
iSeries

Work management

ERserver
���

iSeries

Work management

ERserver
���

© Copyright International Business Machines Corporation 1998, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Work management . 1
Related Information . 1
What’s new for V5R2 . 1
Print this topic . 3
Manage daily work . 4

Monitor system activity . 5
Work with system status . 6

Managing jobs and threads . 6
Find a job on the iSeries server. 7
Determine the status of a job . 9
View performance statistics for a job . 10
End a job . 12
Job actions . 13
View threads running under a specific job . 14
View thread properties . 14
Delete or end a thread . 15

Manage job queues . 15
View jobs on the job queue . 15
Change the priority of a job within a job queue. 16
Move jobs to different job queues . 17

Manage subsystems . 20
Monitor the number of jobs in a memory pool . 20
View jobs in the subsystem . 22
Start a subsystem . 22
Stop a subsystem . 22

Manage memory pools . 23
Monitor the number of subsystems using a memory pool 23
Check memory pool use . 24
Change the size of a memory pool . 25

Manage job logs . 27
Access job logs for active jobs, including server jobs 27
Access printer output . 28

Manage output queues . 28
View output queues on the system . 29
Move output between and within output queues 30
Clear output queues . 30

The structure of your system . 30
Jobs . 31

Active and inactive jobs . 31
Active jobs . 31
Inactive jobs . 32

Job types . 32
Autostart jobs . 32
Batch jobs . 33
Communications jobs . 33
Interactive jobs . 34
Prestart jobs . 34
Reader and writer jobs . 35
Subsystem jobs . 35
System jobs . 35

Job properties. 38
Detach printer output . 39
Elapsed performance statistics . 40

© Copyright IBM Corp. 1998, 2002 iii

Detailed status . 40
End jobs. 40
Details: Active job actions . 41
Job logs . 42

Threads . 42
Thread actions . 43
Thread types . 44
Thread status . 44

Job queues. 45
How a job queue works . 45

Subsystems . 46
Subsystem description . 48
Subsystems shipped with the system . 56
User-defined subsystems . 56
Subsystem properties . 57
Subsystem life cycle . 58

What happens when the subsystem starts . 59
Memory pools . 60

Memory pool activity level . 60
Types of memory pools . 61

Output queues . 62
Attributes of an output queue . 63

Order of Files . 64
Status of printer output . 64

How work gets done . 65
What work is . 65
What happens before work enters the system . 66
How work enters the system . 66
How work gets processed . 67
How work leaves the system . 67

Troubleshoot Work Management . 68
My job is hung . 69
My job is experiencing poor performance . 70

iv iSeries: Work management

Work management

Work management is an important building block within the iSeries server operating system. Its functions
are the foundation through which all work enters the system, is processed, run, and completed on iSeries
servers. Whether you run a simple batch job once a week or you call an application daily (like Lotus
Notes), work management helps manage the jobs and objects that run on your system. It also supports
the commands and internal functions necessary to control system operations and allocate resources to
applications when needed.

The iSeries server is set up and ready to use. Most users will not need to change the default settings.
However, if you need to tailor the work management piece to fit your company, you will need to
understand the terms and concepts associated with it and how they integrate with each other to provide
you with the best performance from your iSeries server.

Whether you are a experienced iSeries user or just learning, this topic gives you an easy-to-understand
view of work management. This topic contains different entry points, so you choose where you want to
start learning about work management.

A job’s life
Follow a job through its life cycle in the work management infrastructure—use our interactive graphic
to click your way to more detailed information about work management .

Manage daily work
Find out the daily tasks you can perform to efficiently manage work from iSeries Navigator and when
to perform these tasks. From checking job logs to monitoring system activity, you will learn important
daily tasks involved with work management.

The structure of your system
Learn the terms and concepts associated with work management(including job, job queues,
subsystems, and memory pools) that you can use to manage work on an iSeries server.

How work gets done
Find out what you will need to do to get work done on your iSeries server. Set up job queues,
allocate memory to your subsystems and understand what happens to the job after it finishes
running.

Troubleshoot work management
Read about how to resolve the problems with jobs through iSeries Navigator.

See the What’s new topic for the new and changed information and see the Print this topic if you want to
print the PDF for this entire topic.

Related Information
IBM manuals contain technical information, know-how, and “how-to” information.

What’s new for V5R2
In V5R2, many new functions have been added to the work management component in iSeries Navigator.
These new features and functions are integrated into the work management structure, so you can still
choose where you want to start learning about the work management component: A job’s life (interactive
graphic), manage daily work, iSeries server structure, and how work gets done. Each of these areas
represent a different level of understanding of work management. Whether you are an experienced iSeries
user or just learning, these articles give you an easy-to-understand view of work management.

© Copyright IBM Corp. 1998, 2002 1

rzaksjoblife.htm
rzaksjoblife.htm
rzakswhatsnew.htm
rzaksprintthis.htm

New iSeries Navigator GUI function

Many of the work management functions and tasks that users and administrators were able to
complete through the character-based interface now can be done through iSeries Navigator. Below is
a list of the new functions.

System status

v This dialog is accessible from both the system connection and from the work management folder
in iSeries Navigator.

v This dialog provides a single location from which the user can identify and potentially resolve
problems as well as access various iSeries Navigator functions, such as active jobs, logical
partitions, memory pools, and disk pools.

Jobs

v Added the following job list windows:

Jobs running in a subsystem
Jobs for a transaction
Jobs using an integrated file system(IFS) object
Jobs using a tape device

v Identify the program or procedure that issues a lock request

v Work with locked members for a specific locked object

v Work with locked rows for a specific locked member

v Work with jobs and lock spaces that have locks on an object, member, or row

v Thread management:

View threads running under a specific job
End threads
View thread properties, including Elapsed Performance Statistics
Change the run priority of a thread
Work with the call stack for a thread
Work with the library list for a thread
Work with locks for a thread
Work with transactions attached to a thread

v Additional job actions:

Work with transactions attached to a specific active job
Work with last SQL statement that was run by a specific active job
Date and time stamp added to the elapsed performance statistics window
Work with locked objects for an active job, thread, transaction, or lock space

v Additional job properties:

Detach printer output option
New disk pool group property on the Other page of job property sheets
Detailed status values for when a job is waiting on a lock, waiting on a dequeue, or waiting
on a lock space that identify the item being waited on
Detailed status value that indicates that a job in a common job list no longer exists on the
system
Launch Printer Output, Job Log, and Threads from properties pages

Job Queues

v Move jobs to the top of other job queues

v Clear a job queue without creating a job log

2 iSeries: Work management

rzakssystemstatus.htm
rzaksmanagejob1.htm
rzaksjobactions2.htm
rzaksdetachprinteroutput.htm

Output Queues

v View printer output on output queues

v Move printer output within and between output queues

v Changed spooled file to printer output file

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

To find other information about what’s new or changed this release, see the Memo to Users

.

Print this topic
You can view or download a PDF version of these documents for viewing or printing. You must have
Adobe(R) Acrobat(R) Reader installed to view PDF files. You can download a copy from Adobe

.

To view or download the PDF version, select the following:

v Work Management (about 173 KB or 40 pages)

v System Values (about 2430 KB or 277 pages)

Other information

You can also view or print the V4R5 Work Management manual PDF:

v V4R5 Work Management

(about 2720 KB or 573 pages)

To save a PDF on your workstation for viewing or printing:

1. Open the PDF in your browser (click the link above).

2. In the menu of your browser, click File.

3. Click Save As...

4. Navigate to the directory in which you would like to save the PDF.

5. Click Save.

Work management 3

rzaksoutputstructure.htm
http://publib.boulder.ibm.com/pubs/html/as400/v5r2/ic2924/info/rzaq9.pdf
http://www.adobe.com/prodindex/acrobat/readstep.html
rzaks.pdf
../rzakz/rzakz.pdf
../../books/c4153063.pdf

Manage daily work
As a system operator or administrator, one of your tasks is to keep your server running smoothly. This
means you monitor, manage, and ensure that your jobs, job queues, subsystems, memory pools, job logs,
and output queues function properly.

The topics in this section give you information on the different types of daily work management tasks as
well as other tasks you might need to perform on your iSeries server. Each subtopic explains why it is
important to do these tasks, as well as how to complete them.

Monitor system activity
Monitoring your system is an important daily activity. You can accomplish this in a variety of ways,
such as using iSeries Navigator and iSeries Navigator Management Central. The tasks in these
subtopics follow:

v Work with system status

v Monitor system performance

v Work with monitors

Manage jobs and threads
Whether you are asked to report the status of a particular job or thread or to monitor a job or
thread’s performance, you can easily find most of the answers you need in iSeries Navigator. The
tasks in these subtopics follow:

v Find a job on the iSeries server

v Determine the status of a job

v View performance statistics for a job

v End a job

v Actions done to a job

v View threads running under a specific job

v View thread properties

v End a thread

Manage job queues
Job queues are an important element in the life cycle of a batch job. Job queues help control the rate
at which batch jobs enter a subsystem. The tasks in these subtopics follow:

v View jobs on the job queue

v Change the priority of a job within a job queue

v Move jobs to different job queues

Manage subsystems
Because jobs run in subsystems, you may need to monitor subsystem activity for potential problems
that could affect a job’s ability to run. The tasks in these subtopics follow:

v Monitor a subsystem

v View jobs in a subsystem

v Start a subsystem

v End a subsystem

Manage memory pools
Memory pools allocate memory to subsystems so that jobs can run. It is important that when jobs run
they get enough memory to complete efficiently. The tasks in these subtopics follow:

v Monitor the number of jobs in a memory pool

v Monitor the number of subsystems in a memory pool

4 iSeries: Work management

rzaksmonitor1.htm
rzaksmanagejob1.htm
rzaksmanagejobq1.htm
rzaksmanagesbs1.htm
rzaksmanagemp1.htm

v Check memory use

v Change the size of a memory pool

Manage job logs
Job logs contain information related to requests entered for a job, such as commands in the job,
commands in the program, and messages. The tasks in these subtopics follow:

v Access job logs for active jobs, including server jobs

v Access printer output

Manage output queues
Output queues help you manage printer output created when a job ends. It is important to
understand how to effectively maintain your output queues so that your printed output processes
smoothly. The tasks in these subtopics follow:

v View output queues on the system

v Clear output queues

v Move output between and within output queues

Monitor system activity
Monitoring system activity is one of the many important tasks in the day of an administrator. Monitoring the
flow of work through the system is only a piece of the information that should be monitored on a daily
basis. IBM offers a variety of tools to help you monitor your system performance from basic system
checking using system status to advanced system monitoring with Management Central.

Work with system status
In iSeries Navigator, the system status window gives you
the ability to view and access various system functions on
a system in one convenient location.
Monitor system performance
The Management Central function in iSeries Navigator has
system monitors that collect and display real-time
performance data from which you can track and
troubleshoot system performance problems.
Work with monitors
Monitor your jobs and servers, your message queues,
changes to selected files, and business-to-business
transaction activity.

Work with system status
Modeled after the top half of the Work with System Status (WRKSYSSTS) display in the character-based
interface, the System Status dialog offers a quick and easy way to check the status of a system.
Management Central allows you to monitor more indepth functions through the use of system monitors.

The different functions that you can do from the system status window are:

v View CPU usage

v View the total number of jobs, active jobs, and the maximum number of jobs allowed on the
system

v View the number of active threads on the system

v View the percentage of addresses (permanent and temporary) used on the system

v View the total disk space

v View the system disk pool capacity and usage

v View the number of processors on your system

Work management 5

rzakswrkjoblog.htm
rzaksmanageoutputqueue.htm
../rzaih/rzaih1.htm
rzakssystemstatus.htm
../rzahx/rzahxmonitorperf1.htm
../rzaih/rzaihmonitors.htm
../rzaih/rzaih1.htm
../rzaih/rzaihmonitors.htm
rzaksthreadstructure.htm

Note: Three different Processors pages exist depending on the
type of iSeries system you have. You may see additional
processor related information depending on the
configuration of your system:

System with no partitions
System with partition, dedicated processors
System with partition, shared processors

For more information on logical partitioning on the iSeries
system, see Logical partitions.

– View the total memory on the system

– View the temporary storage used

– View the current amount of temporary storage used and the maximum amount used since the last
system restart

– Access active jobs

– Access jobs and storage system values

– Access disk pools

– Access active memory pools

– Access the Configure Logical Partitions dialog

You can access the System Status dialog from the System folder or the Work Management folder within
iSeries Navigator.

To get to system status from the System folder:

1. In iSeries Navigator, expand My Connections.

2. Right-click the connection on which you want to work and select System Status.

For more information on the different tasks that you can complete using system status, see the iSeries
Navigator help.

Managing jobs and threads
Since work done on your system is in the form of jobs and threads, it is important that you can find, track,
and manage them within your system.

These subtopics explain how to find a particular job, how to determine the status of a job, how to monitor
the performance of a job, how to end a job, what actions you can perform on a job, how to view threads
and their properties, and how to end threads.

v Find a job on the iSeries server

v Determine the status of a job

v View performance statistics for a job

v End a job

v Job actions

v View threads running under a specific job

v View thread properties

v End a thread

For more information on the different tasks you can perform on jobs and threads, see the iSeries
Navigator help.

6 iSeries: Work management

../rzaj9/rzaj9iclpar.htm
rzaksfindpartjob.htm
rzaksdetstatjob.htm
rzaksmonjobperf.htm
rzakshowendjob.htm
rzaksjobactions1.htm
rzaksthreadrununderjob.htm
rzaksvwthreadprop.htm
rzaksendthread.htm

For more detailed information on jobs and the types of jobs on an iSeries server, see Jobs. For more
detailed information on threads, see Threads.

Find a job on the iSeries server
It is important to understand how to find jobs on your iSeries server. Whatever the reason, at some point
in time you may need certain information from a particular job. In iSeries Navigator, you can do a Find on
all your jobs or you can narrow your search using the Include... function followed by Find. The Include...
function allows you to put limitations on what is displayed in iSeries Navigator. For example, instead of
doing a Find on hundreds of jobs, you can run an Include... to display only certain job types. Or, you can
display only those jobs with specific job user IDs.

From a performance standpoint, if you have lots of jobs on the system, it is recommended that you use
the Include... function to narrow the number of jobs searched. If you have a lot of jobs on the system,
searching through all of them can hinder system performance.

Note: You can use the menu bar Find and Include... throughout work management where you find jobs.
You can also use these tools to find job queues, subsystems, and memory pools in the same manner.
Remember that you need to click on the area you want to search before you can use these tools.

To find a job using the Find (Ctrl+F) option, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Click Active Jobs; then select Edit.

5. From the Edit menu, select Find (Ctrl+F).

6. In the Search for field, type the job ID you want to find (for example, Qqqtemp1). All the job columns
are searched for your job.

7. Click Find. iSeries Navigator will highlight your job once it is found.
Note: Remember that job names are only case sensitive when enclosed in quotations (for example,
″MyJob″). If the job name is not enclosed in quotations, then it is not case sensitive.

