
IBM Toolbox for Java

What's new for V5R2❍

Print this topic❍

Getting started

Managing your installation■

Installing Toolbox for Java

OS/400 requirements

Required OS/400 options

Determining if Toolbox for Java is installed■

Checking the QUSER profile■

Changing the QUSER user profile■

■

Dependencies on other programs■

OS/400 compatibility■

Native optimizations■

ToolboxME for iSeries requirements■

■

Workstation requirements

Running Java applications■

Running Java applets■

ToolboxME for iSeries requirements■

Swing requirements■

■

Installing on your iSeries server■

Installing on your workstation

Jar files■

■

■

System properties■

Simple examples■

❍

Classes

Access Classes

AS400 class■

SecureAS400 class■

AS400JPing■

BidiTransform class■

ClusteredHashTable classes■

CommandCall class■

ConnectionPool class■

DataArea class■

■

❍

●

Data conversion and data description classes

Numeric conversion classes■

Text (character) conversion classes■

Composite (numeric and text) conversion classes■

FieldDescription classes■

RecordFormat class■

Record class■

LineDataRecordWriter class■

■

DataQueue classes

Sequential data queues■

Keyed data queues■

■

Digital certificate classes■

EnvironmentVariable class■

Exceptions■

FTP classes■

Integrated file system classes

IFSFile class■

IFSJavaFile class■

IFSFileInputStream class■

IFSTextFileInputStream class■

IFSFileOutputStream class■

IFSTextFileOutputStream class■

IFSRandomAccessFile class■

IFSFileDialog class■

IFSKey class■

Sharing modes■

■

JavaApplicationCall class■

JDBC classes

JDBC enhancements■

JDBC properties■

Blob class■

CallableStatement class■

Clob class■

Connection class■

ConnectionPool classes■

■

DatabaseMetaData class■

DataSource class■

Driver class■

ParameterMetaData class■

PreparedStatement class■

ResultSet and ResultSetMetaData classes■

RowSet class■

Savepoint class■

Statement class■

XAConnection and XAResource classes■

Jobs classes

Job class■

JobList class■

JobLog class■

■

AS400Message class■

NetServer class■

Permission and UserPermission classes

DLOPermission class■

QSYSPermission class■

RootPermission class■

■

Print classes

PrintObjectList class■

PrintObject class

Retrieving PrintObject attributes■

Printer file attributes■

Spooled file attributes■

■

SpooledFileOutputStream class■

SCSWriter classes■

PrintObjectInputStream class■

PrintObjectPageInputStream and PrintObjectTransformedInputStream
classes

■

■

ProductLicense class■

ProgramCall class■

QSYSObjectPathName class■

Record-level access classes

AS400File class■

■

KeyedFile class■

SequentialFile class■

AS400FileRecordDescription class■

ServiceProgramCall class■

SystemStatus class■

SystemValue classes■

Trace class■

UserGroup and UserList classes■

UserSpace class■

HTML Classes

BidiOrdering class■

HTMLAlign class■

HTML form classes

Form Input classes

ButtonFormInput■

FileFormInput■

HiddenFormInput■

ImageFormInput■

ResetFormInput■

SubmitFormInput■

TextFormInput■

PasswordFormInput■

RadioFormInput■

CheckboxFormInput■

■

LayoutFormPanel classes

GridLayoutFormPanel■

LineLayoutFormPanel■

■

TextAreaFormElement class■

LabelFormElement class■

SelectFormElement class■

SelectOption class■

RadioFormInputGroup class■

■

HTMLHeading class■

HTMLHyperlink class■

HTMLImage■

■

HTMLList classes■

HTMLMeta class■

HTMLParameter class■

HTMLServlet class■

HTML Table classes

HTMLTableCell class■

HTMLTableRow class■

HTMLTableHeader class■

HTMLTableCaption class■

■

HTMLText class■

HTMLTree classes

HTMLTreeElement class■

FileTreeElement class■

FileListElement class■

FileListRenderer class■

■

ReportWriter classes

Context classes■

JSPReportProcessor class■

XSLReportProcessor class■

■

Resource classes

Resource class■

ResourceList class■

Presentation class■

■

Security classes

Secure Sockets Layer

SSL legal responsibilities■

Using SSL on iSeries servers

Setting up iSeries servers to use SSL■

Using certificates from trusted authorities■

Using self-signed certificates■

■

Using SSL on proxy servers

Setting up proxy servers to use SSL■

Setting up proxy clients to use SSL■

■

■

Authentication Services■

■

Servlet classes■

Authentication classes■

RowData class

ListRowData class■

RecordListRowData class■

ResourceListRowData class■

SQLResultSetRowData class■

■

RowMetaData class

ListMetaData class■

RecordFormatMetaData class■

SQLResultSetMetaData class■

■

Converter classes

StringConverter class■

HTMLFormConverter class■

HTMLTableConverter class■

■

Utility classes

AS400ToolboxInstaller class■

AS400ToolboxJarMaker class

Supported components■

Supported CCSID and encoding values■

■

CommandPrompter class■

RunJavaApplication and VRunJavaApplication classes■

JPing class■

■

Vaccess classes

Diagram of GUI Component classes■

AS400Pane classes■

CommandCall classes■

DataQueue classes■

Error events■

IFS classes

VIFSFileDialog class■

VIFSDirectory class■

IFSTextFileDocument class■

■

VJavaApplicationCall class■

JDBC (SQL) classes

SQLStatementButton and SQLStatementMenuItem classes■

■

■

SQLStatementDocument class■

SQLResultSetFormPane class■

SQLResultSetTablePane class■

SQLResultSetTableModel class■

SQLQueryBuilderPane class■

VJobList and VJob classes■

Message classes

VMessageList class■

VMessageQueue class■

■

Using Permission class information■

Print classes

VPrinters class■

VPrinter class■

VPrinterOutput class■

SpooledFileViewer class■

■

ProgramCall and ProgramParameter classes■

Record-level access classes

RecordListFormPane class■

RecordListTablePane class■

RecordListTableModel class■

■

ResourceList classes■

System status classes

VSystemStatusPane class■

■

VSystemValue class■

Users and groups classes■

Graphical Toolbox

Setting up the Graphical Toolbox■

Creating your user interface■

Displaying your panels at runtime■

Generating online help files■

Graphical Toolbox examples■

Using the Graphical Toolbox in a browser■

Panel Builder toolbar■

❍

JavaBeans❍

JDBC❍

Program Call Markup Language (PCML)

PCML process■

PCML syntax

Program tag■

Struct tag■

Data tag■

Values for length and precision■

■

❍

Proxy support❍

Record Format Markup Language (RFML)

Requirements■

RFML example

Example: RFML source file■

■

RecordFormatDocument class■

RFML documents and syntax

RFML DTD■

Data tag■

Rfml tag■

Recordformat tag■

Struct tag■

■

❍

Security❍

iSeries System Debugger

Components■

Installation■

Running the iSeries System Debugger■

❍

System properties

Example: Properties file■

Example: System properties class source file■

❍

ToolboxME for iSeries

Requirements■

Downloading and setting up■

Concepts■

Classes

MEServer class■

AS400 class■

CommandCall class■

■

❍

DataQueue class■

ProgramCall class■

JdbcMe classes

JdbcMeConnection■

JdbcMeDriver■

JdbcMeLiveResultSet■

JdbcMeOfflineData■

JdbcMeOfflineResultSet and JdbcMeResultSetMetaData■

JdbcMeStatement■

■

Creating an application■

Samples■

Frequently asked questions❍

Examples

Access classes

Example: Using CommandCall■

Example: Using ConnectionPool■

Example: Using DataQueue classes (with Record and RecordFormat) to put
data on a queue

■

Example: Using DataQueue classes (with Record and RecordFormat) to read
data from a queue

■

Examples: Using IFSFile■

Example: Using the IFSFile.listFiles() method■

Example: Using IFSFile classes to copy files■

Example: Using IFSFile classes to list the contents of a directory■

Example: Using JDBC classes to create and populate a table■

Example: Using JDBC classes to query a table■

Example: Using JobList to list job ID information■

Example: Using JobList to get a list of jobs■

Example: Using JobLog■

Example: Using Print classes to create spooled files■

Example: Using Print classes to create SCS spooled files■

Example: Using Print classes to read spooled files■

Example: Using Print classes to asynchronously list spooled files (using
listeners)

■

Example: Using Print classes to asynchronously list spooled files (without
using listeners)

■

■

❍

Example: Using Print classes to synchronously list spooled files■

Example: Using ProgramCall to retrieve system status■

Example: Using record-level access classes to access a file■

Example: Using the record-level access classes to read a file■

Example: Using the record-level access classes to read records by key■

Example: Using UserList to list all users in a group■

Beans

Example: Using listeners to print comments■

Example: Creating buttons that run commands■

■

Graphical Toolbox

Example: How to construct and display a panel■

Example: Working with editable comboboxes■

Example: Using GUI Builder to create panels■

Example: Using GUI Builder to create deckpanes■

Example: Using GUI Builder to create property sheets■

Example: Using GUI Builder to create split panes■

Example: Using GUI Builder to create tabbed panes■

Example: Using GUI Builder to create wizards■

Example: Using GUI Builder to create toolbars■

Example: Using GUI Builder to create menu bars■

Example: Using GUI Builder to create help documents■

Example: Editing help documents generated by GUI Builder■

Example: Examining a a PDML program■

■

HTML classes

Example: Using the HTML form classes■

Example: Using the HTMLTree class■

Example: Creating a traversable integrated file system tree (part 1 of 3)■

Example: Creating a traversable integrated file system tree (part 2 of 3)■

Example: Creating a traversable integrated file system tree (part 3 of 3)■

Example: Using the HTMLTable classes■

■

PCML

Example: Retrieving data■

Example: Retrieving a list of information■

Example: Retrieving multidimensional data■

■

ReportWriter classes■

Example: Using JSPReportProcessor with PDFContext■

Example: JSPReportProcessor sample JSP file■

Example: Using XSLReportProcessor with PCLContext■

Example: XSLReportProcessor sample XML file■

Example: XSLReportProcessor sample XSL file■

Resource classes

Example: Retrieving an attribute value from RUser■

Example: Setting attribute values for RJob■

Example: Using generic code to access resources■

Examples: Using ResourceList■

■

RFML■

Security classes■

Servlet classes

Example: Using the ListRowData class■

Example: Using the RecordListRowData class■

Example: Using the SQLResultSetRowData class■

Example: Using the HTMLFormConverter class■

Example: Using the servlet and HTML classes together■

■

Simple examples

Writing your first Toolbox for Java program■

Calling commands■

Using message queues (part 1 of 3)■

Using message queues (part 2 of 3)■

Using message queues (part 3 of 3)■

Using record-level access (part 1 of 2)■

Using record-level access (part 2 of 2)■

Using JDBC classes to create and populate a table (part 1 of 2)■

Using JDBC classes to create and populate a table (part 2 of 2)■

Displaying a list of server jobs in a GUI■

■

Tips for programming■

ToolboxME for iSeries

Example: Using ToolboxME for iSeries, MIDP, and JDBC■

Example: Using ToolboxME for iSeries, MIDP, and Toolbox for Java■

■

Utility classes

Example: Using AS400ToolboxInstaller to install Toolbox for Jaa■

■

Example: Using CommandPrompter to prompt for and run a command■

Vaccess classes

Example: Using AS400ListPane■

Example: Using AS400DetailsPane■

Example: Using AS400TreePane■

Example: Using AS400ExplorerPane■

Example: Using CommandCallMenuItem■

Example: Using DataQueueDocument■

Example: Creating an AS400JDBCDataSourcePane■

Example: Using VJobList to present a list of jobs■

Example: Using ProgramCallButton■

■

Tips for programming

Shutting down your Java program■

Integrated File System path names■

Managing connections■

OS/400 Java Virtual Machine

Comparing OS/400 JVM to IBM Toolbox for Java classes■

Running classes■

Setting system name, user ID, and password■

■

Independent auxiliary storage pools■

OS/400 optimization■

Performance improvements■

National language support■

Service and support■

❍

Related information❍

Code disclaimer❍

IBM Toolbox for Java
IBM Toolbox for Java is a set of Java(TM) classes that allow you to use Java programs to access data on your
iSeries and AS/400e servers. You can use these classes to write client/server applications, applets, and servlets
that work with data on your iSeries. You can also run Java applications that use the IBM Toolbox for Java
classes on the iSeries Java virtual machine (JVM).

IBM Toolbox for Java uses the iSeries Host Servers as access points to the system. Because Toolbox for Java
uses communication functions built into Java, you do not need to use IBM iSeries Access Express for Windows
to use Toolbox for Java. Each server runs in a separate job on the server, and each server job sends and receives
data streams on a socket connection.

Learn more about IBM Toolbox for Java by using the main navigation bar or the following links:

What's new for V5R2
Read about significant changes, enhanced functionality, and other items of note.

Print the IBM Toolbox for Java topic
View or download a PDF of the Toolbox for Java topic. You can also download the Toolbox
for Java topic in a zipped package.

Use the class finder
Easily and quickly search for classes by name and description, display classes by package, or
examine an alphabetical list of all the Toolbox for Java classes.

Getting started with IBM Toolbox for Java
Find out about managing your installation of IBM Toolbox for Java. Learn how to install it on
your workstations and servers. Use the simple programming examples to see how you can start
using Toolbox for Java classes in your applications.

IBM Toolbox for Java classes
Read about the variety of classes in the IBM Toolbox for Java packages that enable you to work
with iSeries and AS/400e server data. This information includes explanations, example code,
and technical information that will help you create IBM Toolbox for Java programs.

Using the Graphical Toolbox to create your own GUI panels
Use the Graphical Toolbox to create custom user interface panels in Java, which you can
incorporate into your Java applications, applets, or iSeries Navigator plug-ins.

JavaBeans
Read about creating JavaBeans by using Toolbox for Java public classes, which are built to
Javasoft JavaBean standards. Review the examples that illustrate how to use JavaBeans in your
programs.

JDBC
Find out about the JDBC support offered by Toolbox for Java. Using JDBC, your programs can
issue structured query language (SQL) statements to and process results from databases on your
servers.

Using PCML to call iSeries programs
Use Program Call Markup Language (PCML) to help you call iSeries programs while using less
Java code. PCML is a tag syntax, based on XML, that fully describes input and output
parameters for iSeries programs called by your Java application.

Proxy support
how to use IBM Toolbox for Java proxy support, which includes using the Sockets Layer (SSL)
protocol to encrypt data.

Using RFML to define and manage data formats
Use Record Format Markup Language (RFML) to separate the data format specifications the
business logic of your Java programs. RFML is a tag syntax, based on XML and closely related
to PCML, that enables your Java applications to specify and manipulate fields within certain
kinds of records.

Security
Read about using Java Secure Socket Extension (JSSE) and Toolbox for Java to provide for
secure data exchange between clients and servers that run any application protocol over
TCP/IP.

iSeries System Debugger
Use the iSeries System Debugger graphical user interface (GUI) to debug and test programs
that run on your iSeries server.

System properties
Learn how you can use system properties to configure various aspects of the IBM Toolbox for
Java, for example, when defining a proxy server or a level of tracing. You can use system
properties to perform convenient runtime configuration without recompiling code.

IBM Toolbox for Java 2 Micro Edition
Use this new Toolbox for Java component to write Java programs for a variety of wireless
devices. Using ToolboxME for iSeries, your wireless devices can directly access iSeries server
data and resources.

Javadocs for IBM Toolbox for Java
View the javadoc reference information for the IBM Toolbox for Java classes.

Frequently asked questions (FAQ)
Find answers to your questions about optimizing your IBM Toolbox for Java performance,
performing troubleshooting, using JDBC, and more.

Additional information includes:

A list of Toolbox for Java programming examples●

Programming tips to help you use Toolbox for Java●

Related information, including links to more information about Java, servlets, XML, and more.●

Note: Read the Code example disclaimer for important legal information.

What's new for V5R2
IBM Toolbox for Java is available in the following forms:

The licensed program for IBM Toolbox for Java, 5722-JC1, Version 5 Release 2 (V5R2) installs on
V4R5 and later of OS/400. From a client, IBM Toolbox for Java connects back to V4R5 and later of
OS/400.

●

OS/400 also includes the non-graphical classes of IBM Toolbox for Java optimized for use when
running IBM Toolbox for Java classes on the iSeries Java virtual machine (JVM). So if, for example,
you do not have a need for the graphical functionality of the licensed program, you can still easily use
IBM Toolbox for Java. For more information, see Jar files.

●

IBM Toolbox for Java is also now open source. You can download the code and get information from

the JTOpen Web site.

●

New packages

IBM Toolbox for Java 2 Micro Edition is a new package for IBM Toolbox for Java. The new
com.ibm.as400.micro package provides a set of classes that enable you to write Java programs that run on
wireless devices such as personal digital assistants and cellular phones. You must separately download the
micro package.

The iSeries System Debugger provides your workstation with a new graphical debugging environment for your
ILE, Java, C, and C++ programs that run on an iSeries server.

New classes

IBM Toolbox for Java V5R2 also features many new classes in existing packages. The new classes enable you
to:

Use the ClusteredHashTable classes to share and replicate nonpersistent data among nodes in a cluster●

Use the CommandPrompter class to prompt for parameters on a given command.●

For new JDBC(TM) classes, see New JDBC classes and enhanced functions.●

The RecordFormatDocument class enables you to use the new Record Format Markup Language
(RFML) component to specify record formats and create, read, and write data records.

●

Enhanced classes

IBM Toolbox for Java V5R2 also includes enhancements to existing classes. These enhancements offer:

The addition of Kerberos support to AS400 objects, which now use the Java Generic Security Service
(JGSS) framework to authenticate to Toolbox for Java servers.

●

SecureAS400 objects can now use the Java Secure Socket Extention (JSSE) framework to encrypt data
flowing between the client and the server.

●

Changes to some Program Call Markup Language (PCML) tags and functionality:

New attributes for the <data> tag add support for Unicode strings and enable users to specify
how to trim spaces from strings.

❍

New and modified attributes for the <program> tag now allow the path to be specified at❍

●

run-time and allow a CCSID specification for the service program entry point name.

For tracing, PCML now requires the use of the Trace class (com.ibm.as400.access.Trace)
instead of the PcmlMessageLog class.

❍

New JDBC classes and enhanced functions

IBM Toolbox for Java V5R2 JDBC support features new classes and enhanced functions, including support for
the JDBC 3.0 application programming interface (API). Notable changes include the following:

AS400JDBCSavepoint is a new class (supporting JDBC 3.0) that provides finer control over transaction
rollbacks

●

AS400JDBCParameterMetaData is a new class (supporting JDBC 3.0) that enables you to retrieve the
types and properties of parameters in PreparedStatement and CallableStatement objects

●

Added ability for connecting to independent auxiliary storage pools (IASPs)●

New methods in binary large object (blob) and character large object (clob) (supporting JDBC 3.0)
allow you to update values of these data types

●

A new JDBC property (extended metadata) improves the reporting of ResultSetMetaData attributes●

Other enhancements that improve JDBC support●

New XML component

In V5R2, IBM Toolbox for Java has added the Record Format Markup Language (RFML), an XML extension
similar to PCML. RFML enables you to use XML in your Java programs to specify the format of data buffers
and physical file record formats and to examine the contents of retrieved buffers and records.

Additional functions and features in Graphical Toolbox

The Graphical Toolbox incorporates new features:

Display cells in a table column as checkboxes●

Specify a minimum height and width for dialogs to ensure proper display of dialog elements●

Specify that the first column in a table contains a dynamic hierarchical tree, where each cell corresponds
to a tree node

●

For more information about these features, see the GUI Builder online help.

Compatibility

IBM Toolbox for Java no longer supports running in the default JVM in Netscape(R) Navigator or Microsoft(R)

Internet Explorer. For your applet that uses Toolbox for Java classes to run in a browser, you should install a

plug-in such as the Sun Java 2 Runtime Environment (JRE) 1.3.0 plug-in .

Toolbox for Java no longer includes data400.jar. The classes that were in data400.jar are now in jt400.jar.
Remove data400.jar from your CLASSPATH statements.

The getObject() methods for ResultSet and CallableStatement now return Integer objects when the SQLType is
SMALLINT. Previously, these methods returned Short objects. If you use readObject to read SMALLINT
columns, you must alter your Java application to accommodate the new type of returned object.

Different error reporting when throwing data truncation errors results in warnings that do not cause your
application to fail.

You can not use this release of IBM Toolbox for Java to deserialize some objects that you serialized using
releases prior to V5R1.

If you are using Secure Sockets Layer (SSL) to encrypt data flowing between the client and the server, you must
use one of the following:

Java Secure Socket Extension (JSSE)●

SSL objects delivered in a V5R1 or later version of IBM iSeries Client Encryption licensed program
5722-CE2 or 5722-CE3. This release of IBM Toolbox for Java does not work with V4R5 and earlier
versions of iSeries Client Encryption.

●

IBM Toolbox for Java continues to provide support for

Swing 1.1, which is required to use GUI classes or the Graphical Toolbox●

Java 2 Platform, Standard Edition (J2SE), with continued support of the Java Development Kit 1.1.8●

You should also review the OS/400 requirements for running IBM Toolbox for Java.

What's new as of 26 September 2002

IBM Toolbox for Java class finder
Use the new class finder to easily and quickly search for classes by name and description,
display classes by package, or examine an alphabetical list of all the IBM Toolbox for Java
classes. The brief description for each class links to more specific information.

How to see what's new or changed

To help you see where technical changes have been made, this information (but not the javadocs) uses the
following symbols:

 marks the beginning of new or changed information●

 marks the end of new or changed information●

To find other information about what's new or changed this release, see the Memo to Users .

Print this topic
To view or download the PDF version, select IBM Toolbox for Java PDF (about 5.4 megabytes or 811 pages).

Note: The IBM Toolbox for Java topic contains some information that is not included in the PDF files.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

Right-click the PDF in your browser (right-click the link above).1.

Click Save Target As2.

Navigate to the directory in which you would like to save the PDF.3.

Click Save.4.

Downloading Adobe Acrobat Reader

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the Adobe Web

site (www.adobe.com/products/acrobat/readstep.html) .

To save a PDF on your workstation for viewing or printing:

Open the PDF in your browser (click the link above).1.

In the menu of your browser, click File.2.

Click Save As.3.

Navigate to the directory in which you would like to save the PDF.4.

Click Save.5.

Download IBM Toolbox for Java information in a zipped package

You can download a zipped package of the IBM Toolbox for Java topic that includes the javadocs at the IBM

Toolbox for Java and JTOpen Web site .

Note: The IBM Toolbox for Java information has links to documents that are not included in the zipped
package. These links will not work in the files that you download to your workstation.

Getting started with IBM Toolbox for Java
Using IBM Toolbox for Java makes it easier to write client Java applets, servlets, and applications that access
iSeries resources, data, and programs.

The following information will help you install and begin using IBM Toolbox for Java:

Managing your installation
See how different ways of installing and managing your Toolbox for Java installation affects
ease of management and performance.

Installing Toolbox for Java
Read about the OS/400 and workstation requirements for installing Toolbox for Java in a
client/server environment. Learn how to install Toolbox for Java on your iSeries servers and
workstations.

System properties
Read about system properties and learn how you can use them to configure various aspects of
the IBM Toolbox for Java.

Simple programming examples
Get started using Toolbox for Java. Either create your first Toolbox for Java program or review
the simple programming examples. The examples show how to begin using Toolbox for Java to
work with the data and services available on your iSeries server.

Managing your IBM Toolbox for Java installation
You need to install IBM Toolbox for Java only on client systems that use it or in a location on your network
where your clients can access it. Your clients can be personal computers, dedicated workstations, or iSeries
systems. It is important to remember that you can configure an iSeries server or a partition of the server to be a
client. In the latter case, you need to install Toolbox for Java on the client partition of the server.

You can use any of the following methods (alone or in combination) to install and manage Toolbox for Java:

Individual management to install and individually manage Toolbox for Java on each client●

Network management of client installations by using AS400ToolboxInstaller to install and manage
Toolbox for Java on each client

●

Network management of a single installation by using your network to install and manage a single,
shared installation of Toolbox for Java on a server

●

The following sections briefly explain how each method affects both performance and manageability. How you
choose to develop your Java applications and manage your resources determines which of the methods (or
which combination of methods) you use.

Individual management

You can choose to individually manage your Toolbox for Java installations on individual clients. The main
advantage of installing Toolbox for Java on individual clients is that it reduces the time that a client takes to
start an application that uses Toolbox for Java classes.

The main disadvantage is managing those installations individually. Either a user or an application that you
create must track and manage which version of Toolbox for Java is installed on each workstation.

Network management of client installations

You can choose to use your network and AS400ToolboxInstaller to manage your client installations of Toolbox
for Java. Because each client has its own copy of Toolbox for Java, this kind of installation has the same
advantage of reducing the time that a client takes to start a Toolbox for Java application. It also makes it
possible to automatically update all the individual installations of Toolbox for Java.

This main disadvantage is creating and maintaining the process that uses AS400ToolboxInstaller to manage the
individual installations

Network management of a single installation

You can also use your network to install and manage a single copy of Toolbox for Java on a server that all your
clients can access. This kind of network installation provides the following advantages:

All clients use the same version of IBM Toolbox for Java●

Updating the single installation of Toolbox for Java benefits all clients●

Individual clients have no maintenance issues, other than setting the same initial CLASSPATH●

This kind of installation also has the disadvantage of increasing the time that a client takes to start a Toolbox for
Java application. You must also enable your client CLASSPATH to point to your server. You can use iSeries
NetServer, which is integrated into OS/400, or a different method that enables you to access files on iSeries
NetServer, such as iSeries Access for Windows.

Installing IBM Toolbox for Java
How you install IBM Toolbox for Java depends on how you want to manage your installation. After you have
decided how you want to manage your installation, ensure that your environment meets the following
requirements:

OS/400 requirements●

Workstation requirements●

Installing Toolbox for Java

After you have decided how you want to manage your installation and addressed the requirements for running
IBM Toolbox for Java, you can install Toolbox for Java:

Installing Toolbox for Java on your server●

Installing Toolbox for Java on your workstation●

OS/400 requirements for IBM Toolbox for Java
After you decide how you want to manage your installation, ensure that your OS/400 environment meets the
following requirements:

Required OS/400 options●

Dependencies on other licensed programs●

Compatibility with different levels of OS/400●

Native optimizations when running on OS/400 JVM●

Requirements for running ToolboxME for iSeries applications●

Note: Before you use Toolbox for Java, make sure to address the workstation requirements that pertain to your
environment.

Required OS/400 options
Running IBM Toolbox for Java in a client/server environment requires that you enable the QUSER user profile,
start the host servers, and have TCP/IP running:

The QUSER user profile must be enabled in order to start the host servers.●

Host servers listen for and accept connection requests from clients. OS/400 Host Servers option
(licensed product 5722SS1) is included with the base option of OS/400. For more information, see Host
server administration.

●

TCP/IP support, which is integrated into OS/400, allows you to connect your server to a network. For
more information, see TCP/IP.

●

Starting required OS/400 options

From an iSeries command line, start the required OS/400 options by completing the following steps:

Ensure that the QUSER profile is enabled.1.

To start the OS/400 host servers, use the CL Start Host Server command. Type STRHOSTSVR *ALL
and press ENTER.

2.

To start the TCP/IP distributed data management (DDM) server, use the CL Start TCP/IP Server
command. Type STRTCPSVR SERVER(*DDM) and press ENTER.

3.

Determining if IBM Toolbox for Java is installed
on your server
Many iSeries servers come with the IBM Toolbox for Java licensed product already installed.

To see if Toolbox for Java is already installed, complete the following steps:

In iSeries Navigator, select and sign on to the system that you want to use.●

In the Function Tree (the left pane), expand the system, then expand Configuration and Service.●

Expand Software, then expand Installed Products.●

In the Details pane (the right pane), look in the Product column for 5722jc1. If you see this product,
the IBM Toolbox for Java licensed program is installed on the selected server.

Note: You can also find out if Toolbox for Java is installed by using the CL Go to Menu command (GO
MENU(LICPGM)), Option 11.

●

If Toolbox for Java is not installed, you can install the IBM Toolbox for Java licensed product.

If a previous version of Toolbox for Java is installed, first delete the currently installed version then install the
IBM Toolbox for Java licensed product. To avoid possible problems, you should consider backing up your
currently installed version of Toolbox for Java before you delete it.

Checking the QUSER profile
The OS/400 Host Servers start under the QUSER user profile, so you first need to ensure that the QUSER
profile is enabled.

Check the QUSER profile

To use the command line to check the QUSER profile, complete the following steps:

On an iSeries command line, type DSPUSRPRF USRPRF(QUSER) and press Enter.1.

Make sure that the Status is *ENABLED. If the profile status is not *ENABLED, change the QUSER
profile.

2.

Changing the QUSER user profile
If the QUSER profile is not *ENABLED, you must enable it to start the OS/400 Host Servers. Also, the
QUSER profile password cannot be *NONE. If this is true, you must reset it.

To use the command line to enable the QUSER profile, complete the following steps:

Type CHGUSRPRF USRPRF(QUSER).1.

Change the Status field to *ENABLED and press ENTER.2.

The QUSER user profile is now ready to start the OS/400 Host Servers.

Dependencies on other licensed programs
Depending on how you want to use IBM Toolbox for Java, you may need to install other licensed programs.
The following information describes these dependencies.

Spooled file viewer

When you want to use the spooled file viewer functions (SpooledFileViewer class) of IBM Toolbox for Java,
ensure that you have installed host option 8 (AFP Compatibility Fonts) on your server.

Note: SpooledFileViewer, PrintObjectPageInputStream, and PrintObjectTransformedInputStream classes work
only when connecting to V4R4 or later systems.

Secure Sockets Layer

When you want to use Secure Sockets Layer (SSL), ensure that you have installed the following:

IBM HTTP Server for iSeries licensed program, 5722-DG1●

OS/400 Option 34 (Digital Certificate Manager)●

IBM Cryptographic Access Provider 128-bit for iSeries, 5722-AC3●

iSeries Client Encryption (128-bit), 5722-CE3●

The V5R2 version of IBM Toolbox for Java requires that you use either the V5R1 or V5R2 version of iSeries
Client Encryption.

For more information on SSL, see Secure Sockets Layer and Java Secure Socket Extension.

HTTP server for using applets, servlets, SSL, or
AS400ToolboxInstaller

If you want to use applets, servlets, SSL, or the AS400ToolboxInstaller class on the iSeries system, you must set
up an HTTP server and install the class files on the iSeries system. For more information on the IBM HTTP
Server, see the IBM HTTP Server for AS/400 Webmaster's Guide, GC41-5434, at the following URL:

http://www.ibm.com/eserver/iseries/products/http/docs/doc.htm . The Webmaster's Guide is available in
both HTML and PDF formats.

For information on the Digital Certificate Manager and how to create and work with digital certificates using the
IBM HTTP Server, see Digital Certificate Management.

Compatibility with different levels of OS/400
Because you can use IBM Toolbox for Java both on your server and your client, the compatibility issues affect
both running on a server and connecting from a client back to a server.

Running IBM Toolbox for Java, Version 5 Release 2, on your servers

To install IBM Toolbox for Java (licensed program 5722-JC1 V5R2M0) on an iSeries system, the server must
be running one of the following:

OS/400 Version 5 Release 2●

OS/400 Version 5 Release 1●

OS/400 Version 4 Release 5●

You can install only one version of the IBM Toolbox for Java licensed program on the system. To install a
different version, first remove the existing IBM Toolbox for Java licensed program.

Using IBM Toolbox for Java to connect from a client back to the
server

You can use different versions of IBM Toolbox for Java on a client and on the server to which you are
connecting. To use Version 5 Release 2 of IBM Toolbox for Java to access data and resources on an iSeries
system, the server to which you are connecting must be running one of the following:

OS/400 Version 5 Release 2●

OS/400 Version 5 Release 1●

OS/400 Version 4 Release 5●

The following table shows the compatibility requirements for installing IBM Toolbox for Java on and
connecting back to different versions of OS/400.

Toolbox modification
Ships with

OS/400 LPP Installs on OS/400
Connects back to

OS/400

Mod 0 V4R2 5763-JC1 V3R2M0 V3R2 and above V3R2 and above

Mod 1 V4R3 5763-JC1 V3R2M1 V3R2 and above V3R2 and above

Mod 2 V4R4 5769-JC1 V4R2M0 V4R2 and above V4R2 and above

Mod 3 V4R5 5769-JC1 V4R5M0 V4R3 and above V4R2 and above

Mod 4 V5R1 5722-JC1 V5R1M0 V4R4 and above V4R3 and above

Mod 5 V5R2 5722-JC1 V5R2M0 V4R5 and above V4R5 and above

Native optimizations when running on the iSeries
JVM
Native optimizations are a set of functions that make the IBM Toolbox for Java classes work the way a user
would expect them to work when running on OS/400. The optimizations affect operation of IBM Toolbox for
Java only when running on the iSeries JVM.

It is very important to understand that your Java programs use native optimizations only when you use the
version of IBM Toolbox for Java that matches the version of OS/400 on your server. The optimizations are:

Signon: When no userid or password is specified in the AS400 object, the userid and password of the
current job are used

●

Directly calling OS/400 APIs instead of making socket calls to host servers:

Record-level database access, data queues and user space when security requirements are met.❍

Program call and command call when security requirements and thread safety requirements are
met.

❍

●

Note: For best performance, set your JDBC driver property to use the native driver when the Java program
and database file are on the same iSeries system.

No change to the Java application is needed to get the optimizations. IBM Toolbox for Java automatically
enables the optimizations when appropriate.

Native optimization compatibility requirements

The following table shows which versions of IBM Toolbox for Java and OS/400 you must run to use native
optimizations. This table documents only compatibility issues that affect native optimizations. For general
compatibility issues, see Compatibility with different levels of OS/400.

Level of OS/400 Toolbox modification required to use native optimizations

V4R2 No Mod0 enhancements available.

V4R3 Mod1 Mod2

V4R4 Mod1 Mod2

V4R5 Mod3

V5R1 Mod4

V5R2 Mod5

In order to gain the performance improvements, you need to make sure to use the jar file that includes OS/400
native optimizations. For more information, see Note 1 in Jar files.

When the versions of IBM Toolbox for Java and OS/400 do not match, native optimizations are not available. In
this case, IBM Toolbox for Java works as if it is running on a client.

ToolboxME for iSeries requirements
Your workstation, wireless device, and server must meet certain requirements (listed below) for developing and
running ToolboxME for iSeries applications. Although IBM Toolbox for Java 2 Micro Edition is considered a
part of IBM Toolbox for Java, it is not included in the licensed product.

ToolboxME for iSeries (jt400Micro.jar) is included in the open source version of Toolbox for Java, called
JTOpen. You must separately download and set up ToolboxME for iSeries, which is contained in JTOpen.

Requirements

To use ToolboxME for iSeries, your workstation, Tier0 wireless device, and server must meet the following
requirements.

Workstation requirements

Workstation requirements for developing ToolboxME for iSeries applications:

Java 2 Platform, Standard Edition, version 1.3 or higher●

Java virtual machine for wireless devices●

Wireless device simulator or emulator●

Wireless device requirements

The only requirement for running ToolboxME for iSeries applications on your Tier0 device is using a Java
virtual machine for wireless devices.

Server requirements

Server requirements for using ToolboxME for iSeries applications:

MEServer, which is included in IBM Toolbox for Java or the latest version of JTOpen●

OS/400 requirements for IBM Toolbox for Java●

Workstation requirements for IBM Toolbox for
Java
After you decide how you want to manage your installation, ensure that your workstation meets the following
requirements:

Requirements for running Java applications●

Requirements for running Java applets●

Requirements for developing ToolboxME for iSeries applications●

Swing requirements●

Note: Before you use Toolbox for Java, make sure to address the OS/400 requirements that pertain to your
environment.

