
iSeries

Journal management

ERserver
���

iSeries

Journal management

ERserver
���

© Copyright International Business Machines Corporation 1998, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Journal management . 1
What’s new for V5R2 . 1
Print this topic . 2
System-managed access-path protection . 3

Benefits of SMAPP . 3
How SMAPP works . 4
How the system chooses access paths to protect . 4
Effects of SMAPP on performance and storage . 5
How SMAPP handles changes in disk pool configuration 6
SMAPP and access path journaling . 7
SMAPP and independent disk pools . 7
Start SMAPP or change SMAPP values. 8
Display SMAPP status . 8

Local journal management . 9
Journal management concepts . 10

Benefits of journal management . 10
How journal management works . 11
Journal entries . 13
Journal management and system performance 15
Journal management with the save-while-active function 16

Plan for journal management . 16
iSeries Navigator versus the character-based interface for journaling objects. 17
Plan which objects to journal . 17

Reasons to journal access paths . 19
Reasons to journal before-images . 20

Plan for journal use of auxiliary storage . 20
Functions that increase the journal receiver size 21
Methods to estimate the size of a journal receiver 21
Estimate the size of the journal receiver manually 22
Methods to reduce the storage that journal receivers use 23
Determine the type of disk pool in which to place journal receivers 24
Journal management and independent disk pools 25

Plan setup for journal receivers . 25
Disk pool assignment for journal receivers . 25
Library assignment for journal receivers . 26
Naming conventions for journal receivers . 27
Threshold (disk space) for journal receivers . 27
Security for journal receivers . 28

Plan setup for journals . 28
Disk pool assignment for journals . 29
Library assignment for journals . 29
Naming conventions for journals . 29
Journal and journal receiver association . 30
Journal message queue . 30
Manual versus system journal-receiver management 30
Automatic deletion of journal receivers. 32
Receiver size options for journals . 33
Minimized entry-specific data for journal entries 34
Fixed-length options for journal entries. 35
Journal cache . 36
Object assignment to journals . 36

Set up journaling. 37
Example: Set up journaling . 38

© Copyright IBM Corp. 1998, 2001 iii

Start and end journaling . 39
Why you must save objects after you start journaling 40
Start journaling . 41

Journal database physical files (tables) . 41
Journal DB2 Multisystem files . 42
Journal integrated file system objects . 42
Journal access paths . 43
Journal data areas and data queues . 44

End journaling. 44
Manage journals . 46

Swap, delete, and save journals and receivers. 46
Swap journal receivers . 46
Keep track of journal receiver chains . 48
Reset the sequence number for the journal entries 50
Delete journal receivers . 50
Delete journals . 52
Save journals and journal receivers . 53

Evaluate how system changes affect journal management 55
Keep records of journaled objects . 55
Manage security for journals . 57
Display information for journals and receivers . 57
Work with inoperable journal receivers . 58
Compare journal images . 58
Work with IBM-supplied journals . 59
Send your own journal entries . 60
Change the state of local journals . 61

Scenario: Journal management . 62
JKLINT . 63
JKLDEV . 63
JKLPROD . 64

Recovery operations for journal management . 65
Determine recovery needs using journal status 65
Recovery for journal management after abnormal system end 67
Recover a damaged journal receiver . 67
Recover a damaged journal. 69

Associate receivers with journals . 69
Recover a damaged journal with the WRKJRN command. 69

Recover journaled objects . 70
Apply journaled changes . 75
Remove journaled changes . 76
Journaled changes with trigger programs. 78
Journaled changes with referential constraints 78
Actions of the APYJRNCHG or RMVJRNCHG command by journal code 79
Example: Apply journaled changes . 84
Example: Remove journaled changes . 85

Journal entry information . 85
Journal entries by code and type . 86
Journal code descriptions . 133
Fixed-length portion of the journal entry . 142
Variable-length portion of the journal entry . 188
Work with journal entry information . 188

Display and print journal entries. 188
Receive journal entries in an exit program . 192
Retrieve journal entries in a program . 196
Considerations for entries which contain minimized entry-specific data 198

Remote journal management. 198

iv iSeries: Journal management

Remote journal concepts . 199
Network configurations for remote journals. 202
Types of remote journals . 203
Journal state and delivery mode . 204
Journal receivers associated with a remote journal 207
Add remote journal process . 209

Library redirection with remote journals . 210
Remote journal attributes . 211

Supported communications protocols for remote journals 212
Release-to-release considerations for remote journals 212

Plan for remote journals . 213
Journals that are good candidates for remote journal management 213
Synchronous and asynchronous delivery mode for remote journals 213
Communications protocol and delivery mode for remote journals 214
Where the replication of journal entries start . 215
Factors that affect remote journal performance 217
Remote journals and auxiliary storage . 218
Journal receiver disk pool considerations . 218
Remote journals and main storage. 219

Set up remote journals . 219
Prepare to use remote journals . 219
Add remote journals . 220

Remove remote journals . 221
Activate and inactivate remote journals . 222

Activate the replication of journal entries to a remote journal 222
Caught-up and catch-up phase for remote journals. 223

Relational database considerations for remote journal state 224
Inactivate the replication of journal entries to a remote journal 224

Manage remote journals . 225
Keep records of your remote journal network . 225
Display remote journal function information . 226
Evaluate how system changes affect your remote journal network 226
Get information about remote journal entries . 226

Confirmed and unconfirmed journal entries 227
Journal entries from a remote journal with library redirection 228
Retrieve journal entries from a remote journal during the catch-up phase 228
Remote journal considerations for retrieving journal entries when using commitment control 229
Remote journal considerations for retrieving journal entries when using journal caching . . . 229

Journal receiver management with remote journals 229
Swap journal receiver operations with remote journals 230
Considerations for save and restore operations with remote journals 230

Rules for saving and restoring journals . 231
Rules for saving and restoring journal receivers 233
Considerations for restoring journaled objects 234
Considerations for restoring objects saved with Save Storage SAVSTG 235

Remote journal considerations when restarting the server 236
Work with remote journal error messages . 237

Scenarios: Remote journal management and recovery 238
Scenario: Data replication environment for remote journals 238
Scenario: Hot-backup environment. 241
Scenario: Recovery for remote journaling . 243
Details: Recovery for remote journaling scenario 252

Related information for journal management . 254

Contents v

vi iSeries: Journal management

Journal management

Journal management provides a means by which you can record the activity of objects on your system.
When you use journal management, you create an object called a journal. The journal records the
activities of the objects you specify in the form of journal entries. The journal writes the journal entries in
another object called a journal receiver.

Journal management provides you with the following:

v Decreased recovery time after an abnormal end

v Powerful recovery functions

v Powerful audit functions

v The ability to replicate journal entries on a remote system

This topic provides information on how to set up, manage, and troubleshoot system-managed access-path
protection (SMAPP), local journals, and remote journals on an iSeries server.

What’s new for V5R2
Highlights the changes and improvements made to Journal management.

Print this topic
Print this topic to view a hardcopy of Journal management.

System-managed access-path protection
System-managed access-path protection (SMAPP) allows you to use some of the advantages of
journaling without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart
your system after an abnormal end.

Local journal management
Use local journal management to to recover the changes to an object that have occurred since the
object was last saved or provide an audit trail of changes. Use this information to set up, manage,
and troubleshoot journaling on a local server.

Remote journal management
Use remote journal management to establish journals and journal receivers on a remote system that
are associated with specific journals and journal receivers on a local system. Remote journal
management replicates journal entries from the local system to the journals and journal receivers that
are located on the remote system after they have been established.

Related information
View the manuals, IBM Redbooks(TM) (in PDF format), and web sites that relate to Journal
management.

Note: Read the Code example disclaimer for important legal information.

What’s new for V5R2
For V5R2, there are a number of improvements and additions to journal management. The following items
contain a summary of these improvements and additions.

v Journal management and independent disk pools
Starting with V5R2 you can journal objects on library-capable independent disk pools.

v Journal caching
Journal caching is a separately chargeable feature that you can use to specify that the system cache

© Copyright IBM Corp. 1998, 2001 1

rzakismappintro.htm
rzakijrnkickoff.htm
rjournals/rzakiremotekickoff.htm
rzakirelatedinfo.htm
rzakicodedisclaimer.htm
rzakiiasp.htm
rzakijrncache.htm

journal entries in main storage, before writing them to disk. Journal caching provides significant
performance improvement for batch applications which perform large numbers of add, update, or delete
operations against journaled objects.

v Fixed-length options for journal entries
You can use the Fixed Length Data (FIXLENDTA) parameter of the Create Journal (CRTJRN) and
Change Journal (CHGJRN) commands to audit security related activity for journaled objects on your
system. With the FIXLENDTA parameter, you can elect to include security related information in the
fixed-length portion of the journal entries.

v Journal standby state
Journal standby state is a separately purchased feature that prevents most journal entries from being
entered into the journal. The advantage to journal standby state over inactive state is that if there is an
attempt to deposit a journal entry, there are no error messages indicating that the entry was not
deposited. See Change the state of local journals for details about journal standby state.

v Delay automatic journal change
You can use the Manage Receiver Delay Time (MNGRCVDLY) parameter of the CHGJRN or CRTJRN
commands to cause the system to wait the length of time that you specify before its next attempt to
automatically attach a new journal receiver. See Manual versus system journal-receiver management for
details.

v Delay the next attempt to delete a journal receiver
Use the Delete Receiver Delay Time (DLTRCVDLY) parameter of the CHGJRN or CRTJRN commands
to cause the system to wait the length of time that you specify before its next attempt to automatically
delete a journal receiver. See Automatic deletion of journal receivers for details.

To find other information about what’s new or changed this release, see the Memo to Users

.

Print this topic
To view or download the PDF version, select Journal management (about 844 KB or 214 pages).

You can view or download these related topics:

v Database programming (about 328 KB) contains the following topics:

– Setting up a database on an iSeries server.

– Using a database on an iSeries server.

v Integrated file system introduction (about 677 KB) contains the following topics:

– What is the integrated file system?

– Integrated file system concepts and terminology.

– The interfaces you can use to interact with the integrated file system.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As...

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

2 iSeries: Journal management

rzakiintrusion.htm
rzakichgjrnstate.htm
rzakimanorsysmng.htm
rzakiautodelete.htm
http://publib.boulder.ibm.com/pubs/html/as400/v5r2/ic2924/info/rzaq9.pdf

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the Adobe
Web site (www.adobe.com/products/acrobat/readstep.html)

.

System-managed access-path protection
System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. SMAPP is a way to reduce the time for an iSeries server or
independent disk pool to restart after an abnormal end. An access path describes the order in which
records in a database file are processed. A file can have multiple access paths, if different programs need
to see the records in different sequences.

When the system or an independent disk pool ends abnormally, the system must rebuild the access paths
the next time you restart the system, or vary on an independent disk pool. This rebuilding of the access
paths accounts for some of the longer period of time it takes to restart the system or vary on an
independent disk pool after an abnormal end.

When you use SMAPP, the system protects the access paths so the system does not need to rebuild the
access paths after an abnormal end. This topic introduces SMAPP, describes SMAPP concepts, and
provides setup and management tasks.

SMAPP concepts
Use this information to find out why you might want to use SMAPP, how it works, and how it affects your
system.

v Benefits of SMAPP

v How SMAPP works

v How the system chooses access paths to protect

v Effects of SMAPP on performance and storage

v How SMAPP handles changes in disk pool configuration

v SMAPP and access path journaling

v SMAPP and independent disk pools

Start or change SMAPP and display SMAPP status
Use this information to start or change SMAPP and to display the status of SMAPP on your server.

v Start or change SMAPP

v Display SMAPP status

Benefits of SMAPP
System-managed access-path protection (SMAPP) can greatly reduce the amount of time it takes to
restart your system or vary on an independent disk pool, after an abnormal end. The time is reduced by
protecting access paths. A protected access path can be recovered much quicker than a non-protected
access path. It is an automatic function that runs without attention. SMAPP determines which access paths
to protect without any intervention by the user. It adjusts to changes in the environment, such as the
addition of new applications or new hardware.

SMAPP does not require any setup. You do not have to change your applications. You do not have to
journal any physical files or even use journaling at all. You simply need to determine your policy for access
path recovery:

v After a failure, how long you can afford to spend rebuilding access paths when you restart the system,
or vary on an independent disk pool.

Journal management 3

rzakibenefits.htm
rzakihowworks.htm
rzakichoosesap.htm
rzakieffectsperform.htm
rzakisyschanges.htm
rzakismappapjourn.htm
rzakismappiasp.htm
../rzalb/rzalbindependent.htm

v How to balance access path protection with other demands on system resources.

v Whether to have different target times for recovering access paths for different disk pools.

You may need to experiment with different target recovery times for access paths to achieve the correct
balance for your system. If you configure additional basic or independent disk pools, you should also
evaluate your access path recovery times.

The system protects access paths by journaling the access paths to internal system journals. Therefore,
SMAPP requires some additional auxiliary storage for journal receivers. However, SMAPP is designed to
keep the additional disk usage to a minimum. SMAPP manages journal receivers and removes them from
the system as soon as they are no longer needed.

How SMAPP works
The purpose of system-managed access-path protection (SMAPP) is to reduce the amount of time it takes
to restart the system or vary on an independent disk pool, after an abnormal end.

It can take much longer than normal to restart the system when the system ends abnormally because of
something like a power interruption. Also, if you are using an independent disk pool, the next vary on of
the independent disk pool can take much longer than normal.

Access paths

An access path describes the order in which records in a database file are processed. A file can have
multiple access paths, if different programs need to see the records in different sequences.

How SMAPP works with abnormal ends

When the system restarts after an abnormal end, the system rebuilds access paths that were open for
updating at the time of the abnormal end. Rebuilding access paths contributes to this long restart time or
the long vary on time for an independent disk pool. Likewise, when you vary on an independent disk pool,
the system rebuilds access paths that were open for updating at the time the independent disk pool ended
abnormally. The system does not rebuild access paths that are specified as MAINT(*REBLD) when you
create them. When protecting access paths with SMAPP, the system uses information that it has collected
to bring access paths up to date, rather than rebuilding them.

You can specify the target time for rebuilding access paths after the system ends abnormally. The target
time is a goal that the system does its best to achieve. The actual recovery time for access paths after a
specific failure may be somewhat more or less than this target.

The target recovery time for access paths can be specified for the entire system or for individual disk
pools. The system dynamically selects which access paths to protect to meet this target. It periodically
estimates how long it will take to recover access paths that are open for change.

For new systems, the system-wide recovery time for access paths is 70 minutes, which is the default. If
you move from a release that does not provide the SMAPP function to a release that does supports
SMAPP, the system-wide recovery time for access paths is also set to 70 minutes. Otherwise, the recovery
times remain as you have previously set them.

How the system chooses access paths to protect
The system periodically examines access path exposure and estimates how long it would take to rebuild
all the exposed access paths. If the rebuild time exceeds your target recovery times for access paths, the
system selects additional access paths for protection.

An access path is exposed when the access path has changed because records have been added or
deleted or because a key field has changed, and those changes have not yet been written to the disk. The

4 iSeries: Journal management

system periodically examines access path exposure and estimates the time required to rebuild all the
exposed access paths. If the rebuild time exceeds your target recovery times for access paths, the system
selects additional access paths for protection. The system can also remove access paths from protection if
the estimated time for rebuilding access paths consistently falls below your target recovery times for
access paths. The recover attribute of a file is not used in determining whether to protect access paths.

Some access paths are not eligible for protection by SMAPP:

v A file that specifies MAINT(*REBLD).

v An access path that is already explicitly journaled.

v An access path in the QTEMP library.

v An access path whose underlying physical files are journaled to different journals.

v An access path for a physical file that was created specifying FRCACCPTH(YES).

v Any encoded vector access path.

v A file journaled to a journal in standby state.

You can use the Display Recovery for Access Paths (DSPRCYAP) command to see a list of access paths
that are not eligible for SMAPP.

Effects of SMAPP on performance and storage
System-managed access-path protection (SMAPP) is designed to have minimal impact on your system.
Though it is minimal, SMAPP does affect your system’s processor performance and auxiliary storage.

Processor performance

SMAPP has some impact on processor performance. The lower the target recovery time you specify for
access paths, the greater this impact is. Usually, the impact on processor performance is not very
noticeable, unless the processor is nearing capacity.

Auxiliary storage

SMAPP causes increased disk activity, which increases the load on disk input/output processors. Because
the disk write operations for SMAPP do not happen at the same time, they do not directly affect the
response time for a specific transaction. However, the increased disk activity may affect overall response
time.

Also when you use SMAPP, the system creates an internal journal and journal receiver for each disk pool
on your system. The journal receivers that SMAPP uses take additional auxiliary storage. If the target
recovery time for access paths for a disk pool is set to *NONE, the journal receiver has no entries. The
internal journal receivers are spread across all the arms in a disk pool, up to a maximum of 100 arms.

The system manages the journal receivers automatically to minimize the impact as much as possible. It
regularly discards internal journal receivers that are no longer needed for recovery and recovers the disk
space. The internal journal receivers that are used by SMAPP require less auxiliary storage than the
journal receivers for explicit journaling of access paths. Internal journal receivers are more condensed
because they are used only for SMAPP entries.

If you have already set up journaling for a physical file, the system uses the same journal to protect any
access paths that are associated with that physical file. If the system chooses to protect additional access
paths, your journal receivers will grow larger more quickly. You will need to change journal receivers more
often.

Tips to reduce SMAPP’s impact on auxiliary storage

Journal management 5

v When you set up SMAPP, specify target recovery times for access paths either for the entire server or
for individual disk pools, but not for both. If you specify both, the system does extra work by balancing
the overall target with the individual targets.

v If you also journal physical files, to deal with the increased size of your journal receivers, consider
specifying to remove internal entries when you set up journaling or swap journal receivers. If you specify
this, the system periodically removes internal entries from user journal receivers when it no longer
needs them to recover access paths. This prevents your journal receivers from growing excessively
large because of SMAPP.

v If your system cannot support dedicating any resources to SMAPP, you can specify *OFF for the system
target recovery time. Before choosing this option, consider setting the recovery time to *NONE for a
normal business cycle, perhaps a week. During that time, periodically display the estimated recovery
time for access paths. Evaluate whether those times are acceptable or whether you need to dedicate
some system resources to protecting access paths.

If you turn SMAPP off, any disk storage that has already been used will be recovered shortly thereafter.
If you set the SMAPP values to *NONE, any disk storage that has already been used will be recovered
after the next time you restart your system.

For more information on removing internal entries, see Receiver size options for journals. See the
Performance topic for more information about system performance.

How SMAPP handles changes in disk pool configuration
When you restart the system, the system checks to see if your disk pool configuration has changed. The
system may change either the size of the SMAPP receiver or the placement of the receiver based on the
change to the disk units. The system considers the performance of the disk units assigned to a disk pool
to determine where to place the SMAPP journal receiver.

When you restart your system, the system checks to see if your disk pool configuration has changed. The
system does the following:

v If any disk units have been added or removed from an existing disk pool, the system may change either
the size of the SMAPP receiver or the placement of the receiver.

v If any new disk pools are in the configuration and do not have any access path recovery times assigned
for SMAPP, the system assigns a recovery time of *NONE for that disk pool. If you remove a disk pool
from your configuration and later add it back, the access path for that disk pool is set to *NONE, even if
that disk pool previously had a recovery time for access paths.

v If all basic user disk pools have been removed from your configuration so that you have only the system
disk pool, the system access path recovery time is set to the lower of the following values:

– The existing system access path recovery time.

– The current access path recovery time for disk pool 1. If the current access path recovery time for
disk pool 1 is *NONE, the system access path recovery time is not changed.

When you vary on an independent disk pool, the system checks to see if any disk units have been added
or removed from the independent disk pool. The system may change either the size of the SMAPP
receiver or the placement of the receiver based on the change to the disk units. If this is the first time the
independent disk pool is varied on, then the system assigns a recovery time of *NONE for that
independent disk pool.

When you add disk units to your disk configuration while your system is active, or your independent disk
pool is varied on, the system does not consider those changes in making SMAPP storage decisions until
the next time you restart the system, or vary on the independent disk pool. The system uses the size of
the disk pool to determine the threshold size for SMAPP receivers. If you add disk units, the system does
not increase the threshold size for the receivers until the next time you restart the system restart or vary

6 iSeries: Journal management

../rzahx/rzahx1.htm

on the independent disk pool. This means that the frequency of changing SMAPP receivers will not go
down until you restart the system, or vary off and the independent disk pool.

When you create a new user disk pool while your system is active, you should add all of the planned disks
to the disk pool at the same time. The system uses the initial size of the new disk pool to make storage
decisions for SMAPP. If you later add more disk units to the disk pool, those disk units are not considered
until the next time you restart the system or vary on the independent disk pool. When you create a new
user disk pool, the access path recovery time for that disk pool is set to *NONE. You can use the
EDTRCYAP command to set a target recovery time for the new disk pool, if desired.

For more information on disk pools and how to manage them, see Manage disk units in disk pools.

SMAPP and access path journaling
In addition to using system-managed access path protection (SMAPP), you can choose to journal some
access paths yourself by using the Start Journaling Access Path (STRJRNAP) command. This is called
explicit journaling. To journal an access path explicitly, you must first journal all the underlying physical
files. SMAPP does not require that the underlying physical files be journaled.

The reason for choosing to journal an access path explicitly is that you consider the access path (and the
underlying files) absolutely critical. You want to make sure that the files are available as soon as possible
when the system is started after an abnormal end.

Under SMAPP, the system looks at all access paths to determine how it can meet the specified target
times for recovering access paths. It may not choose to protect an access path that you consider critical.

When the system determines how to meet the target times for recovering access paths, it considers only
access paths that are not explicitly journaled.

How SMAPP is different from explicitly journaling access paths:

v SMAPP does not require that underlying physical files be journaled.

v SMAPP determines which access paths to protect based strictly on the target recovery times for all
access paths. You might choose to journal an access path explicitly because of your requirements for
the availability of a specific file.

v SMAPP continually evaluates which access paths to protect and responds to changes in your server
environment.

v SMAPP does not require any user intervention to manage its internal journals and journal receivers.

v SMAPP uses less disk space for journal receivers because they are detached and deleted regularly.

For more information about when you should journal access paths, see Reasons to journal access paths.

SMAPP and independent disk pools
You can use SMAPP to protect access paths for independent disk pools. When you use SMAPP to protect
access paths in independent disk pools, you can specify the recovery time individually for each
independent disk pools. This improves the performance when you vary on your independent disk pool after
an abnormal vary off.

The recovery time that you specify moves with the independent disk pool if you switch it between systems.
Therefore if you are switching your independent disk pools between systems, you only need to specify the
recovery time once.

The only time the specified recovery time is not moved is when the system you are moving the
independent disk pool to has its system recovery time specified as *OFF. In this case the independent disk
pools recovery time is set to *NONE when you vary on the independent disk pool.

Journal management 7

../rzalb/rzalboverview.htm
../cl/strjrnap.htm
rzakijrnap.htm

Start SMAPP or change SMAPP values
Use the Edit Recovery Access Path (EDTRCYAP) display to start or change values for system-managed
access-path protection (SMAPP).

If you use basic or independent disk pools to separate objects that have different recovery and availability
requirements, you might also want to specify different recovery times for access paths in those disk pools.

For example, if you have a large history file that changes infrequently, you can put file in a separate disk
pool and to set the access path recovery time for that disk pool to *NONE. Or, if you have an independent
disk pool, and you want the recovery time to move with the disk pool when it is switched to another server,
you can specify a specific time for that disk pool.

To start SMAPP or change SMAPP values, proceed as follows:

1. On the display, specify one of the following values in the System access path recovery time field:

v *SYSDFT

v *NONE

v *MIN

v *OFF

v A specific value between 10 and 1440 minutes.

2. At the Include access paths field select one of the following:

v *ALL

v *ELIGIBLE

3. If you are starting or changing SMAPP for disk pools, change the Target field for individual disk pools.

To change the access path recovery time from *OFF to another value, your server must be in a restricted
state.

You can also use the Change Recovery for Access Paths (CHGRCYAP) command to change the target
recovery times without using an edit display.

The system performance monitor also provides information about access path recovery times. Work
Management

and Performance Tools for iSeries

provide more information about monitoring performance and about what SMAPP information is available
through the tools.

Display SMAPP status
You can use the Edit Recovery Access Path display to display the values for system-managed
access-paths (SMAPP) are set for the following:

v The entire server.

v Basic and independent disk pools.

v Access paths not eligible for protection.

v Protected access paths.

8 iSeries: Journal management

../cl/edtrcyap.htm
../cl/chgrcyap.htm
../../books/c4153063.pdf
../../books/c4153063.pdf

Use the top part of the display to see the values for the entire server. Use the bottom part of the display to
see the values for individual disk pools on the system. If you do not have basic or independent disk pools
that are active, the bottom part of the display says No user ASP configured or information not
available.

Estimated time for recovery

To see the number of minutes the system estimates it will need to recover most of the access paths, look
at the Estimated recovery time for access paths field. The time is an estimated maximum, based on
most circumstances. It assumes that the system is recovering access paths on a dedicated server (during
a restart) and that all eligible access paths are being recovered or rebuilt. It does not include time to
rebuild access paths that must be rebuilt for one of the following reasons:

v The access path is damaged.

v The access path was marked as not valid during a previous abnormal end and was not successfully
rebuilt.

v One of the following commands marked the access path as not valid and was running when the
system failed:

– Copy File (CPYF), if the system chose to rebuild the access path for efficiency.

– Reorganize Physical File Member (RGZPFM)

– Restore Object (RSTOBJ)

If you have basic or independent disk pools, the estimated recovery time for access paths for the entire
server (System access path recovery time field) might not equal the total estimated recovery time for the
disk pools (Access Path Recovery Time-Estimated (Minutes)). When you restart the system or vary on
an independent disk pool, the system overlaps processing when recovering access paths to reduce the
total time it requires.

Disk space used

The Disk Storage Used field on the display shows the disk space that SMAPP uses only for internal
system journals and journal receivers. It does not include any additional space in user-managed journal
receivers for protecting access paths whose underlying physical files are already journaled.

Access paths not eligible

You can display all access paths that are not eligible for protection. To view access paths that are not
eligible for protection, press F13. Access paths that are not eligible for access protection are as follows:

v Access paths built over physical files which are journaled to separate journals.

v Access paths built over a physical file which is journaled to a journal whose state is currently standby.

v Access paths built over a physical file which was created with FRCACCPTH(*YES).

Protected access paths

You can also display up to 500 protected access paths by pressing F14. The system displays the access
paths with the highest estimated recovery time first.

Use can also use the Display Recovery for Access Paths (DSPRCYAP) command to display or print the
estimated recovery times and disk usage.

Local journal management
Use local journal management to recover the changes to an object that have occurred since the object
was last saved, as an audit trail, or to help replicate an object. Setting up journaling locally is a
prerequisite for other iSeries functions such as Remote journal management and Commitment control.

Journal management 9

../cl/dsprcyap.htm

The Local journal management topic provides concept, planning, setup, management, and recovery
information for journaling objects on a local iSeries server.

Journal management concepts
Explains how journal management works, why you should use it, and how it affects your system.

Plan for journal management
Provides you with the information you need to ensure you have enough disk space, to plan what
objects to journal, and to plan which journaling options you should use.

Set up journaling
Provides instructions to set up journals and journal receivers.

Start and end journaling
Provides instructions to start journaling after you create journals and receivers. Also provides
instructions for ending journaling.

Manage journals
Provides tasks to manage your journaling environment.

Scenario: Journal management
Provides the steps that a fictitious company, JKL Toy company, takes as it implements journal
management on its iSeries server.

Recovery operations for journal management
Provides tasks that show you how to use journaling to recover data on your iSeries server.

Journal entry information
Provides information and tasks for working with journal entries.

Journal management concepts
Journal management enables you to recover the changes to an object that have occurred since the object
was last saved. You can also use journal management to provide an audit trail or to help replicate an
object. You use a journal to define what objects you want to protect with journal management. The system
keeps a record of changes you make to objects that are journaled and of other events that occur on the
system.

This topic provides information on how journals work, information about journal entries, and how journals
affect system performance:

v Benefits of journal management

v How journal management works

v Journal entries

v Journal management and system performance

v Journals with the save-while-active function

Benefits of journal management
The primary benefit of journal management is that it enables you to recover the changes to an object that
have occurred since the object was last saved. This ability is especially useful if you have an unscheduled
outage such as a power failure.

In addition to powerful recovery functions, journal management also has the following benefits:

v Journal management enhances system security. You can create an audit trail of activity that occurs for
objects.

10 iSeries: Journal management

rzakiconcepts.htm
rzakiplnjrn.htm
rzakisetupjrngs.htm
rzakistartandend.htm
rzakimanagejrn.htm
rzakijournalscenario.htm
rzakijrnrecovery.htm
rzakijrnentry.htm
rzakireasons.htm
rzakihowwrks.htm
rzakijrnentryconcepts.htm
rzakijrnsysperform.htm
rzakijrnswa.htm

v Journal management allows you to generate user defined journal entries to record activity, even for
objects that do not allow journaling.

v Journal management provides quicker recovery of access paths if your system ends abnormally.

v Journal management provides quicker recovery when restoring from save-while-active media.

How journal management works
When you use journal management you create an object called a journal. You use a journal to define
which objects you want to protect. You can have more than one journal on your system. A journal can
define protection for more than one object.

You can journal the objects that are listed below:

v Database physical files

v Access paths

v Data areas

v Data queues

v Integrated File System objects (stream files, directories, and symbolic links).

Journal entries

The system keeps a record of changes you make to objects that are journaled and of other events that
occur on the system. These records are called journal entries. You can also write journal entries for events
that you want to record, or for objects other than the object that you want to protect with journaling.

For example, some journal entries identify activity for a specific database record such as add, update, or
delete. (If the updated object image after the update is the same as the image before the update, then
journal entries are not deposited for that update.) Also journal entries identify activity such as a save,
open, or close operation for an object. Journal entries can also identify other events that occur, such as
security-relevant events on the system or changes made by dynamic performance tuning. Journal entry
information describes all the possible journal entry types and their contents.

Each journal entry can include additional control information that identifies the source of the activity,
including the user, job, program, time, and date. The entries that the system deposits for a journaled object
reflect the changes made to that journaled object. For example, the entries for changes to database
records can include the entire image of the database record, not just the changed information.

Journal receivers

The system writes entries to an object called a journal receiver. The system sends entries for all the
objects associated with a particular journal to the same journal receiver.

You can attach journal receivers to a journal by using iSeries Navigator or the Create Journal (CRTJRN)
and Change Journal (CHGJRN) commands. The system adds journal entries to the attached receiver.
Journal receivers that are no longer attached to a journal and are still known to the system are associated
with that journal. Use the Work with Journal Attributes (WRKJRNA) command to see a list of receivers
associated with a journal.

The system adds an entry to the attached journal receiver when an event occurs to a journaled object.
The system numbers each entry sequentially. For example, it adds an entry when you change a record in
a journaled database file member that contains information that identifies:

v Type of change

v Record that has been changed

v Change that has been made to the record

v Information about the change (such as the job being run and the time of the change)

Journal management 11

rzakijrnentry.htm
../cl/crtjrn.htm
../cl/chgjrn.htm
../cl/wrkjrna.htm

When you are journaling objects, changes to the objects are added to the journal receiver. The system
does not journal data that you retrieved but did not change. If the logical file record format of a database
file does not contain all the fields that are in the dependent physical file record format, the journal entry still
contains all the fields of the physical file record format. In addition, if you are journaling access paths,
entries for those access paths are added to the journal. If the updated physical file image after the update
is the same as the image before the update, and if the file has no variable length fields, then journal
entries are not deposited for that update. If the updated data area image after the update is the same as
the image before the update, then journal entries are not deposited for that update.

Summary of the journaling process

The following figure shows a summary of journal processing. Objects A and B are journaled; object C is
not. Programs PGMX and PGMY use object B. When you make a change to object A or B, the following
occurs:

v The change is added to the attached journal receiver.

v The journal receiver is written to auxiliary storage.

v The changes are written to the main storage copy of the object.

Object C changes are written directly to the main storage copy of the object because it is not being
journaled. Only the entries added to the journal receiver are written immediately to auxiliary storage.

12 iSeries: Journal management

Changes against the object may stay in main storage until the object is closed.

You can also take advantage of the remote journal function. The remote journal function allows you to
associate a journal on a remote system with a journal on a local system. Journal entries on the local
system are replicated to the remote journal receiver.

Journal entries
When you use journal management, the system keeps a record of changes that you make to objects that
are journaled and of other events that occur on the system. These records are called journal entries. You
can use journal entries to help recover objects or analyze changes that were made to the objects.

Every journal entry is stored internally in a compressed format. The operating system must convert journal
entries to an external form before you can see them. You cannot modify or access the journal entries
directly. Not even the security officer can remove or change journal entries in a journal receiver. You can
use these journal entries to help you recover your objects or analyze changes that were made to the
objects.

Journal management 13

Contents of a journal entry

Journal entries contain the following information:

v Information that identifies the type of change.

v Information that identifies the data that was changed.

v The after-image of the data.

v Optionally, the before-image of the data (this is a separate entry in the journal).

v Information that identifies the job, the user, the time of change, and so on.

v The journal identifier of the object. The journal identifier is used to present the name and library of the
object. For the integrated file system objects, the file identifier is presented as the name of the object.
You can use the Qp0IGetPathFromFileID API to determine the path name for the integrated file system
object.

v Information that indicates if the entry-specific data is minimized.

The system also places entries in the journal that are not for a particular journaled object. These entries
contain information about the operation of the system and the control of the journal receivers.

Each journal entry is sequentially numbered without any missing numbers until you reset the sequence
number with the Change Journal (CHGJRN) command or iSeries Navigator. However, when you display
journal entries, sequence numbers can be missing because the system uses some entries only internally.
For audit purposes, you can display these internal entries with the INCHIDENT option on the Display
Journal (DSPJRN) command.

When the system exceeds the largest sequence number, a message is sent to the system operator
identifying the condition and requesting action. No other journal entries can be added to the journal until
the journal receivers are changed and the sequence number is reset.

A journal entry that is converted for displaying or processing contains a fixed-length prefix portion that is
followed by a variable-length portion. The variable-length portion contains entry-specific data and, in some
cases, null-values indicator data. The format of the converted entry depends on the command that you use
and the format that you specify. The entry-specific data varies by entry type. The Send Journal Entry
(SNDJRNE) command or the QJOSJRNE API specifies the entry-specific data for user-created journal
entries.

Methods for working with journal entries

The following list contain links to CL commands and APIs for working with journal entries:

v Apply Journaled Changes (APYJRNCHG) command

v Compare Journal Images (CMPJRNIMG) command

v Delete Pointer Handle (QjoDeletePointerHandle) API

v Display Journal (DSPJRN) command

v Get Path Name of Object from Its File ID (Qp0lGetPathFromFileID()) API

v Receive Journal Entry (RCVJRNE) command

v Retrieve Journal Entry (RTVJRNE) command

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

v Remove Journaled Changes (RMVJRNCHG) command

v Send Journal Entry (SNDJRNE) command

v Send Journal Entry (QJOSJRNE) API

Journal entry information has details on all possible journal entries and the information associated with
them.

14 iSeries: Journal management

../cl/apyjrnch.htm
../cl/cmpjrnim.htm
../apis/QJODLTPH.htm
../cl/dspjrn.htm
../apis/getpthff.htm
../cl/rcvjrne.htm
../cl/rtvjrne.htm
../apis/QJORJRNE.htm
../cl/rmvjrnch.htm
../cl/sndjrne.htm
../apis/QJOSJRNE.htm
rzakijrnentry.htm

Journal management and system performance
Journal management prevents transactions from being lost if your system ends abnormally or has to be
recovered. To do this, journal management writes changes to journaled objects immediately to the journal
receiver in auxiliary storage. This increases the disk activity on your system and can have a noticeable
impact on system performance. Journaling also increases the overhead associated with opening objects
and closing objects.

As the number of objects you are journaling increases, the general performance of the system can be
slower. The time it takes to perform an IPL on your system can also increase, particularly if your system
ends abnormally.

The system takes measures to minimize the performance impact of using journaling features. For
example, the system packages before-images and after-images and any access path changes for a record
in a single write operation to auxiliary storage. Therefore, journaling access paths and before-images, in
addition to after-images, usually does not cause additional performance overhead. However, they do add
to the auxiliary storage requirements for journaling.

The system also spreads journal receivers across multiple disk units to improve performance. The journal
receiver can be placed on up to ten disk units in a disk pool. If you specify the *MAXOPT1 or *MAXOPT2
journal option, then the system can place the journal receiver on up to 100 disk units in an disk pool.
Journal entries are written using a ″round robin″ technique with these arms.

You can take measures to minimize the impact of journaling on your system performance:

v Consider using journal caching. Journal caching is a separately chargeable feature that causes the
system to write journal entries to memory. When there are several journal entries in memory then the
system writes journal entries from memory to disk. If the application performs a large number of
changes, this can result in fewer synchronous disk writes resulting in improved performance. However,
when you use journal caching, you sacrifice single system recovery.

v Do not set the force-write ratio (FRCRATIO) parameter for physical files that you are journaling. You can
let the system manage when to write records for the physical file to disk because the journal receiver
has a force-write ratio of 1.

v Isolate journal receivers in a disk pool that is not the system disk pool. This reduces contention when
accessing the disks. Your performance can be better if the disk units in the disk pool are unprotected or
mirrored rather than protected through device parity protection. If you must use device parity protection
for your journal receiver’s disk pool, select the ninth and tenth drive of each device parity protection set.
Only the first eight drives in a device parity protection set contain parity data.

v Consider using record blocking when a program processes a journaled file sequentially
(SEQONLY(*YES)). When you add or insert records to the file, the records are not written to the journal
receiver until the block is filled. You can specify record blocking with the Override with Database File
(OVRDBF) command or in some high-level language programs. If you use the OVRDBF command, do
the following:

– Set the SEQONLY parameter to (*YES).

– Use a large enough value for the NBRRCDS parameter to make the buffer approach the optimal size
of 128KB.

v Consider minimizing the fixed-length portion (See page 33) of the journal entry using
RCVSIZOPT(*MINFIXLEN) for the journal. When you specify this option, all of the data that is
selectable by the FIXLENDTA parameter is not deposited. Therefore, that information does not have to
be retrieved, benefiting journal performance.

v Consider omitting information from the journal entry you do not need using the OMTJRNE parameter.
When you specify the OMTJRNE parameter for database physical files you will not deposit the file open
and close entries which saves processing as well as disk storage space. Similarly, if you specify the
OMTJRNE parameter for directories and stream files, the object open, close, and force entries are not
deposited.

v Ensure you have enough write cache for your I/O processor (IOP).

Journal management 15

rzakijrncache.htm
../cl/ovrdbf.htm
../cl/ovrdbf.htm

See the Performance topic for more information on system performance. The Managing disk units in disk
pools topic has information on disk pools, disk units, and disk protection. The Striving for Optimal Journal
Performance on DB2 Universal Database for iSeries

redbook has detailed information about improving journal performance.

Journal management with the save-while-active function
Journaling can help you with recovery if you use the save-while-active function in your backup strategy. If
you plan to save an application without ending it for checkpoint processing, consider journaling all of the
objects associated with the application. After the save operation is complete, save all of the journal
receivers for the objects you are saving.

If you need to do a recovery, you can restore objects from the save-while-active media. Then you can
apply journal changes to an application boundary.

See Save your server while it is active for more information about the save-while-active function.

Plan for journal management
Before you start to journal an object, you must make decisions that will determine how you will create
journals and receivers, what objects to journal and how to journal those objects. These decisions include:

v Whether you should use iSeries Navigator to set up your journaling environment.

v What objects to protect with journaling.

v Whether to journal other objects that the system does not journal.

v Whether to combine journaling with the save-while-active function.

v How many journals you need and which objects should be assigned to each journal.

v Whether to journal after-images only or both before-images and after-images.

v Whether your application programs should write journal entries to assist with recovery.

v What type of disk pool in which to store your journal receiver

v Whether to use the remote journal function to replicate the journal entries and receivers to one or more
additional systems.

You also need to make operational decisions about journal management:

v How often should journal receivers be changed and saved?

v How often should you save journaled objects?

v How should journals and journal receivers be secured?

Finally, you need to balance the benefits of journaling with the impact it may have on your system
performance and auxiliary storage requirements.

Use the following information to help you make these decisions:

v iSeries Navigator versus character-based interface for journaling objects

v Plan which objects to journal

v Plan for journal use of auxiliary storage

v Plan setup for journal receivers

v Plan setup for journals

Remote journal management has information about remote journaling.

16 iSeries: Journal management

../rzahx/rzahx1.htm
../../redbooks/SG246286.pdf
../../redbooks/SG246286.pdf
../rzaiu/rzaiurzaiu300.htm
rzakiguivsgs.htm
rzakiplnobjrn.htm
rzakiplnuseaux.htm
rzakiplnrcv.htm
rzakiplnjrnsu.htm
rjournals/rzakiremotekickoff.htm

iSeries Navigator versus the character-based interface for journaling objects
There are two environments that you can use for journal management: iSeries Navigator and the
character-based interface. iSeries Navigator provides a graphical interface for journaling that is easy to use
and does not require the use of control language (CL) commands. The character-based interface requires
the use of CL commands or APIs, but has more functionality than iSeries Navigator.

The following is a list of journaling functions that are only available with the character-based interface:

v Journal access paths.

v Specify receiver-size options *MAXOPT1 or *MAXOPT2.

v Specify that objects allow journal entries to have minimized entry-specific data.

v Specify the data that is included in the fixed-length portion of the journal entries.

v Specify the time to delay the next attempt to automatically attach or delete a new journal receiver with
system journal-receiver management.

v Specify journal caching.

v Specify journal standby state.

v Compare journal entries.

v Apply journaled changes.

v Remove journaled changes.

v Display journal entries.

v Display journaled objects other than files.

Other journaling differences between iSeries Navigator and the character-based interface are as follows:

v With iSeries Navigator, you create the journal and journal receiver together. With the character-based
interface, you create the journal receiver first.

v With iSeries Navigator you set the permissions for the journal and receiver after they are created. With
the character-based interface you can set permissions (authority) at creation time.

You should decide which of the two interfaces to use before you set up journal management, since iSeries
Navigator and the character-based interface create journals and journal receivers in the opposite order.
However, if you decide to use a function that iSeries Navigator does not support after you start journaling,
you can do so with the Change Journal (CHGJRN) command, even if you used iSeries Navigator to set up
journaling.

Plan which objects to journal
When you plan which objects to journal, consider the following:

v What types of objects you can journal

v What makes an object a good candidate for journaling

v What rules for journaling apply to those objects

v Whether or not to send journal entries for objects the system does not journal

Types of objects that are eligible for journaling

You can journal the following object types:

v Database physical files

v Access paths

v Data areas

v Data queues

v Integrated file system objects (stream files, directories, and symbolic links)

General characteristics that make objects good candidates for journaling

Journal management 17

rzakisizeoptions.htm
rzakijrncache.htm
rzakichgjrnstate.htm
../cl/chgjrn.htm

v An object with a high volume of transactions between save operations is a good candidate for
journaling.

v An object that is difficult to reconstruct the changes made to it, such as an object that receives many
changes without physical documentation. For example, an object used for telephone order entry is more
difficult to reconstruct than an object used for orders that arrive in the mail on order forms.

v An object that contains critical information. For example, if you restore an object back to the last save
operation, and the delay from reconstructing changes to that object has a negative effect on your
operation: that object is a good candidate for journaling.

v Objects that relate to other objects on the system. Although the information in a particular object may
not change often, that object may be critical to other, more dynamic objects on the system. For
example, many files may depend on a customer master file. If you are reconstructing orders, the
customer master file must include new customers or changes in credit limits.

v Objects that require that all the actions on it be replicated.

v An object, that, after a crash, has a requirement to be recovered to a consistent state and have a
journal entry show what actions completed.

v An object that can cause a negative consequence to your operation if a crash damages that object
while the system is in the process of updating it.

v An object for which you want to have an audit trail of changes.

Considerations for journaling database physical files

v If you journal one file that participates in a referential constraint, you should journal all the related files.
Referential constraints are not enforced when you apply or remove journaled changes, but the
referential integrity of those constraints is verified.

v If you journal all related files, the process for applying and removing journaled changes keeps the
relationships between your database files valid. If you do not journal all related files, your referential
constraint may show a status of check pending after you apply or remove journaled changes. For
some types of referential constraints, the system requires that you journal all of the related files.

v For a file that has a trigger program, if the trigger program only performs processing on object types
which can be journaled and applied, you should journal all of the objects processed by the trigger
program. If the trigger programs do additional work that should be reconstructed during a recovery,
consider using the API support for sending journal entries.

v In general, database source files should not be journaled. If you use the Start Source Entry Utility
(STRSEU) command to update a member, every record in that member is considered changed and
every record is journaled to the journal. However, if changes to a source file are critical, you can journal
the file in the same manner as data files.

Considerations for journaling integrated file system objects

v When you start journaling on a symbolic link, the link is not followed. Therefore if you want to protect
the actual object with journaling, you have to journal the actual object separately.

v If you want to automatically protect all objects which are created in a directory which itself is journaled,
you should consider the use and impacts of the inherit journaling attribute that you can associate with a
journaled directory.

v Do you want to protect the structure of the directory tree, or just the data stored in stream files within
that directory structure? If you just want to protect the data stored in stream files, then for performances
reasons, it may be best to only journal the stream files themselves instead of journaling changes to
each directory in the directory tree. You should consider this question when you use the subtree and
inherit journaling attributes options on the start journaling interfaces.

v You cannot journal objects on a user-defined file system (UDFS) independent disk pool. If you want to
journal objects in a UDFS, you must use a library capable independent disk pool. Journal management
and independent disk pools has more information about journaling and independent disk pools.

System objects

18 iSeries: Journal management

../dbp/rbafomstrzahfrca.htm
../rzahf/rzahftriggers.htm
rzakiiasp.htm
rzakiiasp.htm

It is recommended that you do not journal changes to IBM-supplied objects. The system sometimes
creates and manages these objects differently than user-created objects. The system does not assure the
recovery of these files even though all recovery activity normally succeeds.

Journal entries for objects the system does not journal

Some applications depend on information in objects that the server does not journal. For example, an
application programming interface (API) might use a user space to pass data between two jobs.

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to
write journal entries for these resources. See Send your own journal entries for instructions. If you need to
do recovery, you can use a program to retrieve these journal entries and make sure these application
objects are synchronized with the objects you are journaling.

If you are using commitment control, you can use APIs to register these objects as committable resources.

Before images and access paths

v Reasons to journal access paths has detailed information on whether or not you should journal access
paths.

v Reasons to journal before-images discusses whether or not you should journal before-images

Reasons to journal access paths: If you journal access paths, the system can use the journal entries to
recover access paths instead of rebuilding them completely.

When your server ends abnormally, perhaps because of a power interruption, the next IPL can take much
longer than a normal IPL. Rebuilding access paths contributes to this long IPL time. When you perform an
IPL after an abnormal end, the system rebuilds access paths that were exposed, except those access
paths that are specified as MAINT(*REBLD) when you create the file. An access path is exposed if
changes have been made to it that have not been written to the disk.

If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely. This reduces the time it takes to IPL after the system ends abnormally. Access
path journaling is strictly for the purpose of server recovery during an IPL. You do not use access path
journal entries when you are applying journal changes to recover a file.

If certain access paths and their underlying files are critical to your operation, you want to ensure that
these files are available as soon as possible after the system ends abnormally. You can choose to journal
these access paths. This is called explicit access path journaling. .

Explicit access path journaling differs system-managed access-path protection (SMAPP) in that with
SMAPP you cannot control which access paths the system chooses to protect. Therefore, if the system
does not protect the access path that you consider critical to meet your target recovery times, you should
explicitly journal that access path.

If you choose to journal an access path, remember the following:

v You can journal an access path for a physical file only if the physical file has a keyed access path or an
index created by a referential constraint.

v Before you start journaling an access path, you must journal all the underlying physical files to the same
journal.

v You can journal only access paths that are defined as MAINT(*IMMED) or MAINT(*DLY).

v You cannot journal encoded vector access paths.

The System-managed access-path protection topic has detailed information about SMAPP.

Journal management 19

rzakisndjrne.htm
../rzakj/rzakjcommitkickoff.htm
rzakijrnap.htm
rzakijrnbi.htm
rzakismappintro.htm

Reasons to journal before-images: When you journal an object, the system always writes an
after-image for every change that is made. You can request that the system write before-image journal
entries for database files and data areas. All other object types only journal after-images. This significantly
increases the auxiliary storage requirements for journaling.

However, you can choose to journal before-images for these reasons:

v Before-images are required for a backout recovery, where you remove journal changes with the
Remove Journaled Changes (RMVJRNCHG) command rather than applying journal changes to a
restored copy of an object. Backout recovery is often complex, particularly if multiple users and
programs are accessing the same object. It is most commonly used when new applications or programs
are being tested.

v For database physical files, before-images are required to use the Compare Journal Images
(CMPJRNIMG) command. This command highlights the differences between the before-images and
after-images. It is sometimes used to audit changes to a database file.

v For database physical files, if you want a copy of the record that is deleted to be part of the deleted
record journal entry information, you must specify before-images.

v Commitment control requires before-images for the system to roll back uncommitted changes. When
you open a database file under commitment control, the system automatically journals both
before-images and after-images while the commitment definition is active. If you normally journal only
after-images, the system writes before-images only for the changes made under commitment control. If
the system initiates the journaling of before-images, you cannot use them to remove journaled changes.
Commitment control does not support integrated file system objects, data areas, or data queues.

v Access path journaling also requires before-images for the system to use for IPL recovery. When you
journal access paths, or the system journals an access path to provide system-managed access-path
protection, the system will automatically journal both before and after-images. If you normally journal
only after-images, the system also writes before-images if you are journaling the access path.

Remember that you can select before-images on an object-by-object basis. You specify whether you want
after-images or both when you start journaling for a database file or a data area.

Plan for journal use of auxiliary storage
If you are journaling an object, journal management writes a copy of every object change to the journal
receiver. It writes additional entries for object level activity, such as opening and closing the object, adding
a member, or changing an object attribute. If you have a busy system and journal many objects, your
journal receivers can quickly become very large.

The maximum size for a single journal receiver varies. It depends on how the system allocates the journal
receiver across multiple disk arms. The maximum size ranges from approximately 1.9 GB to 1.0 TB
depending on what value you specified for the associated journal’s receiver size option.

To avoid possible problems with a journal receiver exceeding the maximum size allowed on the system,
specify a threshold for the receiver of no more than 900 000 000 KB if you specified
RCVSIZOPT(*MAXOPT1) or RCVSIZOPT(*MAXOPT2) for the associated journal. Otherwise, specify a
threshold of no more than 1 441 000 KB.

The following topics provide more information about how journal management affects auxiliary storage:

v Functions that increase the journal receiver size

v Methods to estimate the size of a journal receiver

v Journal receiver calculator

v Methods to reduce the storage used by journal receivers

v Determine the type of disk pool in which to place journal receivers

v Journals and independent disk pools

20 iSeries: Journal management

../cl/rmvjrnch.htm
../cl/cmpjrnim.htm
../cl/cmpjrnim.htm
rzakisizeoptions.htm
rzakibigrecvr.htm
rzakiestimatercv.htm
rzakisizecalc.htm
rzakireducesize.htm
rzakidiskpoolrcv.htm
rzakiiasp.htm

Functions that increase the journal receiver size: Some optional functions available with journal
management can significantly increase auxiliary storage requirements.

You can select to journal both before-images and after-images. The system uses more storage if you
select both before-images and after-images, although storage use is not necessarily doubled. If you journal
access paths, the before-images and after-images are written to the journal receiver when a database file
is updated. Only after-images are written when a database file is added (write operation) or deleted.
Neither the before-image nor after-image is deposited into the journal if the after-image is exactly the same
as the before-image.

Using Fixed-length options for journal entries can also increase auxiliary storage requirements. The
additional storage that fixed-length options use is similar to the extra space that is used by journaling both
before-images after-images.

The system requires additional space to journal access paths. The space required depends on the
following items:

v How many access paths are journaled.

v How often you change the access paths. When you update a record in a database file, you cause an
access path journal entry only if you update a field included in the access path.

v The method used to update access paths. More journal entries are written if you update access paths
randomly than if you update them in ascending or descending sequence. Doing a mass change to an
access path field, such as a date change, causes the fewest journal entries.

If you are using system-managed access-path protection and you journal database files, the system uses
the same journal receiver to protect access paths for that file. This also increases the size of your journal
receivers.

The information in Methods to estimate a journal receiver will help you predict your requirements for
auxiliary storage.

Methods to estimate the size of a journal receiver: You can use the methods below to estimate the
effect a journal receiver will have on auxiliary storage.

The actual auxiliary storage used will be somewhat larger because the system writes additional entries for
such actions as opening and closing objects unless you to omit open and close journal entries when start
journaling for database physical files or integrated file system objects.

Method 1- Journal receiver calculator

Use Journal receiver calculator. The Journal receiver calculator provides an easy way for you to estimate
the size of your journal receiver without setting up journaling.

The calculator assumes the following:

v You are journaling after-images only.

v You are using a single journal receiver for an entire day’s transactions.

v You are journaling database physical files only. It does not include estimates for access path journaling,
integrated file system objects, data areas, data queues, or user-created entries.

v You are not minimizing entry-specific data for the files.

Method 2 - Running a test

Journal management 21

rzakiintrusion.htm
rzakismappintro.htm
rzakiestimatercv.htm
rzakisizecalc.htm
rzakiminendta.htm

Another method for estimating the size of the journal receiver is to run a test. This method is more
accurate because it includes all journal entries. Additionally, this method will work for any object type which
can be journaled, not just database physical files unlike method one. To use this method, you must either
have journaling set up already or you must set it up.

If you are already using journaling, skip steps 1 and 2 below. Instead, issue a Display Journal Receiver
Attributes (DSPJRNRCVA) command before the time period so you can compare sizes from the beginning
of the period to the end.

This method assumes that the same receiver is used during the whole test. If there is a change journal to
attach a new journal receiver during the test, you must include the sizes of all the receivers.

1. Set up journaling by creating the receiver and journal.

2. Start journaling for all the objects that you plan to journal.

3. Choose a time period (1 hour) with typical transaction rates.

4. After one hour, use the Display Journal Receiver Attributes (DSPJRNRCVA) command to display the
size of the receiver.

5. Multiple the size by the number of hours that your system is active in a day.

Estimate the size of the journal receiver manually: Use this procedure to estimate the size of your
journal receiver.

This procedure assumes the following:

v You are journaling after-images only.

v You are using a single journal receiver for an entire day’s transactions.

v You are journaling database physical files only. It does not include estimates for access path journaling,
user-created entries, or other journaled objects.

v You are not using the MINENTDTA parameter to minimize entry-specific data for the files.

Follow the steps below to estimate the size of a journal receiver:

1. Determine the average record length for all the files that you plan to journal. If the record lengths vary
significantly and the information is available, use a weighted average based on the relative number of
transactions per file.

2. If you are not minimizing the fixed-length portion of the journal entry (not specifying
RCVSIZOPT(*MINFIXLEN) on the CRTJRN command), you can specify the data that is included in the
fixed-length portion (FIXLENDTA) of the journal entries. Find the sum of the bytes for the options you
are using. Select the options from the following list:

*JOB = 26 bytes
*USR = 10 bytes
*PGM = 10 bytes
*PGMLIB = 22 bytes
*SYSSEQ = 8 bytes
*RMTADR = 20 bytes
*THD = 8 bytes
*LUW = 27 bytes
*XID = 140 bytes

3. Estimate the number of transactions for a day.

4. The system-created portion of a journal entry is approximately 50 bytes. (It varies by the type of journal
entry.)

5. Estimate the number bytes of auxiliary storage needed for one day’s transactions by using the
following formula:
Total bytes needed = (a+b+50)*c

22 iSeries: Journal management

../cl/dspjrnrc.htm
../cl/dspjrnrc.htm
rzakisetupjrngs.htm
rzakistrjrnl.htm
rzakiintrusion.htm

where:

a = the average record length of files (step 1)
b = sum of values selected for FIXLENDTA (step 2)
c = number of transactions for a day (step 3)

For example:

1. The average record length for journaled files is 115 bytes.

2. *JOB, *USR, and *PGM options of FIXLENDTA are selected. Their sum is 46 bytes.