To limit the information that is displayed using Include... function; do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

Work management 7

rzaksjobsoverviewarticle1.htm
rzaksthreadstructure.htm

3. Expand Work Management.

4. Click either Active Jobs or Server Jobs.

5. From the View menu, select Customize this View, then Include. The Active Jobs - Include dialog
appears.

6. In the Active Jobs - Include dialog, select the options with which you want to search for your job.

7. Click OK. From this point, use Find to display a particular job.

For more information on jobs, see Jobs.

8 iSeries: Work management

Determine the status of a job
Monitoring your jobs will help you understand what your jobs are doing. The job status is an important
piece of information that you can use to find out what a job is doing. In iSeries Navigator job status is easy
to find.

To check the status of an active job or server job, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Click Active Jobs or Server Jobs.
Note: You can see a job status from anyplace within the Work Management folder that you access
jobs.

5. Look at the Detailed Status column to determine the status of a job (for example, Waiting for event,
Waiting for time interval, or Waiting for dequeue).

For more detailed information, see Job status.

Work management 9

rzaksjobstatuses.htm
rzaksjobstatuses.htm

View performance statistics for a job
A job’s performance is important to anyone that uses an iSeries server because one job running poorly
can affect other jobs on the system. To view potentially problematic jobs gives you the ability to prevent
performance problems before they occur.

The Elapsed Performance Statistics window allows you to monitor a job’s CPU use, disk I/O (hard drive
input/output), page fault rates, average response times, and the number of interactive transactions. You
can select an option in this window to refresh these statistics manually or on a schedule.

To display the elapsed performance statistics, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Click Active Jobs.
Note: You can view the performance of a job from any location within work management where you
can see jobs. The Elapsed Performance Statistics dialog can be displayed from the Performance tab
of a Job property sheet.

5. Right-click the job for which you want to display the performance statistics, and select Details....

10 iSeries: Work management

rzakselapsedperfstats.htm

6. From the Details... list, select Elapsed Performance Statistics.

You can refresh, reset, and schedule the performance statistics to automatically refresh.

Note: You can look at the elapsed performance statistics for more than one job at a time by opening
multiple windows. This allows you to view multiple problematic jobs at one time. Each window holds
the information for only one job.

The elapsed performance statistics is one way to view the performance of a job as it moves through the
system. Another way to view jobs on the system is through the Management Central folder. You can

Work management 11

../rzaih/rzaih1.htm

monitor jobs in Management Central as well as monitor system performance and messages. For additional
information on job monitors, see Monitoring jobs and servers with Management Central.

End a job
Sometimes you need to end jobs because they take too long to run or they use too much memory, which
can affect the performance of other jobs on the system.

To end a job, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Click Active Jobs.
Note: You can Delete/End a job from any location within work management where you can see jobs.

5. Right-click the job that you want to end (for example, Qdftjobd) and click Delete/End.

6. In the How to end field, select Controlled or Immediate.

7. In the Time limit for controlled end field, enter the number of seconds before the job switches from
a controlled end to an immediate end. (This parameter only applies to a controlled Delete/End.)

8. In the Delete printer output field, select Yes or No.

12 iSeries: Work management

../rzaih/rzaihjobmon.htm
rzaksendajob.htm
rzaksendajob.htm

9. In the Maximum job log entries field, select Use job value or No maximum.

10. In the Action for related interactive jobs field, choose Do not end, End for group jobs, or End
all.

11. Click Delete to delete the job.

For more information on the actions you can perform on jobs, see Job actions.

Job actions
Managing jobs and threads is made more efficient with the actions available in Work Management. Once
you find the job you want to manage, the following actions are available by right-clicking the job:

Reset statistics
Allows you to reset the list information you are viewing, and it sets the elapsed time to 00:00:00.

Printer output
Displays printer output, if available, in a separate window.

Job log
Displays the job log for the selected job, in a separate window.

Details
Contains detailed information about the following actions for active jobs:

v Call stack

v Library list

v

Locked objects

v Open files

v

Threads

v

Transactions

v Elapsed performance statistics

v

Last SQL statement

Reply
Allows you to reply to the message, if you have a job that is waiting for a message.

Work management 13

rzaksjobactions1.htm
rzaksfindpartjob.htm
rzaksoutputstructure.htm
rzaksjoblogs.htm
rzaksjobactions2.htm
rzakslockedobjstructure.htm
rzaksthreadstucture.htm
rzakselapsedperfstats.htm

Hold
Allows you to hold the job. Holding a job holds all threads in the job. This is available for released
jobs that are not system jobs. When you hold a job, the job is not available for processing. An active
job can be held to temporarily stop its processing.

Release
Releases the job that was held. Releasing the job releases all threads in the job that were held with
the Hold job action. The job is made available for processing.

Move
Allows you to move the selected job to another job queue. You can only move jobs that are on a job
queue.

Delete/End
Allows you to end the selected job. The two ways to end a job, either controlled or immediately.

Monitor
Allows you to create a job monitor for one or more jobs.

Job properties
The job properties for the selected job can be viewed and changed.

View threads running under a specific job
Every active job running on an iSeries system has at least one thread running under it. A thread is an
independent unit of work running within a job that uses the same resources as the job. Because a job
depends on the work done by a thread, it is important to know how to find the threads running within a
specific job.

To view threads running under a specific job, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Click Active Jobs.

5. Right-click the job with which you want to work, and select Details > Threads.

For more detailed information, see Threads or see the iSeries Navigator help.

View thread properties
Threads allow jobs to do more than one thing at a time. If a thread stops processing, it can stop the job
from running. The Thread Properties pages allow you to view various thread and thread performance
properties that can aid in understanding why a thread is not running.

To view the properties of a thread, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Click Active Jobs or Server Jobs.

5. Right click the job with which you want to work, and select Details > Threads.

6. Right-click the thread with which you want to work, and select Properties.

For more detailed information, see Threads or see the iSeries Navigator help.

14 iSeries: Work management

rzaksmvjobtonwjobq.htm
rzaksendajob.htm
../rzaih/rzaihmonitors.htm
rzaksjobproperties.htm
rzaksthreadstructure.htm
rzaksthreadstructure.htm

Delete or end a thread
An initial thread, which is created when the job starts, can never be deleted or ended. However,
sometimes it is necessary to end a secondary thread so that a job can continue to run. Be aware of the
thread you intend to end because the job it runs within may not be able to complete without that thread’s
work.

Important: Ending threads should not be a part of your daily work
management routine. Ending a thread is more serious
than ending a job because the work in other threads may
or may not stop. When you end a job, all the work stops.
However, when you end a thread, only a portion of the
work stops. Other threads may or may not continue to run.
If they continue running without the thread that you end,
they may produce undesirable results.

To delete or end a secondary thread, you must have service (*SERVICE) special authority or Thread
Control authority.

Thread Control authority allows a user to end, hold, and release threads of another job. It allows one to
retrieve information about threads of another job. Thread Control can be granted and revoked for individual
users by using iSeries Navigator’s Application Administration support, or by using the Change Function
Usage Information (QSYCHFUI) API, with a function ID of QIBM_SERVICE_THREAD. For more detailed
information, see Application Administration.

To delete or end a thread, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Click Active Jobs or Server Jobs.

5. Right-click the job with which you want to work, and select Details, and then Threads.

6. Right-click the thread with which you want to end, and select Delete/End.

For more detailed information, see Threads or see the iSeries Navigator help.

Manage job queues
In the life cycle of a batch job, job queues are the entry point into the subsystem. Job queues manage the
number of jobs allowed into the subsystem at any given time and the order they are allowed into the
subsystem.

These subtopics provide instructions for the following tasks:

v View jobs on the job queue

v Change the priority of a job within a job queue

v Move jobs to different job queues

For more information, see Job queues.

View jobs on the job queue
Job queues filter some of the work that is processed in work management (for example, some batch jobs).
Being able to view jobs in the job queue allows you to see what jobs are waiting to be sent to a
subsystem.

Work management 15

../rzaj3/rzaj3overview.htm
rzaksthreadstructure.htm
rzaksvwjobonjobq.htm
rzakschgrunptyinjobq.htm
rzaksmvjobtonwjobq.htm
rzaksaboutjobqueue.htm

To view jobs on the job queue, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Job Queues.

5. Expand Active Job Queues. You can also choose to expand All Job Queues.

6. Select the job queue with which you want to display the jobs (for example, Jobqueue1). The jobs
within the job queue appear.

For more information, see Job queues.

Change the priority of a job within a job queue
Sometimes the importance of a job changes as it goes through its life cycle. It can increase or decrease in
priority in relation to other jobs. Because these changes occur, you need to know how to change the
priority of a job within the job queue. The priority of a job on a job queue helps determine when the job
goes to the subsystem to run. A range from zero to nine (zero being the most important) determines the
priority of a job on a job queue.

Within iSeries Navigator, you can either drag and drop jobs or use the property page to increase or
decrease the priority of a job.

To change the job queue priority of a job on a job queue using drag and drop, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management

4. Expand Job Queues.

5. Expand either Active Job Queues or All Job Queues. A list of job queues appears in the right pane.

6. Select the job queue you want to work in (for example, Qbatch). A list of the jobs on the job queue
appears.

16 iSeries: Work management

rzaksaboutjobqueue.htm

7. Click the job for which you want to move, and drag it to the new priority position (for example, you
want to move joblist4 with a priority of 5 after joblist1 which has a priority of 3).

Use the property page to change the job queue priority of a job on a job queue:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management

4. Expand Job Queues.

5. Expand either Active Job Queues or All Job Queues. A list of job queues appears in the right pane.

6. Select the job queue you want to work in (for example, Qbatch). A list of the jobs on the job queue
appears.

7. Right-click the job for which you want to change the priority and select Properties. The Properties
dialog appears.

8. Click the Job Queue tab.

9. From the Priority on job queue list, select a higher (or lower) priority number. The job queue priority
ranges from 0-9, with 0 being the highest priority.

10. Click OK. The job queue priority has been changed for your job. For example, changing a priority 4
job to a priority 3 moves the job to the bottom of the list of jobs that have a priority 3.

11. Press F5 to refresh the Job Queue window.

For more information, see Job queues.

Move jobs to different job queues
Sometimes you need to move jobs from one job queue to another job queue, whether it is because a job
queue is too congested and the jobs are not moving quickly to the subsystem or because you create a
special job queue for important jobs. iSeries Navigator makes moving jobs between job queues quick and
easy.

A job can be moved from one job queue to another job queue in one of two ways, use either drag and
drop or the Move Job dialog.

Work management 17

rzaksaboutjobqueue.htm

To drag and drop a job from one job queue to another job queue, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Select Job Queues.

5. Click Active Job Queues or All Job Queues.

6. Double-click the job queue with which you want to work.

7. Select the job you want to move.
Note: You can select multiple jobs to move to another job queue by pressing Ctrl+Shift and selecting
each job you want to move.

8. Drag the job to the desired job queue. When the job or jobs are dropped on a new job queue, the job
or jobs are put into the same relative position they were in on their previous job queue. For example, a
priority 3 job that is moved to a new job queue is placed at the end of the priority 3 jobs in the new job
queue.
Note: If you drag using the right mouse button, a menu appears with the commands Move, Move to
Top, and Cancel. Click the command you want.

To use the Move... dialog to move a job from one job queue to another job queue, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Select Job Queues.

5. Click Active Job Queues or All Job Queues.

6. Click the job queue with which you want to work in.

18 iSeries: Work management

7. Right-click the job you want to move to another job queue (for example, Qdftjobd) and select Move....
Note: You can select multiple jobs to move from one job queue to another job queue.

8. In the Jobs to move field, verify that your job is highlighted. If you want to remove selected jobs, you
can press Ctrl and click the jobs you want to remove.

9. In the Where to move Job Queue field, type or browse to the job queue where you want to move
your job (for example, Qusrnomax).

10. In the Library field, type the name of the job queue library or select from the available list.

11. Click OK.

When the job or jobs are moved to a new job queue, the job or jobs are put into the same relative
position they were in on their previous job queue. For example, a priority 3 job that is moved to a new
job queue is placed at the end of the priority 3 jobs in the new job queue. If a job that is held is
moved, the job remains held and is placed in the same relative position in the new job queue.

By checking the Move to Top box, the job is moved to the top of the target queue, without regard to
its current status and priority. (However, if the job at the top of the target queue has a priority greater
than the user is allowed, an error message is displayed and the job is not moved.) Jobs that are
waiting to run can be moved to the top of another queue. For example, if the selected job has a job
queue priority of 5 and the first job on the target queue has a priority of 3, the priority of the selected
job is changed to 3 and is placed ahead of the other jobs on the target queue.

Work management 19

Jobs that are held are released and then moved to the top of the target queue. Jobs that are
scheduled to run cannot be moved to the top of another queue. An error message is displayed stating
that the selected job is not available to be moved.

For more information, see job queues.

Manage subsystems
The subsystem is the work place for jobs on the iSeries server. All user work is done by jobs running in
the subsystem and it is important to monitor this area for slow work performance. In iSeries Navigator, you
can view jobs and job queues associated with the subsystems. Also, you have the same functionality with
jobs and job queues from any other area that displays jobs and job queues.

To learn more about subsystems, see these topics:

v Monitor a subsystem

v View jobs in a subsystem

v Start a subsystem

v Stop a subsystem

Monitor the number of jobs in a memory pool
Since memory pools give subsystems memory to run jobs, it is important to check on the number of jobs
running in a memory pool. Too many jobs in one memory pool can negatively impact system performance.

To monitor the number of jobs in a memory pool, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Memory Pools, and then click Active Pools or Shared Pools.

5. Right-click the memory pool you want to use (for example, Base) and select Jobs. A dialog appears
showing a list of jobs within the memory pool.

20 iSeries: Work management

rzaksaboutjobqueue.htm
rzaksvwactlvlsbs.htm
rzaksvwjobonsbs.htm
rzakshowsbsstart.htm
rzakshowsbsstop.htm

You can also view the number of threads in a memory pool by viewing the Thread Count column. The
thread count provides additional information about the amount of activity in a memory pool.

From this point, you can perform the same functions on jobs as if you were in the Active jobs or Server
jobs area.

For more information, see Memory pools.

Work management 21

rzaksaboutmempools.htm

View jobs in the subsystem
Subsystems coordinate work flow and the resources that a job uses to run. iSeries Navigator allows you to
see what jobs are currently active (but not necessarily running) in the subsystem.

To view jobs in the subsystem, follow these steps:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Subsystems.

5. Expand Active Subsystems, and then select the subsystem for which you want to display its jobs.

For more information, see Subsystems.

Start a subsystem
When a subsystem is started, the system allocates the available resources that are defined to it in the
subsystem description such as memory pools, workstations, and job queues. These resources prepare the
subsystem for use.

For details on the chain of events that are triggered when a subsystem starts, see what happens when the
subsystem starts.

To start a subsystem, follow these steps:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Right-click Subsystems, and then select Start Subsystem.

5. Specify the name and the library for the subsystem to be started, or click Browse... to select from a
list of subsystems.

6. Click OK.

Stop a subsystem
You can use iSeries Navigator to stop one or more active subsystems and specify what happens to active
work being processed. No new jobs or routing steps are started in the subsystem after the subsystem is
stopped.

When a subsystem is stopped, you can specify what happens to active work that is being processed by
the system. For example, you can specify for all jobs in the subsystem to be ended immediately
(Immediate), or you can specify that jobs are allowed to finish processing before the subsystem ends
(Controlled).