Workstation requirements for running Toolbox
for Java applications
To develop and run Toolbox for Java applications, ensure that your workstation meets the following
requirements:

We recommend using a Java virtual machine (JVM) that supports the Java 2 Platform, Standard Edition
(J2SE(TM)) or the Enterprise Edition (J2EE(TM)), versions 1.3.x or above. Many new Toolbox for Java
functions require using this version of the JVM. However, you can still use a JVM that fully supports
JDK 1.1.8 or any later JDK, including the Java 2 Platform.

●

If your program uses the Graphical Toolbox or classes in the vaccess package, Swing 1.1 is also
required. The following environments have been tested:

Windows(R) 2000❍

Windows(R) XP❍

AIX Version 4.3.3.1❍

Sun Solaris(TM) Version 5.7❍

OS/400 Version 4 Release 5 or later❍

Linux (Red Hat 7.0)❍

●

TCP/IP installed and configured●

Workstation requirements for running IBM
Toolbox for Java applets
To develop and run Toolbox for Java applications, ensure that your workstation meets the following
requirements:

A browser that has a compatible Java virtual machine (JVM). The following environments have been
tested:

Netscape Communicator 4.7, using the Java 1.3 or later plug-in❍

Note: IBM Toolbox for Java no longer supports running in the default JVM in Netscape Navigator or
Microsoft Internet Explorer. For your applet that uses Toolbox for Java classes to run in a browser, you

should install a plug-in such as the Sun Java 2 Runtime Environment (JRE) 1.3.0 plug-in .

●

TCP/IP installed and configured●

The workstation must connect to a server that is running OS/400 V4R5 or later●

Workstation Swing requirements for IBM Toolbox
for Java
IBM Toolbox for Java switched to support Swing 1.1 in V4R5, and this release continues that support.
Switching to Swing required programming changes in the IBM Toolbox for Java classes. So, if your programs
use the Graphical Toolbox or the vaccess classes from releases before V4R5, you will need to change your
programs as well.

In addition to a programming change, the Swing classes must be in the CLASSPATH when the program is run.
The Swing classes are part of the Java 2 Platform. If you don't have the Java 2 Platform, you can download the

Swing 1.1 classes from Sun Microsystems, Inc.

Installing IBM Toolbox for Java on an iSeries
server
You need to install IBM Toolbox for Java on your iSeries server only when you have configured the server or a
partition of the server as a client.

Note: The native version of Toolbox for Java ships with OS/400. So, if you want to use Toolbox for Java only
on your iSeries server, you do not have to install the licensed product. For more information about the native
version of Toolbox for Java, see Jar files: Note 1.

Before installing IBM Toolbox for Java, you need to ensure that your version of OS/400 meets the requirements
for running Toolbox for Java. Also, some servers come preconfigured with an installation of Toolbox for Java.
You may want to determine whether the Toolbox for Java licensed product is already installed on your server.

Installing Toolbox for Java

You can install the IBM Toolbox for Java licensed program by using either iSeries Navigator or the command
line.

Using iSeries Navigator to install Toolbox for Java

To install Toolbox for Java using iSeries Navigator, complete the following steps:

In iSeries Navigator, sign on to the system that you want to use.1.

In the Function Tree (the left pane), expand My Connections.2.

Under My Connections, right click the system where you want to install Toolbox for Java.3.

Select Run command.4.

In the Restore Licensed Program (RSTLICPGM) dialog, type the following information, then click
OK:

Product: 5722JC1●

Device: The name of the device or save file❍

Note: For more information, click Help in the Restore Licensed Program (RSTLICPGM) dialog,

5.

You can use iSeries Navigator to view the status of the resulting Management Central Command task by
completing the following steps:

Expand Management Central.1.

Expand Task Activity.2.

Under Task Activity, select Commands.3.

In the Detail pane, click on the appropriate Run Command task.4.

Using the command line to install Toolbox for Java

To install Toolbox for Java from an iSeries command line, complete the following steps:

On an iSeries command line, use the CL Go to Menu command. Type GO MENU(LICPGM) and
press ENTER.

1.

Select 11. Install licensed program.2.

Select 5722-JC1 IBM Toolbox for Java.3.

For more information on installing licensed programs, see Managing software and licensed programs.

Installing IBM Toolbox for Java on your
workstation
Before you install IBM Toolbox for Java, make sure to address the workstation requirements that pertain to your
environment. How you install IBM Toolbox for Java on your workstation depends on how you want to manage
your installation:

To install Toolbox for Java on individual clients, copy the JAR files to your workstation and configure
your workstation CLASSPATH.

●

To use Toolbox for Java that is installed on a server, you only have to configure your workstation
CLASSPATH to point to the server installation. To point your workstation CLASSPATH to the server,
your server must have iSeries Netserver installed.

●

This documentation explains how to copy the class files to your workstation. For more information about setting
the CLASSPATH on your workstation, refer to the operating system documentation for your workstation or

information available at the Sun Java Web site .

Note: Using the Toolbox for Java classes in your application also requires that your system meets the
requirements for OS/400.

The Toolbox for Java class files are packaged in several jar files, consequently you need to copy one or more of
these jar files to your workstation. For more information about which jar files are required for specific Toolbox
for Java functions, see Jar files.

Example: Copying jt400.jar

The following example assumes you want to copy jt400.jar, which contains the core IBM Toolbox for Java
classes.

To manually copy the jar file, complete the following steps:

Find the jt400.jar file in the following directory:
/QIBM/ProdData/HTTP/Public/jt400/lib

1.

Copy jt400.jar from the server to your workstation. You can do this in a variety of ways:

Use iSeries Access for Windows to map a network drive on your workstation to the server, then
copy the file.

●

Use file transfer protocol (FTP) to send the file (in binary mode) to your workstation.●

2.

Update the CLASSPATH environment variable of your workstation.

For example, if you are using Windows NT and you copied jt400.jar to C:\jt400\lib, add the
following string to the end of your CLASSPATH:

 ;C:\jt400\lib\jt400.jar

●

3.

You also have the option of using the open source version of Toolbox for Java, called JTOpen. For more

information about JTOpen, see the IBM Toolbox for Java and JTOpen Web site .

If your browser is not Javascript-enabled, click the text link next to the Notes image to link to the appropriate note,
all of which are listed following the table.

Jar files
The IBM Toolbox for Java is shipped as a set of jar files. Each jar file contains Java packages that provide specific
functions. You can reduce the amount of required storage space by using only the jar files required to enable the
specific functions that you want.

To use a jar file, make sure that you include an entry for it in your CLASSPATH.

The following chart indicates which jar files must be in your CLASSPATH to use classes from the listed package.

Some entries in the table have notes that offer more information. If your browser is Javascript-enabled, click the
image to display the information in a separate window. Otherwise, you can click the text link to link to the same
information listed following the table.

Toolbox for Java package or
function Jar files required to be in your CLASSPATH

Access classes jt400.jar (client) or jt400Native.jar (server) in the usual client/server

environment Note 1, or jt400Proxy.jar in a proxy environment

CommandPrompter Note 2 jt400.jar, jui400.jar, util400.jar Note 3, and x4j400.jar

HTML classes
jt400.jar Note 1 plus jt400Servlet.jar (client), or jt400Native.jar (server)

 Note 1

JDBC Data Source GUI Note 4 jt400.jar (client) Note 1 and jui400.jar

NLS system and error messages
jt400Mri_lang_cntry.jar Note 5

PCML (development) Note 6 jt400.jar (client) or jt400Native.jar (server) Note 1, Note 7, and x4j400.jar

PCML (run-time, serialized)
jt400.jar (client) or jt400Native.jar (server) Note 1, Note 7

PDML (development) Note 2 uitools.jar, jui400.jar, util400.jar Note 3, and x4j400.jar

PDML (run-time, parsed)

 Note 2
jui400.jar, util400.jar Note 3, and x4j400.jar

PDML (run-time, serialized)

 Note 2
jui400.jar, and util400.jar Note 3

ReportWriter classes
jt400.jar (client) or jt400Native.jar (server) Note 1 and reportwriter jars

 Note 8

Resource classes
jt400.jar (client) or jt400Native.jar (server) Note 1

RFML
jt400.jar (client) or jt400Native.jar (server) Note 1, and x4j400.jar

Security classes jt400.jar (client) or jt400Native.jar (server) in the usual client/server

environment Note 1, or jt400Proxy.jar in a proxy environment

Servlet classes
jt400.jar Note 1 plus jt400Servlet.jar (client), or jt400Native.jar (server)

 Note 1

iSeries System Debugger

 Note 2
jt400.jar (client) Note 1 and tes.jar

ToolboxME for iSeries jt400Micro.jar (client) and jt400.jar (server) or jt400Native.jar (server)

 Note 9

Vaccess classes
jt400.jar (client) Note 1

Note 1: Some of the IBM Toolbox for Java classes are in more than one jar file:

jt400.jar - Access, resource, vaccess, security, PCML, RFML, JDBC support and the MEServer.●

jt400.zip - Use jt400.jar instead of jt400.zip. jt400.zip is shipped to retain compatibility with previous
releases of IBM Toolbox for Java.

●

jt400Access.zip - Access, resource, security, PCML; that is, the same classes that are in jt400.jar minus the
vaccess classes. jtAccess400.zip is shipped to retain compatibility with previous releases of IBM Toolbox
for Java. Use jt400.jar or jt400Native.jar instead of jt400Access.zip.

●

jt400Native.jar - Access, resource, security, PCML, HTML, RFML, MEServer, and native optimizations.
 Native optimizations is a set of classes (fewer than 20) that take advantage of iSeries function when it

runs on the iSeries JVM. Because jt400Native.jar contains the native optimizations, when running on the the
iSeries JVM, use jt400Native.jar instead of jt400.jar. jt400Native.jar ships with OS/400 and resides in
directory /QIBM/ProdData/OS400/jt400/lib.

●

jt400Native11x.jar - Native optimizations only. If you are running on the iSeries JVM and want to use
jt400.jar, include jt400Native11x.jar in your CLASSPATH instead of jt400Native.jar. jt400Native11x.jar
ships with OS/400 and resides in directory /QIBM/ProdData/OS400/jt400/lib.

●

Note 2: Using CommandPrompter, PDML, or the iSeries System Debugger also requires one additional jar file
that is not part of Toolbox for Java: jhall.jar. For more information about downloading jhall.jar, see the Sun

JavaHelp(TM) Web site .

Note 3: util400.jar contains iSeries-specific classes for formatting input and for using the command line (CL)
prompter. Using the CommandPrompter class requires util400.jar. Using PDML does not require util400.jar, but it is
useful.

Note 4: jui400.jar contains the classes necessary to use the JDBC DataSource GUI interface. jt400.jar (Note 1)
contains the classes necessary for all other JDBC functions.

Note 5: jt400Mri_xx_yy.jar contains translated messages, including strings contained in exception messages,
dialogs, and output from other normal processing. In jt400Mri_lang_cntry.jar, lang = the ISO Language Code and
cntry = the ISO Country or Region Code used to translate the contained text. In some cases, the ISO Country or
Region Code is not used. Installing a particular national language version of the IBM Toolbox for Java licensed
program on the iSeries installs the appropriate jt400Mri_lang_cntry.jar file. If the language is not supported, the
install defaults to the English version, which is included in the IBM Toolbox for Java jar files.

For example, installing the German language version of licensed program 5722-JC1 installs the German
language jar file, jt400Mri_de.jar.

●

You can add support for other languages by adding more than one of these jar files to the classpath. Java loads the
correct string based on the current locale.

Note 6: Serializing your PCML file during development has two benefits:

You need to parse the PCML file only during development and not during run-time1.

Users need fewer jar files in their CLASSPATH to run the application2.

To parse the PCML file during development, you need both the PCML run-time in data.jar or jt400.jar and the
PCML parser in x4j400.jar. To run the serialized application , users need only jt400.jar. For more information see
Building iSeries program calls with PCML.

Note 7: Use jt400.jar and jt400Native.jar instead of data400.jar. data400.jar contains the PCML runtime classes,
which are now also in jt400.jar and jt400Native.jar (Note 1). data400.jar is shipped to retain compatibility with
previous releases of IBM Toolbox for Java.

Note 8: Copies of the ReportWriter classes are in more than one jar file:

composer.jar●

outputwriter.jar●

reportwriters.jar●

xslparser.jar●

x4j400.jar●

If your application streams PCL data to an iSeries spooled file, you must make the access classes available by using
the appropriate jar file (Note 1). Creating a spooled file to hold PCL data requires the AS400, OutputQueue,
PrintParameterList, and SpooledFileOutputStream classes. For more information, see the ReportWriter classes.

Note 9: jt400Micro.jar does not contain the classes needed to run MEServer, which reside in both jt400.jar and

jt400Native.jar (Note 1). jt400Micro.jar is available only from the IBM Toolbox for Java and JTOpen Web site .

System properties
You can specify system properties to configure various aspects of the IBM Toolbox for Java. For example, you
can use system properties to define a proxy server or a level of tracing. System properties are useful for
convenient runtime configuration without needing to recompile code. System properties work like environment
variables in that when you change a system property during runtime, the change is generally not reflected until
the next time you run the application.

There are several ways that you can set system properties:

Using the java.lang.System.setProperties() method

You can set system properties programmatically by using the java.lang.System.setProperties() method.

For example, the following code sets the com.ibm.as400.access.AS400.proxyServer
property to hqoffice:

Properties systemProperties = System.getProperties();
 systemProperties.put ("com.ibm.as400.access.AS400.proxyServer",
"hqoffice");
 System.setProperties (systemProperties);

●

Using the -D option of the java command

Many environments allow you to set system properties when running applications from a command line
by using the -D option of the java command.

For example, the following program runs the application called Inventory with the
com.ibm.as400.access.AS400.proxyServer property set to hqoffice:

 java -Dcom.ibm.as400.access.AS400.proxyServer=hqoffice Inventory

●

Using a jt400.properties file

In some environments, it may be inconvenient to instruct all users to set their own system properties. As
an alternative, you can specify IBM Toolbox for Java system properties in a file called jt400.properties
that is searched for as if it is part of the com.ibm.as400.access package. In other words, place the
jt400.properties file in a com/ibm/as400/access directory pointed to by the classpath.

For example, set the com.ibm.as400.access.AS400.proxyServer property to hqoffice
by inserting the following line into the jt400.properties file:

 com.ibm.as400.access.AS400.proxyServer=hqoffice

The backslash character (\) functions as an escape character in properties files. Specify a literal
backslash character by using two backslashes (\\).

Modify this sample of a jt400.properties file for your environment.

●

Using a Properties class

Some browsers do not load properties files without explicitly changing security settings. However, most
browsers do allow properties in .class files, so IBM Toolbox for Java system properties can also be
specified by a class called com.ibm.as400.access.Properties which extends java.util.Properties.

For example, to set the com.ibm.as400.access.AS400.proxyServer property to
hqoffice, use the following Java code:

 package com.ibm.as400.access;

●

 public class Properties
 extends java.util.Properties
 {
 public Properties ()
 {
 put ("com.ibm.as400.access.AS400.proxyServer", "hqoffice");
 }
 }

Modify and compile this sample of a Properties.java source file for your environment.

If an IBM Toolbox for Java system property is set using more than one of the mechanisms described above,
then the precedence is as follows (in order of decreasing precedence):

The system property set programmatically using java.lang.System.setProperties()1.

The system property set using the -D option of the java command2.

The system property set using a Properties class3.

The system property set using a jt400.properties file4.

IBM Toolbox for Java supports the following system properties:

Proxy server properties●

Trace properties●

CommandCall/ProgramCall properties●

Proxy server properties

Proxy server property Description

com.ibm.as400.access.AS400.proxyServer Specifies the proxy server host name and
port number, using the format:

 hostName:portNumber

The port number is optional.

com.ibm.as400.access.SecureAS400.proxyEncryptionMode Specifies which portion of the proxy data
flow is encrypted by using SSL. Valid
values are:

1 = Proxy client to proxy server●

2 = Proxy server to iSeries●

3 = Proxy client to proxy server and
proxy server to iSeries

●

com.ibm.as400.access.TunnelProxyServer.clientCleanupInterval Specifies how often, in seconds, the proxy
server looks for idle connections. The proxy
server starts a thread to look for clients that
are no longer communicating. Use this
property to set how often the thread looks
for idle connections.

com.ibm.as400.access.TunnelProxyServer.clientLifetime Specifies how long, in seconds, a client can
be idle before the proxy server removes
references to the objects so the JVM can
garbage collect them. The proxy server
starts a thread to look for clients that are no
longer communicating. Use this property to
set how long a client can be idle before
performing garbage collection on it.

Trace properties

Trace property Description

com.ibm.as400.access.Trace.category Specifies which trace categories to enable. This is a
comma-delimited list containing any combination of trace
categories. The complete list of trace categories is defined in the
Trace class.

com.ibm.as400.access.Trace.file Specifies the file to which trace output is written. The default is
to write trace output to System.out.

com.ibm.as400.access.ServerTrace.JDBC Specifies which trace categories to start on the JDBC server job.
For information about supported values, see the JDBC server
trace property.

CommandCall/ProgramCall properties

CommandCall/ProgramCall property Description

com.ibm.as400.access.CommandCall.threadSafe Specifies whether CommandCalls should be assumed to be
thread-safe. If true, all CommandCalls are assumed to be
thread-safe. If false, all CommandCalls are assumed to be
non-thread-safe. This property is ignored for a given
CommandCall object if either
CommandCall.setThreadSafe(true/false) or
AS400.setMustUseSockets(true) has been
performed on the object.

com.ibm.as400.access.ProgramCall.threadSafe Specifies whether ProgramCalls should be assumed to be
thread-safe. If true, all ProgramCalls are assumed to be
thread-safe. If false, all ProgramCalls are assumed to be
non-thread-safe. This property is ignored for a given
ProgramCall object if either
ProgramCall.setThreadSafe(true/false) or
AS400.setMustUseSockets(true) has been
performed on the object.

Simple programming examples
These examples show some of the ways you can begin to code your own Java programs using the IBM Toolbox
for Java classes. Meant for programmers just beginning to use Toolbox for Java classes, these examples include
detailed explanations about key lines in the code.

You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window. (To see the notes in a
pop-up window, your browser must support JavaScript.)

●

Click the text link to see the detailed explanation provided at the bottom of the example.●

If you want some help getting started, see Writing your first Toolbox for Java program.

For links to many of the other examples provided in the Toolbox for Java information, see Code examples.

Use the following list to view the simple programming examples:

Calling commands●

Using message queues●

Using record-level access●

Using JDBC classes to create and populate a table●

Displaying a list of server jobs in a GUI●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

IBM Toolbox for Java classes
The IBM Toolbox for Java classes are categorized (like all Java classes) into packages. Each package provides a
certain kind of functionality. For convenience, this documentation usually refers to each package with a short
name. For example, the com.ibm.as400.access package is simply called the access package.

Use the links in the following list to find information about the classes in the different Toolbox for Java
packages:

Access classes enable you to access and manage resources on your iSeries●

HTML classes allow you to quickly create HTML forms and tables●

Micro classes enable you to create Java programs that give your wireless devices direct access to
iSeries server data and services

●

ReportWriter classes allow you to create formatted documents from XML data sources●

Resource classes use a common framework to access and manage iSeries resources●

Security classes make secured connections with the server and verify the identity of a user working on
the iSeries system

●

Servlet classes assist in retrieving and formatting data for use in Java servlets●

Utility classes enable you to do administrative tasks, such as using the AS400ToolboxInstaller class and
AS400JarMaker class

●

Vaccess classes allow you to visually present and manipulate data●

IBM Toolbox for Java access classes
The IBM Toolbox for Java access classes represent iSeries data and resources. The classes work with iSeries
and AS/400e servers to provide an internet-enabled interface to access and update server data and resources.

The following classes provide access to iSeries and AS/400e resources:

AS400 - manages sign-on information, creates and maintains socket connections, and sends and
receives data

●

SecureAS400 - enables you to use an AS400 object when sending or receiving encrypted data●

AS400JPing - allows your Java program to query the host servers to see which services are running and
which ports are in service

●

BidiTransform - enables you to do your own conversions of bidirectional text●

Clustered hash table classes - enables your Java program to share and replicate nonpersistent data
among the nodes in highly available clustered hash tables

●

Command call - runs iSeries batch commands●

Connection pool - manages a pool of AS400 objects, which is used to share connections and manage the
number of connections a user can have to an iSeries server

●

Data area - creates, accesses, and deletes data areas●

Data conversion and description - converts and handles data, and describes the record format of a buffer
of data

●

Data queues - creates, accesses, changes, and deletes data queues●

Digital certificates - manages digital certificates on iSeries servers●

Environment variable - manages iSeries environment variables●

Event log - provides a way to log exceptions and messages independent of the device used to display
them

●

Exceptions - throws errors when, for example, device errors or programming errors occur●

FTP - provides you with a programmable interface to FTP functions●

Integrated file system - accesses files, opens files, opens input and output streams, and lists the contents
of directories

●

Java application call - calls a Java program on an iSeries server that runs on the iSeries Java virtual
machine

●

JDBC - accesses DB2 UDB for iSeries data●

Jobs - accesses iSeries jobs and job logs●

Messages - accesses messages and message queues on the iSeries system●

NetServer configuration - accesses and modifies the state and configuration of the iSeries NetServer●

Permission - displays and changes object authorities on an iSeries server●

Print - manipulates iSeries print resources●

Product license - manage licenses for iSeries products●

Program call - calls an iSeries program●

QSYS object path name - represents objects in the iSeries integrated file system●

Record-level access - creates, reads, updates, and deletes iSeries files and members●

Service program call - calls an iSeries service program●

System status - displays system status information and allows access to system pool
information

●

System values - retrieves and changes system values and network attributes●

Trace (serviceability) - logs trace points and diagnostic messages●

Users and groups - accesses iSeries users and groups●

User space - accesses an iSeries user space●

Note: Toolbox for Java provides a second set of classes, called the resource classes, for working with iSeries
objects and lists. The resource classes present a generic framework and consistent programming interface for
working with various iSeries objects and lists. After reading about the classes in the access package and the
resource package, you can choose the object that works best for your application.

AS400 class
The AS400 class manages the following:

A set of socket connections to the server jobs on the iSeries server.●

Sign-on behavior for the server. This includes prompting the user for sign-on information, password
caching, and default user management.

●

The Java program must provide an AS400 object when the Java program uses an instance of a class that
accesses the iSeries. For example, the CommandCall object requires an AS400 object before it can send
commands to the iSeries.

The AS400 object handles connections, user IDs, and passwords differently when it is running in the iSeries
Java virtual machine. For more information, see iSeries Java virtual machine.

AS400 objects now support Kerberos authentication, using the Java Generic Security Service Application
Programming Interface (JGSS API) to authenticate to the server, instead of using a user ID and password.

Note: Using Kerberos tickets requires that you install J2SDK, v1.4 and configure the Java Generic Security
Services (JGSS) Application Programming Interface. For more information about JGSS, see the J2SDK, v1.4

Security Documentation .

See managing connections for information on managing connections to the iSeries through the AS400 object.
See AS400ConnectionPool for information on reducing initial connect time by requesting connections from a
connection pool.

AS400 class provides the following sign-on functions:

Authenticate the user profile●

Get a profile token credential and authenticate the associated user profile●

Set a profile token credential●

Manage default user IDs●

Cache passwords●

Prompt for user ID●

Change a password●

Get the version and release of the iSeries●

For information about using an AS400 object when sending or receiving encrypted data, see the SecureAS400
class.

SecureAS400 Class
When an AS400 object communicates with the server, user data (except the user password) is sent unencrypted
to the server. So, IBM Toolbox for Java objects associated with an AS400 object exchange data with the server
over a normal connection.

When you want to use IBM Toolbox for Java to exchange sensitive data with the server, you can encrypt data
by using Secure Sockets Layer (SSL). Use the SecureAS400 object to designate which data you want to encrypt.
IBM Toolbox for Java objects associated with a SecureAS400 object exchange data with the server over a
secure connection.

 For more information, see Secure Sockets Layer and Java Secure Socket Extension.

The SecureAS400 class is a subclass of the AS400 class.

You can set up a secure server connection by creating an instance of a SecureAS400 object in the following
ways:

SecureAS400(String systemName, String userID) prompts you for sign-on information●

SecureAS400(String systemName, String userID, String password) does not prompt you for sign-on
information

●

The following example shows you how to use CommandCall to send commands to the iSeries system using a
secure connection:

 // Create a secure AS400 object. This is the only statement that
changes
 // from the non-SSL case.
 SecureAS400 sys = new SecureAS400("mySystem.myCompany.com");

 // Create a command call object
 CommandCall cmd = new CommandCall(sys, "myCommand");

 // Run the commands. A secure connection is made when the
 // command is run. All the information that passes between the
 // client and server is encrypted.
 cmd.run();

AS400JPing
The AS400JPing allows your java program to query the host servers to see which services are running and
which ports are in service. To query the servers from a command line, use the JPing class.

The AS400JPing class provides several methods:

Ping the server●

Ping a specific service on the server●

Set a PrintWriter object to which you want to log ping information●

Set the time out for the ping operation●

Example: Using AS400JPing within a Java program to ping the iSeries Remote Command Service:

 AS400JPing pingObj = new AS400JPing("myAS400", AS400.COMMAND, false);
 if (pingObj.ping())
 System.out.println("SUCCESS");
 else
 System.out.println("FAILED");

BidiTransform class
The AS400BidiTransform class provides layout transformations that enable you to convert bidirectional text in
iSeries format (after first converting it to Unicode) to bidirectional text in Java format, or from Java format to
iSeries format.

The AS400BidiTransform class allows you to:

Get and set the system CCSID●

Get and set the string type of iSeries data●

Get and set the string type of Java data●

Convert data from a Java layout to iSeries●

Convert data from an iSeries layout to Java●

Example: Using the AS400BidiTransform class to transform
bidirectional text

The following example shows how you can use the AS400BidiTransform class to transform bidirectional text:

 // Java data to iSeries layout:
 AS400BidiTransform abt;
 abt = new AS400BidiTransform(424);
 String dst = abt.toAS400Layout("some bidirectional string");

ClusteredHashTable classes
The ClusteredHashTable classes enable your Java programs to use highly available clustered hash tables to share
and replicate data to nonpersistent storage among the nodes in a cluster. To use the ClusteredHashTable classes,
ensure that you can use nonpersistent storage for the data. Replicated data is not encrypted.

Note: The following information assumes that you understand the concepts and terminology common to iSeries
clustering. For more information about clusters and how to use them, see Clusters.

Using the ClusteredHashTable class requires that you have defined and activated a cluster on the iSeries systems.
You must also start a clustered has table server. For more information, see Configure clusters and Clustered Hash
Table APIs.

Required parameters are the name of the clustered hash table server and the AS400 object, which represents the
system that contains the clustered hash table server.

In order to store data in a clustered hash table server, you need a connection handle and a key:

When you open a connection, the clustered hash table server assigns the connection handle that you must
specify on subsequent requests to the clustered hash table server. This connection handle is good only for
the instantiated AS400 object, so you must open another connection if you use a different AS400 object.

●

You must specify the key to access and change data in the clustered hash table. Duplicate keys are not
supported.

●

The ClusteredHashTable class provides methods that enable you to perform the following actions:

Open a connection to the clustered hash table server job●

Generate a unique key to store data into the clustered hash table●

Close the active connection to the clustered hash table server job●

Some methods in the ClusteredHashTable class use the ClusteredHashTableEntry class to perform the following
actions:

Get an entry from the clustered hash table●

Store an entry in the clustered hash table●

Get a list of entries from the clustered hash table for all user profiles●

The following example operates on clustered hash table server named CHTSVR01. It assumes a cluster and a
clustered hash table server is already active. It opens a connection, generates a key, puts an entry using the new
key in the clustered hash table, gets an entry from the clustered hash table, and closes the connection.

 ClusteredHashTableEntry myEntry = null;

 String myData = new String("This is my data.");
 System.out.println("Data to be stored: " + myData);

 AS400 system = new AS400();

 ClusteredHashTable cht = new ClusteredHashTable(system,"CHTSVR01");

 // Open a connection.

 cht.open();

 // Get a key to the hash table.
 byte[] key = null;
 key = cht.generateKey();

 // Prepare some data that you want to store into the hash table.
 // ENTRY_AUTHORITY_ANY_USER means that any user can access the
 // entry in the clustered hash table.
 // DUPLICATE_KEY_FAIL means that if the specified key already exists,
 // the ClusteredHashTable.put() request will not succeed.
 int timeToLive = 500;
 myEntry = new ClusteredHashTableEntry(key,myData.getBytes(),timeToLive,
 ClusteredHashTableEntry.ENTRY_AUTHORITY_ANY_USER,
 ClusteredHashTableEntry.DUPLICATE_KEY_FAIL);

 // Store (or put) the entry into the hash table.
 cht.put(myEntry);

 // Get an entry from the hash table.
 ClusteredHashTableEntry output = cht.get(key);

 // Close the connection.
 cht.close();

Using the ClusteredHashTable class causes the AS400 object to connect to the server. For more information, see
Managing connections.

Command call
The CommandCall class allows a Java program to call a non-interactive iSeries command. Results of the
command are available in a list of AS400Message objects.

Input to CommandCall is as follows:

The command string to run●

The AS400 object that represents the system that will run the command●

The command string can be set on the constructor, through the setCommand() method, or on the run() method.
After the command is run, the Java program can use the getMessageList() method to retrieve any iSeries
messages resulting from the command.

Using the CommandCall class causes the AS400 object to connect to the iSeries.

The following example shows how to use the CommandCall class run a command on an iSeries system:

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a command call object. This
 // program sets the command to run
 // later. It could set it here on the
 // constructor.
 CommandCall cmd = new CommandCall(sys);

 // Run the CRTLIB command
 cmd.run("CRTLIB MYLIB");

 // Get the message list which
 // contains the result of the
 // command.
 AS400Message[] messageList = cmd.getMessageList();

 // ... process the message list.

 // Disconnect since I am done sending
 // commands to the server
 sys.disconnectService(AS400.COMMAND);

Using the CommandCall class causes the AS400 object to connect to the iSeries. See managing connections for
information on managing connections.

When the Java program and the iSeries server command are on the same server, the default Toolbox for Java
behavior is to look up the thread safety for the command on the system. If threadsafe, the command is run
on-thread. You can suppress the run-time lookup by explicitly specifying thread-safety for the command by
using using the setThreadSafe() method.

Example

Run a command that is specified by the user.

Connection pooling
Use connection pools to share connections and manage sets (pools) of connections to an iSeries server. For
example, an application can retrieve a connection from a pool, use it, then return it to the pool for reuse.

The AS400ConnectionPool class manages a pool of AS400 objects. The AS400JDBCConnectionPool class
represents a pool of AS400JDBCConnections that are available for use by a Java program as part of Toolbox
support for the JDBC 2.0 Optional Package API. The JDBC ConnectionPool interface is also supported in the
JDBC 3.0 API, which is bundled with the Java 2 Platform, Standard Edition, version 1.4.

A connection pool of either type keeps track of the number of connections it creates. Using methods inherited
from ConnectionPool, you can set several connection pool properties, including:

the maximum number of connections that can be given out by a pool●

the maximum lifetime of a connection●

the maximum inactivity time of a connection●

In terms of performance, connecting to the server is an expensive operation. Using connection pools can
increase performance by avoiding repeated connection times. For example, create connections when you create
the connection pool by filling the pool with active (preconnected) connections. Instead of creating new
connections, you can use a connection pool to easily retrieve, use, return, and reuse the connection objects.

Retrieve a connection using an AS400ConnectionPool by specifying the system name, user id, the password,
and (optionally) the service. To specify the service to which you want to connect, use constants from the
AS400 class (FILE, PRINT, COMMAND, and so on).

After retrieving and using the connection, applications return connections to the pool. It is the responsibility of
each application to return connections to the pool for reuse. When connections are not returned to the pool, the
connection pool continues to grow in size and connections are not reused.

See managing connections for more information about managing when a connection to the iSeries is opened
when using the AS400ConnectionPool classes.

Example: Using an AS400ConnectionPool to reuse AS400 objects

Data area
The DataArea class is an abstract base class that represents an iSeries data area object. This base class has four
subclasses that support the following: character data, decimal data, logical data, and local data areas that contain
character data.

Using the DataArea class, you can do the following:

Get the size of the data area●

Get the name of the data area●

Return the AS400 system object for the data area●

Refresh the attributes of the data area●

Set the system where the data area exists●

Using the DataArea class causes the AS400 object to connect to the server. See managing connections for
information on managing connections.

CharacterDataArea

The CharacterDataArea class represents a data area on the server that contains character data. Character data
areas do not have a facility for tagging the data with the proper CCSID; therefore, the data area object assumes
that the data is in the user's CCSID. When writing, the data area object converts from a string (Unicode) to the
user's CCSID before writing the data to the server. When reading, the data area object assumes that the data is
the CCSID of the user and converts from that CCSID to Unicode before returning the string to the program.
When reading data from the data area, the amount of data read is by number of characters, not by the number of
bytes.

Using the CharacterDataArea class, you can do the following:

Clear the data area so that it contains all blanks.●

Create a character data area on the system using default property values●

Create a character data area with specific attributes●

Delete the data area from the system where the data area exists●

Return the integrated file system path name of the object represented by the data area.●

Read all of the data that is contained in the data area●

Read a specified amount of data from the data area starting at offset 0 or the offset that you specified●

Set the fully qualified integrated file system path name of the data area●

Write data to the beginning of the data area●

Write a specified amount of data to the data area starting at offset 0 or the offset that you specified●

DecimalDataArea

The DecimalDataArea class represents a data area on the server that contains decimal data.

Using the DecimalDataArea class, you can do the following:

Clear the data area so that it contains 0.0●

Create a decimal data area on the system using default property values●

Create a decimal data area with specified attributes●

Delete the data area from the server where the data area exists●

Return the number of digits to the right of the decimal point in the data area●

Return the integrated file system path name of the object represented by the data area.●

Read all of the data that is contained in the data area●

Set the fully qualified integrated file system path name of the data area●

Write data to the beginning of the data area●

The following example shows how to create and to write to a decimal data area:

 // Establish a connection to the server "My400".
 AS400 system = new AS400("MyServer");
 // Create a DecimalDataArea object.
 QSYSObjectPathName path = new QSYSObjectPathName("MYLIB", "MYDATA",
"DTAARA");
 DecimalDataArea dataArea = new DecimalDataArea(system, path.getPath());
 // Create the decimal data area on the server using default values.
 dataArea.create();
 // Clear the data area.
 dataArea.clear();
 // Write to the data area.
 dataArea.write(new BigDecimal("1.2"));
 // Read from the data area.
 BigDecimal data = dataArea.read();
 // Delete the data area from the server.
 dataArea.delete();

LocalDataArea

The LocalDataArea class represents a local data area on the server. A local data area exists as a character data
area on the server, but the local data area does have some restrictions of which you should be aware.

The local data area is associated with a server job and cannot be accessed from another job. Therefore, you
cannot create or delete the local data area. When the server job ends, the local data area associated with that
server job is automatically deleted, and the LocalDataArea object that is referring to the job is no longer valid.
You should also note that local data areas are a fixed size of 1024 characters on the server.

Using the LocalDataArea class, you can do the following:

Clear the data area so that it contains all blanks●

Read all of the data that is contained in the data area●

Read a specified amount of data from the data area starting at offset that you specified●

Write data to the beginning of the data area●

Write a specified amount of data to the data area where the first character is written to offset●

LogicalDataArea

The LogicalDataArea class represents a data area on the server that contains logical data.

Using the LogicalDataArea class, you can do the following:

Clear the data area so that it contains false●

Create a character data area on the server using default property values●

Create a character data area with specified attributes●

Delete the data area from the server where the data area exists●

Return the integrated file system path name of the object represented by the data area.●

Read all of the data that is contained in the data area●

Set the fully qualified integrated file system path name of the data area●

Write data to the beginning of the data area●

DataAreaEvent

The DataAreaEvent class represents a data area event.

