to find error information and how to troubleshoot request errors. This topic also
provides information about program temporary fixes (PTFs) and getting support for iSeries Connect.

“iSeries Connect backup and recovery” on page 114
Lists the directories and objects you should include in your backup plan.

Start and stop iSeries Connect
See these topics for information about starting and stopping iSeries Connect and its prerequisite products.

Start the prerequisite programs

1. To start the QSERVER subsystem, run this command:
STRSBS QSERVER

2. To start the OS/400 Host Servers, run this command:
STRHOSTSVR *ALL

Note: If you receive the message ″Host server daemon jobs unable to communicate using IPX,″
ignore it. This message only means that you do not have the IPX servers installed on your
system—which is not a requirement for running iSeries Connect.

3. If you are using WebSphere Advanced 4.0 Application Server, start the subsystem by typing the
following command:
STRSBS SBSD(QEJBADV4/QEJBADV4)

To verify that the WebSphere Application Server QEJBADMIN and QEJBMNTR jobs are started, run
this command:
WRKACTJOB

The jobs are located under the QEJBADV4 subsystem.

4. If you are using WebSphere Single Server 4.0, start the subsystem by typing the following command:
STRSBS SBSD(QEJBAES4/QEJBAES4)

To verify that the WebSphere Application Server DEFAULT_SE job is started, run this command:
WRKACTJOB

The jobs are located under the QEJBAES4 subsystem.

5. To start the HTTP Server administrative instance, run this command:
STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

© Copyright IBM Corp. 1998, 2002 103

Note: If your system runs with a coded character set identifier (CCSID) value of 65535, see
“Change the coded character set identifier (CCSID)” on page 36 for critical information.

6. To check the status of the IBM HTTP Server administrative server, run this command:
WRKACTJOB

Under the QHTTPSVR subsystem, you should see two jobs in SIGW status. These jobs are named
ADMIN.

7. To start the MQSeries subsystem, run this command:
STRSBS SBSD(QMQM/QMQM)

8. To start the user work subsystem, run this command:
STRSBS SBSD(QSYS/QUSRWRK)

Start iSeries Connect

In the iSeries Connect configuration tool, start one or more instances. In the Manage B2B Instances page,
select your instance and click Start.

Stop iSeries Connect

In the iSeries Connect configuration tool, stop all running instances. In the Manage B2B Instances page,
select an instance and click Stop. Repeat until all instances are stopped.

Stop the IBM HTTP Server administrative server

To stop the IBM HTTP Server administrative server, run this command from the iSeries command line:
ENDTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

Occassionally, you may need to stop and restart the HTTP Server administrative server. Do not use the
restart function of HTTP Server to do this. Follow these steps instead:

1. Stop the HTTP Server with the End TCP/IP Server (ENDTCPSVR) command.

2. Use the Work with Active Jobs (WRKACTJOB) command to ensure the HTTP Server has stopped.

3. Start the HTTP Server with the Start TCP/IP Server (STRTCPSVR) command.

Manage instances
Manage your iSeries Connect instances with the iSeries Connect configuration tool. In addition to
managing instances, the iSeries Connect configuration tool allows you to manage the following:

v registered providers

v registered partners

v catalogs

v application connectors

v process flow models

v protocols

The first page of each tab provides options for making changes to the configuration settings.

Considerations for managing iSeries Connect:

v Instances

To change your instance configuration, use the Instance Properties pages (click Properties on the
Manage Instances page). Note that if you change the protocol for your instance, protocol associations to
registered providers and partners are lost. Run the Protocol Association wizard to associate the

104 iSeries: IBM Connect for iSeries 2.0

providers and partners with the new protocol. Changing protocols for your instance also affects any
process flows that you have deployed. You must deploy a new set of process flows that support your
new protocol.

v Providers and partners

The iSeries Connect provider and partner services provide the ability to register an exit program. An exit
program is additional code that can be connected to exit points for creating, updating or deleting
providers or partners. Through a registered exit program, you can integrate the iSeries Connect provider
and partner services with other applications. For example, the iSeries Connect WebSphere Commerce
Suite (WCS) extensions use this mechanism to map providers and partners to WCS merchants and
shoppers (customers).

If you change provider or partner data in WCS or other application that is registered as an exit program,
the changes are not automatically propagated to iSeries Connect. You must then update your provider
and partner data with one of these methods:

– Use the iSeries Connect configuration tool to manually update the provider and partner data.