3. The number of journaled transactions per day is 10 000.

4. The total bytes needed to journal after-images for a day is:
(115+46+50) * 10 000 = 2 110 000

Methods to reduce the storage that journal receivers use: You can reduce the size of journal entries
by methods such as journaling after-images only, or specifying certain journaling options including the
Fixed Length Data (FIXLENDTA) option on the Create Journal (CRTJRN) and Change Journal (CHGJRN)
commands. You can take measures to reduce the storage needed for journaling:

v Journal after-images only. Unless you are using commitment control, after-images should be sufficient
for your recovery needs.

v Omit the journal entries for open, close or force operations to journaled objects. You can omit these
journal entries with the OMTJRNE parameter on the Start Journal Physical file (STRJRNPF) or Start
Journal (STRJRN) command. You can also select Exclude open and close entries option when you
start journaling with iSeries Navigator. Omitting these journal entries can have a noticeable affect on
both space and performance if an application opens, closes, or forces objects frequently. However, if
you omit the journal entries for opening and closing objects, you cannot perform the following tasks:

– Use open and close boundaries when applying or removing journal changes (the TOJOBO and
TOJOBC parameters).

– Audit which users open particular objects.

v Swap journal receivers, save them, and free storage more frequently. Frequently saving and freeing
storage for journal receivers help reduce the auxiliary storage that the receivers use. However, moving
journal receivers off-line increases your recovery time because receivers have to be restored before
journal changes can be applied.

v Specify receiver size options that can decrease journal receiver size. Specifying the following receiver
size options can help reduce journal receivers size:

– Remove internal entries. This causes the system to periodically remove internal entries that it no
longer needs, such as access path entries.

– Minimize the fixed-length portion the journal entry. This causes the system to no longer deposit all of
the data selectable by the FIXLENDTA parameter in the journal entry, thus reducing the size of the
entries. However, if you require this journal entry information for audit or other uses, you cannot use
this storage saving mechanism. Additionally, it reduces the options available as selection criteria
used on the following commands and API:

- Display Journal (DSPJRN)

- Receiver Journal Entry (RCVJRNE)

- Retrieve Journal Entry (RTVJRNE)

- Compare Journal Images (CMPJRNIMG)

- Apply Journaled Changes (APYJRNCHG)

- Remove Journaled Changes (RMVJRNCHG)

- Retrieve Journaled Entries (QjoRetrieveJournalEntries) API

– Minimized entry-specific data for journals. This allows the system to write data to the journal entries
in a minimized format.

Journal management 23

rzakisizeoptions.htm
rzakisizeoptions.htm

v Select the options for data carefully. Fixed-length options can quickly increase the size of your journal
receiver. The journal receiver calculator can help you determine the effect of fixed-length options on
your auxiliary storage.

v If you are journaling a physical file, specify SHARE(*YES) for file. You can do this using the Create
Physical File (CRTPF) command or the Change Physical File (CHGPF) command. The system writes a
single open and close entry regardless of how often the shared open data path (ODP) is opened or
closed within a routing step.

Determine the type of disk pool in which to place journal receivers: You can use disk pools
(auxiliary storage pool) to control which objects are allocated to which groups of disk units. If you are
journaling many active objects to the same journal, the journal receiver can become a performance
bottleneck. One way to minimize the performance impact of journaling is to put the journal receiver in a
separate disk pool. This also provides additional protection because your objects are on different disk units
from the journal receiver, which contains a copy of changes to the objects.

iSeries servers have several types of disk pools:

System disk pool
The system disk pool contains the operating system. It can also contain user libraries and objects.
The system disk pool is always disk pool number 1.

Basic disk pool
Basic disk pools are disk pool numbers 2 through 32. A basic disk pool can be a library or a non
library disk pool. The differences are as follows:

v A library disk pool contains one or more user libraries or User-Defined File Systems. It does not
contain the operating system. This is the current recommended method of configuring user disk
pools.

v A non library disk pool contains no user libraries or User-Defined File Systems. It may contain
journals, journal receivers, and save files. If you place a journal receiver in a non library basic disk
pool, the journal must be in either the system disk pool or the same non library disk pool. The
journaled objects must be in the system disk pool.

Independent disk pool
Independent disk pool are disk pools 33 through 255. If you use independent disk pools, you can
only put journals and journal receivers on independent disk pools that are library capable. If you are
going to place the journal receiver in a switchable independent disk pool, the journal receiver, the
journal, and journaled object must be in the same disk pool group (though they do not have to be in
the same disk pool).

When disk pools were first introduced, they were called auxiliary storage pools (ASPs). Only non library
user ASPs were available. Many systems still have this type of ASP. However, recovery steps are more
complex for non library user ASPs. Therefore, for systems implementing journaling for the first time, library
disk pools are recommended. Journal management and independent disk pools

has more specific information about using journaling with independent disk pools. Managing disk units in
disk pools has specific information about disk pools. The Independent disk pools topic has detailed
information about setting up independent disk pools.

Journal management and independent disk pools: Independent disk pools are disk pools 33 through
255. Independent disk pools can be user-defined file system (UDFS) independent disk pools or
library-capable independent disk pools.

UDFS and library-capable independent disk pools

24 iSeries: Journal management

rzakiiasp.htm
../rzalb/rzalboverview.htm
../rzalb/rzalboverview.htm
../rzaly/rzalyoverview.htm

UDFS independent disk pools are independent disk pools that only have a user-defined file system. UDFS
independent disk pools cannot store journals and receivers. In contrast to UDFS disk pools, library-capable
independent disk pools have libraries and are capable of storing journals and receivers. If you plan to
journal objects on an independent disk pool, you must use a library-capable independent disk pool.

Note: A library-capable independent disk pool can have
integrated file system objects. You can also journal
integrated file system objects on a library-capable
independent disk pool.

You cannot journal objects on a UDFS independent disk pool.

Switchable and dedicated independent disk pools

Independent disk pools can also be switchable or dedicated. Dedicated independent disk pools are used
on only one system. Switchable independent disk pools can be switched between systems. If they are
library-capable, you can journal objects on either switchable or dedicated independent disk pools.

Disk pool groups

You can group switchable independent disk pools into disk pool groups. Disk pool groups consist of one
primary disk pool and one or more secondary disk pools. If you are going to journal an object in a disk
pool group, the object and the journal must be in the same disk pool. The journal receiver can be in a
different disk pool, but must be in the same disk pool group as the journal and journaled object.

Rules for journaling objects on independent disk pools

Use the following rules when journaling objects on independent disk pools:

v The disk pool must be available on the system on which you are working.

v The disk pool must be a library-capable disk pool. You cannot journal an object on a UDFS independent
disk pool.

v In a disk pool group, the journaled object and the journal must be in the same disk pool.

v In a disk pool group, the journal receiver can be in a different disk pool, but must be in the same disk
pool group.

Managing disk units in disk pools has information about managing disk pools. The Independent disk pools
topic has information about setting up and managing independent disk pools.

Plan setup for journal receivers
The following topics provide information to plan configuration for journal receivers. They provide
information about each option that you can select for journal receivers.

v Disk pool assignment for journal receivers

v Library assignment for journal receivers

v Naming conventions for journal receivers

v Threshold (disk space) for journal receivers

v Security for journal receivers

Disk pool assignment for journal receivers: Placing journal receivers in a different disk pool from the
journaled objects may prevent performance bottlenecks.

Before you place the journal receiver in a library basic disk pool, you must first create the library for the
journal receiver in the disk pool.

Journal management 25

../rzalb/rzalboverview.htm
../rzaly/rzalyoverview.htm
rzakiassgnasprcv.htm
rzakijrnrcvlib.htm
rzakinamercv.htm
rzakithreshold.htm
rzakircvauth.htm

You can only place a journal receiver in an independent disk pool if the independent disk pool is library
capable. If you are placing the journal receiver in a switchable independent disk pool, you must place it in
the same disk pool group as the journal and the object you are journaling. Managing disk units in disk
pools has more information about disk pools. The Independent disk pools topic has detailed information
about independent disk pools.

If you are creating the journal receiver with the Create Journal Receiver (CRTJRNRCV) command, you
can use the ASP parameter to allocate storage space for the journal receiver in a different disk pool (ASP)
than the library to which you assigned the journal receiver. Do this only if the disk pool is a basic
nonlibrary disk pool.

Library assignment for journal receivers: When you create a journal receiver, you specify a qualified
name that includes the library for the receiver. The library must exist before you create the journal receiver.

You can assign a library from either the New Journal dialog in iSeries Navigator or with the Create
Journal Receiver (CRTJRNRCV) command.

Naming conventions for journal receivers: When you create a journal receiver, either with iSeries
Navigator or the Create Journal Receiver (CRTJRNRCV) command, you assign a name to the journal
receiver. When you use iSeries Navigator or the Change Journal (CHGJRN) command to detach the
current journal receiver and create and attach a new receiver, you can assign a name or have the system
generate one. If you use system journal-receiver management, the system generates the name when it
detaches a receiver and creates and attaches a new one.

If you plan to have more than one journal on your system, use a naming convention that links each journal
with its associated receiver.

To simplify recovery and avoid confusion, make each journal receiver name unique for your entire system,
not unique within a library. If you have two journal receivers with the same name in different libraries and
they both become damaged, the reclaim storage operation renames both journal receivers when they are
placed in the QRCL library. When you use the Rename Object (RNMOBJ) command for a journal or
journal receiver in the QRCL library, you can change the name of the library back to the original name.
You cannot change the name of the journal or the journal receiver.

When you detach the receiver from the journal and attach a new one, you can have the system generate
the name for the new receiver by incrementing the previous receiver name. If you use system
change-journal management, by specifying MNGRCV(*SYSTEM) for the journal, the system also
generates a new receiver name when it changes journal receivers.

The following table shows the rules the system uses to generate a new receiver name. It applies these
rules in the sequence shown in the table.

Current name System action Example

Last 4 characters are numeric. Adds 1 DSTR0001 to DSTR0002

Last character is not numeric. Truncates the name to 6 characters, if
necessary. Adds 0001

DSTRCVR to DSTRCV0001

Last character is numeric. Last
non-numeric character is in position 5
or less.

Adds 1 DSTR01 to DSTR02

Last character is numeric. Last
non-numeric character is in position 6
or higher.

Truncates to 6 characters, if
necessary. Adds 0001.

DSTRCVR01 to DSTRCV0001

If you restore a journal to your system, the system creates a new journal receiver and attaches it to the
journal. The system generates a name for the new journal receiver based on the name of the journal

26 iSeries: Journal management

../rzaly/rzalyoverview.htm
../cl/crtjrnrc.htm
rzakimanorsysmng.htm

receiver that was attached when the journal was saved. The following table shows the rules the system
uses to generate a new receiver name when you restore a journal:

Current name System action Example

Last 4 or more characters are
numeric.

Adds 1 to the leftmost digit of the
numeric portion.

DSTR0001 to DSTR1001

Last character is not numeric. Truncates to six characters, if
necessary. Adds 1000.

DSTRCVR to DSTRCV1000.

Ending numeric portion is less than 4
digits.

Pads the left portion of the numeric
portion with zeroes to create a 4-digit
suffix. Adds 1 to the leftmost digit.

DSTRCV01 to DSTRCV1001.

If the name generated by the system is the same as the name of a journal receiver already on the system,
the system adds 1 to the name until it creates a name that is not a duplicate. For example, assume a
journal receiver named RCV1 was attached when the journal was saved. When the journal is restored, the
system attempts to create a new journal receiver named RCV1001. If that name already exists, the system
tries the name RCV1002.

The following table shows examples of how the system generates new receiver names:

Last journal receiver known to the
system1 Created by change journal2 Created by restoring journal

A A0001 A1000

ABCDEF ABCDEF0001 ABCDEF1000

ABCDEFG ABCDEF0001 3 ABCDEF1000 3

ABCDEF1234 ABCDEF1235 ABCDEF2234

A0001 A0002 A1001

A1 A2 A1001

A9 A10 A1009

ABCDEF7 ABCDEF0001 3 ABCDEF1007 3

ABCDEF9999 Error 4 ABCDEF0999

A1B15 A1B16 A1B1015

Notes:

1If the journal exists on the system, the last journal receiver known to the system is the journal receiver that is
currently attached. If the journal does not exist, the last journal receiver known to the system is the journal receiver
that was attached when the journal was saved.

2Either when a user issues the CHGJRN command with JRNRCV(*GEN) or when the journal is changed by system
change-journal management.

3The last character of the current name is dropped because it exceeds 6 characters.

4If the journal is set up as MNGRCV(*SYSTEM), the receiver name wraps around to 0’s (ABCDEF0000). If the
journal is set up as MNGRCV(*USER), an error occurs because adding 1 to 9999 causes an overflow condition.

Threshold (disk space) for journal receivers: When you create a journal receiver with iSeries
Navigator or the Create Journal Receiver (CRTJRNRCV) command, you specify a disk space threshold

Journal management 27

../cl/crtjrnrc.htm

that indicates when you want the system to warn you or take action. When the receiver reaches that
threshold, the system takes the action specified in the manage receiver (MNGRCV) parameter for the
journal. See Manual versus system journal-receiver management.

In specifying a storage threshold, you need to balance the amount of space that you have available with
the system overhead associated with changing journal receivers frequently. Consider these options:

Base the size on your available auxiliary storage:

1. Calculate the amount of auxiliary storage space that you have available in the user ASP for the
journal receiver.

2. Assign a receiver threshold that is 75 to 80 percent of that space.

Base the size on how often you want to change journal receivers:

1. Use the one of the methods described in Methods to estimate the size of a journal receiver to
calculate how large your receiver would be for a day. If you are just journaling database physical
files, you can use the Journal receiver calculator to estimate the size of your journal receiver.

2. Determine how many times a day you should detach and save the journal receiver.

3. Divide the result of step 1 by the result of step 2. This is your receiver threshold.

Do not make the journal receiver size too small, or the system will spend too much resource changing
journal receivers or sending threshold messages. To avoid possible problems with a journal receiver
exceeding the maximum size allowed on the system, specify a threshold for the receiver of no more than
900 000 000 KB if you specified receiver size option *MAXOPT1 or *MAXOPT2 for the associated
journal. Otherwise, specify a threshold of no more than 1 441 000 KB.

Security for journal receivers: If a journal receiver has confidential data, someone with authority to that
journal receiver could possibly display that confidential data.

When you create a journal receiver, you specify the authority that all users on the system have to access it
(public authority). The default authority for the Create Journal Receiver (CRTJRNRCV) command and
iSeries Navigator is *LIBCRTAUT, which means the system uses the value of the create authority
(CRTAUT) parameter for the journal receiver’s library.

When you create a journal receiver with iSeries Navigator, you set permissions (authority) after you create
the journal receiver.

Journal receivers contain copies of changes from all objects being journaled. Someone with access to the
journal receiver could display confidential data. The authority to a journal receiver should be as strict as
the authority for the most confidential object that is being journaled.

You do not need any authority to the journal or to the journal receiver to use an object that is journaled.
Authority to the journal receiver is checked only when using commands that operate directly on the
receiver. The authority you set for the journal receiver has no effect on the people using the journaled
objects. iSeries Security Reference

has more information about the authority required to access objects and perform commands that use
journals and journal receivers.

Plan setup for journals
The following topics provide information to plan configuration for journals. They provide information about
each option that you can select for journal.

v Disk pool assignment for journals

v Library assignment for journals

28 iSeries: Journal management

rzakimanorsysmng.htm
rzakisizecalc.htm
../cl/crtjrnrc.htm
../../books/c4153026.pdf
rzakidiskassign.htm
rzakijrnlib.htm

v Naming conventions for journals

v Journal and journal receiver association

v Journal message queue

v Manual versus system journal receiver management

v Automatic deletion of journal receivers

v Receiver size options for journals

v Minimized entry-specific data

v Fixed-length options for journal entries

v Journal cache

v Object assignment to journals

Disk pool assignment for journals: If you want to place the journal in a library basic disk pool, you
must first create the library for the journal in the disk pool. If you use a library basic disk pool, the journal
and all the objects you are journaling to it must be in the same library basic disk pool.

You can only place a journal in an independent disk pool if the independent disk pool is library capable. If
you are placing the journal in a switchable independent disk pool, you must place it in the same disk pool
group as the journal receiver associated with the journal. Managing disk units in disk pools has more
information about disk pools. The Independent disk pools topic has information about independent disk
pools.

If you want to place the journal in a non library basic disk pool, you must first create the library for the
journal in the system disk pool. If the journal is in a non library basic disk pool, all the objects being
journaled to it must be in the system disk pool.

If you are creating the journal with the Create Journal (CRTJRN) command, you can use the ASP
parameter to allocate storage space for the journal in a different disk pool (ASP) than the library to which
you assigned the journal. Do this only if the disk pool is a basic nonlibrary disk pool.

Library assignment for journals: When you create a journal, you specify a qualified name that includes
the library for the journal. The library must exist before you create the journal.

You can assign a library from either iSeries Navigator or with the Create Journal (CRTJRN) command.

Naming conventions for journals: When you create a journal with iSeries Navigator or the Create
Journal (CRTJRN) command, you assign a name to it. If you plan to have more than one journal on your
system, use a naming convention that links each journal with its associated receiver.

To simplify recovery and avoid confusion, make each journal name unique for your entire system, not
unique within a library. If you have two journals with the same name in different libraries and they both
become damaged, the reclaim storage operation renames both journals when they are placed in the
QRCL library. When you use the RNMOBJ command for a journal in the QRCL library, you can change the
name of the library back to the original library name. You cannot change the name of the journal itself. In
this case, you would not be able to recover your journal from QRCL since its name has been changed.

Naming conventions to ensure restore sequence

You should name the libraries for the journals, objects, and journal receivers to ensure that the objects are
restored in the correct order. A naming convention will ensure that the system automatically starts
journaling after a restore operation. To ensure that journaling is automatically started again, the journals
must be restored before the objects being journaled. (If the journals and associated objects are in the
same library, then the system automatically restores the objects in the correct order.)

Journal management 29

rzakinamejrn.htm
rzakiassociatejrn.htm
rzakijrnmssgque.htm
rzakimanorsysmng.htm
rzakiautodelete.htm
rzakisizeoptions.htm
rzakiminendta.htm
rzakiintrusion.htm
rzakijrncache.htm
rzakiobjassnjrn.htm
../rzalb/rzalboverview.htm
../rzaly/rzalyoverview.htm
../cl/crtjrn.htm

If you start the name of the library for the journal with a special character, such as #, $, or @, the system
will restore the library for the journal before the library for the objects. This is because in normal sort
sequence, special characters appear before alphabetic characters.

When the journals and associated objects are in different libraries, you must ensure that the objects are
restored in the correct order.

Since independent file system objects do not exist in a library, your restore processing must ensure the
objects are restored in the correct order. That is, you must restore your libraries which contain the journals
before restoring the independent file system objects that were journaled to that journal.

Journal and journal receiver association: When you create a journal, you must specify the name of
the journal receiver to be attached to it. If you are using the Create Journal (CRTJRN) command to create
the journal, the journal receiver must exist before you can create the journal. The receiver that you attach
may not have been previously attached to a different journal or have been interrupted while being attached
to any journal. You can specify up to two journal receivers, but the system ignores the second receiver.

With iSeries Navigator, you simply create the journal. When you create the journal, iSeries Navigator
creates the journal receiver in the library you specify in the New Journal dialog.

Journal message queue: When you create or change a journal, you can specify where the system
sends messages that are associated with the journal. In addition, you can create a program to monitor this
message queue and handle any messages associated with the journal. The system also sends messages
that are related to the remote journal function to this message queue.

A common use for this message queue is to handle threshold messages. When you create a journal
receiver, you can specify a storage threshold. If you choose to change journal receivers yourself, you can
specify where the system sends messages when the journal receiver exceeds its storage threshold. You
can create a special message queue for this purpose and create a program to monitor the message queue
for message CPF7099. When the message is received, the program can, for example, detach the receiver
and save it.

If you specify that the system manages the journal receiver, the system does not send a threshold
message. Instead, when the system automatically changes the journal receiver, it sends message
CPF7020, which indicates that it successfully detached the journal receiver.

There are other messages which are sent to this journal message queue related to processing for the
Delete Receiver (DLTRCV) option of the Create Journal (CRTJRN) command. See Delete journal
receivers for more information.

For iSeries Navigator, you select the message queue in the Advanced Journal Attributes or Journal
Properties dialogs. For the character-based interface, you can select the message queue with the Create
Journal (CRTJRN) or Change Journal (CHGJRN) command

See Threshold (disk space) for journal receivers for information about storage threshold. See Manual
versus system journal-receiver management for methods to specify journal receiver management.

Manual versus system journal-receiver management: When you create a journal with iSeries
Navigator or the Create Journal (CRTJRN) command, you can choose one of two options to manage
journal receivers:

v User journal-receiver management

v System journal-receiver management

User journal-receiver management

30 iSeries: Journal management

../cl/crtjrn.htm
../cl/crtjrn.htm
../cl/crtjrn.htm
../cl/chgjrn.htm
rzakithreshold.htm
rzakimanorsysmng.htm
rzakimanorsysmng.htm

If you specify user journal receiver management, you are responsible for changing the journal receiver
when it approaches its storage threshold. If you choose this option, you can have the system send a
message to a message queue when the journal receiver approaches its storage threshold.

System journal-receiver management

If you use system journal-receiver management, you can avoid having to do some journal management
chores. However, if you are journaling for recovery purposes, you need to ensure that you save all journal
receivers that have not been saved, not just the currently attached receiver. Also, if you are journaling for
recovery purposes, be sure to specify that the system does not automatically delete receivers when no
longer needed. Automatic deletion of journal receivers describes this option.

If you use system journal-receiver management, you must ensure that your environment is suitable and
that you regularly check the QSYSOPR message queue and the message queues assigned to your
journals.

If the system cannot complete the change journal operation because it cannot obtain the necessary locks,
it retries every 10 minutes (or as specified by the MNGRCVDLY parameter). It sends messages (CPI70E5)
to the journal’s message queue and to the QSYSOPR message queue. If this occurs, you may want to
determine why the operation cannot be performed and either correct the condition or swap the journal
receiver your self with iSeries Navigator or the CHGJRN command.

If the system cannot complete the change journal operation for any reason other than lock conflicts, it
temporarily discontinues system journal-receiver management for that journal and sends a message
(CPI70E3) to the message queue assigned to the journal or to the QSYSOPR message queue. This might
occur because a journal receiver already exists with the name that it would generate. Look at the
messages in the QHST job log to determine the problem. After you correct the problem, perform a swap
journal operation to do the following:

v Create a new journal receiver

v Detach the current receiver and attach a new journal receiver

v The system then resumes system journal-receiver management.

System journal-receiver management and threshold

If you plan to attach this journal receiver to a journal that does not have RCVSIZOPT(*MAXOPT1) or
RCVSIZOPT(*MAXOPT2) specified, the maximum you can specify is 1 919 999 KB.

System journal-receiver management when you restart the system

When you restart the system or vary on an independent disk pool, the system performs a CHGJRN
command to change the journal receiver and reset the journal sequence number. Also, if the journal was
attached while RCVSIZOPT(*MAXOPT1 or *MAXOPT2) was in effect for the journal, the system attempts
to perform a CHGJRN command to reset the sequence number when the journal receiver’s sequence
number exceeds 9 900 000 000. For all other journal receivers, the system attempts this CHGJRN when
the sequence number exceeds 2 147 000 000.

The system does not reset the journal sequence number when you restart the system or vary on an
independent disk pool if the entries in the receiver may be needed for commitment control recovery.

Delay automatic journal change

If you use the CRTJRN or CHGJRN command, you can use the Manage Receiver Delay Time
(MNGRCVDLY) parameter. When you use system journal-receiver management for a journal, if the system
cannot allocate an object needed to attach a new journal receiver to the journal, it will wait the length of

Journal management 31

time that you specify in the MNGRCVDLY parameter before its next attempt to attach the new journal
receiver. If you do not specify this parameter, the system will wait ten minutes, which is the default.

See Automatic deletion of journal receivers for information on having the system delete journal receivers.
See Threshold (disk space) for journal receivers for information about swap journal receivers

Automatic deletion of journal receivers: If you choose system journal receiver management, you can
also have the system delete journal receivers that are no longer needed for recovery. You can only specify
this if you are using system journal receiver management. The system can only evaluate whether a
receiver is needed for its own recovery functions, such as recovering access paths or rolling back
committed changes. It cannot determine whether a receiver is needed to apply or remove journaled
changes.

The system will automatically delete journal receivers if you do one of the following:

v Specify Delete receivers when no longer needed in the iSeries Navigator Advanced Journal Attributes
or Journal Properties dialog.

v Specify DLTRCV (*YES) in the Create Journal (CRTJRN) or Change journal (CHGJRN) commands.

However, even if you select one of the previous items, the system cannot delete the journal receiver if any
of the following conditions is true:

v An exit program that is registered for the Delete Journal Receiver exit point
(QIBM_QJO_DLT_JRNRCV) indicates that the receiver is not eligible for deletion.

v A journal has remote journals associated with it, and one or more of the associated remote journals
does not have a full copy of this receiver.

v The system could not get the appropriate locks that are required to complete the operation.

v The exit program registration facility was not available to determine if any exit programs were
registered.

If you use system delete-receiver support, you must ensure that your environment is suitable. You must
also regularly check the QSYSOPR message queue and the message queues that are assigned to your
journals.

v If the system cannot complete the DLTJRNRCV command for any of the above reasons, it retries every
10 minutes (or the value you specify on the DLTRCVDLY parameter). It sends a CPI70E6 message to
the journal’s message queue, and to QSYSOPR message queue. If this occurs, you may want to
determine why the operation cannot be performed and either correct the condition or run the
DLTJRNRCV command.

v If the system cannot complete the command for any other reason, it sends a CPI70E1 message to the
message queue that is assigned to the journal. If you have not specifically assigned a message queue
to the journal, the message will be sent to the QSYSOPR message queue. Look at the messages in
QHST to determine the problem. After you correct the problem, use the DLTJRNRCV command on the
specific journal receiver.

Do not select to have the detached journal receiver deleted if you may need it for recovery or if you want
to save it before it is deleted. The system does not save the journal receiver before deleting it. The system
does not issue the warning message (CPA7025) that it sends if a user tries to delete a receiver that has
not been saved.

Examples of when you might specify automatic journal deletion include:

v You are journaling only because it is required to use commitment control

v You are journaling for explicit access-path protection

v You are replicating the journal receiver to another system via the remote journal function, and that
system is providing the backup copy of the journal receiver.

32 iSeries: Journal management

rzakiautodelete.htm
rzakiswapjrnrcv.htm
rzakimanorsysmng.htm
../cl/crtjrn.htm
../cl/chgjrn.htm

Delay the next attempt to delete a journal receiver

If you are using the CRTJRN or CHGJRN command, you can use the Delete Receiver Delay Time
(DLTRCVDLY) parameter. The system waits the time you specify (in minutes) with the DLTRCVDLY
parameter before its next attempt to delete a journal receiver that is associated with the journal when one
of the following is true:

v The system cannot allocate a needed object.

v You are using an exit program, and the exit program votes no.

v You are using remote journaling and the receiver has not been replicated to all the remote journals.

If you do not specify this parameter, the system waits ten minutes, which is the default.

Receiver size options for journals: A journal receiver holds journal entries that you might use for
recovery and entries that the system might use for recovery. For example, you might use record level
entries, such as database record changes, and file level entries, such as the entry for opening or closing a
file. Also, the system writes entries that you never see or use, such as entries for explicitly journaled
access paths, for SMAPP, or for commitment control.

When you create a journal with the Create Journal (CRTJRN) command, the Change Journal (CHGJRN)
command, or iSeries Navigator, you can specify options that will limit the data that gets deposited into
these journal entries, or increases the maximum allowable size for the journal receiver. These options are
as follows:

v The RCVSIZOPT parameter of the CRTJRN command

v The RCVSIZOPT parameter of the CHGJRN command

v The Advanced Journal Attributes dialog of iSeries Navigator

v The Journal Properties dialog of iSeries Navigator

The following subtopics explain the benefits of some of the values for receiver size options.

Remove internal entries

When you specify to remove internal entries the system periodically removes internal journal entries from
the attached journal receiver when it no longer needs them for recovery purposes. Removing internal
entries may have a very slight impact on system performance, because the system has to manage these
internal entries separately and periodically remove them.

To remove internal entries specify the RCVSIZOPT(*RMVINTENT) parameter. The iSeries Navigator
equivalent to the RCVSIZOPT(*RMVINTENT) parameter is Remove internal entries in the Advanced
Journal Attributes or Journal Properties dialog.

Specifying to remove internal entries has these benefits:

v It reduces the impact that SMAPP may have on journal receivers for user-created journals.

v It reduces the size of journal receivers that are on the system.

v It reduces the amount of time and media required to save journal receivers, because unnecessary
entries are not saved.

v It reduces the time that it takes to apply journal entries, because the system does not have to evaluate
unnecessary entries.

v It reduces the communications overhead if the remote journal function is being used because
unnecessary entries are not sent.

Minimize fixed-length portion of entries

Minimizing the fixed-length portion of entries has the following effects:

Journal management 33

../cl/crtjrn.htm
../cl/chgjrn.htm

v All information selectable by the FIXLENDTA parameter is not deposited in the entries.

v Minimizing the fixed-length portion of entries reduces auxiliary storage space and some CPU time as
well.

v When you view journal entries with this information removed, the displayed value is *OMITTED, blanks,
or zeros, depending on the type of data.

v To determine if a journal receiver was attached to a journal while minimizing the fixed-length portion of
entries, use the Display Journal Receiver Attributes DSPJRNRCVA command display.

v You should not use minimize the fixed-length portion of entries if you require an audit trail.

v Minimizing the fixed-length portion of entries limits the selection criteria you can use on the following:

– Display Journal (DSPJRN) command

– Receive Journal Entry (RCVJRNE) command

– Retrieve Journal Entry (RTVJRNE) command

– Compare Journal Images (CMPJRNIMG) command

– Apply Journaled Changes (APYJRNCHG) command

– Remove Journaled Changes (RMVJRNCHG) command

– Retrieve Journal Entries (QjoRetrieveJournalEntries) API

v Minimizing the fixed-length portion of entries reduces the communications overhead if the remote journal
function is being used because unnecessary data is not sent.

To minimize the fixed-length portion of entries specify RCVSIZOPT(*MINFIXLEN). The iSeries Navigator
equivalent to RCVSIZOPT(*MINFIXLEN) is Minimize fixed portion of entries in the Advanced Journal
Attributes or Journal Properties dialog.

If you are using minimizing the fixed-length portion of entries, you cannot use the FIXLENDTA parameter.
See Fixed-length options for journal entries for more information about the FIXLENDTA parameter.

RCVSIZOPT(*MAXOPT1)

Use RCVSIZOPT(*MAXOPT1) to set the maximum size of a journal receiver attached to your journal to
approximately one terabyte (1 099 511 627 776 bytes) and a maximum sequence number of
9 999 999 999. Additionally, the maximum size of the journal entry which can be deposited is
15 761 440 bytes. You cannot save or restore these journal receivers to any releases prior to V4R5M0.
Nor can you replicate them to any remote journals on any systems at a release prior to V4R5M0.
RCVSIZOPT(*MAXOPT1) is the default.

There is no iSeries Navigator equivalent to RCVSIZOPT(*MAXOPT1).

RCVSIZOPT(*MAXOPT2)

Use RCVSIZOPT(*MAXOPT2) to set the maximum size of a journal receiver attached to your journal to
approximately one terabyte (1 099 511 627 776 bytes) and a maximum sequence number of
9 999 999 999. However, with RCVSIZOPT(*MAXOPT2), the system can deposit a journal entry as large
as 4 000 000 000 bytes. You cannot save or restore these journal receivers to any releases prior to
V5R1M0. Nor can you replicate them to any remote journals on any systems at a release prior to
V5R1M0.

There is no iSeries Navigator equivalent to RCVSIZOPT(*MAXOPT2).

Minimized entry-specific data for journal entries: On the Create Journal (CRTJRN) and Change
Journal (CHGJRN) commands, you can specify to make minimized journal entries. This will decrease the
size of your journal entries. When you specify the Minimized Entry Specific Data (MINENTDTA) parameter
for an object type, the entry-specific data for the entries of those object types can be minimized. You can
minimize journal entries for database physical files and data areas.

34 iSeries: Journal management

../cl/dspjrnrc.htm
../cl/dspjrn.htm
../cl/rcvjrne.htm
../cl/rtvjrne.htm
../cl/cmpjrnim.htm
../cl/apyjrnch.htm
../cl/rmvjrnch.htm
../apis/QJORJRNE.htm
../cl/crtjrn.htm
../cl/chgjrn.htm
../cl/chgjrn.htm

The system only minimizes entries if the minimized entry is smaller in size than a complete journal entry
deposit would be. Therefore, even if you specify this option, not all entries that are deposited will be
minimized. The Display Journal (DSPJRN) command, Receiver Journal Entry (RCVJRNE) command,
Retrieve Journal Entry (RTVJRNE) command, and QjoRetrieveJournalEntries API return data that indicates
whether the entry is actually minimized or not.

You cannot save or restore a journal receiver with minimized journal entries to any release prior to
V5R1M0, nor can they be replicated to any remote journal on a system at a release prior to V5R1M0.

See Journal code finder to see which entries are eligible for minimization. See Considerations for entries
containing minimized entry-specific data for more information and considerations when using these entries.

Fixed-length options for journal entries: You can use the Fixed Length Data (FIXLENDTA) parameter
of Create Journal (CRTJRN) and Change Journal (CHGJRN) commands to audit security related activity
for journaled objects on your system. With the FIXLENDTA parameter, you can elect to include security
related information in the fixed-length portion of the journal entries. You cannot use the FIXLENDTA
parameter and Minimize fixed-length portion of entries (See page 33) at the same time.

Fixed-length options

With the FIXLENDTA parameter, you can specify that the following data is included in the journal entries
that are deposited into the attached journal receiver:

Job name
Use the *JOB value to specify the job name.

User profile name
Use the *USR value to specify the effective user profile name.

Program name
Use the *PGM value to specify the program name.

Program library name
Use the *PGMLIB value to specify the program library name and the auxiliary storage pool device
name that contains the program library.

System sequence number
Use the *SYSSEQ value to specify the system sequence number. The system sequence number
gives a relative sequence to all journal entries in all journal receivers on the system.

Remote address
Use the *RMTADR value to specify the remote address, the address family and the remote port.

Thread identifier
Use the *THD value to specify the thread identifier. The thread identifier helps distinguish between
multiple threads running in the same job.

Logical unit of work identifier
Use the *LUW value to specify the logical unit of work identifier. The logical unit of work identifies
work related to specific commit cycles.

Transaction identifier
Use the *XID value to specify the transaction identifier. The transaction identifier identifies
transactions related to specific commit cycles.

Journal management 35

finder/rzakifinder.htm

Journal cache: Journal caching is separately chargeable feature with which you can specify that the
system cache journal entries in main storage, before writing them to disk.

After you have you purchased journal caching, you can specify it with the JRNCACHE parameter on the
Create Journal (CRTJRN) or Change Journal (CHGJRN) commands.

Journal caching provides significant performance improvement for batch applications which perform large
numbers of add, update, or delete operations against journaled objects. Applications using commitment
control will see less improvement (commitment control already performs some journal caching).

Journal caching modifies the behavior of traditional noncached journaling in batch. Without journal caching,
a batch job waits for each new journal entry to be written to disk. Journal caching allows most operations
to no longer be held up waiting for synchronous disk writes to the journal receiver.

Journal caching is especially useful for situations where journaling is being used to enable replication to a
second system.

It is not recommended to use journal caching if it is unacceptable to lose even one recent change in the
event of a system failure where the contents of main memory are not preserved. This type of journaling is
directed primarily toward batch jobs and may not be suitable for interactive applications where single
system recovery is the primary reason for using journaling.

Contact your service representative for more information about ordering journal caching.

Object assignment to journals: You can use one journal to manage all the objects you are journaling.
Or, you can set up several journals if groups of objects have different backup and recovery requirements.
Every journal has a single attached receiver. All journal entries for all objects being managed by the
journal are written to the same journal receiver.

When deciding how many journals you should use and how to assign objects to journals, consider the
following:

v Using one journal (and journal receiver) is the simplest method for managing both daily operations and
recovery.

v There is a limit of 250 000 objects that can be journaled to a single journal.

v If using a single journal receiver causes a performance bottleneck, you can alleviate this by placing the
journal receiver in a separate disk pool from the objects that you are journaling.

v To simplify recovery, objects that are used together in the same application should be assigned to the
same journal.

v If you are journaling database files, all the physical files underlying a logical file should be assigned to
the same journal.

v Files opened under the same commitment definition within a job can be journaled to different journals.
In commitment control, each journal is considered a local location.

v If your major applications have completely separate objects and backup schedules, separate journals for
the applications may simplify operating procedures and recovery.

v If you journal different objects for different reasons; such as recovery, auditing, or transferring
transactions to another system; you may want to separate these functions into separate journals.
However, you can assign an object to only one journal.

v If the security of certain objects requires that you exclude their backup and recovery procedures from
the procedures for other objects, assign them to a separate journal, if possible.

v If you have basic disk pools with libraries, all objects assigned to a journal must be in the same disk
pool as the journal. The journal receiver may be in a different disk pool. If you place a journal in a disk
pool without libraries (non library disk pool), objects being journaled must be in the system disk pool.

36 iSeries: Journal management

../cl/crtjrn.htm
../cl/chgjrn.htm

The journal receiver may be in either the system disk pool or the non library disk pool with the journal.
See Determine the type disk pool in which to place journal receivers for more information about the
types of disk pools.

v If you have independent disk pools, they must be library capable in order to journal objects on them.
You cannot journal objects on User-Defined File System (UDFS) independent disk pools.

Set up journaling
The following gives instructions on how to set up journaling

After you have decided how you will use journaling, follow these steps to set up journaling on your system.
If you have decided to use more than one journal, work through all the steps for one journal at a time.
Then repeat the steps for the next journal.

You can choose one of the following methods to set up journaling:

v Set up journaling with iSeries Navigator.

v Set up journaling with the character-based interface.

See Example: Set up journals for a code example of setting up journaling for character-based interface.

Note: Read the Code example disclaimer for important legal information.

For information about the difference between the two methods, see iSeries Navigator versus
character-based interface for object journaling.

Information you need to set up journaling

Setting up journaling consists of creating a journal and a journal receiver, then starting journaling. When
you create a journal receiver you have the following information:

Information to create the journal receiver

v The name of the journal receiver

v The disk pool assignment for journal receiver

v The storage threshold for the journal receiver

v Who has who has authority to the journal receiver

Information to create the journal

v The name of the journal

v The library assignment of the journal

v The journal receiver name to associate with the journal

v Which disk pool to assign storage space for the journal (only if you are using the ASP parameter in the
CRTJRN command)

v The journal message queue

v Whether you will use manual or system journal-receiver management

v Whether or not to have automatic deletion of the journal receiver

v Receiver size options for the journal

v Who has authority to the journal

v Whether or not to minimize entry-specific data (character-based interface only)

v Whether or not to use journal caching (character-based interface only)

v Whether or not to delay (See page 31) the next attempt to automatically change the journal receiver
(character-based interface only)

Journal management 37

rzakisetupjrnexmp.htm
rzakicodedisclaimer.htm
rzakiguivsgs.htm
rzakiguivsgs.htm
rzakinamercv.htm
rzakiassgnasprcv.htm
rzakithreshold.htm
rzakircvauth.htm
rzakinamejrn.htm
rzakijrnlib.htm
rzakiassociatejrn.htm
rzakidiskassign.htm
rzakijrnmssgque.htm
rzakimanorsysmng.htm
rzakiautodelete.htm
rzakisizeoptions.htm
rzakiminendta.htm
rzakijrncache.htm

v Whether or not to delay (See page 33) the next attempt to automatically delete the journal receiver
(character-based interface only)

v Whether or not to include fixed-length data in the journal entries (character-based interface only)

Set up journaling with the character-based interface

1. Create the journal receiver using the Create Journal Receiver (CRTJRNRCV) command.

2. Create the journal using the Create Journal (CRTJRN) command.

3. Start journaling for each object that you plan to journal.

Set up journaling with iSeries Navigator

1. Expand Databases.

2. Expand your system’s local database.

3. Expand Libraries.

4. Right click the library in which you want to create the journal.

5. Select New->Journals

6. Start journaling for each object that you plan to journal.

Example: Set up journaling
The following are three examples of setting up journaling in the character-based interface. The first
example sets up journaling with the both the journal and receiver in the system disk pool. The second and
third examples set up journaling with the journal and journal receiver in separate basic disk pools.

Note: Read the Code example disclaimer for important legal information.

Journal and receiver in system disk pool

In this example, the library $DSTJRN is in the system disk pool and has the following description:

v Type: PROD

v Disk pool of library: 1

v Create authority: *EXCLUDE

1. The $DSTJRN library already exists in the system disk pool.

2. The Create Journal Receiver (CRTJRNRCV) command creates journal receiver RCVDST1 in the
$DSTJRN library:
CRTJRNRCV JRNRCV($DSTJRN/RCVDST1) THRESHOLD(100000)

TEXT(’RECEIVER FOR $DSTJRN JOURNAL’)

3. The journal receiver is placed in the system disk pool with the library because *LIBASP is the default
value for the ASP parameter on the CRTJRNRCV command.

4. Public authority for the journal receiver is *EXCLUDE because the Create authority value for the
library is *EXCLUDE and the default for the authority (AUT) parameter is *LIBCRTAUT.

5. The Create Journal (CRTJRN) command creates the associated local journal:
CRTJRN JRN($DSTJRN/JRNLA) JRNRCV($DSTJRN/RCVDST1)

MNGRCV(*SYSTEM) DLTRCV(*NO)

The journal is placed in the system disk pool with the journal receiver. The system automatically changes
journal receivers when the receiver exceeds 102 400 000 bytes of storage (the threshold size for the
RCVDST1 receiver). The detached receiver is not deleted.

Journal receiver in a nonlibrary basic disk pool

38 iSeries: Journal management

rzakiintrusion.htm
../cl/crtjrn.htm
rzakistartandend.htm
rzakistartandend.htm
rzakicodedisclaimer.htm
../cl/crtjrnrc.htm
../cl/crtjrn.htm

In this example, the journal receiver is in a nonlibrary basic disk pool and the journal is in the system disk
pool.

1. The CRTJRNRCV command creates journal receiver RCVDST2 in a nonlibrary basic disk pool
CRTJRNRCV JRNRCV($DSTJRN/RCVDST2) THRESHOLD(100000)

ASP(2) TEXT(’RECEIVER FOR $DSTJRN JOURNAL’)

2. The CRTJRN command creates the local journal in the system disk pool:
CRTJRN JRN($DSTJRN/JRNLB) JRNRCVR($DSTJRN/RCVDST2)

MSGQ($DSTJRN/JRNLBMSG)

3. When the receiver RCVDST2 exceeds 102 400 000 bytes of storage, a message (CPF7099) is sent
to the JRNLBMSG message queue in the $DSTJRN library.

4. The objects to be journaled must also be in the system disk pool.

Journal and journal receiver in basic disk pools

In this example, the libraries ARLIBR and ARLIB are in basic library disk pools and have the following
description:

ARLIBR

v Type: PROD

v Disk pool of library: 3

v Create authority: *USE

v Text description: A/R Receiver LIB

ARLIB

v Type: PROD

v Disk pool of library: 4

v Create authority: *USE

v Text description: A/R Receiver LIB

1. The CRTJRNRCV command creates journal receiver RCVDST3 in the library basic disk pool
CRTJRNRCV JRNRCV(ARLIBR/RCVDST3) THRESHOLD(100000)

TEXT(’RECEIVER FOR ARJRN JOURNAL’)

2. Because public authority is not specified, the public authority is set to *USE (the Create authority
value for the ARLIBR library).

3. The CRTJRN command creates the local journal that is associated with the RCVDST3 journal receiver:
CRTJRN JRN(ARLIB/ARJRN) JRNRCV(ARLIBR/RCVDST3)

When the RCVDST3 journal receiver exceeds 102 400 000 bytes of storage, a message is sent to the
QSYSOPR message queue (the default).

4. All objects journaled to the ARJRN journal must be in ASP 4 because the journal is in ASP 4.

5. In this case, the objects and journal are in the same library. The journal receivers are in a library that is
saved and restored after the journal library if a single command is used, because ARLIBR comes after
ARLIB in a normal sort sequence.

Start and end journaling
Following are instructions on how to start and end journaling for all of the object types that journaling
supports.

Why you must save objects after you start journaling
After you start journaling, it is essential that you save objects that you are journaling.

Journal management 39

rzakiwhysavjrn.htm

Start journaling
This topic provides information on how to start journaling for all object types.

End journaling
This topic provides information on how to end journaling and why ending journaling might be
necessary.

Why you must save objects after you start journaling
It is essential you save objects after you start journaling them. To be able to apply journal changes, you
must:

v Save an object after you start journaling it.

v Save a database physical file whenever you add a new member to it.

When you start journaling an object, the system assigns a unique journal identifier (JID) to that object. If
the object is a physical database file, each member is also assigned a unique JID. The JID is part of every
journal entry added to the journal receiver for a given object. The system uses the JID to associate the
journal entry with the corresponding journaled object. The copy of the object on the save media that was
saved before it was journaled does not have the journal identifier saved with it. Therefore, if this copy of
the object is restored to the server, the journal entries cannot be associated with the object and cannot be
applied. This is why it is critical to save the journaled object after journaling is started.

Additionally, if the object is a physical file, you should save it every time a member has been added to it.
This ensures that the journal identifiers are saved with the new file members.

All formats, except the *TYPE1, *TYPE2, and *TYPE3 formats, for the Display Journal (DSPJRN), Receive
Journal Entry (RCVJRNE), or Retrieve Journal Entry (RTVJRNE) command include the JID for the object.
The JID is also included with the *TYPEPTR and *JRNENTFMT format for the RCVJRNE command, as
well as the Retrieve Journal Entries (QjoRetrieveJournalEntries) API. You can use the Retrieve JID
Information (QJORJIDI) API to retrieve an object’s name (for an object not in the integrated file system) or
the file identifier (for an object in the integrated file system), if you know its JID.

If you start journaling on a distributed file, the piece on each server has its own unique JID.

Save an object immediately after you have started journaling it, before any changes have occurred. Save
a database file whenever you add a new member to it. This ensures that you can completely recover all
the objects by using your saved copy and your journal receivers.

Note: Update the history for the object when you save it so that
APYJRNCHG and RMVJRNCHG processing will have the
best information for verification. If you save the object
using the SAV command, change the UPDHST value to
something other than *NO. The default value for the SAV
command is to not preserve the update history. For the
other Save related commands, the default value is to
preserve the update history.

Save a physical file or a logical file after you start journaling access paths for the file. This ensures that
when you restore the file, journaling access paths is started automatically. If you are using distributed files,
you must remember to save your file separately on the systems in the node group after starting journaling
for the distributed file.

Commands for saving objects

You can use one of the following commands to save journaled objects:

Physical database files, data areas, and data queues

40 iSeries: Journal management

rzakistrjrnl.htm
rzakiendjrn.htm

v Save Changed Objects (SAVCHGOBJ) and specify OBJTYPE(*object-type) OBJJRN(*YES)

v Save Object (SAVOBJ)

v Save Library (SAVLIB)

v Save (SAV)

Integrated file system objects

v SAV

See the Manually saving parts of your server topic for more information about saving journaled objects.

Start journaling
After you have created the journal and journal receiver, you can start journaling. When journaling has been
started for an object, the system writes journal entries for all changes to the object.

The start journal command must obtain an exclusive lock on the object. However, for database physical
files and integrated file system objects, you can start journaling even if an object is open. The
recommended procedure for starting journaling is:

1. Start journaling the object.

2. Save the object. If the object is open for changing, this will be a save-while-active type save.

It is highly recommended that you update the history for the object when you save it so that processing for
applying and removing journaled changes will have the best information for verification. If you saved the
object using the SAV command, the default value is to not preserve the update history. Therefore, you
should change the UPDHST value to something other than *NO. For the other save related commands,
the default value is to preserve the update history.

The following provides instructions to start journaling for each object type:

v Journal database physical files (tables)

v Journal DB2 Multisystem files

v Journal integrated file system objects

v Journal access paths

v Journaling data areas and data queues

Journal database physical files (tables): When you start journaling, a physical file (table) you specify
whether you want after-images saved, or both before-images and after-images.

To reduce the number of journal entries, you can omit entries for open operations and close operations for
the file. To omit open and close entries from being journaled, select the Exclude open and close entries
in iSeries Navigator. Or you can Specify OMTJRNE(*OPNCLO) on the Start Journal Physical File (STRJRNPF)
command. If you choose to omit open journal entries and close journal entries, be aware that:

v You cannot use the journal to audit who has accessed the file.

v You cannot apply or remove journal changes to open boundaries and close boundaries using the
TOJOBO and TOJOBC parameters.

Start journaling for physical database files

1. In iSeries Navigator, expand the system with the object you want to journal.

2. Expand Databases

3. Expand Libraries and select the library with the object you want to journal.

4. Right-click the object you want to journal and select Journaling.

Or you can use the STRJRNPF command to start journaling physical database files.

Journal management 41

../rzaiu/rzaiurzaiu001.htm
rzakistrjrnpf.htm
rzakidb2files.htm
rzakistrjrn.htm
rzakistrjrnap.htm
rzakistrjrndta.htm
../cl/strjrnpf.htm

The DB2 Universal Database topic has complete information about database files.

Journal DB2 Multisystem files: When you successfully start journaling on a distributed file, the system
distributes the start journal request to the other servers in the node group. All servers are attempted even
if there is a failure at any one server. Once journaling is started on a server in the node group, it stays
started even if there is a failure at any of the other servers.

The journal has to exist with the same name on all servers in the node group. The journal itself is not
distributed, only the Start Journal Physical File (STRJRNPF) command.

The journal and its receiver are associated only with the changes made to the file on the one server. If you
have two servers in the node group and a file is updated on both servers, the update on server A is only in
server A’s journal and receiver and the update on system B is only in system B’s journal and receiver.

The journal identifier (JID) will be different on each piece of the distributed file. Each server piece will have
its own JID. This means that the journal entries deposited on one server cannot be used to APYJRNCHG
or RMVJRNCHG those entries to a different piece of the file on another server.

Journal integrated file system objects: You can journal the following integrated file system objects if
they are in the Root(’/’), QOpensys, and user-defined file systems:

v Stream files (*STMF)

v Directories (*DIR)

v Symbolic links (*SYMLNK)

When you use the SAV command to save an integrated file system object, the default is to not update the
history information for the object. If you plan to apply journaled changes to the objects you are journaling,
you should specify to preserve the update history information on the SAV command.

If you are journaling *DIR or *STMF objects, you can reduce the number of journal entries in the journal
receiver. In iSeries Navigator, if you unselect Include open, close, and synchronization entries
(OMTJRNE(*OPNCLOSYN) on the Start Journal (STRJRN) command) you can omit entries for open operations,
close operations, and force entries for the object. If elect not to journal these entries be aware of the
following:

v You cannot use the journal to audit who has accessed the object for opens, closes, and forces.

v You cannot apply journal changes to open boundaries and close boundaries using the TOJOBO and
TOJOBC parameters.

v This option is only valid for *DIR and *STMF objects.

If you are journaling symbolic links, the system does not follow the symbolic link to determine what to
journal. That is, the system only journals the actual symbolic link. If you want to journal the end object, you
must journal the end object directly.

If you are journaling a directory and select Journal new files and folders in iSeries Navigator
(INHERIT(*YES) on the STRJRN command), then objects created into that directory will be automatically
journaled to the same journal. Therefore you should use caution because you could be journaling more
objects than you realize. Also, even if this option is on, if an object is restored to the directory, it keeps the
journaling attributes it had prior to the restore operation (when it was saved). For example, if you restore a
stream file that is journaled to Journal X, but the directory you restore the stream file to is being journaled
to Journal Y, the stream file will still be journaled to Journal X, even if the directory has the inherit option
on.

Note: If you end journaling for an object and then rename that
object in the same directory in which it currently resides,
journaling is not started for the object, even if the directory
has the inherit option on.

42 iSeries: Journal management

../rzahf/rzahfms1.htm
../cl/strjrnpf.htm

If you select Current folder and all subfolders in iSeries Navigator (SUBTREE(*ALL) on the STRJRN
command), journaling only starts on objects that exist in the subtree when the STRJRN command is
executed. To start journaling on objects added to the subtree after this point, you can either start journaling
for each object after it is created, or select Journal new files and folders (INHERIT option) on the
original start journal request.

If you select to journal the current folder and all subfolders, and there are object types in the subtree that
are not supported for journaling, the unsupported object types are skipped over so that only object types
that are supported for journaling get journaled.

Restrictions for journaling integrated file system objects

v You cannot journal files which are memory mapped. The Memory map a file map() API documentation
has information about memory mapping.

v iSeries servers allocate disk space for Integrated xSeries servers as virtual disk drives for the xSeries
servers. From the perspective of the iSeries server, virtual drives appear as byte stream files within the
Integrated File System. You cannot journal these byte stream files.

Start journaling for integrated file system objects

1. In iSeries Navigator select the system on which the object that you want to journal is located.

2. Expand File Systems.

3. Expand Integrated File Systems.

4. Expand the file system with the object you want to journal.

5. If you are journaling a directory, right-click the directory and select Journaling.

6. If you are journaling an object in a directory, expand the directory and right click that object. Select
Journaling.

Or, use the STRJRN command or Start Journal (QjoStartJournal) API for integrated file system objects that
you want to journal.

For more information on integrated file system objects, see the Integrated file system topic.

Journal access paths: After you have started journaling for physical files, you can set up explicit
journaling of access paths. You can use the Start Journal Access Path (STRJRNAP) command to start
journaling access paths owned by physical files or logical files. When you start journaling access paths for
a physical file, the system journals any of these, if they exist:

v Keyed access paths

v Access paths for primary key constraints

v Access paths for unique constraints

v Access paths for referential constraints

All underlying physical files must be journaled to the same journal before you can start journaling for an
access path. The entries created when you journal an access path are used to recover the access path
after the system ends abnormally. They are not used when you apply or remove journal entries. You can
specify RCVSIZOPT(*RMVINTENT) for the journal to have the system remove these entries when they are
no longer needed for recovery. This reduces the disk storage requirements for the journal receiver.

You cannot start journaling for an access path that is in use. The STRJRNAP command must obtain an
*EXCL lock on the logical file.

The recommended procedure for starting access path journaling is:

1. Use the STRJRNAP command to start journaling the access path.

Journal management 43

../cl/strjrn.htm
../apis/qjosjobj.htm
../rzaia/rzaia_ifs_intro.htm
../cl/strjrnap.htm

2. Save all the underlying physical files, specifying ACCPTH(*YES).

If you have target recovery times for access paths set up on your system, you may not need to set up
explicit journaling for access paths. See Reasons to journal access paths for more information.

Journal data areas and data queues: When you start journaling for a data area or a data queue, the
system writes journal entries for all changes to the data area or data queue.

When you start journaling a data area, you specify whether you want after-images saved, or both
before-images and after-images.

Start journaling for data areas and data queues

1. In iSeries Navigator, expand the system with the data area or data queue you want to journal.

2. Expand File Systems.

3. Expand Integrated File System.

4. Expand QSYS.LIB.

5. Select the library with the data area or data queue.

6. Right-click the data area or data queue you want to journal and select Journaling.

Or after you have created the journal, use one the following commands or API for each data area or data
queue you want to journal:

v Start Journal (STRJRN)

v Start Journal Object (STRJRNOBJ)

v Start Journal (QjoStartJournal) API

For more information on data queues, see CL programming

For more information on data areas, see Work Management

.

End journaling
You may need to end journaling for several reasons:

v If a journal is damaged and you need to delete it, you must first end journaling for all objects assigned
to the journal.

v In some situations, you might want to end journaling before running a large batch application, if that
application has exclusive use of the object. This is done either to improve the speed of the batch
application or to reduce the auxiliary storage needed for the journal receiver. If you do this, use this
method:

1. End journaling for the objects.

2. If journaling physical files save them specifying ACCPTH(*YES).

3. If journaling other object types, save them.

4. Run the batch application.

5. Start journaling for the objects.

6. Save the physical files, specifying ACCPTH(*YES).

7. Save the other journaled objects.

To end journaling proceed as follows:

44 iSeries: Journal management

rzakijrnap.htm
../cl/strjrn.htm
../cl/strjrnob.htm
../apis/qjosjobj.htm
../../books/c4153063.pdf

1. End journaling for access paths with the End Journal Access Path (ENDJRNAP) command

2. In iSeries Navigator expand the system with the object that you want stop journaling.

3. If the object is a database file, proceed as follows:

a. Expand Databases and the database with the journal that you want to end journaling.

b. Expand Libraries

c. Click the library with the table (file) you are journaling

d. Right-click table and select Journaling

e. Click End to end journaling.

4. If the object is an integrated file system object proceed as follows:

a. Expand File Systems.

b. Expand Integrated File System.

c. Expand the file system with the object you are ending journaling.

d. If you are ending journaling for a directory, right click that directory. If you are ending journaling for
an object in a directory, open the directory and right click the object.

e. Right-click the object or directory and select Journaling

f. Click End to end journaling.