You can use the DataAreaEvent class with any of the DataArea classes. Using the DataAreaEvent class, you can
do the following:

Get the identifier for the event●

DataAreaListener

The DataAreaListener class provides an interface for receiving data area events.

You can use the the DataAreaListener class with any of the DataArea classes. You can invoke the
DataAreaListener class when any of the following are performed:

Clear●

Create●

Delete●

Read●

Write●

Data conversion and description
The data conversion classes provide the capability to convert numeric and character data between iSeries and
Java formats. Conversion may be needed when accessing iSeries data from a Java program. The data conversion
classes support conversion of various numeric formats and between various EBCDIC code pages and Unicode.

The data description classes build on the data conversion classes to convert all fields in a record with a single
method call. The RecordFormat class allows the program to describe data that makes up a DataQueueEntry,
ProgramCall parameter, a record in a database file accessed through record-level access classes, or any buffer of
iSeries data. The Record class allows the program to convert the contents of the record and access the data by
field name or index.

Data types

The AS400DataType is an interface that defines the methods required for data conversion. A Java program uses
data types when individual pieces of data need to be converted. Conversion classes exist for the following types
of data:

Numeric●

Text (character)●

Composite (numeric and text)●

Conversion specifying a record format

The IBM Toolbox for Java provides classes for building on the data types classes to handle converting data one
record at a time instead of one field at a time. For example, suppose a Java program reads data off a data queue.
The data queue object returns a byte array of iSeries data to the Java program. This array can potentially contain
many types of iSeries data. The application can convert one field at a time out of the byte array by using the data
types classes, or the program can create a record format that describes the fields in the byte array. That record
then does the conversion.

Record format conversion can be useful when you are working with data from the program call, data queue, and
record-level access classes. The input and output from these classes are byte arrays that can contain many fields
of various types. Record format converters can make it easier to convert this data between iSeries format and
Java format.

Conversion through record format uses three classes:

FieldDescription classes identify a field or parameter with a data type and a name.●

A RecordFormat class describes a group of fields.●

A Record class joins the description of a record (in the RecordFormat class) with the actual data.●

A LineDataRecordWriter class writes a record to an OutputStream in line data format●

Examples

Two examples illustrate using the record format conversion classes with data queues:

Example: Using the Record and RecordFormat classes to put data on a queue●

Example: Using the FieldDescription, RecordFormat, and Record classes●

Conversion classes for numeric data
Conversion classes for numeric data simply convert numeric data from the format used on the iSeries or
AS/400e server (called server format in the following table) to the Java format. Supported types are shown in
the following table:

Numeric Type Description

AS400Bin2 Converts between a signed two-byte number in the server format to a Java Short
object.

AS400Bin4 Converts between a signed four-byte number in the server format and a Java Integer
object.

AS400ByteArray Converts between two byte arrays. This is useful because the converter correctly
zero-fills and pads the target buffer.

AS400Float4 Converts between a signed four-byte floating point number in the server format and a
Java Float object.

AS400Float8 Converts between a signed eight-byte floating point number in the server format and a
Java Double object.

AS400PackedDecimal Converts between a packed-decimal number in the server format and a Java
BigDecimal object.

AS400UnsignedBin2 Converts between an unsigned two-byte number in the server format and a Java
Integer object.

AS400UnsignedBin4 Converts between an unsigned four-byte number in the server format and a Java Long
object.

AS400ZonedDecimal Converts between a zoned-decimal number in the server format and a Java
BigDecimal object.

The following example shows conversion from a numeric type in the server format to a Java int:

 // Create a buffer to hold the server data
 // type. Assume the buffer is filled with
 // numeric data in the server format by data
 // queues, program call, etc.
 byte[] data = new byte[100];

 // Create a converter for this
 // server data type.
 AS400Bin4 bin4Converter = new AS400Bin4();

 // Convert from server type to Java
 // object. The number starts at the
 // beginning of the buffer.
 Integer intObject = (Integer) bin4Converter.toObject(data,0);

 // Extract the simple Java type from
 // the Java object.
 int i = intObject.intValue();

The following example shows conversion from a Java int to a numeric data type in the server format :

 // Create a Java object that contains
 // the value to convert.

 Integer intObject = new Integer(22);

 // Create a converter for the server
 // data type.
 AS400Bin4 bin4Converter = new AS400Bin4();

 // Convert from Java object to
 // server data type.
 byte[] data = bin4Converter.toBytes(intObject);

 // Find out how many bytes of the
 // buffer were filled with the
 // server value.
 int length = bin4Converter.getByteLength();

Text conversion
Character data is converted through the AS400Text class. This class converts character data between an
EBCDIC code page and character set (CCSID), and Unicode. When the AS400Text object is constructed, the
Java program specifies the length of the string to be converted and the server CCSID or encoding. The CCSID
of the Java program is assumed to be 13488 Unicode. The toBytes() method converts from Java form to
byte array in iSeries format. The toObject() method converts from a byte array in iSeries format to Java format.

The AS400BidiTransform class provides layout transformations that allow the conversion of bidirectional text
in iSeries format (after its conversion to Unicode) to bidirectional text in Java format, or from Java format to
iSeries format. The default conversion is based on the CCSID of the job. To alter the direction and shaping of
the text, specify a BidiStringType. Note that where IBM Toolbox for Java objects perform the conversion
internally, as in the DataArea class, the objects have a method to override the string type. For example, the
DataArea class has addVetoableChangeListener() method that you can specify to listen for a veto changes to
certain properties, including string type.

For example, assume that a DataQueueEntry object returns iSeries text in EBCDIC. The following example
converts this data to Unicode so that the Java program can use it:

 // ... Assume the data queue work has already been done to
 // retrieve the text from the iSeries and the data has been
 // put in the following buffer.
 int textLength = 100;
 byte[] data = new byte[textLength];

 // Create a converter for the iSeries data type. Note a default
 // converter is being built. This converter assumes the iSeries
 // EBCDIC code page matches the client's locale. If this is not
 // true the Java program can explicitly specify the EBCDIC
 // CCSID to use. However, it is recommended that you specify a
 // CCSID whenever possible (see the Notes: below).
 AS400Text textConverter = new AS400Text(textLength)

 // Note: Optionally, you can create a converter for a specific
 // CCSID. Use an AS400 object in case the program is running
 // as a Toolbox for Java proxy client.
 int ccsid = 37;
 AS400 system = ...; // AS400 object
 AS400Text textConverter = new AS400Text(textLength, ccsid, system);

 // Note: You can also create a converter with just the AS400
object.
 // This converter assumes the iSeries code page matches
 // the CCSID returned by the AS400 object.
 AS400Text textConverter = new AS400Text(textLength, system);

 // Convert the data from EBCDIC to Unicode. If the length of
 // the AS400Text object is longer than the number of
 // converted characters, the resulting String will be
 // blank-padded out to the specified length.
 String javaText = (String) textConverter.toObject(data);

Conversion classes for composite types
Conversion classes for composite types are as follows:

AS400Array - Allows the Java program to work with an array of data types.●

AS400Structure - Allows the Java program to work with a structure whose elements are data types.●

The following example shows conversion from a Java structure to a byte array and back again. The example
assumes that the same data format is used for both sending and receiving data.

 // Create a structure of data types
 // that corresponds to a structure
 // that contains:
 // - a four-byte number
 // - four bytes of pad
 // - an eight-byte number
 // - 40 characters
 AS400DataType[] myStruct =
 {
 new AS400Bin4(),
 new AS400ByteArray(4),
 new AS400Float8(),
 new AS400Text(40)
 };

 // Create a conversion object using
 // the structure.
 AS400Structure myConverter = new AS400Structure(myStruct);

 // Create the Java object that holds
 // the data to send to the server.
 Object[] myData =
 {
 new Integer(88), // the four-byte number
 new byte[0], // the pad (let the conversion object 0
pad)
 new Double(23.45), // the eight-byte floating point number
 "This is my structure" // the character string
 };

 // Convert from Java object to byte array.
 byte[] myAS400Data = myConverter.toBytes(myData);

 // ... send the byte array to the
 // server. Get data back from the
 // server. The returned data will
 // also be a byte array.

 // Convert the returned data from
 // iSeries to Java format.
 Object[] myRoundTripData =
 (Object[])myConverter.toObject(myAS400Data,0);

 // Pull the third object out of the
 // structure. This is the double.
 Double doubleObject = (Double) myRoundTripData[2];

 // Extract the simple Java type from
 // the Java object.
 double d = doubleObject.doubleValue();

FieldDescription classes
The field description classes allow the Java program to describe the contents of a field or parameter with a data
type and a string containing the name of the field. If the program is working with data from record-level access,
it can also specify any iSeries or AS/400e data definition specification (DDS) keywords that further describe the
field.

The field description classes are as follows:

BinaryFieldDescription●

CharacterFieldDescription●

DateFieldDescription●

DBCSEitherFieldDescription●

DBCSGraphicFieldDescription●

DBCSOnlyFieldDescription●

DBCSOpenFieldDescription●

FloatFieldDescription●

HexFieldDescription●

PackedDecimalFieldDescription●

TimeFieldDescription●

TimestampFieldDescription●

ZonedDecimalFieldDescription●

For example, assume that the entries on a data queue have the same format. Each entry has a message number
(AS400Bin4), a time stamp (8 characters), and message text (50 characters). These can be described with field
descriptions as follows:

 // Create a field description for
 // the numeric data. Note it uses
 // the AS400Bin4 data type. It also
 // names the field so it can be
 // accessed by name in the record
 // class.
 BinaryFieldDescription bfd = new BinaryFieldDescription(new
AS400Bin4(),
 "msgNumber");

 // Create a field description for
 // the character data. Note it uses
 // the AS400Text data type. It also
 // names the field so it can be
 // accessed by name by the record
 // class.
 CharacterFieldDescription cfd1 = new CharacterFieldDescription(new
AS400Text(8),

"msgTime");

 // Create a field description for
 // the character data. Note it uses
 // the AS400Text data type. It also
 // names the field so it can be
 // accessed by name by the record
 // class.
 CharacterFieldDescription cfd2 = new CharacterFieldDescription(new
AS400Text(50),

"msgText");

The field descriptions are now ready to be grouped in a record format class. The example continues in the
record format section.

RecordFormat class
The RecordFormat class allows the Java program to describe a group of fields or parameters. A record object
contains data described by a RecordFormat object. If the program is using record-level access classes, the
RecordFormat class also allows the program to specify descriptions for key fields.

A RecordFormat object contains a set of field descriptions. The field description can be accessed by index or by
name. Methods exist on the RecordFormat class to do the following:

Add field descriptions to the record format.●

Add key field descriptions to the record format.●

Retrieve field descriptions from the record format by index or by name.●

Retrieve key field descriptions from the record format by index or by name.●

Retrieve the names of the fields that make up the record format.●

Retrieve the names of the key fields that make up the record format.●

Retrieve the number of fields in the record format.●

Retrieve the number of key fields in the record format.●

Create a Record object based on this record format.●

For example, to add the field descriptions created in the field description example to a record format:

 // Create a record format object,
 // then fill it with field
 // descriptions.
 RecordFormat rf = new RecordFormat();
 rf.addFieldDescription(bfd);
 rf.addFieldDescription(cfd1);
 rf.addFieldDescription(cfd2);

The program is now ready to create a record from the record format. The example continues in the record
section.

Record class
The record class allows the Java program to process data described by the record format class. Data is converted
between byte arrays containing the server data and Java objects. Methods are provided in the record class to do
the following:

Retrieve the contents of a field, by index or by name, as a Java object.●

Retrieve the number of fields in the record.●

Set the contents of a field, by index or by name, with a Java object.●

Retrieve the contents of the record as server data into a byte array or output stream.●

Set the contents of the record from a byte array or an input stream.●

Convert the contents of the record to a String.●

For example, to use the record format created in the record format example:

 // Assume data queue setup work has
 // already been done. Now read a
 // record from the data queue.
 DataQueueEntry dqe = dq.read();

 // The data from the data queue is
 // now in a data queue entry. Get
 // the data out of the data queue
 // entry and put it in the record.
 // We obtain a default record from
 // the record format object and
 // initialize it with the data from the
 // data queue entry.
 Record dqRecord = rf.getNewRecord(dqe.getData());

 // Now that the data is in the
 // record, pull the data out one
 // field at a time, converting the
 // data as it is removed. The result
 // is data in a Java object that the
 // program can now process.
 Integer msgNumber = (Integer) dqRecord.getField("msgNumber");
 String msgTime = (String) dqRecord.getField("msgTime");
 String msgText = (String) dqRecord.getField("msgText");

LineDataRecordWriter class
The LineDataRecordWriter class writes the record data, in line data format, to an OutputStream. The class
translates the data into bytes by using the specified CCSID. The record format associated with the record
determines the format of the data.

Using LineDataRecordWriter requires that the following record format attributes be set:

Record format ID●

Record format type●

In conjunction with the Record or the RecordFormat classes, the LineDataRecordWriter takes a record as input to
the writeRecord() method. (Record takes a RecordFormat as input when you instantiate it.)

The LineDataRecordWriter class provides methods that allow you to:

Get the CCSID●

Get the name of the encoding●

Write the record data, in line data format, to an OutputStream●

Example: Using the LineDataRecordWriter class

 // Example using the LineDataRecordWriter class.
 try
 {
 // create a ccsid
 ccsid_ = system_.getCcsid();

 // create output queue and specify spooled file data to be *LINE
 OutputQueue outQ = new OutputQueue(system_,
"/QSYS.LIB/RLPLIB.LIB/LDRW.OUTQ");
 PrintParameterList parms = new PrintParameterList();
 parms.setParameter(PrintObject.ATTR_PRTDEVTYPE, "*LINE");

 // initialize the record format for writing data
 RecordFormat recfmt = initializeRecordFormat();

 // create a record and assign data to be printed...
 Record record = new Record(recfmt);
 createRecord(record);

 SpooledFileOutputStream os = null;
 try {
 // create the output spooled file to hold the record data
 os = new SpooledFileOutputStream(system_, parms, null, outQ);
 }
 catch (Exception e) {
 System.out.println("Error occurred creating spooled file");
 e.printStackTrace();
 }

 // create the line data record writer
 LineDataRecordWriter ldw;

 ldw = new LineDataRecordWriter(os, ccsid_, system_);

 // write the record of data
 ldw.writeRecord(record);

 // close the outputstream
 os.close();
 }

 catch(Exception e)
 {
 failed(e, "Exception occurred.");
 }

Data queues
The DataQueue classes allow the Java program to interact with server data queues. Data queues on iSeries and
AS/400e servers have the following characteristics:

The data queue allows for fast communications between jobs. Therefore, it is an excellent way to
synchronize and pass data between jobs.

●

Many jobs can simultaneously access the data queues.●

Messages on a data queue are free format. Fields are not required as they are in database files.●

The data queue can be used for either synchronous or asynchronous processing.●

The messages on a data queue can be ordered in one the following ways:

Last-in first-out (LIFO). The last (newest) message that is placed on the data queue is the first
message that is taken off the queue.

❍

First-in first-out (FIFO). The first (oldest) message that is placed on the data queue is the first
message that is taken off the queue.

❍

Keyed. Each message on the data queue has a key associated with it. A message can be taken
off the queue only by specifying the key that is associated with it.

❍

●

The data queue classes provide a complete set of interfaces for accessing server data queues from your Java
program. It is an excellent way to communicate between Java programs and programs on the server that are
written in any programming language.

A required parameter of each data queue object is the AS400 object that represents the server that has the data
queue or where the data queue is to be created.

Using the data queue classes causes the AS400 object to connect to the server. See managing connections for
information about managing connections.

Each data queue object requires the integrated file system path name of the data queue. The type for the data
queue is DTAQ. See integrated file system path names for more information.

Sequential and keyed data queues

The data queue classes support the following data queues:

Sequential data queues●

Keyed data queues●

Methods common to both types of queues are in the BaseDataQueue class. The DataQueue class extends the
BaseDataQueue class in order to complete the implementation of sequential data queues. The BaseDataQueue
class is extended by the KeyedDataQueue class to complete the implementation of keyed data queues.

When data is read from a data queue, the data is placed in a DataQueueEntry object. This object holds the data
for both keyed and sequential data queues. Additional data available when reading from a keyed data queue is
placed in a KeyedDataQueueEntry object that extends the DataQueueEntry class.

The data queue classes do not alter data that is written to or is read from the server data queue. The Java
program must correctly format the data. The data conversion classes provide methods for converting data.

The following example creates a DataQueue object, reads data from the DataQueueEntry object, and then
disconnects from the system.

 // Create an AS400 object
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create the DataQueue object
 DataQueue dq = new DataQueue(sys, "/QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ");

 // read data from the queue
 DataQueueEntry dqData = dq.read();

 // get the data out of the DataQueueEntry object.
 byte[] data = dqData.getData();

 // ... process the data

 // Disconnect since I am done using data queues
 sys.disconnectService(AS400.DATAQUEUE);

Sequential data queues

Entries on a sequential data queue on the server are removed in first-in first-out (FIFO) or last-in first-out
(LIFO) sequence. The BaseDataQueue and DataQueue classes provide the following methods for working with
sequential data queues:

Create a data queue on the server. The Java program must specify the maximum size of an entry on the
data queue. The Java program can optionally specify additional data queue parameters (FIFO vs LIFO,
save sender information, specify authority information, force to disk, and provide a queue description)
when the queue is created.

●

Peek at an entry on the data queue without removing it from the queue. The Java program can wait or
return immediately if no entry is currently on the queue.

●

Read an entry off the queue. The Java program can wait or return immediately if no entry is available
on the queue.

●

Write an entry to the queue.●

Clear all entries from the queue.●

Delete the queue.●

The BaseDataQueue class provides additional methods for retrieving the attributes of the data queue.

Examples

Sequential data queue examples, in which the producer puts items on a data queue, and the consumer takes the
items off the queue and processes them:

Sequential data queue producer example.●

Sequential data queue consumer example.●

Keyed data queues

The BaseDataQueue and KeyedDataQueue classes provide the following methods for working with keyed data
queues:

Create a keyed data queue on the server. The Java program must specify key length and maximum size
of an entry on the queue. The Java program can optionally specify authority information, save sender
information, force to disk, and provide a queue description.

●

Peek at an entry based on the specified key without removing it from the queue. The Java program can
wait or return immediately if no entry is currently on the queue that matches the key criteria.

●

Read an entry off the queue based on the specified key. The Java program can wait or return
immediately if no entry is available on the queue that matches the key criteria.

●

Write a keyed entry to the queue.●

Clear all entries or all entries that match a specified key.●

Delete the queue.●

The BaseDataQueue and KeyedDataQueue classes also provide additional methods for retrieving the attributes
of the data queue.

Examples

In the following keyed data queue examples, the producer puts items on a data queue, and the consumer takes
the items off the queue and processes them:

Keyed data queue producer example●

Keyed data queue consumer example●

Digital certificates
Digital certificates are digitally-signed statements used for secured transactions over the internet. (Digital
certificates can be used on servers running OS/400 Version 4 Release 3 (V4R3) and later.) To make a secure
connection using the Secure Sockets Layer (SSL), a digital certificate is required.

Digital certificates comprise the following:

The public encryption key of the user●

The name and address of the user●

The digital signature of a third-party certification authority (CA). The authority's signature means that the
user is a trusted entity.

●

The issue date of the certificate●

The expiration date of the certificate●

As an administrator of a secured server, you can add a certification authority's "trusted root key" to the server.
This means that your server will trust anyone who is certified through that particular certification authority.

Digital certificates also offer encryption, ensuring a secure transfer of data through a private encryption key.

You can create digital certificates through the javakey tool. (For more information about javakey and Java

security, see the Sun Microsystems, Inc., Java Security page .) The IBM Toolbox for Java licensed program
has classes that administer digital certificates on the iSeries or AS/400e server.

The AS400Certificate classes provide methods to manage X.509 ASN.1 encoded certificates. Classes are
provided to do the following:

Get and set certificate data.●

List certificates by validation list or user profile.●

Manage certificates, for example, add a certificate to a user profile or delete a certificate from a
validation list.

●

Using a certificate class causes the AS400 object to connect to the server. See managing connections for
information about managing connections.

On the server, certificates belong to a validation list or to a user profile.

The AS400CertificateUserProfileUtil class has methods for managing certificates on a user profile.●

The AS400CertificateVldlUtil class has methods for managing certificates in a validation list.●

These two classes extend AS400CertificateUtil, which is an abstract base classes that defines methods common
to both subclasses.

The AS400Certificate class provides methods to read and write certificate data. Data is accessed as an array of
bytes. The Java.Security package in Java virtual machine 1.2 provides classes that can be used to get and set
individual fields of the certificate.

Listing certificates

To get a list of certificates, the Java program must do the following:

Create an AS400 object.1.

Construct the correct certificate object. Different objects are used for listing certificates on a user profile2.

(AS400CertificateUserProfileUtil) versus listing certificates in a validation list
(AS400CertificateVldlUtil).

Create selection criteria based on certificate attributes. The AS400CertificateAttribute class contains
attributes used as selection criteria. One or more attribute objects define the criteria that must be met
before a certificate is added to the list. For example, a list might contain only certificates for a certain
user or organization.

3.

Create a user space on the server and put the certificate into the user space. Large amounts of data can be
generated by a list operation. The data is put into a user space before it can be retrieved by the Java
program. Use the listCertificates() method to put the certificates into the user space.

4.

Use the getCertificates() method to retrieve certificates from the user space.5.

The following example lists certificates in a validation list. It lists only those certificates belonging to a certain
person.

 // Create an AS400 object. The
 // certificates are on this system.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create the certificate object.
 AS400CertificateVldlUtil certificateList =
 new AS400CertificateVldlUtil(sys,
"/QSYS.LIB/MYLIB.LIB/CERTLIST.VLDL");

 // Create the certificate attribute
 // list. We only want certificates
 // for a single person so the list
 // consists of only one element.
 AS400CertificateAttribute[] attributeList = new
AS400CertificateAttribute[1];
 attributeList[0] = new
AS400CertificateAttribute(AS400CertificateAttribute.SUBJECT_COMMON_NAME,
"Jane Doe");

 // Retrieve the list that matches
 // the criteria. User space "myspace"
 // in library "mylib" will be used
 // for storage of the certificates.
 // The user space must exist before
 // calling this API.
 int count = certificateList.listCertificates(attributeList,

"/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC");

 // Retrieve the certificates from
 // the user space.
 AS400Certificates[] certificates =
certificateList.getCertificates("/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC", 0, 8);

 // ... process the certificates

EnvironmentVariable class
The EnvironmentVariable class and the EnvironmentVariableList class enable you to access and set iSeries
system-level environment variables.

Each variable has unique identifiers: the system name and the environment variable name. Each environment
variable is associated with a CCSID, which is by default the CCSID of the current job, which describes where the
contents of the variable are stored.

Note: Environment variables are different than system values, although they are often used for the same purpose.
See SystemValues for more information on how to access system values.

Use an EnvironmentVariable object to perform the following actions on an environment variable:

Get and set the name●

Get and set the system●

Get and set the value (which allows you to change the CCSID)●

Refresh the value●

Example: Creating, setting, and getting environment variables

The following example creates two EnvironmentVariables and sets and gets their values.

 // Create the iSeries system object.
 AS400 system = new AS400("mySystem");
 // Create the foreground color environment variable and set it to red.
 EnvironmentVariable fg = new EnvironmentVariable(system, "FOREGROUND");
 fg.setValue("RED");
 // Create the background color environment variable and get its value.
 EnvironmentVariable bg = new EnvironmentVariable(system, "BACKGROUND");
 String background = bg.getValue();

Exceptions
The IBM Toolbox for Java access classes throw exceptions when device errors, physical limitations,
programming errors, or user input errors occur. The exception classes are based upon the type of error that
occurs instead of the location where the error originates.

Most exceptions contain three pieces of information:

Error type - The exception object that is thrown indicates the type of error that occurred. Errors of the
same type are grouped together in an exception class.

●

Error details - The exception contains a return code to further identify the cause of the error that
occurred. The return code values are constants within the exception class.

●

Error text - The exception contains a text string that describes the error that occurred. The string is
translated in the locale of the client Java virtual machine.

●

The following example shows how to catch a thrown exception, retrieve the return code, and display the
exception text:

 // ... all the setup work to delete
 // a file on the server through the
 // IFSFile class is done. Now try
 // deleting the file.
 try
 {
 aFile.delete();

 }

 // The delete failed.
 catch (ExtendedIOException e)
 {
 // Display the translated string
 // containing the reason that the
 // delete failed.
 System.out.println(e);

 // Get the return code out of the
 // exception and display additional
 // information based on the return
 // code.
 int rc = e.getReturnCode()

 switch (rc)
 {
 case ExtendedIOException.FILE_IN_USE:
 System.out.println("Delete failed, file is in use "):
 break;

 case ExtendedIOException.PATH_NOT_FOUND:
 System.out.println("Delete failed, path not found ");
 break;

 // ... for every specific error you
 // want to track

 default:
 System.out.println("Delete failed, rc = ");
 System.out.println(rc);
 }
 }

FTP class
The FTP class provides a programmable interface to FTP functions. You no longer have to use
java.runtime.exec() or tell your users to run FTP commands in a separate application. That is, you can program
FTP functions directly into your application. So, from within your program, you can do the following:

Connect to an FTP server●

Send commands to the server●

List the files in a directory●

Get files from the server and●

Put files to the server●

For example, with the FTP class, you can copy a set of files from a directory on a server:

 FTP client = new FTP("myServer", "myUID", "myPWD");
 client.cd("/myDir");
 client.setDataTransferType(FTP.BINARY);
 String [] entries = client.ls();

 for (int i = 0; i < entries.length; i++)
 {
 System.out.println("Copying " + entries[i]);
 try
 {
 client.get(entries[i], "c:\\ftptest\\" + entries[i]);
 }
 catch (Exception e)
 {
 System.out.println(" copy failed, likely this is a directory");
 }
 }

 client.disconnect();

FTP is a generic interface that works with many different FTP servers. Therefore, it is up to the programmer to
match the semantics of the server.

FTP subclass

While the FTP class is a generic FTP interface, the AS400FTP subclass is written specifically for the FTP server
on the server. That is, it understands the semantics of the FTP server on the iSeries or AS/400e server, so the
programmer doesn't have to. For example, this class understands the various steps needed to transfer a save file
to the server and performs these steps automatically. AS400FTP also ties into the security facilities of the IBM
Toolbox for Java. As with other IBM Toolbox for Java classes, AS400FTP depends on the AS400 object for
system name, user ID, and password.

The following example puts a save file to the server. Note the application does not set data transfer type to
binary or use Toolbox CommandCall to create the save file. Since the extension is .savf, AS400FTP class
detects the file to put is a save file so it does these steps automatically.

 AS400 system = new AS400();
 AS400FTP ftp = new AS400FTP(system);

 ftp.put("myData.savf", "/QSYS.LIB/MYLIB.LIB/MYDATA.SAVF");

Integrated file system
The integrated file system classes allow a Java program to access files in the integrated file system of an iSeries
or AS/400e server as a stream of bytes or a stream of characters. The integrated file system classes were created
because the java.io package does not provide file redirection and other iSeries functionality.

The function that is provided by the IFSFile classes is a superset of the function provided by the file IO classes
in the java.io package. All methods in java.io FileInputStream, FileOutputStream, and RandomAccessFile are in
the integrated file system classes.

In addition to these methods, the classes contain methods to do the following:

Specify a file sharing mode to deny access to the file while it is in use●

Specify a file creation mode to open, create, or replace the file●

Lock a section of the file and deny access to that part of the file while it is in use●

List the contents of a directory more efficiently●

Cache the contents of a directory to improve performance by limiting calls to the server●

Determine the number of bytes available on the server file system●

Allow a Java applet to access files in the server file system●

Read and write data as text instead of as binary data●

Determine the type of the file object (logical, physical, save, and so on) when the object is in the
QSYS.LIB file system

●

Through the integrated file system classes, the Java program can directly access stream files on the iSeries. The
Java program can still use the java.io package, but the client operating system must then provide a method of
redirection. For example, if the Java program is running on a Windows 95 or Windows NT operating system,
the Network Drives function of iSeries Access for Windows is required to redirect java.io calls to the iSeries.
With the integrated file system classes, you do not need iSeries Access for Windows.

A required parameter of the integrated file system classes is the AS400 object that represents the iSeries system
that contains the file. Using the integrated file system classes causes the AS400 object to connect to the iSeries.
See managing connections for information about managing connections.

The integrated file system classes require the hierarchical name of the object in the integrated file system. Use
the forward slash as the path separator character. The following example shows how to access FILE1 in
directory path DIR1/DIR2:

 /DIR1/DIR2/FILE1

The integrated file system classes are as follows.

Integrated file system class Description

IFSFile Represents a file in the integrated file system

IFSJavaFile Represents a file in the integrated file system (extends java.io.File)

IFSFileInputStream Represents an input stream for reading data from an iSeries file

IFSTextFileInputStream Represents a stream of character data read from a file

IFSFileOutputStream Represents an output stream for writing data to an iSeries file

IFSTextFileOutputStream Represents a stream of character data being written to a file

IFSRandomAccessFile Represents a file on the iSeries for reading and writing data

IFSFileDialog Allows the user to move within the file system and to select a file within the file
system

Examples

The IFSCopyFile example shows how to use the integrated file system classes to copy a file from one directory
to another on the iSeries.

The File List Example shows how to use the integrated file system classes to list the contents of a directory on
the iSeries.

IFSFile class
The IFSFile class represents an object in the iSeries integrated file system. The methods on IFSFile represent
operations that are done on the object as a whole. You can use IFSFileInputStream, IFSFileOutputStream, and
IFSRandomAccessFile to read and write to the file. The IFSFile class allows the Java program to do the
following:

Determine if the object exists and is a directory or a file●

Determine if the Java program can read from or write to a file●

Determine the length of a file●

Determine the permissions of an object and set the permissions of an object●

Create a directory●

Delete a file or directory●

Rename a file or directory●

Get or set the last modification date of a file●

List the contents of a directory●

List the contents of a directory and save the attribute information to a local cache●

Determine the amount of space available on the system●

Determine the type of the file object when it is in the QSYS.LIB file system●

You can get the list of files in a directory by using either the list() method or the listFiles() method:

The listFiles() method caches information for each file on the initial call. After calling listFiles(), using
other methods to query file details results in better performance because the information is retrieved
from the cache. For example, calling isDirectory() on an IFSFile object returned from listFiles() does
not require a call to the server.

●

The list() method retrieves information on each file in a separate request to the server, making it slower
and more demanding of server resources.

●

Note: Using listFiles() means that the information in the cache may eventually become stale, so you may need
to refresh the data by calling listFiles() again.

Examples

The following examples show how to use the IFSFile class:

Example: Creating a directory●

Example: Using exceptions to track errors●

Example: Listing files with a .txt extension●

Example: Using listFiles() to list the contents of a directory●

IFSJavaFile class
The IFSJavaFile class represents a file in the iSeries integrated file system and extends the java.io.File class.
IFSJavaFile allows you to write files for the java.io.File interface that access iSeries integrated file systems.

IFSJavaFile makes portable interfaces that are compatible with java.io.File and uses only the errors and
exceptions that java.io.File uses. IFSJavaFile uses the security manager features from java.io.File, but unlike
java.io.File, IFSJavaFile uses security features continuously.

You use IFSJavaFile with IFSFileInputStream and IFSFileOutputStream. It does not support
java.io.FileInputStream and java.io.FileOutputStream.

IFSJavaFile is based on IFSFile; however, its interface is more like java.io.File than IFSFile. IFSFile is an
alternative to the IFSJavaFile class.

You can get the list of files in a directory by using either the list() method or the listFiles() method:

The listFiles() method performs better because it retrieves and caches information for each file on the
initial call. After that, information on each file is retrieved from the cache.

●

The list() method retrieves information on each file in a separate request, making it slower and more
demanding of server resources.

●

Note: Using listFiles() means that the information in the cache eventually become stale, so you may need to
refresh the data.

An example of how to use the IFSJavaFile class follows.

 // Work with /Dir/File.txt on the system flash.
 AS400 as400 = new AS400("flash");
 IFSJavaFile file = new IFSJavaFile(as400, "/Dir/File.txt");

 // Determine the parent directory of the file.
 String directory = file.getParent();

 // Determine the name of the file.
 String name = file.getName();

 // Determine the file size.
 long length = file.length();

 // Determine when the file was last modified.
 Date date = new Date(file.lastModified());

 // Delete the file.
 if (file.delete() == false)
 {
 // Display the error code.
 System.err.println("Unable to delete file.");
 }

 try
 {
 IFSFileOutputStream os = new IFSFileOutputStream(file.getSystem(),
 file,
 IFSFileOutputStream.SHARE_ALL,
 false);
 byte[] data = new byte[256];
 int i = 0;
 for (; i < data.length; i++)
 {
 data[i] = (byte) i;
 os.write(data[i]);
 }
 os.close();
 }
 catch (Exception e)
 {
 System.err.println ("Exception: " + e.getMessage());
 }

IFSFileInputStream

The IFSFileInputStream class represents an input stream for reading data from a file on the server. As in the
IFSFile class, methods exist in IFSFileInputStream that duplicate the methods in FileInputStream from the
java.io package. In addition to these methods, IFSFileInputStream has additional methods specific to iSeries and
AS/400e servers. The IFSFileInputStream class allows a Java program to do the following:

Open a file for reading. The file must exist since this class does not create files on the server. You can
use a constructor that allows you to specify the file sharing mode.

●

Determine the number of bytes in the stream.●

Read bytes from the stream.●

Skip bytes in the stream.●

Lock or unlock bytes in the stream.●

Close the file.●

As in FileInputStream in java.io, this class allows a Java program to read a stream of bytes from the file. The
Java program reads the bytes sequentially with only the additional option of skipping bytes in the stream.

The following example shows how to use the IFSFileInputStream class.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Open a file object that
 // represents the file.
 IFSFileInputStream aFile =
 new IFSFileInputStream(sys,"/mydir1/mydir2/myfile");

 // Determine the number of bytes in
 // the file.
 int available = aFile.available();

 // Allocate a buffer to hold the data
 byte[] data = new byte[10240];

 // Read the entire file 10K at a time
 for (int i = 0; i < available; i += 10240)
 {
 aFile.read(data);
 }

 // Close the file.
 aFile.close();

In addition to the methods in FileInputStream, IFSFileInputStream gives the Java program the following
options:

Locking and unlocking bytes in the stream. See IFSKey for more information.●

Specifying a sharing mode when the file is opened. See sharing modes for more information.●

IFSTextFileInputStream class
The IFSTextFileInputStream class represents a stream of character data read from a file. The data read from the
IFSTextFileInputStream object is supplied to the Java program in a Java String object, so it is always Unicode.
When the file is opened, the IFSTextFileInputStream object determines the CCSID of the data in the file. If the
data is stored in an encoding other than Unicode, the IFSTextFileInputStream object converts the data from the
file's encoding to Unicode before giving the data to the Java program. If the data cannot be converted, an
UnsupportedEncodingException is thrown.

The following example shows how to use the IFSTextFileInputStream:

 // Work with /File on the system
 // mySystem.
 AS400 as400 = new AS400("mySystem");
 IFSTextFileInputStream file = new IFSTextFileInputStream(as400,
"/File");

 // Read the first four characters of
 // the file.
 String s = file.read(4);

 // Display the characters read. Read
 // the first four characters of the
 // file. If necessary, the data is
 // converted to Unicode by the
 // IFSTextFileInputStream object.
 System.out.println(s);

 // Close the file.
 file.close();

IFSFileOutputStream

The IFSFileOutputStream class represents an output stream for writing data to a file on the server. As in the
IFSFile class, methods exist in IFSFileOutputStream that duplicate the methods in FileOutputStream from the
java.io package. IFSFileOutputStream also has additional methods specific to the server. The
IFSFileOutputStream class allows a Java program to do the following:

Open a file for writing. If the file already exists, it is replaced. Constructors are available that specify
the file sharing mode and whether the contents of an existing file have been appended.