– Use the iSeries Connect provider and partner application programming interfaces (APIs) to make the
corresponding update in the provider or partner registry. For more information, see the iSeries

Connect Customization Guide .

v Catalog

If the source from which you imported your catalog has changed, those changes are not automatically
made to your B2B catalog. Columns in the catalog that are mapped from a source database (DB2,
Domino, or WebSphere Commerce Suite) cannot be edited. You must refresh your B2B catalog to
incorporate these changes.

v Application connectors and process flows

If you edit your application connector or process flow, you must redeploy it. For the changes to take
effect, you must update the flow manager runtime data. Click Update flow manager under the
Deployment tab, or use the Manage Instances page to stop and start the flow manager component for
your instance.

v Protocols

The iSeries Connect configuration tool allows you to do the following:

– Create or edit protocols.

– Add a protocol to iSeries Connect.

– Add a protocol to an instance.

For more information on creating protocols, see the iSeries Connect Customization Guide .

Monitor B2B transactions
The Search Transaction History utility is a browser-based implementation of the B2B Activity Monitor (a
part of iSeries Navigator - Management Central). It lets you monitor B2B requests that are received by
iSeries Connect. You can search requests by instance, status, request, and other search criteria.

To enable and use the search tool, follow these steps:

1. Get the appropriate fixes for the B2B Activity Monitor. See the product Web site for information
about fixes.

2. In the iSeries Connect configuration tool, click the Instances tab, and then click Properties.

3. Click the Tracing tab.

4. On the Instance Properties - Tracing page, select Log transactions to Management Central
consolidated system. Click OK.

Chapter 8. Manage iSeries Connect 105

pgmguide.pdf
pgmguide.pdf
pgmguide.pdf
http://www.ibm.com/servers/eserver/iseries/btob/connect/activitymonitor.html

Any new B2B transactions that occur are now logged. You can then use the Search Transaction
History function to search the transactions. Note that transactions that occurred before you enabled
transaction logging will not appear.

5. On the Manage B2B Instances page, make sure your instance is running. If not, start it by selecting
the instance and clicking Start.

6. On the Manage B2B Instances page, click Search Transaction History.

7. On the Search Transaction History page, enter your search criteria and click Search Now to view the
results.

Troubleshoot iSeries Connect
If you encounter problems while using iSeries Connect, see these topics for information about determining
the source of the problem:

v “Find error information”.

v “Troubleshoot request errors” on page 107.

v “Diagnose and solve iSeries Connect problems using trace” on page 108.

v “Apply program temporary fixes (PTFs) for iSeries Connect” on page 113.

v “Get support for iSeries Connect” on page 114.

v “Collect useful data for an authorized program analysis report” on page 114.

See iSeries Connect Support Information for additional service and support information.

Additionally, you may want to check the iSeries Connect newsgroup to post your problem or read
postings from other users.

Find error information
If you are having problems with iSeries Connect, check these message queues or files for additional error
information:

QSYSOPR message queue
Message queue that contains fatal errors that cause the delivery gateway or flow manager to stop running.

B2B message queue
Message queue that is created for each instance. The queue contains these messages:

v Informational messages, such as the time that the flow manager started and what parameters were
used while starting.

v Warning messages for situations that are not normal, but would not cause problems, such as
unrecognized commands.

v Error messages that explain information about specific errors. For example, an exit not completing
successfully, or no flow definition found for a specific request.

v Fatal messages that describe problems that prevent the flow manager from continuing. For example, a
user initialization exit failing or the queue manager not started.

Message files
Files that are created for the same messages that are written in the B2B message queue. Separate files
are written for the flow manager and delivery gateway:

v Delivery gateway message files are name GW_Message_date.log (where date is the date and time
that the file was created). The message files are located in the
/QIBM/UserData/Connect200/Commerce/instance_name/Logs directory (where instance_name is the
name of your instance).

106 iSeries: IBM Connect for iSeries 2.0

http://www.ibm.com/eserver/iseries/btob/connect/support.htm
http://www.ibm.com/servers/eserver/iseries/btob/connect/forum.html

v Flow manager message files are named FM_Message_date.log (where date is the date that the file
was created). The message files are located in the
/QIBM/UserData/Connect200/Commerce/instance_name/Logs directory (where instance_name is the
name of your instance).

You can view these files in the Instance Properties - Tracing page of the iSeries Connect configuration
tool.

The message file name has a date and time stamp that is switched at midnight. You may wish to
periodically delete or archive old message log files.