Important: It is recommended that subsystems be stopped using the Controlled option whenever
possible. This allows active jobs to end themselves. Use this option to ensure that jobs finish before
the subsystems end. This allows the programs that are running to perform cleanup (end-of-job
processing). Specifying the Immediate value can cause undesirable results, for example, from data
that has been partially updated.

There are additional options available when stopping subsystems. These options are described in detail in
the help associated with the Stop Subsystem dialog in iSeries Navigator.

To stop a subsystem, follow these steps:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

22 iSeries: Work management

rzaksaboutsbs.htm
rzakssbsd.htm
rzakswhathappenssbsstarts.htm
rzakswhathappenssbsstarts.htm

4. Expand Active Subsystems.

5. Right-click the subsystem or subsystems you would like to stop, and then select Stop....

6. Specify the options to be used when the subsystem is stopped.

7. Click Stop.

Manage memory pools
Memory pools allocate memory that subsystems use to run jobs. If too much memory is given to one
subsystem and not enough to another subsystem, jobs in the subsystem begin to run poorly. The iSeries
server provides a default tuner that will meet the needs of many users. However, if your requirements
exceed the capabilities of the system tuner, you will want to know how to manage your memory pools. You
can access the performance tuning values in iSeries Navigator by going through the Properties for a
shared memory pool to the Tuning page. For more information, see Performance. If you want more
information on how to tune performance on your system, see Tune performance.

To manage memory pools, see these topics:

v Monitor the number of jobs in a memory pool

v Monitor the number of subsystems using a memory pool

v Check memory pool use

v Change the size of a memory pool

Monitor the number of subsystems using a memory pool
Subsystems are allocated a certain percentage of memory to run jobs. It is important, as far as
performance, to know how many different subsystems are pulling from the same memory pool. Once you
know how many subsystems are submitting jobs to a pool and how many jobs are running in a pool, you
may want to adjust the size and activity level of the pool to reduce resource contention.

To monitor the number of subsystems using a memory pool, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Memory Pools.

5. Click Active Pools or Shared Pools.

Work management 23

../rzahx1.htm
../rzahxtune.htm
rzaksmonjobmempl.htm
rzaksmonsbsmempl.htm
rzakschkmemuse.htm
rzakschgmemplsz.htm

6. Right-click the memory pool you want to work with and select Subsystems (for example, Base).

From this window, you can determine the number of subsystems that are using an individual memory
to run their jobs.

For more information, see Memory pool activity level.

Check memory pool use
Periodically checking the amount of memory your memory pools use is important. By monitoring these
levels, you can tune your pools to run at maximum efficiency, which in turn, keeps the work cycle running
smoothly. In iSeries Navigator, you can easily monitor the amount of memory your pools are using.

To check the memory use, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Memory Pools, and then click Active Pools or Shared Pools.

5. Right-click the memory pool you want to work with (for example, Interactive) and select Properties.

6. Click the Configuration tab. The Current field, under Size, shows the amount of memory the pool
currently has.

Note: You can also view the current size of a memory pool when you click Active Pools or Shared
Pools. Current Size (in megabytes) is a default column you see when a list of memory pools appears
in the right pane of iSeries Navigator.

For more information, see Memory pools.

24 iSeries: Work management

rzaksmempoolactlevel.htm
rzaksaboutmempools.htm

Change the size of a memory pool
The size of a memory pool directly affects the amount of work a subsystem can process. The more
memory it has, the more work a subsystem can potentially complete. In iSeries Navigator, you can change
the amount of defined (or available) memory a pool has. However, it is important that you monitor your
system carefully before you start changing the parameters of your memory pools. You will also want to
periodically recheck these levels, as some readjustment may need to be done.

Note: Make sure you turn off the system tuner before you start manually changing memory pool
sizes. The system tuner automatically adjusts the sizes of your shared memory pools to the amount
of work the system is doing. If the system tuner is not turned off, the changes you make manually
may be changed automatically by the tuner.

To change the size of a memory pool, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Memory Pools, and then click Active Pools or Shared Pools.

5. Right-click the memory pool you want to work in (for example, Interactive) and select Properties. The
Memory Pool Properties window appears.

Work management 25

6. Click the Configuration tab.

From the Configuration tab of the Properties window, you can change the defined amount of memory.
Defined memory is the maximum amount of memory that that pool can use. The number you put
here should reflect the amount of memory you think that pool will need to support the subsystems it
services.

Special considerations for Base pool: The Base pool is the only memory pool that does not
have a defined amount of memory. It has a minimum amount of memory that it needs to run.
The Base pool contains everything that is not allocated elsewhere. For example, you may have
1000 MB of memory on your system of which 250 MB is allocated to the Machine pool and 250
MB is allocated to the Interactive pool. 500 MB not allocated to anything. This nonallocated

26 iSeries: Work management

memory is stored in the Base pool until it is needed. Use caution when moving memory. Moving
memory from one pool to another can fix one subsystem, but can cause problems for other
subsystems, which in turn, can worsen system performance.

For more information, see Memory pools.

Manage job logs
Most jobs on your iSeries have a job log associated with it. Job logs tell the user many different things
such as when the job starts, when the job ends, what commands are running, failure notices and error
messages. This information gives the user a good idea of how the job cycle is running.

Find out how to access the job log of an active job and access the job log printer output.

v Accessing job logs for active jobs, including server jobs

v Accessing job log printer output

For more information, see Job logs in Chapter 5 of the Work Management

manual.

Access job logs for active jobs, including server jobs
Because job logs record information about a job while it is running, it is important to know how to access
them.

To access the job log for an active job or server job, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Select Active Jobs or Server Jobs.
Note: You can see a job log from any place within work management that you access jobs (for
example, through the Subsystem area or the Memory Pool area).

5. Right-click a job (for example, Qbatch) and select Job Log. Use the image below to see the types of
information you can find in a job log. For more information, refer to the help in the Job Log dialog.

To view more details of a message, double-click a specific message. A Detailed Message Information
dialog appears. This dialog shows the details of the message as well as the message help. The
detailed message help gives you information to solve a problem.

For more information, see Job logs or refer to the help.

Work management 27

rzaksaboutmempools.htm
rzaksaccessjoblog.htm
rzaksaccessjoblogprinteroutput.htm
rzaksactivejob.htm
rzaksserverjobs.htm
rzaksjoblogs.htm

Access printer output
Because you have the choice to detach printer output from a job once it finishes running (separating the
printer output from the job completely), you can access your printer output in iSeries Navigator through
Basic Operations or through Work Management.

To access a job’s printer output through Basic Operations, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Basic Operations.

4. Select Job. All jobs for the current user appear. See Find a job on the iSeries server for the different
ways to search for jobs.

5. Right-click the job for which you want to display printer output and click Printer Output. The Printer
Output dialog appears.

To access printer output through the Output Queues folder, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Output Queues.

5. Select the output queue with which you want to display printer output (for example, Qprint2). The
printer output within the output queue appears.

Manage output queues
Printer output resides on the output queue. The output queue determines the order in which printer output
will be processed by the print device. By managing your output queues, you can ensure smooth
processing of your printer output.

With the proper authority, you can complete the following tasks from the Output Queues folder:

v View output queues on the system

v View the properties of an output queue

v Hold an output queue

v Release an output queue

28 iSeries: Work management

rzaksdetachprinteroutput.htm
rzaksfindpartjob.htm
rzaksoutputattributes.htm

v Clear an output queue

v View output waiting on an output queue

v Move output between and within an output queue

v Change the properties of an output queue

Use these subtopics to view output queues on your system, clear output queues, and move printer output
between and within output queues.

v View output queues on the system

v Move output between and within output queues

v Clear output queues

For more information on the different tasks you can complete with output queues, see the iSeries
Navigator online help. For more information, see Output Queues.

View output queues on the system
Output queues determine the order in which printer output is sent to the printer device.

To view output queues on the system, do the following:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Output Queues.

In iSeries Navigator, you can customize the list of output queues you are viewing by using the Include...
dialog. The Include... dialog allows you to put limitations on what is displayed in iSeries Navigator. For
example, you can run Include... to display only certain output queues. To use the include function, use the
View menu, and then Customize this View.

For more information, see Output queues .

Move output between and within output queues
Sometimes you need to move your output from one queue to another queue or you need to move it to a
higher priority level so that it is sent to the printer device more quickly. This can happen if too much output
traffic is on an output queue.

You can move output from one output queue to another or you can move output within an output queue.

To move output between output queues, follow these steps:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Output Queues.

5. Double-click the output queue that contains the output you would like to move.

6. Click the output you would like to move, and drag it to the output queue to which you would like to
move it in the left pane of iSeries Navigator.

Note: The output is moved to the target queue and placed on
the queue according to priority.

To move output within an output queue, follow these steps:

Work management 29

rzaksviewoutput.htm
rzaksmoveoutput.htm
rzaksclearoutput.htm
rzaksoutputstructure.htm
rzaksoutputstructure.htm

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Output Queues.

5. Double-click the output queue that contains the output you would like to move.

6. Click the output you would like to move, and drag it to the output in the queue that you would like to
move it after.

Note: The output is moved directly after the target output.

For more information, see Output Queues.

Clear output queues
When a job creates printer output it is sent to an output queue to be printed. Most likely you will not print
all the printer output created. iSeries Navigator gives you the ability to clean out your output queues using
the Clear option. Clearing an output queue will delete all output from the queue.

To clear an output queue, follow these steps:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Output Queues.

5. Right-click the output queue you would like to clear, and select Clear.

For more information, see Output queues.

The structure of your system
You can separate work management into five different functional areas: jobs, job queues, subsystems,
memory pools, and output. Each of these areas has its own terms and concepts associated with it. By
themselves they produce different types of data; however, when integrated with each other they become a
powerful tool for managing work on your iSeries server.

To learn more about the different functional areas within work management, see these topics:

Jobs
Learn about the different types of jobs and their properties. Also, learn about the actions that you can
perform on jobs.
Job queues
Learn about the role of the job queue in the work management life cycle.
Subsystems
Learn about the different types of subsystems and their properties.
Memory pools
Learn about the different types of memory pools and their properties.
Output queues
Learn what happens to work when it finishes running.

Note: iSeries Navigator calls application programming interfaces (APIs) that retrieve information from the
iSeries system. APIs are iSeries Navigator’s input and output devices for the iSeries server. For more
information on APIs, see Application programming interfaces (APIs) or the System API Programming

30 iSeries: Work management

rzaksoutputstructure.htm
rzaksoutputstructure.htm
rzaksjobsoverviewarticle1.htm
rzaksaboutjobqueue.htm
rzaksaboutsbs.htm
rzaksaboutmempools.htm
rzaksoutputstructure.htm
../apis/api.htm
../../books/c4158000.pdf

.

Jobs
All work done on a system is performed through jobs. Each active job contains at least one thread (the
initial thread) and may contain additional secondary threads. Threads are independent units of work. Job
properties are shared among the threads of the job, however threads also have some of their own
properties, such as a call stack. The job’s properties contain information about how the work is processed.
The job serves as the owner for properties that are shared among threads within the same job. Work
management provides a way for you to control the work done on your system through a job’s properties.

The general properties of a job determine how the system runs each job. Some of the properties are
grouped together in the job description for easier multiple job management. The system knows what
properties to get and when, based on how the job properties are specified. The iSeries system runs
different types of jobs to serve various needs. Most job types use a job description.

For more information about jobs, see the following topics:

Active and inactive jobs
Learn what active and inactive jobs are.

Job types
Learn about the different types of jobs that run on the iSeries.

Job properties
Learn how to work with job properties.

Job actions
Learn how to manage jobs through iSeries Navigator.

Threads
Learn the difference between threads and jobs.

Job queues
Learn how a job goes from waiting on the job queue to performing work.

A job’s life
Learn what happens during a job’s life from the start to the end.

Note: APIs, such as Open List of Jobs (QGYOLJOB) and
Retrieve Job Information (QUSRJOBI), can be called to
get information on jobs. For more information on APIs, see
Application programming interfaces (APIs).

Active and inactive jobs

Active jobs:

Active jobs are jobs that have started running but have not completed running. Following are some
characteristics of an active job:

v Contains running code

v Has a call stack

v Has objects locked

Work management 31

rzaksjobdescription.htm
rzaksactivejob.htm
rzaksjobtypeoverview.htm
rzaksjobproperties.htm
rzaksjobactions1.htm
rzaksthreadstructure.htm
rzaksaboutjobqueue.htm
rzaksjoblife.htm
../apis/api.htm

v Has the status of an active job, for example:
Running
Waiting for (x)

For information about the properties of active jobs, see Job properties.

To learn how to manage active jobs, see Manage jobs and threads.

Inactive jobs:

Inactive jobs are jobs on a job queue waiting to be started, or jobs that have completed processing
(ended) but are waiting for a printer output file (also called spooled files) to be printed.

Job types
The iSeries server processes several different job types. You can select one of the following job types to
learn more about that job type.

Server jobs are jobs that have set the server type using the Change Job (QWTCHGJB) API, and they will
have an additional classification of Server with one of the following job types:

Autostart
An autostart job is started automatically when the subsystem it is associated with starts.

Batch
A batch job is a predefined group of processing actions that is submitted to the system.

Communications
A communications job is a batch job that was started by a program start request from a remote
system.

Interactive
An interactive job requires input from a signed-on user and an iSeries server.

Prestart
A prestart job is a batch job that starts before a work request is received. The two types of prestart
jobs:

v Prestart communications - The job is a communications batch job that starts running before a
remote system sends a program start request.

v Prestart batch - The job is a batch job that starts before a work request is received.

Reader and writer
A reader job is a spooled input job, and a writer job is a spooled output job.

Subsystem
The subsystem job provides control over an active subsystem.

System
System jobs are created by the operating system to control system resources and perform system
functions.

Autostart jobs: An autostart job starts automatically when the subsystem it is associated with starts.
These jobs generally perform initialization work that is associated with a particular subsystem. Autostart
jobs can also perform repetitive work or provide centralized service functions for other jobs in the same
subsystem.

32 iSeries: Work management

rzaksjobproperties.htm
rzaksmanagejob1.htm
rzaksaboutjobqueue.htm
rzaksserverjobs.htm
rzaksautostartjob.htm
rzaksbatchjob.htm
rzakscommunicationtype.htm
rzaksinteractivejob.htm
rzaksprestarttype.htm
rzaksreaderandwriterjob.htm
rzakssubsystemmonitor.htm
rzakssystemjob.htm

The subsystem job uses information from the autostart job entry in the subsystem description, when
starting a job.

Note: All autostart jobs are started when the subsystem starts. The value specified for the maximum
number of jobs in the subsystem does not prevent the autostart jobs from starting. If the maximum number
of jobs in the subsystem is exceeded, no other jobs can be started. When enough autostart jobs have
completed so that the number of jobs running is below the maximum activity level, other jobs in the
subsystem can start.

For more information about autostart jobs and how they start, see the Autostart Jobs (Chapter 9) and
Autostart Job Entry (Chapter 4) topics in the Work Management manual

.