●

Write bytes to the stream.●

Commit to disk the bytes that are written to the stream.●

Lock or unlock bytes in the stream.●

Close the file.●

As in FileOutputStream in java.io, this class allows a Java program to sequentially write a stream of bytes to the
file.

The following example shows how to use the IFSFileOutputStream class.

 // Create an AS400 object
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Open a file object that
 // represents the file.
 IFSFileOutputStream aFile =
 new IFSFileOutputStream(sys,"/mydir1/mydir2/myfile");

 // Write to the file
 byte i = 123;
 aFile.write(i);

 // Close the file.
 aFile.close();

In addition to the methods in FileOutputStream, IFSFileOutputStream gives the Java program the following
options:

Locking and unlocking bytes in the stream. See IFSKey for more information.●

Specifying a sharing mode when the file is opened. See sharing modes for more information.●

IFSTextFileOutputStream class
The IFSTextFileOutputStream class represents a stream of character data being written to a file. The data
supplied to the IFSTextFileOutputStream object is in a Java String object so the input is always Unicode. The
IFSTextFileOutputStream object can convert the data to another CCSID as it is written to the file, however. The
default behavior is to write Unicode characters to the file, but the Java program can set the target CCSID before
the file is opened. In this case, the IFSTextFileOutputStream object converts the characters from Unicode to the
specified CCSID before writing them to the file. If the data cannot be converted, an
UnsupportedEncodingException is thrown.

The following example shows how to use IFSTextFileOutputStream:

 // Work with /File on the system
 // mySystem.
 AS400 as400 = new AS400("mySystem");
 IFSTextFileOutputStream file = new IFSTextFileOutputStream(as400,
"/File");

 // Write a String to the file.
 // Because no CCSID was specified
 // before writing to the file,
 // Unicode characters will be
 // written to the file. The file
 // will be tagged as having Unicode
 // data.
 file.write("Hello world");

 // Close the file.
 file.close();

IFSRandomAccessFile

The IFSRandomAccessFile class represents a file on the server for reading and writing data. The Java program
can read and write data sequentially or randomly. As in IFSFile, methods exist in IFSRandomAccessFile that
duplicate the methods in RandomAccessFile from the java.io package. In addition to these methods,
IFSRandomAccessFile has additional methods specific to the iSeries or AS/400e server. Through
IFSRandomAccessFile, a Java program can do the following:

Open a file for read, write, or read/write access. The Java program can optionally specify the file
sharing mode and the existence option.

●

Read data at the current offset from the file.●

Write data at the current offset to the file.●

Get or set the current offset of the file.●

Close the file.●

The following example shows how to use the IFSRandomAccessFile class to write four bytes at 1K intervals to
a file.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Open a file object that represents
 // the file.
 IFSRandomAccessFile aFile =
 new IFSRandomAccessFile(sys,"/mydir1/myfile", "rw");

 // Establish the data to write.
 byte i = 123;

 // Write to the file 10 times at 1K
 // intervals.
 for (int j=0; j<10; j++)
 {
 // Move the current offset.
 aFile.seek(j * 1024);

 // Write to the file. The current
 // offset advances by the size of
 // the write.
 aFile.write(i);
 }

 // Close the file.
 aFile.close();

In addition to the methods in java.io RandomAccessFile, IFSRandomAccessFile gives the Java program the
following options:

Committing to disk bytes written.●

Locking or unlocking bytes in the file.●

Locking and unlocking bytes in the stream. See IFSKey for more information.●

Specifying a sharing mode when the file is opened. See sharing modes for more information.●

Specify the existence option when a file is opened. The Java program can choose one of the following:

Open the file if it exists; create the file if it does not.❍

Replace the file if it exists; create the file if it does not.❍

Fail the open if the file exists; create the file if it does not.❍

Open the file if it exists; fail the open if it does not.❍

Replace the file if it exists; fail the open if it does not.❍

●

IFSFileDialog

The IFSFileDialog class allows you to traverse the file system and select a file. This class uses the IFSFile class
to traverse the list of directories and files in the integrated file system on the iSeries or AS/400e server. Methods
on the class allow a Java program to set the text on the push buttons of the dialog and to set filters. Note that an
IFSFileDialog class based on Swing 1.1 is also available.

You can set filters through the FileFilter class. If the user selects a file in the dialog, the getFileName() method
can be used to get the name of the file that was selected. The getAbsolutePath() method can be used to get the
path and name of the file that was selected.

The following example shows how to set up a dialog with two filters and to set the text on the push buttons of
the dialog.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a dialog object setting
 // the text of the dialog's title
 // bar and the server to traverse.
 IFSFileDialog dialog = new IFSFileDialog(this, "Title Bar Text", sys);

 // Create a list of filters then set
 // the filters in the dialog. The
 // first filter will be used when
 // the dialog is first displayed.
 FileFilter[] filterList = {new FileFilter("All files (*.*)", "*.*"),
 new FileFilter("HTML files (*.HTML",
"*.HTM")};

 dialog.setFileFilter(filterList, 0);

 // Set the text on the buttons of
 // the dialog.
 dialog.setOkButtonText("Open");
 dialog.setCancelButtonText("Cancel");

 // Show the dialog. If the user
 // selected a file by pressing the
 // Open button, get the file the
 // user selected and display it.
 if (dialog.showDialog() == IFSFileDialog.OK)
 System.out.println(dialog.getAbsolutePath());

IFSKey class
If the Java program allows other programs access to a file at the same time, the Java program can lock bytes in
the file for a period of time. During that time, the program has exclusive use of that section of the file. When a
lock is successful, the integrated file system classes return an IFSKey object. This object is supplied to the
unlock() method to indicate which bytes to unlock. When the file is closed, the system unlocks all locks that are
still on the file (the system does an unlock for every lock that the program did not unlock).

The following example shows how to use the IFSKey class.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Open an input stream. This
 // constructor opens with share_all
 // so other programs can open this
 // file.
 IFSFileInputStream aFile =
 new IFSFileInputStream(sys,"/mydir1/mydir2/myfile");

 // Lock the first 1K bytes in the
 // file. Now no other instance can
 // read these bytes.
 IFSKey key = aFile.lock(1024);

 // Read the first 1K of the file.
 byte data[] = new byte[1024];
 aFile.read(data);

 // Unlock the bytes of the file.
 aFile.unlock(key);

 // Close the file.
 aFile.close();

File sharing mode
The Java program can specify a sharing mode when a file is opened. The program either allows other programs
to open the file at the same time or has exclusive access to the file.

The following example shows how to specify a file sharing mode.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Open a file object that
 // represents the file. Since this
 // program specifies share-none, all
 // other open attempts fail until
 // this instance is closed.
 IFSFileOutputStream aFile =
 new IFSFileOutputStream(sys,
 "/mydir1/mydir2/myfile",
 IFSFileOutputStream.SHARE_NONE,
 false);

 // ... perform operations on the
 // file.

 // Close the file. Now other open
 // requests succeed.
 aFile.close();

JavaApplicationCall
The JavaApplicationCall class provides you with the ability to have your client use the server JVM to run a Java
program that resides on the server.

After establishing a connection to the server from the client, the JavaApplicationCall class lets you configure the
following:

Set the CLASSPATH environment variable on the server with the setClassPath() method1.

Define your program's parameters with the setParameters() method2.

Run the program with run()3.

Send input from the client to the Java program. The Java program reads the input via standard input
which is set with the sendStandardInString() method. You can redirect standard output and standard
error from the Java program to the client via the getStandardOutString() and getStandardErrorString()

4.

JavaApplicationCall is a class you call from your Java program. However, the IBM Toolbox for Java also
provides utilities to call Java programs that reside on the server. These utilities are complete Java programs you
can run from your workstation. See RunJavaApplication class for more information.

Example

This example shows you how to run a program on the server from the client that outputs "Hello World!".

JDBC

JDBC(TM) is an application programming interface (API) included in the Java platform that enables Java
programs to connect to a wide range of databases.

The IBM Toolbox for Java JDBC driver allows you to use JDBC API interfaces to issue structured query
language (SQL) statements to and process results from databases on the server. You can also use IBM
Developer Kit for Java JDBC driver, called the 'native' JDBC driver:

Use the Toolbox JDBC driver when the Java program is on one system and the database files are on
another system, as in a client/server environment

●

Use the native JDBC driver when both the Java program and database files are on the same iSeries
system

●

For information about ongoing improvements, see What's new for V5R2 and Enhancements to Toolbox for Java
JDBC support.

Different versions of JDBC

Different versions of the JDBC API exist, and the IBM Toolbox for Java JDBC driver supports the following
versions:

JDBC 1.2 API (the java.sql package) is included in the Java Platform 1.1 core API and JDK 1.1.●

JDBC 2.1 core API (the java.sql package) is included in both the Java 2 Platform, Standard Edition
(J2SE) and the Java 2 Platform Enterprise Edition (J2EE).

●

JDBC 2.0 Optional Package API (the javax.sql package) is included in J2EE and is available as a
separate download from Sun. These extensions were formerly named the JDBC 2.0 Standard Extension
API.

●

JDBC 3.0 API (the java.sql and javax.sql packages) is included in J2SE, Version 1.4.●

Supported interfaces

The following table lists the supported JDBC interfaces and the API required to use them:

Supported JDBC interface API required

Blob provides access to binary large objects (BLOBs) JDBC 2.1 core

CallableStatement runs SQL stored procedures JDK 1.1

Clob provides access to character large objects (CLOBs) JDBC 2.1 core

Connection represents a connection to a specific database JDK 1.1

ConnectionPool represents a pool of Connection objects. JDBC 2.0 Optional
Package

ConnectionPoolDataSource represents a factory for pooled
AS400JDBCPooledConnection objects

JDBC 2.0 Optional
Package

DatabaseMetaData provides information about the database as a whole. JDK 1.1

DataSource represents a factory for database connections. JDBC 2.0 Optional
Package

Driver creates the connection and returns information about the driver version. JDK 1.1

ParameterMetaData provides the ability to get information about the types and
properties of the parameters in a PreparedStatement object

JDBC 3.0 API

PreparedStatement runs compiled SQL statements JDK 1.1

ResultSet provides access to a table of data that is generated by running a SQL
query or DatabaseMetaData catalog method

JDK 1.1

ResultSetMetaData provides information about a specific ResultSet JDK 1.1

RowSet is a connected row set that encapsulates a ResultSet JDBC 2.0 Optional
Package

Savepoint provides finer grained control within transactions JDBC 3.0 API

Statement runs SQL statements and obtains the results JDK 1.1

XAConnection is a database connection which participates in global XA
transactions

JDBC 2.0 Optional
Package

XAResource is resource manager for use in XA transactions JDBC 2.0 Optional
Package

We have included a table that lists JDBC properties for easy reference.

Examples

The following examples illustrate ways to use the IBM Toolbox for Java JDBC driver.

Using the JDBC driver to create and populate a table●

Using the JDBC driver to query a table and output its contents●

Enhancements to Toolbox for Java JDBC support
Enhanced JDBC functions for OS/400 Version 5 Release 2 include:

Removal of 'FOR UPDATE' restriction●

Change in data truncation●

Get and modify columns and parameters by name●

Retrieve auto-generated keys●

Improved performance when running SQL insert statements in a batch●

Enhanced support for ResultSet.getRow()●

Improved support for using mixed cases in column names●

Specify holdability for Statements, CallableStatements, and PreparedStatements●

Enhanced transaction isolation support●

Removal of the 'FOR UPDATE' restriction

You no longer need to specify FOR UPDATE on your SELECT statements in order to guarantee an updatable
cursor. When connecting to V5R1 and later versions of OS/400, Toolbox for Java honors whatever concurrency
you pass in when you create statements. The default continues to be a read-only cursor if you do not specify a
concurrency.

Data truncation throws exceptions only when truncated character data is written to the database

Data truncation rules for Toolbox for Java now are the same as those for the IBM Developer Kit for Java JDBC
driver. For more information, see IBM Toolbox for Java JDBC properties.

Get and modify columns and parameters by name

New methods allow you to get and update information by column name in ResultSet and to get and set
information by parameter name in CallableStatement. For example, in ResultSet, where you previously used the
following:

 ResultSet rs = statement.executeQuery(SELECT * FROM
MYCOLLECTION/MYTABLE);
 rs.getString(1);

You can now use:

 ResultSet rs = statement.executeQuery(SELECT * FROM
MYCOLLECTION/MYTABLE);
 rs.getString('STUDENTS');

Be aware that accessing parameters by their index results in better performance than accessing them by their
name. You can also specify parameter names to set in CallableStatement. Where you might have used the
following in CallableStatement:

 CallableStatement cs = connection.prepareCall(CALL MYPGM (?));
 cs.setString(1);

You can now use:

 CallableStatement cs = connection.prepareCall(CALL MYPGM (?));
 cs.setString('PARAM_1');

To use these new methods, you need JDBC 3.0 or later and the Java 2 Platform, version 1.4 (either the Standard
or the Enterprise Edition).

Retrieve auto-generated keys

The getGeneratedKeys() method on AS400JDBCStatement retrieves any auto-generated keys created as a result

of executing that Statement object. When the Statement object does not generate any keys, an empty ResultSet
object is returned. Currently the server supports returning only one auto-generated key (the key for the last
inserted row). The following example shows how you might insert a value into a table then get the
auto-generated key:

 Statement s = statement.executeQuery
 ("INSERT INTO MYSCHOOL/MYSTUDENTS (FIRSTNAME) VALUES ('JOHN'");
 ResultSet rs = s.getGeneratedKeys();
 // Currently the iSeries server supports returning only one
auto-generated
 // key -- the key for the last inserted row.
 rs.next();
 String autoGeneratedKey = rs.getString(1);
 // Use the auto-generated key, for example, as the primary key in
another table

To retrieve auto-generated keys, you need JDBC 3.0 or later, and the Java 2 Platform, version 1.4 (either the
Standard or the Enterprise Edition). Retrieving auto-generated keys also requires connecting to a V5R2 or later
version of OS/400.

Improved performance when running SQL insert statements in a batch

Performance of running SQL insert statements in a batch has been improved. Run SQL statements in a batch by
using the different addBatch() methods available in AS400JDBCStatement, AS400JDBCPreparedStatement,
and AS400JDBCCallableStatement. Enhanced batch support affects only insert requests. For example, using
batch support to process several inserts involves only one pass to the server. However, using batch support to
process an insert, and update, and a delete sends each request individually.

To use batch support, you need JDBC 2.0 or later and the Java 2 Platform, version 1.2 (either the Standard or
the Enterprise Edition).

Enhanced support for ResultSet.getRow()

Previously, the IBM Toolbox for Java JDBC driver was limited in its support for the getRow() method in
ResultSet. Specifically, using ResultSet.last(), ResultSet.afterLast(), and ResultSet.absolute() with a negative
value made the current row number not available. The previous restrictions are lifted, making this method fully
functional.

Using mixed case in column names

Toolbox for Java methods must match either column names provided by the user or column names provided by
the application with the names that are on the database table. In either case, when a column name is not
enclosed in quotes, Toolbox for Java changes the name to uppercase characters before matching it against the
names on the server. When the column name is enclosed in quotes, it must exactly match the name on the server
or Toolbox for Java throws an exception.

Specify holdability in created Statements, CallableStatements, and PreparedStatements

New methods in AS400JDBCConnection allow you to specify the holdability for Statements,
CallableStatements, and PreparedStatements that you create. Holdability determines whether cursors are held
open or closed when committing the transaction. You can now have a statement that has a different holdability
than its connection object. Also, connection objects can have multiple open statement objects, each with a
different specified holdability. Calling commit causes each statement to be handled according to the holdability
specified for that statement.

Holdability is derived in the following order of precedence:

Holdability specified on statement creation by using the Connection class methods createStatement(),
prepareCall(), or prepareStatement().

1.

Holdability specified by using Connection.setHoldability(int).2.

Holdability specified by the Toolbox for Java JDBC cursor hold property (when methods in 1. or 2. are
not used)

3.

To use these methods, you need JDBC 3.0 or later, and the Java 2 Platform, version 1.4 (either the Standard or
the Enterprise Edition). Also, servers running a V5R1 or earlier version of OS/400 are able to use only the

holdability specified by the JDBC cursor hold property.

Enhanced transaction isolation support

The IBM Toolbox for Java JDBC driver now features support for switching to a transaction isolation level of
*NONE after a connection is made. Prior to V5R2, the Toolbox for Java JDBC driver threw an exception when
switching to *NONE after making a connection.

IBM Toolbox for Java JDBC properties
Many properties can be specified when connecting to a server database using JDBC. All properties are optional and
can be specified either as part of the URL or in a java.util.Properties object. If a property is set in both the URL and a
Properties object, the value in the URL will be used.

Note: The following list does not include DataSource properties.

The following tables list the different connection properties that are recognized by this driver. Some of these properties
affect performance and others are server job attributes. The tables organize the properties into the following categories:

General properties●

Server properties●

Format properties●

Performance properties●

Sort properties●

Other properties●

General properties

General properties are system attributes that specify the user, password, and whether a prompt is necessary to connect
to the server.

General property Description Required Choices Default

"password" Specifies the password for connecting to the
server. If none is specified, then the user
will be prompted, unless the "prompt"
property is set to "false", in which case an
attempt to connect will fail.

no server password (user will be prompted)

"prompt" Specifies whether the user should be
prompted if a user name or password is
needed to connect to the server. If a
connection can not be made without
prompting the user, and this property is set
to "false", then an attempt to connect will
fail.

no "true"
"false"

"true"

"user" Specifies the user name for connecting to
the server. If none is specified, then the user
will be prompted, unless the "prompt"
property is set to "false", in which case an
attempt to connect will fail.

no server user (user will be prompted)

Server properties

Server properties specify attributes that govern transactions, libraries, and databases.

Server
property Description Required Choices Default

"cursor hold" Specifies whether to hold the cursor across transactions.
If this property is set to "true", cursors are not closed
when a transaction is committed or rolled back. All
resources acquired during the unit of work are held, but
locks on specific rows and objects implicitly acquired
during the unit of work are released.

no "true"
"false"

"true"

"cursor
sensitivity"

Specifies the cursor sensitivity requested from the
database. The behavior depends on the resultSetType:

ResultSet.TYPE_FORWARD_ONLY or
ResultSet.TYPE_SCROLL_SENSITIVE means
that the value of this property controls what
cursor sensitivity the Java program requests from
the database.

●

ResultSet.TYPE_SCROLL_INSENSITIVE
causes this property to be ignored.

●

This property is ignored when connecting to systems
running V5R1 and earlier versions of OS/400.

no "asensitive"
"insensitive"
"sensitive"

"asensitive"

"database
name"

Specifies the database to use for the connection, including
one stored in an independent auxiliary storage pool. This
property applies only when connecting to a V5R2 or later
version of OS/400. When you specify a database name,
the name must exist in the relational database directory
on the server. The following criteria determine which
database is accessed:

When this property is used to specify a database,
the specified database is used. When the
specified database does not exist, the connection
fails.

●

When this property is used to specify *SYSBAS
as the database name, the system default database
is used.

●

When this property is omitted, the database name
specified in the job description for the user
profile is used. When the job description does not
specify a database name, the system default
database is used.

●

no Database name
"*SYSBAS"

The database
name specified
in the job
description for
the user profile
is used. When
the job
description
does not
specify a
database name,
the system
default
database is
used.

"libraries" Specifies one or more libraries that you want to add to or
replace the library list of the server job, and optionally
sets the default library (default schema).

Library list
The server uses specified libraries to resolve unqualified
stored procedure names, and stored procedures use them
to resolve unqualified names. To specify multiple
libraries, use commas or spaces to separate individual
entries. You can use *LIBL as a placeholder for the
current library list of the server job:

When the first entry is *LIBL, the specified libraries are
added to the current library list of the server job When
you do not use *LIBL, the specified libraries replace the
current library list of the server job

Default schema
The server uses the default schema to resolve unqualified

no List of server
libraries,
separated by
commas or
spaces

"*LIBL"

names in SQL statements. For example, in the statement
"SELECT * FROM MYTABLE", the server looks only
in the default schema for MYTABLE. You can specify
the default schema on the connection URL. When you do
not specify the default schema on the connection URL,
the following conditions apply, depending on whether
you use SQL Naming or System Naming.

SQL Naming
When you do not specify the default schema on
the connection URL:

The first entry (unless it is *LIBL)
becomes the default schema

❍

When the first entry is *LIBL, the second
entry becomes the default schema

❍

When you do not set this property or
when it contains only *LIBL, the user
profile becomes the default schema

❍

●

System Naming
When you do not specify the default schema on
the connection URL:

No default schema is set, and the server
uses the specified libraries to search for
unqualified names

❍

When you do not set this property or
when it contains only *LIBL, the server
uses the current library list of the server
job to search for unqualified names

❍

●

"transaction
isolation"

Specifies the default transaction isolation. no "none"
"read
uncommitted"
"read
committed"
"repeatable
read"
"serializable"

"read
uncommitted"

Format properties

Format properties specify date and time formats, date and decimal separators, and table naming conventions used
within SQL statements.

Format property Description Required Choices Default

"date format" Specifies the date format used in
date literals within SQL statements.

no "mdy"
"dmy"
"ymd"
"usa"
"iso"
"eur"
"jis"
"julian"

(server job)

"date separator" Specifies the date separator used in
date literals within SQL statements.
This property has no effect unless
the "date format" property is set to
"julian", "mdy", "dmy" or "ymd".

no "/" (slash)
"-" (dash)
"." (period)
"," (comma)
"b" (space)

(server job)

"decimal separator" Specifies the decimal separator used
in numeric literals within SQL
statements.

no "." (period)
"," (comma)

(server job)

"naming" Specifies the naming convention
used when referring to tables.

no "sql" (as in schema.table)
"system" (as in schema/table)

"sql"

"time format" Specifies the time format used in
time literals within SQL statements.

no "hms"
"usa"
"iso"
"eur"
"jis"

(server job)

"time separator" Specifies the time separator used in
time literals within SQL statements.
This property has no effect unless
the "time format" property is set to
"hms".

no ":" (colon)
"." (period)
"," (comma)
"b" (space)

(server job)

Performance properties

Performance properties are attributes that include caching, data conversion, data compression, and prefetching that
affect performance.

Performance property Description Required Choices Default

"big decimal" Specifies whether an intermediate
java.math.BigDecimal object is used for
packed and zoned decimal conversions. If
this property is set to "true", an intermediate
java.math.BigDecimal object is used for
packed and zoned decimal conversions as
described by the JDBC specification. If this
property is set to "false", no intermediate
objects are used for packed and zoned
decimal conversions. Instead, such values
are converted directly to and from Java
double values. Such conversions will be
faster but may not follow all conversion and
data truncation rules documented by the
JDBC specification.

no "true"
"false"

"true"

"block criteria" Specifies the criteria for retrieving data from
the server in blocks of records. Specifying a
non-zero value for this property will reduce
the frequency of communication to the
server, and therefore increase performance.

Ensure that record blocking is off if the
cursor is going to be used for subsequent
UPDATEs, or else the row that is updated
will not necessarily be the current row.

no "0" (no record
blocking)
"1" (block if FOR
FETCH ONLY is
specified)
"2" (block unless FOR
UPDATE is specified)

"2"

"block size" Specifies the block size (in kilobytes) to
retrieve from the server and cache on the
client. This property has no effect unless the
"block criteria" property is non-zero. Larger
block sizes reduce the frequency of
communication to the server, and therefore
may increase performance.

no "0"
"8"
"16"
"32"
"64"
"128"
"256"
"512"

"32"

"data compression" Specifies whether result set data is
compressed. If this property is set to "true",
then result set data is compressed. If this
property is set to "false", then result set data
is not compressed. Data compression may
improve performance when retrieving large
result sets.

no "true"
"false"

"true"

"extended dynamic" Specifies whether to use extended dynamic
support. Extended dynamic support provides
a mechanism for caching dynamic SQL
statements on the server. The first time a
particular SQL statement is prepared, it is
stored in a SQL package on the server. If the
package does not exist, it is automatically
created. On subsequent prepares of the same
SQL statement, the server can skip a
significant part of the processing by using
information stored in the SQL package. If
this is set to "true", then a package name
must be set using the "package" property.

no "true"
"false"

"false"

"lazy close" Specifies whether to delay closing cursors
until subsequent requests. This will increase
overall performance by reducing the total
number of requests.

no "true"
"false"

"false"

"lob threshold" Specifies the maximum LOB (large object)
size (in bytes) that can be retrieved as part of
a result set. LOBs that are larger than this
threshold will be retrieved in pieces using
extra communication to the server. Larger
LOB thresholds will reduce the frequency of
communication to the server, but will
download more LOB data, even if it is not
used. Smaller LOB thresholds may increase
frequency of communication to the server,
but will only download LOB data as it is
needed.

no "0" - "16777216" "0"

"package" Specifies the base name of the SQL
package. Note that only the first seven
characters are used to generate the name of
the SQL package on the server. This
property has no effect unless the "extended
dynamic" property is set to "true". In
addition, this property must be set if the
"extended dynamic" property is set to "true".

no SQL package ""

"package add" Specifies whether to add newly prepared
statements to the SQL package specified on
the "package" property. This property has no
effect unless the "extended dynamic"
property is set to "true".

no "true"
"false"

"true"

"package cache" Specifies whether to cache a subset of the
SQL package information in client memory.
Caching SQL packages locally reduces the
amount of communication to the server for
prepares and describes. This property has no
effect unless the "extended dynamic"
property is set to "true".

no "true"
"false"

"false"

"package criteria" Specifies the type of SQL statements to be
stored in the SQL package. This can be
useful to improve the performance of
complex join conditions. This property has
no effect unless the "extended dynamic"
property is set to "true".

no "default" (only store
SQL statements with
parameter markers in
the package)

"select" (store all
SQL SELECT
statements in the
package)

"default"

"package error" Specifies the action to take when SQL
package errors occur. When a SQL package
error occurs, the driver will optionally throw
a SQLException or post a warning to the
Connection, based on the value of this
property. This property has no effect unless
the "extended dynamic" property is set to
"true".

no "exception"
"warning"
"none"

"warning"

"package library" Specifies the library for the SQL package.
This property has no effect unless the
"extended dynamic" property is set to "true".

no Library for SQL
package

"QGPL"

"prefetch" Specifies whether to prefetch data upon
executing a SELECT statement. This will
increase performance when accessing the
initial rows in the ResultSet.

no "true"
"false"

"true"

Sort properties

Sort properties specify how the server performs stores and performs sorts.

Sort property Description Required Choices Default

"sort" Specifies how the server sorts records
before sending them to the client.

no "hex" (base the sort on hexadecimal
values)
"job" (base the sort on the setting for
the server job)
"language" (base the sort on the
language set in the "sort language"
property)
"table" (base the sort on the sort
sequence table set in the "sort table"
property)

"job"

"sort language" Specifies a 3-character language id to
use for selection of a sort sequence.
This property has no effect unless the
"sort" property is set to "language".

no Language id ENU

"sort table" Specifies the library and file name of a
sort sequence table stored on the
server. This property has no effect
unless the "sort" property is set to
"table".

no Qualified sort table name ""

"sort weight" Specifies how the server treats case
while sorting records. This property
has no effect unless the "sort" property
is set to "language".

no "shared" (uppercase and lowercase
characters sort as the same character)
"unique" (uppercase and lowercase
characters sort as different characters)

"shared"

Other properties

Other properties are those properties not easily categorized. These properties determine which JDBC driver is used,
and specify options related to level of database access, bidirectional string type, data truncation and so on.

Other
property Description Required Choices Default

"access" Specifies the level of database access for
the connection.

no "all" (all SQL statements allowed)
"read call" (SELECT and CALL
statements allowed)
"read only" (SELECT statements
only)

"all"

"behavior
override"

Specifies which IBM Toolbox for Java
JDBC driver behaviors to override. You
can change multiple behaviors in
combination by adding the constants and
passing that sum on this property. Be sure
that your application correctly handles the
altered behavior.

no "" (do not override any behavior)
"1" (do not throw an exception but
instead return null for the result set
if Statement.executeQuery() or
PreparedStatement.executeQuery()
do not return a result set)

""

"bidirectional
string type"

Specifies the output string type of
bidirectional data. See BidiStringType for
more information.

no "" (use the CCSID to determine
bidirectional string type)
"0" (the default string type for
nonbidirectional data (LTR))
"4"
"5"
"6"
"7"
"8"
"9"
"10"
"11"

""

"data
truncation"

Specifies whether truncation of
character data generates warnings and
exceptions. When this property is "true",
the following apply:

Writing truncated character data
to the database throws an
exception

●

Using truncated character data in
a query posts a warning.

●

When this property is "false", writing
truncated data to the database or using
such data in a query generates no
exception or warning.

The default value is "true".

This property does not affect numeric
data. Writing truncated numeric data to
the database always throws an error and

no "true"
"false"

"true"

using truncated numeric data in a query
always posts a warning.

"driver" Specifies the JDBC driver
implementation. The IBM Toolbox for
Java JDBC driver can use different JDBC
driver implementations based on the
environment. If the environment is an
iSeries JVM on the same server as the
database to which the program is
connecting, the native IBM Developer Kit
for Java JDBC driver can be used. In any
other environment, the IBM Toolbox for
Java JDBC driver is used. This property
has no effect if the "secondary URL"
property is set.

no "toolbox" (use only the IBM
Toolbox for Java JDBC driver).
"native" (use the IBM Developer
Kit for Java JDBC driver if
running on the server, otherwise
use the Toolbox for Java JDBC
driver).

"toolbox"

"errors" Specifies the amount of detail to be
returned in the message for errors that
occur on the server.

no "basic"
"full"

"basic"

"extended
metadata"

Specifies whether the driver should
request extended metadata from the
server. Setting this property to true
increases the accuracy of the information
returned from the following
ResultSetMetaData methods:

getColumnLabel(int)●

isReadOnly(int)●

isSearchable(int)●

isWriteable(int)●

Additionally, setting this property to true
enables support for the
ResultSetMetaData.getSchemaName(int)
method. Setting this property to true may
slow performance because it requires
retrieving more information from the
server. Leave the property as the default
(false) unless you need more specific
information from the listed methods. For
example, when this property is off (false),
ResultSetMetaData.isSearchable(int)
always returns "true" because because the
driver does not have enough information
from the server to make a judgment.
Turning on this property (true) forces the
driver to get the correct data from the
server.

You can use extended metadata only
when connecting to a server running
OS/400 V5R2 or later.

no "true"
"false"

"false"

"full open" Specifies whether the server fully opens a
file for each query. By default the server
optimizes open requests. This
optimization improves performance but
may fail if a database monitor is active
when a query is run more than once. Set
the property to true only when identical
queries are issued when monitors are
active.

no "true"
"false"

"false"

"key ring
name"

Specifies the key ring class name used for
SSL connections with the server. This
property has no effect unless "secure" is
set to true and a key ring password is set
using the "key ring password" property.

no "key ring name" ""

"key ring
password"

Specifies the password for the key ring
class used for SSL communications with
the server. This property has no effect
unless "secure" is set to true and a key
ring name is set using the "key ring
name" property.

no "key ring password" ""

"proxy
server"

Specifies the host name and port of the
middle-tier machine where the proxy
server is running. The format for this is
hostname[:port], where the port is
optional. If this is not set, then the
hostname and port are retrieved from the
com.ibm.as400.access.AS400.proxyServer
property. The default port is 3470 (if the
connection uses SSL, the default port is
3471). The ProxyServer must be running
on the middle-tier machine.

The name of the middle-tier machine is
ignored in a two-tier environment.

no Proxy server host name and port (value of
the
proxyServer
property, or
none if not
set)

"remarks" Specifies the source of the text for
REMARKS columns in ResultSets
returned by DatabaseMetaData methods.

no "sql" (SQL object comment)
"system" (OS/400 object
description)

"system"

"save
password
when
serialized"

Specifies whether to save the password
locally with the rest of the properties
when serializing this data source object.
Saving the password means that the
application must protect the serialized
form of the object, because the object
contains all necessary information to
connect to the server. Before setting this
property to "true," consider the security
risk caused by saving the password with
the rest of the properties.

no "true"
"false"

"false"

"secondary
URL"

Specifies the URL to be used for a
connection on the middle-tier's
DriverManager in a multiple tier
environment, if it is different than already
specified. This property allows you to use
this driver to connect to databases other
than the iSeries or AS/400e server. Use a
backslash as an escape character before
backslashes and semicolons in the URL.

no JDBC URL (current
JDBC
URL)

"secure" Specifies whether a Secure Sockets Layer
(SSL) connection is used to communicate
with the server. SSL connections are only
available when connecting to servers at
V4R4 or later.

no "true" (encrypt all client/server
communication)
"false" (encrypt only the
password)

"false"

"server
trace"

Specifies the level of tracing of the JDBC
server job. When tracing is enabled,
tracing starts when the client connects to
the server and ends when the connection
is disconnected. You must start tracing
before connecting to the server, because
the client enables server tracing only at
connect time.

no "0" (trace is not active)
"2" (start the database monitor on
the JDBC server job)
"4" (start debug on the JDBC
server job)
"8" (save the job log when the
JDBC server job ends)
"16" (start job trace on the JDBC
server job)
"32" (save SQL information)

Multiple types of trace can be
started by adding these values
together. For example, "6" starts
the database monitor and starts
debug.

"0"

"thread used" Specifies whether threads should be used
in communication with the host servers.

no "true"
"false"

"true"

"trace" Specifies whether trace messages should
be logged. Trace messages are useful for
debugging programs that call JDBC.
However, there is a performance penalty
associated with logging trace messages,
so this property should only be set to
"true" for debugging. Trace messages are
logged to System.out.

no "true"
"false"

"false"

"translate
binary"

Specifies whether binary data is
translated. If this property is set to "true",
then BINARY and VARBINARY fields
are treated as CHAR and VARCHAR
fields.

no "true"
"false"

"false"

AS400JDBCBlob class
You can use a AS400JDBCBlob object to access binary large objects (BLOBs), such as sound byte (.wav) files
or image (.gif) files.

The key difference between the AS400JDBCBlob class and the AS400JDBCBlobLocator class is where the blob
is stored. With the AS400JDBCBlob class, the blob is stored in the database, which inflates the size of the
database file. The AS400JDBCBlobLocator class stores a locator (think of it as a pointer) in the database file that
points to where the blob is located.

With the AS400JDBCBlob class, the lob threshold property can be used. This property specifies the maximum
large object (LOB) size (in kilobytes) that can be retrieved as part of a result set. LOBs that are larger than this
threshold are retrieved in pieces using extra communication to the server. Larger LOB thresholds reduce the
frequency of communication to the server, but they download more LOB data, even if it is not used. Smaller lob
thresholds may increase frequency of communication to the server, but they only download LOB data as it is
needed. See JDBC properties for information on additional properties that are available.

Using the AS400JDBCBlob class, you can do the following:

Return the entire blob as a stream of uninterpreted bytes●

Return part of the contents of the blob●

Return the length of the blob●

Create a binary stream to write to the blob●

Write a byte array to the blob●

Write all or a portion of byte array to the blob●

Truncate the blob●

Examples

Example: Using the AS400JDBCBlob class to read from a blob:

 Blob blob = resultSet.getBlob(1);
 long length = blob.length();
 byte[] bytes = blob.getBytes(1, (int) length);

Example: Using the AS400JDBCBlob class to update a blob:

 ResultSet rs = statement.executeQuery ("SELECT BLOB FROM MYTABLE");
 rs.absolute(5);
 Blob blob = rs.getBlob(1);
 // Change the bytes in the blob, starting at the seventh byte
 // of the blob
 blob.setBytes (7, new byte[] { (byte) 57, (byte) 58, (byte) 98});
 //Update the blob in the result set, changing the blob starting
 // at the seventh byte of the blob (1-based) and truncating the
 // blob at the end of the updated bytes (the blob now has 9
bytes).
 rs.updateBlob(1, blob);
 // Update the database with the change. This will change the blob
 // in the database starting at the seventh byte of the blob, and

 // truncating at the end of the updated bytes.
 rs.updateRow();
 rs.close();

AS400JDBCBlobLocator class
You can use a AS400JDBCBlobLocator object to access a binary large objects.