5. If the object is a data area or data queue, proceed as follows:

a. Expand File Systems.

b. Expand Integrated File System.

c. Expand QSYS.LIB.

d. Select the library with the data area or data queue.

e. Right-click the data area or data queue you want to end journaling and select Journaling.

f. Click End to end journaling.

Or, use the following commands to end journaling :

v End Journal Access Path (ENDJRNAP) command for access paths

v End Journal Physical File (ENDJRNPF) command for database files

v End Journal (ENDJRN) command for integrated file system objects

v End Journal Object (ENDJRNOBJ) command for other objects

You must end journaling for any access paths based on a physical file before you can end journaling for
the physical file.

In the following cases, the system implicitly ends journaling:

v When you delete an object, journaling is ended for the object.

v When you remove a physical file member, journaling is ended for the member.

v When you remove a physical file member, journaling is ended for any access paths associated with the
member unless an access path is shared and journaled by another file member.

v When you delete a file, journaling is ended for any access paths associated with the file unless an
access path is shared and journaled by another file.

How to end journaling for DB2 Multisystem files

When you successfully end journaling on a distributed file, the system distributes the end journal request
to the other systems in the node group. All systems are attempted even if there is a failure at any one
system. Once journaling is ended on a system in the node group, it stays ended even if there is a failure
at any of the other systems.

Journal management 45

../cl/endjrnap.htm
../cl/endjrnpf.htm
../cl/endjrn.htm
../cl/endjrnob.htm

Even if a distributed file is not locally journaled, and if you specify the file name and the journal name on
the ENDJRNPF command, the system will still attempt to distribute the end-journal request to the other
systems in the file node group.

DB2 Multisystem has more information about distributed files.

Manage journals
Managing your journaling environment requires these basic tasks:

v Keep records of which objects you are journaling.

v Evaluate the impact on journaling when new applications or logical files are added.

v Regularly detach, save, and delete journal receivers.

Your journal receivers enable you to recover changes to your important objects. They also provide an audit
trail of activity that occurs on your system.

Protect your journal receivers by regularly detaching them and saving them; or you can have the system
take over the job of changing journal receivers by specifying system journal-receiver management.

If disk utilization is a problem on your system, you can free storage for journal receivers when you save
them. Freeing storage is preferable to deleting journal receivers. Journal receivers whose storage has
been freed still appear in the receiver directory for the journal. If disk utilization is not a problem, leave the
journal receivers on the system until you have saved all the journaled objects.

Do the following tasks to manage your journaling environment:

v Swap, delete, and save journals and receivers

v Evaluate how system changes affect journaling

v Keep records of journaled objects

v Manage security for journals

v Display information for journals and receivers

v Inoperable journal receivers

v Compare journal images

v Work with IBM-supplied journals

v Send your own journal entries

v Change the state of local journals

Swap, delete, and save journals and receivers
The management tasks that you need to perform most often for journaling are swapping journal receivers
and saving and deleting journal receivers.

See the following information to to accomplish these tasks:

v Swap journal receivers

v Keep track of journal receiver chains

v Reset the sequence number for the journal entries

v Delete journal receivers

v Delete journals

v Save journals and journal receivers

Swap journal receivers: An important task for journal management is to swap (or change) journal
receivers. You usually swap journal receivers when they reach their storage threshold. You can swap
journal receivers either with iSeries Navigator or with the Change Journal (CHGJRN) command. If you use
system journal-receiver management, the system changes journal receivers for you.

46 iSeries: Journal management

../dbmult/rzaf3mst02.htm
rzakiswapdel.htm
rzakievaljrn.htm
rzakirecordjrn.htm
rzakijrnaudit.htm
rzakiwrkjrna.htm
rzakiwrkinopjrnrcv.htm
rzakicomparjrnimg.htm
rzakiibmjrn.htm
rzakisndjrne.htm
rzakichgjrnstate.htm
rzakiswapjrnrcv.htm
rzakijrnrcvchn.htm
rzakiresetjrn.htm
rzakideletercv.htm
rzakideletejrn.htm
rzakisavjrnrcv.htm

You can use iSeries Navigator or the Change Journal (CHGJRN) command to change the attributes of the
journal. You also use the iSeries Navigator or the CHGJRN command to change the receiver for a journal
(detach the current receiver, create and attach a new receiver) and to reset the sequence number for
journal entries.

When you swap a journal receiver, the old journal receiver becomes detached. When you detach a journal
receiver, you cannot reattached it to any journal. You can do these things with a detached journal receiver:

v Save or restore it.

v Display entries.

v Retrieve entries.

v Receive entries.

v Use it to apply or remove journaled changes.

v Use it to compare journaled images.

v Display its status or position in a receiver chain.

v Delete it.

v Replicate it with the remote journal function.

You must swap journal receivers to change the following journaling attributes:

v Manual or system journal management (MNGRCV parameter)

v Receiver size options (RCVSIZOPT parameter)

v Minimized entry specific data (MINENTDTA parameter)

v Fixed-length data (FIXLENDTA parameter)

To swap a journal receiver with iSeries Navigator, without changing options proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Right-click the journal you want to use and select Swap Receivers. The system generates a new
name when it creates the receiver.

To change options when you swap a journal receiver with iSeries Navigator proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Double-click the journal you want to use.

5. Select Swap receivers and the journaling options you want to use.

6. Click OK. The Journal properties dialog closes. The new journal is automatically created and
attached.

The CHGJRN command

Use JRNRCV(*GEN) on the Change Journal (CHGJRN) command to create the new receiver with the
same attributes as the currently attached receiver, and in the same library. These attributes include the
owner, private authorities, public authority, object auditing, ASP identifier, threshold, and text.

You must use use the CHGJRN command to change the journaling options to one of the following:

v Specify receiver-size options *MAXOPT1 or *MAXOPT2.

v Specify that objects allow journal entries to have minimized entry-specific data.

v Specify the data that is included in the fixed-length portion of the journal entries.

Journal management 47

v Specify the time to delay the next attempt to automatically attach or delete a new journal receiver with
system journal receiver management.

v Specify journal caching.

v Specify journal standby state.

See Manual versus system journal-receiver management to help you decide if you to have the system
change the journal receiver automatically. See Threshold (disk space) for journal receivers for more details
about storage threshold.

Keep track of journal receiver chains: Journal receivers that are associated with a journal (that is
presently or previously attached to the journal) are linked in one or more receiver chains. Each journal
receiver, except the first one, has a previous receiver that was detached when the current receiver was
attached. Each journal receiver, except the one that is currently attached, also has a next receiver.

The following figure illustrates the process by which journal receiver chains are created. If you leave the
previously attached receivers RCVA7 through RCVA9 online, you can use them to apply changes, to
remove changes, or to display journal entries without restoring them first.

Journal receiver chain

*

If a complete copy of a receiver is missing in a chain of journal receivers linked together in the previously
described relationship, the result is a chain break. You should avoid receiver chain breaks. A receiver
chain break indicates that any changes made between the last entry in the last receiver in one chain and
the first entry in the first receiver in the next chain are not available in any journal receiver on the system.

A set of receivers for a journal that has one or more receiver chain breaks has multiple receiver chains.
Receiver chain breaks result from the following:

v You restored an old journal receiver and its next receiver is not on the system.

v A journal receiver was saved while it was attached, a partial receiver is restored, and no complete copy
of the receiver is on the system or restored.

48 iSeries: Journal management

rzakimanorsysmng.htm
rzakidesc_4.htm

v A receiver that has not had its storage freed by a save operation is restored, and the next receiver has
had its storage freed by a save operation.

v The journal is restored. All journal receivers associated with the previous copy of the journal (before the
journal was deleted and restored) will not be in the same receiver chain as the currently attached
journal receiver.

v The user or the system deleted a damaged or destroyed journal receiver from the middle of a chain.

v A journal receiver from another system is restored. The journal receiver will be associated with a journal
at restore time if the associated library and journal on the source system had the same library name
and journal name as the library and journal on the target system.

v You chose to replicate specific receivers instead of all receivers in the receiver directory chain. This
occurred while replicating journal receivers from a source system to a target system.

You cannot use the following commands and API across multiple receiver chains:

v Apply Journaled Changes (APYJRNCHG)

v Remove Journaled Changes (RMVJRNCHG)

v Receive Journal Entries (RCVJRNE)

v Display Journal (DSPJRN)

v Retreive Journal Entries (RTVJRNE)

v Compare Journal Images CMPJRNIMG

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

If multiple receiver chains exist, you need to determine:

v Whether any journal entries are missing.

v Whether your data will be valid if you use more than one receiver chain.

If you decide to proceed, you must run a separate command for each receiver chain.

You can use the Work with Journal Attributes (WRKJRNA) command to display the receiver chain (F15)
and work with journal receivers. See Display information for journals and receivers for more information on
the WRKJRNA command.

Reset the sequence number for the journal entries: Normally, when you change journal receivers, you
continue the sequence number for journal entries. When the sequence number becomes very large, you
should consider resetting the sequence to start the numbering at 1. You can reset the sequence number
only when all changes are forced to auxiliary storage for all journaled objects and commitment control is
not active for the journal. Resetting the sequence number has no effect on how the new journal receiver is
named.

Some conditions prevent you from resetting the sequence number, such as an active commit cycle. If the
system cannot reset the sequence number, you receive message CPF7018.

If you use system journal-receiver management for a journal, the sequence number for the journal is reset
to 1 whenever you restart the system or vary on the independent disk pool containing the journal. When
you restart the system or vary on an independent disk pool, the system performs the change journal
operation for every journal on the system or disk pool that specifies system journal-receiver management.
The operation that the system performs is equivalent to CHGJRN JRN(xxx) JRNRCV(*GEN) SEQOPT(*RESET).
The sequence number is not reset if journal entries exist that are needed for commitment control IPL
recovery.

The maximum sequence number is 2 147 483 136. If you specified RCVSIZOPT(*MAXOPT1) or
RCVSIZOPT(*MAXOPT2) for the journal that you attached the receiver to, then the maximum sequence
number is 9 999 999 999. If this number is reached, journaling stops for that journal. Whenever you
change journal receivers, the system tells you what the starting sequence number is through message

Journal management 49

rzakiwrkjrna.htm

CPF7019. Also, when you are approaching the sequence number limit, CPF7019 is additionally sent to the
QSYSOPR message queue every time you change journal receivers.

The system sends a warning message (CPI70E7) to the journal’s message queue when the sequence
number exceeds 2 147 000 000. If you specified RCVSIZOPT(*MAXOPT1) or RCVSIZOPT(*MAXOPT2)
for the journal that you attached the receiver to, the system sends the warning message when the
sequence number exceeds 9 900 000 000. If you use system change-journal management support
(MNGRCV(*SYSTEM)) for the journal, the system attempts to change the journal and reset the sequence
number one time. The message is sent only if the attempt is not successful.

To reset the sequence numbers for journal entries proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Double-click the journal you want to use.

5. Select Swap receivers and under Sequence numbering select Reset.

6. Click OK. The Journal properties dialog closes. The new journal receiver is automatically created and
attached.

Note: If you attempt to use the CHGJRN command with the
same journal receiver name and SEQOPT(*CONT), you
may receive the message CPF701A. To recover, delete
the journal receiver and use the CHGJRN command
again.

To change the sequence number with the Change Journal (CHGJRN) command, specify the
SEQOPT(*RESET) parameter.

Delete journal receivers: Journal receivers can quickly consume a lot of auxiliary storage space.
Therefore an important journal management task is to delete journal receivers after you no longer need
them.

How to determine whether delete a journal receiver

When you are determining whether to delete a journal receiver, you should consider the following:

v Journal receivers you need for recovery

v Journal receivers you do not need for recovery

v Where the journal receiver is in the receiver chain

Journal receivers you need for recovery

You should not delete a journal receiver that has not been saved if you need that journal for recovery. A
journal receiver that you need for recovery is any journal receiver that you need to perform an Apply
Journaled Changes (APYJRNCHG) or Remove Journaled Changes (RMVJRNCHG) operation.

To determine if a journal receiver has been saved, in iSeries Navigator, right-click the journal receiver, and
select Properties. If the Saved field shows no date, then you have not saved the journal receiver.

If you have saved the journal receiver, but the journaled objects are not saved, then you still need that
journal receiver for recovery. If you have space on your system, wait to delete journal receivers until it is
unlikely that you need them for a recovery. (You saved the journaled object). Restoring journal receivers
before applying or removing journaled changes may significantly increase your recovery time.

50 iSeries: Journal management

Although it is not recommended, the system does not prevent you from deleting a receiver you detached
and is not saved or that is required to provide adequate recovery. If you try to delete a journal receiver that
was once attached but has not been saved, the system issues an inquiry message. You can then continue
or cancel the delete operation. You can use the system reply list to specify the reply the system is to send
for this inquiry message (rather than explicitly responding to each inquiry message).

Journal receivers you do not need for a recovery

If you are journaling only for access path protection or use a for commitment control, you most likely you
do not need the journal receivers to recover journaled changes. You do not need to save these journal
receivers before deleting them.

To make your journaling tasks easier, you can even automate the deletion of these journal receivers by
specifying the following:

v Specify system journal-receiver management

v Specify automatic deletion of journal receivers

When you specify automatic deletion of journal receivers, the system does not send a message when it
deletes a journal receiver. By specifying automatic deletion for journal receivers, you indicate that do not
need the journal receivers for user recovery.

Where the journal receiver is in the receiver chain

To ensure logical recovery, the system does not allow you to delete a journal receiver from the middle of
the receiver chain unless one of the following conditions exists:

v The journal is using automatic deletion of journal receivers

v The journal is a remote journal

However, if a journal receiver is damaged, you can delete it from the middle of the chain. If an attached
journal receiver is damaged, you must perform a change journal operation for the damaged receiver
before you can delete it.

Rules for deleting journal receivers

The rules for deleting journal receivers are as follows:

v You cannot delete a journal receiver that is attached to a local journal. You must perform a change
journal operation to detach a journal receiver before you delete it.

v You must delete journal receivers in the same order they were attached to a journal.

v You can delete a damaged or inoperable receiver regardless of the previous restriction. However, if an
attached receiver is damaged, you must detach it before you delete it.

v You cannot delete a journal receiver that is attached to a remote journal if the remote journal has a
journal state of active. If you attempt to delete a receiver that is attached to a remote journal, the
system sends the inquiry message CPA705E. The results of the reply to the message are the same as
those that occur with message CPA7025.

Procedure for deleting journal receivers

Proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Click the library you want to work with.

5. Right-click the journal receiver you want to delete and click Delete.

Journal management 51

rzakimanorsysmng.htm
rzakiautodelete.htm
rjournals/rzakiinactivate.htm

6. At the Confirm Object Deletion dialog click Delete.

You can also use the Delete Journal Receiver (DLTJRNRCV) command to delete journal receivers. If you
use the DLTJRNRCV command, an exit point is available to use with an exit program to help automate
journal receiver deletion.

Exit point for the DLTJRNRCV command

An exit point is available for the DLTJRNRCV command for systems that are running V4R2M0 or a later
release. One example of using this exit point is a situation where your application is using the data in the
journal receiver. The application is dependent on the journal receiver being present until your application
processing is complete. By registering an exit program with the QIBM_QJO_DLT_JRNRCV exit point, the
program will be called every time a journal receiver is deleted from the system. If your program determines
that your application is not yet done with the receiver, it can indicate that the journal receiver is not eligible
for deletion.

If you must delete the receiver regardless of what an exit program indicates, you can specify
*IGNEXITPGM for the DLTOPT parameter on the DLTJRNRCV command. This parameter value requests
that any user exit programs that are registered for QIBM_QJO_DLT_JRNRCV exit point be ignored.

You can also use the following values for the DLTOPT parameter:

*IGNTGTRCV
Ignore target receiver. If you specify this value, the system does not verify that all remote journals
that are associated with this journal, and are immediately downstream on a target system, have full
copies of this journal receiver. The delete operation will continue, even if a remote journal does not
have a full copy.

*IGNINQMSG
Ignore inquiry message. Inquiry message CPA7025 will not be presented, even if this receiver has
not been fully saved. Also, inquiry message CPA705E is not presented to the user even if the
receiver is attached to a remote journal. The delete operation continues.

Delete journals: Each journal on the system causes additional time and resource to be used when you
restart the system or vary on an independent disk pool after an abnormal end. If you no longer need a
journal, you should delete it. The system does not allow you to delete a journal if any of the following
conditions exist:

v You are journaling objects to it.

v Commitment control is active, and the journal is associated with a commitment definition.

Note: If you have certain types of referential constraints defined,
the system starts commitment control if it is not already
started. For example, if you have defined a cascaded
delete constraint for an object, the system starts
commitment control if you open the object for a delete
operation. The default commitment definition that is
created is active until the job ends.

v Any of the associated remote journals have a journal state *ACTIVE.

If you no longer need a journal and its associated receivers, perform the following steps:

1. Use the Work with Journal Attributes (WRKJRNA) command to see determine the following:

v Which objects are being journaled to this journal

v Whether or not commitment control is active and the journal is associated with it.

52 iSeries: Journal management

2. If commitment control is active and the journal is associated with it, end commitment control with the
End Commitment Control (ENDCMTCTL) command.

3. End journaling for all objects associated with the journal.

4. If any commitment definitions are active that use this journal as the default journal, use the ENDJOB
command to end the jobs that are using the commitment definitions. This includes commitment control
that is started because of a referential constraint.

5. If any remote journals have a journal state of *ACTIVE, inactivate them. See Inactivate the replication
of journal entries to a remote journal for more information.

6. Delete the journal by doing the following:

a. In the iSeries Navigator window, expand the system you want to use.

b. Expand Databases.

c. Expand the database that you want to work with and Libraries.

d. Click the library you want to work with.

e. Right-click the journal you want to delete and click Delete.

f. At the Confirm Object Deletion dialog click Delete.

7. Delete the journal receiver.

You can also use the Delete Journal (DLTJRN) command to delete the journal and the Delete Journal
Receiver (DLTJRNRCV) command to delete the journal receiver.

Save journals and journal receivers: You can save a journal receiver when it is attached to the journal.
You should save the journal receiver again when it is no longer attached, so that you have all the journal
entries saved.

When you save a journal receiver that is no longer attached, you can free storage. However, a journal
receiver whose storage has been freed must be restored before you can use it for recovery.

The following topics provide examples of approaches you might take in detaching and saving journal
receivers.

v Use SAVCHGOBJ to save journal receivers

v Methods to save journal receivers

v Correct order for restoration of journaled objects

Saving journals and journal receivers in the Back up your server topic provides more information about
saving journals and journal receivers.

Use SAVCHGOBJ to save journal receivers: One technique for saving journal receivers is to use the
Save Changed Object (SAVCHGOBJ) command. For example, if all your journal receivers are in a library
called RCVLIB, use this command:
SAVCHGOBJ OBJ(*ALL) LIB(RCVLIB) OBJTYPE(*JRNRCV)

DEV(media-device-name) ENDOPT(*LEAVE)

This saves all journal receivers that have any new entries since the entire library was saved. The
advantage to this method is that you can completely automate the saving of journal receivers. You can
leave a save media volume mounted and schedule a job to run periodically. If you are managing journal
receivers yourself, the job can run the Change Journal (CHGJRN) command for each journal and then run
the SAVCHGOBJ command. If you are using system journal-receiver management, the job needs to run
only the SAVCHGOBJ command.

Also, you can specify a threshold for the journal receiver and message queue for the journal. If you have
specified manual journal receiver management, you can create a CL program to do the following:

1. Monitor the journal message queue for message CPF7099.

Journal management 53

rzakiendjrn.htm
rjournals/rzakiinactivate.htm
rjournals/rzakiinactivate.htm
rzakideletercv.htm
../cl/dltjrn.htm
rzakisavchgobj.htm
rzakisavbyname.htm
../rzaiu/rzaiurzaiu135.htm
../rzaiu/rzaiuintro.htm
../cl/savchgob.htm

2. When the message is received, run the CHGJRN command.

3. Run the SAVCHGOBJ command to save all journal receivers that have changed since the entire library
was saved.

A possible disadvantage to using the SAVCHGOBJ command to save journal receivers is that you save
the journal receivers that are currently attached. They are saved as partial receivers. If you need to do a
recovery, you may need to handle the error condition that occurs when you attempt to restore the partial
receiver over the receiver that is currently on the system and has not yet been saved.

See Manual versus system journal-receiver management for information on deciding to change journal
receivers yourself, or have the system change journal receivers automatically.

Methods to save journal receivers: Following are three methods to save journal receivers. The first
method saves journal receivers individually. The two other methods save the journal receiver automatically.

Save journal receivers individually

Use the Work with Journal Attributes (WRKJRNA) command to display the receiver directory for each
journal. The receiver directory tells which journal receivers have not yet been saved. Then use the Save
Object (SAVOBJ) command to save them.

The advantage to using this technique is that each journal receiver is saved only once. You will not have
problems with duplicate names and partial receivers if you need to restore. The disadvantage to this
technique is that it requires manual effort to determine the names of the journal receivers to be saved.

Save journal receivers by name - Automated method 1

You can use a combination of system journal-receiver management and a control language (CL) program
to automate most journal management tasks. Do the following:

v Specify a threshold size for the journal receiver.

v Specify MNGRCV(*SYSTEM), DLTRCV(*NO), and a message queue for the journal.

v Use a CL program to monitor the journal message queue for the message (CPF7020) that indicates that
the system has successfully detached the journal receiver.

v Your CL program can then save the receiver that was detached and optionally delete it.

Save journal receivers by name - Automated method 2

An alternate method of automatically saving journal receivers is to use a high level language program that
uses the Retrieve Journal Information (QjoRetrieveJournalInformation) API. The program can use this API
to determine the journal receiver directory and which receivers are not saved. The program can then save
the journal receivers that are not marked as saved. You can set up this program to run on a regular basis
or as part of normal processing.

See CL Programming

for information about control language programming.

Correct order for restoration of journaled objects: You must restore journals and their associated objects
in the correct order. For the system to automatically reestablish your journaling environment, restore
objects in this sequence:

1. Journals

2. Based-on physical files

3. Dependent logical files

54 iSeries: Journal management

rzakimanorsysmng.htm
../../books/c4157215.pdf

4. Other journaled object types

5. Journal receivers.

You can restore journal receivers at any point after you restore the journals. You do not need to restore
them after the journaled objects.

When these objects are in the same library, the system restores them in the correct sequence. When
these objects are in different libraries or directories, you must restore them in the correct sequence, or you
must manually reestablish your journaling environment after the restore operation.

If all of the journal receivers were created on V3R1 or later, you can restore them in any sequence. After
restoring them, use option 9 (Associate receivers with journal) from the Work with Journal (WRKJRN)
command display to build the receiver chain in the correct sequence. You can also use Option 9 to build
the receiver chain if you restore the journal after the journal receivers.

If any journal receivers were created before V3R1, you must restore the journal receivers from newest to
oldest to build the receiver chain correctly. The journal must be on the system for the receiver chain to be
built.

If you restore journaled objects before restoring the journal, you must start journaling again.

Your journals and journal receivers can be in different libraries. If this is true, you should ensure that the
library that will contain the journal receivers is on the system before restoring the journal. Ensuring this will
also ensure that the journal receiver is created in the desired library, since a journal receiver is created
when the journal is restored. Only the library needs to be on the system, not the journal receivers in that
library. If you do not ensure this, you may need to create a journal receiver in the desired journal receiver
library. You would then have to run the Change Journal (CHGJRN) command to attach the new receiver to
your journal.

See Backup and Recovery

for more information on restoring objects to your server.

Evaluate how system changes affect journal management
After you have established your journaling environment, you need to keep up with changes that occur on
your system.

When you add new applications, evaluate whether the objects should be journaled.

If you use SMAPP, the system automatically considers new access paths when deciding how to meet your
target recovery times for access paths.

Journaling places some limits on what changes you can make. For example:

v You cannot protect a logical file, either explicitly or with SMAPP, if the underlying physical files are
journaled to different journals.

v You cannot move an object to a different disk pool from the disk pool of the library that contains its
journal.

Keep records of journaled objects
You should always have a current list of objects that you are journaling and their assigned journals. Print a
new list whenever you add or remove objects from the journal. Do this to print a list:

1. Type WRKJRN

2. Specify *ALL for both the Journal and Library fields

Journal management 55

rzakistrjrnl.htm
../cl/chgjrn.htm
../../books/c4153046.pdf

3. Press the Enter key twice.

4. Write down the names of all the journals or use the PRINT key for each panel of the display.

5. For each journal on the list that is used to journal objects, type WRKJRNA JRN(library-name/journal-
name) OUTPUT(*PRINT).

Keep the lists with your most recent set of backup media that you used to save the entire system. You can
also use the Retrieve Journal Information (QjoRetrieveJournalInformation) API to retrieve information about
your journaling environment.

You might need this list for the following reasons:

v You need to recover your journaling environment; for example, if the journal is damaged or deleted.
Although you can recover your journaling environment by restoring the objects, in many cases starting
journaling for the objects is a quicker and safer method.

v You create new access paths. The system cannot protect access paths, either explicitly or by using
SMAPP, if the underlying physical files are not journaled to the same journal.

v You want to move objects to another disk pool. Journaled objects must be in the same disk pool as the
journal, unless the objects are in the system disk pool and the journal is in a nonlibrary basic disk pool.

Keep records of your journal receivers

Choose the method for saving journal receivers that works best for your organization. Then be sure to
keep track of what you do. Label your save media so that you know which journal receiver media volumes
are required to apply journal changes to the last complete saved copy of the journaled objects.

Think through possible recovery scenarios. For example, assume this is your save procedure:

v You save all user libraries and directories on Sunday evening.

v You save changed objects every evening.

v You save journal receivers every 2 hours during normal business hours.

Given the preceding list, what are your recovery steps if you lose a journaled object at 3 p.m. on
Thursday?

For complete information on developing a recovery plan, see Plan a backup and recovery strategy.

Manage security for journals
You can use journal management to provide an audit trail of changes that were made to your objects. You
can determine which program or user made changes to objects by using the journal entries.

By specifying the FIXLENDTA parameter of the Change Journal (CHGJRN) or Create Journal (CRTJRN)
commands you can specify that the following data is included in the journal entry:

v The job name.

v The effective user profile name.

v The program name.

v The program library name and the auxiliary storage pool device name that contains the program library.

v The system sequence number. The system sequence number gives a relative sequence to all journal
entries in all journal receivers on the system.

v The remote address, the address family and the remote port.

v The thread identifier. The thread identifier helps distinguish between multiple threads running in the
same job.

v The logical unit of work identifier. The logical unit of work identifies work related to specific commit
cycles.

56 iSeries: Journal management

../rzaj1/rzaj1overview.htm

v The transaction identifier. The transaction identifier identifies transactions related to specific commit
cycles.

For database physical files, you can determine what changes were made to specific records by using the
Compare Journal Images (CMPJRNIMG) command. However, you cannot use the CMPJRNIMG command
for journal entries that have minimized entry-specific data. If you specified the MINENTDTA(*FILE)
parameter on the Create Journal (CRTJRN) or Change Journal (CHGJRN) commands, you might have
minimized entry-specific data.

Use Journal management to provide an audit trail because of the following reasons:

v No one, even the security officer, can remove or change the journal entries.

v Journal entries represent a chronological sequence of events.

v Each journal entry in the system is sequentially numbered without gaps until the CHGJRN command
resets the sequence number. A journal entry is written if the sequence number is reset.

Note: When you display the journal entries, there can be gaps in
the sequence numbers because some journal entries are
only used internally by the system. These gaps occur if
you are using commitment control, database file
journaling, or access-path journaling. To view the entries
in the gaps, you can use the INCHIDENT parameter on
the Display Journal (DSPJRN) command.

v The journal contains entries that indicate when each journal receiver was changed and the name of the
next journal receiver in the chain.

v Whenever journaling for an object is ended or whenever an object is restored an entry is written.

Remember that the date and time recorded in the journal entries depends on the date and time entered
during an IPL and therefore, may not represent the actual date and time. Also, if you use shared files, the
program name that appears in the journal entry is the name of the program that first opened the shared
file.

A special journal, that is called the audit (QAUDJRN) journal, can provide a record of many
security-relevant events that occur on the system. See the iSeries Security Reference

for information about the QAUDJRN journal.

For more information about security on your iSeries server, see the Security topic.

Display information for journals and receivers
Ways that you can display information about journals and related receivers are as follows:

v iSeries Navigator

v Display Journal Receiver Attributes (DSPJRNRCVA) command

v Retrieve Journal Information (QjoRetrieveJournalInformation) API

v Work with Journal Attributes (WRKJRNA) command

v Retrieve Journal Receiver Information (QjoRtvJrnReceiverInformation) API

These methods can identify:

v The journal receivers currently attached to the journal

v A directory of the journal receivers still on the system that are associated with the journal.

v The names of all of the objects that are being journaled through the journal.

v The commitment control uses of this journal.

Journal management 57

../../books/c4153026.pdf
../rzahgicsecurity.htm

v The attributes of the journal.

v Information about all remote journals that are associated with the journal.

Furthermore, the DSPJRNRCVA command or the QjoRtvJrnReceiverInformation API can identify:

v Fixed-length data

v ASP of the journal receiver

v Minimized entry data

v The next and previous journal receiver information

You can find the status of a journal receiver by using the WRKJRNA command, then pressing F15
(Receiver directory) from the Work with Journal Attributes display. You can also use the DSPJRNRCVA
command. Or in iSeries Navigator, you can the find status of a journal receiver by doing the following
steps:

1. Expand the system with the journal receiver

2. Expand Databases and the database with the journal receiver.

3. Expand Libraries and library with the journal receiver.

4. Right click the journal receiver, and select Properties.

When the journal receiver is in partial status

The partial status of a journal receiver indicates the following:

v The disk unit on which the journal receiver is stored is damaged. No more journal entries could be
recorded.

v A journal receiver was saved while it was attached to the journal. This means that additional entries
may have been recorded in the journal receiver after the save operation occurred. The receiver was
later restored, and no complete version is available.

v The journal receiver is associated with a remote journal. It does not contain all the journal entries that
are in the associated journal receiver that is attached to the source journal.

v A partial receiver does not contain all the entries that are recorded in the journal while this receiver was
attached. It does contain entries that are recorded up to the last save operation.

v The most complete version of the journal receiver is no longer on the system because it was destroyed
during a failure.

v You have restored an older, partial version.

Work with inoperable journal receivers
If you have specified journaling for any objects, the system ensures that you have corrected problems that
affect journaling before continuing with operations on those objects. If the attached journal receiver
becomes inoperable, the operation that writes a journal entry is interrupted and the system sends an
inquiry message that notifies the system operator. The operator can swap the journal receiver with iSeries
Navigator or the Change Journal (CHGJRN) command. You can then respond to the inquiry message. A
receiver can become inoperable if the receiver is damaged, the maximum sequence number has been
reached, or there is no more space.

Compare journal images
Use the Compare Journal Images (CMPJRNIMG) command to compare and list the differences between
the before-image of a record and the after-image of that record, or the after-image of a record with the
previous after-image of that record.

You can only use the CMPJRNIMG command for journaled physical database files. You cannot use the
CMPJRNIMG command for journal entries that have minimized entry-specific data. If you specified the
minimized entry-specific data (MINENTDTA(*FILE) parameter on the Create Journal (CRTJRN) or Change
Journal (CHGJRN) commands, the journal entries might have minimized entry-specific data, preventing
you from being able to compare journaled images.

58 iSeries: Journal management

rzakiswapjrnrcv.htm
../cl/chgjrn.htm

If the journaled files have null-capable fields, the null value indicators corresponding to the fields in the
before-image of the record are compared with the null value indicators corresponding to the fields in the
after-image of the record. A field-by-field basis compare does this.

The printed output from the CMPJRNIMG command shows the before-images and after-images of a
record followed by a line that indicates (with asterisks) the specific change in the record on a
character-by-character basis. If you compare the after-images, the output shows the previous after-image
of the record and the current after-image of the record, followed by a line indicating the changes.

If you use this command to compare journal images for a file that contains any fields of data type BLOB
(binary large object), CLOB (character large object), or DBCLOB (double-byte character large object),
these fields are not included in the comparison. All other fields in the file are compared.

The online help provides more information about using the CMPJRNIMG command. To view the help, type
CMPJRNIMG on a command line, and press F1.

Work with IBM-supplied journals
The operating system and some licensed programs use journals to provide audit trails and assist with
recovery. The following table lists some of the IBM-supplied journals:

Journal name Library name Description

QACGJRN QSYS Keeps job accounting information. Work Management

describes using this optional journal.

QAOSDIAJRN QUSRSYS Provides recovery for the document library files and the
distribution files. Used by Integrated xSeries Server.

QAUDJRN QSYS Keeps an audit record of security-relevant activity on the
system. iSeries Security Reference

describes using this optional journal.

QCQJMJRN QUSRSYS Provides an audit trail for Managed System Services.

QDSNX QUSRSYS Provides an audit trail for DSNX activity.

QLYJRN QUSRSYS Keeps a log of transactions made to the Application
Development Manager datastore files. Used by the
system if recovery is necessary. The ADTS/400:
Application Development Manager User’s Guide

provides more information about this journal.

QLYPRJLOG QUSRSYS Keeps the project logs for the Application Development
Manager licensed program. Used by the system if
recovery is necessary. The ADTS/400: Application
Development Manager User’s Guide

provides more information about this journal.

QLZALOG QUSRSYS Used by the licensed management program to log
requests that exceed the usage limit of a license.

QPFRADJ QSYS Keeps a log of dynamic performance tuning information.
Work Management

describes using this optional journal.

Journal management 59

../../books/c4153063.pdf
../../books/c4153026.pdf
../../books/c0921332.pdf
../../books/c0921332.pdf

Journal name Library name Description

QSNADS QUSRSYS Provides an audit trail for SNADS activity.

QSNMP QUSRSYS Provides an audit trail for network management
information. Simple Network Management Protocol
(SNMP) Support

describes using this journal.

QSXJRN QUSRSYS Provides a log of the activity that occurs in the database
files for service-related activity. The information in this
journal should be kept for 30 days.

QVPN0001 QUSRSYS Provides an audit trail for Virtual Private Networking
(VPN) connections. TCP/IP Configuration and Reference

describes this journal.

QZCAJRN QUSRSYS Contains a record for each SNMP PDU in and out of the
SNMP agent, by PDU type (SNMP GET, SNMP
GETNEXT, SNMP SET, SNMP TRAP). TCP/IP
Configuration and Reference

provides more information about this journal.

QZMF QUSRSYS Provides an audit trail for the mail server framework.
AnyMail/400 Mail Server Framework Support

provides more information about this journal.

If you are using licensed programs or system functions that require these journals, you should consult the
documentation for those functions for instructions on how to manage the journals and journal receivers.

In general, you should swap journal receivers to detach the journal receiver and create and attach a new
receiver on a regular basis. You may need to save detached receivers before deleting them, or you may
be able to delete them without saving them. This depends on how the journal receivers are being used
and whether the journal is using system journal-receiver management.

In some cases, you can use the automatic cleanup function of Operational Assistant to remove detached
journal receivers that are no longer needed. Cleaning up your system to improve performance describes
using the automatic cleanup function.

Send your own journal entries
Use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to add
your own entries to a journal. The system places these entries in the journal’s attached journal receiver
along with the system-created journal entries.

To help identify your entries, you can associate each entry with a particular journaled object. If you use the
QJOSJRNE API, you can include the commit cycle identifier with the journal entry and send a larger
amount of entry-specific data.

You may add entries to the journal to identify significant events (such as a checkpoint) or to help in the
recovery of your applications. On the SNDJRNE command, the data specified on the ENTDTA parameter
becomes the Entry-Specific Data field in the journal entry, and the TYPE parameter value becomes the

60 iSeries: Journal management

../../books/c4154204.pdf
rzakiswapjrnrcv.htm
../rzal2/rzal2perftips.htm

entry type field. On the QJOSJRNE API, you use the entry data parameter to specify the entry-specific
data and the journal entry type parameter to specify the entry type. For both the command and API
deposits, the entries journal code is ’U’.

Change the state of local journals
You can change the journal state of the local journal to allow or disallow the deposit of journal entries. You
can also change the journal state of a remote journal to inactivate the replication of journal entries to that
remote journal.

Journal entries with journal code ’J’ and entry types ’LA’ and ’LI’ are deposited when the local journal is
activated and inactivated respectively. For journal standby state, journal codes ’J’ and entry types ’SI’ and
’SX’ are deposited when the local journal is put into and out of standby respectively.

Activate a local journal

When a local journal is created, the journal state of that journal is *ACTIVE. This means that journal
entries can be deposited to the local journal. If a local journal has been inactivated, activate it by doing the
following:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to work with and Libraries.

4. Click on the library that contains the journal you want to activate.

5. Right-click the journal, and select Properties.

6. On the Journal Properties dialog select Activate journal

You can also use the Change Journal State (QjoChangeJournalState) API or Change Journal (CHGJRN)
command to activate the local journal.

Inactivate a local journal

Inactivating a local journal changes the journal state for the local journal to *INACTIVE which prevents
additional journal entry deposits. You can use iSeries Navigator to inactivate a journal. Follow the steps in
Activate a local journal, but deselect Activate journal in the last step.

You can use the Change Journal State (QjoChangeJournalState) API or Change Journal (CHGJRN)
command to inactivate a local journal.

Inactivating a local journal is useful when you are performing a planned switch-over of a primary system
to a backup system or a switch-back from a backup system to a primary system.

A switch-over describes the processing that a hot-backup application performs to logically promote a
backup system to assume the role of a primary system. A switch-back describes the processing a
hot-backup application performs to allow the primary system to reassume its role from a previously
promoted backup system.

The function is intended to prevent additional journal entry deposits into the local journal of those journal
entries that would affect the data content for journaled objects or for user-generated journal entries. A local
journal can be inactivated with journaled objects open and in-use. If this occurs, additional operations that
attempt to generate journal entries will result in an Entry Not Journaled exception (CPF7003) being
signaled to the application. The reason code for the exception will be code 10. An Entry Not Journaled
exception will also be signaled if you attempt to send user journal entries to an inactivated local journal.
You can attempt to send the user journal entries with the Send Journal Entry (SNDJRNE) command or the
Send Journal Entry (QJOSJRNE) API interfaces.

Journal management 61

../apis/QJOCHGST.htm
../apis/QJOSJRNE.htm

You can change the journal state for a local journal to *INACTIVE at any time, with the following
exceptions:

1. If any commitment control transaction that is associated with the journal has any pending changes.
This would include database files that are journaled to the local journal that was opened under
commitment control with pending changes. This would also include API commitment control resources
that use the journal.

2. If any restore operation is in progress on the system.

Journal standby state

Journal standby state is a separately purchased feature that prevents most journal entries from being
entered into the journal. The advantage to journal standby over inactive is if there is an attempt to deposit
a journal entry, there are no error messages indicating that the entry was not deposited. You can also tart
or stop journaling while the journal is in standby. However, while a journal is in standby state, you cannot
use commitment control.

You can use the CHGJRN command to put the journal in standby state. You might want to put a journal in
standby state if the journal is on a backup system. By having the journal in standby state, a switchover to
the target system can be accomplished more quickly because all objects on the backup system can be
journaled thus allowing the switchover processing to skip the costly step of starting journaling for all
objects. At the same time though, the backup system is not incurring the overhead of journaling because
most journal entries are not deposited when the journal is in standby state. However, if there is an attempt
to deposit a journal entry when the journal is in standby state, no entry is deposited, and no error
messages are sent to the application.

Exceptions to journal standby and inactive states

For both inactive and standby states, there are some journal entries that will be deposited in a journal,
even though the journal state is *STANDBY or *INACTIVE.

The Journal Code Finder lists which journal entries will still be deposited even though the journal not
active.

Scenario: Journal management
Sharon Jones, the system administrator for the JKL Toy Company, is responsible for backing up their
servers and making sure that their servers can be recovered in the event of a natural disaster or system
failure. As security officer, she is also responsible for ensuring the security of the servers.

The JKL Toy Company has a network that consists of a development server, a production server, and an
http server. Click on a server on the diagram below for a description of the system and the journaling
strategy Sharon uses.

62 iSeries: Journal management

finder/rzakifinder.htm

JKLINT
JKLINT is the system that JKL uses for their Web site and e-mail. While this data is critical to their
business, it is fairly static.

They need 24x7 availability for the critical data on this server, and they accomplish that by having a
second server, JKLINT2, that shadows JKLINT. They use a high availability replication solution to copy the
data from JKLINT to JKLINT2. Then, if JKLINT goes down, they can switch to JKLINT2.

Since Sharon is using a high availability solution she uses remote journaling with the two servers.
Scenarios: Remote journal management and recovery description shows the different ways that Sharon
can set up remote journaling between JKLINT and JKLINT2.

Back to the scenario.

JKLDEV
JKLDEV is JKL’s development server. Though it does not require 24x7 availability, the data on it represent
many person hours of work by the developers. Therefore it is important that in the event of a crash, the
system be brought to a current state. Also, since it is a development server, changes to the data occur
often.

JKLDEV is used by both web and database developers. So several different types of data are stored on
this server, including stream files and database files.

Journal management 63

rzakijournalscenario.htm

JKLDEV journaling strategy

Since many of the objects on JKLDEV are important and changes often, Sharon has decided that they are
good candidates for journaling.

JKLDEV is used by both web and database developers, so there are several physical files, and many
stream files that she wants to journal. Sharon has decided to do the following:

v Since none of the access paths are critical to her operation, Sharon does not journal access paths.

v To simplify setup and recovery, Sharon assigns all of the objects to one journal.

v Since there are many stream files to journal, Sharon journals the integrated file system directories,
instead of individual files. She elects to use the Current folder and all subfolders option and Journal
new files and folders option. This choice ensures that the objects in the subfolders are journaled and
objects that are created in the future are also journaled.

v Since journaling with the Journal new files and foldersoption can quickly make the journal receiver
size grow quickly, she uses system journal-receiver management.

v Because it supports all of the options she has chosen, Sharon sets up journaling on iSeries Navigator.

Back to the scenario.

JKLPROD
JKLPROD is the system that JKL uses for all of their customer orders and where their business
applications are installed (inventory control, customer orders, contracts and pricing, accounts receivable).
The information on this server is extremely critical to their business and changes often.

Also, there are several users who have remote access to the system from home connection. In addition,
even though the company’s web site is static, the company has plans to establish a transactional site.
Because of the the importance of the information on JKLPROD, Sharon wants to be able to audit the the
activity that occurs on the system.

JKLPROD journaling strategy

Since the objects on JKLPROD are crucial to JKL, and since they change often, Sharon has decided that
they are good candidates for journaling.

v Since there are access paths that are critical to her operation, Sharon journals access paths.

v Sharon already separates the information on JKLPROD on separate disk pools:

– Disk pool 2 - inventory control

– Disk pool 3 - customer orders

– Disk pool 4 - contracts and pricing

– Disk pool 5 - accounts receivable

Since the journal and the journaled objects must be in the same disk pool, Sharon creates four journals.

v Since she wants to audit the activity that occurs on the system, and since people have remote access
to the system, Sharon journals fixed-length data using the following values:

– Job name (*JOB)

– User profile (*USR)

– Program name (*PGM)

– Remote address (*RMTADR)

v Since Sharon is using the FIXLENDTA parameter, she cannot minimize the fixed-length portion of the
journal entries.

v Because she is using the FIXLENDTA parameter for all of the journals, and since she is journaling
access paths Sharon uses the character-based interface to set up journaling.

64 iSeries: Journal management

rzakijrnap.htm
rzakijournalscenario.htm
rzakijrnap.htm
rzakiguivsgs.htm

Back to the scenario.

Recovery operations for journal management
The following information contains recovery tasks to perform if you have an abnormal system end, need to
recover a damaged journal, journal receiver, or journaled object:

v Determine recovery needs using journal status

v Recovery for journal management after abnormal system end

v Recover a damaged journal receiver

v Recover damaged journal

v Recover journaled objects

Determine recovery needs using journal status
You can use the Work with Journal (WRKJRN) command to display the damage status of a journal and
display whether or not the last IPL was normal.

Option 5 on the Work with Journal display shows the current status of the journal. It shows if the last
system end was NORMAL or ABNORMAL, and if the journal is damaged. The damage status is NONE or
FULL.

If the last system end was abnormal, this display indicates whether the system synchronized the journaled
objects or not. This indicates if the system synchronized each object in use during the abnormal end to
match the entries in the attached journal receiver during the previous initial program load (IPL) or vary on
of an independent disk pool.

Journal management 65

rzakijournalscenario.htm
rzakidspstat.htm
rzakirecvabnend.htm
rzakirecovrcvdmg.htm
rzakirecovjrndmg.htm
rzakiapyjrnchg.htm

If the last system end was normal, the display indicates that all objects are synchronized with the journal.
If the journal is damaged, the display indicates that the system was unable to determine whether or not all
objects are synchronized.

The display also presents information about the currently attached receiver and its damage status. The
damage status of the receiver can be NONE, PARTIAL, or FULL. If the journal damage is such that the
system cannot determine the status of the attached journal receiver, no attached receiver shows on the
display.

If some objects are not synchronized or damage has been detected, a message appears indicating the
form of recovery that you should perform.

Recovery for journal management after abnormal system end
If the system abnormally ends while you are journaling objects, the system does the following:

1. Brings all journals, journal receivers, and objects you are journaling to a usable and predictable
condition during the IPL or vary on of an independent disk pool, including any access paths being
journaled and in use at the time the system abnormally ended.

2. Checks all recently recorded entries in the journal receivers that were attached to a journal.

3. Places an entry in the journal to indicate that an abnormal system end occurred. When the system
completes the IPL or vary on of an independent disk pool, all entries are available for processing.

4. Checks that the journal receivers attached to journals can be used for normal processing of the journal
entries. If some of the objects you are journaling could not be synchronized with the journal, the
system sends message CPF3172 to the history log (QHST) that identifies the journals that could not
be synchronized. If a journal or a journal receiver is damaged, the system sends a message to the
history log identifying the damage that occurred (message CPF3171 indicates that the journal is
damaged, and messages CPF3173 or CPF3174 indicate that the journal receiver is damaged).

5. Recovers each object that was in use at the time the system ended abnormally, using the normal
system recovery procedures for objects.

In addition, if an object being journaled was opened for output, update, or delete operations, the
system performs the following functions so changes to that object will not be lost:

a. Ensures that the changes appear in the object. Changes that do not appear in the journal receiver
are not in the object.

b. Places an entry in the journal receiver that indicates whether the object was synchronized with the
journal. For database files, if the file could not be synchronized with the journal, the system places
message CPF3175 in the history log identifying the failure, and you must correct the problem. For
other journaled objects, the system places message CPF700C in the history log identifying the
failure, and you must correct the problem.

A synchronization failure can occur if the data portion of the object is damaged, a journal receiver
required to perform the synchronization is damaged, or the journal is inoperable.

Recover after abnormal system end

After an abnormal system end, perform the following steps:

1. Perform a manual IPL.

2. Check the history log to determine if there are any damaged objects, objects that are not
synchronized, or any damaged journals or journal receivers.

3. If necessary, recover the damaged journals or journal receivers as described in Recover a damaged
journal receiver and Recover a damaged journal.

4. If there is a damaged object:

a. Delete the object.

b. Restore the object from the latest saved version.

66 iSeries: Journal management

rzakirecovrcvdmg.htm
rzakirecovrcvdmg.htm
rzakirecovjrndmg.htm

c. Allocate the object so no one else can access it.

d. Restore the needed journal receivers from newest to oldest, if they are not online.

Note: Journal receivers that are created on Version 3 Release 1
or later do not need to be restored in a particular
sequence. The system establishes the receiver chains
correctly when they are restored.

e. Use the APYJRNCHG command to apply the changes to the object.

f. Deallocate the object.

5. If an object could not be synchronized, use the information in the history log and in the journal to
determine why the object could not be synchronized and how to proceed with recovery. For example,
you may need to use the DFU or a user-written program to bring a database file to a usable condition.

6. Determine which applications or programs were active, and determine where to restart the applications
from the information in the history log and in the journal.

If a journaled access path is in use during an abnormal system end, that access path does not appear on
the Edit Rebuild Access Path display.

If the maintenance for the access path is immediate or delayed, the system automatically recovers the
access path during IPL or vary on of an independent disk pool. A status message appears for each access
path whose maintenance is immediate or delayed as it is being recovered during an IPL or vary on of an
independent disk pool. The system places message CPF3123 in the system history log for each access
path that is recovered through the journal during the IPL or vary on of an independent disk pool. This
message appears for access paths that are explicitly journaled and for access paths that are protected by
SMAPP.

Recover a damaged journal receiver
If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to
the system operator and the job log.

If a journal receiver becomes damaged, there are two ways you can recover from it:

v Recover from a damaged receiver manually

v Recover from a damaged receiver with the Work with Journals (WRKJRN) command. It is
recommended that you use the WRKJRN command.

Recover from a damaged receiver manually

1. If the damaged receiver is currently attached to a journal, swap the journal receiver to attach a new
receiver and detach the damaged receiver.

2. If the journal receiver is not currently attached to a journal, delete the journal receiver and restore a
previously saved copy.

3. If the journal receiver was never attached to a journal, delete the receiver and create it again or restore
it.

If the journal receiver is partially damaged, all journal entries except those in the damaged portion of the
journal receiver can be viewed using the Display Journal (DSPJRN) command. Using this list, you can
determine what you need to do to recover your objects. Applying or removing journal changes cannot be
done with a partially damaged journal receiver.

Recover from a damaged receiver with the WRKJRN command

To use the Work with Journals display to recover damaged journal receivers, use Option 7 (Recover
damaged journal receivers). Option 7 checks to determine which journal receivers that are associated with
the specified journal are damaged. If none are damaged, a message appears.

Journal management 67

rzakiswapjrnrcv.htm
rzakideletercv.htm
../cl/dspjrn.htm

If there are damaged journal receivers associated with the specified journal, the Recover Damaged
Journal Receivers display appears and lists those receivers.

The status fields initially show a value of DAMAGED. After recovery has been successfully completed, the
status shows a value of RECOVERED (receiver recovered).

To view the online help, type WRKJRN at a command line, and press F1. The online help also contains a
description of the journal menus.

Recovery for a damaged journal receiver guides you through the following steps:

1. If the attached receiver is damaged, you must run a Change Journal (CHGJRN) command to attach a
new receiver.

Indicate that you want to create a new receiver. The system presents the Create Journal Receiver
(CRTJRNRCV) command prompt for receiver name and attributes. After you create the new receiver,
the system shows the CHGJRN command prompt.

If the attached receiver is not damaged, the preceding step is omitted.

2. The damaged journal receiver is deleted.

3. A prompt for the restore of the damaged journal receiver is shown. Any of the values on the prompt
can be changed except the receiver name. Save information in the prompt is provided by the system.

Recover a damaged journal
If a journal becomes damaged, the system sends message CPF8135 to the system operator and to the
job log.

Use the following steps to recover a damaged journal:

1. End journaling for all access paths associated with the journal by using the End Journal Access Path
(ENDJRNAP) command.

2. End journaling for all physical files associated with the journal by using the End Journal Physical File
(ENDJRNPF) command.

3. End journaling for all integrated file system objects by using the End Journal (ENDJRN) command.

4. End journaling for all other object types by using the End Journal Object (ENDJRNOBJ) command.

5. Delete the damaged journal by using the Delete Journal DLTJRN command.

6. Create a journal receiver (CRTJRNRCV command) and create a journal with the same name and in
the same library as the damaged journal (CRTJRN command), or restore the journal from a previously
saved version.

7. Start journaling the physical files that were journaled by using the Start Journal Physical File
(STRJRNPF) command.

8. Start journaling the access paths that were journaled by using the Start Journal Access Path
(STRJRNAP) command.

9. Start journaling integrated file system objects with the Start Journal (STRJRN) command.

10. Start journaling other object types with the Start Journal Object (STRJRNOBJ) command.

Note: You can also restore your journaling environment by
deleting and restoring all the objects that were being
journaled. Objects that were journaled at the time of their
save automatically begin journaling at restore time if the
journal is online.

11. Save the journaled objects to allow for later recovery.

12. Associate the old journal receivers with the new journal. Do the following:

a. Type WRKJRN and press the Enter key.

b. On the prompt display, enter the name of the journal.

68 iSeries: Journal management

../cl/crtjrnrc.htm
../cl/crtjrnrc.htm
rzakirecvwithjrn.htm

c. From the Work with Journal display, select option 9 (Associate receivers).

d. Press F12 to cancel the display.

e. Type WRKJRNA JRN(library-name/journal-name) and press the Enter key.

f. From the Work with Journal Attributes display, press F15 to display the receiver directory. If the
journal receivers have not been reassociated correctly, perform the following steps. These steps
are usually required only if you have journal receivers created before V3R1.

1) Save the journal receiver that was attached to the damaged journal.

2) Delete it and restore it and any previously attached journal receiver you need. You must delete
and then restore the receiver after the journal is restored or re-created in order to associate
the journal receiver with the journal. The journal receiver must be restored newest to oldest.

3) Use the WRKJRNA command to display the receiver directory again.

Each time a journal is restored, a new receiver chain is started because the last journal receiver on the
chain that existed prior to the restore process did not have the newly created receivers as its next
receivers.

Note: If the damaged journal had any remote journals
associated with it, use the Add Remote Journal
(QjoAddRemoteJournal) API or ADDRMTJRN command to
reassociate those remote journals. See Add remote
journals for more information.

You can also use the WRKJRN command to recover a damaged journal. However, it is recommended that
you use the WRKJRN command to recover a damaged journal if you are only journaling physical files and
access paths to this journal.

Associate receivers with journals: You should use Option 9 on the Work with Journals display if the
journal was restored or created again. The system associates all applicable receivers with the restored or
recreated journal so that a restore of these receivers is not necessary.

A journal receiver is associated with a journal if the journal receiver appears in the journal receiver
directory. A receiver that was previously attached to a journal but is not currently associated with a journal
cannot be used with the journal commands, such as:

v Display Journal (DSPJRN)

v Apply Journaled Changes (APYJRNCHG)

v Remove Journaled Changes (RMVJRNCHG)

Recover a damaged journal with the WRKJRN command: The Work with Journal (WRKJRN)
command performs all the steps that are described below except for saving the physical files and logical
files. The WRKJRN command associates the receivers with the recovered journals without you having to
delete and restore the receivers. However, it only works if you are journaling only access paths or
database files only.

Option 6 on the Work with Journals display verifies that the journal is damaged before proceeding with
recovery. If the journal is not damaged, an information message appears.

For a description of the Work with Journals display, see the WRKJRN command in the online command
help. To view the help, type WRKJRN on a command line, and press F1.

Recovery for a damaged journal guides you through the following steps:

1. The system attempts to determine which files are currently being journaled to the indicated journal. If
the system cannot successfully build this list, a message appears before the recovery operation
begins.

Journal management 69

rjournals/rzakiaddremj.htm
rjournals/rzakiaddremj.htm
rzakirecovjrn.htm
../cl/dspjrn.htm
../cl/apyjrnch.htm
../cl/rmvjrnch.htm
../cl/wrkjrn.htm

2. Journaling, for all access paths that are currently being journaled to the specified journal, is ended.

3. Journaling, for all files that are currently being journaled to the specified journal, is ended .

4. The system deletes the journal.

5. The system presents the Recover Damaged Journal display, which asks you whether to restore or
create the journal:

a. If the journal will be restored, the system prompts for the values that are needed for the restore
operation.

b. If the journal will be created, the system prompts for the receiver names and attributes with the
CRTJRNRCV command prompt. The system prompts for values needed to create the journal with
the CRTJRN command prompt, with known values that are shown.

6. The list of files for which journaling is to be started again is shown. When you press the Enter key,
journaling is started for all files that are listed.

7. The list of files that contains access paths for which journaling is to be started again appears. When
you press the Enter key, journaling for the access paths is started for the files that are listed.

8. The system associates all applicable receivers with the re-created or restored journal so that a restore
of these receivers is not necessary.

A journal receiver is associated with a journal if the journal receiver appears in the journal receiver
directory. A receiver that was previously attached to a journal, but is not currently associated with a
journal, cannot be used with the journal commands such as Display Journaled Changes (DSPJRN),
Apply journaled changes (APYJRNCHG), and Remove Journaled Changes (RMVJRNCHG).

As the recovery of a damaged journal proceeds, the Display Journal Recovery Status display appears.
The information on this display is updated as the operation progresses to indicate which steps have been
completed, which steps have been bypassed, and which step will be run next. Whenever a user action is
required, the status display is replaced by the appropriate prompt display.

The status field indicates the following operation status:

v PENDING. The step has not been started.

v NEXT. The step will be performed next (after the Enter key is pressed).

v BYPASSED. The step was not performed. (It was not necessary).

v COMPLETE. The step has been performed.

The first display you usually see after the first status display is the Recover Damaged Journal display. Use
this display to choose whether the journal is to be created or restored.

When the last step of the recovery process is complete, a message appears indicating that all files for
which journaling was started should be saved to establish a new recovery point.