Audit files
Extensible Markup Language (XML) files that are created in the iSeries integrated file system as records.
These files describe the progress of each individual request. You can use the audit log to determine how
far a specific request got and if it failed, the reason it failed. Separate audit records are written for the
delivery gateway and the flow manager:

v Delivery gateway audit files are named GW_Audit_date.log (where date is the date and time that the
file was created). The audit files are located in the
/QIBM/UserData/Connect200/Commerce/instance_name/Logs directory (where instance_name is the
name of your instance).

v Flow manager audit files are named FM_Audit_date.log (where date is the date and time that the file
was created). The audit files are located in the
/QIBM/UserData/Connect200/Commerce/instance_name/Logs directory (where instance_name is the
name of your instance).

You can view these files in the Instance Properties - Tracing page of the iSeries Connect configuration
tool.

The audit file name has a date and time stamp that is switched at midnight. You may wish to periodically
delete or archive old audit log files.

Troubleshoot request errors
To troubleshoot request errors, you can find out how far a request got by using the audit data or determine
what happens to requests if the delivery gateway or flow manager goes down.

Determining how far a failed request was processed by using the audit data

To determine how far a request has progressed, look at the logged audit data. Each audit record has the
following general format:
<Record>

<AuditVersion> Audit version </AuditVersion>
<Timestamp> Timestamp </Timestamp>
<AuditPoint> Audit point </AuditPoint>
<AuditType> Audit type </AuditType>

... Additional audit data ...

</Record>

where this information is shown:

v Audit version identifies the version of Connect for iSeries that created the audit record. For example,
2.0.

v Timestamp is the date and time that the audit record was created.

v Audit point and audit type are used to identify the different points in Connect for iSeries processing at
which an audit record can be created.

Chapter 8. Manage iSeries Connect 107

Audit records with an audit type of FRAMEWORK are used to record the general flow of a request and are
written at these audit points (where x is a number that identifies the flow that made the audit record and y
is a number that indicates how many times within a flow that a particular audit point occured):

v GW_START: In the delivery gateway after a request is received.

v GW_SEND_x_y: In the delivery gateway before a request is sent to the flow manager.

v FM_START_x_y: In the flow manager after a request is received from the delivery gateway.

v FM_SEND_x_y: In the flow manager before a response is sent to the delivery gateway.

v GW_RECEIVE_x_y: In the delivery gateway after a response is received from the flow manager.

v FM_END_x_y: In the flow manager after a flow is complete.

v GW_END: In the delivery gateway before a response is sent to the originator.

Audit records with an audit type of DATA are used to record detailed information about a request and are
written at these audit points (where x is a number that identifies the flow that made the audit record and y
is a number that indicates how many times within a flow that a particular audit point occured):

v GW_INBOUND_x_y: In the delivery gateway before a request is sent to the flow manager, but after the
request is converted to XML.

v GW_OUTBOUND_x_y: In the delivery gateway after a response is received from the flow manager.

v GW_RESPONSE_x_y: In the delivery gateway before a response is sent to the originator.

Audit records with an audit type of STEP_x_y_stepcount_stepname (where x is a number that identifies
the flow that made the audit record, y is a number that indicates how many times within a flow that a
particular audit point occured, stepcount is the number of the step defined in your process flow, and
stepname is the name of a step that you defined in your process flow) are used to record each step in a
flow and are created in the flow manager after each step in a flow.

A unique ID is associated with each request that you can use to match audit records for the same request.

Determining what happens to requests if the delivery gateway goes down:

If the delivery gateway goes down while requests are still in progress, the flow manager continues to
process them. The delivery gateway listens to responses that are sent to the queue; however, these
responses are not removed from the queue, because the delivery gateway is not active. When the delivery
gateway restarts, any responses are taken off of the queue. Since the original requester information is no
longer available, these responses are discarded.

Determining what happens to requests if the flow manager goes down:

If the flow manager goes down, the delivery gateway will timeout while waiting for the response and it
generates a response to the originator to indicate that a timeout has occurred. The delivery gateway
attempts to recall any requests that have not been started by the flow manager.

Diagnose and solve iSeries Connect problems using trace
Trace is intended to aid IBM Service in diagnosing and solving product problems and is not generally
intended for use by customers. However, a service representative may ask you to gather trace logs to help
detemine the source of a problem.