Batch jobs: A batch job is a predefined group of processing actions that is submitted to the system.
Batch jobs run in the system background, freeing the user who submitted the job to do other work. The job
requires no interaction on the part of the user once it has been set up. Batch jobs are typically low priority
jobs. Several batch jobs can be active at the same time.

Following are different kinds of batch jobs:

Simple batch job
Most people are familiar with the simple batch job that is submitted to a job queue. For more information
about a simple batch job’s life, see A job’s life.

Batch immediate job
A batch immediate job is a batch job that was started with many of the attributes of its parent job. The job
runs in the same subsystem as the parent job. Because the job copies attributes from the parent job and
does not go through a job queue, it can start faster than jobs submitted to a job queue.

Batch MRT job
A batch MRT job is a multiple requester terminal (MRT) job. MRT jobs are S/36 Environment jobs that act
like servers, allowing other S/36 Environment jobs to attach to them in order to run an MRT procedure.

Batch print job
Batch print jobs track the printer output files (also called spooled files) that were created by a job whose
current user profile is different from the user profile that it was started under.

For more information, see How a Batch Job Starts in Chapter 8 of the Work Management

manual.

Communications jobs: Communication jobs are started when a program start request is received from a
remote system. For performance reasons, instead of starting a communications job each time a program
start request is received, you can configure a prestart job to handle a program start request from a remote
system.

For more information about a program start request, see chapter 3 of the ICF Programming

manual.

Work management 33

rzakssbsd.htm
rzakssbsd.htm
rzaksjoblife.htm
rzaksprestarttype.htm

For more information, see Communications Jobs in Chapter 10 of the Work Management

manual.

Interactive jobs: Interactive jobs require continual two-way communications between the user and the
iSeries server to perform a task. An interactive job begins when a user signs onto a system. The system
requests sign-on information. If the sign-on request is accepted by the system, then the system creates
the interactive job. The system then asks the user to supply a request. The user enters a request, and the
system responds by processing the request. This pattern is repeated until the user ends the interactive job
by signing off the system. If an interactive job is part of a group of jobs or a pair of jobs, then it will have
one of the following job types:

Interactive - Group
An Interactive - Group job is part of a group of jobs that is associated with a single display device.
Interactive - System request
An Interactive - System request job is one of a pair of jobs that is associated with each other by the
system request function.

Prestart jobs: A prestart job starts before a work request is received, either when the subsystem starts
or as a result of the Start Prestart Jobs (STRPJ) command. Prestart jobs start from a prestart job entry
(PJE) in the subsystem description. The prestart job entry specifies properties such as what program to
run in the prestart job, the user profile under which the prestart job starts running, the job description, the
class used to specify the run-time properties of the job, and the memory pool in which the prestart job
runs.

Prestart jobs can start and initialize themselves before a work request is received. This reduces the
amount of time required to handle the requests. A new job is not required for every work request. In
addition, prestart jobs provide the ability to initialize once and handle many requests so that a new job is
not needed for every request. Most client server applications use prestart jobs to handle the requests for
the client user. Having a job ready to go makes the performance better in this situation because the
prestart job can start processing the request for the user immediately.

Note: The value specified for the maximum number of jobs in
the subsystem can prevent prestart jobs from starting. If
the maximum number of jobs in the subsystem is
exceeded, no prestart jobs can be started. When enough
jobs have completed so that the number of jobs running is
below the maximum number of jobs in the subsystem,
prestart jobs in the subsystem can start.

Two types of prestart jobs exist. Each type handles different types of requests. Before a job waits for its
first request, it will be shown as Prestart only because the system does not know yet what type of
requests the job will handle. Following are the two types of prestart jobs:

Prestart communications job
A prestart communications job is a communications batch job that starts running before a remote system
sends a program start request.

For more information about prestart communications jobs, see Prestart Jobs in Chapter 11 of the Work
Management

manual.

34 iSeries: Work management

rzaksjobdescription.htm
rzaksaboutmempools.htm
rzakssbsd.htm
rzakssbsd.htm

Prestart batch job
A prestart batch job is a batch job that starts before a work request is received.

Reader and writer jobs: Reader
A reader job reads batch job streams from database and diskette files, and places the jobs on a job
queue. The reader job is part of input spooling and is an IBM-supplied program.

Writer
A writer job writes records from printer output files (also called spooled files) to a printer. The writer job is
an IBM-supplied program, started in the spooling subsystem where it selects files from the output queue to
be printed.

Subsystem jobs: A subsystem job (sometimes called subsystem monitor job) is created by the operating
system to manage resources and to start, control, and end jobs. The subsystem job provides control over
an active subsystem. Many subsystem jobs can run on a system at any time.

For more information, see Subsystems.

System jobs: System jobs are created by the operating system to control system resources and perform
system functions. System jobs run when the iSeries server starts, without user input. These jobs perform a
variety of tasks from starting the operating system, to starting and ending subsystems, to scheduling jobs.

Following are different kinds of system jobs and their functions:

System startup jobs: Scpf (start control program function)
This is the central job when you start the system. Scpf starts all system jobs except Qlus and brings the
system to a usable state. This job remains active after the system starts, providing an environment for the
running of low-priority and possibly long-running system functions. Scpf also runs during the power down
(Pwrdwnsys) processing, and is the job that ends the machine processing.

Qwcbtclnup (job table cleanup)
This job is used during the start of the system to ensure that the job structures are available for use. It
usually completes processing before the end of the system startup, but it can continue running after the
system starts, if there are a lot of job structures to clean up. This system job ends when it completes
processing.

System arbiters: Qsysarb (system arbiter)
The system arbiter provides the environment for the running of high-priority functions. It handles system
resources and keeps track of the state of the system. The system arbiter responds to system-wide events
that must be handled immediately and those that can be handled more efficiently by a single job. Qsysarb
and Qcmnarbxx (communications arbiters) are responsible for processing communication requests, device
locking, line, controller, and device configuration, and handling of other system-wide resources.

Qsysarb2 (system arbiter 2)
This job is responsible for managing tape resources, handling command analyzer spaces for command
processing and other system-wide processing for the operating system.

Qsysarb3 (system arbiter 3)
This job is responsible for creating and maintaining the job structures on the system. Whenever temporary
or permanent job structures are required for job initiation, the request is processed by Qsysarb3.

Qsysarb4 (system arbiter 4)
This job is responsible for starting and ending subsystems. This includes the initial power down
(Pwrdwnsys) processing.

Work management 35

rzaksaboutsbs.htm
#HDRQLUS

Qsysarb5 (system arbiter 5)
This job is responsible for processing machine events. This includes handling events to support auxiliary
power, continuous powered mainstore (CPM), system auxiliary storage pools (ASPs) and storage
threshold, and lock table limits. Usually, the machine events are handled and corresponding CPF
messages are sent to Qsysopr and Qhst.

Communications jobs: Qlus (logical unit services)
Qlus handles the event handling for logical unit devices, known as communications devices. Qlus is also
responsible for allocating devices to the correct communications subsystem.

Qcmnarbxx (communications arbiters)
The communications arbiters along with Qsysarb (system arbiter) process work for all types of devices, not
just communications devices. This work includes communications connection, disconnection, device
locking, and error recovery processing. All device-related work is spread throughout the Qcmnarbxx jobs
and the system arbiter.

The Qcmnarbxx system value determines the number of communications arbiter jobs that are started. A
minimum of three communications arbiters are started on single-processor systems.

Qsyscomm1 (system communications)
This job handles some communications and input/output (I/O) activity.

Q400filsvr (remote file system communication)
This job performs the common programming interface communications (APPN or APPC) for the remote file
system.

Database jobs: Qdbfstccol (database file statistic collection)
This job collects database file statistics. These statistics are crucial to proper database query optimization.

Qdbsrvxr (database cross-reference)
This job maintains each of the file level system cross-reference files in Qsys. These files contain
cross-reference information about database files and SQL information across the system. The files all
begin with the prefix of Qadb in library Qsys. The primary file that must be maintained is Qadbxref, the
cross-reference file. This file contains a record of each physical database, logical database, DDM, and
Alias file on the system. Qdbsrvxr activates when a file is created, changed, deleted, restored, renamed, or
its ownership is changed.

Qdbsrvxr2 (database cross-reference 2)
This job maintains the two field level cross-reference files. Qadbifld in library Qsys is the field
cross-reference file. Qadbkfld in library Qsys is the key field cross-reference file. Qdbsrvxr2 is activated
when a file is created, changed or deleted.

Qdbsrv01 (database server)
This job can be viewed as the database maintenance task dispatcher. The number of database server jobs
on the system is one plus twice the number of processors, or one plus twice the number of ASPs,
whichever is greater. The minimum started is five. Qsbsrv01 is the main system job assigning work to the
others. Typically, Qdbsrv01 will be most active immediately after restoring a library that contains database
files. Its function includes:

v Signaling to the system-managed access path protection (SMAPP) Licensed Internal Code (LIC) tasks
that new access paths have been restored. SMAPP then determines whether these access paths need
to be protected.

v Preparing the list of access paths that are required to be rebuilt because the access paths were not
restored.

36 iSeries: Work management

#HDRQSYSARB

Of the remaining database server jobs, the first half process high-priority requests, and the second half
process low-priority requests. Qdbsrv02 through Qdbsrv05 are high priority, Qdbsrv06 through Qdbsrv09
are low priority.

Qdbsrvxx (database server, high priority)
These jobs perform journal and commitment control maintenance for the system and are considered quick
or short-running work.

Qdbsrvxx (database server, low priority)
These jobs perform access path maintenance on user data files. Typically, these jobs are inactive, but in
certain cases, they may activate to perform access path rebuilds. Some reasons why these jobs could be
active are:

v Restoring database files that were not saved with access paths.

v Restoring logical files without the physical file they are based on.

v Canceling of an Rgzpfm command while in process.

v Invalidation of an index due to damage found in the index.

v Post-iSeries installation activity to complete cross-reference or other DBupgradede activity.

v Constraint verification

Qqqtemp1 and Qqqtemp2 (database parallelism)
The database parallelism system jobs perform asynchronous database processing for the DB2
Multisystem. If users query distributed files, the jobs are used to speed up the queries by doing certain
tasks in parallel.

Other jobs: Qalert (alert manager)
This job performs the tasks necessary to process alerts (for information about alerts, see the Alerts
Support

manual). This includes such activities as processing alerts received from other systems, processing locally
created alerts, and maintaining the sphere of control.

Qdcpobjx (decompress system object)
These jobs decompress newly installed operating system objects as needed. There is a storage
requirement for these jobs to run. If available storage on your system drops below a certain limit, these
jobs will end. The number of decompress system object jobs is the number of processors plus one.

Qfilesys1 (file system)
This job supports the background processing of the integrated file system. It ensures that changes to files
are written to storage and also performs several general file system cleanup activities.

Qjobscd (job schedule)
This job controls the system’s job scheduling functions. Qjobscd monitors the timers for job schedule
entries and scheduled jobs.

Qlur (LU 6.2 resynchronization)
Qlur handles the two-phase commit resynchronization processing.

Qpfradj (performance adjustment)
This job manages changes to the storage pool sizes and activity levels. All requests to change storage
pools are processed by this job. In addition, if system value Qpfradj is set to a value of 2 or 3, this job
dynamically changes the sizes and activity levels of storage pools to improve the system performance.

Work management 37

Qsplmaint (system spool maintenance)
This job performs system spooling functions.

Job properties
Job properties contain information about how jobs are processed. They are originally specified when the
job is created. Some of the properties come from the job description. After the job is created, the job
properties can be viewed and managed through Work Management in iSeries Navigator. The job
properties pages in iSeries Navigator make a system operator’s job easier by providing efficient and
easy-to-use functions for managing jobs. Job properties can be viewed by any user, but can only be
changed by a user with the proper authority. Similarly, an authorized user can manage jobs through job
actions. Properties for system jobs cannot be changed in iSeries Navigator. However, the run priority of a
job can be changed in the character based interface using the CHGSYSJOB command.

Work with job properties To view or change a job’s properties, follow these steps:

1. In iSeries Navigator, expand My Connections.

2. In My Connections, expand the connection for your iSeries server.

3. Expand Work Management.

4. Double-click Active Jobs or Server Jobs, depending on the type of job you want to work with.

5. Find the job whose properties you want to view or change.

6. Right-click the Job Name.

7. Select Properties.

Job property sheets

General job properties allow you to view general information about jobs. This information includes the
job’s name and its job type, when the job entered the system, when the job started, the job’s detailed
status, and other information.

Performance properties allow you to view basic performance information and make changes that will
affect a job’s performance. You can view the performance statistics that have been calculated over the life
of the job, such as CPU and disk I/O. You can change the following values that affect how the job will run:

v Run priority

v Time slice

v Default wait time

You can also view, refresh, set up an automatic refresh, or reset the Elapsed performance statistics that
have been calculated for an active job. For more information, see Elapsed performance statistics.

Job Queue properties are available for jobs that are on a job queue or started from a job queue. You can
change information for jobs currently on a job queue. You can work with the priority of the job on the job
queue, view the date and time the job was placed on the job queue, and change when to make the job
available to run.

Printer Output properties allow you to view and change properties that affect the printing of output for the
job. You can also display the printer output for a job by using the printer output button. You can choose to

detach printer output

from a job, select a printer, choose the output queue and its library, specify the order that you want the
information printed (priority), specify a page footer, and specify whether border and header information
should be printed.

38 iSeries: Work management

rzaksjobdescription.htm
rzakspropauth.htm
rzaksjobactions1.htm
rzaksjobactions1.htm
rzakssystemjob.htm
rzaksfindpartjob.htm
rzaksjobtypeoverview.htm
rzaksjobstatuses.htm
rzaksjobstatuses.htm
rzaksactivejob.htm
rzakselapsedperfstats.htm
rzaksaboutjobqueue.htm
rzaksdetachprinteroutput.htm

Messages properties allow you to specify how inquiry and break messages will be handled. If the job is a
batch job, the message severity level that causes the job to end is also shown.

Job Log properties allow you to view and change information related to the job log as well as display the
job log. The job log contains information that is related to requests entered for a job, such as commands in
the job, commands from CL programs, and messages. This page allows you to specify whether or not to
keep messages in the job log, what action the job needs to take when the job log is full, what kind of
messages to keep, whether a printed job log (printer output) is generated for jobs that end normally, and
the amount of detail to include for each message. For more information, see Job logs.

Security properties allow you to view security properties for jobs that are currently active. This includes
the job user identity, the method used to set the job user identity (Set by), the current, user and the names
of the group profiles that are associated with the initial thread of a job (Groups).

International properties allow you to view or change properties related to text and character format, and
the language and country/region associated with the job. This includes the format to use when dates,
times, and decimals are represented. There is also an indication of whether the job is capable of handling
double-byte character sets (DBCS).

Threads properties allow you to view information related to threads for a job that is currently active or on a
job queue. You can also display the threads for a job by using the Threads button. This page includes
information about whether the job can run with multiple user threads, the number of active threads in the
job, and the maximum number of user and system threads that the job can run with at any time.

Server properties allow you to view information about server jobs. For each server job, you can see the
type of server, job user identity, and if available, the client IP address. The client IP address is the address
of the user that this server is currently servicing.