Using the AS400JDBCBlobLocator class, you can do the following:

Return the entire blob as a stream of uninterpreted bytes●

Return part of the contents of the blob●

Return the length of the blob●

Create a binary stream to write to the blob●

Write a byte array to the blob●

Write all or a portion of byte array to the blob●

Truncate the blob●

CallableStatement interface

You can use a CallableStatement object to run SQL stored procedures. The stored procedure being called must
already be stored in the database. CallableStatement does not contain the stored procedure, it only calls the
stored procedure.

A stored procedure can return one or more ResultSet objects and can use IN parameters, OUT parameters, and
INOUT parameters. Use Connection.prepareCall() to create new CallableStatement objects.

The CallableStatement object allows you to submit multiple SQL commands as a single group to a database
through the use of batch support. You may get better performance by using batch support because processing a
group of operations is usually faster than processing them one at a time. For more information about using batch
support, see Enhancements to JDBC support.

CallableStatement allows you to get and set parameters and columns by name, although using the column
index results in better performance.

The following example shows how to use the CallableStatement interface.

 // Connect to the server.
 Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

 // Create the CallableStatement
 // object. It precompiles the
 // specified call to a stored
 // procedure. The question marks
 // indicate where input parameters
 // must be set and where output
 // parameters can be retrieved.
 // The first two parameters are
 // input parameters, and the third
 // parameter is an output parameter.
 CallableStatement cs = c.prepareCall("CALL MYLIBRARY.ADD (?, ?, ?)");

 // Set input parameters.
 cs.setInt (1, 123);
 cs.setInt (2, 234);

 // Register the type of the output
 // parameter.
 cs.registerOutParameter (3, Types.INTEGER);

 // Run the stored procedure.
 cs.execute ();

 // Get the value of the output
 // parameter.
 int sum = cs.getInt (3);

 // Close the CallableStatement and
 // the Connection.
 cs.close();
 c.close();

AS400JDBCClob class
You can use a AS400JDBCClob object to access character large objects (CLOBs), such as large documents.

The key difference between the AS400JDBCClob class and the AS400JDBCClobLocator class is where the
blob is stored. With the AS400JDBCClob class, the clob is stored in the database, which inflates the size of the
database file. The AS400JDBCClobLocator class stores a locator (think of it as a pointer) in the database file
that points to where the clob is located.

With the AS400JDBCClob class, the lob threshold property can be used. This property specifies the maximum
large object (LOB) size (in kilobytes) that can be retrieved as part of a result set. LOBs that are larger than this
threshold are retrieved in pieces using extra communication to the server. Larger LOB thresholds reduce the
frequency of communication to the server, but they download more LOB data, even if it is not used. Smaller lob
thresholds may increase frequency of communication to the server, but they only download LOB data as it is
needed. See JDBC properties for information on additional properties that are available.

Using the AS400JDBCClob class, you can do the following:

Return the entire clob as a stream of ASCII characters●

Return the contents of the clob as a character stream●

Return a part of the contents of the clob●

Return the length of the clob●

Create a Unicode character stream or an ASCII character stream to write to the clob●

Write a String to the clob●

Truncate the clob●

Examples

Example: Using the AS400JDBCClob class to read from a clob:

 Clob clob = rs.getClob(1);
 int length = clob.length();
 String s = clob.getSubString(1, (int) length);

Example: Using the AS400JDBCClob class to update a clob:

 ResultSet rs = statement.executeQuery ("SELECT CLOB FROM MYTABLE");
 rs.absolute(4);
 Clob clob = rs.getClob(1);
 // Change the characters in the clob, starting at the third
character
 // of the clob
 clob.setString (3, "Small");
 // Update the clob in the result set, starting at the third
character
 // of the clob and truncating the clob at the end of the update
string
 // (the clob now has 7 characters).
 rs.updateClob(1, clob);
 // Update the database with the updated clob. This will change

the
 // clob in the database starting at the third character of the
clob,
 // and truncating at the end of the update string.
 rs.updateRow();
 rs.close();

AS400JDBCClobLocator class
You can use a AS400JDBCClobLocator object to access character large objects (CLOBs).

Using the AS400JDBCClobLocator class, you can do the following:

Return the entire clob as a stream of ASCII characters●

Return the entire clob as a character stream●

Return a part of the contents of the clob●

Return the length of the clob●

Create a Unicode character stream or an ASCII character stream to write to the clob●

Write a String to the clob●

Truncate the clob●

AS400JDBCConnection class
The AS400JDBCConnection class provides a JDBC connection to a specific DB2 UDB for iSeries database.
Use DriverManager.getConnection() to create new AS400JDBCConnection objects. For more information, see
AS400JDBCDriver.

There are many optional properties that can be specified when the connection is created. Properties can be
specified either as part of the URL or in a java.util.Properties object. See JDBC properties for a complete list of
properties supported by the AS400JDBCDriver.

Note: A connection may contain at most 9999 open statements.

AS400JDBCConnection includes support for savepoints and statement-level holdability, and limited support for
returning auto-generated keys. For more information about these and other enhancements, see Enhancements to
Toolbox for Java JDBC support.

To use Kerberos tickets, set only the system name (and not the password) on your JDBC URL object. The user
identity is retrieved through the Java Generic Security Services (JGSS) framework, so you also do not need to
specify a user on your JDBC URL. You can set only one means of authentication in an AS400JDBCConnection
object at a time. Setting the password clears any Kerberos ticket or profile token. For more information, see the

AS400 class and J2SDK, v1.4 Security Documentation .

Using the AS400JDBCConnection class, you can do the following:

Create a statement (Statement, PreparedStatement, or CallableStatement objects)●

Create a statement that has a specific result set type and concurrency (Statement, PreparedStatement, or
CallableStatement objects)

●

Commit and rollback changes to the database and release database locks currently held●

Close the connection, closing server resources immediately instead of waiting for them to be
automatically released

●

Set holdability and get holdability for the Connection●

Set the transaction isolation and get the transaction isolation for the Connection●

Get the meta data for the Connection●

Set auto commit on or off●

Get the job identifier of the host server job that corresponds to the Connection●

If you are using JDBC 3.0 and connecting to a server running OS/400 V5R2, you can use
AS400JDBCConnection to perform the following actions:

Create a statement with a specific result set holdability (Statement, PreparedStatement, or
CallableStatement object)

●

Create a prepared statement that returns any auto-generated keys (when getGeneratedKeys() is called on
the Statement object)

●

Use savepoints, which offer more granular control over transactions:

Set savepoints❍

Rollback savepoints❍

Release savepoints❍

●

AS400JDBCConnectionPool
The AS400JDBCConnectionPool class represents a pool of AS400JDBCConnection objects that are available for
use by a Java program as part of Toolbox support for the JDBC 2.0 Optional Package API.

You can use an AS400JDBCConnectionPoolDataSource to specify properties for the connections that are created
in the pool, as in the following example.

You can not change the connection pool data source after you have requested a connection and the pool is in use.
To reset the connection pool data source, first call close() on the pool.

Return connections to an AS400JDBCConnectionPool by using close() on the AS400JDBCConnection object.

Note: When connections are not returned to the pool, the connection pool continues to grow in size and
connections are not reused.

Set properties on the pool by using methods inherited from ConnectionPool. Some of the properties that you can
set include:

maximum number of connections to allow in the pool●

maximum lifetime of a connection●

maximum inactivity time of a connection.●

You can also register AS400JDBCConnectionPoolDataSource objects by using a Java Naming and Directory
Interface(TM) (JNDI) service provider. For more information on JNDI service providers, see IBM Toolbox for
Java reference links.

Example: Using connection pool

The following example gets a connection pool data source from JNDI and uses it to create a connection pool with
10 connections:

 // Obtain an AS400JDBCConnectionPoolDataSource object from JNDI
 // (assumes JNDI environment is set).
 Context context = new InitialContext(environment);
 AS400JDBCConnectionPoolDataSource datasource =

(AS400JDBCConnectionPoolDataSource)context.lookup("jdbc/myDatabase");

 // Create an AS400JDBCConnectionPool object.
 AS400JDBCConnectionPool pool = new AS400JDBCConnectionPool(datasource);

 // Adds 10 connections to the pool that can be used by the
 // application (creates the physical database connections based on
 // the data source).
 pool.fill(10);

 // Get a handle to a database connection from the pool.
 Connection connection = pool.getConnection();

 ... Perform miscellaneous queries/updates on the database.

 // Close the connection handle to return it to the pool.

 connection.close();

 ... Application works with some more connections from the pool.

 // Close the pool to release all resources.
 pool.close();

DatabaseMetaData interface
You can use a DatabaseMetaData object to obtain information about the database as a whole as well as catalog
information.

The following example shows how to return a list of tables, which is a catalog function:

 // Connect to the server.
 Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

 // Get the database metadata from
 // the connection.
 DatabaseMetaData dbMeta = c.getMetaData();

 // Get a list of tables matching the
 // following criteria.
 String catalog = "myCatalog";
 String schema = "mySchema";
 String table = "myTable%"; // % indicates search pattern
 String types[] = {"TABLE", "VIEW", "SYSTEM TABLE"};
 ResultSet rs = dbMeta.getTables(catalog, schema, table, types);

 // ... iterate through the ResultSet
 // to get the values

 // Close the Connection.
 c.close();

AS400JDBCDataSource class
The AS400JDBCDataSource class represents a factory for iSeries database connections. The
AS400JDBCConnectionPoolDataSource class represents a factory for AS400JDBCPooledConnection objects.

You can register either kind of data source object by using a Java Naming and Directory Interface (JNDI) service
provider. For more information on JNDI service providers, see IBM Toolbox for Java reference links.

Examples

The following examples demonstrate ways to create and use AS400JDBCDataSource objects. The last two
examples show how to register an AS400JDBCDataSource object with JNDI and then use the object returned
from JNDI to obtain a database connection. Notice that even when using different JNDI service providers, the
code is very similar.

Example: Creating an AS400JDBCDataSource object

The following example shows you how to create an AS400JDBCDataSource object and connect it to a database:

 // Create a data source for making the connection.
 AS400JDBCDataSource datasource = new AS400JDBCDataSource("myAS400");
 datasource.setUser("myUser");
 datasource.setPassword("MYPWD");

 // Create a database connection to the iSeries.
 Connection connection = datasource.getConnection();

Example: Creating an AS400JDBCConnectionPoolDataSource object that can be used to cache JDBC
connections

The following example shows how you can use an AS400JDBCConnectionPoolDataSource to cache JDBC
connections.

 // Create a data source for making the connection.
 AS400JDBCConnectionPoolDataSource dataSource = new
AS400JDBCConnectionPoolDataSource("myAS400");
 datasource.setUser("myUser");
 datasource.setPassword("MYPWD");

 // Get the PooledConnection.
 PooledConnection pooledConnection = datasource.getPooledConnection();

Example: Using JNDI service provider classes to store an AS400JDBCDataSource object

The following example shows how you can use JNDI service provider classes to store a DataSource object
directly to the IFS file system on the server:

 // Create a data source to the iSeries database.
 AS400JDBCDataSource dataSource = new AS400JDBCDataSource();
 dataSource.setServerName("myAS400");
 dataSource.setDatabaseName("myAS400 Database");

 // Register the datasource with the Java Naming and Directory
Interface (JNDI).
 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");
 Context context = new InitialContext(env);
 context.bind("jdbc/customer", dataSource);

 // Return an AS400JDBCDataSource object from JNDI and get a
connection.
 AS400JDBCDataSource datasource = (AS400JDBCDataSource)
context.lookup("jdbc/customer");
 Connection connection = datasource.getConnection("myUser", "MYPWD");

Example: Using AS400JDBCDataSource objects and IBM SecureWay Directory classes with a
Lightweight Directory Access Protocol (LDAP) directory server

The following examples shows how you can use IBM SecureWay Directory classes to store an object to a
Lightweight Directory Access Protocol (LDAP) directory server:

 // Create a data source to the iSeries database.
 AS400JDBCDataSource dataSource = new AS400JDBCDataSource();
 dataSource.setServerName("myAS400");
 dataSource.setDatabaseName("myAS400 Database");

 // Register the datasource with the Java Naming and Directory
Interface (JNDI).
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.jndi.LDAPCtxFactory");
 Context context = new InitialContext(env);
 context.bind("cn=myDatasource, cn=myUsers,
ou=myLocation,o=myCompany,c=myCountryRegion", dataSource);

 // Return an AS400JDBCDataSource object from JNDI and get a
connection.
 AS400JDBCDataSource datasource = (AS400JDBCDataSource)
context.lookup("cn=myDatasource,
 cn=myUsers, ou=myLocation,o=myCompany,c=myCountryRegion");
 Connection connection = datasource.getConnection("myUser", "MYPWD");

Registering the JDBC driver
Before using JDBC to access data in a server database file, you need to register the JDBC driver for the IBM
Toolbox for Java licensed program with the DriverManager. You can register the driver either by using a Java
system property or by having the Java program register the driver:

Register by using a system property

Each virtual machine has its own method of setting system properties. For example, the Java command
from the JDK uses the -D option to set system properties. To set the driver using system properties,
specify the following:

●

 "-Djdbc.drivers=com.ibm.as400.access.AS400JDBCDriver"

Register by using the Java program

To load the Toolbox for Java JDBC driver, add the following to the Java program before the first JDBC
call:

 Class.forName("com.ibm.as400.access.AS400JDBCDriver");

The Toolbox for Java JDBC driver registers itself when it is loaded, which is the preferred way to
register the driver. You can also explicitly register the Toolbox JDBC driver by using the following:

 java.sql.DriverManager.registerDriver (new
com.ibm.as400.access.AS400JDBCDriver ());

●

The IBM Toolbox for Java JDBC driver does not require an AS400 object as an input parameter like the other
IBM Toolbox for Java classes that get data from a server. An AS400 object is used internally, however, to
manage default user and password caching. When a connection is first made to the server, the user may be
prompted for user ID and password. The user has the option to save the user ID as the default user ID and add
the password to the password cache. As in the other IBM Toolbox for Java functions, if the user ID and
password are supplied by the Java program, the default user is not set and the password is not cached. See
managing connections for information on managing connections.

Using the JDBC driver to connect to a database on the server

You can use the DriverManager.getConnection() method to connect to the server database.
DriverManager.getConnection() takes a uniform resource locator (URL) string as an argument. The JDBC
driver manager attempts to locate a driver that can connect to the database that is represented by the URL. When
using the IBM Toolbox for Java driver, use the following syntax for the URL:

 "jdbc:as400://systemName/defaultSchema;listOfProperties"

Note: Either systemName or defaultSchema can be omitted from the URL.

To use Kerberos tickets, set only the system name (and not the password) on your JDBC URL object. The
user identity is retrieved through the Java Generic Security Services (JGSS) framework, so you also do not need
to specify a user on your JDBC URL. You can set only one means of authentication in an
AS400JDBCConnection object at a time. Setting the password clears any Kerberos ticket or profile token. For

more information, see the AS400 class and J2SDK, v1.4 Security Documentation .

Examples: Using the JDBC driver to connect to a server

Example 1: Using a URL in which a system name is not specified. This will result in the user being prompted
to type in the name of the system to which the user wants to connect.

 "jdbc:as400:"

Example 2: Connecting to the server database; no default schema or properties specified.

 // Connect to system 'mySystem'. No
 // default schema or properties are
 // specified.
 Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

Example 3: Connecting to the server database; default schema specified.

 // Connect to system 'mySys2'. The
 // default schema 'myschema' is
 // specified.
 Connection c2 =
DriverManager.getConnection("jdbc:as400://mySys2/mySchema");

Example 4: Connecting to the server database; properties are specified using java.util.Properties. The Java
program can specify a set of JDBC properties either by using the java.util.Properties interface or by specifying
the properties as part of the URL. See JDBC properties for a list of supported properties.

For example, to specify properties using the Properties interface, use the following code as an example:

 // Create a properties object.
 Properties p = new Properties();

 // Set the properties for the
 // connection.
 p.put("naming", "sql");
 p.put("errors", "full");

 // Connect using the properties
 // object.
 Connection c = DriverManager.getConnection("jdbc:as400://mySystem",p);

Example 5: Connecting to the server database; properties are specified using a uniform resource locator (URL).

 // Connect using properties. The
 // properties are set on the URL
 // instead of through a properties
 // object.
 Connection c = DriverManager.getConnection(
 "jdbc:as400://mySystem;naming=sql;errors=full");

Example 6: Connecting to the server database; user ID and password are specified.

 // Connect using properties on the
 // URL and specifying a user ID and
 // password

 Connection c = DriverManager.getConnection(
 "jdbc:as400://mySystem;naming=sql;errors=full",
 "auser",
 "apassword");

Example 7: Disconnecting from the database. Use the close() method on the Connecting object to disconnect
from the server. To close the connection that is created in the above example, use the following statement:

 c.close();

AS400JDBCParameterMetaData
The AS400JDBCParameterMetaData class enables your programs to retrieve information about the properties
of parameters in PreparedStatement and CallableStatement objects.

AS400JDBCParameterMetaData provides methods that allow you to perform the following actions:

Get the class name of the parameter●

Get the number of parameters in the PreparedStatement●

Get the SQL type of the parameter●

Get the database-specific type name for the parameter●

Get the precision or the scale of the parameter●

Example: Using AS400JDBCParameterMetaData

The following example shows one way to use AS400JDBCParameterMetaData to retrieve parameters from a
dynamically generated PreparedStatement object:

 // Get a connection from the driver.
 Class.forName("com.ibm.as400.access.AS400JDBCDriver");
 Connection connection =
 DriverManager.getConnection
 ("jdbc:as400://myAS400",
 "myUserId",
 "myPassword");
 // Create a prepared statement object.
 PreparedStatement ps =
 connection.prepareStatement
 ("SELECT STUDENTS FROM STUDENTTABLE WHERE STUDENT_ID= ?");
 // Set a student ID into parameter 1.
 ps.setInt(1, 123456);
 // Retrieve the parameter meta data for the prepared statement.
 ParameterMetaData pMetaData = ps.getParameterMetaData();
 // Retrieve the number of parameters in the prepared statement.
 // Returns 1.
 int parameterCount = pMetaData.getParameterCount();
 // Find out what the parameter type name of parameter 1 is.
 // Returns INTEGER.
 String getParameterTypeName = pMetaData.getParameterTypeName(1);

PreparedStatement interface

You can use a PreparedStatement object when an SQL statement is going to be run many times. An SQL
statement can be precompiled. A "prepared." statement is an SQL statement that has been precompiled. This
approach is more efficient than running the same statement multiple times using a Statement object, which
compiles the statement each time it is run. In addition, the SQL statement contained in a PreparedStatement
object may have one or more IN parameters. Use Connection.prepareStatement() to create PreparedStatement
objects.

The PreparedStatement object allows you to submit multiple SQL commands as a single group to a database
through the use of batch support. You may get better performance by using batch support because processing a
group of operations is usually faster than processing them one at a time. For more information about using batch
support, see Enhancements to JDBC support.

The following example shows how to use the PreparedStatement interface.

 // Connect to the server.
 Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

 // Create the PreparedStatement
 // object. It precompiles the
 // specified SQL statement. The
 // question marks indicate where
 // parameters must be set before the
 // statement is run.
 PreparedStatement ps = c.prepareStatement("INSERT INTO
MYLIBRARY.MYTABLE (NAME, ID) VALUES (?, ?)");

 // Set parameters and run the
 // statement.
 ps.setString(1, "JOSH");
 ps.setInt(2, 789);
 ps.executeUpdate();

 // Set parameters and run the
 // statement again.
 ps.setString(1, "DAVE");
 ps.setInt(2, 456);
 ps.executeUpdate();

 // Close PreparedStatement and the
 // Connection.
 ps.close();
 c.close();

ResultSet
You can use a ResultSet object to access a table of data that was generated by running a query. The table rows
are retrieved in sequence. Within a row, column values can be accessed in any order.

The data stored in ResultSet is retrieved by using the various get methods, depending on the type of data being
retrieved. The next() method is used to move to the next row.

ResultSet allows you to get and update columns by name, although using the column index results in better
performance.

Cursor movement

A cursor, which is an internal pointer, is used by a result set to point the row in the result set that is being
accessed by the Java program.

The performance of the getRow() method has been improved. Before V5R2, using ResultSet.last(),
ResultSet.afterLast(), and ResultSet.absolute() with a negative value made the current row number not available.
The previous restrictions are lifted, which makes the getRow() method fully functional.

JDBC 2.0 and later JDBC specifications provide additional methods for accessing specific positions within a
database:

Scrollable cursor positions

absolute
afterLast
beforeFirst
first
getRow
isAfterLast
isBeforeFirst

isFirst
isLast
last
moveToCurrentRow
moveToInsertRow
previous
relative

Scrolling capabilities

If a result set is created by executing a statement, you can move (scroll) backward (last-to-first) or forward
(first-to-last) through the rows in a table.

A result set that supports this movement is called a scrollable result set. Scrollable result sets also support
relative and absolute positioning. Relative positioning allows you to move to a row in the result set by
specifying a position that is relative to the current row. Absolute positioning allows you to move directly to a
row by specifying its position in the result set.

With JDBC 2.0 and later JDBC specifications, you have two additional scrolling capabilities available to use
when working with the ResultSet class: scroll-insensitive and scroll-sensitive result sets.

A scroll-insensitive result set is not usually sensitive to changes that are made while it is open, while the
scroll-sensitive result set is sensitive to changes. The IBM Toolbox for Java JDBC driver does not support
scroll-insensitive result sets.

Updatable result sets

In your application, you can use result sets that use either read-only concurrency (no updates can be made to the
data) or updatable concurrency (allows updates to the data and may use database write locks to control access to
the same data item by different transactions). In an updatable result set, rows can be updated, inserted, and
deleted. Numerous update methods are available for you to use in your program, for example:

Update ASCII stream●

Update Big Decimal●

Update binary stream●

See Method Summary for a complete listing of the update methods available through the ResultSet interface.

Example: Updatable result sets

The following example shows how to use a result set that allows updates to the data (update concurrency) and
allows changes to be made to the result set while it is open (scroll sensitive).

 // Connect to the server.
 Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

 // Create a Statement object. Set the result set
 // concurrency to updatable.
 Statement s = c.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

 // Run a query. The result is placed
 // in a ResultSet object.
 ResultSet rs = s.executeQuery ("SELECT NAME,ID FROM MYLIBRARY.MYTABLE
FOR UPDATE");

 // Iterate through the rows of the ResultSet.
 // As we read the row, we will update it with
 // a new ID.
 int newId = 0;
 while (rs.next ())
 {

 // Get the values from the ResultSet.
 // The first value is a string, and
 // the second value is an integer.
 String name = rs.getString("NAME");
 int id = rs.getInt("ID");

 System.out.println("Name = " + name);
 System.out.println("Old id = " + id);

 // Update the id with a new integer.
 rs.updateInt("ID", ++newId);

 // Send the updates to the server.
 rs.updateRow ();

 System.out.println("New id = " + newId);
 }

 // Close the Statement and the
 // Connection.
 s.close();
 c.close();

ResultSetMetaData

The ResultSetMetaData interface determines the types and properties of the columns in a ResultSet.

When connecting to a server running OS/400 V5R2 or later, using the extended metadata property enables
you to increase the accuracy of the following ResultSetMetaData methods:

getColumnLabel(int)●

isReadOnly(int)●

isSearchable(int)●

isWriteable(int)●

Additionally, setting this property to true enables support for the ResultSetMetaData.getSchemaName(int)
method. Be aware that using the extended metadata property may slow performance because it requires
retrieving more information from the server.

AS400JDBCRowSet
The AS400JDBCRowSet class represents a connected rowset that encapsulates a JDBC result set. The methods
on AS400JDBCRowSet are very similar to those of the AS400JDBCResultSet. The database connection is
maintained while in use.

You can use an AS400JDBCDataSource object or an AS400JDBCConnectionPoolDataSource object to create
the connection to the database that you want to use to access the data for the AS400JDBCRowSet.

Examples

The following examples show how you can use the AS400JDBCRowSet class.

Example: Creating, populating, and updating an AS400JDBCRowSet object:

 DriverManager.registerDriver(new AS400JDBCDriver());
 // Establish connection by using a URL.
 AS400JDBCRowSet rowset = new
AS400JDBCRowSet("jdbc:as400://mySystem","myUser", "myPassword");

 // Set the command used to populate the list.
 rowset.setCommand("SELECT * FROM MYLIB.DATABASE");

 // Populate the rowset.
 rowset.execute();

 // Update the customer balances.
 while (rowset.next())
 {
 double newBalance = rowset.getDouble("BALANCE") +
july_statements.getPurchases(rowset.getString("CUSTNUM"));
 rowset.updateDouble("BALANCE", newBalance);
 rowset.updateRow();
 }

Example: Creating and populating an AS400JDBCRowSet object, while getting the data source from
JNDI

 // Get the data source that is registered in JNDI (assumes JNDI
environment is set).
 Context context = new InitialContext();
 AS400JDBCDataSource dataSource = (AS400JDBCDataSource)
context.lookup("jdbc/customer");

 AS400JDBCRowSet rowset = new AS400JDBCRowSet();
 // Establish connection by setting the data source name.
 rowset.setDataSourceName("jdbc/customer");
 rowset.setUsername("myuser");
 rowset.setPassword("myPasswd");

 // Set the prepared statement and initialize the parameters.
 rowset.setCommand("SELECT * FROM MYLIBRARY.MYTABLE WHERE STATE = ?
AND BALANCE > ?");
 rowset.setString(1, "MINNESOTA");

 rowset.setDouble(2, MAXIMUM_LIMIT);

 // Populate the rowset.
 rowset.execute();

AS400JDBCSavepoint class
The AS400JDBCSavepoint class represents a logical breaking point in a transaction. Using savepoints gives you
more granular control over which changes are affected when you roll back a transaction.

Figure 1: Using savepoints to control rollbacks in a transaction

For example, Figure 1 shows a transaction that includes two savepoints, A and B. Rolling back the transaction to
either savepoint undoes (or reverses) only those changes from the point a rollback is called to the savepoint. This
prevents having to undo all the changes in the entire transaction. Note that once you rollback to savepoint A, you
cannot later rollback to savepoint B. You can not access savepoint B after work is rolled back past it.

Example: Using savepoints

In this scenario, let us assume that your application updates student records. At the end of updating a certain field
in every student record, you perform a commit. Your code detects a particular error associated with updating this
field and rolls back the work done when this error occurs. You know that this particular error affects only the
work performed on the current record.

So, you set a savepoint between each update of student records. Now, when this error occurs, you rollback only
the last update in the student table. Instead of having to roll back a large amount of work, you can now roll back
only a small amount of work.

The following example code helps illustrate how you can use savepoints. The example assumes that the student
ID for John is 123456 and the student ID for Jane is 987654.

 // Get a connection from the driver
 Class.forName("com.ibm.as400.access.AS400JDBCDriver");
 // Get a statement object
 Statement statement = connection.createStatement();
 // Update John's record with his 'B' grade in gym.
 int rows = statement.executeUpdate("UPDATE STUDENTTABLE SET
GRADE_SECOND_PERIOD = 'B'
 WHERE STUDENT_ID= '123456'");
 // Set a savepoint marking an intermediate point in the transaction
 Savepoint savepoint1 = connection.setSavepoint("SAVEPOINT_1");

 // Update Jane's record with her 'C' grade in biochemistry.
 int rows = statement.executeUpdate("UPDATE STUDENTTABLE SET
GRADE_SECOND_PERIOD = 'C'
 WHERE STUDENT_ID= '987654'");
 // An error is detected, so we need to roll back Jane's record, but not
John's.
 // Rollback the transaction to savepoint 1. The change to Jane's record
is
 // removed while the change to John's record remains.
 connection.rollback(savepoint1);
 // Commit the transaction; only John's 'B' grade is committed to the
database.
 connection.commit();

Considerations and restrictions

Using savepoints requires that you are aware of the following considerations and restrictions:

Considerations

Toolbox for Java follows database rules regarding how rollbacks affect cursors and retained locks. For example,
when you set the connection option to keep cursors open after a traditional rollback, cursors also remain open
after a rollback to a savepoint. In other words, when a rollback request happens involving savepoints, Toolbox
for Java does not move or close the cursor when the underlying database does not support this.

Using a savepoint to roll back a transaction undoes only the actions performed from the point where you start the
roll back to the savepoint. Actions performed prior to that savepoint remain. As in the previous example, be
aware that you can commit a transaction that includes work performed before a particular savepoint but does not
include work performed after the savepoint.

All savepoints are released and become invalid when the transaction is committed or when the entire transaction
is rolled back. You can also release savepoints by calling Connection.releaseSavepoint().

Restrictions

The following restrictions apply when using savepoints:

Named savepoints must be unique.●

You can not reuse a savepoint name until the savepoint is released, committed, or rolled back.●

Auto-commit must be set to 'OFF' for savepoints to be valid. You can set auto-commit 'OFF' by using
Connection.setAutoCommit(false). Enabling auto-commit when using savepoints throws an
exception.

●

Savepoints are not valid across XA connections. Using an XA connection with savepoints throws an
exception.

●

Your server must be running OS/400 Version 5 Release 2 or later. Using savepoints when connecting (or
already connected) to a server running V5R1 or earlier version of OS/400 throws an exception.

●

Running SQL statements with Statement objects
Use a Statement object to run an SQL statement and optionally obtain the ResultSet produced by it.

PreparedStatement inherits from Statement, and CallableStatement inherits from PreparedStatement. Use the
following Statement objects to run different SQL statements:

Statement - to run a simple SQL statement that has no parameters.●

PreparedStatement - to run a precompiled SQL statement that may or may not have IN parameters.●

CallableStatement - to run a call to a database stored procedure. A CallableStatement may or may not
have IN, OUT, and INOUT parameters.

●

The Statement object allows you to submit multiple SQL commands as a single group to a database through the
use of batch support. You may get better performance by using batch support because processing a group of
operations is usually faster than processing them one at a time. For more information about using batch support,
see Enhancements to JDBC support.

When using batch updates, usually you should turn off auto-commit. Turning off auto-commit allows your
program to determine whether to commit the transaction if an error occurs and not all of the commands have
executed. In JDBC 2.0 and later JDBC specifications, a Statement object can keep track of a list of commands
that can be successfully submitted and executed together in a group. When this list of batch commands is
executed by the executeBatch() method, the commands are executed in the order in which they were added to
the list.

AS400JDBCStatement provides methods that enable you to perform many actions, including the following:

Execute different kinds of statements●

Retrieve the values for different parameters of the Statement object, including:

The connection❍

Any auto-generated keys created as a result of executing the Statement❍

The fetch size and fetch direction❍

The maximum field size and maximum row limit❍

The current result set, the next result set, the type of result set, the result set concurrency, and
the result set cursor holdability

❍

●

Add an SQL statement to the current batch●

Run the current batch of SQL statements●

Statement interface

Use Connection.createStatement() to create new Statement objects.

The following example shows how to use a Statement object.

 // Connect to the server.
 Connection c = DriverManager.getConnection("jdbc:as400://mySystem");

 // Create a Statement object.
 Statement s = c.createStatement();

 // Run an SQL statement that creates
 // a table in the database.
 s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID
INTEGER)");

 // Run an SQL statement that inserts
 // a record into the table.
 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES
('DAVE', 123)");

 // Run an SQL statement that inserts
 // a record into the table.
 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES
('CINDY', 456)");

 // Run an SQL query on the table.
 ResultSet rs = s.executeQuery("SELECT * FROM MYLIBRARY.MYTABLE");

 // Close the Statement and the
 // Connection.
 s.close();
 c.close();

JDBC XA Distributed Transaction Management
The JDBC XA distributed transaction management classes enable you to use the IBM Toolbox for Java JDBC
driver within a distributed transaction. Using the XA classes to enable the IBM Toolbox for Java JDBC driver
allows it to participate in transactions that span multiple data sources.

Typically, XA distributed transaction management classes are used and controlled directly by a transaction
manager, which is separate from the JDBC driver. The distributed transaction management interfaces are
defined as part of the JDBC 2.0 Optional Package and the Java Transaction API (JTA). Both are available from
Sun as jar files. The distributed transaction management interfaces are also supported in the JDBC 3.0 API,
which is bundled with the Java 2 Platform, Standard Edition, version 1.4.

For more information, see the Sun Web sites for JDBC and the JTA.

Use the following objects to enable the IBM Toolbox for Java JDBC driver to participate in XA distributed
transactions:

AS400JDBCXADataSource - A factory for AS400JDBCXAConnection objects. This is a subclass of
AS400JDBCDataSource.

●

AS400JDBCXACConnection - A pooled connection object that provides hooks for connection pool
management and XA resource management.

●

AS400JDBCXAResource - A resource manager for use in XA transaction management.●

Example: Using XA classes

The following example shows simple usage of the XA classes. Keep in mind that the details would be filled in
with work using other data sources. This type of code usually appears within a transaction manager.

 // Create an XA data source for making the XA connection.
 AS400JDBCXADataSource xaDataSource = new
AS400JDBCXADataSource("myAS400");
 xaDataSource.setUser("myUser");
 xaDataSource.setPassword("myPasswd");

 // Get an XAConnection and get the associated XAResource.
 // This provides access to the resource manager.
 XAConnection xaConnection = xaDataSource.getXAConnection();
 XAResource xaResource = xaConnection.getXAResource();

 // Generate a new Xid (this is up to the transaction manager).
 Xid xid = ...;

 // Start the transaction.
 xaResource.start(xid, XAResource.TMNOFLAGS);

 // ...Do some work with the database...

 // End the transaction.
 xaResource.end(xid, XAResource.TMSUCCESS);

 // Prepare for a commit.
 xaResource.prepare(xid);

 // Commit the transaction.
 xaResource.commit(xid, false);

 // Close the XA connection when done. This implicitly
 // closes the XA resource.
 xaConnection.close();

Jobs classes
The IBM Toolbox for Java Jobs classes (in the access package) allow a Java program to retrieve and change job
information.

Note: Toolbox for Java also provides resource classes that present a generic framework and consistent
programming interface for working with various iSeries objects and lists. After reading about the classes in the
access package and the resource package, you can choose the object that works best for your application. The
resource classes for working with jobs are RJob, RJobList, and RJobLog.

Use the Jobs classes to work with the following type of job information:

Date and Time Information●

Job Queue●

Language Identifiers●

Message Logging●

Output Queue●

Printer Information●

The job classes in the access package are as follows:

Job - retrieves and changes iSeries job information●

JobList - retrieves a list of iSeries jobs●

JobLog - represents the job log of an iSeries●

Examples

List the jobs belonging to a specific user and list jobs with job status information.

Display the messages in a job log.

Use a cache when setting a value and getting a value:

 try {
 // Creates AS400 object.
 AS400 as400 = new AS400("systemName");
 // Constructs a Job object
 Job job = new Job(as400,"QDEV002");
 // Gets job information
 System.out.println("User of this job :" + job.getUser());
 System.out.println("CPU used :" + job.getCPUUsed();
 System.out.println("Job enter system date : " +
job.getJobEnterSystemDate());
 // Sets cache mode
 job.setCacheChanges(true);
 // Changes will be store in the cache.
 job.setRunPriority(66);
 job.setDateFormat("*YMD");
 // Commit changes. This will change the value on the iSeries.
 job.commitChanges();
 // Set job information to system directly(without cache).

 job.setCacheChanges(false);
 job.setRunPriority(60);
 } catch (Exception e)
 {
 System.out.println(quot;error :" + e)
 }

Job
The job class (in the access package) allows a java program to retrieve and change server job information.