This topic provides information about these traces:

v Delivery gateway and flow manager (See 109)

v PCML (See 109)

v JDBC (See 109)

v Configuration application (See 110)

108 iSeries: IBM Connect for iSeries 2.0

Tracing the delivery gateway and the flow manager

Turn tracing on and off for the delivery gateway and the flow manager by following these steps:

1. “Start the iSeries Connect configuration tool” on page 39.

2. Click the Instances tab.

3. On the Manage Connect Instances page, select your instance and click Properties.

4. Click the Tracing tab. Specify the trace settings you want. Click Yes, the click OK to enable tracing to
enable tracing any time after the delivery gateway or flow manager has started.

To display trace files for the component you are tracing, click View Trace File in the appropriate
component’s tracing settings.

You can also view the trace files themselves. If you select to turn trace on for the delivery gateway or flow
manager, the trace files are written to the /QIBM/UserData/Connect200/Commerce/instance_name/Logs
directory (where instance_name is the name of your instance). For the delivery gateway, the trace files are
named with the format GW_Tracen.log (where n is a number). For the flow manager, the trace files are
named with the format FM_Tracen.log (where n is a number).

Note: Trace records are written to a file. The names of trace files contain a number, with the number
1 representing the newest trace file, for example, FM_Trace1.log. When a trace file reaches the
maximum file size, it is closed and the number in the file name is incremented by one. Thus,
FM_Trace1.log becomes FM_Trace2.log, and new trace records are written to FM_Trace1.log. When
the maximum number of files is reached, the oldest file is deleted.

Tracing PCML

If you encounter problems with a PCML connector, you can use the iSeries Connect configuration tool to
enable PCML tracing.

1. In the Instances tab, select your instance and click Properties.

2. In the Instance Properties page, click the Flow Manager tab.

3. Under Java Virtual Machine: System Properties, add a system property with this value:
com.ibm.connect.flowmanager.connector.TracePCML=true

The trace output is written to a QPRINT file under the QBEFSRVR job for that instance. Refer to the IBM

Toolbox for Java documentation for debugging PCML and the com.ibm.as400.data.PcmlMessageLog
class for more information about the PCML trace.

Note that PCML tracing logs output for all applications that use PCML, including the iSeries Connect
framework. Therefore, the trace logs may contain information about applications other than your PCML
connector.

Tracing JDBC

Both the IBM Developer Kit for Java and IBM Toolbox for Java JDBC drivers provide user tracing. You turn
on JDBC tracing by including a connection property on the JDBC application connector JDBC URL. Refer
to the documentation for those JDBC drivers for more information.

The IBM Developer Kit for Java JDBC driver provides an additional, more comprehensive JDBC trace. See

the JDBC Driver FAQ for more information. You can enable this tracing for the iSeries Connect flow
manager to trace all flow manager and JDBC connector activity.

Perform these steps in the iSeries Connect configuration tool to enable JDBC tracing:

Chapter 8. Manage iSeries Connect 109

http://www.as400.ibm.com/developer/jdbc/Faqs/JDBCFAQ.html#HDRD2

1. In the Instances tab, select your instance and click Properties.

2. In the Instance Properties page, click the Flow Manager tab.

3. Under Java Virtual Machine: System Properties, add two new properties:

v jdbc.db2.trace
For the values of the jdbc.db2.trace system property, refer to the documentation for the

QIBM_JDBC_TRACE_LEVEL environment variable.

v jdbc.db2.trace.config
This system property specifies the location for the trace output. Refer to the information on the

QIBM_JDBC_TRACE_CONFIG environment variable for more information about the format of
the jdbc.db2.trace.config system property.

Note that JDBC tracing logs output for all applications that use the IBM Developer Kit for Java JDBC
driver, including the iSeries Connect framework. Therefore, the trace logs may contain information about
applications other than your JDBC connector.

Tracing the configuration application

Enable tracing for the configuration application by doing the following:

1. Click the Home tab.

2. Click Preferences.

3. Click Application and select the trace levels.

If you select to enable trace for the configuration application, the configuration trace files are written to
the /QIBM/UserData/Connect200/Commerce/Servlet/Logs directory. The trace files are named
config_tracen.log. You can select to enable any of these levels of trace: informational, warning, error,
or fatal error.

4. Click OK to automatically enable or disable the trace.

Note: The configuration application is not associated with a particular instance.

WebSphere Commerce Suite extensions runtime return codes
Use the information in this table to help diagnose problems with the WebSphere Commerce Suite runtime
services. See “WebSphere Commerce Suite considerations for iSeries Connect” on page 23 for additional
troubleshooting information.