Other properties allow you to view and change properties related the accounting code, switch settings,
and whether or not to keep DDM connections active. You can also view the disk pool group, job date and
whether the job is running in a System/36 special environment.

For more information, refer to the iSeries Navigator help.

Detach printer output: In releases prior to V5R2, printer output was attached to a job until it was
deleted either as a result of being sent to the printer or explicitly by the user.

You have the option to detach printer output from the job when the job ends. Printer output that is
detached from the job is not deleted from the system, but resides on the output queue. This allows the job
to leave the system, which frees up the job structures to be used by another job.

Note: If you choose to detach printer output from the job, you
will no longer be able to look at printer output by going
through the job. You will need to look at the actual output
queue where the output resides to see it.

Elapsed performance statistics: The Elapsed performance statistics page allows you to view
performance statistics, for an active job or thread, that are calculated over the elapsed time. This is
important when you are monitoring a job or thread and in detecting potential problems. These statistics
include CPU, disk I/O, page fault rate, average response time, and interactive transactions.

Work management 39

rzaksbatchjob.htm
rzaksjoblogs.htm

Note: The elapsed performance statistics for a thread do not
include average response time and interactive
transactions.

You can change the viewing options for these statistics by selecting one of the following buttons from the
Elapsed performance statistics page:

v Refresh Now
Refreshes the elapsed performance statistics and extends the time period that the statistics are
calculated.

v Timed Refresh
Allows you to set up automatic refreshes of the elapsed performance statistics. This can be used to
monitor the performance information for a job.

v Reset Statistics
Clears the elapsed performance statistics and resets the time period that the statistics are calculated.

Detailed status: The current status of a job is viewed from the General page in Job properties, under
Detailed status. An example of a detailed status is:

Scheduled to run at
The job remains waiting on the job queue until the scheduled date and time. At the scheduled time
on the scheduled date, the job is available to be selected from the job queue.

The detailed status can display an associated status value (status - x), which provides additional
details about the current status of the job. An example of a detailed status plus the associated status
value is: Ended - CPU limit exceeded
Ended refers to the status of the job (the job has ended), and CPU limit exceeded represents why
the job has that status (Ended).

The detailed status can also have another associated status value displayed [status - x (x)] to reflect
the current status of the job. For example a job that is ending could have the following status:
Ending - CPU limit exceeded (Waiting for lock)
The job is in the process of ending (Ending) because the CPU limit was exceeded (CPU limit
exceeded), and the job is currently waiting for a lock (Waiting for lock) in the ending process.

If the job does not end in a timely manner, this information can assist with problem analysis.

Status values can have additional information in the properties pages. For example, the status waiting for
a lock, on the properties page, will show you what object is associated with the lock request.

End jobs: The two ways to end a job either controlled or immediate. Selecting controlled is usually the
better choice because it allows programs running in the job to perform their end-of-job cleanup and to end
properly. Selecting immediate ends the job immediately. It is recommended that immediately ending a job
be done only after the controlled option has failed. Because the programs running in the job will not
perform the normal application cleanup procedures when immediate is selected, you can get undesirable
results such as application data that has been partially updated. iSeries Navigator allows you to specify a
time limit for a controlled ending so that if it takes longer than the time you specify, an immediate ending
will take place.

A job can check the end status for a job through the Job APIs such as the Retrieve Job Information
(QUSRJOBI) API. When a controlled end is selected, an application that needs to perform end-of-job
cleanup should detect the controlled end. One way an application can do this is by the asynchronous
signal SIGTERM. When a job being ended in a controlled manner has a signal handling procedure for the

40 iSeries: Work management

rzaksjobproperties.htm

asynchronous signal SIGTERM, the SIGTERM signal is generated for that job. When the signal handling
procedure for the SIGTERM signal is given control, the procedure can take the appropriate actions to
allow the application to be ended in a controller manner.

For detailed steps about how to end a job, see Ending a job.

For more information about ending a job and detecting the controlled end, see Ending a Job in chapter 5
of the Work Management

manual.

Details: Active job actions: The Details menu in the Work Management folder provides access to the
following resources that are being used by the job or initial thread of the job:

Call stack

The call stack for the job is displayed. The call stack is the programs and procedures that are being
used. This is helpful for finding out what program a job is running and what the job is doing.

Library list

The library list for the selected job or thread is displayed. A library list is a list of system and
user-created libraries to search and the order that they are to be searched. A library is a container for
objects, and all objects on the iSeries server require a reference consisting of the object name and a
library. It is important to have the library list properly established because objects are found by
searching the libraries. If the library list is not properly established, the job may not find an object or it
may find the object in the wrong library. IBM supplies some libraries (library names that begin with
Q), but you can also create your own. By selecting a library from this dialog and right-clicking, you
can work with the properties of that library.

Locked objects

The list of

locked objects

and the objects for which the job or thread is waiting for a lock are displayed. This allows you to see
what objects a job is using as well as the objects the job is attempting to use.

Open files

A list of open files and details of how that file has been used, such as how many I/O operations have
occurred for the job selected, are displayed. Viewing this list is helpful for debugging and for checking
the status of a job.

Threads

A list of threads running within a job. The initial thread, by default, is listed at the top of the window.
Threads are independent pieces of work that help the job process more than one thing at a time.

Work management 41

rzakshowendjob.htm
rzakslockedobjstructure.htm
rzaksthreadstructure.htm

Transactions

A list of transactions associated with the job. A transaction is a logical unit of work on the iSeries
system. It is commonly referred to in relation to database operations. For more information on
Transactions, see the iSeries Navigator help or go to Transactions.

Elapsed performance statistics

A list of elapsed performance statistics calculated over a period of time is displayed. This information
is helpful for monitoring jobs and can assist with problem analysis.

Last SQL statement

The Last SQL statement option displays the last SQL statement run in a job. This SQL statement is
displayed in Run SQL Scripts. From Run SQL Scripts, you can re-run the statement, edit and run the
statement, or save the statement to a database file or PC file.

Job logs: The job log displays a list of messages that are associated with a specific job. Additional
information about the messages, for example the date and time they were sent, is also displayed. Because
the date and times are recorded in the job log, you can determine when an error occurred. By selecting
Details from the File option on the menu bar, more information about the message can be displayed, such
as the cause of the message and an explanation of what action should be taken, if any, to recover from
the error. For job log messages, you can click the Advanced button to see information about the program
that sent the message and the program to which the message was sent. You can make changes to how
the job log is handled and what information is logged in the job log on the Job Log page in the Job
Properties dialog.

For information about how to view the job log for jobs, see Accessing job logs.

Threads
A thread is an independent unit of work within a job that uses many of the jobs resources to complete
work. The difference between jobs and threads is that threads run within the job helping it to finish its
work. Every active job has at least one thread, which is called an initial thread. The initial thread is created
as part of starting the job. The use of threads within a job allows many things to be done at once. For
example, while a job is processing, a thread may retrieve and calculate data needed by the job to finish
processing.

For more information on threads, see the following topics:

v Thread actions
Manage threads through iSeries Navigator.

v Thread types
This covers the different types of threads running within a job.

v Thread status
This includes the different statuses of a thread.

42 iSeries: Work management

../rzakj/rzakjcommithowworks.htm
rzakselapsedperfstats.htm
../sqlp/rbafymstdbsrun.htm#HDRHDRDBSRUN
rzaksjobproperties.htm
rzaksjobproperties.htm
rzaksaccessjoblog.htm
rzaksthreadactionstructure.htm
rzaksthreadtype.htm
rzaksthreadstatus.htm

Thread actions: Threads help jobs process more than one operation at a time while running. Monitoring
the threads that are running within a job may be necessary as you attempt to keep the job running
efficiently. Once you find the thread you want to manage, the following actions are available by
right-clicking the thread.

Reset Statistics
Allows you to reset the list information you are viewing, and it sets the elapsed time to 00:00:00.

Details
Because the functions of a thread are similar to that of a job, they share some of the same job actions.
Details contains detailed information about the following thread actions:

v Call stack

v Library list

v Locked Objects

v Transactions

v Elapsed Performance Statistics

Hold
Allows you to hold the thread. Threads can be held multiple times. The operating system keeps track of
the number of times a thread is held.

Release
Releases the thread that was held. The thread must be released each time that it is held in order for it to
run.

Delete/End
Allows you to end the selected thread or threads. For more information, see Ending a thread.

Thread Properties
Displays the different properties of a thread.

For more detailed information on the actions you can perform on Threads, see the iSeries Navigator help.

Thread types: The thread type determines how the thread was created on the system.

The types of threads are:

User
The thread is created by the customer application. The initial thread in a job is always a user thread.
The Allow multple threads field must be must be set to yes for multiple user threads to be used.

System
The thread is created by the system on behalf of the user. Some system functions use system
threads to complete processing. If a customer’s application uses a system function that uses threads,
system threads are used.

Work management 43

rzaksthreadrununderjob.htm
rzaksjobactions2.htm
rzakslockedobjstructure.htm
rzakselapsedperfstats.htm
rzaksendthread.htm
rzaksthreadprop.htm

Note: In the threads on iSeries Navigator, by default, you will
see Initial as the type of the first thread in the list. The
initial thread is the first thread created within the job when
it starts. In iSeries Navigator, the initial thread is
represented by this

icon. You can never delete or end the initial thread.

Thread status: The current status of a thread is viewed from the General page in the Thread properties
dialog, under Detailed status. An example of a detailed status is:

Waiting for dequeue

The thread of the job is waiting for completion of a dequeue operation. A dequeue is an
operation for removing messages from queues. Messages are communications sent from one
person or program to another. In particular, a message is enqueued (placed) on a queue
system object by one thread and dequeued (removed) by another thread.

Note: When Waiting for dequeue is shown on a properties page,
additional information that identifies the queue being
waited on is displayed. When the job or thread is waiting
on the dequeue operation to complete for an OS/400
object, you will see a 10-character object name, its library,
and the object type. If the job or thread is waiting on the
dequeue operation to complete for an internal object, you
will see a 30-character object name. For internal objects
you need job control special authority (*JOBCTL) to see
the 30-character name.

The detailed status can display an associated status value (status - x), which provides additional details
about the current status of the thread. An example of a detailed status plus the associated status value is:

Held (n)

An individual thread is held. Unlike a job, a thread can have multiple holds on it at the same
time. A number (for example, Held (3)) following the thread status tells the user how many times
that thread has been held without being released. For example, if a thread has had three holds
put on it and then has been released once, it still has two holds against it. A number is only
shown when the status appears on the Properties page and will not appear when displayed in a
list. To resume thread processing, select the Release action for the thread.

For more information on the different thread statuses, see the iSeries Navigator help.

Job queues
A job queue contains an ordered list of jobs waiting to be processed by a subsystem. The job queue is the
first place that a submitted batch job goes before becoming active in a subsystem. The job is held here
until a number of factors are met. In order for jobs on a job queue to be processed, there must be an
active subsystem that is accepting work from that job queue. When a subsystem starts, it attempts to
allocate the job queues that it is configured to accept work from, and it must successfully allocate a job
queue in order to process jobs from that job queue. Therefore, while one subsystem may be processing
jobs from multiple job queues, only one subsystem may be processing jobs from a particular job queue at
a time.

44 iSeries: Work management

rzaksendthread.htm
rzaksorderedlist.htm
rzaksbatchjob.htm

Subsystems select jobs from job queues in priority order, within limits that may be configured for each
priority. Each job has a job queue priority that can be managed when the job is on the job queue through
job properties. A base set of job queues is provided with your system. In addition, you may create
additional job queues that you need.

Note: APIs, such as Open List of Job Queues (QSPOLJBQ) and
Retrieve Job Queue Information (QSPRJOBQ), can be
called to get information on job queues. For more
information on APIs, see Application programming
interfaces (APIs).

For more information about jobs on job queues, see the following topics:

v How work enters the system.
Understand how work gets onto a job queue.

v How a job queue works
Understand how a job gets from a job queue to a subsystem.

v Creating a job queue
Create a job queue with information in Chapter 8 of the Work Management

manual.

How a job queue works
Jobs are taken from a job queue to do work in a subsystem after the job queue is allocated by an active
subsystem. The different factors that determine how the jobs are selected from a job queue. Jobs that are
not coming off of a job queue can be moved from one job queue to another, in order for better efficiency.

The following determine how jobs are taken from a job queue:

Maximum active jobs for subsystems
This represents the maximum number of jobs that can be running in a subsystem. Once this limit is
reached, no more jobs can start in the subsystem.

Maximum active jobs for job queues
This represents the maximum number of jobs from the job queue that can be running in a subsystem at
the same time. Once this limit is reached, no more jobs can start from that job queue.

Priority on job queue
Jobs that are waiting to run are selected based on the job queue priority. The subsystem attempts to run
higher priority jobs first (job queue priority ranges from 0 through 9 where 0 is the higher priority), but if the
number of jobs running from a priority level reaches the Maximum Active Jobs value per priority level, the
next priority level is processed. (If jobs with the same priority enter the job queue, the first job submitted
will run first, then the second, and so on.)

For detailed information, see Change the priority of a job within a job queue.

Sequence
You specify the sequence in the job queue entry of the subsystem description. The sequence number
defines the order in which the subsystem will process the job queues. The subsystem takes jobs from the
job queue with the lowest sequence number first. If there are no more jobs on the job queue, or if one of
the maximum values associated with the job queue is reached, the subsystem will process the job queue
with the next highest sequence number.

For detailed information about moving jobs, see Move jobs to different job queues.

Work management 45

../apis/api.htm
../apis/api.htm
rzakshowwrkgetsinsys.htm
rzakshowjobqueuewrk.htm
rzakschgrunptyinjobq.htm
rzaksmvjobtonwjobq.htm

Subsystems
The subsystem is where work is processed on the iSeries server. All jobs, with the exception of system
jobs, run within subsystems.

More technically, a subsystem is a single, predefined operating environment through which the system
coordinates work flow and resource use. The system can contain several subsystems, all operating
independently of each other. Subsystems manage resources. Each subsystem can run unique operations.
For instance, one subsystem may be set up to handle only interactive jobs, while another subsystem
handles only batch jobs. Subsystems can also be designed to handle many types of work. The system
allows you to decide the number of subsystems and what types of work each subsystem will handle.

A subsystem can be either active or inactive. An active subsystem is one that has been started (see how
subsystems start for details). An inactive subsystem is one that either has not yet been started, or has
been stopped (see how subsystems stop for details).

The controlling subsystem is the interactive subsystem that starts automatically when the system starts,
and it is the subsystem through which the system operator controls the system during system startup.

A subsystem job is a job created by the operating system to manage resources and to start, control, and
end jobs.

Note: APIs, such as Retrieve Subsystem Information
(QWDRSBSD) and Retrieve System Status
(QWCRSSTS), can be called to get information on
subsystems. For more information on APIs, see
Application programming interfaces (APIs).

See the following for more information on subsystems:

Subsystem description
The run-time characteristics of a subsystem are defined in the subsystem description.
Subsystems shipped with the system
Two complete subsystem configurations are supplied by IBM.
User-defined subsystems
You can create your own subsystem description.
Subsystem properties
The attributes of a subsystem are provided.
Subsystem life cycle
This explains how work is processed on the iSeries server.