If the damaged journal had any remote journals associated with it, use the Add Remote Journal
(QjoAddRemoteJournal) API or ADDRMTJRN command to reassociate those remote journals. See Add
remote journals for more information.

Recover journaled objects
One of the primary advantages of journaling is its ability to return a journaled object to its current state
since the last save. You can recover from many types of damage to journaled objects by using journaled
changes. For example, an object is damaged and becomes unusable, an error in an application program
caused records to be improperly updated, or incorrect data was used to update an object. In each of these
instances, simply restoring a saved version of the object may result in the loss of a significant amount of
data.

70 iSeries: Journal management

../cl/dspjrn.htm
../cl/apyjrnch.htm
../cl/rmvjrnch.htm
../apis/QJOADDRJ.htm
../apis/QJOADDRJ.htm
../cl/addrmtjr.htm
rjournals/rzakiaddremj.htm
rjournals/rzakiaddremj.htm

You can use partial receivers to apply or remove changes from an object. If you attempt to restore a saved
receiver while a more current version of the receiver is on the system, an escape message is sent to
prevent you from restoring the receiver. The system makes sure that the most complete version is
preserved.

You can use a partial receiver as the last receiver in the receiver chain for an APYJRNCHG command only if
you specify a sequence number for the TOENT parameter. You can use a partial receiver as the first
receiver in the receiver chain for a RMVJRNCHG command only if you specify a sequence number for the
FROMENT parameter.

If you use the Apply Journaled Changes (APYJRNCHG) command to apply journaled changes,
significantly less data may be lost. You can use the Remove Journaled Changes (RMVJRNCHG)
command to recover from improperly updated records or incorrect data if before-images have been
journaled. This command removes (or backs out) changes that were made to an object.

Use the APYJRNCHG command to apply changes to these object types:

v Database file member

v Integrated file system object

v Data area

Use the RMVJRNCHG command to remove changes that were made to these object types:

v Database file member

v Data area

To use the APYJRNCHG or RMVJRNCHG command to recover an object, the object must be currently
journaled. The journal entries must have the same journal identifier (JID) as the object. To ensure the
journal identifiers are the same, save the object immediately after journaling is started for the object and
each time a member is added to the database file or an integrated file system object is added to a
directory with the inherit journaling option on.

To apply or remove journaled changes to or from a restored copy of the object, you must have already
saved the object while it was being journaled. Why you must save objects after you start journaling has
more information about saving journaled objects and about JIDs.

If you need to recover objects that were journaled to a journal that you deleted, restore the journal from a
saved copy or create a new journal with the same name in the same library. Then restore all the needed
receivers before using the APYJRNCHG or RMVJRNCHG command to apply or remove changes with that
journal. You can use an option on the Work with Journals display to reassociate any journal receivers that
are still on the system (if they were created on Version 3 Release 1 or later). Use the Work with Journals
(WRKJRN) command. If the receivers were created on earlier versions, you must restore them from
newest to oldest.

Some types of entries in the journal receiver cause the apply or remove process to stop. These entries are
written by events that the system cannot reconstruct. When one of these events is encountered, the
process ends and a message is sent indicating the sequence number of the last journal entry that was
successfully applied or removed and the reason the process ends. Certain illogical conditions, such as a
duplicate key in a database file defined as unique, can also cause processing to end.

Actions of the APYJRNCHG or RMVJRNCHG command by journal code shows how the APYJRNCHG and
RMVJRNCHG commands handle journal entry types. It shows which entry types cause processing to end
and what processing is done when the entry is applied or removed.

The following topics provide information about how to apply and remove journaled changes.

v Apply journaled changes

Journal management 71

../cl/apyjrnch.htm
rzakiwhysavjrn.htm
rzakijrncodes.htm

v Remove journaled changes

v Journaled changes with trigger programs

v Journaled changes with referential constraints

v Actions of the APYJRNCHG or RMVJRNCHG command by journal code

v Example: Apply journaled changes

v Example: Remove journaled changes (RMVJRNCHG)

Apply journaled changes: If an object becomes damaged or is not usable you can recover the object
using the Apply Journaled Changes (APYJRNCHG) command. You must first reestablish the object to a
condition that you know is undamaged.

v To reestablish the object, restore the last saved copy of the object. The object must have been saved
while it was being journaled.

v If you saved a database physical file by using the Copy File (CPYF) command, use the CPYF
command to restore the member.

v If the member of a database physical file was just initialized, initialize the member again using the
Initialize Member (INZPFM) command or a user-created application program.

v If a member of a database physical file was just reorganized, reorganize the member again using the
Reorganize Physical File Member (RGZPFM) command.

For more information about the CPYF, INZPFM, and RGZPFM commands, refer to the online help.

You must restore the needed journal receivers if any of the following are true:

v If the journal receivers were deleted since the object was last staved (or some other point).

v If the journal receivers were saved with their storage freed.

The system applies the changes to the object in the same order as they were originally made. When you
use the APYJRNCHG command, the object cannot be in use by anyone else.

When the condition of the object has been established, use the APYJRNCHG command to apply the
changes that are recorded in the journal to the object. On the APYJRNCHG command, specify the first
journal entry to be applied to the object. This entry can be selected from any of the following points:

v After the last save of the object

v From the first journal entry

v From an identified sequence number that corresponds to a date and time stamp

v From an identified sequence number that corresponds to the start or end of a particular job’s use of the
object provided that you did not specify one of the following:

– OMTJRNE(*OPNCLO) when starting journaling for the object

– OMTJRNE(*OPNCLOSYN) when starting journaling for a directory or stream file

– RCVSIZOPT(*MINFIXLEN) for the journal at any time while the object was journaled

– A FIXLENDTA option that omitted the job name

v A specific sequence number.

You can stop applying the journal entries at:

v The end of the data in the last journal receiver in the receiver range

v A particular entry in the journal

v A date and time stamp

v A commitment boundary

v The start or end of a particular job’s use of the data in the object provided you did not specify the
following:

– OMTJRNE(*OPNCLO) when starting journaling for the object

72 iSeries: Journal management

../cl/apyjrnch.htm
../cl/inzpfm.htm
../cl/rgzpfm.htm

– OMTJRNE(*OPNCLOSYN) when starting journaling for a directory or stream file

– RCVSIZOPT(*MINFIXLEN) for the journal at any time while the object was journaled

– A FIXLENDTA option that omitted the job name

v The journal entry that indicates when the object was last restored

v A specific sequence number

You can ensure that commitment transaction boundaries are honored on the apply journaled changes
operations by using the commit boundary (CMTBDY) parameter on these commands.

If the system encounters a journal entry that causes the apply or remove process to stop, the commitment
boundary may not be honored. Actions of the APYJRNCHG or RMVJRNCHG command by journal code
shows which entry types cause processing to end.

Use the Display Journal (DSPJRN) command to identify the desired starting and ending points. If you use
a control language (CL) program for your recovery procedures, use the following:

v Receive Journal Entry (RCVJRNE) command to receive journal entries as they are written to the journal
receiver.

v Retrieve Journal Entry (RTVJRNE) command to retrieve a journal entry and place it in program
variables.

You can also use the QjoRetrieveJournalEntries API to retrieve the information into a High Level Language
(HLL) program.

When you apply journaled changes to integrated file system objects, you need to be aware of integrated
file system considerations.

If you are journaling only access paths or database physical files, another way to apply journaled changes
is to Apply journaled changes with the WRKJRN command following the prompts.

Apply journaled changes with the WRKJRN command: The Work With Journal (WRKJRN) command only
works if you are journaling only access paths or database files. To apply journaled changes with the
WRKJRN command select Option 2 (Work with Forward Recovery). The Work with Forward Recovery
display contains a status field for each file member. For a description of the journal options, see the online
information for the WRKJRN command by pressing F1. The status field for each member indicates the
following:

v NOT FOUND

v DAMAGED

v NOT SYNCHRONIZED

v RESTORE COMPLETE

v RECOVERED

v NOT JOURNALED

v DIFFERENT JOURNAL

v Blank

Journal management 73

rzakijrncodes.htm
../cl/dspjrn.htm
../cl/rcvjrne.htm
../cl/rtvjrne.htm
../apis/QJORJRNE.htm
rzakiifsconsid.htm
rzakiifsconsid.htm

The Work with Forward Recovery display looks like the following figure:

Tasks with the Work With Forward Recovery display

You can use the Work With Forward Recovery display to perform the following tasks:

Add member to list
To add a member to the list on the display use Option 1 (Add member to list) to add a member to the
list. Do this if you want to restore those members.

Apply journaled changes
To apply journaled changes to a member use Option 2 (Apply journaled changes). This option applies
journaled changes and changes the status to RECOVERED (if the apply operation was successful).
If the apply operation was not successful, messages appear indicating why, and the status remains
the same. If any required receivers are missing or damaged while running the APYJRNCHG
command, the system displays prompts for the restore procedures for the missing or damaged
receivers.

If any of the members in the list have a status of DAMAGED when use option 2, the system prompts
you with the command necessary to recover the file member. For files that are damaged, recovery
involves the restore of the last save that is followed by the Apply Journaled Changes (APYJRNCHG)
command. The system guides you through recovery as follows:

1. The system identifies all the logical files dependent on the specified damaged file. The
Dependent Logical Files display appears identifying these files.

2. The dependent logical files are deleted.

3. The system deletes the files to be recovered (or restored).

74 iSeries: Journal management

4. The system displays prompts for the restore of files to be recovered. After all restores are
completed successfully, the files to be recovered are allocated exclusively to prevent any other
processing. This allocation is maintained until the recovery procedures are complete.

5. The system displays prompts for the restores of the dependent logical files.

6. An APYJRNCHG command is prompted with FROMENT(*LASTSAVE) and TOENT(*LASTRST).

7. If the APYJRNCHG command encounters a required journal receiver that is not online, the
system prompts for the restore of the required receiver and again starts the APYJRNCHG
command.

When the recovery process is complete, the status field for the member indicates RECOVERED (if
the operation was successful). If the operation failed, the status field remains unchanged, and
messages appear indicating why the operation failed.

Restore members with status of NOT FOUND
If any members have a status of NOT FOUND use Option 3 (Restore). This option prompts you for
the files to restore. Members that are restored successfully have a status of RESTORE COMPLETE.
Members that are not restored keep their old status. A message is sent indicating that the restore did
not complete successfully. All members that are restored are included in the list of members to
recover.

Note: The last save information is provided for the restore
operation. If either of the following are true, the you must
use the RSTOBJ command instead of Option 3 (Restore):

v The device provided is tape, diskette, or optical and you
choose to restore from a save file (*SAVF).

v The device provided is a save file (*SAVF) and you
choose to restore from tape, diskette, or optical media.

Remove member from list
To remove a member from the list, use Option 4 (Remove member from list). Option 4 removes file
members from the list of members to be recovered.

Integrated file system considerations for applying journaled changes: Sometimes, if there is a create or
delete entry in range of journal entries being applied, an apply of journaled changes to a directory could
cause the creation or deletion of an object. This is different than what occurs for database physical files.

If you are journaling a directory with the Journal new files and folders (INHERIT(*YES)) option, and an
object is created into that directory, the system will automatically start journaling that object and deposit
associated create and start journal object journal entries. The apply of these create and start journal
entries during the apply operation on the directory will then create the objects and start journaling for them
during the apply. For any subsequent journaled entries for that object, the apply operation will apply any
entries that it encounters for that object as well. Similarly, if an entry is encountered which deletes an
integrated file system object, that object is actually deleted as part of the apply operation.

Additionally, the apply operation can include applying any integrated file system journal entry that adds a
link to the journaled directory, such as moving a non-journaled object into the journaled directory, or adding
a new hard link to a non-journaled object into this journaled directory.

As objects are created, they are included in the maximum number of objects which can be applied as part
of one Apply Journaled Changes (APYJRNCHG) request. But, even though objects are deleted, they are
still included in the maximum number of objects which can be applied limit.

Many journaled integrated file system operations use system initiated commitment control for the duration
of the operation. These operations are not considered completed successfully unless the commitment

Journal management 75

control cycle is committed. Commitment control, here, refers to commitment control that the system
initiates. Integrated file system operations cannot be included in a user initiated commitment control cycle.

For integrated file system journal entries that are part of a commitment control cycle, you should not apply
individual entries from within the cycle without applying the entire commit cycle. Using the Commit
Boundary (CMTBDY(*YES)) parameter on the APYJRNCHG command can help enforce this. If you do not
use this option, and choose a specific starting point, you choose to start applying entries in a commit
cycle, from the Start of commit cycle (C SC) entry for that cycle. Likewise, if you choose to end applying at
a specific point, end on the Commit (C CM) or Rollback (C RB) entry for that cycle.

See Actions of the APYJRNCHG or RMVJRNCHG command by journal code for what operations are
applied for integrated file system related journal entries.

Remove journaled changes: Depending on the type of damage to the journaled object and the amount
of activity since the object was last saved, removing changes from the object can be easier than applying
changes to the object. Use the Remove Journaled Changes (RMVJRNCHG) command to remove changes
from an object if you are journaling before-images.

The RMVJRNCHG command removes changes in reverse chronological order, starting with the most
recent change.

On the RMVJRNCHG command, you identify the first journal entry to be removed from the object. This
entry can be from:

v The last journal entry that is contained within the range of journal receivers specified

v The entry that corresponds to the last save of the object

v An identified sequence number

You can control the changes that are removed from the object. For example, assume that an application
updated data incorrectly for a period of time. In this case, you can remove the changes from the object
until that application first opened the object.

You can stop removing journaled changes at:

v The end of data in the journal receivers. (This corresponds to the first journal entry that was recorded
on the range of journal receivers that are specified.)

v An identified sequence number that corresponds to a particular entry in the journal.

v The start of a particular job’s use of the object. You can only specify this if you did not specify any the
following:

– To exclude open and close journal entries (OMTJRNE(*OPNCLO))when starting journaling for the file

– To minimize fixed-length entries RCVSIZOPT(*MINFIXLEN) for the journal at any time while the
object was journaled.

– To omit a FIXLENDTA option that includes the job name.

You can ensure that commitment transaction boundaries are honored on the remove journaled changes
operations by using the CMTBDY parameter on these commands.

If the system encounters a journal entry that causes the apply or remove process to stop, the commitment
boundary may not be honored.

Use the Display Journal (DSPJRN) command to identify the desired starting and ending points. If you use
a control language (CL) program for your recovery procedures, use the following:

v Receive Journal Entry (RCVJRNE) command to receive journal entries as they are written to the journal
receiver.

76 iSeries: Journal management

rzakijrncodes.htm

v Retrieve Journal Entry (RTVJRNE) command to retrieve a journal entry and place it in program
variables.

You can also use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API to retrieve the information
into a High Level Language (HLL) program.

Another way to remove journaled changes is to Remove journaled changes with the WRKJRN command
and follow the command prompts.

Actions of the APYJRNCHG or RMVJRNCHG command by journal code shows which entry types cause
processing to end.

Remove journaled changes with the WRKJRN command: To remove journaled changes with the Work
With Journal (WRKJRN) command select Option 3 (Backout recovery). The Work with Backout Recovery
display shows list of the file members that are being journaled.

The Work with Backout Recovery display is useful because the system guides you through the process.
However, it works if you are journaling access paths or database files only.

The same options on the Work with Forward Recovery display are available on the Work with Backout
Recovery display. However, the option to restore the file is not valid for backout recovery. The status field
that is shown on the Work with Backout Recovery display is either blank or it indicates the same status as
for forward recovery, except for RESTORE COMPLETE.

For a description of the journal options, see the online information for the WRKJRN command by pressing
F1.

Tasks with the Work With Backout Recovery display

Journal management 77

rzakiwrkbkout.htm
rzakijrncodes.htm
rzakiwrkfwrdrecov.htm

You can use the Work With Backout Recovery display to perform the following tasks:

Add member to list
To add a member to the list select Option 1 (Add member to list).

Remove journaled changes
To remove journaled changes, select Option 2 (Remove journaled changes). Option 2 shows the
Remove Journaled Changes (RMVJRNCHG) command prompt, removes the journaled changes, and
changes the status to RECOVERED (if the operation was successful). If any required journal
receivers are missing or damaged while the RMVJRNCHG command is running, the system displays
prompts for the necessary restore procedures for the missing or damaged receivers. If the remove
operation was not successful, messages appear indicating why the status remains the same.

If any members in the list have a status of NOT FOUND or DAMAGED when on the Work with
Backout Recovery display, the operation is not allowed. These members must be recovered in a
forward fashion after they have been restored. Forward recovery of specific files must be used for
this type of recovery.

Remove member from list
Use Option 4 (Remove member from list) to remove file members from the list.

Journaled changes with trigger programs: The system does not call trigger programs when it is
applying or removing journal entries. If an event occurs that would normally cause a trigger program to
run, it is up to you to ensure that the processing performed by the trigger program is recovered correctly.

Normal recovery processing should work correctly if all of the following are true:

v The trigger program only performs processing on object types which can be journaled and applied

v The processed object types are journaled

v Journaled changes are applied to or are removed from all the objects that are affected by the trigger
program

If additional work is performed by the trigger program or objects other than object types which can be
journaled and applied are updated, you must use user-written programs to recover the work performed by
the trigger program.

If you use trigger programs to perform these actions, consider using the Send Journal Entry (QJOSJRNE)
API to send journal entries when trigger programs are called. See Send your own journal entries. To help
with recovery, you can develop a program to retrieve these entries and perform the same operations.

The output format for journal entries (except the *TYPE1, *TYPE2, and *TYPE3 formats) and the
QjoRetrieveJournalEntries API interface include information about whether a journal entry was created
because of actions that were performed when a trigger program was called.

Journaled changes with referential constraints: When you apply or remove journaled changes, journal
management does not support referential constraints. In the following cases, files may be in CHECK
PENDING status after you have applied or removed journaled changes:

v When you restore a file that already exists, the referential constraints for the system copy of the file are
used. Some of the journaled changes that you apply may have been valid with the referential
constraints that were associated with the saved copy. However, they are not necessarily valid with the
current referential constraints. If you have changed the referential constraints on the file, considering
doing one of the following before applying or removing journaled changes:

– Deleting the system copy and then restoring the file

– Recreating the changes to the referential constraints

78 iSeries: Journal management

../rzahf/rzahftriggers.htm
../apis/QJOSJRNE.htm
../apis/QJORJRNE.htm
../dbp/rbafomstrzahfrca.htm

When you apply or remove journaled changes, the system attempts to verify the referential constraints
at the end of the command, before returning control to you. This may result in a CHECK PENDING
status.

v Some referential constraints cause an action to another file. You may define a constraint so that deleting
a record in one file causes a related record to be deleted in another file. Because referential constraints
are not enforced when you apply journaled changes, the second delete operation does not happen
automatically. However, if you are journaling both files and applying journaled changes to both files, the
system applies the journal entry for the second file when it encounters it.

If one of the files in a referential constraint was not journaled or is not included when you apply or
remove journaled changes, the referential constraint will probably be put in CHECK PENDING status.

The output format for journal entries (except the *TYPE1, *TYPE2, and *TYPE3 formats) and the
QjoRetrieveJournalEntries API interface include information about whether a journal entry was created
because of changes that occurred to a record that was part of a referential constraint.

Actions of the APYJRNCHG or RMVJRNCHG command by journal code: The following table shows
the actions that are taken by the Apply Journaled Changes (APYJRNCHG) or Remove Journaled Changes
(RMVJRNCHG) command by journal code and entry type. If All is specified for the Entry Type, it indicates
that all entry types for that journal code have the specified actions taken by the APYJRNCHG or
(RMVJRNCHG) command.

Actions by journal code and entry type

Journal
code Entry type Operation APYJRNCHG RMVJRNCHG

A All Ignores Ignores

B AA Change audit attribute Attribute is changed Ignores

B AJ Start of apply Ends Ignores

B AT End of apply Ends Ignores

B BD Integrated file system object
deleted

Ignores Ignores

B B0 Begin create Ignores Ignores

B B1 Create summary Object is created and linked Ignores

B B2 Link to existing object Object is linked Ignores

B B3 Rename, move object Object is moved or renamed Ignores

B B4 Remove link (parent directory) Object link is removed Ignores

B B5 Remove link (link) Object link is removed Ignores

B CS Integrated file system object
closed

Ignores Ignores

B ET End journaling for object Ends Ignores

B FA Integrated file system object
attribute changed

Attribute is changed Ignores

B FC Integrated file system object
forced

Ignores Ignores

B FF Storage for object freed Ignores Ignores

B FR Integrated file system object
restored

Ends Ignores

B FS Integrated file system object
saved

Ignores Ignores

B FW Start of save Ignores Ignores

Journal management 79

../apis/QJORJRNE.htm
../cl/apyjrnch.htm
../cl/rmvjrnch.htm
../cl/rmvjrnch.htm

Journal
code Entry type Operation APYJRNCHG RMVJRNCHG

B JT Start journaling for object Ignores Ignores

B OA Change object authority Authority is changed Ignores

B OF Integrated file system object
opened

Ignores Ignores

B OG Change primary group Primary group is changed Ignores

B OI Object in use at abnormal end,
object is synchronized1

Ignores Ignores

B OI Object in use at abnormal end,
object is not synchronized1

Ends Ends

B OO Change Object Owner Owner is changed Ignores

B RN Rename file identifier File identifier renamed Ignores

B TR Integrated file system object
truncated

Object is truncated Ignores

B WA Write, after-image Object is updated Ignores

C All Ignores Ignores

D All Ignores Ignores

E EA Update data area, after image Data area modified Ignores

E EB Update data area, before image Ignores Data area modified

E ED Data area deleted Ends Ends

E EG Start journal for data area Ignores Ends

E EH End journal for data area Ends Ignores

E EI Data area in use, object
synchronized1

Ignores Ignores

E EI Data area in use, object not
synchronized1

Ends Ends

E EL Data area restored Ends Ends

E EM Data area moved Ignores Ignores

E EN Data area renamed Ignores Ignores

E EQ Data area changes applied Ends Ends

E ES Data area saved Ignores Ignores

E EU RMVJRNCHG command started Ends Ends

E EW Start of save for data area Ignores Ignores

E EX Data area changes removed Ends Ends

E EY APYJRNCHG command started Ends Ends

F AY Journaled changes applied Ends Ends

F CB Change File member Ignores Ignores

F CE Change end of data Member end of data
changed2

Ends

F CH File changed Ignores Ignores

F CL Member closed Ignores Ignores

F CR Member cleared Member cleared of all
records2

Ends

80 iSeries: Journal management

Journal
code Entry type Operation APYJRNCHG RMVJRNCHG

F DE Member deleted record count Ignores Ignores

F DM Delete member Ignores Ignores

F EJ End journaling Ends Ignores

F EP End journaling access paths Ignores Ignores

F FD Member forced to auxiliary
storage

Ignores Ignores

F FI Internal format information Ignores Ignores

F IU Member in use at abnormal end,
object synchronized1

Ignores Ignores

F IU Member in use at abnormal end,
object not synchronized1

Ends Ends

F IZ Member initialized Initialized records inserted in
member

Initialized records
deleted from member

F JM Start journaling member Ignores Ends

F JP Start journaling access paths Ignores Ignores

F MC Create member Ignores Ignores

F MD Member deleted Ends Ends

F MF Member saved with storage freed Ends Ends

F MM Member moved Ignores Ignores

F MN Member renamed Ignores Ignores

F MR Member restored Ends Ends

F MS Member saved Ignores Ignores

F OP Member opened Ignores Ignores

F PD Access path deleted Ignores Ignores

F PM Logical owning member of
access path moved

Ignores Ignores

F PN Logical owning member of
access path renamed

Ignores Ignores

F RC Journaled changes removed Ends Ends

F RG Member reorganized Ends Ends

F RM Member reorganized Ignores Ignores

F SA Start of APYJRNCHG Ends Ends

F SR Start of RMVJRNCHG Ends Ends

F SS Start of save active Ignores Ignores

I All Ignores Ignores

J All (Except
SI and SX)

Ignores Ignores

J SI Enter JRNSTATE(*STANDBY) Ends Ignores

J SX Exit JRNSTATE(*STANDBY) Ignores Ends

L All Ignores Ignores

M All Ignores Ignores

O All Ignores Ignores

Journal management 81

Journal
code Entry type Operation APYJRNCHG RMVJRNCHG

P All Ignores Ignores

Q All Ignores Ignores

R BR Before-image updated for
rollback operation

Ignores Record updated with
before-image

R DL Record deleted Record deleted Record updated with
before-image

R DR Record deleted for rollback
operation

Record deleted Record updated

R IL Increment record limit Ignores Ignores

R PT Record written to member Record written to member Record deleted from
member

R PX Record added directly to member Record added Record deleted from
member

R UB Record updated (before-image) Ignores Record updated with
before-image

R UP Record updated (after-image) Record updated with
after-image

Ignores

R UR After-image updated for rollback
operation

Record updated with
after-image

Ignores

S All Ignores Ignores

T All Ignores Ignores

U User-
specified

User entry Ignores Ignores

Notes:
1The Flag field in the journal entry indicates whether the object is synchronized (0 = object was
synchronized; 1 = object was not synchronized).

2Applying journaled changes stops at this entry if referential constraints that this entry violates are active
during the apply operation.

In addition to the entries that cause the command to end, the system ends the APYJRNCHG or
RMVJRNCHG command if any format error (such as an undefined entry for that file member) or logical
error (such as updating a record that has not been inserted or a duplicate key exception) is encountered
when the command is run.

For entries that end the APYJRNCHG or RMVJRNCHG command, a message identifying the reason for
the end is placed in the job log, and the corresponding change is not made to the object. The message
contains the sequence number of the journal entry on which the failing condition was detected. Analyze
the error, make the necessary correction, and then start applying or removing journal changes again using
the appropriate sequence number.

For example, if the entry that caused the APYJRNCHG command to end is entry code F of type RG, you
must reorganize the physical file member referred to in the journal entry. Use the same options that were
originally specified on the reorganize request when the journal entry was recorded in the journal receiver.
Resume applying journal changes by starting with the journal entry that follows the ’F RG’ reorganize
physical file member journal entry.

82 iSeries: Journal management

The APYJRNCHG and RMVJRNCHG commands send an escape message and end the operation if any
required journal receiver defined by the RCVRNG parameter is not on the system and associated with the
journal. Use the WRKJRNA command to select the Work with journal receiver directory display, to see
which journal receivers are on the system and associated with the journal. The escape message contains
the name of the required journal receiver if the reason code of message CPF7053 is 1 or if message
CPF9801 is sent.

When the processing of the APYJRNCHG or RMVJRNCHG command ends with an escape message, the
objects can be partially changed. To determine how many changes were applied or removed for each
object, review the diagnostic messages in the job log prior to the final escape message for each object, or
use the DSPJRN command to display the journal entries indicating completion of the command.

The command completion journal entries by object type are as follows:

Database physical file members
F journal code and an entry type of AY or RC

Integrated file system objects
B journal code and entry type of AJ

Data area objects
E journal code and entry type of EQ or EX

The Count field in the journal entry contains the number of journal entries that are applied or removed.

The system puts out a maximum of 8192 diagnostic messages from Apply or Remove Journaled Changes.
If you have more than 8192 objects with which you are working, then looking in the journal at the journal
entries is probably the best way to determine how many changes were applied to the objects.

For more information on the journal codes, entry types, and journal entries, see Journal entry information.

Example: Apply journaled changes: The following are examples of the Apply Journaled Changes
(APYJRNCHG) command applied to a database physical file, integrated file system object, and data area.

The following examples show database physical files, data areas, and integrated file system objects being
processed separately. However, you can use one APYJRNCHG command if you use the OBJ parameter
for files and data areas, and the OBJPATH parameter for the integrated file system objects on one
command invocation.

Database physical file

The following command applies the changes in journal JRNA to the first member of all files in the library
DSTPRODLIB that are being journaled to journal JRNA:
APYJRNCHG JRN(JRNLIB/JRNA) FILE((DSTPRODLIB/*ALL))

Because the RCVRNG parameter is not specified, the system determines the range of journal receivers to
use as a result of the save information for the files. Because the FROMENT parameter is not specified,
the system applies the changes that begin with the first journal entry after the save of the object.

If the file was last saved with the save-while-active function, the saved copy of each file member includes
all record-level changes in the journal entries up to the corresponding F SS journal entry. In this case, the
system applies changes that begin with the first journal entry that follows the F SS entry.

If the file was last saved when it was not in use (normal save), the saved copy of each member includes
all record-level changes in the journal entries up to the corresponding F MS member saved journal entry.
In this case, the system applies changes that begin with the first journal entry that follows the F MS entry.

Journal management 83

rzakijrnentry.htm
../cl/apyjrnch.htm
../cl/apyjrnch.htm

The following command applies the changes to the file from the journal receivers that are currently
attached to the journal:
APYJRNCHG JRN(JRNLIB/JRNA) FILE((LIBA/FILEA MBR1))

RCVRNG(*CURRENT) FROMENT(*FIRST)
TOENT(*LAST)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning of
the operation. The system applies the changes from the first journal entry in this receiver to the last journal
entry in this receiver. Changes are applied to member MBR1 of the file FILEA.

The following command applies the changes in the journal JRNA to all members of the file FILEA
beginning with the first journal entry after the file member was last saved:
APYJRNCHG JRN(JRNLIB/JRNA) FILE((LIBA/FILEA *ALL))

TOJOBC(000741/USERP/WORKSTP)

The operation continues until the specified job closes any of the members in the file that it opened. The
operation is not restricted only to those journal entries that are recorded by the specified job.

Note: This example works only if you do not specify OMTJRNE
(*OPNCLO) when starting journaling for the file and you
did not specify RCVSIZOPT(*MINFIXLEN) or you did not
use a FIXLENDTA option that would have omitted the job
name for the journal at any time while the file was
journaled).

Integrated file system object

The following command applies the changes in journal JRNA to the objects in the directory MyDirectory,
and its subdirectories, that are being journaled to journal JRNA:
APYJRNCHG JRN(JRNLIB/JRNA) OBJPATH((’/MyDirectory’)) SUBTREE(*ALL)

Because the RCVRNG parameter is not specified, the system determines the range of journal receivers to
use as a result of the save information for the objects. Because the FROMENT parameter is not specified,
the system applies the changes that begin with the journal entry for the last save of each of the objects.

If the object was last saved with the save-while-active function, the saved copy of each object includes all
record-level changes in the journal entries up to the corresponding B FW journal entry. In this case, the
system applies changes that begin with the first journal entry that follows the B FW entry.

If the object was last saved when it was not in use (normal save), the saved copy of each object includes
all changes in the journal entries up to the corresponding B FS saved journal entry. In this case, the
system applies changes that begin with the first journal entry that follows the B FS entry.

Data area

The following command applies the changes to the data area DATA1 from the journal receiver that is
currently attached to the journal:
APYJRNCHG JRN(JRNLIB/JRNA) OBJ((LIBA/DATA1 *DTAARA))

RCVRNG(*CURRENT) FROMENT(*FIRST)
TOENT(*LAST)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning of
the operation. The system applies the changes from the first journal entry in this receiver to the last journal
entry in this receiver. Changes are applied to data area DATA1.

84 iSeries: Journal management

Example: Remove journaled changes: Even though the following examples show database physical
files and data areas being processed separately, you can do them with one Remove Journaled Changes
(RMVJRNCHG) command if you use the OBJ parameter for both object types.

Database physical file

The following command removes the changes in journal JRNA from the first member of FILEA:
RMVJRNCHG JRN(JRNLIB/JRNA) FILE(DSTPRODLIB/FILEA)

RCVRNG(*CURRENT)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning of
the operation. The system starts removing the changes beginning with the latest entry for that member in
this receiver and continues to the earliest entry for that member in this receiver.

The following command removes the changes in journal JRNA from the first member of FILEA:
RMVJRNCHG JRN(JRNLIB/JRNA) FILE(DSTPRODLIB/FILEA)

RCVRNG(JRNLIB/RCVA10 JRNLIB/RCVA8)

The system starts removing the changes beginning with the last entry (the latest entry) for that member in
journal receiver RCVA10 and continues to the first entry (the earliest entry) for that member on journal
receiver RCVA8.

Data area

The following removes the changes in JRNA from data area DATA1 from the last save entry to entry
number 1003.
RMVJRNCHG JRN(JRNLIB/JRNA) OBJ((LIBA/DATA1 *DTAARA))

RCVRNG(*CURRENT) FROMENT(*LASTSAVE) TOENT(1003)

If the last save operation used the save-while-active function, the system starts by removing changes from
the entry preceding the last E EW start of save entry. If the last save operation was a normal save
operation, the system starts by removing changes from the entry that precedes the last E EW member
saved entry. In the example, journaled changes are removed back to entry 1003.

Journal entry information
The system creates different types of journal entries in the journal receiver for different kinds of activities.
You cannot access the information in journal receivers directly. Several system commands provide
formatted information from a journal receiver:

v Use the Display Journal (DSPJRN) command to display entries, print them, or write them to an output
file.

v Use the Receive Journal Entry (RCVJRNE) command to specify an exit program. When entries are
added to the journal receiver, they are also passed to the exit program. The exit program can, for
example, write entries to save media or send them to another system.

v Use the Retrieve Journal Entry (RTVJRNE) command to retrieve journal entries to a CL program.

v Use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API to retrieve journal entries into a high
level language program.

When the system formats journal entries for you with the DSPJRN and RTVJRNE commands, it uses one
of several layouts. These layouts include a fixed-length portion and a variable-length portion. The
variable-length portion includes entry-specific data and null value indicators, if applicable. The fixed-length
portion of the journal entry appears as separate fields in these layouts.

Journal management 85

../cl/rmvjrnch.htm
../cl/rmvjrnch.htm

Journal code finder
The Journal code finder shows all the journal codes and entry types for journal entries. You can
search for individual codes, display codes by category, or display all journal codes.

Journal code descriptions
This topic provides a description for all of the journal codes and categories.

Fixed-length portion of the journal entry
This topic provides the layouts of the fixed-length portion of the journal entries.

Variable-length portion of the journal entry
This topic provides the layouts of the variable-length portion of the journal entries.

Work with journal entry information
This topic provides ways that you can display, retrieve, and receive journal entries.

For information on which journal codes are affected by the Apply Journaled Changes (APYJRNCHG) and
Remove Journaled Changes (RMVJRNCHG) commands, see Actions of the APYJRNCHG or
RMVJRNCHG command by journal code

Journal entries by code and type
Journal entries by journal code and type

Journal code Entry type Description Notes

A DP Direct print information See Work Management

for the layout of the entry
specific data.

A JB Job resource information See Work Management

for the layout of the entry
specific data.

A SP Spooled print information See Work Management

for the layout of the entry
specific data.

B AA Change audit attribute The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B AJ Start of apply The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B AT End of apply

See Table 6 (See page
148).

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

86 iSeries: Journal management

finder/rzakifinder.htm
rzakicodes.htm
rzakifixlength.htm
rzakivarlength.htm
rzakiwrkjrninfo.htm
rzakijrncodes.htm
rzakijrncodes.htm
../../../books/c4153063.pdf
../../../books/c4153063.pdf
../../../books/c4153063.pdf

Journal code Entry type Description Notes

B BD Integrated file system object
deleted

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B B0 Begin create The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B B1 Create summary The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B B2 Link to existing object The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B B3 Rename, move object The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

B B4 Remove link (parent
directory)

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B B5 Remove link (link) The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

Journal management 87

Journal code Entry type Description Notes

B CS Integrated file system object
closed

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B ET End journaling for object Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B FA Integrated file system object
attribute changed

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B FC Integrated file system object
forced

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

88 iSeries: Journal management

Journal code Entry type Description Notes

B FF Storage for object freed These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B FR Integrated file system object
restored

See Table 27 (See page
178).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

Journal management 89

Journal code Entry type Description Notes

B FS Integrated file system object
saved

See Table 28 (See page
180).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B FW Start of save for
save-while-active

See Table 29 (See page
182).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B JT Start journaling for object

See Table 30 (See page
183).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

90 iSeries: Journal management

Journal code Entry type Description Notes

B OA Change object authority The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B OF Integrated file system object
opened

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B OG Change primary group The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B OI Object in use at abnormal
end

See Table 14 (See page
152).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B OO Change object owner The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B RN Rename file identifier Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

B TR Integrated file system object
truncated

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

Journal management 91

Journal code Entry type Description Notes

B WA Write, after-image This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QPOLJRNL.H.

C BA Commit in use at abnormal
end

See Table 14 (See page
152).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

C BC Start commitment control
(STRCMTCTL)

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

C CM Set of record changes
committed (COMMIT)

See Table 9 (See page
150).

C DB Commit object deleted Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

92 iSeries: Journal management

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

C EC End commitment control
(ENDCMTCTL)

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

C LW A logical unit of work (LUW)
has ended

See Table 15 (See page
153) through Table 21 (See
page 173).

C PC Prepare commit block

C R1 Rollback started

C RB Set of record changes
rolled back (ROLLBACK)

See Table 26 (See page
178).

C SC Commit transaction started

D AC Add referential integrity
constraint

See Table 39 (See page
187).

D CG Change file

See Table 39 (See page
187).

D CT Create database file

See Table 39 (See page
187).

D DC Remove referential integrity
constraint

See Table 39 (See page
187).

Journal management 93

Journal code Entry type Description Notes

D DF File was deleted Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

D DT Delete file

See Table 39 (See page
187).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

D EF Journaling for a physical file
ended (ENDJRNPF)

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

D FM File moved to a different
library (MOVOBJ or
RNMOBJ OBJTYPE(*LIB))

See Table 22 (See page
175).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

D FN File renamed (RNMOBJ)

See Table 22 (See page
175).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

D GC Change constraint

See Table 39 (See page
187).

94 iSeries: Journal management

Journal code Entry type Description Notes

D GO Change owner

See Table 39 (See page
187).

D GT Grant authority

See Table 39 (See page
187).

D ID File in use

See Table 14 (See page
152).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

D JF Journaling for a physical file
started (STRJRNPF
(JRNPF))

See Table 30 (See page
183).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

D RV Revoke authority

See Table 39 (See page
187).

D TC Add trigger

See Table 39 (See page
187).

D TD Remove trigger

See Table 39 (See page
187).

D TG Change trigger

See Table 39 (See page
187).

Journal management 95

Journal code Entry type Description Notes

E EA Update data area, after
image

See Table 34 (See page
185).

Neither the before-image
nor after-image is deposited
into the journal if the
after-image is exactly the
same as the before-image.

This entry may have
minimized entry specific
data (ESD). It will have
minimized ESD if its
corresponding object type
deposits minimized journal
entries through the
MINENTDTA parameter for
this journal or journal
receiver.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EB Update data area, before
image

See Table 34 (See page
185).

Neither the before-image
nor after-image is deposited
into the journal if the
after-image is exactly the
same as the before-image.

This entry may have
minimized entry specific
data (ESD). It will have
minimized ESD if its
corresponding object type
deposits minimized journal
entries through the
MINENTDTA parameter for
this journal or journal
receiver.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

96 iSeries: Journal management

Journal code Entry type Description Notes

E ED Data area deleted Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EG Start journal for data area

See Table 30 (See page
183).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EH End journal for data area Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EI Data area in use

See Table 14 (See page
152).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

Journal management 97

Journal code Entry type Description Notes

E EL Data area restored

See Table 27 (See page
178).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EM Data area moved

See Table 22 (See page
175).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EN Data area renamed

See Table 22 (See page
175).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EQ Data area changes applied

See Table 6 (See page
148).

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

98 iSeries: Journal management

Journal code Entry type Description Notes

E ES Data area saved

See Table 28 (See page
180).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EU Remove journaled changes
(RMVJRNCHG) command
started

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EW Start of save for data area

See Table 29 (See page
182).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

E EX Data area changes
removed

See Table 6 (See page
148).

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

Journal management 99

Journal code Entry type Description Notes

E EY Apply journaled changes
(APYJRNCHG) command
started

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QWCJRNL.H.

F AY Journaled changes applied
to a physical file member
(APYJRNCHG)

See Table 6 (See page
148).

F CB Physical file member
changed

F CE Change end of data for
physical file member

See Table 7 (See page
150).

F CH Change file As of V5R1M0, the journal
entry D CG is also being
sent for the change file
operations. IBM strongly
recommends that you do
your processing based on
the D CG entry instead of
the F CH entry because the
F CH entry will be retired in
a future release.

F CL Physical file member closed
(for shared files, a close
entry is made for the last
close operation of the file)

See Table 23 (See page
175).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

F CR Physical file member
cleared (CLRPFM)

F DE Physical file member
deleted record count

F DM Delete member

See Table 39 (See page
187).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

100 iSeries: Journal management

Journal code Entry type Description Notes

F EJ Journaling for a physical file
member ended
(ENDJRNPF)

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

F EP Journaling access path for
a database file member
ended (ENDJRNAP)

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

F FD Physical file member forced
(written) to auxiliary storage

See Table 12 (See page
151).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

F FI System-generated journal
entry format information

F IU Physical file member in use
at the time of abnormal
system end

See Table 14 (See page
152).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Journal management 101

Journal code Entry type Description Notes

F IZ Physical file member
initialized (INZPFM)

See Table 13 (See page
152).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

F JM Journaling for a physical file
member started
(STRJRNPF)

See Table 30 (See page
183).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

F JP Journaling access path for
a database file member
started (STRJRNAP)

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

F MC Create member

See Table 39 (See page
187).

F MD Physical file member
deleted. This entry is
created when you remove
the member (RMVM) or
delete the file (DLTF)
containing the member.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

102 iSeries: Journal management

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

F MF Physical file member saved
with storage freed
(SAVOBJ, SAVCHGOBJ, or
SAVLIB)

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

F MM Physical file containing the
member moved to a
different library (MOVOBJ
or RNMOBJ
OBJTYPE(*LIB))

See Table 22 (See page
175).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

F MN Physical file containing the
member renamed (RNMM
or RNMOBJ)

See Table 22 (See page
175).

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

F MR Physical file member
restored (RSTOBJ or
RSTLIB)

See Table 27 (See page
178).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Journal management 103

Journal code Entry type Description Notes

F MS Physical file member saved
(SAVOBJ, SAVLIB, or
SAVCHGOBJ)

See Table 28 (See page
180).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

F OP Physical file member
opened (for shared files, an
open entry is added for the
first open operation for the
file)

See Table 23 (See page
175).

F PD Database file member’s
access path deleted (this
entry is created when you
remove the member
(RMVM) or delete the file
(DLTF) containing the
member)

See Table 10 (See page
151).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The object name for this
entry might be misleading.
It is the original name the
path had when journaling
started. The name is not
updated if the access path
is moved, renamed, or if it
is implicitly shared by
another logical file.

F PM The logical owner of a
journaled access path was
moved (MOVOBJ or
RNMOBJ OBJTYPE(*LIB))

See Table 22 (See page
175).

After you have installed
V4R2M0 or a later release,
this journal type is no
longer generated.

104 iSeries: Journal management

Journal code Entry type Description Notes

F PN The logical owner of a
journaled access path was
renamed (RNMOBJ or
RNMM)

See Table 22 (See page
175).

After you have installed
V4R2M0 or a later release,
this journal type is no
longer generated.

F RC Journaled changes
removed from a physical file
member (RMVJRNCHG)

See Table 6 (See page
148).

F RG Physical file member
reorganized (RGZPFM)

See Table 25 (See page
177).

F RM Member reorganized

F SA The point at which the
APYJRNCHG command
started running

F SR The point at which the
RMVJRNCHG command
started running

F SS The start of the save of a
physical file member using
the save-while-active
function

See Table 29 (See page
182).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

I DA Directory in use at
abnormal end

See Table 14 (See page
152).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

I IB Internal recovery

I IC Access path recovery

I IE Directory recovery

I IF Access path recovery

Journal management 105

Journal code Entry type Description Notes

I IG Access path recovery

I IH Access path recovery

I II Access path in use Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

I IV Access path recovery

I IW Access path recovery

I IX Access path recovery

I IY Access path recovery

J CI Journal caching started Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J CX Journal caching ended Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J EZ End journaling for journal
receiver

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

106 iSeries: Journal management

Journal code Entry type Description Notes

J IA System IPL after abnormal
end

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J IN System IPL after normal
end

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J JI Journal receiver in use at
abnormal end

See Table 14 (See page
152).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

J JR Start journaling for journal
receiver

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J KR Keep journal receivers for
recovery

J LA Activate local journal Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

Journal management 107

Journal code Entry type Description Notes

J LI Inactivate local journal Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J NK Do not keep journal
receivers for recovery

J NR Identifier for the next journal
receiver (the receiver that
was attached when the
indicated receiver was
detached)

See Table 8 (See page
150).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J PR Identifier for the previous
journal receiver (the
receiver that was detached
when the indicated receiver
was attached)

See Table 8 (See page
150).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J RD Deletion of a journal
receiver (DLTJRNRCV)

See Table 11 (See page
151).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J RF Storage for a journal
receiver freed (SAVOBJ,
SAVCHGOBJ, or SAVLIB)

See Table 11 (See page
151).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

108 iSeries: Journal management

Journal code Entry type Description Notes

J RR Restore operation for a
journal receiver (RSTOBJ
or RSTLIB)

See Table 27 (See page
178).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

J RS Save operation for a journal
receiver (SAVOBJ,
SAVCHGOBJ, or SAVLIB)

See Table 27 (See page
178).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

J SI Enter journal state
(*STANDBY)

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J SX Exit journal state
(*STANDBY)

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

Journal management 109

Journal code Entry type Description Notes

J UA User independent auxiliary
storage pool vary on
abnormal

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J UN User independent auxiliary
storage pool vary on normal

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

J XP Internal entry Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

L LK License key is not valid

See Table 31 (See page
184).

L LL Usage limit changed

L LU Usage limit exceeded

M MP Modification of QoS policies

M SN Simple Network
Management Protocol
(SNMP) information

See Simple Network
Management Protocol
(SNMP) Support

for information about the
entry specific data for
SNMP journal entries.

M TF IP filter rules actions Refer to TCP/IP
Configuration and
Reference

for information about the
entry specific data for
TCP/IP journal entries.

110 iSeries: Journal management

../../../books/c4154120.pdf
../../../books/c4154120.pdf
../../../books/c4154120.pdf
../../../books/c4154204.pdf
../../../books/c4154204.pdf
../../../books/c4154204.pdf

Journal code Entry type Description Notes

M TN IP NAT rules actions Refer to TCP/IP
Configuration and
Reference

for information about the
entry specific data for
TCP/IP journal entries.

M TS Virtual Private Networking
(VPN) information

Refer to TCP/IP
Configuration and
Reference

for information about the
entry specific data for
TCP/IP journal entries.

O AI Update, after image

O BI Update, before image

O XA Allocate object

O XB Bundled entries

O XD Deallocate object

O XI Index operation

O XS Synchronization

O XT Transaction state change

P TP Performance shared pool
change

See Work Management

for the layout of the entry
specific data.

Q QB Start data queue journaling

See Table 30 (See page
183).

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

Q QC Data queue cleared, no key These entries have
entry-specific data which
the system uses for internal
processing.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Journal management 111

../../../books/c4154204.pdf
../../../books/c4154204.pdf
../../../books/c4154204.pdf
../../../books/c4154204.pdf
../../../books/c4154204.pdf
../../../books/c4154204.pdf
../../../books/c4153063.pdf

Journal code Entry type Description Notes

Q QD Data queue deleted Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q QE End data queue journaling Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q QI Queue in use at abnormal
end

See Table 14 (See page
152).

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q QJ Data queue cleared, has
key

See Table 35 (See page
186).

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

112 iSeries: Journal management

Journal code Entry type Description Notes

Q QK Send data queue entry, has
key

See Table 36 (See page
186).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q QL Receive data queue entry,
has key

See Table 37 (See page
187).

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q QM Data queue moved

See Table 22 (See page
175).

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

Q QN Data queue renamed

See Table 22 (See page
175).

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Even if this journal has a
journal state of *STANDBY,
this entry type will still be
deposited.

Journal management 113

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

Q QR Receive data queue entry,
no key

These entries have
entry-specific data which
the system uses for internal
processing.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q QS Send data queue entry, no
key

See Table 38 (See page
187).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q QX Start of save for data queue

See Table 29 (See page
182).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

114 iSeries: Journal management

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

Q QY Data queue saved

See Table 28 (See page
180).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

Even if this journal is a local
journal that has a journal
state of *INACTIVE,
meaning no journal can be
deposited, this journal entry
type will still be deposited.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q QZ Data queue restored

See Table 27 (See page
178).

These entries do not
indicate that they occurred
as the result of a trigger
program, even if a trigger
program caused the event.
That information is not
available at the time the
entry is written to the
journal.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q VE Internal entry These entries have
entry-specific data which
the system uses for internal
processing.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Q VQ Internal entry These entries have
entry-specific data which
the system uses for internal
processing.

The entry-specific data for
these journal entries are
laid out in the QSYSINC
include, QMHQJRNL.H.

Journal management 115

Journal code Entry type Description Notes

R BR Before-image of record
updated for rollback
operation

See Table 24 (See page
176).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

This entry may have
minimized entry specific
data (ESD). It will have
minimized ESD if its
corresponding object type
deposits minimized journal
entries through the
MINENTDTA parameter for
this journal or journal
receiver.

R DL Record deleted in the
physical file member

See Table 24 (See page
176).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

116 iSeries: Journal management

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm
../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

R DR Record deleted for rollback
operation

See Table 24 (See page
176).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

R IL Increment record limit These entries have
entry-specific data which
the system uses for internal
processing.

R PT Record added to a physical
file member. If the file is set
up to reuse deleted records,
then you may receive either
a PT or PX journal entry for
the change

See Table 24 (See page
176).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

Journal management 117

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm
../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

R PX Record added directly by
RRN (relative record
number) to a physical file
member. If the file is set up
to reuse deleted records,
then you may receive either
a PT or PX journal entry for
the change

See Table 24 (See page
176).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

This entry may have
minimized entry specific
data (ESD). It will have
minimized ESD if its
corresponding object type
deposits minimized journal
entries through the
MINENTDTA parameter for
this journal or journal
receiver.

118 iSeries: Journal management

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

R UB Before-image of a record
that is updated in the
physical file member (this
entry is present only if
IMAGES(*BOTH) is
specified on the STRJRNPF
command)

See Table 24 (See page
176).

Neither the before-image
nor after-image is deposited
into the journal if the
after-image is exactly the
same as the before-image.

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

This entry may have
minimized entry specific
data (ESD). It will have
minimized ESD if its
corresponding object type
deposits minimized journal
entries through the
MINENTDTA parameter for
this journal or journal
receiver.

Journal management 119

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

R UP After-image of a record that
is updated in the physical
file member

See Table 24 (See page
176).

Neither the before-image
nor after-image is deposited
into the journal if the
after-image is exactly the
same as the before-image.

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

This entry may have
minimized entry specific
data (ESD). It will have
minimized ESD if its
corresponding object type
deposits minimized journal
entries through the
MINENTDTA parameter for
this journal or journal
receiver.

120 iSeries: Journal management

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm

Journal code Entry type Description Notes

R UR After-image of a record that
is updated for rollback
information

See Table 24 (See page
176).

This journal entry may have
data which can only be
accessed by using either
the
QjoRetrieveJournalEntries
API or the RCVJRNE
command. For the
RCVJRNE command, use
the ENTFMT(*TYPEPTR) or
ENTFMT(*JRNENTFMT)
parameters. In all other
interfaces, if the data is not
visible the incomplete data
indicator will be on, and
*POINTER will appear in
the Entry Specific Data. For
more information, refer to
Work with pointers in
journal entries.

This entry may have
minimized entry specific
data (ESD). It will have
minimized ESD if its
corresponding object type
deposits minimized journal
entries through the
MINENTDTA parameter for
this journal or journal
receiver.

S AL SNA alert focal point
information

See SNA Distribution
Services

for the layout of the entry
specific data for entries
generated by SNADS.

S CF Mail configuration
information

See SNA Distribution
Services

for the layout of the entry
specific data for entries
generated by SNADS.

See AnyMail/400 Mail
Server Framework Support

for the layout of the entry
specific data.

S DX X.400 process debug entry

Journal management 121

../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm
../../cl/rcvjrne.htm
../rzakipointer.htm
../rzakipointer.htm
../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154110.pdf
../../../books/c4154110.pdf

Journal code Entry type Description Notes

S ER Mail error information See SNA Distribution
Services

for the layout of the entry
specific data for entries
generated by SNADS.

See AnyMail/400 Mail
Server Framework Support

for the layout of the entry
specific data.

S LG Mail logging table
information

See SNA Distribution
Services

for the layout of the entry
specific data for entries
generated by SNADS.

See AnyMail/400 Mail
Server Framework Support

for the layout of the entry
specific data.

S MX A change was made to
X.400 MTA configuration

S NX A change was made to
X.400 delivery notification

S RT Mail routing information See SNA Distribution
Services

for the layout of the entry
specific data for entries
generated by SNADS.

See AnyMail/400 Mail
Server Framework Support

for the layout of the entry
specific data.

S RX A change was made to
X.400 route configuration

122 iSeries: Journal management

../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154110.pdf
../../../books/c4154110.pdf
../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154110.pdf
../../../books/c4154110.pdf
../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154110.pdf
../../../books/c4154110.pdf

Journal code Entry type Description Notes

S SY Mail system information See SNA Distribution
Services

for the layout of the entry
specific data for entries
generated by SNADS.

See AnyMail/400 Mail
Server Framework Support

for the layout of the entry
specific data.

S UX A change was made to
X.400 user or probe

S XE DSNX error entry See SNA Distribution
Services

for the layout of the entry
specific data for entries
generated by SNADS.

S XL DSNX logging entry See SNA Distribution
Services

for the layout of the entry
specific data for entries
generated by SNADS.

S XX An error was detected by
the X.400 process

T A change was made to the
auditing attribute

A change was made to the
auditing attribute

See iSeries Security
Reference

for the layout of the entry
specific data.

T AF All authority failures See iSeries Security
Reference

for the layout of the entry
specific data.

T AP A change was made to
program adopt

See iSeries Security
Reference

for the layout of the entry
specific data.

Journal management 123

../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154110.pdf
../../../books/c4154110.pdf
../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4154101.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T AU Attribute change See iSeries Security
Reference

for the layout of the entry
specific data.

T Changes to object authority
(authorization list or object)

Changes to object authority
(authorization list or object)

See iSeries Security
Reference

for the layout of the entry
specific data.

T CD A change was made to a
command string

See iSeries Security
Reference

for the layout of the entry
specific data.

T CO Create object See iSeries Security
Reference

for the layout of the entry
specific data.

T CP Create, change, restore
user profiles

See iSeries Security
Reference

for the layout of the entry
specific data.

T CQ A change was made to a
change request descriptor

See iSeries Security
Reference

for the layout of the entry
specific data.

T CU Cluster operation See iSeries Security
Reference

for the layout of the entry
specific data.

T CV Connection verification See iSeries Security
Reference

for the layout of the entry
specific data.

T CY Cryptographic configuration See iSeries Security
Reference

for the layout of the entry
specific data.

124 iSeries: Journal management

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T DI Directory services See iSeries Security
Reference

for the layout of the entry
specific data.

T DO All delete operations on the
system

See iSeries Security
Reference

for the layout of the entry
specific data.

T DS DST security officer
password reset

See iSeries Security
Reference

for the layout of the entry
specific data.

T EV Environment variable See iSeries Security
Reference

for the layout of the entry
specific data.

T GR General purpose audit
record

See iSeries Security
Reference

for the layout of the entry
specific data.

T GS A descriptor was given See iSeries Security
Reference

for the layout of the entry
specific data.

T IP Inter-process
communication event

See iSeries Security
Reference

for the layout of the entry
specific data.

T IR IP rules actions See iSeries Security
Reference

for the layout of the entry
specific data.

T IS Internet security
management

See iSeries Security
Reference

for the layout of the entry
specific data.

Journal management 125

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T JD Changes to the USER
parameter of a job
description

See iSeries Security
Reference

for the layout of the entry
specific data.

T JS A change was made to job
data

See iSeries Security
Reference

for the layout of the entry
specific data.

T KF Key ring file name See iSeries Security
Reference

for the layout of the entry
specific data.

T LD A link, unlink, or lookup
operation to a directory

See iSeries Security
Reference

for the layout of the entry
specific data.

T ML A change was made to
office services mail

See iSeries Security
Reference

for the layout of the entry
specific data.

T NA Changes to network
attributes

See iSeries Security
Reference

for the layout of the entry
specific data.

T ND Directory search violations See iSeries Security
Reference

for the layout of the entry
specific data.

T NE End point violations See iSeries Security
Reference

for the layout of the entry
specific data.

T OM Object management change See iSeries Security
Reference

for the layout of the entry
specific data.

126 iSeries: Journal management

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T OR Object restored See iSeries Security
Reference

for the layout of the entry
specific data.

T OW Changes to object
ownership

See iSeries Security
Reference

for the layout of the entry
specific data.

T O1 Single optical object access See iSeries Security
Reference

for the layout of the entry
specific data.