Return code Description

5003 The JDBC connection to the database failed. Check the
iSeries Connect servlet traces for additional information.

5015 The provider is not found in the iSeries Connect
configuration. Make sure that the provider information in
inbound XML request matches the configured provider
protocol information.

5019 The partner is not found in the iSeries Connect
configuration. Make sure that the partner information in
inbound XML request matches the configured partner
protocol information.

5031 The product number in Quote or Purchase Order is not
found in the iSeries Connect catalog (for WebSphere
Commerce Suite) defined for the provider.

5033 The WebSphere Commerce Suite Shopper password is
not found in the iSeries Connect configuration.

110 iSeries: IBM Connect for iSeries 2.0

http://www.as400.ibm.com/developer/jdbc/Faqs/JDBCFAQ.html#HDRD2
http://www.as400.ibm.com/developer/jdbc/Faqs/JDBCFAQ.html#HDRD2

Return code Description

5041 An unexpected response from WebSphere Commerce
Suite. Make sure that the WebSphere Commerce Suite
WebSphere Application Server instance is started. If the
problem persists, contact IBM Service.

5046 An internal error getting the partner or provider API
object. Contact IBM Service.

5047 The PingServer command to WebSphere Commerce
Suite server failed. Make sure that the WebSphere
Commerce Suite instance is active. If the problem
persists, contact IBM Service.

5081 An internal error processing Address for order item
shipping or billing information occurred. Contact IBM
Service.

5082 A WebSphere Commerce Suite Address entry
representing Purchase Order Request’s shipping or billing
address not created or found.

5083 An unexpected response from WebSphere Commerce
Suite occurred. Make sure that the WebSphere
Commerce Suite WebSphere Application Server instance
is started. If the problem persists, contact IBM Service.

5101 An internal error occurred. No order items are found in
the Purchase Order Request. Contact IBM Service.

5102 No order items were found in the Purchase Order
Request. Check the XML document received from the
iSeries Connect delivery gateway.

5103 The login to WebSphere Commerce Suite for shopper or
WebSphere Commerce Suite administrator failed. Make
sure WebSphere Commerce Suite is active and that the
shopper password or WebSphere Commerce Suite
administrator ID and password information entered in the
iSeries Connect configuration is correct.

5106 The WebSphere Commerce Suite OrderDisplay command
failed. Check the iSeries Connect flow manager trace and
WebSphere Commerce Suite logs for additional
information.

5107 The WebSphere Commerce Suite B2BVerify-
OrderProcess failed. Check the iSeries Connect flow
manager trace and WebSphere Commerce Suite logs for
additional information.

5108 The WebSphere Commerce Suite Shopper password was
not found in the iSeries Connect configuration.

5109 An unrecognized response from WebSphere Commerce
Suite occurred. Make sure the WebSphere Commerce
Suite instance is started. If the problem persists, contact
IBM Service.

5110 An Order Request type is not valid. Valid request types
for Order Request include: new, update, and cancel.

5111 An error processing Address Item for purchase order
request shipping or billing information occurred. Examine
the iSeries Connect file manager trace for additional
information.

Chapter 8. Manage iSeries Connect 111

Return code Description

5112 A duplicate Order request was received. Check the
QABECORDMP table in the iSeries Connect database
collection for a matching transaction ID.

5115 A time out in processing a WebSphere Commerce Suite
command during order request processing occurred.
Check WebSphere Commerce Suite for errors.

5116 A WebSphere Commerce Suite Administrator ID and
password was not defined in the iSeries Connect
instance. This information is required for processing
WebSphere Commerce Suite order update or order
cancel requests.

5117 An order update or cancel request was received and no
previous order was found in iSeries Connect. Check the
QABECORDMP table in the iSeries Connect database
collection for a matching transaction ID.

5118 An error processing a B2BOrder request occurred. Check
the iSeries Connect flow manager trace and WebSphere
Commerce Suite logs for additional information.

5551 An internal error (invalid parameters) occurred. Contact
IBM Service.

5552 An internal error (already logged on to WebSphere
Commerce Suite) occurred. Contact IBM Service.

5553 The logon to WebSphere Commerce Suite failed. Make
sure that WebSphere Commerce Suite is active and that
the registered user exists in WebSphere Commerce
Suite.

5554 An internal error (an exception occurred in the
WebSphere Commerce Suite logon attempt) occurred.
Contact IBM Service.