Subsystem description
The run-time characteristics of a subsystem are defined in an object called a subsystem description. A
subsystem description acts as a set of instructions, telling the subsystem how, where, and how much work
enters a subsystem, and which resources the subsystem uses to perform the work. A subsystem is
created when a subsystem description is defined or created. An active subsystem takes on the simple
name of the subsystem description.

46 iSeries: Work management

rzakssystemjob.htm
rzakssystemjob.htm
rzakshowsbsstart.htm
rzakshowsbsstart.htm
rzakshowsbsstop.htm
../apis/api.htm
rzakssbsd.htm
rzakssbsshipped.htm
rzaksuserdefinedsbs.htm
rzakssbsprop.htm
rzakssbslifecycle.htm

For details on what information is contained in the subsystem description, see the following table:

Information in subsystem description Description Additional information
(Work Management
manual)

Subsystem attributes Specifies overall system
characteristics:

v Operational attributes
such as the number of
jobs that can be active in
the subsystem at the
same time, and the
sign-on display.

v Memory pools used by
the subsystem.

v Authority to the
subsystem description.

v Text description of the
subsystem description.

Changing the sign-on
display file, Chapter 4 of
the Work Management
manual.

Work entries The work entry in a
subsystem description
specifies the source from
which jobs can be accepted
for processing in the
subsystem. In other words,
the location where work can
enter the subsystem.

Work entries, Chapter 4 of
the Work Management
manual.

Autostart job entry Identifies the autostart jobs
to start as soon as the
subsystem starts.

Autostart jobs, Chapter 9 of
the Work Management
manual.

Communications entry Identifies the
communications device that
another system uses to
submit work.

Communications jobs,
Chapter 10 of the Work
Management manual.

Job queue entry Identifies the job queue
from which to take work
and determine how much
work to accept.

Batch jobs, Chapter 8 of the
Work Management manual.

Prestart job entry Identifies the information
used when prestart jobs are
started.

Prestart jobs, Chapter 11 of
the Work Management
manual.

Workstation entry Identifies the workstation
from which to take work.

Interactive jobs, Chapter 6
of the Work Management
manual.

Work management 47

Information in subsystem description Description Additional information
(Work Management
manual)

Routing entries Identifies the subsystem
memory pool to use, the
controlling program to run,
and run-time information.

Routing entries, Chapter 4
of the Work Management
manual.

Subsystem Description objects are shipped with every system. Below are the updates to the shipped
subsystem descriptions on the iSeries server. For each object, this table provides:

Object Name
Object description
Command used to create the object
Object parameters other than the default

The objects are grouped by object type.

This table and Appendix C in the Work Management manual

will give you allow you to see most of the shipped subsystem descriptions on the iSeries.

Object Addition, Deletion, or Update Parameters other than default

QBASE Added a communication entry (ADDCMNE) SBSD (QSYS/QBASE)
DEV (Q1PLOC)
DFTUSR (*NONE)
MODE (Q1PMOD)
MAXACT (0)

QBASE Added a communication entry (ADDCMNE) SBSD (QSYS/QBASE)
REMLOCNAME (Q1PLOC)
DFTUSR (*NONE)
MODE (Q1PMOD)
MAXACT (0)

QBASE Added prestart job entry (ADDPJE) SBSD (QSYS/QBASE)
PGM (QSYS/QZSCSRVR)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(3)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (1)
WAIT (*YES)
POOLID (2)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

48 iSeries: Work management

../../books/c4153063.pdf

Object Addition, Deletion, or Update Parameters other than default

QBASE Added prestart job entry (ADDPJE) SBSD (QSYS/QBASE)
PGM (QSYS/QNPSERVR)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(3)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

QBASE Added prestart job entry (ADDPJE) SBSD (QSYS/QBASE)
PGM (QSYS/QZRCSRVR)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(3)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (1)
WAIT (*YES)
POOLID (2)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

QCMN Added a communication entry (ADDCMNE) SBSD (QSYS/QCMN)
REMLOCNAME (Q1PLOC)
DFTUSR (*NONE)
MODE (Q1PMOD)
MAXACT (0)

QCMN Added a communication entry (ADDCMNE) SBSD (QSYS/QCMN)
DEV (Q1PLOC)
DFTUSR (*NONE)
MODE (Q1PMOD)
MAXACT (0)

QCMN Added prestart job entry (ADDPJE) SBSD (QSYS/QCMN)
PGM (QSYS/QZRCSRVR)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(3)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (1)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

Work management 49

Object Addition, Deletion, or Update Parameters other than default

QCMN Added prestart job entry (ADDPJE) SBSD (QSYS/QCMN)
PGM (QSYS/QZSCSRVR)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(3)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (1)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

QCMN Added prestart job entry (ADDPJE) SBSD (QSYS/QCMN)
PGM (QSYS/QNPSERVR)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(3)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

QSERVER Added prestart job entry (ADDPJE) SBSD (QSYS/QSERVER)
PGM (QSYS/QZDAINIT)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(3)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (1)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QPWSERVER *CALC
*NONE *CALC)

QSERVER Added prestart job entry (ADDPJE) SBSD (QSYS/QSERVER)
PGM (QSYS/QPWFSERVSO)
USER (QUSER)
STRJOBS (*NO)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(2)
MAXJOBS (*NOMAX)
JOBD (*USRPRF)
JOB (*PGM)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QPWFSERVER *CALC
*NONE *CALC)

50 iSeries: Work management

Object Addition, Deletion, or Update Parameters other than default

QSYSWRK Added job queue entry (ADDJOBQE) SBSD (QSYS/QSYSWRK)
JOBQ (QSYS/Q1PSCHQ)
MAXACT (1)
SEQNBR (70)

QSYSWRK Added job queue entry (ADDJOBQE) SBSD (QSYS/QSYSWRK)
JOBQ (QSYS/Q1PSCHQ2)
MAXACT (1)
SEQNBR (80)

QSYSWRK Added job queue entry (ADDJOBQE) SBSD (QSYS/QSYSWRK)
JOBQ (QSYS/Q1PSCHQ3)
MAXACT (1)
SEQNBR (90)

QSYSWRK Added an autostart job entry (ADDAJE) SBSD (QSYS/QSYSWRK)
JOB (QGLDPUBA)
JOBD(QSYS/QGLDPUBA)

QSYSWRK Added an autostart job entry (ADDAJE) SBSD (QSYS/QSYSWRK)
JOB (QGLDPUBE)
JOBD(QSYS/QGLDPUBE)

QSYSWRK Added autostart job entry (ADDAJE) SBSD (QSYS/QSYSWRK)
JOB (QPM400)
JOBD (QSYS/Q1PJOBD)

QSYSWRK Added a communication entry (ADDCMNE) SBSD (QSYS/QSYSWRK)
DEV (Q1PDEV)
JOBD (*USRPRF)
DFTUSR (QUSER)
MODE (Q1PMOD)
MAXACT (*NOMAX)

QSYSWRK Added a communication entry (ADDCMNE) SBSD (QSYS/QSYSWRK)
DEV (Q1PLOC)
JOBD (*USRPRF)
DFTUSR (QPM400)
MODE (Q1PMOD)
MAXACT (*NOMAX)

QSYSWRK Added a communication entry (ADDCMNE) SBSD (QSYS/QSYSWRK)
RMTLOCNAME (Q1PLOC)
JOBD (*USRPRF)
DFTUSR (QPM400)
MODE (Q1PMOD)
MAXACT (*NOMAX)

QSYSWRK Added routing entries (ADDRTGE)
SBSD (QSYS/QSYSWRK)
SEQNBR (2150)
CMPVAL (TOTNTP)
PGM (QSYS/QTOTSNTP)
CLS (QSYS/QSYSCLS10)

QSYSWRK Added routing entry (ADDRTE) SBSD (QSYSWRK)
SEQNBR (300)
CMPVAL (PGMEVOKE 29)
PGM (*RTGDTA)
CLS (QSYS/QSYSCLS50)
MAXACT (*NOMAX)
POOLID (1)

Work management 51

Object Addition, Deletion, or Update Parameters other than default

QSYSWRK Added routing entry (ADDRTGE) SBSD (QSYS/QSYSWRK)
SEQNBR (2536)
CMPVAL (’QZSCSRVSD’)
PGM (QSYS/QZSCSRVSD)
CLS (QGPL/QCASERVR)

QSYSWRK Added routing entry (ADDRTGE) SBSD (QSYS/QSYSWRK)
SEQNBR (2537)
CMPVAL (’QZHQSRVD’)
PGM (QSYS/QZHQSRVSD)
CLS (QGPL/QCASESERVR)

QSYSWRK Added routing entry (ADDRTGE) SBSD (QSYS/QSYSWRK)
SEQNBR (2538)
CMPVAL (’QNPSERVD’)
PGM (QSYS/QNPSERVD)
CLS (QGPL/QCASESERVR)

QSYSWRK Added routing entry (ADDRTGE) SBSD (QSYS/QSYSWRK)
SEQNBR (2539)
CMPVAL (’QZRCSRVSD’)
PGM (QSYS/QZRCSRVSD)
CLS (QGPL/QCASESERVR)

QSYSWRK Added routing entry (ADDRTGE) SBSD (QSYS/QSYSWRK)
SEQNBR (2540)
CMPVAL (’QZSOSGND’)
PGM (QSYS/QZSOSGND)
CLS (QGPL/QCASESERVR)

QSYSWRK Added routing entry (ADDRTGE) SBSD (QSYS/QSYSWRK)
SEQNBR (2541)
CMPVAL (’QZSOSMAPD’)
PGM (QSYS/QZSOSMAPD)
CLS (QGPL/QCASESERVR)

QSYSWRK Added routing entry (ADDRTGE) SBSD (QSYS/QSYSWRK)
SEQNBR (2170)
CMPVAL (’QSYEIMMON’)
PGM (QSYS/QSYEIMMON)
CLS (QSYS/QSYSCLS20)
MAXACT (*NOMAX)
POOLID (1)

QSYSWRK Added routing entry (ADDRTGE) SBSD (QSYS/QSYSWRK)
SEQNBR (2200)
CMPVAL (’QYASPPGM’)
PGM (QSYS/QYASPPGM)
CLS (QSYS/QSYSCLS20)
MAXACT (*NOMAX)
POOLID (1)

52 iSeries: Work management

Object Addition, Deletion, or Update Parameters other than default

QUSRWRK Added prestart job entry (ADDPJE) SBSD (QSYS/QSYSWRK)
PGM (QSYS/QZSOSIGN)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(2)
MAXJOBS (*NOMAX)
JOB (*PGM)
JOBD (QSYS/QZBSJOBD)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

QUSRWRK Added prestart job entry (ADDPJE) SBSD (QSYS/QUSRWRK)
PGM (QSYS/QZSCSRVS)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(2)
MAXJOBS (*NOMAX)
JOB (*PGM)
JOBD (QSYS/QZBSJOBD)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

QUSRWRK Added prestart job entry (ADDPJE) SBSD (QSYS/QUSRWRK)
PGM (QSYS/QNPSERVS)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(2)
MAXJOBS (*NOMAX)
JOB (*PGM)
JOBD (QSYS/QZBSJOBD)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

Work management 53

Object Addition, Deletion, or Update Parameters other than default

QUSRWRK Added prestart job entry (ADDPJE) SBSD (QSYS/QUSRWRK)
PGM (QSYS/QZRCSRVS)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(2)
MAXJOBS (*NOMAX)
JOB (*PGM)
JOBD (QSYS/QZBSJOBD)
MAXUSE (1)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

QUSRWRK Added prestart job entry (ADDPJE) SBSD (QSYS/QUSRWRK)
PGM (QSYS/QZDASOINIT)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(2)
MAXJOBS (*NOMAX)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QPWFSERVER *CALC
*NONE *CALC)

QUSRWRK Added prestart job entry (ADDPJE) SBSD (QSYS/QUSRWRK)
PGM (QSYS/QZHQSSRV)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(2)
MAXJOBS (*NOMAX)
JOB (*PGM)
JOBD (QSYS/QZBSJOBD)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QGPL/QCASERVR *CALC *NONE
*CALC)

54 iSeries: Work management

Object Addition, Deletion, or Update Parameters other than default

QUSRWRK Added prestart job entry (ADDPJE) SBSD (QSYS/QUSRWRK)
PGM (QSYS/QZDASSINIT)
USER (QUSER)
STRJOBS (*YES)
INLJOBS(1)
THRESHOLD (1)
ADLJOBS(2)
MAXJOBS (*NOMAX)
JOB (*PGM)
JOBD (QSYS/*USRPRF)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QSYS/QPWFSERVER *CALC
*NONE *CALC)

QUSRWRK (moved from
QSYSWRK TO QUSRWRK)

Added prestart job entry (ADDPJE) SBSD (QSYS/QUSRWRK)
PGM(QSYS/QRWTSRVR)
USER (QUSER)
STRJOBS (*YES)
INLJOBS (1)
THRESHOLD (1)
ADLJOBS (2)
MAXJOBS (*NOMAX)
JOB (*PGM)
JOBD (*USRPRF)
MAXUSE (200)
WAIT (*YES)
POOLID (1)
CLS (QSYS/QSYSCLS20 *CALC *NONE
*CALC)

Subsystems shipped with the system
Two complete subsystem configurations are supplied by IBM and can be used without being changed.

The configuration the system uses when the system is started is controlled by the controlling subsystem
description system value (QCTLSBSD). The default configuration consists of the following subsystem
descriptions:

Qbase (controlling subsystem) Qbase supports interactive, batch,
and communications jobs. It has an
autostart job, which automatically
starts the Qusrwrk, Qserver, and Qspl
subsystems.

Qsyswrk This is the system work subsystem. It
contains jobs that support system
functions that are started automatically
at system startup and when the
system comes out of restricted state.

Qusrwrk This is the user work subsystem. It
contains jobs that are started by
servers to do work on behalf of a
user.

Qserver This is the file server subsystem.
Qspl This is the spool subsystem. It

supports reader and writer jobs.

Work management 55

rzakssbsd.htm
rzakssbsd.htm

The other configuration, which is supplied by IBM, consists of the following subsystem descriptions:

Qctl (controlling subsystem) Qctl has an autostart job, which
automatically starts the Qinter,
Qbatch, Qcmn, Qusrwrk, Qserver and
Qspl subsystems.

Qinter This is the system work subsystem. It
contains jobs that support system
functions that are started automatically
at system startup and when the
system comes out of restricted state.

Qbatch This is the user work subsystem. It
contains jobs that are started by
servers to do work on behalf of a
user.

Qcmn This is the file server subsystem.
Qspl This is the spool subsystem. It

supports reader and writer jobs.
Qsyswrk This is the system work subsystem. It

contains jobs that support system
functions that are started automatically
at system startup and when the
system comes out of restricted state.

Qusrwrk This is the user work subsystem. It
contains jobs that are started by
servers to do work on behalf of a
user.

Qserver This is the file server subsystem.

The Qbase configuration gives the ability to run all the same functions that you can run with the Qctl
configuration and is easier to manage because it consists of fewer subsystems.

The Qctl default configuration allows for more individualized control over your system operations by
dividing the system activity into different subsystems based on the type of activity. For example, if you
want to run batch jobs over the weekend or overnight but do not want anyone to be able to sign on
(except at the console), you can easily do that with the Qctl configuration by simply ending the Qinter
subsystem.