Note: Toolbox for Java also provides resource classes that present a generic framework and consistent
programming interface for working with various iSeries objects and lists. After reading about the classes in the
access package and the resource package, you can choose the object that works best for your application. The
resource classes for working with jobs are RJob, RJobList, and RJobLog.

The following type of job information can be retrieved and changed with the Job class:

Job queues●

Output queues●

Message logging●

Printer device●

Country or region identifier●

Date format●

The job class also allows the ability to change a single value at a time, or cache several changes using the
setCacheChanges(true) method and committing the changes using the commitChanges() method. If caching is
not turned on, you do not need to do a commit.

Use this example for how to set and get values to and from the cache in order to set the run priority with the
setRunPriority() method and set the date format with the setDateFormat() method.

JobList class
You can use JobList class (in the access package) to list iSeries jobs.

Note: Toolbox for Java also provides resource classes that present a generic framework and consistent
programming interface for working with various iSeries objects and lists. After reading about the classes in the
access package and the resource package, you can choose the object that works best for your application. The
resource classes for working with jobs are RJob, RJobList, and RJobLog.

With the JobList class, you can retrieve the following:

All jobs●

Jobs by name, job number, or user●

Use the getJobs() method to return a list of iSeries jobs or getLength() method to return the number of jobs
retrieved with the last getJobs().

The following example lists all active jobs on the system:

 // Create an AS400 object. List the
 // jobs on this iSeries.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create the job list object.
 JobList jobList = new JobList(sys);

 // Get the list of active jobs.
 Enumeration list = jobList.getJobs();

 // For each active job on the system
 // print job information.
 while (list.hasMoreElements())
 {
 Job j = (Job) list.nextElement();

 System.out.println(j.getName() + "." +
 j.getUser() + "." +
 j.getNumber());
 }

JobLog
The JobLog class (in the access package) retrieves messages in the job log of a server job by calling
getMessages().

Note: Toolbox for Java also provides resource classes that present a generic framework and consistent
programming interface for working with various iSeries objects and lists. After reading about the classes in the
access package and the resource package, you can choose the object that works best for your application. The
resource classes for working with jobs are RJob, RJobList, and RJobLog.

The following example prints all messages in the job log for the specified user:

 // ... Setup work to create an AS400
 // object and a jobList object has
 // already been done

 // Get the list of active jobs on
 // the iSeries
 Enumeration list = jobList.getJobs();

 // Look through the list to find a
 // job for the specified user.
 while (list.hasMoreElements())
 {
 Job j = (Job) list.nextElement();

 if (j.getUser().trim().equalsIgnoreCase(userID))
 {
 // A job matching the current user
 // was found. Create a job log
 // object for this job.
 JobLog jlog = new JobLog(system,
 j.getName(),
 j.getUser(),
 j.getNumber());

 // Enumerate the messages in the job
 // log then print them.
 Enumeration messageList = jlog.getMessages();

 while (messageList.hasMoreElements())
 {
 AS400Message message = (AS400Message)
messageList.nextElement();
 System.out.println(message.getText());
 }

 }
 }

Message classes

AS400Message

AS400Message object allows the Java program to retrieve an iSeries message that is generated from a previous
operation (for example, from a command call). From a message object, the Java program can retrieve the
following:

The iSeries library and message file that contain the message●

The message ID●

The message type●

The message severity●

The message text●

The message help text●

The following example shows how to use the AS400Message object:

 // Create a command call object.
 CommandCall cmd = new CommandCall(sys, "myCommand");

 // Run the command
 cmd.run();

 // Get the list of messages that are
 // the result of the command that I
 // just ran
 AS400Message[] messageList = cmd.getMessageList();

 // Iterate through the list
 // displaying the messages
 for (int i = 0; i < messageList.length; i++)
 {
 System.out.println(messageList[i].getText());
 }

Examples

The following examples show how you can use message lists with CommandCall and ProgramCall.

Example: Using a message list with CommandCall●

Example: Using a message list with ProgramCall●

QueuedMessage

The QueuedMessage class extends the AS400Message class.

Note: Toolbox for Java also provides resource classes that present a generic framework and consistent
programming interface for working with various iSeries objects and lists. After reading about the classes in the
access package and the resource package, you can choose the object that works best for your application. The

resource class for working with queued messages is RQueuedMessage.

The QueuedMessage class accesses information about a message on an iSeries message queue. With this class, a
Java program can retrieve:

Information about where a message originated, such as program, job name, job number, and user●

The message queue●

The message key●

The message reply status●

The following example prints all messages in the message queue of the current (signed-on) user:

 // The message queue is on this iSeries.
 AS400 sys = new AS400(mySystem.myCompany.com);

 // Create the message queue object.
 // This object will represent the
 // queue for the current user.
 MessageQueue queue = new MessageQueue(sys, MessageQueue.CURRENT);

 // Get the list of messages currently
 // in this user's queue.
 Enumeration e = queue.getMessages();

 // Print each message in the queue.
 while (e.hasMoreElements())
 {
 QueuedMessage msg = e.getNextElement();
 System.out.println(msg.getText());
 }

MessageFile

The MessageFile class allows you to receive a message from an iSeries message file. The MessageFile class
returns an AS400Message object that contains the message. Using the MessageFile class, you can do the
following:

Return a message object that contains the message●

Return a message object that contains substitution text in the message●

The following example shows how to retrieve and print a message:

 AS400 system = new AS400("mysystem.mycompany.com");
 MessageFile messageFile = new MessageFile(system);
 messageFile.setPath("/QSYS.LIB/QCPFMSG.MSGF");
 AS400Message message = messageFile.getMessage("CPD0170");
 System.out.println(message.getText());

MessageQueue

The MessageQueue class allows a Java program to interact with an iSeries message queue.

Note: Toolbox for Java also provides resource classes that present a generic framework and consistent
programming interface for working with various iSeries objects and lists. After reading about the classes in the
access package and the resource package, you can choose the object that works best for your application. The
resource class for working with message queues is RMessageQueue.

The MessageQueue class acts as a container for the QueuedMessage class. The getMessages() method, in
particular, returns a list of QueuedMessage objects. The MessageQueue class can do the following:

Set message queue attributes●

Get information about a message queue●

Receive messages from a message queue●

Send messages to a message queue●

Reply to messages●

The following example lists messages in the message queue for the current user:

 // The message queue is on this iSeries.
 AS400 sys = new AS400(mySystem.myCompany.com);

 // Create the message queue object.
 // This object will represent the
 // queue for the current user.
 MessageQueue queue = new MessageQueue(sys, MessageQueue.CURRENT);

 // Get the list of messages currently
 // in this user's queue.
 Enumeration e = queue.getMessages();

 // Print each message in the queue.
 while (e.hasMoreElements())
 {
 QueuedMessage msg = e.getNextElement();
 System.out.println(msg.getText());
 }

NetServer
The NetServer class represents the NetServer service on an iSeries server. NetServer objects allow you to query
and modify the state and configuration of the NetServer service.

For example, you can use the NetServer class to:

Start or stop the NetServer●

Get a list of all current file shares and print shares●

Get a list of all current sessions●

Query and change attribute values (using methods inherited from ChangeableResource)●

Note: In order to use the NetServer class, you need a server user profile that has *IOSYSCFG authority.

The NetServer class is an extension of ChangeableResource and Resource, so it provides a collection of
"attributes" to represent the various NetServer values and settings. You query or change the attributes in order to
access or change the configuration of your NetServer. Some of the NetServer attributes are:

NAME●

NAME_PENDING●

DOMAIN●

ALLOW_SYSTEM_NAME●

AUTOSTART●

CCSID●

WINS_PRIMARY_ADDRESS●

Pending attributes

Many of the NetServer attributes are pending (for example, NAME_PENDING). Pending attributes represent
NetServer values that take effect the next time you start (or restart) the NetServer on the server.

When you have a pair of related attributes and one attribute is pending while the other is nonpending:

The pending attribute is read/write, so you can change it●

The nonpending attribute is read-only, so you can query it but you can not change it●

Other NetServer classes

Related NetServer classes allow you to get and set detailed information about specific connections, sessions, file
shares, and print shares:

NetServerConnection - represents a NetServer connection●

NetServerFileShare - represents a NetServer file server share●

NetServerPrintShare - represents a NetServer print server share●

NetServerSession - represents a NetServer session●

NetServerShare - represents a NetServer share●

Example: Using a NetServer object to change the name of the NetServer

 // Create a system object to represent the iSeries server.
 AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWD");
 // Create an object with which to query and modify the NetServer.
 NetServer nServer = new NetServer(system);
 // Set the "pending name" to NEWNAME.
 nServer.setAttributeValue(NetServer.NAME_PENDING, "NEWNAME");
 // Commit the changes. This sends the changes to the server.
 nServer.commitAttributeChanges();
 // The NetServer name will get set to NEWNAME the next time the
NetServer
 // is ended and started.

Permission classes
The permission classes allow you to get and set object authority information. Object authority information is also
known as permission. The Permission class represents a collection of many users' authority to a specific object.
The UserPermission class represents a single user's authority to a specific object.

Permission class

The Permission class allows you to retrieve and change object authority information. It includes a collection of
many users who are authorized to the object. The Permission object allows the Java program to cache authority
changes until the commit() method is called. Once the commit() method is called, all changes made up to that
point are sent to the server. Some of the functions provided by the Permission class include:

addAuthorizedUser(): Adds an authorized user.●

commit(): Commits the permission changes to the server.●

getAuthorizationList(): Returns the authorization list of the object.●

getAuthorizedUsers(): Returns an enumeration of authorized users.●

getOwner(): Returns the name of the object owner.●

getSensitivityLevel(): Returns the sensitivity level of the object.●

getType(): Returns the object authority type (QDLO, QSYS, or Root).●

getUserPermission(): Returns the permission of a specific user to the object.●

getUserPermissions(): Returns an enumeration of permissions of the users to the object.●

setAuthorizationList(): Sets the authorization list of the object.●

setSensitivityLevel(): Sets the sensitivity level of the object.●

Example

This example shows you how to create a permission and add an authorized user to an object.

 // Create AS400 object
 AS400 as400 = new AS400();

 // Create Permission passing in the AS400 and object
 Permission myPermission = new Permission(as400, "QSYS.LIB/myLib.LIB");

 // Add a user to be authorized to the object
 myPermission.addAuthorizedUser("User1");

UserPermission class

The UserPermission class represents the authority of a single, specific user. UserPermission has three subclasses
that handle the authority based on the object type:

UserPermission class Description

DLOPermission Represents a user's authority to Document Library Objects (DLOs), which are stored in
QDLS.

QSYSPermission Represents a user's authority to objects stored in QSYS.LIB and contained in the server.

RootPermission Represents a user's authority to objects contained in the root directory structure.
RootPermissions objects are those objects not contained in QSYS.LIB or QDLS.

The UserPermission class allows you to do the following:

Determine if the user profile is a group profile●

Return the user profile name●

Indicate whether the user has authority●

Set the authority of authorization list management●

Example

This example shows you how to retrieve the users and groups that have permission on an object and print them
out one at a time.

 // Create a system object.
 AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");

 // Represent the permissions to an object on the system, such as a
library.
 Permission objectInQSYS = new Permission(sys, "/QSYS.LIB/FRED.LIB");

 // Retrieve the various users/groups that have permissions set on that
object.
 Enumeration enum = objectInQSYS.getUserPermissions();
 while (enum.hasMoreElements())
 {
 // Print out the user/group profile names one at a time.
 UserPermission userPerm = (UserPermission)enum.nextElement();
 System.out.println(userPerm.getUserID());
 }

DLOPermission class
DLOPermission is a subclass of UserPermission. DLOPermission allows you to display and set the authorities a
user has (called permissions) to a document library object (DLO).

One of the following authority values is assigned to each user.

Authority value Description

*ALL The user can perform all operations except those operations that are controlled by
authorization list management.

*AUTL The authorization list is used to determine the authority for the document.

*CHANGE The user can change and perform basic functions on the object.

*EXCLUDE The user cannot access the object.

*USE The user has object operational authority, read authority, and execute authority.

You must use one of the following methods to change or determine the user's authority:

Use getDataAuthority() to display the authority value of the user●

Use setDataAuthority() to set the authority value of the user●

After setting permissions, it is important that you use the commit() method from the Permissions class to send
the changes to the server.

For more information about permissions and authorities, see Chapter 5: Resource Security in the iSeries

Security Reference .

Example

This example shows you how to retrieve and print the DLO permissions, including the user profiles for each
permission.

 // Create a system object.

 AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");
 // Represent the permissions to a DLO object.
 Permission objectInQDLS = new Permission(sys, "/QDLS/MyFolder");

 // Print the object pathname and retrieve its permissions.
 System.out.println("Permissions on "+objectInQDLS.getObjectPath()+"
are as follows:");
 Enumeration enum = objectInQDLS.getUserPermissions();
 while (enum.hasMoreElements())
 {
 // For each of the permissions, print out the user profile name
 // and that user's authorities to the object.
 DLOPermission dloPerm = (DLOPermission)enum.nextElement();
 System.out.println(dloPerm.getUserID()+":
"+dloPerm.getDataAuthority());
 }

QSYSPermission
QSYSPermission is a subclass of the UserPermission class. QSYSPermission allows you to display and set the
permission a user has for an object in the traditional iSeries or AS/400e library structure stored in QSYS.LIB.
You can set authority for an object stored in QSYS.LIB by setting a system-defined authority value or by setting
the individual object and data authorities.

The following table lists and describes the valid system-defined authority values:

System-defined authority value Description

*ALL The user can perform all operations except those operations that are
controlled by authorization list management.

*AUTL The authorization list is used to determine the authority for the document.

*CHANGE The user can change and perform basic functions on the object.

*EXCLUDE The user cannot access the object.

*USE The user has object operational authority, read authority, and execute
authority.

Each system-defined authority value actually represents a combination of the individual object authorities and
data authorities. The following table illustrates the relationships of system-defined authorities to the individual
object and data authorities:

System-defined
authority

Object authority Data authority

Opr Mgt Exist Alter Ref Read Add Upd Dlt Exe

All Y Y Y Y Y Y Y Y Y Y

Change Y n n n n Y Y Y Y Y

Exclude n n n n n n n n n n

Use Y n n n n Y n n n Y

Autl Only valid with user (*PUBLIC) and a specified authorization list that determines
the individual object and data authorities.

Y refers to those authorities that can be assigned.
n refers to those authorities that cannot be assigned.

Specifying a system-defined authority automatically assigns the appropriate individual authorities. Likewise,
specifying various individual authorities changes the appropriate individual authority values. When a
combination of individual object authorities and data authorities does not map to a single system-defined
authority value, then the single value becomes "User Defined."

Use the getObjectAuthority() method to display the current system-defined authority. Use the
setObjectAuthority() method to set the current system-defined authority using a single value.

Use the appropriate set method to set individual object authority values on or off:

setAlter()●

setExistence()●

setManagement()●

setOperational()●

setReference()●

Use the appropriate set method to set individual data authority values on or off:

setAdd()●

setDelete()●

setExecute()●

setRead()●

setUpdate()●

For more information about the different authorities, see Chapter 5: Resource Security in the iSeries Security

Reference . For information about using iSeries CL commands to grant and edit object authorities, see the
iSeries CL commands Grant Object Authority (GRTOBJAUT) and Edit Object Authority (EDTOBJAUT).

Example

This example shows you how to retrieve and print the permissions for a QSYS object.

 // Create a system object.
 AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");

 // Represent the permissions to a QSYS object.
 Permission objectInQSYS = new Permission(sys, "/QSYS.LIB/FRED.LIB");

 // Print the object pathname and retrieve its permissions.
 System.out.println("Permissions on "+objectInQSYS.getObjectPath()+"
are as follows:");
 Enumeration enum = objectInQSYS.getUserPermissions();
 while (enum.hasMoreElements())
 {
 // For each of the permissions, print out the user profile name
 // and that user's authorities to the object.
 QSYSPermission qsysPerm = (QSYSPermission)enum.nextElement();
 System.out.println(qsysPerm.getUserID()+":
"+qsysPerm.getObjectAuthority());
 }

RootPermission
RootPermission is a subclass of the UserPermission class. The RootPermission class allows you to display and
set the permissions for the user of an object contained in the root directory structure.

An object on the root directory structure can set the data authority or the object authority. You can set the data
authority to the values listed in the following table. Use the getDataAuthority() method to to display the current
values and the setDataAuthority() method to set the data authority.

The following table lists and describes the valid data authority values:

Data authority value Description

*none The user has no authority to the object.

*RWX The user has read, add, update, delete, and execute authorities.

*RW The user has read, add, and delete authorities.

*RX The user has read and execute authorities.

*WX The user has add, update, delete, and execute authorities.

*R The user has read authority.

*W The user has add, update, and delete authorities.

*X The user has execute authority.

*EXCLUDE The user cannot access the object.

*AUTL The public authorities on this object come from the authorization list.

The object authority can be set to one or more of the following values: alter, existence, management, or
reference. You can use the setAlter(), setExistence(), setManagement(), or setReference() methods to set the
values on or off.

After setting either the data authority or the object authority of an object, it is important that you use the
commit() method from the Permissions class to send the changes to the server.

For more information about the different authorities, see Chapter 5: Resource Security in the iSeries Security

Reference .

Example

This example shows you how to retrieve and print the permissions for a root object.

 // Create a system object.
 AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");

 // Represent the permissions to an object in the root file system.
 Permission objectInRoot = new Permission(sys, "/fred");

 // Print the object pathname and retrieve its permissions.
 System.out.println("Permissions on "+objectInRoot.getObjectPath()+"
are as follows:");
 Enumeration enum = objectInRoot.getUserPermissions();
 while (enum.hasMoreElements())
 {

 // For each of the permissions, print out the user profile name
 // and that user's authorities to the object.
 RootPermission rootPerm = (RootPermission)enum.nextElement();
 System.out.println(rootPerm.getUserID()+":
"+rootPerm.getDataAuthority());
 }

Print classes
Print objects include spooled files, output queues, printers, printer files, writer jobs, and Advanced Function
Printing (AFP) resources, which include fonts, form definitions, overlays, page definitions, and page segments.
AFP resources are accessible only on Version 3 Release 7 (V3R7) and later versions of OS/400. (Trying to open
an AFPResourceList to a system that is running an earlier version than V3R7 generates a
RequestNotSupportedException exception.)

The IBM Toolbox for Java classes for print objects are organized on a base class, PrintObject, and on a subclass
for each of the six types of print objects. The base class contains the methods and attributes common to all
server print objects. The subclasses contain methods and attributes specific to each subtype.

Use the print classes for the following:

Working with server print objects:

PrintObjectList class - use for listing and working with server print objects. (Print objects
include spooled files, output queues, printers, Advanced Function Printing (AFP) resources,
printer files, and writer jobs)

❍

PrintObject base class - use for working with print objects❍

●

Retrieving PrintObject attributes●

Creating new server spooled files using the SpooledFileOutputStream class (use for EBCDIC-based
printer data)

●

Generating SNA Character Stream (SCS) printer data streams●

Reading spooled files and AFP resources using the PrintObjectInputStream●

Reading spooled files using PrintObjectPageInputStream and PrintObjectTransformedInputStream●

Viewing Advanced Function Printing (AFP) and SNA Character Stream (SCS)
spooled files

●

Examples

The Create Spooled File Example shows how to create a spooled file on a server from an input stream.●

The Create SCS Spooled File Example shows how to generate a SCS data stream using the
SCS3812Writer class, and how to write the stream to a spooled file on the server.

●

The Read Spooled File Example shows how to read an existing server spooled file.●

The first Asynchronous List Example shows how to asynchronously list all spooled files on a system
and how to use the PrintObjectListListener interface to get feedback as the list is being built.

●

The second Asynchronous List Example shows how to asynchronously list all spooled files on a system
without using the PrintObjectListListener interface

●

The Synchronous List Example shows how to synchronously list all spooled files on a system.●

Listing Print objects
You can use the PrintObjectList class and its subclasses to work with lists of print objects. Each subclass has
methods that allow filtering of the list based on what makes sense for that particular type of print object. For
example, SpooledFileList allows you to filter a list of spooled files based on the user who created the spooled
files, the output queue that the spooled files are on, the form type, or user data of the spooled files. Only those
spooled files that match the filter criteria are listed. If no filters are set, a default for each of the filters are used.

To actually retrieve the list of print objects from the server, the openSynchronously() or openAsynchronously()
methods are used. The openSynchronously() method does not return until all objects in the list have been
retrieved from the server. The openAsynchronously() method returns immediately, and the caller can do other
things in the foreground while waiting for the list to build. The asynchronously opened list also allows the caller
to start displaying the objects to the user as the objects come back. Because the user can see the objects as they
come back, the response time may seem faster to the user. In fact, the response time may actually take longer
overall due to the extra processing being done on each object in the list.

If the list is opened asynchronously, the caller may get feedback on the building of the list. Methods, such as
isCompleted() and size(), indicate whether the list has finished being built or return the current size of the list.
Other methods, waitForListToComplete() and waitForItem(), allow the caller to wait for the list to complete or
for a particular item. In addition to calling these PrintObjectList methods, the caller may register with the list as
a listener. In this situation, the caller is notified of events that happen to the list. To register or unregister for the
events, the caller uses PrintObjectListListener(), and then calls addPrintObjectListListener() to register or
removePrintObjectListListener() to unregister. The following table shows the events that are delivered from a
PrintObjectList.

PrintObjectList event When event is delivered

listClosed When the list is closed.

listCompleted When the list completes.

listErrorOccurred If any exception is thrown while the list is being retrieved.

listOpened When the list is opened.

listObjectAdded When an object is added to the list.

After the list has been opened and the objects in the list processed, close the list using the close() method. This
frees up any resources allocated to the garbage collector during the open. After a list has been closed, its filters
can be modified, and the list can be opened again.

When print objects are listed, attributes about each print object listed are sent from the server and stored with
the print object. These attributes can be updated using the update() method in the PrintObject class. Which
attributes are sent back from the server depends on the type of print object being listed. A default list of
attributes for each type of print object that can be overridden by using the setAttributesToRetrieve() method in
PrintObjectList exists. See the Retrieving PrintObject attributes section for a list of the attributes each type of
print object supports.

Listing AFP Resources is allowed only on Version 3 Release 7 and later releases of OS/400. Opening an
AFPResourceList to an system older than V3R7 generates a RequestNotSupportedException exception.

Examples

Asynchronous List Example 1

Asynchronous List Example 2

Synchronous List Example

Working with Print objects

PrintObject is an abstract class. (An abstract class does not allow you to create an instance of the class. Instead,
you must create an instance of one of its subclasses.) Create objects of the subclasses in any of the following
ways:

If you know the system and the identifying attributes of the object, construct the object explicitly by
calling its public constructor.

●

You can use a PrintObjectList subclass to build a list of the objects and then get at the individual objects
through the list.

●

An object may be created and returned to you as a result of a method or set methods being called. For
example, the static method start() in the WriterJob class returns a WriterJob object.

●

Use the base class, PrintObject, and its subclasses to work with server print objects:

OutputQueue●

Printer●

PrinterFile●

SpooledFile●

WriterJob●

Retrieving PrintObject attributes

You can retrieve print object attributes by using the attribute ID and one of these methods from the base
PrintObject class:

Use getIntegerAttribute(int attributeID) to retrieve an integer type attribute.●

Use getFloatAttribute(int attributeID) to retrieve a floating point type attribute.●

Use getStringAttribute(int attributeID) to retrieve a string type attribute.●

The attributeID parameter is an integer that identifies which attribute to retrieve. All of the IDs are defined as
public constants in the base PrintObject class. The PrintAttributes file contains an entry of each attribute ID. The
entry includes a description of the attribute and its type (integer, floating point, or string). For a list of which
attributes may be retrieved using these methods, select the following links:

AFPResourceAttrs for AFP Resources●

OutputQueueAttrs for output queues●

PrinterAttrs for printers●

PrinterFileAttrs for printer files●

SpooledFileAttrs for spooled files●

WriterJobAttrs for writer jobs●

To achieve acceptable performance, these attributes are copied to the client. These attributes are copied either
when the objects are listed, or the first time they are needed if the object was created implicitly. This keeps the
object from going to the host every time the application needs to retrieve an attribute. This also makes it
possible for the Java print object instance to contain out-of-date information about the object on the server. The
user of the object can refresh all of the attributes by calling the update() method on the object. In addition, if the
application calls any methods on the object that would cause the object's attributes to change, the attributes are
automatically updated. For example, if an output queue has a status attribute of RELEASED
(getStringAttribute(ATTR_OUTQSTS); returns a string of "RELEASED"), and the hold() method is called on
the output queue, getting the status attribute after that returns HELD.

setAttributes method

You can use the setAttributes method to change the attributes of spooled files and printer file objects. Select the
following links for a list or which attributes may be set:

PrinterFileAttrs file for printer files●

SpooledFileAttrs for spooled files●

The setAttributes method takes a PrintParameterList parameter, which is a class that is used to hold a collection
of attributes IDs and their values. The list starts out empty, and the caller can add attributes to the list by using
the various setParameter() methods on it.

PrintParameterList class

You can use the PrintParameterList class to pass a group of attributes to a method that takes any of a number of
attributes as parameters. For example, you can send a spooled file using TCP (LPR) by using the SpooledFile
method, sendTCP(). The PrintParameterList object contains the required parameters for the send command,
such as the remote system and queue, plus any optional parameters desired, such as whether to delete the
spooled file after it is sent. In these cases, the method documentation gives a list of required and optional

attributes. The PrintParameterList setParameter() method does not check which attributes you are setting and the
values that you set them to. The PrintParameterList setParameter() method simply contains the values to pass
along to the method. In general, extra attributes in the PrintParameterList are ignored, and illegal values on the
attributes that are used are diagnosed on the server.

Printer file attributes

Retrieve attributes

The following attributes may be retrieved for a printer file using the appropriate getIntegerAttribute(),
getStringAttribute(), or getFloatAttribute() method :

ATTR_ALIGN - Align Page●

ATTR_BKMGN_ACR - Back Margin Offset Across●

ATTR_BKMGN_DWN - Back Margin Offset Down●

ATTR_BACK_OVERLAY - Back Overlay Integrated File System Name●

ATTR_BKOVL_DWN - Back Overlay Offset Down●

ATTR_BKOVL_ACR - Back Overlay offset across●

ATTR_CPI - Characters per Inch●

ATTR_CODEDFNTLIB - Coded Font Library Name●

ATTR_CODEPAGE - Code Page●

ATTR_CODEDFNT - Code Font Name●

ATTR_CONTROLCHAR - Control Character●

ATTR_CONVERT_LINEDATA - Convert Line Data●

ATTR_COPIES - Copies●

ATTR_CORNER_STAPLE - Corner staple●

ATTR_DBCSDATA - User Specified DBCS Data●

ATTR_DBCSEXTENSN - DBCS Extension Characters●

ATTR_DBCSROTATE - DBCS Character Rotation●

ATTR_DBCSCPI - DBCS Characters per Inch●

ATTR_DBCSSISO - DBCS SO/SI Spacing●

ATTR_DFR_WRITE - Defer Write●

ATTR_PAGRTT - Degree of Page Rotation●

ATTR_EDGESTITCH_NUMSTAPLES - Edge Stitch Number of Staples●

ATTR_EDGESTITCH_REF - Edge Stitch Reference●

ATTR_EDGESTITCH_REFOFF - Edge Stitch Reference●

ATTR_ENDPAGE - Ending Page●

ATTR_FILESEP - File Separators●

ATTR_FOLDREC - Fold Records●

ATTR_FONTID - Font Identifier●

ATTR_FORM_DEFINITION - Form Definition Integrated File System Name●

ATTR_FORMFEED - Form Feed●

ATTR_FORMTYPE - Form Type●

ATTR_FTMGN_ACR - Front Margin Offset Across●

ATTR_FTMGN_DWN - Front Margin Offset Down●

ATTR_FRONT_OVERLAY - Front overlay Integrated File System Name●

ATTR_FTOVL_ACR - Front Overlay Offset Across●

ATTR_FTOVL_DWN - Front Overlay Offset Down●

ATTR_CHAR_ID - Graphic Character Set●

ATTR_JUSTIFY - Hardware Justification●

ATTR_HOLD - Hold Spool File●

ATTR_LPI - Lines Per Inch●

ATTR_MAXRCDS - Maximum Spooled Output Records●

ATTR_OUTPTY - Output Priority●

ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name●

ATTR_OVERFLOW - Overflow Line Number●

ATTR_PAGE_DEFINITION - Page Definition Integrated File System●

ATTR_PAGELEN - Length of Page●

ATTR_MEASMETHOD - Measurement Method●

ATTR_PAGEWIDTH - Width of Page●

ATTR_MULTIUP - Pages Per Side●

ATTR_POINTSIZE - Point Size●

ATTR_FIDELITY - Print Fidelity●

ATTR_DUPLEX - Print on Both Sides●

ATTR_PRTQUALITY - Print Quality●

ATTR_PRTTEXT - Print Text●

ATTR_PRINTER - Printer●

ATTR_PRTDEVTYPE - Printer Device Type●

ATTR_RPLUNPRT - Replace Unprintable Characters●

ATTR_RPLCHAR - Replacement Character●

ATTR_SADDLESTITCH_NUMSTAPLES - Saddle Stitch Number of Staples●

ATTR_SADDLESTITCH_REF - Saddle Stitch Reference●

ATTR_SAVE -Save Spooled File●

ATTR_SRCDRWR - Source Drawer●

ATTR_SPOOL - Spool the Data●

ATTR_SCHEDULE - Spooled Output Schedule●

ATTR_STARTPAGE - Starting Page●

ATTR_DESCRIPTION - Text Description●

ATTR_UNITOFMEAS - Unit of Measure●

ATTR_USERDATA - User Data●

ATTR_USRDEFDATA - User defined data●

ATTR_USRDEFOPT - User defined option(s)●

ATTR_USER_DEFINED_OBJECT - User defined object Integrated File System Name●

Set attributes

The following attributes may be set for a printer file using the setAttributes() method:

ATTR_ALIGN - Align Page●

ATTR_BKMGN_ACR - Back Margin Offset Across●

ATTR_BKMGN_DWN - Back Margin Offset Down●

ATTR_BACK_OVERLAY - Back Overlay Integrated File System Name●

ATTR_BKOVL_DWN - Back Overlay Offset Down●

ATTR_BKOVL_ACR - Back Overlay offset across●

ATTR_CPI - Characters per Inch●

ATTR_CODEDFNTLIB - Coded Font Library Name●

ATTR_CODEPAGE - Code Page●

ATTR_CODEDFNT - Code Font Name●

ATTR_CONTROLCHAR - Control Character●

ATTR_CONVERT_LINEDATA - Convert Line Data●

ATTR_COPIES - Copies●

ATTR_CORNER_STAPLE - Corner staple●

ATTR_DBCSDATA - User Specified DBCS Data●

ATTR_DBCSEXTENSN - DBCS Extension Characters●

ATTR_DBCSROTATE - DBCS Character Rotation●

ATTR_DBCSCPI - DBCS Characters per Inch●

ATTR_DBCSSISO - DBCS SO/SI Spacing●

ATTR_DFR_WRITE - Defer Write●

ATTR_PAGRTT - Degree of Page Rotation●

ATTR_EDGESTITCH_NUMSTAPLES - Edge Stitch Number of Staples●

ATTR_EDGESTITCH_REF - Edge Stitch Reference●

ATTR_EDGESTITCH_REFOFF - Edge Stitch Reference●

ATTR_ENDPAGE - Ending Page●

ATTR_FILESEP - File Separators●

ATTR_FOLDREC - Fold Records●

ATTR_FONTID - Font Identifier●

ATTR_FORM_DEFINITION - Form Definition Integrated File System Name●

ATTR_FORMFEED - Form Feed●

ATTR_FORMTYPE - Form Type●

ATTR_FTMGN_ACR - Front Margin Offset Across●

ATTR_FTMGN_DWN - Front Margin Offset Down●

ATTR_FRONT_OVERLAY - Front overlay Integrated File System Name●

ATTR_FTOVL_ACR - Front Overlay Offset Across●

ATTR_FTOVL_DWN - Front Overlay Offset Down●

ATTR_CHAR_ID - Graphic Character Set●

ATTR_JUSTIFY - Hardware Justification●

ATTR_HOLD - Hold Spool File●

ATTR_LPI - Lines Per Inch●

ATTR_MAXRCDS - Maximum Spooled Output Records●

ATTR_OUTPTY - Output Priority●

ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name●

ATTR_OVERFLOW - Overflow Line Number●

ATTR_PAGE_DEFINITION - Page Definition Integrated File System●

ATTR_PAGELEN - Length of Page●

ATTR_MEASMETHOD - Measurement Method●

ATTR_PAGEWIDTH - Width of Page●

ATTR_MULTIUP - Pages Per Side●

ATTR_POINTSIZE - Point Size●

ATTR_FIDELITY - Print Fidelity●

ATTR_DUPLEX - Print on Both Sides●

ATTR_PRTQUALITY - Print Quality●

ATTR_PRTTEXT - Print Text●

ATTR_PRINTER - Printer●

ATTR_PRTDEVTYPE - Printer Device Type●

ATTR_RPLUNPRT - Replace Unprintable Characters●

ATTR_RPLCHAR - Replacement Character●

ATTR_SADDLESTITCH_NUMSTAPLES - Saddle Stitch Number of Staples●

ATTR_SADDLESTITCH_REF - Saddle Stitch Reference●

ATTR_SAVE -Save Spooled File●

ATTR_SRCDRWR - Source Drawer●

ATTR_SPOOL - Spool the Data●

ATTR_SCHEDULE - Spooled Output Schedule●

ATTR_STARTPAGE - Starting Page●

ATTR_DESCRIPTION - Text Description●

ATTR_UNITOFMEAS - Unit of Measure●

ATTR_USERDATA - User Data●

ATTR_USRDEFDATA - User defined data●

ATTR_USRDEFOPT - User defined option(s)●

ATTR_USER_DEFINED_OBJECT - User defined object Integrated File System Name●

Spooled file attributes

Retrieve attributes

The following attributes may be retrieved for a spooled file using the appropriate getIntegerAttribute(),
getStringAttribute(), or getFloatAttribute() method :