5555 An internal error (an exception occurred in the
WebSphere Commerce Suite logon attempt) occurred.
Contact IBM Service.

5556 An internal error (an exception occurred in the
WebSphere Commerce Suite logon attempt) occurred.
Contact IBM Service.

5557 An invalid user register type was detected. WebSphere
Commerce Suite shoppers must be registered users and
the WebSphere Commerce Suite Administrator ID must
have CSR level authority.

5200 A partner cookie was not received in the PunchoutSetup
request.

5201 A PostBack URL was not received in the PunchoutSetup
request.

5202 A Punchout edit or inspect request is missing the product
reference number or ship to reference number.

5203 Product items were not included in the punchout edit or
inspect request.

5204 An unknown Punchout setup request type was received.
Types expected are: new, edit, or inspect.

5205 An exception occurred during the PunchoutSetup
processing. Contact IBM Service.

112 iSeries: IBM Connect for iSeries 2.0

Return code Description

5207 An internal error while processing the PunchoutSetup
request occurred. Contact IBM Service.

5208 An unexpected response from WebSphere Commerce
Suite was received. Make sure that the WebSphere
Commerce Suite WebSphere Application Server instance
is started. If the problem persists, contact IBM Service.

5209 An exception occurred during PunchoutSetup processing.
Contact IBM Service.

5210 An internal error occurred while processing the
PunchoutSetup request. Contact IBM Service.

5212 An internal error occurred while getting a generic
requisitioner for the PunchoutSetup request. Contact IBM
Service.

5300 The provider cookie provided on the Quote request does
not match the previous punchoutsetup request.

5301 A WebSphere Commerce Suite shopper password was
not found in the iSeries Connect configuration.

5302 A provider cookie or quote number was not received in
the new Quote extrinsic data.

5303 The extrinsics data was not received in the new Quote
request.

5304 An internal error getting the WebSphere Commerce Suite
command object during quote processing occurred.
Contact IBM Service.

5305 An internal error processing Quote occurred. Contact IBM
Service.

5306 An unexpected response from WebSphere Commerce
Suite was received. Make sure that the WebSphere
Commerce Suite WebSphere Application Server instance
is active. If the problem persists, contact IBM service.

5307 The Quote item is missing a quote reference number,
product reference number, currency, or product
description.

Apply program temporary fixes (PTFs) for iSeries Connect
If you cannot determine the cause of a problem, ensure that you have the latest fixes for iSeries Connect.

See Connect for iSeries Support Information for a current list of iSeries Connect PTFs.

You should also have the latest fixes for these products:

v IBM HTTP Server

v IBM MQSeries

v IBM WebSphere Application Server

v Lotus Domino

v IBM Toolbox for Java

v IBM DB2 Universal Database (UDB)

v IBM WebSphere Commerce Suite

Chapter 8. Manage iSeries Connect 113

http://www.ibm.com/servers/eserver/iseries/btob/connect/support.htm

See Connect for iSeries Support Information for links to support information for these products.

Get support for iSeries Connect
If you cannot determine the cause of a problem, contact IBM Support through the channels defined in your

support contract. See IBM Support for technical documents and support information.

Collect useful data for an authorized program analysis report
To collect data for an authorized program analysis report (APAR), include a complete description of the
problem, and send these log files, where instance_name signifies the name of your instance. If you have a
split system, some of the logs files may exist on the delivery gateway system.

v /QIBM/UserData/HTTPA/admin/logs/jvmstdout.txt

v /QIBM/UserData/HTTPA/admin/logs/jvmstderr.txt

v /QIBM/UserData/Connect200/Connect_Registry.xml

v /QIBM/UserData/Connect200/Commerce/servlet/logs/config_tracen.log

v /QIBM/UserData/Connect200/Commerce/instance_name/Logs/FM_trace n.log

v /QIBM/UserData/Connect200/Commerce/instance_name/Logs/GW_trace n.log

v /QIBM/User/Data/Connect200/Commerce/instance_name/Logs/instance_namestdout.txt (WebSphere
stdout log is only available if you are using WebSphere for the delivery gateway)

v /QIBM/User/Data/Connect200/Commerce/instance_name/Logs/instance_namestderr.txt (WebSphere
stderr log is only available if you are using WebSphere for the delivery gateway)

v /QIBM/UserData/Connect200/Commerce/instance_name/Logs/GW_Audit_ timestamp.log (each has its
own unique time stamp)

v /QIBM/UserData/Connect200/Commerce/instance_name/Logs/GW_Message_ timestamp.log (each has
its own unique time stamp)

v /QIBM/UserData/Connect200/Commerce/instance_name/Logs/FM_Audit_ timestamp.log (each has its
own unique time stamp)

v /QIBM/UserData/Connect200/Commerce/instance_name/Logs/FM_Message_ timestamp.log (each has
its own unique time stamp)