If you are considering creating your own subsystem configuration, you may also find that it is easier to use
the Qctl configuration as a starting point than the Qbase configuration.

User-defined subsystems
IBM provides subsystem descriptions that are shipped with the system. You can also create your own
subsystem description. You can copy an existing subsystem description and change it, or you can create
an entirely new description.

See Creating a subsystem description in Chapter 4 of the Work Management

manual for details.

56 iSeries: Work management

rzakssbsshipped.htm

Subsystem properties
Subystems have attributes, or properties. These properties give information about the current status of the
subsystem, or about values identified in the subsystem description. Using iSeries Navigator, the following
properties can be viewed for an active subsystem:

Subsystem The name of the subsystem, as well as the library that contains the subsystem description.
Description The description of the subsystem.
Status The current status of the subsystem. The help contains details on the possible statuses.
Active jobs The number of jobs currently active, either running or waiting to run, in the subsystem. This

number does not include the subsystem job.
Maximum active jobs The maximum number of jobs that can be active, either running or waiting to run, in the

subsystem.
Subsystem job The name of the subsystem job, including user and number.

Work management 57

rzakssbsd.htm

To view the properties of a subsystem, follow these steps:

1. In iSeries Navigator, expand My Connections.

2. Expand the connection for your iSeries server.

3. Expand Work Management.

4. Expand Subsystems.

5. Expand Active Subsystems.

6. Right-click the subsystem you would like to view, then select Properties.

Subsystem life cycle
The life of a subsystem begins when it is started, and ends when the subsystem stops. In between, work
is processed in the subsystem. See the following for details:

58 iSeries: Work management

v Start a subsystem

v What happens when the subsystem starts

v Stop a subsystem

What happens when the subsystem starts: When a subsystem starts, the system allocates several
items and starts autostart and prestart jobs before the subsystem is ready for work. The subsystem
description is used to determine how items are allocated.

The following list represents the sequence of events that occur when the subsystem starts:

1. Request to start subsystem is issued.

2. Memory pools are allocated.
Memory is allocated to the pools defined in the subsystem description. The memory that is allocated to
each defined pool is taken from the Base memory pool. The system does not allocate memory to a
pool if the amount of memory available to the Base memory pool would be less than the minimum size
specified by the base memory pool minimum size (Qbaspool) system value. If the system cannot
allocate all of the requested memory, it allocates as much memory as is available and allocates all the
other as memory becomes available.
See Pool Allocation in Chapter 4 of the Work Management

manual.

3. Display stations are allocated.
- If there are workstation entries and the device is varied on and has not been allocated by any other
subsystem, the subsystem can allocate it and display the Sign-On display.
- If the device is varied on and has been allocated by another subsystem and is at the Sign-On display
(the Sign-On display was displayed before the second subsystem was started), a second subsystem
can allocate the device from the first subsystem and display the Sign-On display.
- If the device is not varied on, the subsystem cannot allocate it. The system arbiter (Qsysarb) and the
Qcmnarbxx jobs hold locks on all varied-off devices.
See Workstation Device Allocation in Chapter 4 of the Work Management

manual.

4. Communications devices are allocated.
Requests are sent to the Qlus (LU services) system job, which handles device allocation for all
communications devices.
See Communications Devices and Mode Allocation in the Work Management

manual.

5. Job queues are allocated.
The subsystem will not be able to allocate a job queue if it is already allocated to another active
subsystem.

6. Prestart jobs are started.

7. Autostart jobs are started.

8. Environment is ready for work.

Work management 59

rzakshowsbsstart.htm
rzakswhathappenssbsstarts.htm
rzakshowsbsstop.htm
rzakssbsd.htm
rzakssbsd.htm
../rzakz/rzakzperformance6bridge.htm
rzaksprestarttype.htm
rzaksautostartjob.htm

Memory pools
A memory pool is a logical division of main memory or storage that is reserved for processing a job or
group of jobs. On the iSeries server, all main storage can be divided into logical allocations called memory
pools. By default, the system manages memory pools. The system manages the transfer of data and
programs into memory pools if necessary.

You can control how much work can be done in a subsystem by controlling the number and size of the
memory pools. The greater the size of the memory pools in a subsystem, the more work that can be done
in the subsystem.

Note: Although tuning and managing your system can help the
efficiency of the flow of work through your iSeries server, it
cannot account for inadequate hardware resources.
Consider a hardware upgrade if the demands of your
workload are significant..

The memory pool from which user jobs get their memory is always the same pool that limits their activity
level. System jobs (such as Scpf, Qsysarb, and Qlus) get their memory from the base pool but use the
machine pool activity level. Subsystem monitors get their memory from the first subsystem description pool
but not the activity level. This allows a subsystem monitor to always be able to run regardless of the
activity level setting.

Note: APIs, such as Retrieve System Status (QWCRSSTS), can
be called to get information on memory pools. For more
information, see Application programming interfaces (APIs)

See the following for more information on memory pools:

v Memory pool activity level

v Types of memory pools

Memory pool activity level
Memory pool activity levels allow for efficient use of system resource by limiting the number of threads that
can be active at the same time in a memory pool.

The activity level of a memory pool is the number of threads that can actively use the CPU at the same
time in a memory pool. The system manages the control of this level. Often during processing in a thread,
a program waits for a system resource or a response from a workstation user. During such waits, a thread
gives up its use of the memory pool activity level so that another thread that is ready to be processed can
take its place.

When more threads are started than can run at the same time because of the activity level controls, the
excess threads have to wait to use the processing unit (normally this wait is short). The memory pool
activity level lets you limit the amount of main memory contention in the various memory pools in your
subsystems.

The number of threads running (or active threads) refers to the number of threads that are eligible to
compete for the processor and that count against the activity level for a memory pool. In this sense, active
threads do not include threads that are waiting for input, for a message, for a device to be allocated, or for
a file to be opened. Active threads do not include threads that are ineligible (threads that are ready to run
but the memory pool activity level is at its maximum).

How activity levels work

More than one thread can be active at the same time in a memory pool because the processing for a
thread can be briefly interrupted while needed data is retrieved from auxiliary storage. During this delay,

60 iSeries: Work management

../apis/api.htm
rzaksmempoolactlevel.htm
rzakstypesmempools.htm

which is usually short, another thread can run. Using the activity level, the machine can process a large
number of threads in a memory pool and, at the same time, hold the level of contention to the limit you
specify.

Maximum activity level

Once the maximum activity level for a memory pool has been reached, additional threads
needing the memory pool are placed in the ineligible state to wait for the number of active
threads in the memory pool to fall below the maximum activity level or for a thread to reach the
end of its time slice. As soon as a thread gives up its use of the memory pool, the other threads
that are not active become eligible to run by their priority. For example, if a running thread is
waiting for a response from a workstation, it gives up its activity level and the activity level is no
longer at its maximum.

Defining memory pool activity levels

Defining memory pools and activity levels correctly is generally dependent on size of the
memory pool, the number of CPUs, the number of disk unit arms, and the characteristics of the
application. See Performance tuning in Chapter 14 of the Work Management

manual for a more detailed description of how to set appropriate activity levels.

See Controlling levels of system activity in Chapter 4 of the Work Management

manual for more information.

Types of memory pools
A memory pool is a division of main storage or auxiliary storage. On the iSeries server, all main storage
can be divided into logical allocations called memory pools. The two types of memory pools in a system
are either private or shared. As many as 64 memory pools, in any combination of private and shared
pools, can be active at the same time.

Private memory pool
Identified by subsystem name in iSeries Navigator, it is a pool in which a single subsystem can run
jobs. Private pools are pools of main storage that cannot be shared by multiple subsystems. A private
pool contains a specified amount of storage to be used by only one subsystem. You can have as
many as 62 private pools allocated for use in active subsystems. A private pool does not have to be
large enough to contain your programs.

Shared memory pool
A shared memeoy is a pool in which multiple subsystems can run jobs. Using shared memory pools
allows the system to distribute similar jobs across multiple subsystems, still allowing these jobs to run
in the same memory pool. You can specify 63 of the 64 shared memory pools that are defined on the
system for use when creating subsystem descriptions. The machine pool is reserved for system use.
Shared pools are either special or general; the machine pool and base pool are considered special
shared pools, and all other shared pools are considered general shared pools.

Work management 61

rzaksmachinemempool.htm
rzaksbasemempool.htm

Output queues
Output queues are areas where printer output files (also called spooled files) wait to be processed and
sent to the printer. Printer output is created either by the system or by the user using a print file. A print
file is similar to a template or a guideline where the default values for the attributes of printer output are
set. It is the beginning of the printer output life cycle.

The print file contains the output queue (OUTQ) and print device (DEV)attributes, which dictate how the
printer output is to be directed. The default settings are usually *JOB, meaning that the job attributes of the
output queue and printer device determine how the printer output is directed. The job attributes of the
output queue and printer device settings are based on information obtained when the job is created. This
is based on information from the user profile the job is running under, the job description, the workstation
device description, and the default printer(QPRTDEV).

When the printer output is ready to be created, the system checks the print file and the job attributes (in
this order) to see what output queue will process the printer output and which printer device the system
will use. You can change the parameters of the output queue (OUTQ) and printer device (DEV) at the time
the job is submitted or at job run-time to bypass extended processing. For example, the user can set the
print file output queue to a specific queue and set the printer device to their specific printer in the print file
at job initiation for the changes to take effect immediately. In doing this, the printer output does not have to
go through the job attributes to find the output queue and printer device it will use. If a specified output
queue cannot be found, the printer output will be directed to QGPL/QPRINT. For more information on how
printer output is created, see Chapter 1 of the Printer Device Programming manual.

Printer output files (also called spooled files) are files that hold information waiting to be printed or
processed. The printer output file (also called spooled files) holds important attributes that define the
position of the printer output on the queue with relation to other printer output. The position is defined by
the priority, status, and schedule attributes.

Output queue
An output queue is an object that contains a list of printer output files (also called spooled files) to
be written to an output device. The output queue carries important attributes that determine the order
in which printer output is processed and the authority needed to make changes to the printer output
file.

Priority
Printer output that is waiting to process is moved to the output queue based on its priority (ranges
from 1-9 where 1 is the highest priority).

Status
The current status of printer output. You can view this status from the General page in Output
properties.

Schedule
The schedule attribute tells when the file should start physical printing of the output data.

Immediate
Print immediately, even if the printer output file (also called spooled files) is not closed.
File end (default)
Printing begins as soon as the printer output file (also called spooled files) is closed.
Job end
Printing begins when the job ends.

62 iSeries: Work management

../../books/c4157135.pdf
rzaksoutputattributes.htm
rzaksspoolstatus.htm

Once the printer output file (also called spooled files) is ready to be printed, a writer job, a job that
processes the printer output from the output queue to the printer device, takes data from the printer output
file (also called spooled files) and sends it to the designated printer.

Attributes of an output queue
The output queue controls how printer output files (also called spooled files) are processed and who has
the authority to perform actions on the output queue and associated printer output.

The order of files attribute determines how the printer output will leave the output queue to be processed.
The two ways to configure the output queue, either by the job number or by the first in, first out (FIFO)
rule.

Because most of the information that you print on the iSeries system is created as printer output, security
is necessary to prevent unauthorized users access to confidential or sensitive material. Authority to check,
data authorization, operator control, spool control, or being the owner allows you to access and makes
changes on an output queue or printer output file (also called spooled files). You need one of the following
authorities to perform any action on an output queue or printer output:

Authority to check. You must be the owner of the queue or have data authorization.

Display data. When this authority is set to *YES, it allows you to perform such actions as viewing,
moving, sending output to another system, and copying printer output.

Operator control. If this attribute is set to *YES, users with *JOBCTL special authority are authorized
to perform actions like hold, release, and delete printer output from the output queue. Other actions
on printer output, output queues, and writers are allowed as well and are documented in the Security
Reference Manual.

Spool control. Allows the user to perform all operations on printer output. The user must have
*EXECUTE authority to the library the output queue is located in to perform any actions on the output
queue.

Owner. This allows the user who owns the output queue to change or delete printer output.

Note: The default authority to the output queue is *USE public
authority. Display Data authority is set to *NO (meaning
not just anyone can view printer output). Authority to
check is *OWNER (so the output queue owner can
manipulate the printer output). Operator Control is set to
*YES (meaning a user with *JOBCTL can hold, release,
and delete printer output).

For more information on authorities needed to work with output queues, see Appendix D in the Security
Reference Manual

.

Work management 63

rzakssequence.htm
../../books/c4153026.pdf
../../books/c4153026.pdf
../../books/c4153026.pdf
../../books/c4153026.pdf

Order of Files: The order of files attribute determines the sequence in which the printer output files
(also called spooled files) are placed and processed on the output queue. Two ways to configure the
output queue are by job number and first in, first out (FIFO).

Job number
The queue entries for the printer output file (also called spooled file) are sorted in priority sequence
using the job number of the job that created the printer output file.

First in, first out
New printer output files (also called spooled files)that enter the queue are placed after all other
printer output files that have the same priority.

Note: You can only change the output queue order of files
attribute when no printer output files are on the queue.

Status of printer output
The status of a printer output file (also called spooled files) determines where you will see it in the output
queue. The following statuses are listed from the bottom of the output queue to the top.

Still being created

The printer output file is being created.

Printed and kept

The data in the printer output file has been printed, but has been saved to be used later.

Held

The printer output file is held, preventing it from being processed by a writer job.

Not scheduled to print yet

The creation of the printer output file is complete, but it is not eligible to be printed. This is only
seen when the schedule attribute of the printer output file is set to *JOBEND. This means the
job that owns the printer output file must end before the printer output file is allowed to be
processed by a writer job.

Page limit exceeded

The file exceeds the maximum number of pages allowed to be printed by a writer job. This
status is only seen if the output queue is active to a writer job.

Ready

The printer output file is waiting to be processed by the writer job.

The following statuses are seen when the output queue is active to a writer job (being processed by
a writer job) and will be seen at the top of the output queue.

Converting for printer

The printer output file is in the process of being transformed (made ready) for the printer device.

64 iSeries: Work management

Printing

The contents of the printer output file are being sent to the printer device.

Sent to printer

The contents of the printer output file are being printed. The operating system is waiting for
confirmation that the printer output file is done printing.

Being sent

The printer output file is being transferred from one system to another system.

Message waiting

The writer job has encountered a problem, such as out of paper or a paper jam, where it may
not be able to proceed printing. When this condition occurs, sometimes operator intervention
will be required.

Finished printing

The printer output file has been deleted. Note, the printer output file may or may not have been
printed.

How work gets done
Use this information to learn about what work is, what needs to be set up before work can begin, how
work travels through the system, and what happens to work once it is done running.

v What work is

v What happens before work enters the system

v How work enters the system

v How work gets processed

v How work leaves the system

For more detailed information on the concepts of Work Management, see The structure of your system.

What work is
On the iSeries server, work is always being done, whether you initiate it or the system initiates it. Work is
done when you power on your system, when you open a file, or when you query a database. Any action
done on the iSeries server has some type of work being performed to complete it.