ATTR_AFP - Advanced Function Printing●

ATTR_ALIGN - Align Page●

ATTR_BKMGN_ACR - Back Overlay offset across●

ATTR_BKMGN_DWN - Back Overlay Offset Down●

ATTR_BACK_OVERLAY - Back Overlay Integrated File System Name●

ATTR_BKOVL_DWN - Back Overlay Offset Down●

ATTR_BKOVL_ACR - Back Overlay offset across●

ATTR_CPI - Characters per Inch●

ATTR_CODEDFNTLIB - Coded Font Library Name●

ATTR_CODEDFNT - Code Font Name●

ATTR_CODEPAGE - Code Page●

ATTR_CONTROLCHAR - Control Character●

ATTR_COPIES - Copies●

ATTR_COPIESLEFT - Copies left to Produce●

ATTR_CORNER_STAPLE - Corner staple●

ATTR_CURPAGE - Current Page●

ATTR_DATE - Date Object Created●

ATTR_DATE_WTR_BEGAN_FILE - Date Writer Began Processing Spooled File●

ATTR_DATE_WTR_CMPL_FILE - Date Writer Completed Processing Spooled File●

ATTR_DBCSDATA - User Specified DBCS Data●

ATTR_DBCSEXTENSN - DBCS Extension Characters●

ATTR_DBCSROTATE - DBCS Character Rotation●

ATTR_DBCSCPI - DBCS Characters per Inch●

ATTR_DBCSSISO - DBCS SO/SI Spacing●

ATTR_PAGRTT - Degree of Page Rotation●

ATTR_EDGESTITCH_NUMSTAPLES - Edge Stitch Number of Staples●

ATTR_EDGESTITCH_REF - Edge Stitch Reference●

ATTR_EDGESTITCH_REFOFF - Edge Stitch Reference Offset●

ATTR_ENDPAGE - Ending Page●

ATTR_FILESEP - File Separators●

ATTR_FOLDREC - Fold Records●

ATTR_FONTID - Font Identifier●

ATTR_FORM_DEFINITION - Form definition Integrated File System Name●

ATTR_FORMFEED - Form Feed●

ATTR_FORMTYPE - Form Type●

ATTR_FTMGN_ACR - Front Margin Offset Across●

ATTR_FTMGN_DWN - Front Margin Offset Down●

ATTR_FRONTSIDE_OVERLAY - Front overlay Integrated File System Name●

ATTR_FTOVL_ACR - Front Overlay Offset Across●

ATTR_FTOVL_DWN - Front Overlay Offset Down●

ATTR_CHAR_ID - Graphic Character Set●

ATTR_JUSTIFY - Hardware Justification●

ATTR_HOLD - Hold Spool File●

ATTR_IPP_ATTR_CHARSET - IPP Attributes-charset●

ATTR_IPP_JOB_ID - IPP Job ID●

ATTR_IPP_JOB_NAME - IPP Job Name●

ATTR_IPP_JOB_NAME_NL - IPP Job Name NL●

ATTR_IPP_JOB_ORIGUSER - IPP Job Originating User●

ATTR_IPP_JOB_ORIGUSER_NL - IPP Job Originating User NL●

ATTR_IPP_PRINTER_NAME - IPP Printer Name●

ATTR_JOBNAME - Job Name●

ATTR_JOBNUMBER - Job Number●

ATTR_JOBUSER - Job User●

 ATTR_JOB_SYSTEM - Job System ●

ATTR_LASTPAGE - Last Page Printed●

ATTR_LINESPACING - Line Spacing●

ATTR_LPI - Lines Per Inch●

ATTR_MAXRCDS - Maximum Spooled Output Records●

ATTR_PAGELEN - Length of Page●

ATTR_PAGEWIDTH - Width of Page●

ATTR_MEASMETHOD - Measurement Method●

ATTR_NETWORK - Network Identifier●

ATTR_NUMBYTES - Number of bytes to read/write●

ATTR_OUTPUTBIN - Output Bin●

ATTR_OUTPTY - Output Priority●

ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name●

ATTR_OVERFLOW - Overflow Line Number●

ATTR_MULTIUP - Pages Per Side●

ATTR_POINTSIZE - Point Size●

ATTR_FIDELITY - Print Fidelity●

ATTR_DUPLEX - Print on Both Sides●

ATTR_PRTQUALITY - Print Quality●

ATTR_PRTTEXT - Print Text●

ATTR_PRINTER - Printer●

ATTR_PRTASSIGNED - Printer Assigned●

ATTR_PRTDEVTYPE - Printer Device Type●

ATTR_PRINTER_FILE - Printer File Integrated File System Name●

ATTR_RECLENGTH - Record Length●

ATTR_REDUCE - Reduce Output●

ATTR_RPLUNPRT - Replace Unprintable Characters●

ATTR_RPLCHAR - Replacement Character●

ATTR_RESTART - Restart Printing●

ATTR_SADDLESTITCH_NUMSTAPLES - Saddle Stitch Number of Staples●

ATTR_SADDLESTITCH_REF - Saddle Stitch Reference●

ATTR_SAVE - Save Spooled File●

ATTR_SRCDRWR - Source Drawer●

ATTR_SPOOLFILE - Spooled File Name●

ATTR_SPLFNUM - Spooled File Number●

ATTR_SPLFSTATUS - Spooled File Status●

ATTR_SCHEDULE - Spooled Output Schedule●

ATTR_STARTPAGE - Starting Page●

ATTR_SYSTEM - System Where Created●

ATTR_TIME - Time Object Created●

ATTR_TIME_WTR_BEGAN_FILE - Time Writer Began Processing Spooled File●

ATTR_TIME_WTR_CMPL_FILE - Time Writer Completed Processing Spooled File●

ATTR_PAGES - Total Pages●

ATTR_UNITOFMEAS - Unit of Measure●

ATTR_USERCMT - User Comment●

ATTR_USERDATA - User Data●

ATTR_USRDEFDATA - User Defined Data●

ATTR_USRDEFFILE - User Defined File●

ATTR_USRDEFOPT - User Defined Option(s)●

ATTR_USER_DEFINED_OBJECT - User Defined Object Integrated File System Name●

Set attributes

The following attributes may be set for a spooled file using the setAttributes() method:

ATTR_ALIGN - Align Page●

ATTR_BACK_OVERLAY - Back Overlay Integrated File System Name●

ATTR_BKOVL_DWN - Back Overlay Offset Down●

ATTR_BKOVL_ACR - Back Overlay offset across●

ATTR_COPIES - Copies●

ATTR_ENDPAGE - Ending Page●

ATTR_FILESEP - File Separators●

ATTR_FORM_DEFINITION - Form definition Integrated File System Name●

ATTR_FORMFEED - Form Feed●

ATTR_FORMTYPE - Form Type●

ATTR_FRONTSIDE_OVERLAY - Front overlay Integrated File System Name●

ATTR_FTOVL_ACR - Front Overlay Offset Across●

ATTR_FTOVL_DWN - Front Overlay Offset Down●

ATTR_OUTPTY - Output Priority●

ATTR_OUTPUT_QUEUE - Output Queue Integrated File System Name●

ATTR_MULTIUP - Pages Per Side●

ATTR_FIDELITY - Print Fidelity●

ATTR_DUPLEX - Print on Both Sides●

ATTR_PRTQUALITY - Print Quality●

ATTR_PRTSEQUENCE - Print Sequence●

ATTR_PRINTER - Printer●

ATTR_RESTART - Restart Printing●

ATTR_SAVE - Save Spooled File●

ATTR_SCHEDULE - Spooled Output Schedule●

ATTR_STARTPAGE - Starting Page●

ATTR_USERDATA - User Data●

ATTR_USRDEFOPT - User defined option(s)●

ATTR_USER_DEFINED_OBJECT - User defined object Integrated File System Name●

Creating new spooled files

You can use the SpooledFileOutputStream class to create new server spooled files. The class derives from the
standard JDK java.io.OutputStream class; after its construction, it can be used anywhere an OutputStream is
used.

When creating a new SpooledFileOutputStream, the caller may specify the following:

Which printer file to use●

Which output queue to put the spooled file on●

A PrintParameterList object that may contain parameters to override fields in the printer file●

These parameters are all optional (the caller may pass null of any or all of them). If a printer file is not specified,
the network print server uses the default network print printer file, QPNPSPRTF. The output queue parameter is
there as a convenience; it also can be specified in the PrintParameterList. If the output queue parameter is
specified in both places, the PrintParameterList field overrides the output queue parameter. See the
documentation of the SpooledFileOutputStream constructor for a complete list of which attributes may be set in
the PrintParameterList for creating new spooled files.

Use one of the write() methods to write data into the spooled file. The SpooledFileOutputStream object buffers
the data and sends it when either the output stream is closed or the buffer is full. Buffering is done for two
reasons:

It allows the automatic data typing (see Data stream types in spooled files) to analyze a full-buffer of
data to determine the data type

●

It makes the output stream work faster because not every write request is communicated to the server.●

Use the flush() method to force the data to be written to the server.

When the caller is finished writing data to the new spooled file, the close() method is called to close the spooled
file. Once the spooled file has been closed, no more data can be written to it. By calling the getSpooledFile()
method once the spooled file has been closed, the caller can get a reference to a SpooledFile object that
represents the spooled file.

Data stream types in spooled files

Use the Printer Data Type attribute of the spooled file to set the type of data to be put into the spooled file. If the
caller does not specify a printer data type, the default is to use automatic data typing. This method looks at the
first few thousand bytes of the spooled file data, determines if it fits either SNA Character Stream (SCS) or
Advanced Function Printing data stream (AFPDS) data stream architectures, and then sets the attribute
appropriately. If the bytes of spooled file data do not match either of these architectures, the data is tagged as
*USERASCII. Automatic data typing works most of the time. The caller generally should use it unless the caller
has a specific case in which automatic data typing does not work. In those cases, the caller can set the Printer
Data Type attribute to a specific value (for example, *SCS). If the caller wants to use the printer data that is in
the printer file, the caller must use the special value *PRTF. If the caller overrides the default data type when
creating a spooled file, caution must be used to ensure that the data put into the spooled file matches the data
type attribute. Putting non-SCS data into a spooled file that is marked to receive SCS data triggers an error
message from the host and the loss of the spooled file.

Generally, this attribute can have three values:

*SCS - an EBCDIC, text-based printer data stream.●

*AFPDS (Advanced Function Presentation Data Stream) - another data stream supported on the server.
*AFPDS can contain text, image, and graphics, and can use external resources such as page overlays

●

and external images in page segments.

*USERASCII - any non-SCS and non-AFPDS printer data that the server handles by just passing it
through. Postscript and HP-PCL data streams are examples data streams that would be in a
*USERASCII spooled file.

●

Examples

Create Spooled File Example

Create SCS Spooled File Example

Generating an SCS data stream
To generate spooled files that will print on certain printers attached to the server, an SNA Character Stream
(SCS) data stream may have to be created. (SCS is a text-based, EBCDIC data stream that can be printed on
SCS printers, IPDS printers, or to PC printers.) SCS can be printed by converting it using an emulator or the
host print transform on the server.

You can use the SCS writer classes to generate such an SCS data stream. The SCS writer classes convert Java
Unicode characters and formatting options into an SCS data stream. Five SCS writer classes generate varying
levels of SCS data streams. The caller should choose the writer that matches the final printer destination to
which the caller or end user will be printing.

Use the following SCS writer classes to generate an SCS printer data stream:

SCS writer class Description

SCS5256Writer The simplest SCS writer class. Supports text, carriage return, line feed, new line, form feed,
absolute horizontal and vertical positioning, relative horizontal and vertical positioning, and
set vertical format.

SCS5224Writer Extends the 5256 writer and adds methods to set character per inch (CPI) and lines per inch
(LPI).

SCS5219Writer Extends the 5224 writer and adds support for left margin, underline, form type (paper or
envelope), form size, print quality, code page, character set, source drawer number, and
destination drawer number.

SCS5553Writer Extends the 5219 writer and adds support for adds support for character rotation, grid lines,
and font scaling. The 5553 is a double-byte character set (DBCS) data stream.

SCS3812Writer Extends the 5219 writer and adds support for bold, duplex, text orientation, and fonts.

To construct an SCS writer, the caller needs an output stream and, optionally, an encoding. The data stream is
written to the output stream. To create an SCS spooled file, the caller first constructs a
SpooledFileOutputStream, and then uses that to construct an SCS writer object. The encoding parameter gives a
target EBCDIC coded character set identifier (CCSID) to convert the characters to.

Once the writer is constructed, use the write() methods to output text. Use the carriageReturn(), lineFeed(), and
newLine() methods to position the write cursor on the page. Use the endPage() method to end the current page
and start a new page.

When all of the data has been written, use the close() method to end the data stream and close the output stream.

Reading spooled files and AFP resources

You can use the PrintObjectInputStream class to read the raw contents of a spooled file or Advanced Function
Printing (AFP) resource from the server. The class extends the standard JDK java.io.InputStream class so that it
can be used anywhere an InputStream is used.

Obtain a PrintObjectInputStream object by calling either the getInputStream() method on an instance of the
SpooledFile class or the getInputStream() method on an instance of the AFPResource class. Getting an input
stream for a spooled file is supported for Version 3 Release 2 (V3R2), V3R7, and later versions of OS/400.
Getting input streams for AFP resources is supported for V3R7 and later.

Use one of the read() methods for reading from the input stream. These methods all return the number of bytes
actually read, or -1 if no bytes were read and the end of file was reached.

Use the available() method of PrintObjectInputStream to return the total number of bytes in the spooled file or
AFP resource. The PrintObjectInputStream class supports marking the input stream, so PrintObjectInputStream
always returns true from the markSupported() method. The caller can use the mark() and reset() methods to
move the current read position backward in the input stream. Use the skip() method to move the read position
forward in the input stream without reading the data.

Example

Read Spooled File Example

Reading spooled files using
PrintObjectPageInputStream and
PrintObjectTransformedInputStream
You can use the PrintObjectPageInputStream class to read the data out of a server AFP and SCS spooled file
one page at a time.

You can obtain a PrintObjectPageInputStream object with the getPageInputStream() method.

Use one of the read() methods for reading from the input stream. All these methods return the number of bytes
actually read, or -1 if no bytes were read and the end of page was reached.

Use the available() method of PrintObjectPageInputStream to return the total number of bytes in the current
page. The PrintObjectPageInputStream class supports marking the input stream, so PrintObjectPageInputStream
always returns true from the markSupported() method. The caller can use the mark() and reset() methods to
move the current read position backward in the input stream so that subsequent reads reread the same bytes. The
caller can use the skip() method to move the read position forward in the input stream without reading the data.

However, when transforming an entire spooled file data stream is desired, use the
PrintObjectTransformedInputStream class.

Product license
The ProductLicense class enables you to request licenses for products installed on the iSeries. To be compatible
with other iSeries license users, the class works through iSeries product license support when requesting or
releasing a license.

The class does not enforce the license policy but returns enough information such that the application can
enforce the policy. When a license is requested the ProductLicense class will return the status of the request --
license granted or denied. If the request is denied the application must disable the behavior that required the
license because the IBM Toolbox for Java does not know which function to disable.

Use the ProductLicense class with iSeries license support to enforce the license of your application:

The server side of your application registers your product and license terms with iSeries license support.●

The client side of your application uses the ProductLicense object to request and release licenses.●

Example: ProductLicense scenario

For example, suppose your customer bought 15 concurrent use licenses for your product. Concurrent use means
15 users can use the product at the same time, but it doesn't have to be 15 specific users. It can be any 15 users
in the organization. This information is registered with iSeries license support. As users connect your
application uses the ProductLicense class to request a license.

When the number of concurrent users is fewer than 15, the request is successful and your application
runs.

●

When the 16th user connects, the ProductLicense request fails. Your application then displays an error
message and terminates.

●

When a user stops running the application, your application releases the license by way of the ProductLicense
class. The license is now available for someone else to use.

For more information and a code example, refer to the ProductLicense javadoc.

ProgramCall class
The ProgramCall class allows the Java program to call an iSeries program. You can use the ProgramParameter
class to specify input, output, and input/output parameters. If the program runs, the output and input/output
parameters contain the data that is returned by the iSeries program. If the iSeries program fails to run
successfully, the Java program can retrieve any resulting iSeries messages as a list of AS400Message objects.

Required parameters are as follows:

The program and parameters to run●

The AS400 object that represents the iSeries system that has the program.●

The program name and parameter list can be set on the constructor, through the setProgram() method, or on the
run() method The run() method calls the program.

The ProgramCall object class causes the AS400 object to connect to the iSeries.

The following example shows how to use the ProgramCall class:

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a program object. I choose
 // to set the program to run later.
 ProgramCall pgm = new ProgramCall(sys);

 // Set the name of the program.
 // Because the program does not take
 // any parameters, pass null for the
 // ProgramParameter[] argument.
 pgm.setProgram(QSYSObjectPathName.toPath("MYLIB",
 "MYPROG",
 "PGM"));

 // Run the program. My program has
 // no parms. If it fails to run, the failure
 // is returned as a set of messages
 // in the message list.
 if (pgm.run() != true)
 {
 // If you get here, the program
 // failed to run. Get the list of
 // messages to determine why the
 // program didn't run.
 AS400Message[] messageList = pgm.getMessageList();

 // ... Process the message list.
 }

 // Disconnect since I am done
 // running programs
 sys.disconnectService(AS400.COMMAND);

The ProgramCall object requires the integrated file system path name of the program.

Using the ProgramCall class causes the AS400 object to connect to the iSeries. See managing connections for
information about managing connections.

The default behavior is for iSeries programs to run in a separate server job, even when the Java program and the
iSeries program are on the same server. You can override the default behavior and have the iSeries program run
in the Java job using the setThreadSafe() method.

Using ProgramParameter objects

You can use the ProgramParameter objects to pass parameter data between the Java program and the iSeries
program. Set the input data with the setInputData() method. After the program is run, retrieve the output data
with the getOutputData() method. Each parameter is a byte array. The Java program must convert the byte array
between Java and iSeries formats. The data conversion classes provide methods for converting data. Parameters
are added to the ProgramCall object as a list.

The following example shows how to use the ProgramParameter object to pass parameter data.

 // Create an AS400 object
 AS400 sys = new AS400("mySystem.myCompany.com");

 // My program has two parameters.
 // Create a list to hold these
 // parameters.
 ProgramParameter[] parmList = new ProgramParameter[2];

 // First parameter is an input
 // parameter
 byte[] key = {1, 2, 3};
 parmList[0] = new ProgramParameter(key);

 // Second parameter is an output
 // parameter. A four-byte number
 // is returned.
 parmList[1] = new ProgramParameter(4);

 // Create a program object
 // specifying the name of the
 // program and the parameter list.
 ProgramCall pgm = new ProgramCall(sys,
 "/QSYS.LIB/MYLIB.LIB/MYPROG.PGM",
 parmList);

 // Run the program.
 if (pgm.run() != true)
 {

 // If the iSeries cannot run the
 // program, look at the message list
 // to find out why it didn't run.
 AS400Message[] messageList = pgm.getMessageList();

 }
 else

 {
 // Else the program ran. Process the
 // second parameter, which contains
 // the returned data.

 // Create a converter for this
 // iSeries data type
 AS400Bin4 bin4Converter = new AS400Bin4();

 // Convert from iSeries type to Java
 // object. The number starts at the
 // beginning of the buffer.
 byte[] data = parmList[1].getOutputData();
 int i = bin4Converter.toInt(data);
 }

 // Disconnect since I am done
 // running programs
 sys.disconnectService(AS400.COMMAND);

QSYSObjectPathName class
You can use the QSYSObjectPathName class to represent an object in the integrated file system. Use this class
to build an integrated file system name or to parse an integrated file system name into its components.

Several of the IBM Toolbox for Java classes require an integrated file system path name in order to be used. Use
a QSYSObjectPathName object to build the name.

The following examples show how to use the QSYSObjectPathName class:

Example 1: The ProgramCall object requires the integrated file system name of the server program to call. A
QSYSObjectPathName object is used to build the name. To call program PRINT_IT in library REPORTS using
a QSYSObjectPathName:

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a program call object.
 ProgramCall pgm = new ProgramCall(sys);

 // Create a path name object that
 // represents program PRINT_IT in
 // library REPORTS.
 QSYSObjectPathName pgmName = new QSYSObjectPathName("REPORTS",
 "PRINT_IT",
 "PGM");

 // Use the path name object to set
 // the name on the program call
 // object.
 pgm.setProgram(pgmName.getPath());

 // ... run the program, process the
 // results

Example 2: If the name of the AS400 object is used just once, the Java program can use the toPath() method to
build the name. This method is more efficient than creating a QSYSObjectPathName object.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a program call object.
 ProgramCall pgm = new ProgramCall(sys);

 // Use the toPath method to create
 // the name that represents program
 // PRINT_IT in library REPORTS.
 pgm.setProgram(QSYSObjectPathName.toPath("REPORTS",
 "PRINT_IT",
 "PGM"));

 // ... run the program, process the
 // results

Example 3: In this example, a Java program was given an integrated file system path. The
QSYSObjectPathName class can be used to parse this name into its components:

 // Create a path name object from
 // the fully qualified integrated
 // file system name.
 QSYSObjectPathName ifsName = new QSYSObjectPathName(pathName);

 // Use the path name object to get
 // the library, name and type of
 // server object.
 String library = ifsName.getLibraryName();
 String name = ifsName.getObjectName();
 String type = ifsName.getObjectType();

Record-level access
The record-level access classes provide the ability to do the following:

Create an iSeries physical file specifying one of the following:

The record length❍

An existing data description specifications (DDS) source file❍

A RecordFormat object❍

●

Retrieve the record format from an iSeries physical or logical file, or the record formats from an iSeries
multiple format logical file.

Note: The record format of the file is not retrieved in its entirety. The record formats retrieved are
meant to be used when setting the record format for an AS400File object. Only enough information is
retrieved to describe the contents of a record of the file. Record format information, such as column
headings and aliases, is not retrieved.

●

Access the records in an iSeries file sequentially, by record number, or by key.●

Write records to an iSeries file.●

Update records in an iSeries file sequentially, by record number, or by key.●

Delete records in an iSeries file sequentially, by record number, or by key.●

Lock an iSeries file for different types of access.●

Use commitment control to allow a Java program to do the following:

Start commitment control for the connection.❍

Specify different commitment control lock levels for different files.❍

Commit and rollback transactions.❍

●

Delete iSeries files.●

Delete a member from an iSeries file.●

Note: The record-level access classes do not support logical join files or null key fields.

The following classes perform these functions:

The AS400File class is the abstract base class for the record-level access classes. It provides the
methods for sequential record access, creation and deletion of files and members, and commitment
control activities.

●

The KeyedFile class represents an iSeries file whose access is by key.●

The SequentialFile class represents an iSeries file whose access is by record number.●

The AS400FileRecordDescription class provides the methods for retrieving the record format of an
iSeries file.

●

The record-level access classes require an AS400 object that represents the system that has the database files.
Using the record-level access classes causes the AS400 object to connect to the iSeries. See managing
connections for information about managing connections.

The record-level access classes require the integrated file system path name of the data base file. See integrated
file system path names for more information.

The record-level access classes use the following:

The RecordFormat class to describe a record of the database file●

The Record class to provide access to the records of the database file●

The LineDataRecordWriter class to write a record in line data format●

These classes are described in the data conversion section.

Examples

The sequential access example shows how to access an iSeries file sequentially.●

The read file example shows how to use the record-level access classes to read an iSeries file.●

The keyed file example shows to to use the record-level access classes to read records by key from an
iSeries file.

●

AS400File

The AS400File class provides the methods for the following:

Creating and deleting server physical files and members●

Reading and writing records in server files●

Locking files for different types of access●

Using record blocking to improve performance●

Setting the cursor position within an open server file●

Managing commitment control activities●

KeyedFile

The KeyedFile class gives a Java program keyed access to a file on the server. Keyed access means that the Java
program can access the records of a file by specifying a key. Methods exist to position the cursor, read, update,
and delete records by key.

To position the cursor, use the following methods:

positionCursor(Object[]) - set cursor to the first record with the specified key.●

positionCursorAfter(Object[]) - set cursor to the record after the first record with the specified key.●

positionCursorBefore(Object[]) - set cursor to the record before the first record with the specified key.●

To delete a record, use the following method :

deleteRecord(Object[]) - delete the first record with the specified key.●

The read methods are:

read(Object[]) - read the first record with the specified key.●

readAfter(Object[]) - read the record after the first record with the specified key.●

readBefore(Object[]) - read the record before the first record with the specified key.●

readNextEqual() - read the next record whose key matches the specified key. Searching starts from the
record after the current cursor position.

●

readPreviousEqual() - read the previous record whose key matches the specified key. Searching starts
from the record before the current cursor position.

●

To update a record, use the following method:

update(Object[]) - update the record with the specified key.●

Methods are also provided for specifying a search criteria when positioning, reading, and updating by key. Valid
search criteria values are as follows:

Equal - find the first record whose key matches the specified key.●

Less than - find the last record whose key comes before the specified key in the key order of the file.●

Less than or equal - find the first record whose key matches the specified key. If no record matches the
specified key, find the last record whose key comes before the specified key in the key order of the file.

●

Greater than - find the first record whose key comes after the specified key in the key order of the file.●

Greater than or equal - find the first record whose key matches the specified key. If no record matches the
specified key, find the first record whose key comes after the specified key in the key order of the file.

●

KeyedFile is a subclass of AS400File; all methods in AS400File are available to KeyedFile.

Specifying the key

The key for a KeyedFile object is represented by an array of Java Objects whose types and order correspond to
the types and order of the key fields as specified by the RecordFormat object for the file.

The following example shows how to specify the key for the KeyedFile object.

 // Specify the key for a file whose key fields, in order,

 // are:
 // CUSTNAME CHAR(10)
 // CUSTNUM BINARY(9)
 // CUSTADDR CHAR(100)VARLEN()
 // Note that the last field is a variable-length field.
 Object[] theKey = new Object[3];
 theKey[0] = "John Doe";
 theKey[1] = new Integer(445123);
 theKey[2] = "2227 John Doe Lane, ANYTOWN, NY 11199";

A KeyedFile object accepts partial keys as well as complete keys. However, the key field values that are specified
must be in order.

For example:

 // Specify a partial key for a file whose key fields,
 // in order, are:
 // CUSTNAME CHAR(10)
 // CUSTNUM BINARY(9)
 // CUSTADDR CHAR(100)VARLEN()
 Object[] partialKey = new Object[2];
 partialKey[0] = "John Doe";
 partialKey[1] = new Integer(445123);

 // Example of an INVALID partial key
 Object[] INVALIDPartialKey = new Object[2];
 INVALIDPartialKey[0] = new Integer(445123);
 INVALIDPartialKey[1] = "2227 John Doe Lane, ANYTOWN, NY 11199";

Null keys and null key fields are not supported.

The key field values for a record can be obtained from the Record object for a file through the getKeyFields()
method.

The following example shows how to read from a file by key:

 // Create an AS400 object, the file exists on this
 // server.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a file object that represents the file
 KeyedFile myFile = new KeyedFile(sys,
"/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

 // Assume that the AS400FileRecordDescription class
 // was used to generate the code for a subclass of
 // RecordFormat that represents the record format
 // of file MYFILE in library MYLIB. The code was
 // compiled and is available for use by the Java program.
 RecordFormat recordFormat = new MYKEYEDFILEFormat();

 // Set the record format for myFile. This must
 // be done prior to invoking open()
 myFile.setRecordFormat(recordFormat);

 // Open the file.
 myFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

 // The record format for the file contains
 // four key fields, CUSTNUM, CUSTNAME, PARTNUM
 // and ORDNUM in that order.
 // The partialKey will contain 2 key field
 // values. Because the key field values must be
 // in order, the partialKey will consist of values for
 // CUSTNUM and CUSTNAME.
 Object[] partialKey = new Object[2];
 partialKey[0] = new Integer(1);
 partialKey[1] = "John Doe";

 // Read the first record matching partialKey
 Record keyedRecord = myFile.read(partialKey);

 // If the record was not found, null is returned.
 if (keyedRecord != null)
 { // Found the record for John Doe, print out the info.
 System.out.println("Information for customer " +
(String)partialKey[1] + ":");
 System.out.println(keyedRecord);
 }

 // Close the file since I am done using it
 myFile.close();

 // Disconnect since I am done using record-level access
 sys.disconnectService(AS400.RECORDACCESS);

SequentialFile

The SequentialFile class gives a Java program access to a file on the server by record number. Methods exist to
position the cursor, read, update, and delete records by record number.

To position the cursor, use the following methods:

positionCursor(int) - set cursor to the record with the specified record number.●

positionCursorAfter(int) - set cursor to the record after the specified record number.●

positionCursorBefore(int) - set cursor to the record before the specified record number.●

To delete a record, use the following method:

deleteRecord(int) - delete the record with the specified record number.●

To read a record, use the following methods:

read(int) - read the record with the specified record number.●

readAfter(int) - read the record after the specified record number.●

readBefore(int) - read the record before the specified record number.●

To update a record, use the following method:

update(int) - update the record with the specified record number.●

SequentialFile is a subclass of AS400File; all methods in AS400File are available to SequentialFile.

The following example shows how to use the SequentialFile class:

 // Create an AS400 object, the file exists on this
 // server.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a file object that represents the file
 SequentialFile myFile = new SequentialFile(sys,
"/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

 // Assume that the AS400FileRecordDescription class
 // was used to generate the code for a subclass of
 // RecordFormat that represents the record format
 // of file MYFILE in library MYLIB. The code was
 // compiled and is available for use by the Java
program.
 RecordFormat recordFormat = new MYFILEFormat();

 // Set the record format for myFile. This must
 // be done prior to invoking open()
 myFile.setRecordFormat(recordFormat);

 // Open the file.
 myFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK_LEVEL_NONE);

 // Delete record number 2.
 myFile.delete(2);

 // Read record number 5 and update it
 Record updateRec = myFile.read(5);
 updateRec.setField("CUSTNAME", newName);

 // Use the base class' update() method since I am
 // already positioned on the record.
 myFile.update(updateRec);

 // Update record number 7
 updateRec.setField("CUSTNAME", nextNewName);
 updateRec.setField("CUSTNUM", new Integer(7));
 myFile.update(7, updateRec);

 // Close the file since I am done using it
 myFile.close();

 // Disconnect since I am done using record-level
access
 sys.disconnectService(AS400.RECORDACCESS);

AS400FileRecordDescription

The AS400FileRecordDescription class provides the methods for retrieving the record format of a file on the
server. This class provides methods for creating Java source code for subclasses of RecordFormat and for
returning RecordFormat objects, which describe the record formats of user-specified physical or logical files on
the server. The output of these methods can be used as input to an AS400File object when setting the record
format.

It is recommended that the AS400FileRecordDescription class always be used to generate the RecordFormat
object when the file already exists on the server.

Note: The AS400FileRecordDescription class does not retrieve the entire record format of a file. Only enough
information is retrieved to describe the contents of the records that make up the file. Information such as column
headings, aliases, and reference fields is not retrieved. Therefore, the record formats retrieved cannot necessarily
be used to create a file whose record format is identical to the file from which the format was retrieved.

Creating Java source code for subclasses of RecordFormat to represent the record format of files on the
server

The createRecordFormatSource() method creates Java source files for subclasses of the RecordFormat class. The
files can be compiled and used by an application or applet as input to the AS400File.setRecordFormat() method.

The createRecordFormatSource() method should be used as a development time tool to retrieve the record
formats of existing files on the server. This method allows the source for the subclass of the RecordFormat class
to be created once, modified if necessary, compiled, and then used by many Java programs accessing the same
files on the server. Because this method creates files on the local system, it can be used only by Java applications.
The output (the Java source code), however, can be compiled and then used by Java applications and applets
alike.

Note: This method overwrites files with the same names as the Java source files being created.

Example 1: The following example shows how to use the createRecordFormatSource() method:

 // Create an AS400 object, the file exists on this
 // server.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create an AS400FileRecordDescription object that
represents the file
 AS400FileRecordDescription myFile = new AS400FileRecordDescription(sys,
"/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");

 // Create the Java source file in the current working
directory.
 // Specify "package com.myCompany.myProduct;" for the
 // package statement in the source since I will ship
the class
 // as part of my product.
 myFile.createRecordFormatSource(null, "com.myCompany.myProduct");

 // Assuming that the format name for file MYFILE is
FILE1, the
 // file FILE1Format.java will be created in the
current working directory.
 // It will overwrite any file by the same name. The
name of the class

 // will be FILE1Format. The class will extend from
RecordFormat.

Example 2: Compile the file you created above, FILE1Format.java, and use it as follows:

 // Create an AS400 object, the file exists on this
 // server.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create an AS400File object that represents the
file
 SequentialFile myFile = new SequentialFile(sys,
"/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");

 // Set the record format
 // This assumes that
import.com.myCompany.myProduct.FILE1Format;
 // has been done.

 myFile.setRecordFormat(new FILE1Format());

 // Open the file and read from it

 // Close the file since I am done using it
 myFile.close();

 // Disconnect since I am done using record-level
access
 sys.disconnectService(AS400.RECORDACCESS);

Creating RecordFormat objects to represent the record format of files on the server

The retrieveRecordFormat() method returns an array of RecordFormat objects that represent the record formats of
an existing file on the server. Typically, only one RecordFormat object is returned in the array. When the file for
which the record format is being retrieved is a multiple format logical file, more than one RecordFormat object is
returned. Use this method to dynamically retrieve the record format of an existing file on the server during
runtime. The RecordFormat object then can be used as input to the AS400File.setRecordFormat() method.

The following example shows how to use the retrieveRecordFormat() method:

 // Create an AS400 object, the file exists on this
 // server.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create an AS400FileRecordDescription object that
represents the file
 AS400FileRecordDescription myFile = new AS400FileRecordDescription(sys,
"/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");

 // Retrieve the record format for the file
 RecordFormat[] format = myFile.retrieveRecordFormat();

 // Create an AS400File object that represents the

file
 SequentialFile myFile = new SequentialFile(sys,
"/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");

 // Set the record format
 myFile.setRecordFormat(format[0]);

 // Open the file and read from it

 // Close the file since I am done using it
 myFile.close();

 // Disconnect since I am done using record-level
access
 sys.disconnectService(AS400.RECORDACCESS);

Service program call
The ServiceProgramCall class allows you to call an iSeries service program. ServiceProgramCall is a subclass
of the ProgramCall class that you use to call iSeries programs. If you want to call an iSeries program, use the
ProgramCall class.

The ServiceProgramCall class makes it possible for you to call an iSeries service program, pass data to an
iSeries service program through input parameters, and access data the iSeries service program returns through
output parameters. Using ServiceProgramCall causes the AS400 object to connect to the iSeries. See managing
connections for information about managing connections.

The default behavior is for service programs to run in a separate server job, even when the Java program and the
service program are on the same server. You can override the default behavior and have the service program run
in the Java job using the inherited (from ProgramCall) setThreadSafe() method.

Using the ServiceProgramCall class

In order to use the ServiceProgramCall class, you must be sure to meet the following requirements:

The service program must be on an iSeries or AS/400e server running OS/400 V4R4 or later●

You can pass no more than seven parameters to the service program●

The return value of the service program is void or numeric●

Working with ProgramParameter objects

The ProgramParameter class works with the ServiceProgramCall class to pass parameter data to and from an
iSeries service program. You pass input data to the iSeries service program with setInputData().

You request the amount of output data you want returned with setOutputDataLength(). You retrieve the output
data after the service program is finished running with getOutputData(). In addition to the data itself,
ServiceProgramCall needs to know how to pass parameter data to the service program. The setParameterType()
method of ProgramParameter is used to supply this information. The type indicates if the parameter is pass by
value or pass by reference. In either case, data is sent from the client to the server. Once the data is on the
iSeries, the server uses the parameter type to correctly call the service program.

All parameters will be in the form of a byte array. Therefore, to convert between iSeries and Java formats, you
use the data conversion and description classes.

SystemStatus classes
The SystemStatus classes allow you to retrieve system status information and to retrieve and change system
pool information. The SystemStatus object allows you to retrieve system status information including the
following:

getUsersCurrentSignedOn(): Returns the number of users currently signed on the system●

getUsersTemporarilySignedOff(): Returns the number of interactive jobs that are disconnected●

getDateAndTimeStatusGathered(): Returns the date and time when the system status information was
gathered

●

getJobsInSystem(): Returns the total number of user and system jobs that are currently running●

getBatchJobsRunning(): Returns the number of batch jobs currently running on the system●

getBatchJobsEnding(): Returns the number of batch jobs that are in the process of ending●

getSystemPools(): Returns an enumeration containing a SystemPool object for each system pool●

In addition to the methods within the SystemStatus class, you also can access SystemPool through
SystemStatus. SystemPool allows you to get information about system pools and change system pool
information.

Example

This example shows you how to use caching with the SystemStatus class:

AS400 system = new AS400("MyAS400");
SystemStatus status = new SystemStatus(system);

// Turn on caching. It is off by default.
status.setCaching(true);

// This will retrieve the value from the system.
// Every subsequent call will use the cached value
// instead of retrieving it from the system.
int jobs = status.getJobsInSystem();

// ... Perform other operations here ...