T O2 Dual optical object access See iSeries Security
Reference

for the layout of the entry
specific data.

T O3 Optical volume access See iSeries Security
Reference

for the layout of the entry
specific data.

T PA Changes to programs
(CHGPGM) that will now
adopt the owner’s authority

See iSeries Security
Reference

for the layout of the entry
specific data.

T PG Changes to an object’s
primary group

See iSeries Security
Reference

for the layout of the entry
specific data.

T PO A change was made to
printed output

See iSeries Security
Reference

for the layout of the entry
specific data.

T PS Profile swap See iSeries Security
Reference

for the layout of the entry
specific data.

Journal management 127

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T PW Passwords used that are
not valid

See iSeries Security
Reference

for the layout of the entry
specific data.

T RA Restore of objects when
authority changes

See iSeries Security
Reference

for the layout of the entry
specific data.

T RJ Restore of job descriptions
that contain user profile
names

See iSeries Security
Reference

for the layout of the entry
specific data.

T RO Restore of objects when
ownership information
changes

See iSeries Security
Reference

for the layout of the entry
specific data.

T RP Restore of programs that
adopt their owner’s
authority

See iSeries Security
Reference

for the layout of the entry
specific data.

T RQ A change request descriptor
was restored

See iSeries Security
Reference

for the layout of the entry
specific data.

T RU Restore of authority for user
profiles

See iSeries Security
Reference

for the layout of the entry
specific data.

T RZ The primary group for an
object was changed during
a restore operation

See iSeries Security
Reference

for the layout of the entry
specific data.

T SD A change was made to the
system directory

See iSeries Security
Reference

for the layout of the entry
specific data.

128 iSeries: Journal management

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T SE Changes to subsystem
routing

See iSeries Security
Reference

for the layout of the entry
specific data.

T SF A change was made to a
spooled output file

See iSeries Security
Reference

for the layout of the entry
specific data.

T SG Asynchronous signals See iSeries Security
Reference

for the layout of the entry
specific data.

T SK Secure sockets connection See iSeries Security
Reference

for the layout of the entry
specific data.

T SM A change was made by
system management

See iSeries Security
Reference

for the layout of the entry
specific data.

T SO A change was made by
server security

See iSeries Security
Reference

for the layout of the entry
specific data.

T ST A change was made by
system tools

See iSeries Security
Reference

for the layout of the entry
specific data.

T SV Changes to system values See iSeries Security
Reference

for the layout of the entry
specific data.

T VA Changes to access control
list

See iSeries Security
Reference

for the layout of the entry
specific data.

Journal management 129

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T VC Connection started or
ended

See iSeries Security
Reference

for the layout of the entry
specific data.

T VF Server files were closed See iSeries Security
Reference

for the layout of the entry
specific data.

T VL An account limit was
exceeded

See iSeries Security
Reference

for the layout of the entry
specific data.

T VN A logon or logoff operation
on the network

See iSeries Security
Reference

for the layout of the entry
specific data.

T VO Actions on validation lists See iSeries Security
Reference

for the layout of the entry
specific data.

T VP A network password error See iSeries Security
Reference

for the layout of the entry
specific data.

T VR A network resources was
accessed

See iSeries Security
Reference

for the layout of the entry
specific data.

T VS A server session started or
ended

See iSeries Security
Reference

for the layout of the entry
specific data.

T VU A network profile was
changed

See iSeries Security
Reference

for the layout of the entry
specific data.

130 iSeries: Journal management

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T VV Service status was changed See iSeries Security
Reference

for the layout of the entry
specific data.

T X0 Network authentication See iSeries Security
Reference

for the layout of the entry
specific data.

T X1 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

T X2 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

T X3 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

T X4 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

T X5 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

T X6 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

T X7 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

Journal management 131

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

T X8 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

T X9 Reserved for future audit
entry

See iSeries Security
Reference

for the layout of the entry
specific data.

T YC A change was made to
DLO change access

See iSeries Security
Reference

for the layout of the entry
specific data.

T YR A change was made to
DLO read access

See iSeries Security
Reference

for the layout of the entry
specific data.

T ZC A change was made to
object change access

Only one entry per opened
file. The member name will
not be displayed in the
entry specific data for
based on physical files.

See iSeries Security
Reference

for the layout of the entry
specific data.

T ZM An object was accessed
using a method

See iSeries Security
Reference

for the layout of the entry
specific data.

T ZR A change was made to
Object read access

See iSeries Security
Reference

for the layout of the entry
specific data.

132 iSeries: Journal management

../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf
../../../books/c4153026.pdf

Journal code Entry type Description Notes

U User-specified. The
Entry-specific data is the
value specified on the
ENTDTA parameter of the
SNDJRNE command or
with the entry data
parameter for the
QJOSJRNE API

The entry is deposited even
if the journal state is
*STANDBY if the user
chooses to override that
state on the SNDJRNE
command or QJOSJRNE
API.

Journal code descriptions
Following are descriptions of all the possible journal codes or categories of journal entries.

Journal Code A - System Accounting Entry
Journal entries with a journal code of A contain information about job accounting. Refer to Work
Management

for a detailed description of the contents of converted journal entries with journal code A.

Journal Code B- Integrated File System
Journal entries with a journal code of B contain information about changes to integrated file system
objects. The only integrated file system objects that are supported are those with an object of type *STMF,
*DIR or *SYMLNK. These objects must be in the Root (’/’), QOpensys, and User-defined file systems. See
the Integrated file system topic for more information about file systems.

Journal Code C - Commitment Control Operation
Journal entries with a journal code of C contain commitment control information.

Journal Code D - Database File Operation
Journal entries with a journal code of D contain file level information about changes for a physical file, not
an individual member.

Journal Code E - Data Area Operation
Journal entries with a journal code of E contain information about changes to journaled data areas. See
Work Management

for more information about data areas.

Journal Code F - Database File Member Operation
Journal entries with a journal code of F contain file level information about changes for a physical file
member that are being journaled to this journal. (If you use a logical file in a program, the file level
information reflects the physical file on which the logical file is based.) Journal entries with journal code F
can also contain file level information for access paths that are associated with physical or logical file
members that are being journaled to this journal.

Journal Code I - Internal Operation
Journal entries with a journal code of I contain information about access paths or indexes or other internal
operations. Entries with a journal code of I are displayed only if JRN(*INTSYSJRN) is specified or
INCHIDENT(*YES) is specified on the DSPJRN command.

Journal Code J - Journal or Receiver Operation
Journal entries with a journal code of J contain information about the journal and the journal receivers.

Journal management 133

../../books/c4153063.pdf
../../books/c4153063.pdf

Journal Code L - License Management
Journal entries with a journal code of L contain information about license management, such as changes
to the usage limit and usage limit violations.

Journal Code M - Network Management Data
Journal entries with a journal code of M contain information about Network Management, including TCP/IP.
For a description of the TCP/IP entries, see TCP/IP Configuration and Reference

. For a description of the Network Management entries, see Simple Network Management Protocol
(SNMP) Support

.

Journal Code O - Object-Oriented Entry
Journal entries with a journal code of O contain object-oriented information. These entries are reserved for
future use.

Journal Code P - Performance Tuning Entry
Journal entries with a journal code of P contain information about performance. For the description of the
layout of these entries, refer to Work Management

.

Journal Code Q - Data Queue Operation
Journal entries with a journal code of Q contain information about changes to journaled data queues. See
CL Programming

for more information about data queues.

Journal Code R - Operation on Specific Record Journal entries with a journal code of R contain
information about a change to a specific record in the physical file member that is being journaled to the
journal. For a given physical file member, the record-level journal entries appear in the journal in the order
that the changes were made to the file.

Journal Code S - Distributed Mail Services
Journal entries with a journal code of S contain information about SNA distribution services (SNADS),
X.400, and mail server framework. For the description of the layout of these entries, refer to these books:

v SNA Distribution Services

v AnyMail/400 Mail Server Framework Support

Journal Code T - Audit Trail Entry
Journal entries with a journal code of T contain auditing information. For the description of the layout of

134 iSeries: Journal management

../../books/c4154204.pdf
../../books/c4154120.pdf
../../books/c4154120.pdf
../../books/c4153063.pdf
../../books/c4154101.pdf
../../books/c4154110.pdf

audit journal entries, see iSeries Security Reference

.

Journal Code U - User-Generated Entry
Journal entries with a code of U are sent to the journal receiver by the Send Journal Entry (SNDJRNE)
command or by the Send Journal Entry (QJOSJRNE) API. Send your own journal entries provides more
information.

Fixed-length portion of the journal entry
When you use the Display Journal (DSPJRN) command, Receive Journal Entry (RCVJRNE) command,
Retrieve Journal Entry (RTVJRNE) command, or the Retrieve Journal Entries (QjoRetrieveJournalEntries)
API you can select one of the formats in which to receive the layout for the fixed-length portion of the
journal entry:

v *TYPE1

v *TYPE2

v *TYPE3

v *TYPE4

v *TYPE5

Note: The *TYPE5 format is only available with the DSPJRN
and RTVJRNE commands.

The RCVJRNE command also supports the *TYPEPTR and *JRNENTFMT formats. The layout of the
journal entry data for the *TYPEPTR interface is the same as the RJNE0100 format which is described in
the QjoRetrieveJournalEntries API.

The layout of the journal entry data for the *JRNENTFMT interface is the same as either the RJNE0100
format or the RJNE0200 format of the QjoRetrieveJournalEntries API. You can select which format to use
by selecting the RJNE0100 or the RJNE0200 value for the Journal Entry Format (JRNENTFMT) parameter
of the RCVJRNE command.

The field descriptions for layouts *TYPE1, *TYPE2, *TYPE3, *TYPE4, and *TYPE5 are in the following
tables:

Table 1 - Field descriptions of the fixed-length portion of a journal entry: *TYPE1 (See page
137)
Table 1 shows the fields that are common for all journal entry types. These fields are shown when
you request *TYPE1 for the output file format or the entry type format. The field names shown in
parentheses are used in the system-supplied output file QSYS/QADSPJRN.

Table 2 - Field Descriptions of the fixed-length portion of a journal entry: *TYPE2 (See page
140)
If OUTFILFMT(*TYPE2) is requested on the DSPJRN command, or ENTFMT(*TYPE2) is requested
on the RCVJRNE or RTVJRNE command, then the fixed-length portion of each converted journal
entry is the same as the format in Table 1, except for the information that follows the commit cycle
identifier field. The fields of the prefix that follow the commit cycle identifier are shown in Table 2. The
field names shown in parentheses in the table are the names of the fields in the system-supplied
output file QSYS/QADSPJR2.

Table 3 - Field descriptions of the fixed-length portion of a journal entry: *TYPE3 (See page
140)
A third value, *TYPE3, is supported on the OUTFILFMT parameter for the DSPJRN command, and

Journal management 135

../../books/c4153026.pdf
rzakisndjrne.htm

the ENTFMT parameter for the RCVJRNE and RTVJRNE commands. If either OUTFILFMT(*TYPE3)
is specified on the DSPJRN command or ENTFMT(*TYPE3) is specified on the RCVJRNE or
RTVJRNE command, the information in the prefix portion of a converted journal entry is shown in
Table 3. The field names shown in parentheses in the table are the names of the fields in the
system-supplied output file QSYS/QADSPJR3. *TYPE3 has the same information as the *TYPE1 and
*TYPE2 formats, except that it has a different date format and a null-values indicator.

Table 4. Field Descriptions of the Fixed-Length Portion of a Journal Entry: *TYPE4 (See page
141)
A fourth value, *TYPE4, is supported on the OUTFILFMT parameter for the DSPJRN command and
the ENTFMT parameter for the RCVJRNE and RTVJRNE commands. If either OUTFILFMT(*TYPE4)
is specified on the DSPJRN command or ENTFMT(*TYPE4) is specified on the RCVJRNE or
RTVJRNE command, the information in the prefix portion of a converted journal entry is shown in
Table 4. The field names shown in parentheses in the table are the names of the fields in the
system-supplied output file QSYS/QADSPJR4. *TYPE4 output includes all of the *TYPE3 information,
plus information about journal identifiers, triggers, and referential constraints and entries which will be
ignored by the APYJRNCHG or RMVJRNCHG commands.

Table 5. Field Descriptions of the Fixed-Length Portion of a Journal Entry: *TYPE5 (See page
142)
The *TYPE5 format is supported on the OUTFILFMT parameter for the DSPJRN command and
ENTFMT parameter of the RTVJRNE command. If you specify OUTFILFMT(*TYPE5) on the
DSPJRN command or ENTFMT(*TYPE5) on the RTVJRNE command, the information in the prefix
portion of a converted journal entry is shown in Table 5. The field names shown in parentheses in the
table are the names of the fields in the system-supplied output file QSYS/QADSPJR5. *TYPE5
output includes all of the *TYPE4 information, plus information about the following:

v System sequence number

v Thread identifier

v Remote address

v Address family

v Remote port

v Arm number

v Receiver name

v Receiver library name

v Receiver library ASP device name

v Program library name

v Program library ASP device name

v Program library ASP number

v Logical unit of work

v Transaction identifier

v Receiver library ASP number

136 iSeries: Journal management

Table 1. Field descriptions of the fixed-Length portion of a journal entry: *TYPE1

Relative
offset Field Format Description

1 Entry length
(JOENTL)

Zoned (5,0) Specifies the length of the journal entry including the entry
length field, all subsequent positions of the journal entry, and
any portion of the journal entry that was truncated if the
length of the output record is less than the length of the
record created for the journal entry.

If the journal entry has the incomplete data indicator on, then
this length does not include that additional data which could
be pointed to. This length includes the length of the data that
is actually returned, which includes entry specific data of up
to 32 766 bytes.

6 Sequence number
(JOSEQN)

Zoned (10,0) Assigned by the system to each journal entry. It is initially set
to 1 for each new or restored journal and is incremented until
you request that it be reset when you attach a new receiver.
There are occasional gaps in the sequence numbers because
the system uses internal journal entries for control purposes.
These gaps occur if you use commitment control, journal
physical files, or journal access paths.

16 Journal code
(JOCODE)

Char (1) Identifies the primary category of the journal entry:

A= System accounting entry

B= Integrated file system operation

C= Commitment control operation

D= Database file operation

E= Data area operation

F= Database file member operation

I= Internal operation

J= Journal or receiver operation

L= License management

M= Network management data

O= Object oriented entry

P= Performance tuning entry

Q= Data queue operation

R= Operation on a specific record

S= Distributed mail services

T= Audit trail entry

U= User-generated entry (added by the SNDJRNE
command or QJOSJRNE API)

The journal codes are described in more detail in Journal
code descriptions.

17 Entry type
(JOENTT)

Char (2) Further identifies the type of user-created or system-created
entry. See the Journal code finder for descriptions of the entry
types.

Journal management 137

finder/rzakifinder.htm

Relative
offset Field Format Description

19 Date stamp
(JODATE)

Char (6) Specifies the system date when the entry was added and is
in the format of the job attribute DATFMT. The system cannot
assure that the date stamp is always in ascending order for
sequential journal entries because you can change the value
of the system date.

25 Time stamp
(JOTIME)

Zoned (6,0) Corresponds to the system time (in the format hhmmss) when
the entry was added. The system cannot assure that the time
stamp is always in ascending order for sequential journal
entries because you can change the value of the system
time.

31 Job name (JOJOB) Char (10) Specifies the name of the job that added the entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option was specified
that omitted the collection of this information, then
*OMITTED is given for the job name.

2. If the job name was not available when the journal entry
was deposited, then *NONE is written for the job name.

41 User name
(JOUSER)

Char (10) Specifies the user profile name of the user that started the
job.

Note: If a RCVSIZOPT or a FIXLENDTA option was
specified that omitted the collection of this
information, then blanks are written for the user
name.

51 Job number
(JONBR)

Zoned (6,0) Specifies the job number of the user that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option was
specified that omitted the collection of this
information, then zeroes are written for the job
number.

57 Program name
(JOPGM)

Char (10) Specifies the name of the program that added the entry. If an
application or CL program did not add the entry, the field
contains the name of a system-supplied program such as
QCMD or QPGMMENU. If the program name is the special
value *NONE, then one of the following is true:

v The program name does not apply to this journal entry.

v The program name was not available when the journal
entry was made.

For example, the program name is not available if the
program was destroyed.

Notes:

1. If the program that deposited the journal entry is an
original program model program, this data will be
complete. Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option was specified
that omitted the collection of this information, *OMITTED
is given for the program name.

67 Object name
(JOOBJ)

Char (10) Specifies the name of the object for which the journal entry
was added.1 This is blank for some entries.

If the journaled object is an integrated file system object, then
this field is the first 10 bytes of the file identifier.

138 iSeries: Journal management

Relative
offset Field Format Description

77 Library name
(JOLIB)

Char (10) Specifies the name of the library containing the object1.

If the journaled object is an integrated file system object, then
the first 6 characters of this field are the last 6 bytes of the
file identifier.

87 Member name
(JOMBR)

Char (10) Specifies the name of the physical file member or is blank if
the object is not a physical file1.

97 Count/relative
record number
(JOCTRR)

Zoned (10,0) Contains either the relative record number (RRN) of the
record that caused the journal entry or a count that is
pertinent to the specific type of journal entry. Table 6 (See
page 148) through Table 23 (See page 185) show specific
values for this field, if applicable.

107 Indicator flag
(JOFLAG)

Char (1) Contains an indicator for the operation. Table 6 through Table
23 show specific values for this field, if applicable.

108 Commit cycle
identifier (JOCCID)

Zoned (10,0) Contains a number that identifies the commit cycle. A commit
cycle is from one commit or rollback operation to another.

The commit cycle identifier is found in every journal entry that
is associated with a commitment transaction. If the journal
entry was not made as part of a commitment transaction, this
field is zero.

118 Incomplete Data
(JOINCDAT)

Char (1) Indicates whether this entry has data that is not being
retrieved for one of the following reasons:

v The length of the entry-specific data exceeds 32 766
bytes.

v The entry is associated with a database file that has one or
more fields of data type BLOB (binary large object), CLOB
(character large object), or DBCLOB (double-byte character
large object).

The possible values are:

0 = This entry has all possible data

1 = This entry has incomplete data.

Any data which is marked as incomplete, can only be viewed
by using either the QjoRetrieveJournalEntries API, or the
command RCVJRNE with any of the following parameters:

v ENTFMT(*TYPEPTR)

v ENTFMT(*JRNENTFMT)

v RTNPTR (with any value specified other than *NONE)

119 Minimized entry
specific data
(JOMINESD)

Char (1) Indicates whether this entry has minimized entry specific data.

The possible values are:

0 = This entry has complete entry specific data.

1 = This entry has minimized entry specific data.

120 Reserved field
(JORES)

Char (6) Always contains zeros. Contains hexadecimal zeros in the
output file.

Journal management 139

Relative
offset Field Format Description

Note:

1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items are true:

v If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then the fully
qualified name is the most recent name of the file when the newest receiver in the receiver range was the
attached receiver and when the file was still being journaled.

v If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully qualified name of
the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the fully qualified
name is the name of the object at the time the journal entry was deposited.

Table 2. Field Descriptions of the Fixed-Length Portion of a Journal Entry: *TYPE2

Offset Field Format Description

1 117 The same as *TYPE1. See Table 1 (See page 137).

118 User profile
(JOUSPF)

Char (10) Specifies the name of the user profile under which the job was
running when the entry was created.

Note:

If a RCVSIZOPT or a FIXLENDTA option was specified that omitted
the collection of this information, then *OMITTED is given for the
user profile.

128 System name
(JOSYNM)

Char (8) Specifies the name of the system on which the entry is being
displayed, printed, retrieved, or received if the journal receiver was
attached prior to installing V4R2M0 on the system. If the journal
receiver was attached while the system was running V4R2M0 or a
later release, the system name is the system where the journal
entry was actually deposited.

136 Incomplete data
(JOINCDAT)

Char (1) The same as *TYPE1. See Table 1 (See page 137).

137 Minimized entry
specific data
(JOMINESD)

Char (1) The same as *TYPE1. See Table 1 (See page 137).

138 Reserved field
(JORES)

Char (18) Always contains zeros. Contains hexadecimal zeros in the output
file.

Table 3. Field Descriptions of the Fixed-Length Portion of a Journal Entry: *TYPE3

Offset Field Format Description

1 Entry length
(JOENTL)

Zoned (5,0) See Table 1 (See page 137).

6 Sequence
number
(JOSEQN)

Zoned decimal
(10,0)

See Table 1 (See page 137).

16 Journal code
(JOCODE)

Char (1) See Table 1 (See page 137).

17 Entry type
(JOENTT)

Char (2) See Table 1 (See page 137).

140 iSeries: Journal management

Offset Field Format Description

19 Time stamp
(JOTMST)

Char (26) Corresponds to the system date and time when the journal entry
was added in the journal receiver. The time stamp is in SAA format.
The system cannot assure that the time stamp is always in
ascending order for sequential journal entries because you can
change the value of the system time.

45 Job name
(JOJOB)1

Char (10) See Table 1 (See page 137).

55 User name
(JOUSER)

Char (10) See Table 1 (See page 137).

65 Job number
(JONBR)

Zoned (6,0) See Table 1 (See page 137).

71 Program name
(JOPGM)

Char (10) See Table 1 (See page 137).

81 Object name
(JOOBJ)

Char (10) See Table 1 (See page 137).

91 Library name
(JOLIB)

Char (10) See Table 1 (See page 137).

101 Member name
(JOMBR)

Char (10) See Table 1 (See page 137).

111 Count/relative
record number
(JOCTRR)

Zoned (10,0) See Table 1 (See page 137).

121 Indicator flag
(JOFLAG)

Char (1) See Table 1 (See page 137).

122 Commit cycle
identifier
(JOCCID)

Zoned (10,0) See Table 1 (See page 137).

132 User profile
(JOUSPF)

Char (10) See Table 2 (See page 140).

142 System name
(JOSYNM)

Char (8) See Table 2 (See page 140).

Table 4. Field Descriptions of the Fixed-Length Portion of a Journal Entry: *TYPE4

Offset Field Format Description

1 149 These fields are the same as for *TYPE3. See Table 3 (See page
140).

150 Journal identifier
(JOJID)

Char(10) Specifies the journal identifier (JID) for the object. When journaling
is started for an object, the system assigns a unique JID to that
object. The JID remains constant even if the object is renamed or
moved. However, if journaling is stopped, there is no guarantee that
the JID will be the same if journaling is started again for the same
object.

If no JID is associated with the entry, this field has hexadecimal
zeros.

Journal management 141

Offset Field Format Description

160 Referential
constraint
(JORCST)

Char(1) Indicates whether this entry was recorded for actions that occurred
on records that are part of a referential constraint.

The possible values are:

0 = This entry was not created as part of a referential
constraint.

1 = This entry was created as part of a referential constraint.

161 Trigger (JOTGR) Char(1) Indicates whether this entry was created as result of a trigger
program.

The possible values are:

0 = This entry was not created as the result of a trigger
program.

1 = This entry was created as the result of a trigger program.

162 Incomplete data
(JOINCDAT)

Char (1) See Table 1 (See page 137).

163 Ignored by
APYJRNCHG or
RMVJRNCHG
(JOIGNAPY)

Char (1) Indicates whether this journal entry will be ignored by the execution
of the APYJRNCHG or RMVJRNCHG commands, even though
normally this journal entry type has an effect during those
command invocations.

The possible values are:

0 = This entry is not ignored by the APYJRNCHG or
RMVJRNCHG commands.

1 = This entry is ignored by the APYJRNCHG or
RMVJRNCHG commands.

164 Minimized entry
specific data
(JOMINESD)

Char (1) See Table 1 (See page 137).

165 Reserved area
(JORES)

Char (5) Always contains zeros. Contains hexadecimal zeros in the output
file.

Table 5. Field Descriptions of the Fixed-Length Portion of a Journal Entry: *TYPE5

Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) See Table 1 (See page
137).

6 Sequence number
(JOSEQN)

Char (20) See Table 1 (See page
137).

26 Journal code (JOCODE) Char (1) See Table 1 (See page
137).

27 Journal entry type
(JOENTT)

Char (2) See Table 1 (See page
137).

29 Timestamp (JOTSTP) Char (26) See Table 3 (See page
140).

55 Job name (JOJOB) Char (10) See Table 1 (See page
137).

65 User name (JOUSER) Char (10) See Table 1 (See page
137).

142 iSeries: Journal management

Offset Field Format Description

75 Job number (JONBR) Zoned (6, 0) See Table 1 (See page
137).

81 Program name (JOPGM) Char (10) See Table 1 (See page
137).

91 Program library name
(JOPGMLIB)

Char (10) The name of the library that
contains the program that
added the library. If a
RCVSIZOPT or a
FIXLENDTA option was
specified that omitted the
collection of this
information, then
*OMITTED will be returned
for the program library
name.

IF *NONE is returned for
Program name, then
*NONE is also returned for
the program library name.

101 Program library ASP device
name (JOPGMDEV)

Char (10) The name of the ASP
device that contains the
program. If a RCVSIZOPT
or a FIXLENDTA option was
specified that omitted the
collection of this
information, then
*OMITTED will be returned
for the program library ASP
device name.

IF *NONE is returned for
Program name, then
*NONE is also returned for
the program library ASP
device name.

111 Program library ASP
number (JOPGMASP)

Zoned (5,0) The number for the auxiliary
storage pool that contains
the program that added the
journal entry. If a
RCVSIZOPT or a
FIXLENDTA option was
specified that omitted the
collection of this
information, then
hexadecimal 0 will be
returned for the program
library ASP number.

116 Object name (JOOBJ) Char (10) See Table 1 (See page
137).

126 Object library (JOLIB) Char (10) See Table 1 (See page
137).

136 Member name (JOMBR) Char (10) See Table 1 (See page
137).

Journal management 143

Offset Field Format Description

146 Count or relative record
number (JOCTRR)

Char (20) Contains either the relative
record number (RRN) of the
record that caused the
journal entry or a count that
is pertinent to type of
journal entry.

166 Indicator flag (JOFLAG) Char (1) See Table 1 (See page
137).

167 Commit control ID
(JOCCID)

Char (20) See Table 1 (See page
137).

187 User profile (JOUSPF) Char (10) See Table 2 (See page
140).

197 System name (JOSYNM) Char (8) See Table 2 (See page
140).

205 Journal identifier (JOJID) Char (10) See Table 4 (See page
141).

215 Referential constraint
(JORCST)

Char (1) See Table 4 (See page
141).

216 Trigger (JOTGR) Char (1) See Table 4 (See page
141).

217 Incomplete data
(JOINCDAT)

Char (1) See Table 1 (See page
137).

218 Ignore during Apply
Journaled Change
(*APYJRNCHG) or Remove
Journaled Change
(RMVJRNCHG)
(JOIGNAPY)

Char (1) See Table 4 (See page
141).

219 Minimized entry-specific
data (JOMINESD)

Char (1) See Table 1 (See page
137).

144 iSeries: Journal management

Offset Field Format Description

220 Object indicator
(JOOBJIND)

Char (1) An indicator with respect to
the information in the object
field1. The valid values are:

0= Either the journal entry
has no object information or
the object information in the
journal entry header does
not necessarily reflect the
name of the object at the
time the journal entry was
deposited into the journal.

1= The object information
in the journal entry header
reflects the name of the
object at the time the
journal entry was deposited
into the journal.

2= The object information
in the journal entry header
does not necessarily reflect
the name of the object at
the time the journal entry
was deposited into the
journal. The object
information may be returned
as a previously known
name for the object prior to
the journal entry being
deposited into the journal or
be returned as
*UNKNOWN.

221 System sequence number
(JOSYSSEQ)

Char (20) The system sequence
number indicates the
relative sequence of when
this journal entry was
deposited into the journal.
You can use the sequence
number to sequentially
order journal entries that
are in separate journal
receivers. If a RCVSIZOPT
or a FIXLENDTA option was
specified that omitted the
collection of this
information, then
hexadecimal 0 will be
returned for the system
sequence number.

241 Receiver name (JORCV) Char (10) The name assigned to the
journal receiver

251 Receiver library name
(JORCVLIB)

Char (10) The name of the library in
which the journal receiver
resides.

Journal management 145

Offset Field Format Description

261 Receiver library ASP device
name (JORCVDEV)

Char (10) The name of the ASP
device for journal receivers
that reside on an
independent disk pool

271 Receiver library ASP
number (JORCVASP)

Zoned (5,0) The number of the ASP on
which the journal receiver
resides.

276 Arm number (JOARM) Zoned (5,0) The number of the disk arm
that contains the journal
entry.

281 Thread identifier (JOTHDX) Hexadecimal (8) Identifies the thread within
the process that added the
journal entry. If a
RCVSIZOPT or a
FIXLENDTA option was
specified that omitted the
collection of this
information, then
hexadecimal 0 will be
returned for the thread
identifier.

289 Thread identifier formatted
(JOTHD)

Char (16) See Thread identifier.

305 Address family (JOADF) Char (1) The address family
identifies the format of the
remote address for this
journal entry. If a
RCVSIZOPT or a
FIXLENDTA option was
specified that omitted the
collection of this
information, then 0 will be
returned for the address
family.

The possible values are:

0 = This entry was not
associated with any remote
address.
4 = The format of the
remote address is internet
protocol version 4.

306 Remote port (JORPORT) Zoned (5, 0) The remote port of a the
journal entries. If a
RCVSIZOPT or a
FIXLENDTA option was
specified that omitted the
collection of this
information, then
hexadecimal 0 will be
returned for the remote
port.

146 iSeries: Journal management

Offset Field Format Description

311 Remote address (JORADR) Char (46) The remote address of a
the journal entries. If a
RCVSIZOPT or a
FIXLENDTA option was
specified that omitted the
collection of this
information, then
hexadecimal 0 will be
returned for the remote
address.

357 Logical unit of work
(JOLUW)

Char (39) The logical unit of work
identifies entries to be
associated with a given unit
of work, usually within a
commit cycle. If a
RCVSIZOPT or a
FIXLENDTA option was
specified that omitted the
collection of this
information, then blanks will
be returned for the logical
unit of work.

396 Transaction identifier
(JOXID)

Char (140) See the QSYSINC/H.XA
header file for the layout of
this data. If a RCVSIZOPT
or a FIXLENDTA option was
specified that omitted the
collection of this
information, then the
displacement to the
transaction identifier is 0
and no transaction identifier
is returned.

536 Reserved (JORES) Char (20) Reserved area. It always
contains hexadecimal
zeros.

Note:

1This value will be returned only when retrieving journal entries from a remote journal and the remote journal is
currently being caught up from its source journal. A remote journal is being caught up from its source journal when
the Change Remote Journal (CHGRMTJRN) command or Change Journal State (QjoChangeJournalState) API is
called and is currently replicating journal entries to the remote journal. After the call to the CHGRMTJRN command or
QjoChangeJournalState API returns, the remote journal is maintained with a synchronous or asynchronous delivery
mode, and the remote journal is no longer being caught up.

Variable-length portion of the journal entry
For output formats *TYPE1 and *TYPE2, the variable length portion of the journal entry includes just the
Entry-specific data field. The contents of the Entry-specific data field depends on the journal entry code
and entry type. For the layout of the output format *TYPEPTR or *JRNENTFMT, see the
QjoRetrieveJournalEntries API. For all other output formats, the variable-length portion of the converted
journal entry potentially has two fields:

v Null value indicators

v Entry-specific data

Journal management 147

../apis/QJORJRNE.htm

The Null Value Indicators field, contains relevant information only for entries with journal code R. Null value
indicators are present in journal entries for record level operations as follows:

v The corresponding physical file has null capable fields.

v The record image has been minimized in the entry specific data.

Otherwise, it contains blanks. If the record image has not been minimized in the entry specific data, the
Null Value Indicators field is a character string with one character for each field in the physical file that has
record images appearing in the journal. Each character has the following interpretation:

v 0 = corresponding field in the record is not NULL.

v 1 = corresponding field in the record is NULL.

System-supplied output files

The following system-supplied output files define the Null Value Indicators and Entry-Specific Data fields
as variable-length character fields:

v QSYS/QADSPJR3

v QSYS/QADSPJR4

v QSYS/QADSPJR5

For additional details regarding the *TYPE3, *TYPE4, and *TYPE5 formats and the exact layout of these
two fields, see the following commands:

v Display Journal (DSPJRN)

v Receive Journal Entry (RCVJRNE)

v Retrieve journal entry (RTVJRNE)

Layouts for journal entry types

Table 6 (See page 148) through Table 40 show the layouts for some of the journal entry types. Some
journal entry types are described in other books. Those journal entries are indicated in the Journal code
finder. Some journal entry types are documented in QSYSINC library includes, as indicated in the Journal
code finder. Some entry types do not have entry-specific data.

These layouts include specific values for fields in the fixed-length portion of the entry and the fields in the
entry-specific portion of the entry. The offsets show the relative offset within the Entry-specific data field.
The beginning position of the Entry-specific data field depends on the format type that you specify. See
Table 1, Table 2, Table 3, Table 4, and Table 5 for the format type layouts.

Table 6. APYJRNCHG (B AJ, E EQ, F AY) and RMVJRNCHG (E EX, F RC) journal entries

Relative offset Field Format Description

Specific values for this entry type:

Count or Relative Record
Number (JOCTRR)

Zoned (10,0) Contains the number of
journal entries applied or
removed.

Flag (JOFLAG) Char (1) The results of the apply or
remove operation:

0 = Command
completed
normally.

1 = Command
completed
abnormally.

148 iSeries: Journal management

../cl/dspjrn.htm
../cl/rcvjrne.htm
../cl/rtvjrne.htm
#HDRTBLRNFID
finder/rzakifinder.htm
finder/rzakifinder.htm

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 First entry applied or
removed

Zoned (10,0) Sequence number of the
first entry actually applied or
removed.

11 Last entry applied or
removed

Zoned (10,0) Sequence number of the
last entry actually applied or
removed.

21 Starting receiver name Char (10) The name of the first
receiver from which entries
were applied or removed.

31 Library name Char (10) The library for the starting
receiver.

41 Ending receiver name Char (10) The name of the last or
ending receiver from which
entries were applied or
removed.

51 Library name Char (10) The library for the ending
receiver.

61 Starting sequence number Char (10) Starting sequence number
for the apply or remove
operation

71 Ending sequence number Char (10) Ending sequence number
for the apply or remove
operation

81 Incomplete commit
transaction not applied or
removed

Char (1)
0 = Indicates that

either
CMTBDY(*NO)
was specified or
CMTBDY(*YES)
was specified and
no partial
commitment
control
transactions were
found in the range
specified by the
starting and ending
sequence numbers

1 = Indicates that
CMTBDY(*YES)
was specified and
one or more partial
commitment
control
transactions were
found in the range
specified by the
starting and ending
sequence numbers

Journal management 149

Table 7. Change end of data (F CE) journal entry

Relative offset Field Format Description

Specific values for this entry type:

Count or relative record
number (JOCTRR)

Zoned (10,0) The relative record number
of the last record kept in the
physical file member.

Table 8. CHGJRN (J NR, J PR) journal entries

Relative offset Field Format Description

Specific values for this entry type:

Count or relative record
number (JOCTRR)

Zoned (10,0) Contains the number of
receivers attached or
detached.

Entry-specific data. This data appears as one field in the standard output formats:

1 First receiver name Char (10) The name of the first
receiver that is attached or
detached.

11 First receiver library name Char (10) The name of the library for
the first receiver that is
attached or detached.

21 Dual receiver name Char (10) The name of the dual
receiver that is attached or
detached. Blank if only one
receiver is used for the
journal.

31 Dual receiver library name Char (10) The name of the library for
the dual receiver that is
attached or detached. Blank
if only one receiver is used
for the journal.

Table 9. COMMIT (C CM) journal entry

Relative offset Field Format Description

Specific values for this entry type:

Count or relative record
number (JOCTRR)

Zoned (10,0) Contains the length of the
commit identification.

150 iSeries: Journal management

Relative offset Field Format Description

Flag (JOFLAG) Char (1) Whether the commit
operation was initiated by
the system or the user:

0 = All record-level
changes were
committed for a
commit operation
initiated by a user.

2 = All record-level
changes were
committed for a
commit operation
initiated by the
operating system.

Entry-specific data. This data appears as one field in the standard output formats:

1 Commit ID Char (*) Contains the commit
identification specified by
the operation. The Count
field specifies the length of
this field.

Table 10. Delete access path (R PD) journal entry

Relative offset Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) The JID is not provided with
the *TYPE1, *TYPE2, and
*TYPE3 formats. It can be
used with the QJORJIDI
API.

Table 11. Delete receiver (J RD, J RF) journal entries

Relative offset Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) The JID is not provided with
the *TYPE1, *TYPE2, and
*TYPE3 formats. It can be
used with the QJORJIDI
API.

Table 12. Force data to auxiliary storage (F FD) journal entry

Relative offset Field Format Description

Specific values for this entry type:

Job name (JOJOB) Char (10) Blank if the entry is written
during IPL or vary on of an
independent disk pool.

Journal management 151

Relative offset Field Format Description

Job number (JONBR) Zoned (6,0) Zero if entry is written
during IPL or vary on of an
independent disk pool.

Program name (JOPGM) Char (10) Blank if the entry is written
during IPL or vary on of an
independent disk pool.

Table 13. INZPFM (F IZ) journal entry

Relative offset Field Format Description

Specific values for this entry type:

Count or Relative Record
Number (JOCTRR)

Zoned (10,0) Contains the number of
records specified on the
TOTRCDS parameter of the
Initialize Physical File
Member (INZPFM)
command.

Flag (JOFLAG) Char (1) Indicates the type of record
initialization that was done:

0 = *DFT (default)

1 = *DLT (delete)

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry-specific data If the member is initialized
with default records, this
field contains the default
record image.

Table 14. IPL (J IA, J IN) and in-use (B OI, C BA, D ID, E EI, F IU, I DA, I JI, Q QI) journal entries

Relative offset Field Format Description

Specific values for this entry type:

Time stamp (JOTIME) Zoned (6,0) The timestamp created at
IPL is read from the
battery-powered clock. If
the battery-powered clock
cannot be read, the time is
that of the system power
down, not the time of the
IPL, because the system
time has not yet been
updated at the time the
journal entry is written.

152 iSeries: Journal management

Relative offset Field Format Description

Flag (JOFLAG) Char (1) For in-use entries, indicates
whether the object was
synchronized with the
journal:

0 = Object was
synchronized with
journal

1 = Object was not
synchronized with
journal.

Table 15. Logical Unit of Work (C LW) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 LUW header portion 416 The header portion of the
entry-specific data contains
general information about
the logical unit of work
(LUW). Table 16 (See page
154) describes the contents
of the header portion.

After the header portion LUW local portion 80 Information about local
resources that participated
in the LUW. The entry may
have 0 to n records for local
locations. Each local record
is 48 characters long. Table
17 (See page 162)
describes the local record.

After the local portion LUW API portion 112 Information about API
resources that participated
in the LUW. The entry may
have 0 to n records for API
resources. Each API
resource record is 80
characters long. Table 18
(See page 164) describes
the API record.

After the API portion LUW DDL portion 96 Information about DDL
resources that participated
in the LUW. The entry may
have 0 to n records for DDL
resources. Each DDL
resource record is 80
characters long. Table 19
(See page 166) describes
the DDL record.

Journal management 153

Relative offset Field Format Description

After the DDL portion LUW remote portion 128 Information about remote
locations that participated in
the LUW. The entry may
have 0 to n records for
remote locations. Each
remote location record is
128 characters long. Table
20 (See page 169)
describes the remote
record.

After the remote portion LUW DDM portion 96 Information about DDM
resources that participated
in the LUW. The entry may
have 0 to n records for
DDM resources. Each DDM
resource record is 96
characters long. Table 21
(See page 173) describes
the DDM record.

Table 16. Logical Unit of Work (C LW) journal entry-header record

Relative
offset Field Format Description

1 Record type Char (4) Type of record:

HDR Header record.

5 Record length Bin (15) Length of record. Currently 400 for HDR record.

7 Record position (4)1 This identifies the position in the LUW journal entry where this
record starts. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains this record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains this record (1 for the first, 2 for the
second, and so forth). Note that this is not the actual
journal entry sequence number.

v Bin (15): The offset where this record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where this record starts. For
example, 0 means the first byte in the entry. Because they
always start at the beginning of the journal entry, this offset
is always 0 for HDR records.

11 Number of journal
entries

Bin (15) The number of actual journal entries sent for this LUW journal
entry. This is 1 unless the LUW journal entry is greater than
32K-1 bytes.

154 iSeries: Journal management

Relative
offset Field Format Description

13 Location with no
journal position

(4)1 This identifies the position in the LUW journal entry where the
LCL record starts for the local location with no journal. It is
made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so forth). Note that this is not the actual
journal entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 means that there is no local location that does
not have a journal.

17 First location with
journal position

(4)1 This identifies the position in the LUW journal entry where the
LCL record starts for the first local location with a journal. It is
made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 means that there are no local locations with a
journal.

21 First remote location
position

(4)1 This identifies the position in the LUW journal entry where the
RMT record starts for the first remote location. It is made up
of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 means there are no remote locations.

Journal management 155

Relative
offset Field Format Description

25 LUW operation Char (2) The operation that was performed to end this LUW:

CM A commit operation was performed. This does not
necessarily mean that the resources were
committed. In some cases a commit operation is
changed to a rollback operation according to
two-phase commit rules.

RB A rollback operation was performed. An attempt was
made to roll back all resources.

27 Protected logical unit
of work identifier
(LUWID)

Char (41) The format for the LUWID is:

v Bin (15): The total length of the LUWID not including this
field

v Char (0 to 8): The network ID

v Char (1): The separator character .

v Char (0 to 8): The local location name

v Char (3): The separator characters .X’

v Char (12): The hex value of the instance number converted
to character

v Char (2): The separator characters ’.

v Char (5): The hex value of the sequence number converted
to decimal

68 Unprotected logical
unit of work identifier

Char (41) The format for the LUWID for unprotected conversations is
the same as for protected conversations.

109 Default Journal
Commit Cycle ID

Bin (31) The commit cycle identifier for the default journal for this
LUW. This is 0 if no commit cycle was started for this journal
during this LUW. This is -1 if the actual commit cycle identifier
value is larger than 2 147 483 647. The Default Journal
Commit Cycle ID Long field always contains the correct value.

113 Commitment definition
name

Char (10) The name of the commitment definition for which this LUW
took place.

123 Commitment definition
identifier

Char (10) The commitment definition identifier of the commitment
definition. This is not useful to the end user.

133 Qualified job name Char (26) The job that created the commitment definition.

159 Reserved Char (1) Reserved for future use. Currently always blank.

160 Commitment definition
scope

Char (1) The scope of the commitment definition:

A Activation group level commitment definition.

E Explicitly named commitment definition.

J JOB commitment definition.

161 Activation group mark Bin (31) The activation group mark for the commitment definition:

0 This is the *JOB or an explicitly named commitment
definition.

2 This is the *DFTACTGRP commitment definition.

The number of the activation group for this activation
group level commitment definition.

156 iSeries: Journal management

Relative
offset Field Format Description

165 Notify object Char (37) The notify object for the commitment definition:

v Char (10) - Object name

v Char (10) - Object library

v Char (10) - Object member (blank if object is not a file)

v Char (7) - Object type (*MSGQ, *DTAARA or *FILE)

202 Default journal Char (20) The default journal for the commitment definition:

v Char (10): Journal name

v Char (10): Journal library

222 Initiation type Char (1) Whether this commit or rollback operation was initiated by the
user or by the system:

E Explicit commit or rollback operation initiated by the
user.

I Implicit commit or rollback operation due to activation
group end, job end, or system end.

If the LUW was finished after a system end, this is
set to I, even if an explicit commit or rollback
operation was running at the time the system ended.

223 LUW end status Char (1) Indication of when this LUW ended with respect to the job
that created the commitment definition for which this LUW
took place:

N The LUW ended while the job was running normally.

E The LUW ended during job end. This means that the
LUW was still pending when a request was made to
end the job. If the requested operation is CM, then a
commit request had started before the request to
end the job and was finished during the job-end
phase.

I The LUW ended during the IPL following a system
end. If the requested operation is CM, then a commit
request was started before the system end and was
finished during the IPL.

P The LUW ended after the IPL following a system
end. In this case, the requested operation is CM and
the LUW was prepared pending the commit/rollback
decision from the initiator or last agent when the
system ended. During the IPL, local resources were
brought back to a prepared state in a system
database server job. After resynchronization was
performed to learn the commit/rollback decision, the
LUW ended by committing or rolling back the local
resources in that same system database server job.

224 Sync-point Role Char (1) The sync-point role played by this location during a commit
operation:

I Initiator: the root of the sync-point tree.

C Cascaded initiator: an intermediate location in the
sync-point tree.

A Agent: a leaf location in the sync-point tree.C tree.

blank This LUW ended in a rollback request.

Journal management 157

Relative
offset Field Format Description

225 Partner role Char (1) The partner role played by this location during a commit:

I Initiator: the root of the sync-point tree.

N Not-last agent: a prepare request was sent to this
location during the prepare wave.

L Last agent: a prepare request was not sent to this
location during the prepare wave. Instead, a request
was made to this location during the committed wave
to attempt a full commit operation before reporting
results back to its initiator.

blank This LUW ended in a rollback request

158 iSeries: Journal management

Relative
offset Field Format Description

226 LUW disposition Char (2) The overall disposition of the LUW:

RO This location and all downstream locations voted
read-only. These resources were not committed or
rolled back because they were not changed during
the LUW. It is not known whether the other locations
in the sync-point tree committed or rolled back.

CM All resources committed. No errors have been
detected to this point. If the Resync In Progress
Indicator field is N, the LUW has completely
committed. Otherwise, resynchronization is still going
on to assure this location that other locations
committed completely.

CF An attempt was made to commit all resources, but
one or more errors have occurred. The job log,
QHST, and QSYSOPR *MSGQ can be checked to
determine the errors.

RB All resources rolled back successfully.

RF An attempt was made to roll back all resources, but
one or more errors have occurred. The job log,
QHST, and QSYSOPR *MSGQ can be checked to
determine the errors.

HD Heuristic damage has occurred. This means one of
two things:

1. Some of the resources at this location or
downstream locations committed while others
rolled back because an operator performed a
heuristic commit operation or rollback operation.

2. An unexpected error occurred while committing
or rolling back resources at this location or
downstream locations due to a hardware or
software problem.

When heuristic damage occurs, the following LUW journal
entry records can be checked to learn the status of the
changes made during the LUW to individual resources:

LCL The Record I/O State field indicates the status of the
record I/O performed on files journaled to the journal
related to that location.

API The API State field indicates the status of that API
Commitment Resource.

DDL The DDL State field indicates the status of that SQL
Object Change.

RMT The Resource State field indicates the status of the
resources at the remote location.

Journal management 159

Relative
offset Field Format Description

228 Heuristic Operation
Indicator

Char (1) Whether a heuristic commit or rollback operation occurred at
this location while a commit request was being performed for
this LUW:

blank No heuristic operation occurred.

C A heuristic commit operation occurred.

R A heuristic rollback operation occurred.

A heuristic commit operation or rollback operation means that
the operator took explicit action (while this location was
waiting for the commit or rollback decision from the initiator or
the last agent) to commit or to roll back the resources at this
location and all prepared downstream locations. Heuristic
operations can result in some resources committing while
others roll back. The LUW Disposition field can be checked to
see if this has happened (it would be HD). The Resync In
Progress Indicator field can also be checked. If it is O,
heuristic damage may have occurred or it may still occur
because the state of the resources at the locations where
resynchronization is still going on is unknown. Messages are
written to the history log and to the system database server
job logs when the resynchronization processes complete to
indicate whether or not damage occurred. If damage occurs,
messages are also sent to the system operator when it is
detected.

229 Resync in progress
indicator

Char (1) Whether resync to one or more remote locations was still
ongoing when the LUW ended:

N Either no resynchronization was required during this
LUW, or it was required and completed before the
LUW ended.

O Resynchronization was going on with one or more of
the locations. This can occur only if the
WAIT_FOR_OUTCOME synchronization point option
is NO, or if the LUW was interrupted by job or
system end.

230 Wait for outcome Char (1) The value of the Wait for outcome commitment option. This
indicates whether to wait for resynchronization to complete if
a communication or system failure occurs during a commit or
rollback.

Y Wait for outcome.

L Wait for outcome during commits initiated by this
commitment definition or during commits initiated at
a system that does not support presumed abort.
Inherit the initiator’s wait for outcome value during
commits initiated at a system that supports
presumed abort

N Do not wait for outcome.

U Do not wait for outcome during commits initiated by
this commitment definition or during commits initiated
at a system that does not support presumed abort.
Inherit the initiator’s wait for outcome value during
commits initiated at a system that supports
presumed abort.

160 iSeries: Journal management

Relative
offset Field Format Description

231 Action if problems Char (1) The value of the Action if problems commitment option. This
indicates whether to commit or rollback when problems occur
during a two-phase commit.

R Rollback if problems occur.

C Commit if problems occur.

232 Vote read-only
permitted

Char (1) The value of the Vote read-only permitted commitment option.
This indicates whether this commitment definition is allowed
to return a read-only vote to a remote initiator during a
two-phase commit.

N Do not allow a read-only vote.

Y Allow a read-only vote.

233 Action if ENDJOB Char (1) The value of the Action if ENDJOB commitment option. This
indicates the action to take for changes associated with the
LUW when the job the LUW is a part of is ended.

W Wait to allow normal processing of the LUW to
complete.

R Rollback during ENDJOB.

C Commit during ENDJOB.

234 OK to leave out Char (1) The value of the OK to leave out commitment option. This
indicates whether this location is allowed to be left out during
the next commit/rollback if no activity occurred to this location
during the LUW.

N Do not leave this location out of the next commit or
rollback operation.

Y It is OK to leave this location out of the next commit
or rollback operation.

235 Last agent permitted Char (1) The value of the Last agent permitted commitment option.
This indicates whether last agent optimization may be used.

S The system is allowed to select a last agent.

N The system is not allowed to select a last agent.

236 Accept vote reliable Char (1) The value of the Accept vote reliable commitment option. This
indicates whether the vote reliable indicator received from
agents during a commit operation is accepted by this location.
If an agent votes reliable, and this location accepts it, control
is returned to the application before the committed wave is
completed for that agent. If this location does not accept vote
reliable, control is returned to the application only after the
LUW is completely committed or rolled back.

Y Accept the vote reliable indicator from agents during
commit operations.

N Do not accept the vote reliable indicator from agents
during commit operations.

Journal management 161

Relative
offset Field Format Description

237 Resolved wait for
outcome value

Char (1) This indicates the actual wait for outcome value that was
used during the commit or rollback of this LUW. If the Wait for
outcome commitment option is L or U, this value may have
been inherited from this location’s initiator.

Y Wait for outcome of resynchronization.

N Do not wait for outcome of resynchronization.

238 XA transaction
manager

Char (10) If this was an X/Open transaction, this is the name of the XA
Transaction Manager that was specified on the db2xa_open
API. This field will be hex zeros if this was not an XA
transaction.

248 XID Char (140) If this was an X/Open Transaction, this is the X/Open
Transaction Identifier associated with this transaction. This
field will be hex zeros if this was not an X/Open transaction,
or if it was an X/Open local transaction. The format of this
field is as follows:
Bin(31) format identifier
Bin(31) global transaction identifier length
Bin(31) branch qualifier length
Char (128) XID value

388 Default journal commit
cycle ID long

Zoned (20,0) The commit cycle identifier for the default journal for this
LUW. This is 0 if no commit cycle was started for this journal
during this LUW.

408 Reserved Char (9) Reserved for future use.

Note: 1The format for this field is in the description.

Table 17. Logical Unit of Work (C LW) journal entry-local record

Relative
offset Field Format Description

1 Record type Char (4) Type of record:

LCL Local location record.

5 Record length Bin (15) Length of record. Currently 48 for LCL record.

7 Record position (4)1 This identifies the position in the LUW journal entry where this
record starts. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains this record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains this record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where this record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where this record starts. For
example, 0 means the first byte in the entry.

162 iSeries: Journal management

Relative
offset Field Format Description

11 Next local location
position

(4)1 This identifies the position in the LUW journal entry where the
next LCL record starts. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 indicates that this is the last local location.

15 First resource position (4)1 This identifies the position in the LUW journal entry where the
first API or DDL record starts for this location. It is made up of
two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

19 Record I/O state Char (2) Indicates whether the record I/O performed during this LUW
for files journaled to the journal related to this location was
committed or rolled back successfully:

CS Record I/O for this location was committed
successfully.

RS Record I/O for this location was rolled back
successfully

CF An attempt to commit record I/O for this location
failed.

RF An attempt to rollback record I/O for this location
failed.

blank This is the location with no journal so there is no
record I/O associated with it.

21 Journal Char (20) Journal related to this location:

v Char (10): Journal name (blank if this is the location with
no journal)

v Char (10): Journal library (blank if this is the location with
no journal)

Journal management 163

Relative
offset Field Format Description

41 Commit Cycle ID Bin (31) The commit cycle identifier for the journal. This is 0 for the
location with no journal. It may be 0 for the location related to
the default journal if there were no resources for that location
during this LUW. This is -1 if the actual commit cycle identifier
value is larger than 2 147 483 647. The Default Journal
Commit Cycle ID Long field always contains the correct value.

45 Default journal flag Char (1) Indicates whether the journal related to this location is the
default journal:

Y It is the default journal.

N It is not the default journal.

46 Commit Cycle ID
Long

Zoned (20,0) The commit cycle identifier for the journal. This is 0 for the
location with no journal. It may be 0 for the location related to
the default journal if there were no resources for that location
during this LUW.

66 Reserved Char (15) Reserved for future use.

Note: 1The format for this field is in the description.

Table 18. Logical Unit of Work (C LW) journal entry-API record

Relative
offset Field Format Description

1 Record type Char (4) Type of record:

API API Commitment Resource record

5 Record Length Bin (15) Length of record. Currently 80 for API record.

7 Record Position (4)1 This identifies the position in the LUW journal entry where this
record starts. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains this record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains this record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where this record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where this record starts. For
example, 0 means the first byte in the entry.

164 iSeries: Journal management

Relative
offset Field Format Description

11 Resource Location
Position

(4)1 This identifies the position in the LUW journal entry where the
LCL record starts for this API resource’s location. It is made
up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

15 Next Resource
Position

(4)1 This identifies the position in the LUW journal entry where the
next API or DDL record starts for this API resource’s location.
It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 indicates that this is the last resource for this API
resource’s location.

19 API Resource Char (10) Name of API resource.

29 API Program Char (20) Name of the exit program for the API resource:

v Char (10): exit program name

v Char (10): exit program library

49 Journal Char (20) Journal related to the location for this resource:

v Char (10): Journal name (blank if this resource belongs to
the location with no journal)

v Char (10): Journal library (blank if this resource belongs to
the location with no journal)

69 Commit Cycle ID Bin (31) The commit cycle identifier for the journal. This is 0 if this
resource belongs to the location with no journal. This is -1 if
the actual commit cycle identifier value is larger than 2 147
483 647. The Commit Cycle ID Long field always contains the
correct value.

73 Commit Protocol Char (1) The commit protocol for this resource:

2 This is a two-phase resource (API resources are
always two-phase resources).

Journal management 165

Relative
offset Field Format Description

74 Resource Usage Char (2) The currently allowed access for this resource. The allowed
access for some resources can change from one LUW to
another depending on whether one-phase resources are
registered:

RO This resource is currently read-only. Updates were
not made during the LUW.

UP This resource is currently able to be updated.
Updates may or may not have been made during the
LUW.

76 API State Char (2) Indicates whether the API resource was committed or rolled
back successfully:

CS This resource was committed successfully.

RS This resource was rolled back successfully.

CF An attempt to commit this resource failed.

RF An attempt to rollback this resource failed.

78 API Last Agent Flag Char (1) Whether this resource is to be selected as the last agent
during all commit requests:

Y This resource is to be selected as the last agent.

N This resource is not to be selected as the last agent.

79 Allow Remote
Resources

Char (1) Whether remote resources are allowed to participate in a
LUW with this resource:

Y Remote resources are allowed with this resource.

N Remote resources are not allowed with this
resource.

80 Save While Active
Flag

Char (1) Whether this resource will hold out a save-while-active
request until a commitment boundary is reached:

Y This resource will hold save-while-active requests.

N This resource will not hold save-while-active
requests.

81 Commit Cycle ID
Long

Zoned (20,0) The commit cycle identifier for the journal. This is 0 if this
resource belongs to the location with no journal.

101 Reserved Char (12) Reserved for future use.

Note: 1The format for this field is in the description.

Table 19. Logical Unit of Work (C LW) journal entry-DDL record

Relative
offset Field Format Description

1 Record Type Char (4) Type of record:

DDL SQL Object Change record.