Each piece of work on the system is performed by a job. A job can be as simple as an application that
waits for a user to call it or it can be as complex as a system query to monitor the number of users on the
system every hour that runs constantly. Some jobs, specifically batch and interactive jobs, have job
descriptions associated with them that tell when and where the job will run.

Jobs are made up of programs that perform certain functions. There is no limit to the amount of functions
a job performs. A job contains the step-by-step instructions that must be completed for work to be done.
The programs that make up the job run in a specific order. For example, program A needs to run before
program B can begin.

Work management 65

rzakswhatswrk.htm
rzaksbfrwrkentsys.htm
rzakshowwrkgetsinsys.htm
rzakshowwrkgetsproc.htm
rzakshowwrklvs.htm
rzakssystemstructure.htm
rzaksjobdescription.htm
rzaksjobdescription.htm

Threads

help a job complete its work. An active job contains at least one thread. When a job contains multiple
threads, it has the ability to do more than one thing at once. For example, one thread can go out and do
calculations while another thread waits for more data to process.

For more detailed information on jobs and job types on the iSeries server, see Jobs.

What happens before work enters the system
All jobs, with the exception of system jobs, run within subsystems. For work to start in an active
subsystem, memory pools and at least one source of work entry point need to be established. Job queues
are an example of a source of work. The iSeries server ships with a default set of job queues,
subsystems, and memory pools, which can allow work to begin as soon as the system is powered on.

You can tailor the subsystem and memory pool configurations to optimize your iSeries servers capabilities
and performance. For example, if batch jobs are critical to the success of your business, you may want to
allocate more memory for them to run. Or, you may determine that the number of jobs running at one time
in your Qbatch subsystem should be lower so that those jobs can use the maximum amount of resources
to run. Also, you can create job queues, subsystems, and memory pools specifically designed to complete
specific types of work. For example, you can create a job queue called Nightreps, where nightly batch
reports are sent to a subsystem called Nightrep that allocates memory exclusively for running these batch
jobs.

To learn more about job queues, subsystems, and memory pools, see the The structure of your system .
For more information on what IBM supports for work management, see Appendix C. IBM-Supplied
Object Contents in the Work Management

manual and What’s New for V5R2.

How work enters the system
Work entries identify the sources where jobs enter a subsystem to become available to run. Each type of
job on iSeries has different types of work entries it uses.

Most batch jobs use job queues to enter the subsystem. Job queue entries are the mechanism through
which a job queue is defined as a source of work to a subsystem.

Work entries are kept in the subsystem description. If a subsystem description does not have a work entry
for the type of work being done, the job cannot run in that subsystem. The IBM-shipped subsystems have
default work entries in the subsystem descriptions. Keep in mind, some of the default work entries that
ship with the subsystems are already allocated to run specific jobs. For example, in the QCMN subsystem
one of the communications work entries is set up to run the iSeries Access server.

For more information on how work enters the system, see work entries in Chapter 4 of the Work
Management

manual.

How work gets processed
When the iSeries server is started, a subsystem monitor job begins running. The subsystem monitor job
controls the jobs within subsystems. It also starts and ends work, as well as manages the resources for

66 iSeries: Work management

rzaksthreadstructure.htm
rzaksjobsoverviewarticle1.htm
rzakshowwrkgetsinsys.htm
rzakssystemstructure.htm
rzakswhatnew.htm
rzakssbsd.htm
rzaksaboutsbs.htm

work in the subsystem. Work (or jobs) enters a subsystem through work entries where it becomes active
and eligible to run. Work can only be completed when the subsystem is allocated memory to run. Memory
is allocated to the subsystem by a memory pool.

How the subsystem description helps process work

Like a job, a subsystem has a description, called a subsystem description. The subsystem description
contains important information that tells how, where, how much work can be active in a subsystem at one
time, and which resources it can use to perform the work.

Routing entry
A routing entry exists within the subsystem description that tells the subsystem what memory pool to run
the job in, what program to run for the job, and which class object to use to run the job. For more
information about routing entries, see chapter 4 in the Work Management

manual.

Class Object
The Class object defines the run priority, default wait time, timeslice, and other attributes. The run priority
is important because it determines when a job will get processor time in order to run. The run priority scale
goes from 0 to 99, with 0 being the highest priority. (Only system jobs are given priority of 0 because they
are the jobs that run the iSeries server.)

When a job enters the subsystem, the subsystem tries to match the routing data with the compare value
in the routing entry. If the routing data and the compare value in a routing entry match, the routing entry is
assigned to the job. If a match is not made, the job ends.

Another factor that affects when a job runs in the subsystem is the number of jobs allowed to be active in
the subsystem at one time (also known as maximum active jobs in the subsystem). When the maximum
number of active jobs in a subsystem has been met, no more jobs can enter the subsystem until existing
active jobs complete running. Memory has to be allocated to the subsystem for a job to run. Memory pool
activity levels tell the iSeries server how many threads can be active within a memory pool. Remember,
an active job contains at least one thread. When the memory pool activity level has been reached, the job
has to wait for another thread to give up its use of the activity level. A job can be active in a subsystem
and not be running.

Note: Do not confuse the subsystem maximum active jobs with the memory pool activity level.

For more information on jobs, subsystems, and memory pools, see the Work Management

manual.

How work leaves the system

The output queue works similarly to a job queue in that it schedules output to be printed. Both the printer
output and the output queue carry attributes that are used to print the information.

Printer output holds output data waiting to be processed, such as information waiting to be printed. Printer
output also holds important information used to schedule when it will be printed. Printer output attributes
include the output queue in which the printer output will reside, the priority, the status and the schedule of
the printer output.

Work management 67

rzakshowwrkgetsinsys.htm
rzaksaboutmempools.htm
rzakssbsd.htm
rzakssbsprop.htm
rzaksaboutmempools.htm
rzaksmempoolactlevel.htm
rzaksmempoolactlevel.htm
rzakssbsprop.htm
rzaksmempoolactlevel.htm
rzaksoutputstructure.htm
rzaksspoolstatus.htm

The output queue contains attributes of its own that determine the order in which the printer output files
are processed. It also contains the authority needed to make changes to the printer output and the output
queue.

When the printer output is ready to be sent to the printer it is picked up by a writer job. The writer job
takes the data from printer output and prepares it to be printed.

For details about how the output queue gets selected see Controlling print activity in Chapter 1 of the
Printer Device Programming

manual.

You can create specific output queues or use the output queues shipped with the system. For more
detailed information, see Creating an output queue.

Troubleshoot Work Management
When a job does not appear to be processing efficiently on your iSeries server, it could be that the job is
hung, or that it is just performing poorly. In each case, there are some diagnosis and recovery actions that
can assist you in troubleshooting the problem. See the following topics for details.

v My job is hung

v My job is experiencing poor performance

My job is hung
The following are possible reasons why a job might be hung:

Job is waiting to get a lock on an object
How
to
diagnose:

View the status of the job in iSeries Navigator; see Determining the status of a job. A job that is waiting
to get a lock will have a status of Waiting for lock.

Recovery:View the list of locked objects for the job to determine which object the job is waiting to get a lock on;
see Details: Active job actions. Then use the Lock Holders action against the object to determine which
job already holds the lock. You then need to determine why this job is holding the lock, and what can be
done to release the lock. In V5R2, status values can have additional information on the properties
pages. For example, the status waiting for a lock on the Properties page shows you what object is
associated with the lock request.

Job is held
How to
diagnose:

View the status of the job in iSeries Navigator; see Determining the status of a job

Recovery: Right click on the job and select Release.

The following are possible reasons why a job on a job queue might be hung:

Job queue is held
How to
diagnose:

View the status of the job queue in iSeries Navigator;

Recovery: 1. Move the job to a job queue that is not held, see Moving jobs to different job
queues.

2. Release the job queue. To do so, right-click the job and select Release.

68 iSeries: Work management

rzakssequence.htm
rzaksoutputattributes.htm
../rbapk/rbapkcrtq.htm
rzaksjobhung.htm
rzakspoorperformance.htm
rzaksdetstatjob.htm
rzaksjobactions2.htm
rzaksdetstatjob.htm
rzaksmvjobtonwjobq.htm
rzaksmvjobtonwjobq.htm

Job queue has not been allocated by an active subsystem
How to
diagnose:

View the status of the job queue in iSeries Navigator.

Recovery: 1. Move the job to a job queue that is allocated by an active
subsystem, see Moving jobs to different job queues.

2. Start a subsystem which contains a job queue entry for this job
queue, see How subsystems start.

3. Add a job queue entry for this job queue to an active subsystem
using the Add Job Queue Entry (ADDJOBQE) command.

Subsystem maximum has been reached
How to
diagnose:

View the maximum active jobs value for the subsystem in iSeries Navigator. To do
so, right-click on the subsystem and select Properties

Recovery: 1. Move the job to a different job queue, see Moving jobs to different job queues.

2. Increase the maximum value. To do so, use the Change Subsystem
Description (CHGSBSD) command.

Job queue maximum has been reached
How to
diagnose:

View the maximum active jobs value for the job queue in iSeries Navigator. To do so,
right-click on the job queue and select Properties. Then select the Activity tab.

Recovery: 1. Move the job to a different job queue; see Moving jobs to different job queues.

2. Increase the maximum value. To do so, use the Change Job Queue Entry
(CHGJOBQE) command.

Maximum value for the priority level has been reached
How
to
diagnose:

Determine the job queue priority of the job by viewing its properties. Then view the
maximum active jobs by job priority values for the job queue in iSeries Navigator. To do so,
right-click the job queue and select Properties. Then select the Activity tab and click the
Advanced button.

Recovery:1. Move the job to a different job queue; see Moving jobs to different job queues.

2. Change the job queue priority of the job; see Changing the priority of a job within a job
queue.

3. Increase the maximum value. To do so, use the Change Job Queue Entry (CHGJOBQE)
command.

My job is experiencing poor performance
The following are possible reasons why a job might experience poor performance:

Work management 69

rzaksmvjobtonwjobq.htm
rzakshowsbsstart.htm
rzaksmvjobtonwjobq.htm
rzaksmvjobtonwjobq.htm
rzaksmvjobtonwjobq.htm
rzakschgrunptyinjobq.htm
rzakschgrunptyinjobq.htm

Insufficient memory
How
to
diagnose:

View the properties of the job to determine which memory pool the job is running in. Then view the
properties of the memory pool in iSeries Navigator, see Checking memory pool usage. A high rate of
faulting in a pool indicates that there is not enough memory in the pool, or that too many jobs are in the
pool competing for the memory.

Recovery:1. Turn on the system tuner if you are not already using it. The system value QPFRADJ automatically
adjusts memory pools and activity levels.

2. If possible, manually tune the pool you are working with by increasing the amount of memory in the
pool or reducing the activity level for the memory pool. You may also want to check the machine
pool to verify that the amount of memory being used is not affecting all jobs on the system.

Activity level too low
How
to
diagnose:

View the properties of the job to determine its status and which memory pool the job is running in. If the
job shows a status of Waiting for activity level, then view the properties of the memory pool in iSeries
Navigator, see Checking memory pool usage. A high rate of transitions to the ineligible state in a pool
indicates that too many jobs in the pool are competing for the memory.

Recovery:1. Turn on the system tuner if you are not already using it. The system value QPFRADJ automatically
adjusts memory pools and activity levels.

2. Manually tune the pool by increasing the activity level for the memory pool.

Insufficient CPU resource
How to
diagnose:

View the CPU % column for the job and other jobs in the Active Jobs list of iSeries Navigator.
If the system is very busy, your job may not be getting enough CPU resource to complete its
work.

Recovery:1. If possible, end or hold unnecessary work on the system.

2. If a few jobs are CPU intensive, change the run priority of these jobs (a higher the run
priority value equals a lower run priority for the job).

Memory pool paging option
How
to
diagnose:

If an application is disk intensive, if the CPU is under utilized and if there is sufficient memory, the
use of expert cache may be beneficial.

Recovery:The expert cache can be turned on in iSeries Navigator by changing the Paging option for a shared
memory pool to Calculated. The Paging option is located on the Configuration tab of the memory
pool’s Properties page and is only available on shared pools(not private pools).

Low job run priority
How
to
diagnose:

View the job’s properties to determine the run priority of a job relative to other jobs on the system.

Recovery:If the job has a low run priority (higher number) relative to other jobs and is not using much CPU because
the higher priority (lower number) jobs are using most of the CPU resource, you might need to increase the
job’s run priority, see Job properties. Also, on a system with high CPU utilization and a job with a low run
priority, setting the Dynamically adjust job priorities within priority bands (QDYNPTYSCD) and the
Dynamically adjust job priorities of interactive jobs (QDYNPTYADJ) system values may be useful.

70 iSeries: Work management

rzakschkmemuse.htm
../rzakz/rzakzqpfradj.htm
rzakschkmemuse.htm
../rzakz/rzakzqpfradj.htm
rzaksjobproperties.htm
rzaksjobproperties.htm
../rzakz/rzakzperformance2bridge.htm
../rzakz/rzakzperformancebridge.htm

For more information on performance, see Performance. If you want more information on how to tune
performance on your system, see Tune performance.

Work management 71

../rzahx1.htm
../rzahxtune.htm

72 iSeries: Work management

����

Printed in U.S.A.

	Contents
	Work management
	Related Information
	What's new for V5R2
	Print this topic
	Manage daily work
	Monitor system activity
	Work with system status

	Managing jobs and threads
	Find a job on the iSeries server
	Determine the status of a job
	View performance statistics for a job
	End a job
	Job actions
	View threads running under a specific job
	View thread properties
	Delete or end a thread

	Manage job queues
	View jobs on the job queue
	Change the priority of a job within a job queue
	Move jobs to different job queues

	Manage subsystems
	Monitor the number of jobs in a memory pool
	View jobs in the subsystem
	Start a subsystem
	Stop a subsystem

	Manage memory pools
	Monitor the number of subsystems using a memory pool
	Check memory pool use
	Change the size of a memory pool

	Manage job logs
	Access job logs for active jobs, including server jobs
	Access printer output

	Manage output queues
	View output queues on the system
	Move output between and within output queues
	Clear output queues

	The structure of your system
	Jobs
	Active and inactive jobs
	Active jobs
	Inactive jobs

	Job types
	Autostart jobs
	Batch jobs
	Communications jobs
	Interactive jobs
	Prestart jobs
	Reader and writer jobs
	Subsystem jobs
	System jobs
	System startup jobs
	System arbiters
	Communications jobs
	Database jobs
	Other jobs

	Job properties
	Detach printer output
	Elapsed performance statistics
	Detailed status
	End jobs
	Details: Active job actions
	Job logs

	Threads
	Thread actions
	Thread types
	Thread status

	Job queues
	How a job queue works

	Subsystems
	Subsystem description
	Subsystems shipped with the system
	User-defined subsystems
	Subsystem properties
	Subsystem life cycle
	What happens when the subsystem starts

	Memory pools
	Memory pool activity level
	Types of memory pools

	Output queues
	Attributes of an output queue
	Order of Files

	Status of printer output

	How work gets done
	What work is
	What happens before work enters the system
	How work enters the system
	How work gets processed
	How work leaves the system

	Troubleshoot Work Management
	My job is hung
	My job is experiencing poor performance