If you are encountering an exception, also send the text of the exception, including the stack trace.

iSeries Connect backup and recovery
To ensure that you can recover from catastrophic errors, you should periodically back up iSeries Connect.
For more information on planning a backup and recovery strategy, see:

v V5R1 Backup, Recovery, and Availability

v V5R2 Backup, Recovery, and Availability

Backing up the product

To back up the iSeries Connect product, use the Save Licensed Program (SAVLICPGM) command. Here
is an example:
SAVLICPGM LICPGM(5733CO2) DEV(*SAVF) SAVF(MYLIB/MYFILE)

Backing up user-defined data

Back up these user-defined iSeries Connect objects:

114 iSeries: IBM Connect for iSeries 2.0

http://www.ibm.com/servers/eserver/iseries/btob/connect/support.htm
http://www.ibm.com/eserver/iseries/support

v INSTANCE_NAME library
The library associated with your instance contains SQL collection and configuration objects for the
instance, such as message queue and job description. You can use the Save Library (SAVLIB)
command to create a backup. Here is an example:
SAVLIB LIB(MYINST) DEV(*SAVF) SAVF(MYLIB/MYFILE)

Note: If you have migrated a 1.1 instance to version 2.0, the library name is not equivalent to the
instance name. To determine the name of your instance library, view the
/QIBM/UserData/Connect200/Commerce/instance_name/instance_name _registry.xml file (where
instance_name is the name of your instance).

Look for the B2BInstanceLibrary element. The path attribute contains the name of the instance
library. Here is an example:
<B2BInstanceLibrary Path="MYINST">

v /QIBM/UserData/Connect200 directory
Contains user-defined data, such as global preferences data. Use the Save (SAV) command to create a
backup of the directory. Here is an example:
SAV DEV(’/MYLIB.LIB/MYFILE.FILE’) OBJ((’/QIBM/UserData/Connect200’))

v /QIBM/UserData/Connect200/Commerce directory
Contains user-defined data, such as instance lists and theme data.

v /QIBM/UserData/Connect200/Commerce/instance_name directory
Contains user-defined data, such as log files and process flows.

v /QIBM/UserData/Connect200/Commerce/Protocols directory
Contains configuration files for supporting a user defined protocols.

Chapter 8. Manage iSeries Connect 115

116 iSeries: IBM Connect for iSeries 2.0

Chapter 9. Reference

See these references for more information about iSeries Connect:

“API Javadoc”
Documents the iSeries Connect application programming interfaces (APIs).

“iSeries Connect Customization Guide”
Describes the iSeries Connect application programming interfaces (APIs) and contains information
about creating user defined protocols.

“Samples for iSeries Connect”
Provides links to sample applications that demonstrate the features of iSeries Connect.

API Javadoc

The iSeries Connect API Javadoc documents the iSeries Connect application programming interfaces
(APIs).

iSeries Connect Customization Guide

The iSeries Connect Customization Guide contains information about:

v Creating your own user defined protocol.

v Extending and customizing the iSeries Connect framework through application programming interfaces
(APIs).

Samples for iSeries Connect
“Run the PCML verification sample” on page 85
The PCML verification sample ships with the Connect for iSeries product. The sample shows you
how to configure an iSeries Connect instance from start to finish. Running the sample is a good
place to start for learning how to configure iSeries Connect.

“Test your instance” on page 70
Use the Test Drive Connect utility in the iSeries Connect configuration tool to simulate requests from
a B2B marketplace.

Connect for iSeries: Developer Resources
See this online resource for the most current sample applications for iSeries Connect.

© Copyright IBM Corp. 1998, 2002 117

javadoc/index.html
pgmguide.pdf
http://www.ibm.com/eserver/iseries/btob/connect/devtools.htm

118 iSeries: IBM Connect for iSeries 2.0

����

Printed in U.S.A.