5 Record Length Bin (15) Length of record. Currently 624 for DDL record.

166 iSeries: Journal management

Relative
offset Field Format Description

7 Record Position (4)1 This identifies the position in the LUW journal entry where this
record starts. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains this record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains this record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where this record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where this record starts. For
example, 0 means the first byte in the entry.

11 Resource Location
Position

(4)1 This identifies the position in the LUW journal entry where the
LCL record starts for this DDL resource’s location. It is made
up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

15 Next Resource
Position

(4)1 This identifies the position in the LUW journal entry where the
next API or DDL record starts for this DDL resource’s
location. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 indicates that this is the last resource for this
DDL resource’s location.

Journal management 167

Relative
offset Field Format Description

19 DDL Resource
Information

Char (29) Object identification and operation performed on object:

v Char (10): First 10 characters of object name. The object
name field always contains the full object name.

v Char (10): Object library name

v Char (7): Object type (*FILE, *LIB or *SQLPKG)

v Char (2): Object operation

The possible object operations and their meanings are the
following:
AC Add PF Constraint
CC Create Collection
CF Create File
CG Create Program
CM Create Member
CP Create SQL Package
CS Create Service Program
CT Create User Defined Type
DC Delete Collection
DF Delete File
DG Drop Program
DP Delete SQL Package
DS Drop Service Program
DT Drop User Defined Type
FC Change File
FR Rename File
GF Grant Files
GG Grant Program
GP Grant to SQL Package
GR Grant Java Routine
GS Grant Service Program
GT Grant User Defined Type
OP COMMENT ON SQL Package
OT COMMENT User Defined Type
RC Remove PF Constraint
RG Revoke Program
RF Revoke Files
RP Revoke from SQL Package
RR Revoke Java Routine
RS Revoke Service Program
RT Revoke User Defined Type
TA Add PF Trigger
TR Remove PF Trigger
UL Unlink Datalink
XF Transfer Files

48 Reserved Char (1) Reserved for future use.

49 Journal Char (20) Journal related to the location for this resource:

v Char (10): Journal name (blank if this resource belongs to
the location with no journal)

v Char (10): Journal library (blank if this resource belongs to
the location with no journal)

69 Commit Cycle ID Bin (31) The commit cycle identifier for the journal. This is 0 if this
resource belongs to the location with no journal. This is -1 if
the actual commit cycle identifier value is larger than 2 147
483 647. The Commit Cycle ID Long field always contains the
correct value.

168 iSeries: Journal management

Relative
offset Field Format Description

73 Commit Protocol Char (1) The commit protocol for this resource:

2 This is a two-phase resource (DDL resources are
always two-phase resources).

74 DDL State Char (2) Indicates whether the DDL resource was committed or rolled
back successfully:

CS This resource was committed successfully.

RS This resource was rolled back successfully.

CF An attempt to commit this resource failed.

RF An attempt to rollback this resource failed.

76 Commit Cycle ID
Long

Zoned (20,0) The commit cycle identifier for the journal. This is 0 if this
resource belongs to the location with no journal.

96 Object Name Char (288) The full object name

384 Reserved Char (1) Reserved for future use.

Note: 1The format for this field is in the description.

Table 20. Logical Unit of Work (C LW) journal entry-RMT record

Relative
offset Field Format Description

1 Record Type Char (4) Remote Location (RMT) record.

5 Record Length Bin (15) RMT record is currently 128.

7 Record Position (4)1 This identifies the position in the LUW journal entry where
this record starts. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains this record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains this record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where this record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where this record starts. For
example, 0 means the first byte in the entry.

Journal management 169

Relative
offset Field Format Description

11 Next Remote Location
Position

(4)1 This identifies the position in the LUW journal entry where
the next RMT record starts. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 indicates that this is the last remote location.

15 First Resource
Position

(4)1 This identifies the position in the LUW journal entry where
the first DDM record starts for this location. It is made up of
two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 indicates that there are no DDM records for this
location.

19 Remote Location
Information

Char (54) Identification of the remote location and communication
information for this location:

v Char (10): Remote Location name

v Char (10): Device name

v Char (10): Mode

v Char (8): Remote network ID

v Char (8): Conversation correlator network ID

v Char (8): Transaction program name

73 Relational Database
Name

Char (18) The name of the relational database opened at this remote
location (blank if no relational database has been opened).

91 Conversation
Deallocation Flag

Char (1) Whether the conversation was deallocated because of this
LUW:

N This conversation is still active.

Y This conversation was deallocated because the
LUW committed, the system ended, a resource
failed, or an unbind was performed.

92 Commit Protocol Char (1) The commit protocol for the resources at this location:

1 The resources are one-phase.

2 The resources are two-phase.

170 iSeries: Journal management

Relative
offset Field Format Description

93 Resource Usage Char (2) The currently allowed access for this resource. The allowed
access for some resources can change from one LUW to
another depending on whether one-phase resources are
registered:

RO This resource is currently read-only. Updates were
not made during the LUW.

UP This resource is currently able to be updated.
Updates may or may not have been made during
the LUW.

Note: This does not indicate whether updates were
actually made during the LUW. It indicates only
whether updates are allowed, given the other
resources currently registered.

95 Resource State Char (2) The state of the resources at this location:

CS The resources were committed successfully.

CF An attempt to commit the resources failed. This
value is only used for one-phase locations.

RS The resources were rolled back successfully.

RF An attempt to rollback the resources failed. This
value is only used for one-phase locations.

NC The resources had no changes for the current
transaction.

FC A communications failure occurred for this location.
It is not known whether resources at the location
committed or rolled back.

HC The resources were heuristically committed.

HR The resources were heuristically rolled back.

HM Heuristic damage was detected at this location.
Some of the resources at the location, or locations
further downstream, committed while others rolled
back.

ER An unexpected error occurred while communicating
with this location. This is due to a hardware or
software problem. The state of the resources is
unknown.

RI We have not yet learned the state of the resources
because resync is still ongoing.

97 Allocator Flag Char (1) Indicates whether this is the allocator location, for example,
the location that called the transaction program running on
this system:

Y This location is the allocator.

N This location is not the allocator.

Journal management 171

Relative
offset Field Format Description

98 Remote Last Agent
Flag

Char (1) Indicates whether this location was selected as the last agent
if a commit request was performed to end this LUW:

Y This is the last agent.

N This is not the last agent.

Note: A last agent will not be selected at this location
unless the Partner Role field in the HDR record is I
or L.

99 Two-phase protocol Char (1) The two-phase commit protocol options supported at this
location.

0 Two-phase commit protocols are not supported.

1 Two-phase commit presumed nothing protocols are
supported.

2 Two-phase commit presumed abort protocols are
supported.

100 Resync initiator Char (1) If resync with this location is still ongoing (the Resource
State field is RI), this value indicates whether the local
location is initiating the resync attempts.

I The local system is initiating resync with this remote
location.

N Resync is not being performed with this remote
location.

W The local system is waiting for resync to be initiated
from this remote location.

101 Voted reliable Char (1) Whether this location voted reliable during the commit of this
LUW.

Y The location voted reliable.

N The location did not vote reliable.

102 OK to leave out Char (1) Whether this location indicated it may be left out of the next
commit or rollback operation if no communications flows
occur to that location during the next LUW.

Y The location indicated it may be left out.

N The location indicated it may not be left out.

103 Left out Char (1) Whether this location was left out of the LUW that was just
committed or rolled back.

Y The location was left out.

N The location was not left out.

172 iSeries: Journal management

Relative
offset Field Format Description

104 Initiator Flag Char (1) Indicates whether this location is the initiator location, i.e. the
location that sent the commit or rollback request to this
system.

Y The location is the initiator.

N The location is not the initiator.

Note: The system cannot determine the initiator location if
the initiator does not support two-phase commit
protocols. This field will always be set to N for
locations that do not support two-phase commit
protocols.

105 Reserved Char (24) Reserved for future use.

Note: 1The format for this field is in the description.

Table 21. Logical Unit of Work (C LW) journal entry-DDM record

Relative
offset Field Format Description

1 Record Type Char (4) Type of record:

DDM Remote Database File record.

5 Record Length Bin (15) Length of record. Currently 96 for DDM record.

7 Record Position (4)1 This identifies the position in the LUW journal entry where this
record starts. It is made up of two numbers:

v Bin (15): The relative number of the journal entry that
contains this record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains this record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where this record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where this record starts. For
example, 0 means the first byte in the entry.

11 Resource Location
Position

(4)1 This identifies the position in the LUW journal entry where the
RMT record starts for this DDM file’s location. It is made up of
two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Journal management 173

Relative
offset Field Format Description

15 Next Resource
Position

(4)1 This identifies the position in the LUW journal entry where the
next DDM record starts for this DDM file’s location. It is made
up of two numbers:

v Bin (15): The relative number of the journal entry that
contains the record. If the LUW journal entry is greater
than 32K-1 bytes, multiple entries are actually sent to the
journal. This number represents which of these actual
journal entries contains the record (1 for the first, 2 for the
second, and so on). Note that this is not the actual journal
entry sequence number.

v Bin (15): The offset where the record starts within this
journal entry. This is the number of bytes past the
beginning of the entry where the record starts. For
example, 0 means the first byte in the entry.

Position 0 0 indicates that this is the last resource for this
DDM file’s location.

19 DDM File Char (20) Name of the DDM file and library for the open remote file:

v Char (10): DDM file name

v Char (10): DDM file library name

29 Remote Location
Information

Char (54) Identification of the remote location and communication
information for this resource’s location:

v Char (10): Remote Location name

v Char (10): Device name

v Char (10): Mode

v Char (8): Remote network ID

v Char (8): Conversation correlator network ID

v Char (8): Transaction program name

93 Open Flag Char (1) Whether the DDM file was open or closed when this LUW
ended:

O The DDM file was open.

C The DDM file was closed.

94 Commit Protocol Char (1) The commit protocol for this resource:

1 This is a one-phase resource.

2 This is a two-phase resource.

95 Resource Usage Char (2) The currently allowed access for this resource. The allowed
access for some resources can change from one LUW to
another depending on whether one-phase resources are
registered:

RO This resource is currently read-only. Updates were
not made during the LUW.

UP This resource is currently able to be updated.
Updates may or may not have been made during the
LUW.

Note: This does not indicate whether updates were actually
made during the LUW. It only indicates whether
updates are allowed, given the other resources
currently registered.

Note: 1The format for this field is in the description.

174 iSeries: Journal management

Table 22. Moving and renaming objects (D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, Q QM,
Q QN) journal entries

Relative offset Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) Records for the entries will
have a journal identifier.
The JID not is provided with
the *TYPE1, *TYPE2, and
*TYPE3 formats. It can be
used with the QJORJIDI
API.

Entry-specific data. This data appears as one field in the standard output formats:

1 Object Name Before Char (10) The name of the object
before the object was
moved or renamed.

11 Library Name Before Char (10) The name of the library
before the object was
moved or renamed.

21 Member Name Before Char (10) The name of the member
before it was moved or
renamed. This field is blank
if the object is not a
physical database file.

31 Object Name After Char (10) The name of the object
after the object was moved
or renamed.

41 Library Name After Char (10) The name of the library
after the object was moved
or renamed.

51 Member Name After Char (10) The name of the member
after it was moved or
renamed. This field is blank
if the object is not a
physical database file.

61 Internal data Char (*) Internal system information.

Table 23. File OPEN (F OP) and file CLOSE (F CL) journal entries

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats.

1 File Name Char (10) The name of the file that
was opened or closed. If a
physical file is opened, this
field and the JOOBJ field
are the same. If a logical
file is opened, this field
contains the name of the
logical file. JOOBJ field
contains the name of the
physical file.

Journal management 175

Relative offset Field Format Description

11 Library Name Char (10) The library containing the
file.

21 Member Name Char (10) The file member that was
opened of closed.

31 Open options Char (4) Only used for file open
(entry type OP). Values of
the bytes follow:

31 Input Char (1) Whether the file was
opened for input:

I = File opened for
input

Blank =
Input not specified

32 Output Char (1) Whether the file was
opened for output:

O = File opened for
output

Blank =
Output not
specified

33 Update Char (1) Whether the file was
opened for update:

U = File opened for
update

Blank =
Update not
specified

34 Delete Char (1) Whether the file was
opened for delete:

D = File opened for
delete

Blank =
Delete not
specified

Table 24. Journal code R, all journal entry types except IL

Relative offset Field Format Description

Specific values for this entry type:

176 iSeries: Journal management

Relative offset Field Format Description

Flag (JOFLAG) Char (1) Whether a before-image is
present1:

0 = Before-image is
not present. If
before-images are
being journaled,
this indicates that
an update
operation or delete
operation is being
requested for a
record that has
already been
deleted.

1 = Before-image is
present.

Journal identifier (JOJID) Char (10) The JID is not provided with
the *TYPE1, *TYPE2, and
*TYPE3 formats. It can be
used with the QJORJIDI
API.

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry-specific Data Char (*) After-image of the record
for entry types PT, PX, UP,
or UR. Before-image of the
record for entry types UB,
DL, BR, or DR if
before-images are being
journaled and the record
was not previously deleted.

Note: 1The flag does not apply to these entry types: PT, PX, UP, and UR.

Table 25. RGZPFM (F RG) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 File Name Char (10) The name of the file
specified for the KEYFILE
parameter on the RGZPFM
command. If
KEYFILE(*NONE) was
specified, this field is blank.

11 Library Name Char (10) The name of the library
specified in the KEYFILE
parameter of the RGZPFM
command. If
KEYFILE(*NONE) was
specified, this field is blank.

Journal management 177

Relative offset Field Format Description

21 Member Name Char (10) The name of the member
specified in the KEYFILE
parameter of the RGZPFM
command. If
KEYFILE(*NONE) was
specified, this field is blank.

Table 26. ROLLBACK (C RB) journal entry

Relative offset Field Format Description

Specific values for this entry type:

Job name (JOJOB) Char (10) Blank if the entry was
added during an IPL vary
on of an independent disk
pool.

Program name (JOPGM) Char (10) Blank if the entry was
added during an IPL or vary
on of an independent disk
pool.

Flag (JOFLAG) Char (1) How the rollback operation
was initiated and whether it
was successful:

0 = All record-level
changes were
rolled back for a
rollback operation
initiated by a user.

1 = Not all record-level
changes were
successfully rolled
back for a rollback
operation initiated
by a user.

2 = All record-level
changes were
rolled back for a
rollback operation
initiated by the
operating system.

3 = Not all record-level
changes were
rolled back for a
rollback operation
initiated by the
operating system.

Table 27. Object restored (B FR, E EL, F MR, J RR, Q QZ) and receiver saved (J RS) journal entries

Relative offset Field Format Description

Specific values for this entry type:

178 iSeries: Journal management

Relative offset Field Format Description

Journal identifier (JOJID) Char (10) Records for the entries will
have a journal identifier.
The JID is not provided with
the *TYPE1, *TYPE2, and
*TYPE3 formats. It can be
used with the QJORJIDI
API.

Entry-specific data. This data appears as one field in the standard output formats:

1 Media type Char (3) The type of media used for
the save or restore
operation:

DKT = Diskette

OPT = Optical

SAV = Save file

TAP = Tape

4 First Volume ID Char (6) The ID of the first volume
used. The optical volume ID
may contain up to 32
characters of which the first
six characters are
displayed.

10 Start Save or Restore Date Char (6)1 The date the save or
restore operation was
started. The date is in the
format of the DATFMT
attribute of the job that
performed the save or
restore operation.

16 Start Save or Restore Time Zoned (6,0) The time the save or
restore operation was
started.

22 Update History Char (1) Whether the save history is
updated:

0 = UPDHST(*NO)
specified on save
command.

1 = UPDHST(*YES)
specified on save
command.

23 Save File Name Char (10) The name of the save file
used for the operation. This
field is blank if a save file
was not used.

33 Save File Library Char (10) The name of the library for
the save file. This field is
blank if a save file was not
used.

43 Media file identifier Char (16) File identifier for the
integrated file system object
on the media. This applies
only to B FR entries.

Journal management 179

Relative offset Field Format Description

59 Restored file identifier Char (16) File identifier for the
restored integrated file
system object. This applies
only to B FR entries.

75 Restored over file identifier Char (16) File identifier for the
integrated file system object
that was restored over. This
applies only to B FR
entries.

Note: 1Refer to the fixed-length portion of the journal entry for any information pertaining to the century of this
date.

Table 28. Object saved (B FS, E ES, F MS, Q QY) journal entries

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Media type Char (3) The type of media used to
save the object:

DKT = Diskette

OPT = Optical

SAV = Save file

TAP = Tape

4 First Volume ID Char (6) The ID of the first volume
used to save the object The
optical volume ID may
contain up to 32 characters
of which the first six
characters are displayed.

10 Start Save Date Char (6)1 The date the save operation
was started. The date is in
the format of the DATFMT
attribute of the job that
saved the object.

16 Start Save Time Zoned (6,0) The time the save operation
was started.

22 Update History Char (1) Whether the save history is
updated:

0 = UPDHST(*NO)
specified on save
command.

1 = UPDHST(*YES)
specified on save
command.

23 Save File Name Char (10) The name of the save file
used for the operation. This
field is blank if a save file
was not used.

180 iSeries: Journal management

Relative offset Field Format Description

33 Save File Library Char (10) The name of the library for
the save file. This field is
blank if a save file was not
used.

43 Save Active Value Char (10) The value specified for the
SAVACT parameter on the
SAVOBJ, SAVCHGOBJ,
SAV, or SAVLIB command.

53 Start Save Active Date Char (6)1 For a save-while-active
operation, this is the date
when checkpoint processing
was completed for the
object. For a normal save
operation, this is the same
as the start date.

59 Start Save Active Time Zoned (6,0) For a save-while-active
operation, this is the time
when checkpoint processing
was completed for the
object. For a normal save
operation, this is the same
as the start time.

65 Primary Receiver Name Char (10) The name of the first of
dual receivers that contains
the start-of-save entry.

75 Primary Receiver Library Char (10) The name of the library
containing the primary
receiver.

85 Dual Receiver Name Char (10) The name of the second of
dual receivers that contains
the start-of-save entry. This
entry is blank if only a
single receiver was used
when the start-of-save entry
was added.

95 Dual Receiver Library Char (10) The name of the library
containing the dual receiver.
This entry is blank if only a
single receiver was used
when the start-of-save entry
was added.

105 Sequence number of
matching start-of-save entry

Zoned (10, 0) For a save-while-active
operation, the sequence
number of the
corresponding start-of-save
entry. For a normal save
operation, this is the
sequence number of the
current object saved entry.

115 File ID of object Char (16) The file identifier of the
object. This applies only to
B FS entries.

Journal management 181

Relative offset Field Format Description

Notes:

1. If an object was saved using the save-while-active function, the saved copy of the object includes all of
the changes found in the journal entries up to the corresponding object start of save-while-active entry,
Table 29 (See page 182).

2. If an object was NOT saved using the save-while-active function, the saved copy of the object includes
all of the changes found in the journal entries up to the corresponding object saved entry, Table 28.

Note: 1Refer to the fixed-length portion of the journal entry for any information pertaining to the century of this
date.

Table 29. Start of save-while-active (B FW, E EW, F SS, Q QX) journal entries

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Media type Char (3) The type of media used to
save the object:

DKT = Diskette

OPT = Optical

SAV = Save file

TAP = Tape

4 First Volume ID Char (6) The ID of the first volume
used to save the object.
The optical volume ID may
contain up to 32 characters
of which the first six
characters are displayed.

10 Start Save Date Char (6)1 The date the save operation
was started. The date is in
the format of the DATFMT
attribute of the job that
saved the object.

16 Start Save Time Zoned (6,0) The time the save operation
was started.

22 Update History Char (1) Whether the save history is
updated:

0 = UPDHST(*NO)
specified on the
save command.

1 = UPDHST(*YES)
specified on the
save command.

23 Save File Name Char (10) The name of the save file
used for the operation. This
field is blank if a save file
was not used.

33 Save File Library Char (10) The name of the library for
the save file. This field is
blank if a save file was not
used.

182 iSeries: Journal management

Relative offset Field Format Description

43 Save Active Value Char (10) The value specified for the
SAVACT parameter on the
SAVOBJ, SAVCHGOBJ,
SAV, or SAVLIB command.

53 Save Active Date Char (6)1 For a save-while-active
operation, this is the date
when checkpoint processing
was completed for the
object. For a normal save
operation, this is the same
as the start date.

59 Save Active Time Char (6) For a save-while-active
operation, this is the time
when checkpoint processing
was completed for the
object. For a normal save
operation, this is the same
as the start time.

65 Object File ID Char (16) The file identifier of the
integrated file system
object. This applies only to
B FW entries.

Notes:

1. If an object was saved using the save-while-active function, the saved copy of the object includes all of
the changes found in the journal entries up to the corresponding object start of save-while-active entry,
Table 29 (See page 182).

2. If an object was NOT saved using the save-while-active function, the saved copy of the object includes
all of the changes found in the journal entries up to the corresponding object saved entry, Table 28.

Note: 1Refer to the fixed-length portion of the journal entry for any information pertaining to the century of this
date.

Table 30. Start journal (B JT, D JF, E EG, F JM, Q QB) journal entries

Relative offset Field Format Description

Specific values for this entry type:

Flag (JOFLAG) Char (1) Indicates the type of images
selected:

0 = After images are
journaled.

1 = Before and after
images are
journaled.

Entry-specific data. This data appears as one field in the standard output formats:

Journal management 183

Relative offset Field Format Description

1 Omit journal entry Char (1) Indicates the value of the
OMTJRNE parameter on
the Start Journal command.

0 = No entries are
omitted from
journaling.

1 = Open and Close
(*FILE), or Open,
Close, and Force
(*DIR or *STMF)
entries are not
journaled.

2 File identifier Char (16) The file identifier for the
integrated file system
object. This only applies to
B JT entries.

18 Path name Char (*) The path name information
optionally follows the file
identifier. This only applies
to B JT entries.

Table 31. License key not valid (L LK) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product
whose license key was not
valid.

8 License Term Char (6) The term of the license.

14 Feature Char (4) The product feature code.

18 Usage Limit Zoned (6,0) The usage limit for the
product.

24 License Key Char (18) The license key for the
product.

42 Expiration Date Char (7) The expiration date for the
license key.

49 Vendor Data Char (8) Data placed in the entry by
the product vendor.

57 Processor Group Char (3) The processor group for the
license key.

Table 32. Usage limit changed (L LL) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product
whose usage limit was
changed.

8 License Term Char (6) The term of the license.

184 iSeries: Journal management

Relative offset Field Format Description

14 Feature Char (4) The product feature code.

18 Previous Usage Limit Zoned (6,0) The usage limit before the
change.

24 Current Usage Limit Zoned (6,0) The usage limit after the
change.

30 Old Expiration Date. Char (7) The expiration date before
the change.

37 New Expiration Date. Char (7) The expiration date after
the change.

Table 33. Usage limit exceeded (L LU) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product
whose usage limit was
exceeded.

8 License Term Char (6) The term of the license.

14 Feature Char (4) The product feature code.

18 Usage Limit Zoned (6,0) The usage limit for the
product.

24 Request Flag Char (1) Whether the request was
successful:

0 = License request
was successful.

1 = License request
was not
successful.

25 Number of Licensed Users Zoned (6,0) The number of users
currently licensed for the
product.

31 Licensed User Name Char (26) x 100 The names of up to 100
users who are licensed for
the product.

Table 34. Update data area (E EA, E EB) journal entries

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Starting position Bin (32) Starting position of change
as specified by the user (1
for decimal).

5 Length of change Bin (32) Length of change to be
applied as specified by the
user.

9 Number Bin (32) Number of decimal
positions as specified by
the user.

Journal management 185

Relative offset Field Format Description

13 Offset to change Bin (32) Offset to change value field
from the beginning of the
entry-specific data (ESD).

17 Type Char (10) Type of data area. Data
area types are *CHAR,
*DEC, and *LGL.

Padding for alignment Char (*) Padding to align fields.

Offset to change Change value Char (*) Value of the change.

Table 35. Data queue cleared, has key (Q QJ) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (2) Reserved for future use.

3 Key length Bin (16) The number of characters
in the key.

5 Key order Char (2) The Key order is as follows:

GT Greater than

LT Less than

NE Not equal

EQ Equal

GE Greater than or
equal

LE Less than or equal

7 Key Char (*) The data to be used to
remove a message from the
data queue.

Table 36. Send data queue, has key (Q QK) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Data Length Bin (32) The length of the data sent
to the data queue

5 Offset to Data Bin (32) Offset to the data placed on
the data queue. The offset
is calculated from the
beginning of the
entry-specific data (ESD).

9 Reserved Char (2) Reserved for future use.

11 Key Length Bin (16) The number of characters
in a key.

13 Reserved Char (4) Reserved for future use.

17 Key Char (*) A prefix added to an entry
by its sender.

Reserved Char (*) Padding to align fields.

186 iSeries: Journal management

Relative offset Field Format Description

Offset to data Data Char (*) The first 16 bytes of the
data entry are API
information required by the
QSNDDTAQ API and are
not placed on the data
queue. The remainder is
the data that was placed on
the data queue.

Table 37. Received data queue, has key (Q QL) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (18) Reserved for future use.

19 Key length Bin (16) The number of characters
in the key.

21 Key order Char (2) The Key Order is as
follows:

GT Greater than

LT Less than

NE Not equal

EQ Equal

GE Greater than or
equal

LE Less than or equal

23 Key Char (*) The data to be used to
receive a message from the
data queue.

Table 38. Send data queue, no key (Q QS) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (28) Reserved for future use.

29 Data length Bin (32) The length of the data
placed on the data queue.

33 Data Char (*) The first 16 bytes of the
data are API information
required by the
QSNDDTAQ API and are
not placed on the data
queue. The remainder is
the data placed on the data
queue.

Table 39. Object level (D AC, D CG, D CT, D DC, D DT, D GC, D GO, D GT, D RV, D TC, D TD, D TG, F
DM, F MC) journal entries

Journal management 187

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object name Char (10) The name of the object that
was operated on.

11 Library Name Char (10) The name of the library of
the object that was
operated on.

21 Member Name Char (10) The name of the member
that was operated on, if
applicable. This field is
blank if it does not apply.

31 Reserved Char (30) Reserved.

61 Internal data Char (*) Internal system information.

Work with journal entry information
Every journal entry is stored internally in a compressed format and must be converted by the operating
system to an external form before it can be shown to the user. You cannot modify or access the journal
entries directly. Not even the security officer can remove or change journal entries in a journal receiver.

You can use these journal entries to help you recover your objects or analyze changes that were made to
the objects.

Following are the various ways that you can retrieve, display, and print journal entry information:

v Display and print journal entries

v Receive journal entries in an exit program

v Retrieve journal entries in a program

v Work with pointers in journal entries

v Considerations for entries containing minimized entry-specific data

Display and print journal entries: Use the Display Journal (DSPJRN) command to display journal
entries. The entries are displayed at a work station, printed, or written to an output file. You cannot directly
access the journal entries in the form in which they are contained in the journal receivers.

The Journal code finder describes each type of journal entry and the information that it contains. It also
provides links for topics that provide the layouts for the fixed-length portion and the variable-length portion
of the journal entry. See the Display Journal (DSPJRN) Command Description for complete layouts for the
model database output files that are provided by the system.

Often, to prepare for a recovery, you display or print the journal entries first. Journal code descriptions
provides a description of each code. Use this list to help you analyze the journal entries and to do the
following:

v Prepare for the recovery of a particular object. The list contains the information you need to specify the
starting and ending points for applying and removing journaled changes.

v Determine the functions that have been performed on the objects that are being journaled (such as
save and restore, clear, reorganize).

v Determine the functions that have been performed on the journal (such as attaching new journal
receivers).

v Determine the functions that have been performed on the associated journal receivers (such as save
and restore).

v Review the activity that has occurred on an object.

v Analyze journal entries for debugging or problem analysis.

188 iSeries: Journal management

rzakidsplyjrnentry.htm
rzakircvjrnentry.htm
rzakirtvjrnentry.htm
rzakipointer.htm
rzakiwrkminendta.htm
finder/rzakifinder.htm
rzakifixlength.htm
rzakivarlength.htm
rzakicodes.htm

v Analyze journal entries for an audit trail.

The DSPJRN command either can selectively list journal entries for a particular member of a file or list the
entries for all files within a particular library. You can further identify journal entries by specifying other
selection criteria such as:

v Journal entries for specific entry types or journal codes, such as U (user-created entries)

v Journal entries for a particular job, program, or file

v Commit cycle identifier

v Date and time

v Dependent entries (referential integrity, triggers, and entries that will be ignored during an Apply
Journaled Changes (APYJRNCHG) or Remove Journaled Changes (RMVJRNCHG) operation)

v Any combination of these:

The online help describes all the parameters for the DSPJRN command. To view the help, type DSPJRN
on a command line and press F1.

Specify journal codes

You can display entries that have specific journal codes, such as all file-member-level entries (F), all
record-level entries (R), or all security entries (T). You specify journal codes in paired values. The first
value in the pair is the journal code. The second value indicates whether the file selections you have
specified should apply when deciding to display entries with the journal code.

Following is an example:
DSPJRN JRN($JRNLIB/JRNA) FILE(CUSTLIB/FILEA)

JRNCDE((F *ALLSLT) (R *ALLSLT)
(U *IGNFLSLT))...

In this example, entries for the FILEA file with journal codes F and R are displayed if the entries meet all
other selection criteria, such as date and time. Entries with journal code U are displayed regardless of
whether they are for file FILEA, because ignore file selection (*IGNFLSLT) is specified for journal code U.
Entries with journal code U must meet all other selection criteria, such as date and time, to be displayed.

Specify output

The following topics provide information about specifying output for journal entries:

v Output for journal entries directed to a workstation

v Output for journal entries directed to a database output file

v Format of database output files

Output for journal entries directed to a work station: If you direct the output from the Display Journal
(DSPJRN) command to the requesting work station, basic information about the journal entries appears.
Use the roll key to display the next sequential set of entries. When the receiver range includes an attached
journal receiver, TOENT(*LAST) is specified on the command, and the last journal entries in the journal
are displayed. Press the Page Down key to display any new journal entries that are added to the attached
receiver since the last time the Page Down key was pressed.

The attached journal receiver in receiver range refers to the journal receiver that was currently attached
when the DSPJRN command was first issued. That journal receiver could be detached while you are
looking at the data online. If that occurs, paging down does not display any entries added after that
receiver was detached.

Journal management 189

rzakijrnentrywrkst.htm
rzakidboutfile.htm
rzakiformatdbout.htm
../cl/dspjrn.htm
../cl/dspjrn.htm

Output for journal entries directed to a database output file: If you direct the output from the Display
Journal (DSPJRN) command to a database output file, you can further restrict the journal entries you want
to process by creating logical files over the database output file.

Each journal entry occupies one record in the output file. Each has a fixed-length portion for standard files.
Before-images and after-images occupy separate records. The ENTDTALEN parameter controls the length
of the field that is used to contain the record image. The ENTDTALEN parameter also controls whether the
field is a fixed or variable length field. If the journal entry is smaller than the output file record, the journal
entry is padded with blanks. If the journal entry is larger than the output file record, the remainder of the
journal entry is truncated, and the system issues a warning message. To avoid truncation, specify the
maximum record length in your files for the ENTDTALEN parameter on the DSPJRN command or specify
*CALC for the ENTDTALEN parameter to allow the system to calculate the length of the specific data field
so no entry is truncated.

If you write journal entries to a database output file, you can write application programs that will process
the data to:

v Write your own apply program.

v Correct data that has been incorrectly updated.

v Remove or review all changes that were made by a particular program.

If you remove all changes that were made by a particular program, you could remove some valid updates.
For example, assume that two work station users are using the same program to update an object, and
one user enters some data that is not valid. If you remove all invalid data changes that are made by that
program, you also remove the valid data that is entered by the other work station user.

Format of database output files: When you direct the output of the Display Journal (DSPJRN) command
to a database file, the system creates the output file records in a standard format. The system creates the
database file in one of these standard formats that are determined by the value that is specified for the
OUTFILFMT parameter:

v *TYPE1

v *TYPE2

v *TYPE3

v *TYPE4

v *TYPE5

Fixed-length portion of the journal entry

Has a complete description of these formats.

You can create an output file to hold the output from the DSPJRN command, but the format has to match
the format of one of the IBM-supplied output files.

Processing journal entry data

There are many ways to work with the journal entry data, including the entry-specific data, depending on
the command that you use to process the journal entry data.

v Use your high-level language (HLL) to subdivide the fields into subfields.

v Use the Retrieve Journal Entry (RTVJRNE) command and the substring built-in function.

v Use the Receive Journal Entry (RCVJRNE) command and the substring built-in function.

v Use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API and map out the data that is returned.

Analyzing your journal activity

190 iSeries: Journal management

../cl/dspjrn.htm
../cl/dspjrn.htm
../cl/dspjrn.htm
rzakifixlength.htm
../cl/rtvjrne.htm
../cl/rcvjrne.htm
../apis/QJORJRNE.htm

You can use the DSPJRN command to help analyze your journal entries. For example, you could
determine how many of each type of entry (such as add or update) was done for a specific file or by a
specific user.

Receive journal entries in an exit program: You can write a program to receive journal entries as they
are written to the journal receiver. When you use the Receive Journal Entry (RCVJRNE) command, you
can specify a user-defined program, called an exit program, to receive journal entries. The program can,
for example, write the entries to tape or to an OS/400 intersystem communications function (ICF) file that
sends them to a backup system. You can use the received entries to update a backup copy of the primary
object on the backup system. You cannot use these received entries with system-supplied recovery
commands (Apply Journaled Changes (APYJRNCHG) and Remove Journaled Changes (RMVJRNCHG))
to update your objects because the RCVJRNE command converts the entries to their external form. You
must write your own program to apply the changes that are contained in the entries to the objects.

The RCVJRNE command supports the same selection criteria as the Display Journal (DSPJRN)
command. You can specify which entries go to the exit program.

For example, you can choose not to receive journal entries that are generated by the action of trigger
programs or referential constraints. If you have a user-written program that updates the files on a second
system with the journal entries, you probably want to specify DEPENT(*NONE). The actions performed by
trigger programs or referential constraints are duplicated automatically on the second system if your
database definitions are the same and you replay the original file operations.

You can specify DELAY(*NEXTENT) to have journal entries sent to your program as soon as they are
written to the journal receiver. You can also specify a time interval. When that interval ends, the exit
program is called. Either new entries are sent or an indicator is sent that there are no new entries.

v Exit program to receive journal entries
Use the parameters in this topic to determine how the exit program will receive journal entries.

v Request block mode
Use block mode to specify whether the system will be sending one or more journal entries to the exit
program and specifies the block length of the buffer passed to the exit program.

Exit program to receive journal entries: You use two parameters to communicate between your exit
program and the system when you are receiving journal entries. The system uses the first parameter for
the contents of one or more journal entries that it is passing to the exit program. The exit program uses
the first parameter to indicate the block length if the exit program requests block mode.

The system and the exit program use the second parameter to communicate about status changes, such
as requesting block mode or ending the RCVJRNE command. The second parameter is a character field
that is three bytes long. Following are the possible values for the first byte of the second parameter:

Possible values for the first byte of the second parameter

0 This value is passed from the system to the exit program. It indicates that no journal entry is being
passed on this call of the exit program.

1 This value is passed from the system to the exit program. It indicates that a single journal entry is
being passed on this call of the exit program. If the specified entry format is not *TYPEPTR or
*JRNENTFMT, then the figure, First parameter of RCVJRNE command: Single-entry mode shows
the layout of the first parameter. Otherwise, the layout is the same as returned to the Retrieve
Journal Entries (QjoRetrieveJournalEntries) API interface.

2 This value is passed from the system to the exit program. It indicates that block mode is in effect.
One or more journal entries are being passed on this call of the exit program. If the specified entry
format is not *TYPEPTR or *JRNENTFMT, then the figure, First parameter of RCVJRNE
command: Block mode shows the layout of the first parameter. Otherwise, the layout is the same
as returned to the QjoRetrieveJournalEntries API interface.

Journal management 191

../cl/dspjrn.htm
rzakiexitjrnentry.htm
rzakirqstblckmode.htm
rzakirqstblckmode.htm
../apis/QJORJRNE.htm
../apis/QJORJRNE.htm

Possible values for the first byte of the second parameter

3 This value is passed from the system to the exit program. It indicates that no journal entry is being
passed on this call of the exit program because the journal receiver that was attached when the
Receive Journal Entry (RCVJRNE) command was started is no longer attached. The system ends
the RCVJRNE command after returning this value to the exit program.

4 No journal entry is passed on this call to the exit program, and no more entries can be passed
unless the local or remote journal is activated.

This value can only be passed to the exit program when receiving journal entries from the
attached receiver of a local or remote journal. The journal state for the journal must be
*INACTIVE.

8 This value is passed from the exit program to the system. It indicates that the system should
begin block mode and pass multiple entries to the exit program.

You can also specify block mode by using the BLKLEN parameter of the RCVJRNE command. If
you specify a BLKLEN value other than *NONE, then specifying 8 in the first byte of the second
parameter will have no impact and the first 5 bytes of the first parameter bill be ignored. However
even if BLKLEN(*NONE) is specified, the system will begin block mode if you specify 8 for the first
byte of the second parameter. See Request block mode for more information.

9 This value is passed from the exit program to the system. It indicates that the RCVJRNE
command should be ended.

Possible Values for the Second Byte of the Second Parameter:

N This value is passed from the system to the exit program. Additional journal entries are not
currently available to be passed after this call of the exit program, or the RCVJRNE command will
end after this call of the exit program.

Y This value is passed from the system to the exit program. Additional journal entries are currently
available to be passed after this call of the exit program.

Possible values for the third byte of the second parameter:

’00’ x One or more journal entries are being passed to the exit program and the object names in the
fixed-length portion of each journal entry do not necessarily reflect the name of the object at the
time the journal entry was deposited into the journal.

This value is only returned when receiving journal entries from a journal receiver that was
attached to a journal prior to V4R2M0.

0 No journal entries are currently being passed, so the information that is normally returned in this
byte is not applicable.

1 One or more journal entries are being passed to the exit program. The object names in the
fixed-length portion of each journal entry reflect the name of the object at the time the journal
entry was deposited into the journal.

192 iSeries: Journal management

rzakirqstblckmode.htm

Possible values for the third byte of the second parameter:

2 One or more journal entries are being passed to the exit program. The object names in the
fixed-length portion of each journal entry do not necessarily reflect the name of the object at the
time the journal entry was deposited into the journal. The object name in the fixed-length portion
of the journal entry may be returned as a known name for the object prior to the journal entry
being deposited into the journal. The object name in the fixed-length portion of the journal entry
may also be returned as *UNKNOWN.

This value will only be returned when receiving journal entries from a remote journal and the
remote journal is currently being caught up from its source journal. A remote journal is being
caught up from its source journal when the Change Journal State (QjoChangeJournalState) API or
Change Remote Journal (CHGRMTJRN) command is invoked and is currently replicating journal
entries to the remote journal. After the call to the QjoChangeJournalState API or CHGRMTJRN
command returns, the remote journal is maintained with a synchronous or asynchronous delivery
mode, and the remote journal is no longer being caught up.

Refer to Retrieve journal entries from a remote journal during the catch-up phase for more
information.

Any information that is passed from the exit program to the system in the second byte or third byte is
ignored.

The second byte of the second exit program parameter is provided whether journal entries are being
processed as a single journal entry per call of the exit program, or as a block of journal entries per call.

When an N is passed to the exit program in the second byte of the second parameter indicated that no
additional journal entries are currently available, it does not necessarily mean that when the exit program
returns, that the RCVJRNE command will have to wait for additional journal entries to be deposited into
the journal. By the time the exit program returns, additional journal entries may already be available and
depending upon what was specified on the DELAY parameter, may or may not be immediately passed to
the exit program. If DELAY(N) was specified the system will wait N seconds before passing the journal
entries to the exit program. If DELAY(*NEXTENT) was specified, the journal entries will immediately be
passed to the exit program.

Request block mode: When you request block mode, the system sends more than one journal entry to
the exit program at a time. You can request block mode at any time. There are two ways that you can
request block mode:

v Specify the BLKLEN parameter on the Receive Journal Entry (RCVJRNE) command

v Specify 8 for the value of the first byte of the second parameter of the exit program

BLKLEN parameter of the RCVJRNE command

When you specify the BLKLEN parameter of the RCVJRNE command you can select one of three values:

*NONE
At most one journal entry will be sent to the exit program.

*CALC
One or more journal entries will be passed to the exit program in a block. The length of the block
passed (the first parameter passed to the exit program) is determined by the system and will be
optimal.

block-length
Specify the length in kilobytes of the buffer passed to the exit program (EXITPGM parameter). Valid
values range from 32 to 4000

Journal management 193

../apis/QJOCHGST.htm
rjournals/rzakirretrievejrn.htm

If you specify BLKLEN(*CALC) or BLKLEN(block-length), specifying 8 in the first byte of the second
parameter will have no impact and the first 5 bytes of the first parameter will be ignored.

Specify 8 for the value of the first byte of the second parameter of the exit program

When you specify 8 for the value of the first byte of the second parameter, you must specify the block
length in the first 5 bytes of the first parameter as a zoned decimal (Zoned (5,0)) field. 99999 bytes is the
maximum block size. After you have requested block mode, the system remains in block mode until the
RCVJRNE processing is ended.

If you request block mode and the system is already using block mode, your request is ignored. You
cannot change the size of the block from the size you specified when you first requested block mode.

Even if BLKLEN(*NONE) is specified, if you specify 8 for the value of the first byte of the second
parameter, the system will use block mode.

Format of the first Parameter

If the specified entry format is not *TYPEPTR or *JRNENTFMT, and if you are using single-entry mode,
the format of the first parameter looks like the following figure:

First parameter of RCVJRNE command: Single-entry mode

*

The first 5 bytes contains the length of the entry. The last 5 bytes contains all zeroes. The length of the
entry does not include the 5 bytes of zeroes at the end of the record.

If the specified entry format is not *TYPEPTR or *JRNENTFMT, and if you are using block mode, the
format of the first parameter looks like the following figure:

194 iSeries: Journal management

rzakidesc_5.htm

First parameter of RCVJRNE command: Block mode

*

The first 5 bytes contains the total length of the block. This length includes the 5 bytes for the total block
length, the 5 bytes of the End of Record field at the end of the block, and all of the length and data fields
in between. If no entry is being passed, this Block Length field contains zeroes. The block always ends
with a 5-byte End of Record field containing zeroes.

If you specify BLKLEN(*NONE), then the system fills the block with as many complete entries as it can fit
within the block size that you specified. The system does not send a partial entry to fill the block size. If
the specified entry format is not *TYPEPTR or *JRNENTFMT, the maximum number of bytes that are
available for the journal entries is 99989 bytes. 10 bytes in each block are reserved for the Block Length
field and for the End of Record field. If the specified entry format is *TYPEPTR or *JRNENTFMT, the
maximum number of bytes that are available is 99999 bytes.

If you specify a block size that is not valid, the system begins block mode but it sends only one journal
entry per block. The system sends message CPD7095 to indicate that you have specified a block size that
is not valid. If you specify a block size that is not valid or too small for a single journal entry, the system
still returns at least one journal entry to the exit program. If the specified entry format is *TYPEPTR or
*JRNENTFMT, the block size must be at least 13 bytes to be considered valid.

When the System Sends a Record

When block mode is in effect, the system uses the following rules to determine when to call the exit
program:

v If the block does not contain any entries but the next entry would exceed the maximum size for the
block, then the entry is placed into the block. The exit program is called. The system always passes at
least one complete journal entry to the exit program.

v If the next entry to be put into the block would exceed the maximum size for the block and the current
block has entries in it, then the current block of entries is passed to the exit program.

v If the current block has one or more entries in it and no additional entries in the journal meet the
selection criteria, the current block of entries is passed to the exit program.

Journal management 195

rzakidesc_6.htm

When in block mode, the specification for the DELAY parameter is used only when the current block is
empty and no entries are currently available to be returned to the exit program.

Use ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT) with the RCVJRNE command

If the specified entry format is *TYPEPTR or *JRNENTFMT, the layout of the journal entry data is the
same as the layout that is described in the QjoRetrieveJournalEntries API interface. The layout is the
same for both single entry and block entry mode when you specify *TYPEPTR or *JRNENTFMT.

If you specify *TYPEPTR, the format will be the same as the RJNE0100 format of the
QjoRetrieveJournalEntries API.

When you specify *TYPEPTR or *JRNENTFMT, the journal entry data may have pointers that will point to
additional entry-specific data. See Work with pointers in journal entries for more information.

Retrieve journal entries in a program: You can use the Retrieve Journal Entry (RTVJRNE) command
or the Retrieve Journal Entries (QjoRetrieveJournalEntries) API in a program to retrieve a journal entry and
place it in a variable in the program.

You can also use the QjoRetrieveJournalEntries API to retrieve a journal entry and return data which can
include pointers.

RTVJRNE command

Use the RTVJRNE command in a program to retrieve a journal entry and place it in variables in the
program. You can retrieve the following:

v Sequence number

v Journal code

v Entry type

v Journal receiver name

v Library name for the journal receiver

v Journal entry-specific data

You can use this method to create programs to automate recovery. For layout of the fixed-length portion
and variable-length portion of the journal entry see:

v Fixed-length portion of the journal entry

v Variable-length portion of the journal entry

For the format of the record for the RTVJRNE command, see the Retrieve Journal Entry (RTVJRNE)
Command Description.

The QjoRetrieveJournalEntries API

The QjoRetrieveJournalEntries API allows you to retrieve journal entries into a receiver variable. The
available journal entry information is similar to what is provided by using the Display Journal (DSPJRN),
Receive Journal Entry (RCVJRNE), and Retrieve Journal Entry (RTVJRNE) commands. This API also
provides additional journal entry data that cannot be retrieved with these commands. This additional data
is accessed using pointers. Refer to Working with pointers in journal entries for more information.

Work with pointers in journal entries: Under certain conditions, not all of the journal entry data will be
immediately retrievable from a journal entry. Instead, part of the journal entry information will include
pointers to additional journal entry-specific data. These pointers will only be retrieved if you use following:

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

v The *TYPEPTR format on the Receive Journal Entry (RCVJRNE) command

196 iSeries: Journal management

../apis/QJORJRNE.htm
rzakipointer.htm
rzakifixlength.htm
rzakivarlength.htm
../cl/rtvjrne.htm
../apis/QJORJRNE.htm
../cl/rcvjrne.htm

v The *JRNENTFMT format on the RCVJRNE command (you must also specify the RTNPTR parameter
for the RCVJRNE command)

In all other retrievals of journal entry data, *POINTER would be in the field where a pointer could exist. An
incomplete data indicator has been added to indicate if the journal entry-specific data has data missing
which can only be retrieved through a pointer

If the QjoRetrieveJournalEntries API or the *TYPEPTR or *JRNENTFMT format on RCVJRNE command is
used and the incomplete data indicator field is 1, the journal entry-specific data will contain pointers. For all
other interfaces, if the incomplete data indicator is 1, the journal entry-specific data will have the character
string *POINTER in the field where an actual pointer would be placed if the API or *TYPEPTR or
*JRNENTFMT interfaces were used. The incomplete data indicator field could be set to 1 if the journal
entry-specific data exceeds 32766 bytes, or if the journal entry is associated with a database file which
has one or more fields of data type BLOB (binary large object), CLOB (character large object), or
DBCLOB (double-byte character large object). Use the Journal code finder to find which journal entry
types can set the incomplete data indicator on.

These pointers can only be used with the V4R4M0 and later versions of the following languages:

v ILE/COBOL

v ILE/RPG

v ILE/C if the TERASPACE parameter is used when compiling the program. See WebSphere
Development Studio ILE C/C++ Programmer’s Guide

for information about using the TERASPACE parameter.

There are some considerations you need to be aware of when using the pointer data:

v The pointer can only be used by the process or job which retrieved or received the journal entry which
contained the pointer. The pointer cannot be passed on to another job, nor can it be stored to use at a
later date by a different job or process.

v The pointer will only give you read access to the additional data. Write operations to that pointer are not
allowed.

v The data that is being pointed to actually resides in the journal receiver. Therefore, you should ensure
that you protect the journal receiver from deletion until you use the data. To prevent a journal receiver
from being deleted before the data is used, you can register an exit point for the Delete Journal
Receiver (DLTJRNRCV) command. For more information, refer to Delete journal receivers.

v For files with fields of data type BLOB (binary large object), CLOB (character), or DBCLOB (double-byte
character large object), use SQL to update the files. For more information on the layout of the database
records when LOB fields are included, refer to Display layout of LOB columns.

If you are using this journal for replication purposes, the journal entry can be used with the appropriate
corresponding database operations if they are done using the ILE/C language. Contact your service
representative for access to the information on how to activate this support.

If any journal entries are returned with pointers, the journal entry will also contain a pointer handle. This
pointer handle must be used to free up any allocations associated with the pointer data once the pointer
data has been used. The considerations for this pointer handle are as follows:

v Using the pointer data means any of the following:

– Addressing the information and copying the addressed data to another object

– Using the journal entry-specific data directly to modify another object. For example, using the data to
update a database file with the journal entry which represents a database record update for a file
which included LOBs.

– Ignoring the additional data that is pointed to

Journal management 197

finder/rzakifinder.htm
../../books/c0927123.pdf
../../books/c0927123.pdf
../cl/dltjrnrc.htm
../cl/dltjrnrc.htm
rzakideletercv.htm
../sqlp/rbafymst224.htm

v If you used the QjoRetrieveJournalEntries API, use the Delete Pointer Handle (QjoDeletePointerHandle)
API to delete the pointer handle when you are done using it.

v If you use the RCVJRNE command with the RTNPTR(*SYSMNG) parameter, you must use the
associated pointer prior to returning control from the exit program. The system will delete all pointer
handles after the return from the exit program call.

v If you use the RCVJRNE command with the RTNPTR(*USRMNG) parameter, then it is your
responsibility to use the Delete Pointer Handle (QjoDeletePointerHandle) API to delete the pointer
handle when you are done using it.

Considerations for entries which contain minimized entry-specific data: You can reduce the size of
journal receivers by specifying minimized entry-specific data on the Create Journal (CRTJRN) and Change
Journal (CHGJRN) commands.

If you have selected to use the MINENTDTA parameter for the journal, then some of your journal entries
entry-specific data will be minimized. The entries will only be minimized if the minimization technique will
deposit a journal entry which is smaller in size than the complete entry would be. Use the journal code
finder to see which specific journal entry types can possibly be minimized. When the entry is minimized,
the fixed-length portion of the journal entry will have the minimized entry-specific data indicator on.
Currently, only data areas and database physical files can have their entry-specific data minimized.

Data area considerations

The layout of the data area entries which are minimized is exactly the same as the layout if the entry was
not minimized. The only difference is that only the bytes which actually changed are deposited rather than
depositing all the bytes on the change request. See Table 34 (See page 185) for the entry layout of the
change data area entries.

Database physical file considerations

The layout of the minimized record changes entries is completely different than the layout when the entry
is not minimized. The data it not even recognizable nor readable as sophisticated hash techniques are
used in addition to only operating on actual changed bytes. Additionally, the Null-value-indicators field will
be used, even if the file is not null capable, to provide additional information that can be used by database
operations. Therefore, if you want to use the journal as an audit mechanism, you may not want to choose
this option for database physical files since you will not be able to read the actual change made.

If you are using this journal for replication purposes, the journal entry can be used with the appropriate
corresponding database operations if they are done using the ILE/C language. Contact your service
representative for access to the information on how to activate this support.

Remote journal management
Remote journal management allows you to establish journals and journal receivers on a remote system or
to establish journal and receivers on independent disk pools that are associated with specific journals and
journal receivers on a local system. The remote journaling function can replicate journal entries from the
local system to the journals and journal receivers that are located on the remote system or independent
disk pools after they have been established.

Use the following information to set up remote journal management:

v Remote journal concepts

v Plan for remote journals

v Set up remote journals

v Remove remote journals

v Activate and inactivate remote journals

198 iSeries: Journal management

../cl/crtjrn.htm
../cl/chgjrn.htm
../cl/chgjrn.htm
rzakirconcepts.htm
rzakiplanrjrn.htm
rzakirsettingup.htm
rzakiremrjrn.htm
rzakiactive.htm

v Manage remote journals

v Scenarios: Remote journal management and recovery

Remote journal concepts
Remote journal management helps to efficiently replicate journal entries to one or more systems. You can
use remote journal management with application programs to maintain a data replica. A data replica is a
copy of the original data that resides on another iSeries server or independent disk pool. The original
data resides on a primary system. Applications make changes to the original data during normal
operations.

Prior to V4R2M0, you could have accomplished a similar function by using the Receive Journal Entry
(RCVJRNE) command. In that environment, the RCVJRNE exit program receives journal entries from a
journal, and then sends the journal entries to the remote system by using whatever communications
method is available. All of this processing occurs asynchronously to the operation that is causing the
journal entry deposit and takes place at an application layer of the system

The remote journal function, however, replicates journal entries to the remote system at the Licensed
Internal Code layer. Moving the replication to this lower layer provides the following:

v The remote system handles more of the replication overhead

v Overall system performance and journal entry replication performance is improved

v Replication can (optionally) occur synchronously to the operation that is causing the journal entry
deposit

v Journal receiver save operations can be moved to the remote system.

The figures below illustrate a comparison of a hot-backup environment with and without remote journal
management. Hot-backup is the function of replicating an application’s dependent data from a primary
system to a backup system. The primary system is the system where the original data resides. The
backup system is the system where a replica of the original data is being maintained. In the event of a
primary system failure, you can perform a switch-over to the backup system.

Hot-backup environment without remote journal function, and application-code based apply

Journal management 199

rzakirmanage.htm
rzakirscenarios.htm
../../cl/rcvjrne.htm
../../cl/rcvjrne.htm

Hot-backup environment with remote journal function, and application-code based apply

*

The following topics provide more information about remote journaling:

v Network configurations for remote journals

v Types of remote journals

v Journal state and delivery mode

v Journal receivers associated with a remote journal

v Add remote journal process

v Supported communications protocols for remote journals

v Release-to-release requirements for remote journals

200 iSeries: Journal management

rzakidesc_2.htm
rzakirnetworks.htm
rzakitwotypes.htm
rzakistate.htm
rzakirjrnrcvrs.htm
rzakiaddprocess.htm
rzakiprotocols.htm
rzakireleases.htm

Network configurations for remote journals
The following figure shows the two basic remote journal function configurations.

A broadcast configuration is a journal that replicates its journal entries to one or more remote journals. A
cascade configuration is a remote journal that replicates its journal entries to an additional remote journal.
The additional remote journal can replicate the entries to yet another remote journal, and so on. The
remote journal function configurations can stand alone or can be combined with one another. For example,
one or more of the remote journals in the broadcast configuration could cascade down to several
additional remote journals. Likewise, one or more remote journals in the cascade configuration could
broadcast out to one or more remote journals.

A local journal is populated by applications that are depositing journal entries. A remote journal is
populated by receiving its journal entries from either a local or another remote journal. The journals are
paired, as depicted in the preceding figure where (S) represents a journal on a source system, and (T)
represents a journal on a target system. In the cascade configuration, a remote journal can be a recipient
of journal entries (a target), and a replicator of journal entries (a source) at the same time.

A source system is a system where a journal resides and is having its journal entries replicated to a
remote journal on a target system.

Journal management 201

Note: A source system is not necessarily the primary system.
For example, a remote journal that is cascading its journal
entries to another remote journal is said to reside on a
source system.

A target system is a system where a remote journal resides and is receiving journal entries from a journal
on a source system.

A remote journal network includes the local journal and all of the remote journals that are downstream
from that local journal. You can set up the remote journal network in broadcast configuration, cascade
configuration, or a combination of the two configurations.

In many environments, users attempt to minimize the amount of processing that the local or primary
system performs by shifting as much of the processing as possible to other systems in the network. A
combination of the broadcast and cascade configurations allows for this when replicating the journal
entries from a single system to multiple other systems. For example, replicating a local journal to a single
remote journal on a target system will minimize the replication cost on the primary system. Then, from the
target system, the replicated journal can be asynchronously replicated by either a broadcast or cascade
configuration to other remote journals on other systems. This allows all of the journal entries to be known
to all desired systems, while requiring a minimal amount of processing on the primary system.

The following characteristics apply to local journals and to any journal receivers that were attached to local
journals:

v Objects can be journaled to local journals.

v Journal entries can be directly deposited to local journals. For example, the Send Journal Entry
(SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API can be used to send journal entries
directly to a local journal.