	Contents
	Chapter 1. IBM Connect for iSeries 2.0
	What's new in iSeries Connect 2.0

	Chapter 2. B2B and iSeries Connect concepts
	Partner and provider model
	iSeries Connect solution
	The iSeries Connect delivery gateway
	Delivery gateway servlets
	Incoming request processing in the delivery gateway
	Processing a cXML request
	Response shells for the request
	Example: PunchOutSetupResponse shell document
	Example: OrderRequest shell response
	Example: PunchOutOrderMessage shell response

	Outbound request processing in the delivery gateway
	Response shells for outbound requests
	Example: StatusUpdateRequest shell document
	Example: ConfirmationRequest shell document
	Example: ShipNoticeRequest shell document

	The iSeries Connect flow manager
	Initialization and termination exit processing

	iSeries Connect tools
	WebSphere Commerce Suite extensions
	Assumptions for WebSphere Commerce Suite (WCS) extensions
	WebSphere Commerce Suite (WCS) extensions configuration services
	Run-time services for iSeries Connect
	WebSphere Commerce Suite considerations for iSeries Connect

	Chapter 3. Plan for iSeries Connect
	Plan for handling requests with your business applications
	Choose a way to process requests
	Choose an application server to support iSeries Connect
	Choose an iSeries Connect application connector
	Choose a protocol
	Define a business process flow

	Plan for the marketplace

	Chapter 4. Install iSeries Connect
	V5R1 prerequisites for iSeries Connect 2.0
	V5R2 prerequisites for iSeries Connect 2.0
	Ensure TCP/IP is ready
	Install IBM MQSeries
	MQSeries supported languages

	Install fixes for the prerequisite products
	Install the iSeries Connect product
	Install fixes for iSeries Connect
	Perform post-installation steps
	Change the coded character set identifier (CCSID)
	Coded character set identifier (CCSID) values for EBCDIC

	Uninstall iSeries Connect

	Chapter 5. Configure iSeries Connect
	Start the iSeries Connect configuration tool
	Roadmap for configuring iSeries Connect
	Create an instance
	Create a provider
	Tips for registering provider and partner organizations for the cXML protocol
	Exit programs

	Register partner organizations
	Create a catalog
	Set up Lotus Domino for importing catalogs

	Configure an application connector
	Program call connector
	Java connector
	JDBC connector
	JDBC connector properties

	MQSeries queue connectors
	MQSeries queue connector properties
	MQSeries AMI connector properties

	OS/400 data queue connector
	OS/400 data queue connector properties
	Define messages for queue connectors
	Application connector document field set (ACDFieldSet)

	Create business process flows
	Deploy your business process flows
	Start your instance
	Test your instance

	Configure WebSphere Commerce Suite
	Copy digital certificates for remote WebSphere Commerce Suite (WCS) instances
	Enabling a WebSphere Commerce Suite 5.1 store for remote catalog support
	Details: InFashionWithConnect sample store implementation
	WebSphere Commerce Suite B2BNewQuote command
	WebSphere Commerce Suite WCSB2BShop command

	Enabling a WebSphere Commerce Suite 5.4 store for remote catalog support
	Details: InFashionWithConnect54 sample store implementation

	Deploy process flows for WebSphere Commerce Suite (WCS)

	Run the PCML verification sample
	Flow of the PCML verification sample
	PCML sample: Create an instance
	PCML sample: Register a new provider
	PCML sample: Register a new partner
	PCML sample: Deploy the process flow
	PCML sample: Start the instance
	PCML sample: Test the sample configuration

	Chapter 6. Migrate iSeries Connect
	Migrate the iSeries Connect product
	Migrate iSeries Connect middleware
	Considerations for migrating instances for WebSphere Commerce Suite (WCS) support

	Chapter 7. Customize iSeries Connect
	Customize the iSeries Connect configuration tool
	User defined protocols
	Customize WebSphere Commerce Suite
	Create an outbound message handler
	Set up outbound request initiation
	Grant authorities for outbound message handler
	Configure delivery methods for outbound message handler

	Chapter 8. Manage iSeries Connect
	Start and stop iSeries Connect
	Manage instances
	Monitor B2B transactions
	Troubleshoot iSeries Connect
	Find error information
	Troubleshoot request errors
	Diagnose and solve iSeries Connect problems using trace
	WebSphere Commerce Suite extensions runtime return codes
	Apply program temporary fixes (PTFs) for iSeries Connect
	Get support for iSeries Connect
	Collect useful data for an authorized program analysis report

	iSeries Connect backup and recovery

	Chapter 9. Reference
	API Javadoc
	iSeries Connect Customization Guide
	Samples for iSeries Connect