The following characteristics apply to remote journals and to any journal receivers that were attached to
remote journals:

v Objects cannot be journaled to remote journals.

v Journal entries cannot be directly deposited to remote journals. For example, the Send Journal Entry
(SNDJRNE) command or API (QJOSJRNE) cannot be used to send journal entries directly to a remote
journal.

v Journal entries are only replicated to remote journals from an associated source journal. A source
journal is the journal on the source system to which a remote journal has been added. A source journal
can be either a local or a remote journal.

v The information in the journal entries such as time stamps, system name, and qualified journal receiver
names reflect information as deposited in the local journal for this remote journal network.

v The information in the journal receiver such as attach time and detach time reflect the information as it
is for the local journal for the remote journal network.

v Certain attributes of the remote journal are fixed and determined based on the source journal, such as
the values for receiver size options and the values for minimize entry-specific data. These attributes for
the remote journal cannot be changed except by changing the attributes for the source journal.

v Remote journals cannot be saved and restored to any release prior to V4R2M0.

Types of remote journals
The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational
characteristics of a remote journal and its associated journal receivers. The following table is an overview
of the different remote journal types and their characteristics. There are no performance differences
between the types of remote journals.

202 iSeries: Journal management

Local journal *TYPE1 remote journal *TYPE2 remote journal

Remote journal types that
can be added

*TYPE1 *TYPE2 *TYPE1 *TYPE2 *TYPE2

Remote journal name N/A Journal name must be the
same as the local journal.

Journal name may be
different from the source
journal.

Journal library redirection N/A Journal library name may
be redirected to a single
different library from that of
the local journal. All *TYPE1
remote journals associated
with a given local journal
must reside in the same
named library.

A given redirected library
may be specified when
adding a remote journal.
Subsequent adds of
*TYPE2 remote journals
may specify a different
library redirection than was
specified on any previously
added remote journal.

Journal receiver library
redirection

N/A Receiver library name may
be redirected to a single
different library from that of
the receivers associated
with the local journal.

A given redirected library
may be specified when
adding a remote journal.
Subsequent adds of
*TYPE2 remote journals
may specify a different
library redirection than was
specified on any previously
added remote journal.

Journal receiver library
redirection used on activate

N/A The target library used
when replicating a receiver
from the source journal to
this remote journal will
reflect the library redirection
that was in place for the
receiver, if any, at the time
the receiver was attached
to the source journal.1

The target library used
when replicating a receiver
from the source journal to
this remote journal will
reflect the library redirection
that is currently defined for
the target journal.

Receiver restore
characteristics

2, 3
Receivers associated with
the local journal can be
saved and restored to the
local system or to any of
the systems for the *TYPE1
remote journals and be
linked into the correct
receiver chain of the local
journal or the *TYPE1
remote journal.

Receivers associated with
the local journal or any of
the *TYPE1 remote journals
can be saved and restored
to the local system or to
any of the systems where
the *TYPE1 remote journals
reside and be linked into
the correct receiver chain of
the journal.

Receivers associated with a
given *TYPE2 remote
journal can be saved and
restored to the local system
or to the same system
where the *TYPE2 remote
journal resides and be
linked into the correct
receiver chain of the
journal.

Journal management 203

Local journal *TYPE1 remote journal *TYPE2 remote journal

Notes:
1If the journal receiver was attached to a journal when no remote journals were added, then no library
redirection is assumed for that journal receiver if that receiver is specified during activation. Therefore, the
journal receiver will be created in the same library on the target system as it is on the local system.

2A journal receiver from any system in the remote journal network may always be restored to any system if
the receiver is being restored into the original or redirected receiver library. Otherwise, receivers can always
be restored to any system and associated with a local journal if a local journal by the same name as the
original local journal is found residing in the same named original local journal library.

3If a journal receiver’s original or redirected library exists in an independent disk pool, then the ASP group
name for the independent disk pool is used in place of the system name when making restore decisions.

See Rules and considerations for save and restore operations with remote journals for more information.

Journal state and delivery mode
The journal state describes an attribute for a journal. The attribute value can be *ACTIVE, *INACTIVE, or
*STANDBY. For a local journal, *ACTIVE indicates that journal entries are currently allowed to be
deposited into the journal. *INACTIVE indicates that journal entries are not allowed to be deposited.
*STANDBY indicates that most journal entries are not deposited.

You can view the journal state for a remote journal on a target system that is associated with a journal on
a source system in one of two ways:

v When viewed from the source system, *ACTIVE indicates that journal entries are currently being
replicated to that remote journal on the target system. *INACTIVE indicates that journal entries are not
currently being replicated.

v When viewed from the target system, *ACTIVE indicates that journal entries are currently being
received from the journal on the source system. *INACTIVE indicates that the target journal is not ready
to receive journal entries from the source journal.

The following table provides a summary of the journal type, delivery mode and journal state interactions.

Journal type Delivery mode Journal state Comments

*LOCAL N/A *ACTIVE Objects journaled to the
local journal can be
changed, and entries can
also be deposited into the
local journal using the Send
Journal Entry (SNDJRNE)
command or the Send
Journal Entry (QJOSJRNE)
API interfaces. The
currently attached journal
receiver may or may not be
currently replicated to one
or more remote journals.
This depends upon whether
any remote journals have
been added to the local
journal’s definition, and if
so, the current journal state
for each of those remote
journals.

204 iSeries: Journal management

rzakisaverestre.htm

Journal type Delivery mode Journal state Comments

*LOCAL N/A *INACTIVE This is the state of a local
journal after using the
Change Journal (CHGJRN)
command specifying
JRNSTATE(*INACTIVE) to
not allow deposits into the
local journal, or after an IPL
and the journal state of the
local journal was
*INACTIVE when the
system ended.

Objects journaled to the
local journal cannot be
restored or changed, and
entries can not be
deposited into the local
journal using the Send
Journal Entry (SNDJRNE)
command or the Send
Journal Entry (QJOSJRNE)
API interfaces, until the
journal state for the local
journal is again changed to
*ACTIVE. This can be
performed by using the
Change Journal (CHGJRN)
command specifying
JRNSTATE(*ACTIVE).

*LOCAL N/A *STANDBY This is the state of a local
journal after the Change
Journal (CHGJRN)
command specifying
JRNSTATE(*STANDBY) is
used to not allow deposits
into the local journal. The
local can journal can also
be in *STANDBY state after
an IPL if the local journal is
in *STANDBY state when
the system ends.

Objects journaled to the
local journal can be
restored or changed, but
most journal entries are not
deposited until the journal
state for the local journal is
again changed to *ACTIVE.
This can be performed by
using the Change Journal
(CHGJRN) command
specifying
JRNSTATE(*ACTIVE).

Journal management 205

Journal type Delivery mode Journal state Comments

*REMOTE *SYNCPEND *ACTIVE This is the state after a
remote journal has been
activated using the Change
Journal State
(QjoChangeJournalState)
API or CHGRMTJRN
command and the
processing is still in the
catch-up phase of remote
journal activation.
Synchronous delivery mode
was requested on the API
invocation.

*REMOTE *SYNC *ACTIVE This is the state after a
remote journal has been
activated using the Change
Journal State
(QjoChangeJournalState)
API or CHGRMTJRN
command, after catch-up
has completed, and
changes to the currently
attached journal receiver for
the journal on the source
system are being replicated
synchronously to the
remote journal on the target
system.

*REMOTE *ASYNCPEND *ACTIVE This is the state after a
remote journal has been
activated using the Change
Journal State
(QjoChangeJournalState)
API or CHGRMTJRN
command and the
processing is still in the
catch-up phase of remote
journal activation.
Asynchronous delivery
mode was requested on the
API invocation.

*REMOTE *ASYNC *ACTIVE This is the state after a
remote journal has been
activated using the Change
Journal State
(QjoChangeJournalState)
API or CHGRMTJRN
command, after catch-up
has completed, and
changes to the currently
attached journal receiver for
the journal on the source
system are being replicated
asynchronously to the
remote journal on the target
system.

206 iSeries: Journal management

Journal type Delivery mode Journal state Comments

*REMOTE *SYNC *INACTPEND This is the state of a remote
journal, viewed from the
target system where some
failure has occurred and
either the system is in the
process of inactivating the
remote journal, or
unconfirmed journal entries
exist in the remote journal.
See Confirmed and
unconfirmed journal entries
for more information.

*REMOTE *ASYNC *INACTPEND This is the state of a remote
journal, viewed from the
target system where some
failure has occurred and the
system is in the process of
inactivating the remote
journal.

*REMOTE *ASYNC *CTLINACT This is the state after a
remote journal has been
inactivated using the
Change Journal State
(QjoChangeJournalState)
API or CHGRMTJRN
command, a controlled
inactivate was requested on
that invocation and that
controlled inactivate has not
yet completed.

*REMOTE N/A *INACTIVE This is the state after a
remote journal has been
added and associated with
a journal on a source
system. However, the
journal state for the added
remote journal has yet to be
activated or has been
inactivated using the
Change Journal State
(QjoChangeJournalState)
API, CHGRMTJRN
command, or by an IPL. No
delivery mode is in effect
for an inactivated remote
journal.

Journal receivers associated with a remote journal
Journal receivers that are associated with a remote journal are exact replicas of the corresponding journal
receivers that are associated with the journal on the source system. The receiver directory for a remote
journal is maintained in the same way as the receiver directory is maintained for the related source journal.
Consecutive receivers associated with a remote journal are linked together to form a receiver chain.
Receiver chain breaks are forced and maintained in a similar manner for local and remote journals.

However, the following are some other differences for remote journals and the journal receivers that were
attached to remote journals:

Journal management 207

rzakiconfirm.htm
rzakiconfirm.htm

v A remote journal does not have to have a currently attached journal receiver. However, if the remote
journal is ready to receive journal entries, then it must have an attached receiver; all the journal entries
will be replicated to that attached receiver.

v The receiver that is currently attached to a remote journal that is in the catch-up phase can be a
different journal receiver than is currently attached to the source journal.

v The receiver that is currently attached to an asynchronously maintained remote journal can be a
different journal receiver than is currently attached to the source journal.

v The receiver that is currently attached to a synchronously maintained remote journal is the same journal
receiver as is currently attached to the source journal.

v You can delete the journal receiver that is attached to a remote journal if the journal state of that journal
is not *ACTIVE.

v You can delete the journal receivers that are associated with a remote journal in any order, regardless
of their position within the receiver directory chain.

v The creation date and time stamps for remote journals are always those of the system on which the
journals were created by the remote journal function. This is also true for journal receivers that were
attached to remote journals.

v The save and restore date and time stamps for remote journals are always those of the system on
which the save or restore operation took place. This is also true for the journal receivers that are
associated with the remote journals.

v The attach and detach time stamps for a journal receiver that was attached to a remote journal are
always those of the attach and detach time stamps of the local journal receiver.

v When a journal receiver that is associated with a remote journal is saved, deleted or restored, the
following journal entries are not deposited:

– J RD - Journal receiver deleted

– J RF - Journal receiver saved, storage freed

– J RR - Journal receiver restored

– J RS - Journal receiver saved

For more information on journal receiver directory chains, see Keep track of journal receiver chains.

Add remote journal process
Adding a remote journal creates a remote journal on a target system or independent disk pool and
associates that remote journal with the journal on the source system. This occurs if this is the first time the
remote journal is being established for a journal. The journal on the source system can be either a local or
remote journal.

If a remote journal environment has previously been established, adding a remote journal re-associates
the remote journal on the target system with the journal on the source system.

You can establish and associate a remote journal on a target system with a journal on the source system
by one of the following methods:

v iSeries Navigator.

v Add Remote Journal (QjoAddRemoteJournal) API on the source system.

v Add Remote Journal (ADDRMTJRN) command on the source system.

What happens during add remote journal processing

Some of the processing which takes place as part of adding a remote journal is as follows:

v A check is performed on the target system to verify that the user profile adding the remote journal
exists. A user profile with the same name as the user profile which is adding a remote journal must exist
on the target system. If the profile does not exist on the target system, then an exception is signaled,
and the processing ends.

208 iSeries: Journal management

../rzakijrnrcvchn.htm

v A check is performed to verify that the target system has a library by the same name as the library for
the journal on the source system. If the library does not exist on the target system, then an exception is
signaled, and the processing ends.

v A check is performed on the target system to determine if a journal by the same qualified name as the
journal on the source system already exists. If a journal already exists, it can be used for the remainder
of the add remote journal processing if it meets the following conditions:

1. It is a remote journal.

2. It was previously associated with this same source journal or part of the same remote journal
network.

3. The type of the remote journal matches the specified remote journal type.

v If a journal was found, but does not meet the above criteria, then an exception is signaled, and the
processing ends. Otherwise, the remote journal is used for the rest of the add remote journal
processing.

v If no journal is found on the specified target system, then a remote journal is created on the target
system. The new remote journal has the same configuration, authority, and audit characteristics of the
source journal. The journal that is created has a journal type of *REMOTE.

The creation of the journal on the target system is performed as though the journal was being saved and
restored to the target system. Therefore, the ownership of the journal on a target system will follow the
same rules as with the existing save and restore functions. If the user profile which owns the journal on
the source system is on the target system, then that profile will own the created journal on the target
system. If the user profile does not exist on the target system, then the profile QDFTOWN will own the
journal on the target system.

Additionally, if the remote journal is created, the values for the journal attributes of text, journal message
queue and delete receivers will be taken from what is specified on the API invocation. After the remote
journal has been created, these values can be changed by using the Change Journal (CHGJRN)
command for the remote journal on the remote system. After the remote journal is created, any changes to
these attributes on the source journal will not cause equivalent changes to the remote journal. See
Remote journal attributes for more information.

When adding the remote journal, you must specify the type of remote journal to add. The remote journal
type influences the library redirection rules and other operational characteristics for the journal. See Types
of remote journals for more information.

Guidelines for adding a remote journal

The following are guidelines for adding a remote journal:

v You can only associate a remote journal with a single source journal.

Note: The same remote journal can then have additional remote
journals that are associated with it that are located on
other target systems. This is the cascade configuration
that is shown in Broadcast and cascade remote journal
configurations.

v The remote journal will only have its attached receiver populated with journal entries that are replicated
from the corresponding journal receiver on the source system. No journal entries can be directly
deposited to a remote journal.

v The remote journal function is only provided for local journals with a single attached receiver. Therefore,
all remote journals will also only have a single receiver attached.

v A maximum of 255 remote journals can be associated with a single journal on a source system. This
can be any combination of asynchronously maintained or synchronously maintained remote journals.

Journal management 209

rzakitwotypes.htm
rzakitwotypes.htm
rzakirnetworks.htm#HDRFIGFXRJ.HTM
rzakirnetworks.htm#HDRFIGFXRJ.HTM

Synchronous and asynchronous delivery mode has more information. Library redirection with remote
journals and Remote journal attributes provide more concepts about the add remote journal process. Add
remote journals provides the steps for adding a remote journal.

Library redirection with remote journals: Library redirection provides a means for remote journals
and any of their associated journal receivers to optionally reside in differently named libraries on the target
system from the corresponding local journal and journal receivers on the local system. You can specify
library redirection by using one of the following:

v iSeries Navigator

v Add Remote Journal (QjoAddRemoteJournal) API

v Add Remote Journal (ADDRMTJRN) command

When using the QjoAddRemoteJournal API, specify a different name in the Remote Journal Library name
field or the Remote Journal Receiver Library field. When using the ADDRMTJRN command, specify a
different name for the Target Journal Library parameter or the Remote Receiver Library parameter. When
a remote journal is added, its journal type specification influences how much redirection you can specify.

Types of remote journals describes the various types of remote journals that can be added, as well as a
description of their redirection characteristics.

If redirection is not specified, then the remote journal will reside in a library that has the same name as the
library that contains the source journal.

Note: Library redirection for the journal object must be specified
when replicating the journal entries to a target system for
any journal starting with the letter Q in a library starting
with Q. This does not apply to the QGPL library. This
restriction prevents collisions between local and remote
journals that are used for system functions. One example
of this is journal QAUDJRN in library QSYS which is used
for security auditing.

If no redirection is specified for the journal receiver, then the remote journal receiver will reside in a library
whose name is the same as the library for the source journal receiver. For example, the source journal has
two receivers that are associated with it, receiver RCV0001 in library LIBA, and receiver RCV0002 in
library LIBB. If no journal receiver library redirection is specified, then the journal entries in RCV0001 in
library LIBA on the source will be replicated to RCV0001 in library LIBA on the target system. The journal
entries in RCV0002 in library LIBB on the source will be replicated to RCV0002 in library LIBB on the
target system. Therefore, both libraries, LIBA and LIBB, will need to exist on the target system prior to the
invocation of the remote journal function. If journal receiver library redirection is specified with a redirected
receiver library specification of RMTLIB, then both RCV0001 and RCV0002 would be in library RMTLIB on
the target system.

For *TYPE1 remote journals, the library redirection or the selection of no library redirection for the journal
and journal receivers can only be modified by doing the following:

v Remove all *TYPE1 remote journals.

v Change the local journal and attach a new journal receiver.

v Delete the remote journal from the target system.

v Add the *TYPE1 remote journal, specifying the new library redirection, if any.

For *TYPE2 remote journals, the library redirection or the selection of no library redirection for the journal
and journal receivers can only be modified by doing the following:

v Remove the *TYPE2 remote journal.

v Delete the remote journal from the target system.

210 iSeries: Journal management

rzakisynch.htm
rzakirattributes.htm
rzakiaddremj.htm
rzakiaddremj.htm
rzakitwotypes.htm

v Add the *TYPE2 remote journal, specifying the new library redirection, if any.

Independent disk pools and library redirection

If you want the remote journal on an independent disk pool on the target system, specify a library on the
target system that is on an independent disk pool for that system and specify an RDB entry for the
independent disk pool.

If you place your remote journal on an independent disk pool on the target system, the following rules
apply:

v The independent disk pool on the target system must be varied on.

v The independent disk pool must be a library capable disk pool.

v The remote journal, the remote journal receiver, and the message queue must be in the same
independent disk pool group.

See Journal management and independent disk pools for information about independent disk pools as
they relate to journaling.

Remote journal attributes: When a remote journal is created by the add remote journal processing, the
remote journal’s initial attributes are defined by the add request and the source journal. Various journal
attributes for a remote journal are treated as follows:

Disk pool
If the library for the remote journal resides in a disk pool, the remote journal will be created in that
disk pool.

Journal message queue
Defined on add request. Once the remote journal is created, the journal message queue, can be
modified by using the Change Journal (CHGJRN) command on the remote journal on the remote
system.

Delete receivers
Defined on add request. Once the remote journal is created, the delete receivers attribute can be
modified by using the CHGJRN command on the remote journal on the remote system.

Manage receivers
Does not apply. The managing of the receivers for the remote journal is driven by the management of
the source journal.

Minimize entry-specific data options
Does not apply. The minimize entry-specific data options in effect for the remote journal are driven by
the minimize entry-specific data options in effect for the local journal.

Receiver size options
Does not apply. The receiver size options in effect for the remote journal are driven by the receiver
size options in effect for the source journal.

Text
Defined on add request. Once the remote journal is created, the text can be modified by using the
CHGJRN command on the remote journal on the remote system.

Manage receiver delay
The managing of the receivers for the remote journal is determined by the management of the
source journal.

Journal management 211

../rzakiiasp.htm

Delete receiver delay
Defined on add request. Once the remote journal is created, the delete receiver delay attribute can
be modified by using the CHGJRN command on the remote journal on the remote system.

Fixed-length data
Does not apply. The fixed-length data options in effect for the remote journal are driven by the
fixed-length data options in effect for the local journal

Journal cache
Does not apply.

Supported communications protocols for remote journals
The remote journal function supports the following communications protocols for replicating the journal
entries to the remote systems:

v OptiConnect for OS/400. If you want to use the OptiConnect for OS/400 support, you must purchase
and install the required hardware and software for that support. Refer to OptiConnect for OS/400

for more information.

v Systems Network Architecture (SNA). If you want to use SNA for the transport, there are no
additional software considerations. The software support is in the base operating system. You must
purchase whatever hardware is appropriate for your configuration. Refer to SNA Distribution Services

for more information.

v Transmission Control Protocol/Internet Protocol(TCP/IP). If you want to use TCP/IP for the
transport, there are no additional software considerations. The software support is in the base operating
system. You must purchase whatever hardware is appropriate for your configuration. Refer to TCP/IP
Configuration and Reference

for more information.

Specifying a relational database (RDB) directory entry will identify the communications protocol that the
remote journal function will use. The RDB that is specified must meet the following rules:

v The communications protocol must be one of the remote journal function supported protocols.

v The remote location name in the RDB cannot refer to the *LOCAL database.

v The RDB cannot use an application requester driver program (*ARDPGM) to locate the target system.

For more information on creating relational databases, Distributed Database Programming

Security of the remote journal function is dependent on the communications protocol security. The remote
journal function does not alter the security characteristics that are available.

The communications function that is identified by the RDB can be shared by other activity. However, you
may consider isolating the remote journal function activity in order to have the best performance.

Release-to-release considerations for remote journals
Release-to-release considerations for remote journals are as follows:

v Information APAR II12001 contains the same list of program temporary fixes (PTF) for V4R5.
Information APAR II12556 contains the same list of program temporary fixes (PTF) for V5R1.

v If you specify RCVSIZOPT(*MAXOPT1) on the journal that you attach a journal receiver to, you cannot
replicate the journal receivers to any remote journals on any systems at a release prior to V4R5M0.

212 iSeries: Journal management

../../../books/c4154101.pdf

v If you specify RCVSIZOPT(*MAXOPT2) on the journal that you attach a journal receiver to, you cannot
replicate the journal receivers to any remote journals on any systems at a release prior to V5R1M0.

v If you specify minimized-entry specific data (MINENTDTA) for either *FILE or *DTAARA on the journal to
which you attached a journal receiver, you cannot replicate the journal receivers to any remote journals
on any systems at a release prior to V5R1M0.

Plan for remote journals
The following topics provide detailed information for planning to set up remote journals:

v Journals that are good candidates for remote journal management

v Synchronous and asynchronous delivery mode

v Communications protocol and delivery mode for remote journals

v Where the replication of journal entries start

v Factors that affect remote journal performance

v Remote journals and auxiliary storage

v Journal receiver disk pool considerations

v Remote journals and main storage

Journals that are good candidates for remote journal management
Journals that you are currently replicating, or that you plan to replicate, in their entirety to one or more
systems, are excellent candidates for the remote journal function.

Journals with high activity that require frequent saves and deletes of the associated journal receivers
during the day are also good candidates for the remote journal function. If you use remote journaling, you
can specify that the backup system takes over the journal receiver save processing. Then the primary
system can specify system journal-receiver management and automatic deletion of journal receivers. This
frees up disk space on the primary system as quickly as possible. The backup system is the system where
a replica of the original data is being maintained. The primary system is the system where the original data
resides.

Also, you might have applications that are so critical to your business that any downtime will impact your
operations. The application dependent data is a good candidate to protect with the remote journal
function. Application dependent data is any data that a particular application depends if that application is
interrupted and has to be restarted.

For example, you may have a database that has a lot of query activity that impacts your system
performance. That database is a good candidate to replicate to another system so that the query activity
moves to that system. The remote journal function can assist in that replication.

Synchronous and asynchronous delivery mode for remote journals
The terms asynchronously maintained and synchronously maintained both describe a remote journal
function delivery mode for journal entry replication. If a journal is asynchronously maintained, control is
returned to the application generating the journal entry on the source system without waiting for the journal
entry to be replicated to the remote journal. An asynchronously maintained remote journal may lag several
journal entries behind the total number of journal entries in the journal on the source system.

If a journal is synchronously maintained, control is not returned to the application generating the journal
entry on the local system until the journal entry is replicated to the remote journal.

Synchronous delivery mode

Synchronous delivery means that the journal entry is replicated to the target system concurrently with the
entry being written to the local receiver on the source system. The entry is known on the target system, in
main storage, prior to returning control to the user application that deposited the journal entry on the
source system. Therefore, the target system knows of all journal entries as they are being made in

Journal management 213

rzakicandidates.htm
rzakisynch.htm
rzakidmode.htm
rzakisrcjrnrcv.htm
rzakiperform.htm
rzakirauxstore.htm
rzakirdiskpool.htm
rzakimainstore.htm
../rzakimanorsysmng.htm
../rzakiautodelete.htm

real-time on the source system. Using this mode allows for recovery without losing journal entries on the
target system if the source system fails. Providing journal entries synchronously to a target system will
have some impact to the journaling throughput on the local system.

Synchronous delivery mode is only supported when a remote journal is associated with a local journal.

There are certain circumstances, when using synchronous mode, where journal entries may not be
immediately available for retrieval from the target system.

v Some entries that are not required for data recovery may not be immediately available for retrieval from
the target system. For example, journal entries for a file close (journal code ’F’, entry type ’CL’) or a
stream file open, (journal code ’B’, entry type ’OF’).

v User-generated journal entries that use the Send Journal Entry (SNDJRNE) command or the Send
Journal Entry API (QJOSJRNE) may not be immediately available for retrieval. If either you, or your
application, do not request to force these user-generated entries they will only be replicated to the
remote journal when some other action forces them. Therefore, you should periodically specify
FORCE(*YES) when using the send journal entry functions.

v Journal entries that are associated with commitment control transactions may not be immediately
available for retrieval from the remote system. These entries will be retrievable after the following journal
entries have been deposited into the source journal:

– Journal code ’C’, journal entry type ’CM’ (Commit)

– Journal code ’C’, journal entry type ’RB’ (Rollback)

v If the local journal is using journal caching, then journal entries will be bundled up before they are sent
to the target.

Refer to Use the RTVJRNE command with commitment control for more information.

Asynchronous delivery mode

Replicating a journal entry asynchronously means that the journal entry is replicated to the target system
after control is returned to the application depositing the journal entry on the source system. Using this
mode allows for recovery that may lose some journal entries if the source system fails. However, this
mode has less impact to the journal throughput on the local system in comparison with the synchronous
mode.

Journal entry latency may occur when remote journals are asynchronously maintained. Journal entry
latency is the difference between the journal entries that exist in the remote journal on the target system
from those residing in the journal on the source system. From a recovery standpoint, the source system
may be some number of journal entries ahead of what journal entries are known on the target system.

Communications protocol and delivery mode for remote journals
The greater the volume of traffic, that is the higher the rate of journal entry deposits, the faster
communications method you should choose. If your traffic is minimal, then a slower communications
method can be adequate.

The delivery mode defines how journal entries are replicated to a remote journal. The delivery mode only
applies when actively replicating the journal entries from a journal on a source system to a remote journal
on a target system. The delivery mode can be either synchronous or asynchronous.

If the application dependent data is critical and the loss of journal entries can impact your business, then
you should use the synchronous delivery mode. Synchronous delivery mode is only valid when activating a
remote journal that is associated with a local journal.

It may be acceptable that the remote system does not have all the journal entries as they are being
deposited or replicated into the source journal. If this is true, the asynchronous delivery mode is a good
choice to minimize the impact to the source journaling throughput.

214 iSeries: Journal management

rzakiretrrievecommit.htm

The choice of delivery mode and communications protocol are closely linked. Since the synchronous
delivery mode will affect the interactive users response time, the faster the communications protocol the
better. This again will be dependent on the journal entry deposit rate.

Where the replication of journal entries start
When you specify a journal receiver for remote journaling, you also specify where the replication of journal
entries should start. You can choose from the following options:

Attached receiver on target system

The replication of journal entries starts with the journal receiver that is currently attached to the remote
journal on the target system. The journal entries are replicated from the corresponding journal receiver that
is associated with the journal on the source system. The replication starts with the journal entries that
follow the last journal entry that currently exists in the attached journal receiver on the target system.

The remote journal on the target system might not have an attached journal receiver. If this occurs, the
journal receiver that is currently attached to the journal on the source system is created on the target
system. That journal receiver is then attached to the remote journal on the target system. Then journal
entries are replicated starting with the first journal entry in the journal receiver that is currently attached to
the journal on the source system.

If the journal on the source system does not have an attached journal receiver, no journal entries can be
replicated, and an error is returned. This is only possible in the case of a remote journal that is associated
with another remote journal.

To use this option specify one of the following:

v *ATTACHED value on the CHGRMTJRN command.

v Use attached receiver on target system; otherwise, on source system in the Activate dialog in
iSeries Navigator.

Attached receiver on source system only

The replication of journal entries starts with the journal receiver that is currently attached to the journal on
the source system.

If the corresponding journal receiver exists and is attached to the remote journal on the target system,
journal entries are replicated. Replication starts with the journal entries that follow the last journal entry that
currently exists in the attached journal receiver on the target system. Otherwise, if the corresponding
journal receiver exists but is not attached to the remote journal on the target system, no journal entries can
be replicated. The system returns an error.

If the corresponding journal receiver does not exist on the target system, the journal receiver is created
and attached to the remote journal on the target system. Journal entries then are replicated starting with
the first journal entry in the journal receiver that is currently attached to the journal on the source system.

If the journal on the source system does not have an attached journal receiver, journal entries cannot be
replicated, and the system returns an error. This is only possible in the case of a remote journal that is
associated with another remote journal.

To use this option specify one of the following:

v *SRCSYS value on the CHGRMTJRN command.

v Use attached receiver on source system only in the Activate dialog in iSeries Navigator.

Qualified journal receiver name

Journal management 215

The replication of journal entries starts with the specified journal receiver name for the journal on the
source system.

If the corresponding journal receiver exists and is attached to the remote journal on the target system,
journal entries are replicated. Replication starts with the journal entries that follow the last journal entry that
currently exists in the attached journal receiver on the target system. Otherwise, if the corresponding
journal receiver exists but is not attached to the remote journal on the target system, no journal entries can
be replicated. The system returns an error.

If the corresponding journal receiver does not exist on the target system, the journal receiver is created
and attached to the remote journal on the target system. Journal entries then are replicated starting with
the first journal entry in the specified journal receiver.

If the journal on the source system is not associated with the specified journal receiver, no journal entries
can be replicated, and an error is returned.

The creation of any receiver on the target system by the change journal state processing is performed as
though the receiver was being saved and restored to the target system. Therefore, the ownership of the
receiver on a target system will follow the same rules as with the existing save and restore functions. If the
user profile which owns the receiver on the source system is on the target system, then that profile will
own the created receiver on the target system. If the user profile does not exist on the target system, then
the profile QDFTOWN will own the receiver on the target system.

Additionally, information such as the audit attributes of the source journal receiver at the time it was
attached to the source journal will be incorporated into the created journal receiver on the target system.

If the library for the journal receiver resides in an ASP, the journal receiver will be created in that ASP. The
remote journal function does not support nonlibrary ASPs for the ASP of the remote journal receiver. See
Journal receiver disk pool considerations for more information.

Factors that affect remote journal performance
There are two main performance objectives for the remote journal function. To provide a timely delivery of
journal entries to a target system and to minimize impacts to the journaling throughput on the source
system. Even though both aspects are very important for both synchronous and asynchronous delivery
modes, each mode prioritizes the two in a different order. The top priority for synchronous delivery mode is
a timely delivery of journal entries. For asynchronous delivery mode, the top priority is to minimize impacts
to journaling throughput.

All performance considerations that are currently used for a local journal still apply and should continue to
be employed. The following are additional factors that may affect the performance of the remote journal
function. The factors are listed in the order of importance.

1. Transport method

Either the OptiConnect for OS/400 bus transport or a communications transport could be considered
when using a synchronous delivery. However, depending on the rate of the journal activity, the
OptiConnect for OS/400 bus transport may be the most suitable method and asynchronous transfer
mode (ATM) may be a good alternate. You will have to weigh the response time impacts of the
synchronous delivery mode in your environment against the communications overhead of the transport
methods.

Either the OptiConnect for OS/400 bus transport or a communications transport could be considered
when using an asynchronous delivery. A communications transport will have to be used when
replicating journal entries over a long distance. The most important performance factors regarding a
communications transport method are the overall rated speed of the communications resource and any
existing traffic already using the communications resource.

2. Number of remote journals that are being maintained

216 iSeries: Journal management

rzakirdiskpool.htm
../rzakijrnsysperform.htm

With respect to the job performing the journal entry deposit, the impact of the remote journal function
increases by an equal factor for each remote journal that is added. For example, if you have three
synchronously maintained journals, the impact to the job is three times that of one synchronously
maintained journal.

However, the impact to the job performing the journal entry deposit for an asynchronously maintained
journal is significantly less than that for a synchronously maintained journal.

It is recommended that only one synchronous remote journal be maintained for a given local journal.
This is because the application cannot continue until the journal entry has been replicated to the
remote journal.

With respect to the system performance impacts, the overhead typically increases by less than an
equal factor for each additional remote journal.

3. Arrival rate of journal entries that are being deposited on the local system

The higher the arrival rate of journal entries being deposited on the local system, the greater the
chance of affecting journaling throughput for synchronous or asynchronous delivery. This may cause
asynchronous journaling to fall further behind.

4. Batch versus Interactive

In general, higher remote journal throughput can be maintained when many interactive jobs generate
the journal throughput rather than a single-threaded batch job, unless the local journals is using journal
caching. This also requires less journal and remote journal overhead.

5. CPU utilization on the source system

The higher the CPU utilization of the source system, the greater the chance of affecting journaling
throughput for synchronous or asynchronous delivery. This may cause asynchronous journaling to fall
further behind.

6. CPU utilization on the target system

The higher the CPU utilization of the target system, the greater the chance of affecting journaling
throughput for synchronous or asynchronous delivery. This may cause asynchronous journaling to fall
further behind.

7. The value set for the sending task priority when using the asynchronous delivery mode

The larger the value, the smaller effect the remote journal function will have on the system, but the
further the target system may lag behind the source system.

Performance considerations regarding the catch-up phase when activating the remote journal function
include the following in order of importance:

Note: The catch-up processing that is performed by the remote
journal function is the most efficient method of replicating
the journal entries with the remote journal function.

1. Total number of bytes for all of the journal entries that need to be caught up

The larger the total size, the longer the catch-up phase will run.

2. Transport method

In general, an OptiConnect for OS/400 bus transport method will outperform a communications
transport method. The difference depends on the exact configuration and type of communications
method to be used.

3. Disk protection on the target system

At high data transfer rates, disk units with device parity protection in the ASP on the target system can
limit the performance of the catch-up phase, unless the target system has sufficient write cache
configured in the I/O adaptors servicing the disk units that house the journal receiver. One example of
this is when you use the OptiConnect for OS/400 bus transport method. Having mirrored or
unprotected disk units in the ASP on the target system would eliminate this effect.

4. CPU utilization on the source system

Journal management 217

The higher the CPU utilization of the source system, the greater the chance of affecting the
performance for the catch-up phase.

5. CPU utilization on the target system

The higher the CPU utilization of the target system, the greater the chance of affecting the
performance for the catch-up phase.

6. Delivery mode

The performance of the catch-up phase does not depend on the delivery mode that was specified,
synchronous or asynchronous.

For additional information, see AS/400 Remote Journal Function for High Availability and Data Replication.

How the journal attributes affect the remote journal function

Reducing the size of the journal receivers on the source system will reduce the communications overhead
of the remote journal function. Therefore, you may want to consider only journaling after images, not
journaling open, close, or force entries. You may also want to consider using the various receiver size
options, or using the minimized entry-specific data or fix length data values. See Methods to reduce the
storage that journal receivers use for more details.

You can also refer to Remote journal attributes and Remote journals and auxiliary storage for more details.

Remote journals and auxiliary storage
Auxiliary storage will be required on both the source and target systems. The amount that is required will
be about the same on both systems. Anything that is done to minimize the amount of auxiliary storage
required on the source system will reduce the amount of auxiliary storage required on the target system.
Additionally, the less auxiliary storage used, or smaller the journal receivers are, the less data is
transmitted on the communications links. Therefore, the communications overhead will be reduced.

If the target system is not working for any extended period of time, enough auxiliary storage on the source
system is needed to keep the journal receivers online. This will be required until the target system
becomes available.

See Methods to reduce the storage that journal receivers use for more information on ways to reduce the
auxiliary storage usage.

Journal receiver disk pool considerations
The receiver configuration is the disk pool the receiver resides in, and how the data for the receiver is
spread across the disk arms within that disk pool. A remote journal receiver will have the same receiver
configuration as its corresponding source receiver. If the source receiver is in a disk pool that is spread
across multiple disk units, then the remote journal receiver will also be configured to use the same number
of disk units. The remote journal receiver may be in a disk pool that has fewer disk units than the disk pool
that contains the journal receiver on the source system. If this occurs, the remote journal receiver will still
be configured as if it still had that same number of disk units as the source journal receiver. However, the
data may physically be going to a fewer number of disk units.

Note: If the remote journal receiver is in a disk pool with fewer
disk arms then the source journal receiver, then
performance may be impacted. This is because the disk
arms for the remote receiver will be moving considerably
more than the disk arms will be moving for the source
receiver. Therefore, we recommend that the number of
disk arms is the same on the source and remote journal
receivers disk pools.

218 iSeries: Journal management

../../../redbooks/sg245189.pdf
rzakirattributes.htm
rzakirauxstore.htm
../rzakireducesize.htm

Likewise, the journal receiver on the source system may be in an disk pool that has fewer disk units than
the disk pool that contains the remote journal receiver. If this occurs, the remote journal receiver will not
take advantage of all possible disk units on the target system.

Independent disk pool considerations

The following considerations apply if the remote journal receiver is on an independent disk pool:

v If the local system has the journaling environment in a basic, system disk pool, or independent disk
pool, the remote journal can be in a independent disk pool. Likewise, if the local system has the
journaling environment in an independent disk pool, the remote journal can be in a basic, system disk
pool, or independent disk pool.

v The independent disk pool on the remote system must be varied on.

v The independent disk pool must be a library capable independent disk pool.

v The remote journal and remote journal receiver must be in the same disk pool group.

Determine the type of disk pool in which to place journal receivers has more information about journal
receivers and disk pools. The Independent disk pools topic has detailed information about independent
disk pools.

Remote journals and main storage
Providing greater amounts of main storage in the *BASE main storage pool on the source system will
improve remote journal performance. This is especially true in environments with multiple asynchronously
maintained remote journals.

Providing greater amounts of main storage in the *BASE main storage pool on the target system will
improve remote journal performance. This is especially true in a remote journal network with a high volume
of activity. The additional storage will keep the number of page faults to a minimum, and reduce the
impacts to the target system.

Set up remote journals
These topics describe the steps you would use to create and work with a remote journal network or
environment. They discuss how to establish and maintain one remote journal that is associated with one
local journal.

If you want to make a more complicated broadcast or cascade configuration, use the following steps for
each of the remote journals in the configuration.

See the following topics to set up remote journals:

v Prepare to use remote journals

v Add remote journals

Prepare to use remote journals
Before establishing the remote journal environment, do the following steps.

1. Determine the extent of your remote journal network or environment.

See Plan for remote journals.

2. Determine what library redirection, if any, you will be using for the remote journals and associated
journal receivers. Library redirection is the ability to allow the remote journal and associated journal
receivers to reside in different libraries on the target system from the corresponding source journal and
its associated journal receivers.

See Library redirection for with journals.

3. Ensure that all selected libraries exist on the target systems. You will need to consider whether or not
library redirection will be used when adding the remote journal.

4. Create the appropriate local journal if it does not already exist.

Journal management 219

../rzakidiskpoolrcv.htm
rzakirprepare.htm
rzakiaddremj.htm
rzakiplanrjrn.htm
rzakiredirect.htm

See Set up journaling for more information on creating local journals.

5. Configure and activate the communications protocol you have chosen to use.

See Supported communication protocols for more information.

After you have configured the communications protocol, it must be active while you are using the
remote journal function. For example, if you are using the OptiConnect for OS/400 bus transport
method, then the OptiConnect for OS/400 subsystem, QSOC, must be active. QSOC must be active
for both the source system and the target system, and the appropriate controllers and devices must be
varied on. If you are using a SNA communications transport, vary on the appropriate line, controller,
and devices and ensure subsystem QCMN is active on both systems. If you are using TCP/IP, you
must start TCP/IP by using the Start TCP/IP (STRTCP) command, including the distributed data
management (DDM) servers.

See the Networking topic and OptiConnect for OS/400

for more detailed information.

6. If one does not already exist, create the appropriate relational database (RDB) directory entry that will
be used to define the communications protocol for the remote journal environment.

Add remote journals
You should be aware whether library redirection is in effect for the remote journal. If it is in effect, any
library name processing will substitute the redirected library name for the library name that is used for the
operation on the target system.

The following is the input that you must provide to add a remote journal to a source journal:

v The journal name and library on the source system to which the remote journal is being added.

v The remote journal name and library on the target system that is being added.

v A relational database directory entry, which identifies the target system and other necessary
communications information.

v The type of remote journal to be added.

v Optionally, the journal or journal receiver library redirection.

v Optionally, the values for the journal message queue, text, delete receivers, and delete receiver delay
attributes to be applied to any newly created remote journal.

Add a remote journal

Proceed as follows to add a remote journal:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to use.

4. Expand Libraries.

5. Click on the library that contains the journal that you want to add a remote journal to.

6. Right-click the journal you want to add a remote journal to and select Properties.

7. On the Journal Properties dialog, click Remote Journals.

8. To add (associate) a remote journal to this journal, click Add.

Alternatively, you can use the Add Remote Journal (ADDRMTJRN) Command or the Add Remote Journal
(QjoAddRemoteJournal) API to add a remote journal.

The remote journal does not have an attached journal receiver after the add remote journal processing
completes. In addition, the journal state for the remote journal is set to *INACTIVE. A journal state of
*INACTIVE means that the remote journal is not ready to receive any journal entries from the journal on

220 iSeries: Journal management

../rzakisetupjrngs.htm
rzakiprotocols.htm
../../rzahgicnet2.htm
../../../books/c4154143.pdf
../../cl/addrmtjr.htm

the source system. During this time, journal entries can continue to be deposited or replicated into the
journal on the source system. However, no entries are replicated to the newly added remote journal until
you activate that remote journal. Refer to Activate the replication of journal entries to a remote journal for
information about activating a remote journal.

Remove remote journals
You should be aware whether library redirection is in effect for the remote journal when you remove a
remote journal. If it is in effect, any library name processing will substitute the redirected library name for
the library name that is used for the operation on the target system.

You can also use one of the following to remove a remote journal:

v iSeries Navigator

v Remove Remote Journal (QjoRemoveRemoteJournal) API

v Remove Remote Journal (RMVRMTJRN) command

You must start iSeries Navigator, the QjoRemoveRemoteJournal API, or the RMVRMTJRN command on
the source system for the journal on the source system identifying which remote journal to remove.

When using any of these methods, the replication of journal entries to the remote journal to be removed
cannot be currently active. If the remote journal state is *ACTIVE, you must inactivate the replication of
journal entries to the remote journal.

The remote journal, and any associated journal receivers, are not deleted from the target system when
you remove a remote journal. Remove a remote journal does not initiate any processing on the target
system. Once the remote journal is removed from the journal on the source system, you are responsible
for deleting the remote journal and associated journal receivers, if desired.

You can add this remote journal back to the remote journal function definition for the journal on the source
system.

Once a remote journal is removed, the journal receivers are no longer protected from deletion. See
Prevent journal receiver deletion for more information.

The following is the input that you must provide to remove a remote journal on a target system:

1. The journal name and library on the source system from which the remote journal is being removed.

2. The remote journal name and library on the target system that is being removed.

3. A relational database directory entry, which identifies the target system and other necessary
communications information.

Disassociate a remote journal on a target system from a journal on a source system with iSeries Navigator
by doing the following steps:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to use.

4. Expand Libraries.

5. Click the library that contains the journal from which you want to remove a remote journal.

6. Right-click the journal from which you want to remove a remote journal and select Properties.

7. On the Journal Properties dialog, click Remote Journals.

8. To remove a remote journal from this journal, click Remove.

Journal management 221

rzakiactiverep.htm
../../apis/QJORMVRJ.htm
../../cl/rmvrmtjr.htm
rzakiaddremj.htm

Activate and inactivate remote journals
You should be aware whether library redirection is in effect for the remote journal when you activate or
inactive a a remote journal. If it is in effect, any library name processing will substitute the redirected
library name for the library name that is used for the operation on the target system.

Activating a remote journal means starting and then maintaining the replication of journal entries from a
source journal to a remote journal. Activating a remote journal always occurs from the source system.

Inactivating a remote journal means ending the replication of journal entries from the source journal to the
remote journal. Inactivating a remote journal can be performed from the source or target systems.
However, the preferred method is to inactivate from the source system.

If this is the first time the remote journal is being activated, activating a remote journal creates one or more
journal receivers on the target system. Activating the remote journal also establishes the connection
between the source and remote journal so that journal entry replication can begin.

If the remote journal has previously been activated, the creation of additional journal receivers may or may
not be required on the target system. This would occur prior to establishing the connection between the
source and remote journal so that journal entry replication can resume.

See the following for instructions on activating and inactivating remote journals:

v Activate the replication of journal entries to a remote journal

v Relational database considerations for remote journal modes

v Inactivate the replication of journal entries to a remote journal

Activate the replication of journal entries to a remote journal
In order to activate the replication of journal entries to a given remote journal, the following must be true:

v The remote journal that you wish to activate must not have a journal state of *ACTIVE. For instance,
this might seem to be a reasonable request if you wanted to simply change the delivery mode from
synchronous to asynchronous. However, the remote journal must be inactive before you can activate it.

v The remote journal that you wish to activate must not be actively replicating journal entries to other
remote journals, as in a cascade configuration. You must inactivate the remote journals that are
immediately downstream before activating the remote journal.

You need to provide the following input in order to activate the replication of journal entries to a remote
journal on a target system:

v The journal name and library on the source system from which journal entries will be replicated.

v The remote journal name and library on the target system to which journal entries will be replicated.

v A relational database directory entry, which identifies the target system and other necessary
communications information.

v The delivery mode to be used. Specify either synchronous or asynchronous delivery mode.

v The journal receiver from which to start journal entry replication and the starting point for journal entry
replication.

v If an asynchronous delivery mode was specified, then the sending task priority may also be specified.
If a value is not specified, the system selects a default priority, which is higher than what the user can
specify for this value. Setting this value too large may cause a greater journal entry latency or lag.

To activate the remote journal, proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that contains the journal.

4. Expand Libraries.

222 iSeries: Journal management

rzakiactiverep.htm
rzakireldtabase.htm
rzakiinactivate.htm
rzakisrcjrnrcv.htm

5. Click the library that contains the journal that has the associated remote journal that you want to
activate.

6. Right-click the journal, and select Properties.

7. On the Journal Properties dialog, click Remote Journals.

You can also activate the replication of journal entries from a journal on a source system to a remote
journal on a target system by using one of the following methods:

v The Change Journal State (QjoChangeJournalState) API

v The Change Remote Journal (CHGRMTJRN) command

Both the QjoChangeJournalState API and the CHGRMTJRN command must be issued from the source
system.

The activation of the remote journal can be a long running process. This may occur if there are a large
number of journal receivers and entries that initially must be caught-up in the remote journal. Caught-up
and catch-up phase for remote journals

has more detailed information about the catch-up phase.

Caught-up and catch-up phase for remote journals: Caught-up is a conceptual state when all journal
entries known to the journal on the source system are also known to reside in the remote journal on the
target system. The journal entries that reside in the attached journal receiver of the remote journal could
be confirmed or unconfirmed journal entries.

Catch-up refers to the process of replicating journal entries that existed in the journal receivers of the
source journal before the remote journal was activated. The catch-up phase is the most efficient method of
replicating journal entries to a remote journal. Control does not return to the requester of the activation of
the remote journal until this catch-up processing has completed. You will want to consider this when
deciding the starting point for journal entry replication.

Catch-up phase is initiated after the following actions occur:

v A request has been issued on the source system to activate a remote journal

v The system has determined which journal receivers and journal entries to replicate to the target system

There is a difference between the catch-up phase processing and the run-time synchronous or
asynchronous processing. Catch-up processing replicates the following to the target system:

v Those journal entries that already exist in the journal on the source system

v Those journal entries that are deposited or replicated to the source journal during the catch-up
processing

Run-time synchronous or asynchronous processing occurs as part of the actual deposit or replication of
journal entries into the currently attached receiver on the source system. While in the catch-up phase, the
journal delivery mode will be either asynchronous pending (*ASYNCPEND) or synchronous pending
(*SYNCPEND), depending on the delivery mode that was specified.

The catch-up phase is the most efficient method of transporting journal entries to a remote journal in bulk.

The following is a high-level overview of the catch-up phase and related processing:

1. The starting point in the journal receiver on the source system is determined

2. If necessary, the system creates a receiver on the target system and attaches it to the remote journal.

3. The system replicates or completes replication for all of the journal entries that are contained in the
receiver on the source system to the corresponding receiver on the target system.

Journal management 223

../../apis/QJOCHGST.htm
../../cl/chgrmtjr.htm
rzakicatchup.htm
rzakicatchup.htm

4. If the receiver on the source system is the currently attached receiver, the system completes the
catch-up processing by transitioning into synchronous or asynchronous remote journal function mode.
Catch-up phase is complete, and control returns to the requester of the remote journal activation.

The remote journal will now be maintained synchronously or asynchronously as additional journal
entries are deposited, or replicated, into the attached receiver on the source system.

5. If the receiver on the source system is not the currently attached receiver for the journal on the source
system, one of the following steps is performed:

v If there is a next receiver within the source journal’s chain of receivers, go back to step 2. Replicate
journal entries by starting with the first entry in the next receiver.

For more information on receiver directory chains, see Keep track of journal receiver chains

v If there is no next receiver, (which indicates that a receiver chain break exists), the catch-up phase
is complete. Processing does not transition into synchronous or asynchronous mode and the change
journal state processing ends. A final escape message is sent indicating that processing has ended.

After the system transitions a given remote journal to either the synchronous or asynchronous remote
journal function mode, the system continues to maintain that mode. This continues until the remote journal
function is inactivated for that remote journal by using the Change Journal State (QjoChangeJournalState)
API or Change Remote Journal (CHGRMTJRN) command, or a failure occurs. See Inactivate the
replication of journal entries to a remote journal for more information on inactivating remote journals. See
Work with remote journal error messages for more information on the possible failure conditions.

The replication of journal entries to an individual remote journal is performed independently from the
replication of journal entries to any other defined remote journal. This is important if a given target system
fails or if communications to a target system fails from a particular source system. If either one occurs, the
remote journal function will end to those affected remote journals that reside on that target system and are
maintained from the source system. All other remote journals that are being maintained from the source
system will continue to function normally. For example, a source journal could have two remote journals on
two different systems. In this situation, if the replication of entries from the source journal to the second
journal ended, the replication of entries from the source journal to the first remote journal would not
necessarily end. If a given remote journal has any type of failure, the system ends the remote journal
function. Appropriate messages are signaled to either system or both systems involved, but the remote
journal function for other remote journals would not be affected. Likewise, the communications line speed
for a given asynchronously maintained remote journal will not affect the speed for another asynchronously
maintained remote journal using a different physical transport.

Relational database considerations for remote journal state
Once a remote journal is activated, the remote journal function will work with the communications
configuration defined by the specified relational database (RDB) entry as long as the remote journal is
active. However, the information will be taken from the RDB at the point in time when the remote journal
was activated. Therefore, even if the definition of the RDB entry is changed while a remote journal has a
journal state of *ACTIVE, none of those changes will take effect immediately.

If the remote journal is inactivated, and then activated again, the new RDB entry definition will take effect.
When you view the remote journal information, the RDB entry information that is displayed represents the
state of the RDB entry information when the remote journal was last activated. See Display remote journal
function information.

Inactivate the replication of journal entries to a remote journal
When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,
ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.

If you are inactivating an asynchronously maintained remote journal, you can request that the remote
journal function be ended immediately or in a controlled fashion. For an immediate end, any journal entries

224 iSeries: Journal management

rzakiinactivate.htm
rzakiinactivate.htm
rzakirerrmessage.htm

which have already been queued for replication will not be sent to the remote journal. For a controlled end,
any journal entries which have already been queued for replication will be sent to the remote journal.
When all queued entries have been sent to the target system, the system sends message CPF70D3 to the
journal message queue. The message indicates that the remote journal function has been ended. If you
are inactivating a synchronously maintained journal, the remote journal function is ended immediately,
regardless of the whether an immediate or controlled end was requested. Similarly, if the remote journal is
in the catch-up phase of processing, the remote journal function is ended immediately. This is also
regardless of the whether an immediate or controlled end was requested.

To inactivate the replication of journal entries proceed as follows:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that contains the journal.

4. Expand Libraries.

5. Click the library that contains the journal that has the associated remote journal that you want to
activate.

6. Right-click the journal, and select Properties.

7. On the Journal Properties dialog, click Remote Journals.

8. On the Remote Journals for dialog, select the remote journal in the list of remote journals, and then
click Deactivate to inactivate the selected remote journal.

You can also use the Change Journal State (QjoChangeJournalState) API and Change Remote Journal
(CHGRMTJRN) command to inactivate the replication of journal entries to a remote journal. For this
purpose, the API can be initiated from either the source system or the target system. The CHGRMTJRN
command can only be initiated from the source system. You can also use the Change Journal (CHGJRN)
command on the target system to inactivate the remote journal.

Manage remote journals
Managing the remote journal function requires basic tasks such as:

v Keeping records of your remote journal network.

v Evaluating the impact on the remote journal network as new applications are added or the system
workload grows.

v Considering the ramifications of journal receivers on two systems which require regular save and delete
processing.

v Considering the save and restore implications of the remote journal network.

The following information describes the management tasks for remote journals:

v Keep records of your remote journal network

v Display remote journal function information

v Evaluate how system changes affect your remote journal network

v Get information about remote journal entries

v Journal receiver management with remote journals

v Swap journal receiver operations for remote journals

v Considerations for save and restore operations with remote journals

v Remote journal considerations when restarting the server

v Work with remote journal error messages

Keep records of your remote journal network
You should always have a current list of the remote journals that are associated with local journals, and
their associated communications information.

Journal management 225

../../apis/QJOCHGST.htm
../../cl/chgjrn.htm
rzakirrecords.htm
rzakirdisplayinfo.htm
rzakireval.htm
rzakirgetinfo.htm
rzakirmaintanjrn.htm
rzakinewrcvr.htm
rzakisaverestre.htm
rzakiriplconsid.htm
rzakirerrmessage.htm

For each journal which has remote journals associated with it, use the following command: WRKJRNA
JRN(library-name/journal-name) OUTPUT(*PRINT).

Alternatively, you can use the Retrieve Journal Information (QjoRetrieveJournalInformation) API to retrieve
the information and place it in a file.

To get the related relational database information, use the following command: WRKRDDIRE RDB(*ALL)
OUTPUT(*PRINT).

Remember to do this for all cascaded remote journals as well, not just the local (or primary) system.

Display remote journal function information
When you are working with the remote journal function, you will want to be able to view the remote journal
network. You may also want to view the various attributes, journal states, or delivery modes. The Work
with Journal Attributes (WRKJRNA) display include the list of all remote journals that are associated with a
given journal. When looking at a specific journal, you can see information about the journal’s source
journal, if any. Additionally, you can see all remote journals which are immediately downstream from the
specified journal. If those remote journals are cascaded to other remote journals, you will not be able to
see any cascaded remote journal information. To see that information, you must invoke the WRKJRNA
command for that remote journal on its own system. This information is also available through the Retrieve
Journal Information (QjoRetrieveJournalInformation) API.

Additionally, the Display Journal Receiver Attributes (DSPJRNRCVA) displays provide additional
information about the remote journal characteristics of the journal receivers. The DSPJRNRCVA command
also has an API counterpart to allow program retrieval of the journal receiver information, the Retrieve
Journal Receiver Information (QjoRtvJrnReceiverInformation) API.

Evaluate how system changes affect your remote journal network
After you have initially established your remote journal network, you need to keep up with changes that
occur on the system.

If the amount of work that is going to the journals which you are replicating increases, you may need to
consider upgrading the communications method.

The traffic rate for work other than the remote journal function may increase on a communications method
that is shared. If this occurs, you may need to consider separating the various pieces of communications
traffic so that the remote journal function is not impaired. This is especially important if you are using the
synchronous delivery mode.

An application that is being protected may become more critical to your business, where any time that the
system is not working is considered disastrous. If this occurs, you may need to consider upgrading that
application’s remote journal to using the synchronous delivery mode so that no journal entries are lost.

Get information about remote journal entries
Working with the journal entries in a remote journal is essentially the same as working with the journal
entries in a local journal.

The exceptions are as follows:

v Confirmed and unconfirmed journal entries

v Retrieving journal entries from a remote journal with library redirection

v Retrieving journal entries from a remote journal during the catch-up phase

v Remote journal considerations for retrieving journal entries when using commitment control

v Remote journal considerations for retrieving journal entries when using journal caching

226 iSeries: Journal management

rzakiconfirm.htm
rzakirretrievejourn.htm
rzakirretrievejrn.htm
rzakiretrrievecommit.htm
rzakirjcache.htm

In addition, the system name, date, and time stamp in the journal entries are based on the original local
journal. They are not based on system of the remote journal where the entries are viewed.

See Display information for journals and receivers and Work with journal entry information for more
information.

Confirmed and unconfirmed journal entries: For a local journal, all entries are confirmed entries.
There is no concept of unconfirmed entries.

For a remote journal that is maintained asynchronously, all entries are confirmed entries. For a remote
journal that is maintained synchronously, there are both confirmed and unconfirmed entries. Unconfirmed
entries will only become important if you are using the remote journal support for a hot-backup or data
replication environment, and the source system has a failure such that the target system will take over
processing.

Confirmed journal entries are journal entries replicated to a target system, and the state of the I/O to
auxiliary storage for the same journal entries on the primary system is known to have completed.

Unconfirmed journal entries are entries replicated to a target system, but the state of the I/O to auxiliary
storage for the same journal entries on the primary system is not known. Unconfirmed entries only pertain
to remote journals that are maintained synchronously. The remote I/O to the remote journal is overlapped
with the local I/O to the local journal for better performance. Such journal entries on the target system are
held in the data portion of the journal receiver. However, the journal entries are not officially included with
the remainder of the journal entries until the confirmation of the I/O for the same entries is received from
the primary system. For performance reasons, confirmation of these entries is not typically sent to the
target system until some later delivery of journal data to the target system.

While the journal entries are unconfirmed on a target system, the entries typically cannot be retrieved from
the remote journal. You can retrieve the journal entries by using the INCENT(*ALL) parameter on the
following commands:

v Display Journal (DSPJRN)

v Retrieve Journal Entry (RTVJRNE)

v Receive Journal Entry (RCVJRNE)

You can also retrieve the journal entries by specifying *ALL for the include entries key for the Retrieve
Journal Entries (QjoRetrieveJournalEntries) API. The INCENT(*ALL) parameter, or include entries key
specification of *ALL, requests that all confirmed and unconfirmed entries are included. This means that for
synchronous remote journal function, the last few journal entries are not immediately retrievable from the
remote journal by using the default command invocations. This is true even though all journal entries
physically reside in both the local journal and the remote journal. This is done so that application programs
do not make decisions on the target system by using journal entries that may not end up being deposited
into the local journal. This is because those journal entries would not cause a change to the original data.

With respect to a hot-backup application apply, in most circumstances only the confirmed journal entries in
the remote journal are of interest. In the data replication environment, a hot-backup application apply
would probably never want to apply any unconfirmed journal changes. This is because any subsequent
activation of the remote journal will ensure that the journal entries in the remote journal will match the
journal entries in the source journal. However, as described in Scenario: Recovery for remote journaling,
knowledge of the unconfirmed journal entries is essential during the switch-over and switch-back
processing for a hot-backup environment.

When a remote journal is inactivated, all unconfirmed entries are removed from the remote journal. It is
important that those entries are retrieved prior to the remote journal being inactivated, if those entries are
desired for additional processing on the backup system. The message that is sent to the journal message

Journal management 227

../rzakiwrkjrna.htm
../rzakiwrkjrninfo.htm
../../apis/QJORJRNE.htm
../../apis/QJORJRNE.htm

queue when the remote journal is inactivated by the system will indicate if the remote journal has any
unconfirmed journal entries. See Work with remote journal error messages.

Journal entries from a remote journal with library redirection: All journal entries that are retrieved
from a remote journal will have the object names as they exist on the local system.

The following journal entries will show the name of the journal receiver as it was on the local system even
if the entry is displayed on a remote system. This is because these entries really apply to the version of
the journal receiver that existed on the local system.

v J PR - Previous Receiver entry

v J NR - Next Receiver entry

v J RD - Receiver Deleted

v J RR - Receiver Restored

v J RS - Receiver Saved

v J RF - Receiver Saved with storage Freed

v Object saved entries - See the Journal code finder for a list of the possible entry types.

v Journal changes applied entries - See the Journal code finder for a list of the possible entry types.

v Journal changes removed entries - See the Journal code finder for a list of the possible entry types.

Retrieve journal entries from a remote journal during the catch-up phase: During the catch-up
phase, journal entries that have been replicated to the target system can be retrieved from the remote
journal.

You can activate and inactivate the remote journal function while concurrently running the following
commands to view journal entries on the target system:

v Display Journal (DSPJRN)

v Retrieve Journal Entry (RTVJRNE)

v Receive Journal Entry (RCVJRNE)

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

When the remote journal is in the process of being caught-up from the attached journal receiver on the
source system, two things can happen with respect to objects and their names in the journal entries.

v If journaling is started for any objects on the source system, the object name that is given on the target
system in the start journal entry may be *UNKNOWN.

v If any move or rename operations take place, the last object name that was known before the catch-up
phase started is what will be given. The actual new name may not be available until the catch-up phase
is complete.

If you are using the DSPJRN or RTVJRNE command, additional informational messages will indicate that
this situation occurred. If you are using the RCVJRNE command, additional information is provided on the
exit program interface to help distinguish these situations as well. If you are using the
QjoRetrieveJournalEntries API, additional information is provided in the returned data to help distinguish
these situations. When necessary, the system attempts to minimize the possibility of showing these
inconsistencies by temporarily delaying the processing performed by these commands.

Once the catch-up phase is completed, these inconsistencies will be resolved, and complete information
will again be available.

Remote journal considerations for retrieving journal entries when using commitment control:
Special performance related processing is done by the system when depositing entries that are associated
with commitment control transactions to a local journal. When a job deposits a journal entry that is not
associated with a commitment control transaction, that job waits for the local journal I/O to auxiliary

228 iSeries: Journal management

rzakirerrmessage.htm
rzakiactive.htm
../../cl/dspjrn.htm
../../cl/rtvjrne.htm
../../cl/rcvjrne.htm
../../apis/QJORJRNI.htm
../rzakircvjrnentry.htm

storage to complete. After completion, control is given back to the application. A different technique is used
for those journal entries that are associated with a commitment control transaction which results in the
application being given control back before the local journal I/O is complete. This special processing has
some ramifications when you retrieve journal entries from a remote journal.

For journal entries deposited related to a commitment control transaction, a job only waits for the local
journal I/O to complete when the following journal entries are being deposited into the local journal:

v Journal code C, journal entry type CM (Commit)

v Journal code C, journal entry type RB (Rollback)

For remote journals, those journal entries that the job that is making the deposit does not wait for are not
immediately replicated or scheduled to be replicated to the remote journal. Prior to the CM (Commit) or RB
(Rollback) entry being deposited, there is no guarantee as to when the journal entries for open
commitment control transactions will be retrievable from the remote journal.

After the commit or rollback operation is complete for a particular commitment control transaction, all
journal entries associated with that transaction are immediately retrievable from an asynchronously
maintained remote journal. However, there may be some journal entry delivery latency due to the transport
method that is being used.

For a synchronously maintained remote journal, all journal entries associated with the commitment control
transaction are assured to be retrievable after the CM (Commit) or RB (Rollback) entry is deposited.

Interspersed local journal I/O, for journal entries not associated with a commitment control transaction, can
also affect when the journal entries associated with a commitment control transaction can be retrieved
from the remote journal. In this I/O a job actually waits for the local journal I/O to complete. This
interspersed local journal I/O will also cause the journal entries related to the commitment control
transaction to be replicated to the remote journal. Once in the remote journal, and when later remote
journal I/O makes them confirmed, the journal entries that are related to the commitment control
transaction are retrievable.

Note: These considerations also apply if you generated entries
that use the Send Journal Entry (SNDJRNE) command or
Send Journal Entry (QJOSJRNE)API (QJOSJRNE). If the
application or user never requests to force these user
generated entries, they will only be replicated to the
remote journal when some other action forces the journal
entries. Therefore, you will wish to periodically specify
FORCE(*YES) when using these send journal entry
functions.

These considerations also apply to any database physical file open or close journal entries; or directory or
stream file open, close, or force entries.

Remote journal considerations for retrieving journal entries when using journal caching: When
you use journal caching for the local journal, the system performs special performance related processing
when it deposits journal entries. With journal caching, the system waits longer to write journal entries to
disk, leading to fewer but larger disk writes. This action helps performance, but also delays the journal
entries from being sent to the target system, even if you are using synchronous remote journaling.

Journal receiver management with remote journals
As with local journals, you should regularly save and delete your journal receivers to minimize the amount
of online auxiliary storage which is used by the journal receivers. The change journal processing for a
remote journal is driven by the source journals change journals. See for Swap journal receiver operations
with remote journals more information.

Journal management 229

../../cl/sndjrne.htm
rzakinewrcvr.htm
rzakinewrcvr.htm

If you plan to move the responsibility for storing journal receiver data from the primary system to the
remote system, you can elect to quickly delete journal receivers from the primary system after they have
been replicated to the backup system with automatic deletion of journal receivers. On your backup system,
you can then select to not use the automatic deletion of journal receivers on the remote journal, and
manage the receiver save processing as you did before. Remember that once you add a remote journal,
you cannot delete the source journal receiver until it has been replicated to all associated remote journals.
Any journal receivers that are attached subsequently are also protected. The protection is eliminated when
you remove the remote journal. If you have cascaded remote journals, consider using automatic deletion
of journal receivers on the local journal, and on the lowest level remote journal. You would then not use
automatic deletion of journal receivers on the cascaded remote journal since you plan to do your save
processing on that system.

The Delete Journal Receiver exit point, QIBM_QJO_DLT_JRNRCV can be of assistance as well. For
example, you might want to add an exit program to QIBM_QJO_DLT_JRNRCV which verifies that the
journal receiver is no longer needed for any hot-backup application apply processing before it can be
deleted. Refer to Delete journal receivers for information about this exit program.

Swap journal receiver operations with remote journals
To swap journal receiver on a remote journal, perform a swap journal operation on the source system to
attach a new receiver to a local journal. When this happens, the remote journal function automatically
attaches a new receiver to those remote journals that are currently being maintained synchronously or
asynchronously. If the journal sequence numbers were reset as part of the swap journal operation
performed for the local journal, the remote journal function will also reset the journal sequence number for
each remote journal. This keeps the journal sequence numbers synchronized between the local journal
and the remote journal. For remote journals that are being synchronously maintained, a coordinated swap
journal operation is performed for the local journal on the source system and the remote journals on the
target systems. For asynchronously maintained remote journals, the new receiver is attached when the
target system receives the journal entry with journal code ’J’ and entry type ’PR’ (previous receiver).

If the swap journal operation fails on the target system, the remote journal function ends for that remote
journal, and processing continues on the source system. The system sends a message to the journal
message queue that indicates that the remote journal function failed. When applicable, the system sends
remote journal failure type messages to the related journal message queues on both the affected source
and target systems. See Work with remote journal error messages for more information.

You cannot initiate a swap journal operation to attach a new receiver directly for a remote journal. New
journal receivers are always attached to the remote journal by the remote journal function as new
receivers are attached to the local journal. However, you can perform a change journal operation on a
remote journal to change several other attributes for the remote journal such as the journal message
queue or delete receivers value.

A swap journal operation to attach a new receiver to a local journal that has an associated remote journal
in the catch-up phase can be performed. This is regardless of whether the remote journal is currently
being caught-up from a detached or the currently attached receiver on the local system. The catch-up
phase of processing will not transition into synchronous or asynchronous delivery mode until the end of the
currently attached receiver for the local journal is reached.

Considerations for save and restore operations with remote journals
The following information describes general considerations for save and restore operations with remote
journals:

v Rules for saving and restoring journals

v Rules for saving and restoring journal receivers

v Considerations for restoring journaled objects

v Considerations for restoring objects saved with the SAVSTG command

230 iSeries: Journal management

rzakirsaveconsid.htm
rzakirsavconsidrcv.htm
rzakisavrstorejrn.htm
rzakirsavstg.htm

Rules for saving and restoring journals: It is recommended that you save the remote journal network
after the addition of any and all remote journals that will be associated with the journal. This includes
saving the local journal and any associated remote journals, as well as the journal receivers that are
associated with the local journal.

Follow the basic save and restore rules for journals that are listed here:

v A saved local journal is always restored as a local journal.

v A saved remote journal is always restored as a remote journal.

v As with all prior save and restore support for journals, the support will not allow a restore-over operation
for a journal. This is true for both local and remote journals.

v When restored, a local or remote journal is always restored to the library from which it was saved. For a
local journal, this library is referred to as the original journal library. For a remote journal, this library is
referred to as the redirected journal library.

For a remote journal, library redirection may not have been specified when adding the remote journal to
the local journal’s definition. If this occurs, then the redirected journal library name is the same name as
the original journal library name.

Note: This is always true except in the case where the journal
was saved from library QRCL. (The journal could reside in
library QRCL due to prior Reclaim Storage processing.) In
that case, the RSTLIB parameter must be specified on the
restore request, and you must specify the library where
the journal originally resided. For a local journal, this is
existing support and is not new. For a local journal, the
library that must be explicitly specified is the original
library.

This support logically extends to remote journals. For a remote journal, the redirected library must be
explicitly specified on the RSTLIB parameter of the restore request.

v If remote journals are associated with a journal when a journal is saved, the information that is related
to the added remote journals is also saved.

When the journal is restored, the information that is saved about its remote journals is also restored.
This information is included as part of that journal’s definition. This is true whether the journal being
saved is a local or a remote journal. When restored, the restored journal’s definition will only include the
saved, immediately downstream remote journal definitions.

Note: None of the actual downstream remote journals are
actually verified as part of the restore operation. Any
necessary validation of the remote journal information
occurs when you activate that particular remote journal by
using the Change Journal State (QjoChangeJournalState)
API or Change Remote Journal (CHGRMTJRN)
command.

v Local journals are restored to the same state in which they are saved, except for journals saved in
inactive state. The following are the reasons behind this design point:

– When you restore journals and journaled objects at the same time, it allows the system to
successfully start journaling for those restored objects. The system cannot successfully start
journaling for journals and journaled objects that are restored in the inactive state.

– It also follows the logic that a restore of a journal is similar to the create of a journal. Local journals
are always created in the active state.

N to N-1 save and restore considerations for journals

Journal management 231

../../apis/QJOCHGST.htm
../../cl/chgrmtjr.htm

The following are considerations when performing a save of a journal and the target release is prior to
V4R2M0:

v If the journal is a remote journal, it cannot be saved.

v If the journal is a local journal, it will be saved, but the remote journal related information will be
removed. This includes information about downstream remote journals.

Rules for saving and restoring journal receivers: The following figure illustrates the restore
relationships for journal receivers that are associated with remote journals, based on the remote journal
type.

*

232 iSeries: Journal management

rzakidesc_3.htm

There are several unique rules which govern where the journal receivers that are associated with a remote
journal can be restored. The rules also address the placement of the journal receivers in the receiver
directory chain of a local or remote journal. These rules are influenced by the remote journal type of the
journal to which the journal receiver was attached. These rules are also influenced by the library
redirection that was in effect when that receiver was attached. See Types of remote journals.

Note: You can always save receivers from a journal, and then
restore the receivers to another local journal of the same
name. However, they will be placed in their own separate
receiver chain.

The following items describe the rules that the system uses when restoring journal receivers:

1. The system first attempts to find an appropriate remote journal. When searching for a remote journal,
the system follows the following rules:

a. If the saved receiver was originally associated with a local or *TYPE1 remote journal, then the
system searches for a *TYPE1 remote journal.

1) If a *TYPE1 remote journal was defined at the time this receiver was attached, then use the
journal and receiver library redirection that was in effect and saved with the receiver. If no
*TYPE1 remote journal was defined at the time this receiver was attached, then the original
journal library and receiver library names will be used when searching for the *TYPE1 remote
journal.

2) If a *TYPE1 remote journal is found, and the current receiver library redirection for the found
*TYPE1 remote journal matches the library name where the receiver is being restored, the
journal receiver will be associated with the found *TYPE1 remote journal.

b. If the receiver was originally associated with a *TYPE2 remote journal, then the system searches
for a *TYPE2 remote journal. When searching for the *TYPE2 remote journal, a journal with the
same name as the name that was saved with the receiver will be used.

1) The journal receiver will be associated with a found *TYPE2 remote journal if the following
conditions are met:

v A *TYPE2 remote journal is found with the correct name in the correct library.

v The found journal is in the exact same remote journal network as that of the saved receiver.

v The receiver is being restored to the same named system or same named ASP group as the
name of the system or ASP group at the time the receiver was saved.

2. If a remote journal was not found, then the system searches for a local journal. When searching for a
local journal, the original journal and journal library names are used.

The journal receiver will be associated with a found local journal if the following conditions are met:

v A local journal is found by the correct name in the correct library

v The original journal receiver library name for the found journal matches the library name where the
receiver is being restored

3. If a local journal cannot be found, the restore operation will be allowed to proceed. The journal receiver
will not be associated with any journal, if the receiver is being restored to the original or redirected
receiver library.

4. Still honoring the previous receiver restore rules, the following must also be true if the receiver is being
restored over an existing receiver:

a. If the receiver is not being associated with any journal (as previously determined from the prior
receiver restored rules), then:

1) The receiver creation time stamps must match.

2) If the saved receiver was ever associated with a journal, then it must have been previously
associated with a journal of the same type as that of the existing receiver.

Journal management 233

rzakitwotypes.htm

3) If the saved receiver was ever associated with a remote journal network, then it must have
been previously associated with the same remote journal network as that of the existing
receiver.

4) The saved receiver must have at least as many entries as the existing receiver.

b. If the receiver is being associated with a local journal, then:

1) If the saved receiver was originally associated with a local journal, then the receiver creation
time stamps must match.

2) If the saved receiver was not originally associated with a local journal, then the saved receiver
must have been originally associated with the same remote journal network as that of the
existing receiver.

3) The saved receiver must have at least as many entries as the existing receiver.

c. If the receiver is being associated with a *TYPE1 remote journal, then:

1) The receiver creation time stamps must match, and the saved receiver must have been
originally associated with a local or *TYPE1 remote journal.

d. If the receiver is being associated with a *TYPE2 remote journal, then:

1) The receiver creation time stamps must match, and the saved receiver must have been
originally associated with the same *TYPE2 remote journal.

When receivers are saved from or restored to a target system and associated with a remote journal, no
journal entries are deposited to indicate that the save or restore occurred. However, the object save and
restored date and time stamps are updated accordingly.

Save and restore considerations

Nonreplicated journal receiver protection considerations
The protection provided, which prevents journal receivers that are not fully replicated to all associated
remote journals from being deleted, is removed when the journal receiver is restored.

Unconfirmed journal entries save considerations
When a journal receiver that is associated with a remote journal is saved, only those journal entries
which have been confirmed are saved to the media. Therefore, no unconfirmed journal entries, nor
any journal entries that would not survive any IPL journal recovery processing, will be saved.

Journal receivers saved with STG(*FREE) considerations
Even if a journal receiver has not been fully sent to all known remote journals, such a journal
receiver can be saved with STG(*FREE). However, a diagnostic message is left in the job log
indicating the freeing of the journal receiver storage without the journal receiver first being fully
replicated to all downstream remote journals. This is in contrast to the default action taken when
attempting to delete a receiver that has not been fully replicated to all downstream remote journals.

N to N-1 save and restore considerations for journal receivers
If you are performing a save of a journal receiver and the target release is prior to V4R2M0, if the
journal receiver is associated with a remote journal, it will be saved, but the remote journal related
information will be removed.

Considerations for restoring journaled objects: For an object that is restored and associated with an
inactive local journal, the restore of the object completes normally. However, an informational message is
sent to the job log. This message indicates that journaling could not be started for the object. Existing
restore logic will send a final escape message for the restore operation. However, for an object that is
restored and associated with a local journal in standby state, journaling starts for that object, but no
restore entry is deposited in the journal receiver.

For an object that is being restored-over and it is currently journaled to an inactive local journal, the
restore for the object is prevented. A diagnostic message is left in the job log. The diagnostic message is

234 iSeries: Journal management

followed by the appropriate message that is currently sent by restore. The current message indicates that
the restore for the particular object failed. However, for an object that is being restored-over and is
currently journaled to a local journal in standby state, the restore is not prevented, and no restore entry is
deposited in the journal receiver.

The system will send a diagnostic message for any object in which the ’object restored’ journal entry could
not be sent due to a problem with the journal or attached journal receiver, unless the journal is in standby
state. The system always attempts to start journaling for an object that was journaled at save time to the
same named journal, in the same named library, during a restore operation. This is still true, and there are
no processing changes to note if a local journal is found by the restore processing. However, if a remote
journal is found by the restore processing, the restore completes successfully, but journaling is not started
for the restored object. A diagnostic message is sent that indicates that a remote journal was found by the
restore processing. This message is followed by the message that is already sent that indicates journaling
was not started.

In a hot-backup configuration, a local journal is used on the backup system to capture the changes that
are made to the objects on the remote system. This occurs when the remote system is logically promoted
to assume the role of the primary system. The local journal that is being used on a backup system may
not be in the exact same-named library as the journal that is being used for the object at save time. If this
occurs, you are responsible for starting journaling for the restored objects. This is a fundamental reason to
use library redirection for all defined remote journals.

Considerations for restoring objects saved with Save Storage SAVSTG: If you restore a system from
Save Storage (SAVSTG) media, the primary remote journal function concerns have to do with
configuration changes involving additionally defined remote journals. These remote journals were
established after the SAVSTG media was produced. If a primary system is restored from SAVSTG media,
journal receivers can be restored back to the primary system from versions saved from any of the
associated remote journals in the remote journal environment. If a backup system is restored from
SAVSTG media, then the catch-up phase for activating the remote journal can replicate all necessary
journal receivers that are still online from the primary system to the restored backup system. Those journal
receivers that are not online, and were attached to a *TYPE1 remote journal, can be restored back to the
backup system. They can be restored from any saved versions of the journal receivers that were
previously taken from one of the following:

v The primary system

v Any of the associated remote journals in the remote journal environment

See Rules for saving and restoring journal receivers for the journal receiver restore rules which will be
used for such a restore.

Another consideration occurs as part of the processing that is performed by the system when restoring
journal receivers. Before associating a journal receiver with a local journal and retaining any remote journal
information, the journal library name, and the system name or the independent disk pool name must be
correct. This allows the system to differentiate between a local journal that was originally created and one
that was restored to a different physical system using SAVSTG media. This case assumes that the user
assigns a new system name as part of the SAVSTG procedure.

A related case can potentially cause trouble. In this case, the system was also restored using SAVSTG
media. However, the system it was restored to was not the same physical system but it still had the same
name as the system from where the media was produced. You should avoid duplicating this situation.

Remote journal considerations when restarting the server
When a system that has a local journal ends either normally or abnormally, the subsequent IPL processing
or varying on an independent disk pool ensures that the journal state for the journal is the same as it was
when the machine ended.

Journal management 235

../../cl/savstg.htm
rzakirsavconsidrcv.htm

Regardless of whether the journal state for a local journal is *ACTIVE, *INACTIVE, or *STANDBY, the
system will always deposit an IPL or vary on entry into a local journal. The IPL journal entry type will be IA
or IN with a journal code of J. The vary on journal entry type will be UA or UN with a journal code of J.

Likewise, if the system ends with the data being actively changed, the system will also deposit the object
in-use entry into any local journal regardless of the journal state. See Table 14 for a list of possible object
in-use journal entries. The flag indicator in the in-use journal entry also indicates if the system was able to
successfully reconcile the local journal with the object during the IPL or vary on processing.

Entry Not Journaled exception CPF7003, with reason code 10, is signaled to any program performing an
operation that attempts to generate a journal entry into an inactivated local journal during IPL or vary on
processing. Journal entry deposits will not be possible until the local journal is activated after the IPL or
vary on by the Change Journal (CHGJRN) command or Change Journal State (QjoChangeJournalState)
API. This restriction does not cause a problem for commitment control recovery processing that normally
occurs during an IPL or vary on operation. A local journal cannot be inactivated if there are any open
commitment control transactions that are associated with the journal. Therefore, no commitment control
recovery processing will ever be necessary during an IPL or vary on operation for an inactivated local
journal.

Note: It might seem reasonable for all local journals that have
associated remote journals to be put in the *INACTIVE
journal state during IPL processing if the system last
ended abnormally. However, if a hot-backup application
apply is performing any necessary recovery, the local
journals must always be *ACTIVE to allow for journal
entries to be deposited into the local journals. Therefore,
the journal state is preserved across the IPL or vary on
operation.

The replication of journal entries to each of the associated remote journals is implicitly ended when the
local system ends. The remote journal on the target system must be inactivated before restarting the
replicating of journal entries to a particular remote journal. Use the Change Journal State
(QjoChangeJournalState) API or Change Journal (CHGJRN) command to inactivate the remote journals on
the target system. The replicating of journal entries to any remote journal is not started again until each
desired remote journal is activated. Reissuing the Change Journal State (QjoChangeJournalState) API or
Change Remote Journal (CHGRMTJRN) command from the source system activates each desired remote
journal. After an IPL or vary on operation, you are not required to reassociate the desired remote journals
with the journal on the source system. (You reassociate the remote journals by using the Add Remote
Journal (QjoAddRemoteJournal) API or Add Remote Journal (ADDRMTJRN) command.)

In addition to unconfirmed I/O for journal entries, the preservation of main storage for a failed system also
needs to be considered during recovery processing. Given certain system failures, main storage might or
might not be preserved during the ensuing IPL to recover from the system failure.

Therefore, it is possible for journal entries to survive in a local journal after a system failure even if the
local, or remote, I/O was never performed for those journal entries.

This effectively means that IPL recovery on a primary system may preserve changes that were not
replicated to any of the remote journals, even the synchronously maintained remote journals. Scenario:
Recovery for remote journaling demonstrates that journal entries that survive a system failure in this
manner can be accounted for using the remote journal function. These journal entries will not cause a total
re-priming of the original data when switching-back from a backup system which took over the role of the
primary system.

Application programs that were in the process of generating such surviving journal entries never had
control returned to them. From the application’s perspective, it truly is not known if the operation

236 iSeries: Journal management

../../cl/chgjrn.htm
../../apis/QJOCHGST.htm
../../cl/addrmtjr.htm
rzakirecovery.htm
rzakirecovery.htm

completed or not. No dependencies or decisions could have been made on such operations. This includes
dependencies or decisions by the application performing the operation, or any other application that could
be possibly dependent upon the data affected by the operation.

This means that the strategy that is discussed in Scenario: Recovery for remote journaling, of backing out
such operations is acceptable.

Because of these main storage preservation considerations, it is recommended that both the before and
after images be journaled for any objects, if possible. With the before images, the work can then be
backed out after the IPL or vary on operation. If the data activity is not backed out after the IPL or vary on
operation, the alternative would be to re-prime the primary system data completely from the backup data
which had assumed the role of the primary.

Commitment control, especially two-phase commitment control, can cause some additional considerations
and potential complications. For example, if any of the entries that were preserved but not yet confirmed
were a commit or a rollback operation, then the transaction will have to be reconciled accordingly between
the primary system, and the backup system.

Journal caching can increase the number of journal entries that are unconfirmed.

Work with remote journal error messages
Several different error conditions can occur when the remote journal function is active. When an error
condition is encountered, the system automatically ends the remote journal function on the source system
to that remote journal. The system notifies you that a failure occurred. Failure notification is made on both
the source system and the target system. Notification is made by sending a message to the journal
message queues associated with the source and target journals as appropriate.

In some cases where the source system fails, you may have to inactivate the remote journal on the target
system. (You inactivate the remote journal on the target system by using the Change Journal State
(QjoChangeJournalState) API or the Change Journal (CHGJRN) command.) For a synchronously
maintained remote journal, inactivating the remote journal on the target system will discard all unconfirmed
journal entries. See Confirmed and unconfirmed journal entries for more information.

Note: The source system might not detect that an error has
occurred on the target system until the next time a journal
entry is replicated to that failing target system.

Additional messages can be sent to the journal message queue for normal remote journal processing. For
example, if you requested a controlled inactivate of the remote journal, a message will be sent to the
message queue when the inactivate processing has completed.

Even though the remote journal function has been ended, the local journal is not automatically inactivated.
Therefore the local system journal entry deposits will continue normally.

The remote journal function messages that are sent to the journal message queue are listed as follows:

CPF70D3
A controlled inactivate of a remote journal has completed.

CPF70D4
The remote journal function is no longer active due to various reasons. For a synchronously
maintained remote journal, there may be unconfirmed entries which may need to be processed prior
to the remote journal being inactivated.

Journal management 237

rzakiconfirm.htm

CPF70D5
The remote journal function is no longer active and has been ended due to various reasons. There
are no unconfirmed entries.

CPF70D6
The remote journal function was ended due to storage constraints.

CPF70D7
There was a problem on the target system while attempting to execute a change journal.

CPF70DB
A severe error has occurred with the remote journal function, and service should be notified.

CPF70DC
There was a problem on the target system while attempting to execute a change journal.

Display the messages on your system for more information.

Scenarios: Remote journal management and recovery
These scenarios describe the possible ways that JKL Toy Company can use remote journal management.
JKL Toy Company uses the server JKLINT as their web server.

They need 24x7 availability for the critical data on this server, and they accomplish that by having a
second server, JKLINT2, that shadows JKLINT. They use a high availability replication solution to copy the
data from JKLINT to JKLINT2. Then, if JKLINT goes down, they can switch to JKLINT2.

The following scenarios describe two possible environments in which they can use remote journaling. The
first scenario describes how JKL Toy Company can set up a data replication environment. The second
scenario describes how they set up a hot-backup environment. The third scenario describes recovery
steps if one of the servers fails.

v Scenario: Data replication environment for remote journals

v Scenario: Hot-backup environment

v Scenario: Recovery for remote journaling

v Details: Description of the remote journaling recovery scenario

For a complete description of JKL Toy Company’s network, see Scenario: Journal management.

Scenario: Data replication environment for remote journals
In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only. The
following figure illustrates this remote journaling environment. Data replication is the function of
maintaining a separate copy of data from an original copy, keeping the two copies consistent with each
other.

Typical data replication environment with remote journal function

238 iSeries: Journal management

rzakirdatarep.htm
rzakihotbackup.htm
rzakirecovery.htm
rzakirecovdtails.htm
../rzakijournalscenario.htm

How the data replication environment works

Local objects, F1, F2, and F3, on JKLINT are journaled to local journal JRN in library JLB1. A remote
journal is defined on JKLINT2, where JRN has been redirected to library JLB2. This remote journal
receives journal entries from the local journal on JKLINT. A hot-backup application apply replays the
changes to the data replica on system JKLINT2.

The data replica is journaled to a local journal, JRN in library JLB1, for system recovery purposes only, so
this journal should be in active state. If system JKLINT2 fails, the system performs recovery for the objects
by using this local journal.

A hot-backup application assists in replicating data from one system to another. The hot-backup
application apply is only performing the replay of operations to the data replica on the target system.

Since this scenario is for a data replication environment, the hot-backup application does not perform a
switch-over to the backup system. See Scenario: Hot-backup environment for more details about
hot-backup applications applies and hot-backup switch-overs.

How to establish the data replication environment for JKLINT and JKLINT2

The objects and local journal on JKLINT are already assumed to exist. The journal state for the local
journal is also assumed to be active. The communications environment and associated RDB entries
already exist and are established.

Establishing the data replication environment for JKLINT and JKLINT2 requires the following:

1. Create the remote journal on JKLINT2, and specify library redirection. Library redirection indicates that
the journal’s library, JLB1 on JKLINT, is redirected to library JLB2 on JKLINT2. The journal receiver’s
library, RLB1 on JKLINT, is redirected to library RLB2 on JKLINT2.

After this step, the remote journal exists, but no receiver is currently attached.

Journal management 239

rzakihotbackup.htm
rzakiaddremj.htm

2. To establish a clean breakpoint, perform a change journal operation to attach a new journal receiver at
this time.
Notes:

a. The next step restores local journal JRN in library JLB1 and attaches receiver X1002 in library
RLB1. It then restores the objects, and starts journaling for the objects to the restored local journal.

b. Since it is not possible to save and restore the contents of data queues, you should take that into
consideration when priming the data replica for any data queue objects.

3. Save the local journal and objects from JKLINT and restore them to JKLINT2. This primes the data
replica and establishes the local journaling environment on JKLINT2.

4. Activate the remote journal on system JKLINT2. Specify that the remote journal should start with the
attached receiver. Since no receiver is attached to the remote journal, the receiver that is currently
attached to the local journal on JKLINT (X2) is created on JKLINT2. This receiver is then attached to
the remote journal. Journal entries are replicated, starting with the first journal entry in receiver X2.

An additional parameter on the Change Journal State (QjoChangeJournalState) API and Change
Remote Journal (CHGRMTJRN) command indicates whether the remote journal function is to be
maintained synchronously or asynchronously. Depending on how the remote journal is maintained,
other parameters may also apply.

5. The hot-backup application apply process receives or retrieves journal entries from the remote journal,
starting with the entries that were deposited after the data was saved and primed into the data replica.
The process then starts replaying the changes that are contained in these journal entries to the data
replica.

Normal run-time environment for the data replication environment

You can activate and inactivate the replication of journal entries to the remote journal as needed. Each
time you activate the remote journal, *ATTACHED is specified as the point in the receiver chain to start
receiving journal entries. The system checks the currently attached remote journal receiver for journal
entries and replicates the next journal entry in sequence.

You must specify the delivery mode when activating the remote journal. If needed, the delivery mode can
be different on each activation of the remote journal.

Change journal operations that attach a new receiver to the local journal on system JKLINT are performed
by the remote journal function as required on the target system. The remote journal function attaches the
associated receivers to the remote journal automatically. If the remote journal is being maintained
synchronously, the change journal operation to attach a new receiver is essentially a coordinated operation
between the source and target systems. If the remote journal is being maintained asynchronously, the
change journal operation to attach a new receiver on the target system is performed differently. In this
case, it is triggered when the journal entry with journal code ’J’ and entry type ’PR’ is received by the
remote journal on the target system.

The hot-backup application apply continues to replay changes to the data replica as received or retrieved
from the receivers associated with the remote journal.

If needed, you can delete the receivers that are associated with the local journal on JKLINT when each
receiver is replicated to JKLINT2. Sharon can accomplish this by specifying automatic deletion of journal
receivers or manually deleting the receivers on JKLINT.

You can save the receivers from JKLINT2. If necessary, you can use the receivers for recovery of the
original data on system JKLINT at a later time.

See Delete journal receivers for more information.

Data replication recovery if JKLINT fails

240 iSeries: Journal management

rzakiactiverep.htm
rzakisrcjrnrcv.htm
rzakiactive.htm
../rzakiautodelete.htm
../rzakiautodelete.htm
../rzakideletercv.htm

Recovery for JKLINT and JKLINT2 is simpler than environments that involve hot-backup because the
hot-backup application does not switch-over to the backup system. What prevents the complications is an
assumption that the hot-backup application apply logic will not receive and replay unconfirmed journal
entries to the data replica if system JKLINT2 loses communications with system JKLINT. Therefore, the
data replica on system JKLINT2 can never get ahead of the data on system JKLINT. This greatly simplifies
data synchronization.

Scenario: Hot-backup environment
In this scenario, the remote journaling environment uses a hot-backup application that causes JKLINT2 to
replace JKLINT in the case that JKLINT has a failure.

A hot-backup application typically performs the following:

1. If the primary system fails, it performs a switch-over to the backup system. This function then logically
promotes the backup system to assume the role of the primary system.

2. After the failed primary system is restarted, it performs a switch-back operation so that the primary
system can again assume the role of the primary system.

A hot-backup application apply defines the part of a hot-backup application that actually performs the
replay operations to the data replica. This usually occurs on the backup system when maintaining a data
replica.

Note: The Apply Journaled Changes (APYJRNCHG) and
Remove Journaled Changes (RMVJRNCHG) commands
cannot be used for this apply processing.

The following figure describes a typical remote journal environment that is used for hot-backup purposes.
The following occurs in this illustration:

v Server JKLINT is the primary server while JKLINT2 is the backup server.

v Server JKLINT journals objects to local journal JKLB1/JRN.

v Changes to those journaled objects are also journaled to remote journal JLB2/JRN on server JKLINT2.

v On JKLINT2 a hot backup-apply replays changes to the data replica. When the hot backup-apply
replays these changes, JKLINT2 journals the changes to its own local journal, JLB1/JRN.

v If JKLINT fails, JKLINT2 assumes the role of primary server and all local journaling of changes to the
data replica (now acting as the original data) continue on JKLINT2’s local journal, JLB1/JRN.

v When it is time to switch the role of primary server back to JKLINT, JKLINT2 sends changes from its
local journal, JLB1/JRN, to remote journal JLB2/JRN on server JKLINT (the transport from JKLINT2 to
JKLINT is only used for this purpose).

v JKLINT then uses its remote journal, JLB2/JRN, to replay changes to the original data.

Typical hot-backup environment with remote journal function

Journal management 241

How to establish the hot-backup environment

The steps to to establish a hot-backup environment the are the same as establishing data replication
environment except for this additional last step:

Sharon also establishes a remote journal JKLINT that is associated with the local journal that she
creates on JKLINT2. This remote journal receives or retrieves the journaled changes that are made
when JKLINT2 assumes the role of the primary system. This local journal and remote journal pair will
only be used when replicating changes back to the original data. During normal run-time processing,
the remote journal, JLB2/JRN, that is defined on JKLINT is not active. When it is not active, it is not
receiving or retrieving journal entries from the local journal, JLB1/JRN, on JKLINT2

Normal run-time environment for the hot-backup environment

The details for run-time environment for the hot-backup environment is the same as the data replication
environment.

Hot-backup recovery if JKLINT fails

If you use a hot-backup application where the logical ownership of the data is given to JKLINT2, recovery
is more complicated. In this case, the hot-backup application logically promotes JKLINT to assume the role
of the primary system. Recovery is more complicated because after JKLINT has completed its IPL, the
remote journal function catch-up phase from the local journal on system JKLINT to the remote journal on
system JKLINT2 will always allow a resynchronization of the two sets of data.

Data resynchronization is recovery processing that is performed during switch-back processing by a
hot-backup application apply. This processing ensures that the original data is consistent with the data
replica, and contains all the correct changes. The main objective of this, besides assuring data
consistency, is to eliminate re-priming the original data from the data replica.

For details on recovering a hot-backup environment see Scenario: Recovery for remote journaling.

242 iSeries: Journal management

rzakirdatarep.htm#HDRESTABLISH
rzakirdatarep.htm#HDRESTABLISH
rzakirdatarep.htm#HDRRUNTIME
rzakirdatarep.htm#HDRRUNTIME

Scenario: Recovery for remote journaling
This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is necessary
to restore the local system, and synchronize it with the remote system, JKLINT2.

Details: Recovery for remote journaling scenario has step-by-step instructions for recovering from this
failure this scenario describes.

This scenario, and the details for this scenario, only discuss database physical files. All the concepts,
however, apply to any journaled object type.

Example remote journal environment for hot-backup recovery

The following figure illustrates the hot-backup environment for JKLINT and JKLINT2. The following items
list considerations for this environment:

v The remote journal BJ2 is only active after JKLINT fails. JKLINT2 assumes the role of primary system
and JKLINT is running again (as the secondary system).

v Journal receivers are not specifically called out in the figure. They have been omitted in an attempt to
simplify the scenario and to focus on the recovery steps for the database. Where necessary, processing
specific to journal receivers is referred to in the scenario.

v Likewise, library redirection for the journals and journal receivers is not specifically called out in the
figure. Again, this is omitted in an attempt to simplify the scenario. In the scenario, the libraries for any
of the journals or journal receivers could be redirected to a library that is different from that being used
for the corresponding objects on the other system.

v The figure simply refers to the original data in the figure as DB on the primary system JKLINT and DB’
as the data replica on the backup system JKLINT2. DB can be one or more journaled objects, and DB’
contains a replica for each of the journaled objects in DB.

For simplicity, the scenario below treats DB as a single database file and DB’ as its replica.

The following items describe the scenario at the time JKLINT fails:

v System JKLINT is the primary system.

Journal management 243

rzakirecovdtails.htm
rzakirecovdtails.htm

v The original data that is denoted by DB is journaled to an active local journal PJ1.

v Remote journal BJ1 on backup system JKLINT2 is active, and unless otherwise noted, is synchronously
receiving journal entries from journal PJ1.

v A hot-backup application apply, not shown in the diagram, is asynchronously replaying, or applying, the
changes to the data replica, DB’.

v The data replica DB’ is journaled to local journal PJ2 on system JKLINT2.

The journal state for journal PJ2 is *STANDBY.

v Remote journal BJ2 has a journal state of *INACTIVE (journal entries are not replicated to it). Remote
journal BJ2 is only active when accepting the data changes back from system JKLINT2. This occurs
after system JKLINT2 had been promoted to assume the role of the primary system due to a planned or
unplanned outage of system JKLINT, and after system JKLINT has resumed operations.

v The primary system, JKLINT, has failed.

v The decision has been made to switch-over to the backup system, JKLINT2.

Details: Recovery for remote journaling scenario
These details provide a step-by-step description of the process that occurs in Scenario: Recovery for
remote journaling

Current state of JKLINT and JKLINT2

At the time of the system failure, the state of JKL and JKLINT is as follows:

v Journal entries 12-19 are already deposited into PJ1 and confirmed in BJ1.

v The corresponding data changes are also already reflected in the data replica, DB’, on system JKLINT2.

v Journal entries 20-25 are built and validated in main storage on JKLINT and sent to BJ1, and then
system JKLINT fails.

v Main storage is not preserved when JKLINT fails, so at the time of the failure, the last known confirmed
sequence number in BJ1 is 19. Sequence numbers 20 through 25 are all unconfirmed.

v The last known sequence number in PJ1 will be 19 the when system JKLINT restarts.

The hot-backup recovery strategy in these details does not require that both before-images and
after-images are journaled to the local journal. However, the strategy would require before-images if,
during the resynchronization process of the switch-back to the primary system, the strategy requires that
the hot-backup application remove journaled changes. See step 3c.

Steps required for recovery

To recover system JKLINT, the following steps are required:

1. Update DB’ by using the hot-backup application to replay the unconfirmed journal entries.

a. On system JKLINT2, allow the hot-backup application apply processing to complete the replay of
confirmed operations as identified in journal BJ1. This is the first step of the switch-over
processing. The apply processing includes replaying all journal entries up through and including
sequence number 19.

b. The hot-backup application does not replay sequence numbers 20-25 because the I/O for those
journal entries is not yet confirmed from the local journal PJ1. The Receive Journal Entry
(RCVJRNE) command or Retrieve Journal Entries (QjoRetrieveJournalEntries) API that is being
used to retrieve the entries from the remote journal will not return sequence numbers 20-25 to the
exit program, unless specifically requested to do so. To specify that sequence numbers 20 - 25 are
returned to the exit program, use the INCENT(*ALL) parameter on the command. You can also
request this by specifying *ALL for the include entries key on the API.

c. After the hot-backup application replays all confirmed journal entries, perform a change journal
operation to attach a new journal receiver to local journal PJ2 on system JKLINT2 and change the
state of journal PJ2 in *ACTIVE state. The change journal operation establishes a clean recovery

244 iSeries: Journal management

rzakirecovery.htm
rzakirecovery.htm
../../apis/QJORJRNE.htm
../rzakiswapjrnrcv.htm
../rzakiswapjrnrcv.htm

point. It also makes clear what information needs to be sent back to system JKLINT later to replay
back to the original data. Performing the change journal operation also prevents the remote journal
function from having to re-replicate all of the journal entries that were previously generated into the
currently attached journal receiver of PJ2. (The journal entries were generated into the receiver as
part of replaying the database changes to the data replica on system JKLINT2.)

The following figure shows that more unconfirmed journal entries are present in BJ1 than are known in
PJ1.

2. Perform switch-over processing and prepare JKLINT2 to run applications

a. The hot-backup application reads unconfirmed journal entries from BJ1 and replays them to the
data replica. They are retrieved from BJ1 by using the Receive Journal Entry (RCVJRNE)
command or QjoRetrieveJournalEntries API, specifically requesting that unconfirmed journal entries
be returned. Journal entries 140-145 are generated into journal PJ2 when replaying these changes
to the data replica.

Journal management 245

b. The QjoChangeJournalState API or CHGJRN command inactivates the remote journal BJ1. During
this operation, the system physically removes the unconfirmed journal entries from BJ1. The last
known sequence number in BJ1 is now 19.

c. The replay processing on JKLINT2 sends a user entry that indicates the point in time when the
database was switched-over. The user entry in the following figure is sequence number 146,
journal code ’U’, entry type ’SW’.

d. After these steps are performed on system JKLINT2, applications can now be started on JKLINT2
and use DB’ as the database to be updated. Applications continue to work and deposit journal
entries 147-200.

e. System JKLINT restarts and normal IPL recovery finds the end of the journal for PJ1 to be
sequence number 19. IPL recovery ensures that all changes up to sequence number 19 are
reflected in the original data. The IPL for JKLINT completes with journal PJ1 being left in the
*ACTIVE state, as this was the state of the journal when the system failed.

246 iSeries: Journal management

The following figure shows the state of BJ1, PJ2, and DB’ when system JKLINT2 is ready to assume
the role of the primary system.

Journal management 247

3. Activate remote journal PJ2 and transport journal to JKLINT

a. After JKLINT restarts, activate the remote journal BJ2. Specify that the process should start with
the attached journal receiver on JKLINT2. This starts the transport of journal entries representing
the changes made on JKLINT2 as part of replaying the unconfirmed journal entries plus all
changes made to DB’ while JKLINT was unavailable. While this transfer is progressing (during
catch-up processing, which then transitions into synchronous or asynchronous remote journal
function mode), changes are still being made by applications to DB’.

b. Either before or during the transport of journal entries to BJ2, send and make known the last
known sequence number in BJ1 (19) to the hot-backup application apply. This can be included as
information in the SW user journal entry. See step 2c.

c. The hot-backup application backs-out changes that are known to PJ1 (after the last known
sequence number in BJ1) from the original data DB on system JKLINT. For this particular scenario,
no changes need to be backed out of the original data.

Note: For scenarios which require this back-out processing, both
before-image and after-image journal entries are required.

The following figure shows the state of both systems after system JKLINT has completed its IPL. This
is after system JKLINT2 has been running as the primary system, but before database DB is
resynchronized with DB’. (The database changes represented in PJ2 by journal sequence numbers

248 iSeries: Journal management

rzakiactiverep.htm

147-200 are not shown in DB’ for simplicity.)

4. Replay changes to DB on JKLINT

Journal management 249

a. The hot-backup application replays the changes back to the original data on system JKLINT. The
changes that are replayed include those changes that were made to DB’ as part of the switch-over
processing. The switch-over processing replayed the data changes for the unconfirmed journal
entries (sequence numbers 140-145)). Additional changes include those data changes that were
deposited while system JKLINT2 had assumed the role of the primary system (sequence numbers
147-300). Note that changes are still being made to DB’ on system JKLINT2 and journal entries
are still being generated into local journal PJ2 on system JKLINT2.

b. When you decide that JKLINT should again assume the role of the primary system, end the
applications on JKLINT2. Change the state of the local journal PJ2 on system JKLINT2 to inactive.
This prevents any additional changes from being made to DB’. The following figure shows the state
of both systems just before the local journal PJ2 is inactivated making way for system JKLINT to
again assume the role of the primary system.

c. Allow the remaining changes to be replicated to BJ2. After all changes have been sent to BJ2, you
can inactivate BJ2.

d. After all of the journal entries have been replayed to the original data on JKLINT, a attach a new
journal receiver to PJ1 to clearly denote a new recovery point.

The change journal operation is not absolutely essential. However, attaching a new journal receiver
to PJ1 at this time makes clear where to start replaying changes back to the data replica on
system JKLINT2. Performing the change journal operation also prevents the remote journal
function from having to send back all of the journal entries that were previously generated into the
currently attached journal receiver of PJ1. (The journal entries were generated in the receiver as
part of replaying the data changes back to the original data on system JKLINT.)

250 iSeries: Journal management

The following figure shows the state of the journals and data just before starting to replay the changes
back to the original data DB.

5. Allow JKLINT to again assume role of the primary system

Journal management 251

a. Application programs can now make changes to the original data DB on system JKLINT.

b. When you determine that it is time to start replicating the changes made on the primary system to
the backup system, you can activate the remote journal BJ1.

When activating the remote journal, you can indicate to send journal entries starting with the
attached journal receiver on the source system. If this occurs, then only those journal entries that
are required to be replayed to the data replica will be sent to system JKLINT2.

Note: You can start with the attached receiver, only if you did
the change journal to attach a new receiver that was
mentioned in step 4d.

c. If you want the complete chain of journal receivers from system JKLINT on JKLINT2, when you
activate the remote journal, indicate to start with the attached journal receiver as known to the
remote journal, BJ1. This will complete the sending of the journal receiver that contains the IPL
entry (sequence number 20). The process will then move on to the next journal receiver that
contains the journal entries where the hot-backup application apply will start replaying changes to
the data replica. An alternative to that approach is to save and restore the detached journal
receiver to system JKLINT2.

d. You change the state of local journal PJ2 on system JKLINT2 to *STANDBY state.

e. After local journal PJ2 has put in *STANDBY state, perform a change journal operation to attach a
new journal receiver to PJ2.

The change journal operation is not absolutely essential. However, attaching a new journal receiver
to PJ2 at this time makes clear where the replaying of changes back to the data replica started on
system JKLINT2. Performing the change journal operation also avoids the remote journal function
from having to later send all of these hot-backup application apply generated journal entries back
to system JKLINT.

The newly attached journal receiver contains journal entries that will not have to be sent back to
system JKLINT.

f. After the operation is performed, the hot-backup application apply can be started on system
JKLINT2 to start replaying changes to the data replica. The hot-backup application apply starts with
the source system sending the newly attached journal receiver.

252 iSeries: Journal management

The following figure shows that JKLINT is preparing again assume the role of the primary system.

Journal management 253

Related information for journal management
Listed below are the iSeries manuals and IBM Redbooks(TM) (in PDF format) and Web sites that relate to
the Journal management. You can view or print any of the PDFs.

Manuals

v AnyMail/400 Mail Server Framework Support

(about 70 pages)

v Backup and Recovery

(about 700 pages)

v CL programming

(about 478 pages)

v WebSphere Development Studio ILE C/C++ Programmer’s Guide

(about 500 pages)

v WebSphere Development Studio: Application Development Manager User’s Guide

(about 294 pages)

v iSeries Security Reference

(about 688 pages)

v OptiConnect for OS/400

(about 98 pages)

v Performance Tools for iSeries

(about 422 pages)

v Simple Network Management Protocol (SNMP) Support

(about 83 pages)

v SNA Distribution Services

(about 373 pages)

254 iSeries: Journal management

../../books/c4154110.pdf
../../books/c4153046.pdf
../../books/c4157215.pdf
../../books/c0927123.pdf
../../books/c0921332.pdf
../../books/c4153026.pdf
../../books/c4154143.pdf
../../books/c4153401.pdf
../../books/c4154120.pdf
../../books/c4154101.pdf

v TCP/IP Configuration and Reference

(about 116 pages)

v Work Management

(about 573 pages)

Redbooks

v Striving for Optimal Journal Performance on DB2 Universal Database for iSeries

(about 150 pages)

v AS/400 Remote Journal Function for High Availability and Data Replication

(about 130 pages)

Web site

DB2 UDB for iSeries Coding examples

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As...

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the Adobe
Web site (www.adobe.com/products/acrobat/readstep.html)

.

Journal management 255

../../books/c4154204.pdf
../../books/c4153063.pdf
../../redbooks/SG246286.pdf
../../redbooks/sg245189.pdf
http://www.ibm.com/eserver/iseries/db2/db2code.htm

256 iSeries: Journal management

����

Printed in U.S.A.

	Contents
	Journal management
	What's new for V5R2
	Print this topic
	System-managed access-path protection
	Benefits of SMAPP
	How SMAPP works
	How the system chooses access paths to protect
	Effects of SMAPP on performance and storage
	How SMAPP handles changes in disk pool configuration
	SMAPP and access path journaling
	SMAPP and independent disk pools
	Start SMAPP or change SMAPP values
	Display SMAPP status

	Local journal management
	Journal management concepts
	Benefits of journal management
	How journal management works
	Journal entries
	Journal management and system performance
	Journal management with the save-while-active function

	Plan for journal management
	iSeries Navigator versus the character-based interface for journaling objects
	Plan which objects to journal
	Reasons to journal access paths
	Reasons to journal before-images

	Plan for journal use of auxiliary storage
	Functions that increase the journal receiver size
	Methods to estimate the size of a journal receiver
	Estimate the size of the journal receiver manually
	Methods to reduce the storage that journal receivers use
	Determine the type of disk pool in which to place journal receivers
	Journal management and independent disk pools

	Plan setup for journal receivers
	Disk pool assignment for journal receivers
	Library assignment for journal receivers
	Naming conventions for journal receivers
	Threshold (disk space) for journal receivers
	Security for journal receivers

	Plan setup for journals
	Disk pool assignment for journals
	Library assignment for journals
	Naming conventions for journals
	Journal and journal receiver association
	Journal message queue
	Manual versus system journal-receiver management
	Automatic deletion of journal receivers
	Receiver size options for journals
	Minimized entry-specific data for journal entries
	Fixed-length options for journal entries
	Journal cache
	Object assignment to journals

	Set up journaling
	Example: Set up journaling

	Start and end journaling
	Why you must save objects after you start journaling
	Start journaling
	Journal database physical files (tables)
	Journal DB2 Multisystem files
	Journal integrated file system objects
	Journal access paths
	Journal data areas and data queues

	End journaling

	Manage journals
	Swap, delete, and save journals and receivers
	Swap journal receivers
	Keep track of journal receiver chains
	Reset the sequence number for the journal entries
	Delete journal receivers
	Delete journals
	Save journals and journal receivers
	Use SAVCHGOBJ to save journal receivers
	Methods to save journal receivers
	Correct order for restoration of journaled objects

	Evaluate how system changes affect journal management
	Keep records of journaled objects
	Manage security for journals
	Display information for journals and receivers
	Work with inoperable journal receivers
	Compare journal images
	Work with IBM-supplied journals
	Send your own journal entries
	Change the state of local journals

	Scenario: Journal management
	JKLINT
	JKLDEV
	JKLPROD

	Recovery operations for journal management
	Determine recovery needs using journal status
	Recovery for journal management after abnormal system end
	Recover a damaged journal receiver
	Recover a damaged journal
	Associate receivers with journals
	Recover a damaged journal with the WRKJRN command

	Recover journaled objects
	Apply journaled changes
	Apply journaled changes with the WRKJRN command
	Integrated file system considerations for applying journaled changes

	Remove journaled changes
	Remove journaled changes with the WRKJRN command

	Journaled changes with trigger programs
	Journaled changes with referential constraints
	Actions of the APYJRNCHG or RMVJRNCHG command by journal code
	Example: Apply journaled changes
	Example: Remove journaled changes

	Journal entry information
	Journal entries by code and type
	Journal code descriptions
	Fixed-length portion of the journal entry
	Variable-length portion of the journal entry
	Work with journal entry information
	Display and print journal entries
	Output for journal entries directed to a work station
	Output for journal entries directed to a database output file
	Format of database output files

	Receive journal entries in an exit program
	Exit program to receive journal entries
	Request block mode

	Retrieve journal entries in a program
	Work with pointers in journal entries

	Considerations for entries which contain minimized entry-specific data

	Remote journal management
	Remote journal concepts
	Network configurations for remote journals
	Types of remote journals
	Journal state and delivery mode
	Journal receivers associated with a remote journal
	Add remote journal process
	Library redirection with remote journals
	Remote journal attributes

	Supported communications protocols for remote journals
	Release-to-release considerations for remote journals

	Plan for remote journals
	Journals that are good candidates for remote journal management
	Synchronous and asynchronous delivery mode for remote journals
	Communications protocol and delivery mode for remote journals
	Where the replication of journal entries start
	Factors that affect remote journal performance
	Remote journals and auxiliary storage
	Journal receiver disk pool considerations
	Remote journals and main storage

	Set up remote journals
	Prepare to use remote journals
	Add remote journals

	Remove remote journals
	Activate and inactivate remote journals
	Activate the replication of journal entries to a remote journal
	Caught-up and catch-up phase for remote journals

	Relational database considerations for remote journal state
	Inactivate the replication of journal entries to a remote journal

	Manage remote journals
	Keep records of your remote journal network
	Display remote journal function information
	Evaluate how system changes affect your remote journal network
	Get information about remote journal entries
	Confirmed and unconfirmed journal entries
	Journal entries from a remote journal with library redirection
	Retrieve journal entries from a remote journal during the catch-up phase
	Remote journal considerations for retrieving journal entries when using commitment control
	Remote journal considerations for retrieving journal entries when using journal caching

	Journal receiver management with remote journals
	Swap journal receiver operations with remote journals
	Considerations for save and restore operations with remote journals
	Rules for saving and restoring journals
	Rules for saving and restoring journal receivers
	Considerations for restoring journaled objects
	Considerations for restoring objects saved with Save Storage SAVSTG

	Remote journal considerations when restarting the server
	Work with remote journal error messages

	Scenarios: Remote journal management and recovery
	Scenario: Data replication environment for remote journals
	Scenario: Hot-backup environment
	Scenario: Recovery for remote journaling
	Details: Recovery for remote journaling scenario

	Related information for journal management