// This determines if caching is still enabled.
if (status.isCaching())
{
 // This will retrieve the value from the cache.
 jobs = status.getJobsInSystem();
}

// Go to the system next time, regardless if caching is enabled.
status.refreshCache();

// This will retrieve the value from the system.
jobs = status.getJobsInSystem();

// Turn off caching. Every subsequent call will go to the system.
status.setCaching(false);

// This will retrieve the value from the system.
jobs = status.getJobsInSystem();

System values
The system value classes allow a Java program to retrieve and change system values and network attributes.
You can also define your own group to contain the system values you want.

A SystemValue object primarily contains the following information:

Name●

Description●

Release●

Value●

Using the SystemValue class, retrieve a single system value by using the getValue() method and change a
system value by using the setValue() method.

You can also retrieve group information about a particular system value:

To retrieve the system-defined group to which a system value belongs, use the getGroup() method.●

To retrieve the user-defined group to which a SystemValue object belongs (if any), use the
getGroupName() and getGroupDescription() methods.

●

Whenever the value of a system value is retrieved for the first time, the value is retrieved from the iSeries and
cached. On subsequent retrievals, the cached value is returned. If the current iSeries value is desired instead of
the cached value, a clear() must be done to clear the current cache.

System value list

SystemValueList represents a list of system values on the specified iSeries system. The list is divided into
several system-defined groups that allow the Java program to access a portion of the system values at a time.

System value group

SystemValueGroup represents a user-defined collection of system values and network attributes. Rather than a
container, it is instead a factory for generating and maintaining unique collections of system values.

You can create a SystemValueGroup by specifying one of the system-defined groups (one of the constants in
the SystemValueList class) or by specifying an array of system value names.

You can individually add the names of system values to include in the group by using the add() method. You
can also remove them by using the remove() method.

Once the SystemValueGroup is populated with the desired system value names, obtain the real SystemValue
objects from the group by calling the getSystemValues() method. In this way, a SystemValueGroup object takes
a set of system value names and generates a Vector of SystemValue objects, all having the system, group name,
and group description of the SystemValueGroup.

To refresh a Vector of SystemValue objects all at once, use the refresh() method.

Examples of using the SystemValue and SystemValueList classes

The following example shows how to create and retrieve a system value:

//Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

//Create a system value representing the current second on the system.
SystemValue sysval = new SystemValue(sys, "QSECOND");

//Retrieve the value.
String second = (String)sysval.getValue();

//At this point QSECOND is cached. Clear the cache to retrieve the most
//up-to-date value from the system.
sysval.clear();
second = (String)sysval.getValue();

//Create a system value list.
SystemValueList list = new SystemValueList(sys);

//Retrieve all the of the date/time system values.
Vector vec = list.getGroup(SystemValueList.GROUP_DATTIM);

//Disconnect from the system.
sys.disconnectAllServices();

Examples of using the SystemValueGroup class

The following example shows how to build a group of system value names and then manipulate them:

//Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

//Create a system value group initially representing all of the network
attributes on the system.
String name = "My Group";
String description = "This is one of my system values.";
SystemValueGroup svGroup = new SystemValueGroup(sys, name, description,
SystemValueList.GROUP_NET);

//Add some more system value names to the group and remove some we do not
want.
svGroup.add("QDATE");
svGroup.add("QTIME");
svGroup.remove("NETSERVER");
svGroup.remove("SYSNAME");

//Obtain the actual SystemValue objects. They are returned inside a Vector.
Vector sysvals = svGroup.getSystemValues();

//You will notice that this is one of my system values.
SystemValue mySystemValue = (SystemValue)sysvals.elementAt(0);
System.out.println(mySystemValue.getName()+" -

"+mySystemValue.getGroupDescription());

//We can add another SystemValue object from another system into the group.
AS400 sys2 = new AS400("otherSystem.myCompany.com");
SystemValue sv = new SystemValue(sys2, "QDATE");
sysvals.addElement(sv);

//Now refresh the entire group of system values all at once.
//It does not matter if some system values are from different iSeries
systems.
//It does not matter if some system values were generated using
SystemValueGroup and some were not.
SystemValueGroup.refresh(sysvals);

//Disconnect from the systems.
sys.disconnectAllServices();
sys2.disconnectAllServices();

Trace
The Trace object allows the Java program to log trace points and diagnostic messages. This information helps
reproduce and diagnose problems.

Note: You can also set tracing by using the trace system properties.

The Trace class logs the following categories of information:

Information category Description

Conversion Logs character set conversions between Unicode and code pages. This category should
be used only by the IBM Toolbox for Java classes.

Datastream Logs the data that flows between the iSeries and the Java program. This category
should be used only by the IBM Toolbox for Java classes.

Diagnostic Logs state information.

Error Logs additional errors that cause an exception.

Information Traces the flow through a program.

PCML This category is used to determine how PCML interprets the data that is sent to and
from the server.

Proxy This category is used by IBM Toolbox for Java classes to log data flow between the
client and the proxy server.

Warning Logs information about errors the program was able to recover from.

All This category is used to enable or disable tracing for all of the above categories at
once. Trace information can not be directly logged to this category.

The IBM Toolbox for Java classes also use the trace categories. When a Java program enables logging, IBM
Toolbox for Java information is included with the information that is recorded by the application.

You can enable the trace for a single category or a set of categories. Once the categories are selected, use the
setTraceOn method to turn tracing on and off. Data is written to the log using the log method.

You can send trace data for different components to separate logs. Trace data, by default, is written to the
default log. Use component tracing to write application-specific trace data to a separate log or standard output.
By using component tracing, you can easily separate trace data for a specific application from other data.

Excessive logging can impact performance. Use the isTraceOn method to query the current state of the trace.
Your Java program can use this method to determine whether it should build the trace record before it calls the
log method. Calling the log method when logging is off is not an error, but it takes more time.

The default is to write log information to standard out. To redirect the log to a file, call the setFileName()
method from your Java application. In general, this works only for Java applications because most browsers do
not give applets access to write to the local file system.

Logging is off by default. Java programs should provide a way for the user to turn on logging so that it is easy
to enable logging. For example, the application can parse for a command line parameter that indicates which
category of data should be logged. The user can set this parameter when log information is needed.

The following examples show how to use the Trace class.

Example 1: The following is an example of how to use the setTraceOn method, and how to write data to a log
by using the log method.

 // Enable diagnostic, information, and warning logging.
 Trace.setTraceDiagnosticOn(true);
 Trace.setTraceInformationOn(true);
 Trace.setTraceWarningOn(true);

 // Turn tracing on.
 Trace.setTraceOn(true);

 // ... At this point in the Java program, write to the log.
 Trace.log(Trace.INFORMATION, "Just entered class xxx, method xxx");

 // Turning tracing off.
 Trace.setTraceOn(false);

Example 2: The following examples show how to use trace. Method 2 is the preferable way to write code that
uses trace.

 // Method 1 - build a trace record
 // then call the log method and let the trace class determine if the
 // data should be logged. This will work but will be slower than the
 // following code.
 String traceData = new String("Just entered class xxx, data = ");
 traceData = traceData + data + "state = " + state;
 Trace.log(Trace.INFORMATION, traceData);

 // Method 2 - check the log status before building the information to
 // log. This is faster when tracing is not active.
 if (Trace.isTraceOn() && Trace.isTraceInformationOn())
 {
 String traceData = new String("just entered class xxx, data = ");
 traceData = traceData + data + "state = " + state;
 Trace.log(Trace.INFORMATION, traceData);
 }

Example 3: The following shows how you can use component tracing.

 // Create a component string. It is more efficient to create an
 // object than many String literals.
 String myComponent1 = "com.myCompany.xyzComponent";
 String myComponent2 = "com.myCompany.abcComponent";

 // Send Toolbox and the component trace data each to separate files.
 // The Toolbox trace will contain all trace information, while each
 // component log file will only contain trace information specific to
 // that component. If a Trace file is not specified, all trace data
 // will go to standard out with the component specified in front of
 // each trace message.

 // Trace.setFileName("c:\\bit.bucket");
 // Trace.setFileName(myComponent1, "c:\\Component1.log");
 // Trace.setFileName(myComponent2, "c:\\Component2.log");

 Trace.setTraceOn(true); // Turn trace on.
 Trace.setTraceInformationOn(true); // Enable information messages.

 // Log component specific trace data or general toolbox
 // trace data.

 Trace.setFileName("c:\\bit.bucket");
 Trace.setFileName(myComponent1, "c:\\Component1.log");

The results of the example, if you do not specify any trace files, look like this:

 Toolbox for Java - Version 5 Release 1 Modification level 0
 [com.myCompany.xyzComponent] Tue Oct 24 16:02:44 CDT 2000 I am here
 [com.myCompany.abcComponent] Tue Oct 24 16:02:44 CDT 2000 I am there
 Tue Oct 24 16:02:44 CDT 2000 I am everywhere

Users and groups
The user and group classes allow you to get a list of users and user groups on the iSeries system as well as
information about each user through a Java program.

Note: Toolbox for Java also provides resource classes that present a generic framework and consistent
programming interface for working with various iSeries objects and lists. After reading about the classes in the
access package and the resource package, you can choose the object that works best for your application. The
resource classes for working with users are RUser and RUserList.

Some of the user information you can retrieve includes previous sign-on date, status, date the password was last
changed, date the password expires, and user class. When you access the User object, you should use the
setSystem() method to set the system name and the setName() method to set the user name. After those steps,
you use the loadUserInformation() method to get the information from the iSeries.

The UserGroup object represents a special user whose user profile is a group profile. Using the getMembers()
method, a list of users that are members of the group can be returned.

The Java program can iterate through the list using an enumeration. All elements in the enumeration are User
objects; for example:

 // Create an AS400 object.
 AS400 system = new AS400 ("mySystem.myCompany.com");

 // Create the UserList object.
 UserList userList = new UserList (system);

 // Get the list of all users and groups.
 Enumeration enum = userList.getUsers ();

 // Iterate through the list.
 while (enum.hasMoreElements ())
 {
 User u = (User) enum.nextElement ();
 System.out.println (u);
 }

Retrieving information about users and groups

You use a UserList to get a list of the following:

All users and groups●

Only groups●

All users who are members of groups●

All users who are not members of groups●

The only property of the UserList object that must be set is the AS400 object that represents the system from
which the list of users is to be retrieved.

By default, all users are returned. Use a combination of setUserInfo() and setGroupInfo() to specify exactly

which users should be returned.

Example: Using a UserList to list all of the users in a given group.

UserSpace class
The UserSpace class represents a user space on the server. Required parameters are the name of the user space
and the AS400 object that represents the server that has the user space. Methods exist in user space class to do the
following:

Create a user space.●

Delete a user space.●

Read from a user space.●

Write to user space.●

Get the attributes of a user space. A Java program can get the initial value, length value, and automatic
extendible attributes of a user space.

●

Set the attributes of a user space. A Java program can set the initial value, length value, and automatic
extendible attributes of a user space.

●

The UserSpace object requires the integrated file system path name of the program. See integrated file system
path names for more information.

Using the UserSpace class causes the AS400 object to connect to the server. See managing connections for
information about managing connections.

The following example creates a user space, then writes data to it.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a user space object.
 UserSpace US = new UserSpace(sys,
 "/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC");

 // Use the create method to create the user space on
 // the server.
 US.create(10240, // The initial size is 10K
 true, // Replace if the user space
already exists
 " ", // No extended attribute
 (byte) 0x00, // The initial value is a
null
 "Created by a Java program", // The description of the
user space
 "*USE"); // Public has use authority
to the user space

 // Use the write method to write bytes to the user
space.
 US.write("Write this string to the user space.", 0);

HTML Classes
IBM Toolbox for Java HTML classes assist you in:

Setting up forms and tables for HTML pages●

Aligning text●

Working with a variety of HTML tags●

Altering the language and direction of text●

Creating ordered and unordered lists●

Creating file lists and HTML hierarchical trees (and the elements within them)●

Adding tag attributes not already defined in the HTML classes (for example, bgcolor and style
attributes)

●

The HTML classes implement the HTMLTagElement interface. Each class produces an HTML tag for a
specific element type. The tag may be retrieved using the getTag() method and can then be embedded into any
HTML document. The tags you generate with the HTML classes are consistent with the HTML 3.2
specification.

The HTML classes can work with servlet classes to get data from the iSeries server. However, they can also be
used alone if you supply the table or form data.

The HTML classes make it easier to make HTML forms, tables, and other elements:

BidiOrdering class allows you to alter the language and direction of text.●

DirFilter class enables you to determine if a File object is a directory.●

HTMLAlign class allows you to align blocks of HTML output.●

HTMLFileFilter class allows you to determine if a File object is a file.●

HTMLForm classes help you make forms more easily than CGI scripting.●

HTMLHeading class allows you to create heading tags for your HTML pages.●

HTMLHyperlink class helps you create links within your HTML pages.●

HTMLImage class allows you to create image tags for your HTML pages.●

HTMLList classes help you create lists for your HTML pages.●

HTMLMeta class allows you to create meta tags for your HTML pages.●

HTMLParameter class specifies parameters available to the HTMLServlet.●

HTMLServlet class allows you to create a server-side include.●

HTMLTable classes help you make tables for your HTML pages.●

HTMLText class allows you to access the font properties within your HTML pages.●

HTMLTree classes allow you to display an HTML hierarchical tree of HTML elements.●

URLEncoder class encodes delimiters to use in a URL string.●

URLParser class allow you to parse a URL string for the URI, properties, and reference.●

NOTE: The jt400Servlet.jar file includes both the HTML and Servlet classes. You must update your
CLASSPATH to point to the jt400Servlet.jar file if you want to use the classes in the com.ibm.as400.util.html
package.

BidiOrdering class
The BidiOrdering class represents an HTML tag that alters the language and direction of text. An HTML
<BDO> string requires two attributes, one for language and the other for the direction of the text.

The BidiOrdering class allows you to:

Get and set the language attribute●

Get and set the direction of text●

For more information about using the <BDO> HTML tag, see the W3C Web site.

Example: Using BidiOrdering

The following example creates a BidiOrdering object and sets its language and direction:

 // Create a BidiOrdering object and set the language and direction.
 BidiOrdering bdo = new BidiOrdering();
 bdo.setDirection(HTMLConstants.RTL);
 bdo.setLanguage("AR");

 // Create some text.
 HTMLText text = new HTMLText("Some Arabic Text.");
 text.setBold(true);

 // Add the text to the BidiOrdering and get the HTML tag.
 bdo.addItem(text);
 bdo.getTag();

The print statement produces the following tag:

 <bdo lang="AR" dir="rtl">
 Some Arabic Text.
 </bdo>

When you use this tag in an HTML page, browsers that can understand the <BDO> tag display the example like
this:

.txeT cibarA emoS

HTMLAlign class
The HTMLAlign class enables you to align sections of your HTML document, instead of just aligning
individual items, say paragraphs or headings.

The HTMLAlign class represents the <DIV> tag and its associated align attribute. You can use right, left, or
center alignment.

You can use this class to perform a variety of actions that include the following:

Add or remove items from the list of tags you want to align●

Get and set the alignment●

Get and set the direction of the text interpretation●

Get and set the language of the input element●

Get a String representation of the HTMLAlign object●

Example: Creating HTMLAlign objects

The following example creates an unordered list, then creates an HTMLAlign object to align the entire list:

 // Create an unordered list.
 UnorderedList uList = new UnorderedList();
 uList.setType(HTMLConstants.DISC);
 UnorderedListItem uListItem1 = new UnorderedListItem();
 uListItem1.setItemData(new HTMLText("Centered unordered list"));
 uList.addListItem(uListItem1);
 UnorderedListItem uListItem2 = new UnorderedListItem();
 uListItem2.setItemData(new HTMLText("Another item"));
 uList.addListItem(uListItem2);

 // Align the list.
 HTMLAlign align = new HTMLAlign(uList, HTMLConstants.CENTER);
 System.out.println(align);

The previous example produces the following tag:

 <div align="center">
 <ul type="disc">
 Centered unordered list
 Another item

When you use this tag in an HTML page, it looks like this:

Centered unordered list●

Another item●

HTML form classes
The HTMLForm class represents an HTML form. This class allows you to:

Add an element, like a button, hyperlink or HTML table to a form●

Remove an element from a form●

Set other form attributes, such as which method to use to send form contents to the server, the hidden
parameter list, or the action URL address

●

The constructor for the HTMLForm object takes a URL address. This address is referred to as an action URL. It
is the location of the application on the server that will process the form input. The action URL can be specified
on the constructor or by setting the address using the setURL() method. Form attributes are set using various set
methods and retrieved using various get methods.

Any HTML tag element may be added to an HTMLForm object using addElement() and removed using
removeElement(). Use the following HTML tag element classes in your HTMLForms:

FormInput classes: represent input elements for an HTML form●

LayoutFormPanel classes: represent a layout of form elements for an HTML form●

TextAreaFormElement: represents a text area element in an HTML form●

LabelFormElement: represents a label for an HTML form element●

SelectFormElement: represents a select input type for an HTML form●

SelectOption: represents an option for a SelectFormElement object in an HTML form●

RadioFormInputGroup: represents a group of radio input objects which allow a user to select one from a
group

●

Of course, you can add other tag elements to a form, including the following:

HTMLText●

HTMLHyperlink●

HTMLTable●

For more information on using the HTMLForm class to create a form, see this example and the resulting output.

FormInput classes
The FormInput class allows you to:

Get and set the name of an input element●

Get and set the size of an input element●

Get and set the initial value of an input element●

The FormInput class is extended by the classes in the following list. These classes provide a way to create
specific types of form input elements and allow you to get and set various attributes or retrieve the HTML tag
for the input element:

ButtonFormInput: Represents a button element for an HTML form●

FileFormInput: Represents a file input type, for an HTML form●

HiddenFormInput: Represents a hidden input type for an HTML form●

ImageFormInput: Represents an image input type for an HTML form.●

ResetFormInput: Represents a reset button input for an HTML form●

SubmitFormInput: Represents a submit button input for an HTML form●

TextFormInput: Represents a single line of text input for an HTML form where you define the
maximum number of characters in a line. For a password input type, you use PasswordFormInput,
which extends TextFormInput and represents a password input type for an HTML form

●

ToggleFormInput: Represents a toggle input type for an HTML form. The user can set or get the text
label and specify whether the toggle should be checked or selected. The toggle input type can be one of
two:

RadioFormInput: Represents a radio button input type for an HTML form. Radio buttons may
be placed in groups with the RadioFormInputGroup class; this creates a group of radio buttons
where the user selects only one of the choices presented.

❍

CheckboxFormInput: Represents a checkbox input type for an HTML form where the user may
select more than one from the choices presented, and where the checkbox is initialized as either
checked or unchecked.

❍

●

ButtonFormInput class
The ButtonFormInput class represents a button element for an HTML form.

The following example shows you how to create a ButtonFormInput object:

 ButtonFormInput button = new ButtonFormInput("button1", "Press Me",
"test()");
 System.out.println(button.getTag());

This example produces the following tag:

 <input type="button" name="button1" value="Press Me" onclick="test()" />

FileFormInput class
The FileFormInput class represents a file input type in an HTML form.

The following code example shows you how to create a new FileFormInput object

 FileFormInput file = new FileFormInput("myFile");
 System.out.println(file.getTag());

The above code creates the following output:

 <input type="file" name="myFile" />

HiddenFormInput class
The HiddenFormInput class represents a hidden input type in an HTML form.

The following code example shows you how to create a HiddenFormInput object:

 HiddenFormInput hidden = new HiddenFormInput("account", "123456");
 System.out.println(hidden.getTag()):

The code above generates the following tag:

<input type="hidden" name="account" value="123456" />

In an HTML page, the HiddenInputType does not display. It simply sends the information (in this case the
account number) back to the server.

ImageFormInput class
The ImageFormInput class represents an image input type in an HTML form.

You can retrieve and update many of the attributes for the ImageFormInput class by using the methods provided.

Get or set the source●

Get or set the alignment●

Get or set the height●

Get or set the width●

The following code example shows you how to create an ImageFormInput object:

 ImageFormInput image = new ImageFormInput("myPicture", "myPicture.gif");
 image.setAlignment(HTMLConstants.TOP);
 image.setHeight(81);
 image.setWidth(100);

The above code example generates the following tag:

 <input type="image" name="MyPicture" src="myPicture.gif" align="top"
height="81" width="100" />

ResetFormInput class
The ResetFormInput class represents a reset button input type in an HTML form.

The following code example shows you how to create a ResetFormInput object:

 ResetFormInput reset = new ResetFormInput();
 reset.setValue("Reset");
 System.out.println(reset.getTag());

The above code example generates the following HTML tag:

 <input type="reset" value="Reset" />

SubmitFormInput class
The SubmitFormInput class represents a submit button input type in an HTML form.

The following code example shows you how to create a SubmitFormInput object:

 SubmitFormInput submit = new SubmitFormInput();
 submit.setValue("Send");
 System.out.println(submit.getTag());

The code example above generates the following output:

 <input type="submit" value="Send" />

TextFormInput class
The TextFormInput class represents a single line text input type in an HTML form. The TextFormInput class
provides methods that let you get and set the maximum number of characters a user can enter in the text field.

The following example shows you how to create a new TextFormInput object:

 TextFormInput text = new TextFormInput("userID");
 text.setSize(40);
 System.out.println(text.getTag());

The code example above generates the following tag:

 <input type="text" name="userID" size="40" />

PasswordFormInput class
The PasswordFormInput class represents a password input field type in an HTML form.

The following code example shows you how to create a new PasswordFormInput object:

 PasswordFormInput pwd = new PasswordFormInput("password");
 pwd.setSize(12);
 System.out.println(pwd.getTag());

The code example above generates the following tag:

 <input type="password" name="password" size="12" />

RadioFormInput class
The RadioFormInput class represents a radio button input type in an HTML form. The radio button may be
initialized as selected when constructed.

A set of radio buttons with the same control name make a radio button group. The RadioFormInputGroup class
creates radio button groups. Only one radio button within the group may be selected at any time. Also, a specific
button may be initialized as selected when the group is constructed.

The following code example shows you how to create a RadioFormInput object:

 RadioFormInput radio = new RadioFormInput("age", "twentysomething", "Age
20 - 29", true);
 System.out.println(radio.getTag());

The above code example generates the following tag:

 <input type="radio" name="age" value="twentysomething" checked="checked"
/>

CheckboxFormInput class
The CheckboxFormInput class represents a checkbox input type in an HTML form. The user may select more
than one of the choices presented as checkboxes within a form.

The following example shows you how to create a new CheckboxFormInput object:

 CheckboxFormInput checkbox = new CheckboxFormInput("uscitizen", "yes",
"textLabel", true);
 System.out.println(checkbox.getTag());

The code above produces the following output:

 <input type="checkbox" name="uscitizen" value="yes" checked="checked" />
textLabel

LayoutFormPanel class
The LayoutFormPanel class represents a layout of form elements for an HTML form. You can use the methods
that LayoutFormPanel provides to add and remove elements from a panel or to get the number of elements in
the layout. You may choose to use one of two layouts:

GridLayoutFormPanel: Represents a grid layout of form elements for an HTML form.●

LineLayoutFormPanel: Represents a line layout of form elements for an HTML form.●

GridLayoutFormPanel
The GridLayoutFormPanel class represents a grid layout of form elements. You use this layout for an HTML
form where you specify the number of columns for the grid.

The following example creates a GridLayoutFormPanel object with two columns:

 // Create a text form input element for the system.
 LabelFormElement sysPrompt = new LabelFormElement("System:");
 TextFormInput system = new TextFormInput("System");

 // Create a text form input element for the userId.
 LabelFormElement userPrompt = new LabelFormElement("User:");
 TextFormInput user = new TextFormInput("User");

 // Create a password form input element for the password.
 LabelFormElement passwordPrompt = new LabelFormElement("Password:");
 PasswordFormInput password = new PasswordFormInput("Password");

 // Create the GridLayoutFormPanel object with two columns and add
the form elements.
 GridLayoutFormPanel panel = new GridLayoutFormPanel(2);
 panel.addElement(sysPrompt);
 panel.addElement(system);
 panel.addElement(userPrompt);
 panel.addElement(user);
 panel.addElement(passwordPrompt);
 panel.addElement(password);

 // Create the submit button to the form.
 SubmitFormInput logonButton = new SubmitFormInput("logon", "Logon");

 // Create HTMLForm object and add the panel to it.
 HTMLForm form = new HTMLForm(servletURI);
 form.addElement(panel);
 form.addElement(logonButton);

This example produces the following HTML code:

<form action=servletURI method="get">
<table border="0">
<tr>
<td>System:</td>
<td><input type="text" name="System" /></td>
</tr>
<tr>

<td>User:</td>
<td><input type="text" name="User" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input type="password" name="Password" /></td>
</tr>
</table>
<input type="submit" name="logon" value="Logon" />
</form>

LineLayoutFormPanel class
The LineLayoutFormPanel class represents a line layout of form elements for an HTML form. The form
elements are arranged in a single row within a panel.

This example creates a LineLayoutFormPanel object and adds two form elements.

 CheckboxFormInput privacyCheckbox = new
CheckboxFormInput("confidential", "yes", "Confidential", true);
 CheckboxFormInput mailCheckbox = new CheckboxFormInput("mailingList",
"yes", "Join our mailing list", false);
 LineLayoutFormPanel panel = new LineLayoutFormPanel();
 panel.addElement(privacyCheckbox);
 panel.addElement(mailCheckbox);
 String tag = panel.getTag();

The code example above generates the following HTML code:

 <input type="checkbox" name="confidential" value="yes"
 checked="checked" /> Confidential <input type="checkbox"
 name="mailingList" value="yes" /> Join our mailing list

TextAreaFormElement class
The TextAreaFormElement class represents a text area element in an HTML form. You determine the size of
the text area by setting the number of rows and columns. You can determine the size that a text area element is
set for with the getRows() and getColumns() methods.

You set the initial text within the text area with the setText() method. You use the getText() method to see what
the initial text has been set to.

The following example shows you how to create a TextAreaFormElement:

 TextAreaFormElement textArea = new TextAreaFormElement("foo", 3, 40);
 textArea.setText("Default TEXTAREA value goes here");
 System.out.println(textArea.getTag());

The code example above generates the following HTML code:

 <form>
 <textarea name="foo" rows="3" cols="40">
 Default TEXTAREA value goes here
 </textarea>
 </form>

LabelFormElement class
The LabelFormElement class represents a label for an HTML form element. You use the LabelFormElement
class to label elements of an HTML form such as a text area or password form input . The label is one line of
text that you set using the setLabel() method. This text does not respond to user input and is there to make the
form easier for the user to understand.

The following code example shows you how to create a LabelFormElement object:

 LabelFormElement label = new LabelFormElement("Account Balance");
 System.out.println(label.getTag());

This example produces the following output:

 Account Balance

SelectFormElement class
The SelectFormElement class represents a select input type for an HTML form. You can add and remove
various options within the select element.

SelectFormElement has methods available that allow you to view and change attributes of the select element:

Use setMultiple() to set whether or not the user can select more than one option●

Use getOptionCount() to determine how many elements are in the option layout●

Use setSize() to set the number of options visible within the select element and use getSize() to
determine the number of visible options.

●

The following example creates a SelectFormElement object with three options. The SelectFormElement object
named list, is highlighted. The first two options added specify the option text, name, and select attributes. The
third option added is defined by a SelectOption object.

 SelectFormElement list = new SelectFormElement("list1");
 SelectOption option1 = list.addOption("Option1", "opt1");
 SelectOption option2 = list.addOption("Option2", "opt2", false);
 SelectOption option3 = new SelectOption("Option3", "opt3", true);
 list.addOption(option3);
 System.out.println(list.getTag());

The above code example produces the following HTML code:

 <select name="list1">
 <option value="opt1">Option1</option>
 <option value="opt2">Option2</option>
 <option value="opt3" selected="selected">Option3</option>
 </select>

SelectOption class
The SelectOption class represents an option in an HTML option form element. You use the option form element
in a select form.

Methods are provided that you can use to retrieve and set attributes within a SelectOption. For instance, you can
set whether or not the option defaults to being selected. You can also set the input value it will use when the
form is submitted.

The following example creates three SelectOption objects within a select form. Each of the following
SelectOption objects are highlighted. They are named option1, option2 and option3. The option3 object is
initially selected.

 SelectFormElement list = new SelectFormElement("list1");
 SelectOption option1 = list.addOption("Option1", "opt1");
 SelectOption option2 = list.addOption("Option2", "opt2", false);
 SelectOption option3 = new SelectOption("Option3", "opt3", true);
 list.addOption(option3);
 System.out.println(list.getTag());

The above code example produces the following HTML tag:

 <select name="list1">
 <option value="opt1">Option1</option>
 <option value="opt2">Option2</option>
 <option value="opt3" selected="selected">Option3</option>
 </select>

RadioFormInputGroup class
The RadioFormInputGroup class represents a group of RadioFormInput objects. A user can select only one of
the RadioFormInput objects from a RadioFormInputGroup.

The RadioFormInputGroup class methods allow you to work with various attributes of a group of radio buttons.
With these methods, you can:

Add a radio button●

Remove a radio button●

Get or set the name of the radio group●

The following example creates a radio button group:

 // Create some radio buttons.
 RadioFormInput radio0 = new RadioFormInput("age", "kid", "0-12", true);
 RadioFormInput radio1 = new RadioFormInput("age", "teen", "13-19",
false);
 RadioFormInput radio2 = new RadioFormInput("age", "twentysomething",
"20-29", false);
 RadioFormInput radio3 = new RadioFormInput("age", "thirtysomething",
"30-39", false);
 // Create a radio button group and add the radio buttons.
 RadioFormInputGroup ageGroup = new RadioFormInputGroup("age");
 ageGroup.add(radio0);
 ageGroup.add(radio1);
 ageGroup.add(radio2);
 ageGroup.add(radio3);
 System.out.println(ageGroup.getTag());

The code example above generates the following HTML code:

 <input type="radio" name="age" value="kid" checked="checked" /> 0-12
 <input type="radio" name="age" value="teen" /> 13-19
 <input type="radio" name="age" value="twentysomething" /> 20-29
 <input type="radio" name="age" value="thirtysomething" /> 30-39

HTMLHeading class
The HTMLHeading class represents an HTML header. Each header can have its own alignment and level from
1 (largest font, most importance) to 6.

Methods for the HTMLHeading class include:

Get and set the text for the header●

Get and set the level of the header●

Get and set the alignment of the header●

Get and set the direction of the text interpretation●

Get and set the language of the input element●

Get a String representation of the HTMLHeader object●

Example: Creating HTMLHeading objects

The following example creates three HTMLHeading objects:

 // Create and display three HTMLHeading objects.
 HTMLHeading h1 = new HTMLHeading(1, "Heading", HTMLConstants.LEFT);
 HTMLHeading h2 = new HTMLHeading(2, "Subheading",
HTMLConstants.CENTER);
 HTMLHeading h3 = new HTMLHeading(3, "Item", HTMLConstants.RIGHT);
 System.out.print(h1 + "\r\n" + h2 + "\r\n" + h3);

The previous example produces the following tags:

 <h1 align="left">Heading</h1>
 <h2 align="center">Subheading</h2>
 <h3 align="right">Item</h3>

HTMLHyperlink class
The HTMLHyperlink class represents an HTML hyperlink tag. You use the HTMLHyperlink class to create a
link within your HTML page. You can get and set many attributes of hyperlinks with this class, including:

Get or set the Uniform Resource Identifier for the link●

Get or set the title for the link●

Get or set the target frame for the link●

The HTMLHyperlink class can print the full hyperlink with defined properties so that you can use the output in
your HTML page.

The following is an example for HTMLHyperlink:

// Create an HTML hyperlink to the IBM Toolbox for Java home page.
HTMLHyperlink toolbox = new
HTMLHyperlink("http://www.ibm.com/as400/toolbox", "IBM Toolbox for Java home
page");

// Display the toolbox link tag.
System.out.println(toolbox.toString());

The code above produces the following tag:
IBM Toolbox for Java home page

When you use this tag in an HTML page, it looks like this:

IBM Toolbox for Java home page

HTMLImage class
The HTMLImage class allows you to create image tags for your HTML page. The HTMLImage class provides
methods that allow you to get and set image attributes, including the following:

Get or set the height of the image●

Get or set the width of the image●

Get or set the name of the image●

Get or set the alternate text for the image●

Get or set the horizontal space around the image●

Get or set the vertical space around the image●

Get or set the absolute or relative reference to the image●

Retrieve a String representation of the HTMLImage object●

The following example shows one way to create an HTMLImage object:

 // Create an HTMLImage.
 HTMLImage image = new HTMLImage("http://myWebSite/picture.gif",
 "Alternate text for this graphic");
 image.setHeight(94);
 image.setWidth(105);
 System.out.println(image);

The print statement produces the following tag on a single line. Text wrapping is for display purposes only.

 <img src="http://myWebSite/picture.gif"
 alt="Alternate text for this graphic"
 height="94" width="105" />

HTMLList classes
The HTMLList classes allow you to easily create lists within your HTML pages. These classes provide methods
to get and set various attributes of the lists and the items within the lists.

In particular, the parent class HTMLList provides a method to produce a compact list that displays items in as
small a vertical space as possible.

Methods for HTMLList include:

Compact the list❍

Add and remove items from the list❍

Add and remove lists from the list (making it possible to nest lists)❍

●

Methods for HTMLListItem include:

Get and set the contents of the item❍

Get and set the direction of the text interpretation❍

Get and set the language of the input element❍

●

Use the subclasses of HTMLList and HTMLListItem to create your HTML lists:

OrderedList and OrderedListItem●

UnorderedList and UnorderedListItem●

For coding snippets, see the following examples:

Example: Creating ordered lists●

Example: Creating unordered lists●

Example: Creating nested lists●

OrderedList and OrderedListItem

Use the OrderedList and OrderedListItem classes to create ordered lists in your HTML pages.

Methods for OrderedList include:

Get and set the starting number for the first item in the list❍

Get and set the type (or style) for the item numbers❍

●

Methods for OrderedListItem include:

Get and set the number for the item❍

Get and set the type (or style) for the item number❍

●

By using the methods in OrderedListItem, you can override the numbering and type for a specific item in the
list.

See the example for creating ordered lists.

UnorderedList and UnorderedListItem

Use the UnorderedList and UnorderedListItem classes to create unordered lists in your HTML pages.

Methods for UnorderedList include:

Get and set the type (or style) for the items❍

●

Methods for UnorderedListItem include:

Get and set the type (or style) for the item❍

●

See the example for creating unordered lists.

Examples

The following examples show you how to use the HTMLList classes to create ordered lists, unordered lists, and
nested lists.

Example: Creating ordered lists

The following example creates an ordered list:

 // Create an OrderedList.
 OrderedList oList = new OrderedList(HTMLConstants.SMALL_ROMAN);
 // Create the OrderedListItems.
 OrderedListItem listItem1 = new OrderedListItem();
 OrderedListItem listItem2 = new OrderedListItem();
 // Set the data in the OrderedListItems.
 listItem1.setItemData(new HTMLText("First item"));
 listItem2.setItemData(new HTMLText("Second item"));
 // Add the list items to the OrderedList.
 oList.addListItem(listItem1);
 oList.addListItem(listItem2);
 System.out.println(oList.getTag());

The previous example produces the following tags:

 <ol type="i">
 First item
 Second item

When you use these tags in an HTML page, it looks like this:

First itemi.

Second itemii.

Example: Creating unordered lists

The following example creates an unordered list:

 // Create an UnorderedList.
 UnorderedList uList = new UnorderedList(HTMLConstants.SQUARE);

 // Create the UnorderedListItems.
 UnorderedListItem listItem1 = new UnorderedListItem();
 UnorderedListItem listItem2 = new UnorderedListItem();
 // Set the data in the UnorderedListItems.
 listItem1.setItemData(new HTMLText("First item"));
 listItem2.setItemData(new HTMLText("Second item"));
 // Add the list items to the UnorderedList.
 uList.addListItem(listItem1);
 uList.addListItem(listItem2);
 System.out.println(uList.getTag());

The previous example produces the following tags:

 <ul type="square">
 First item
 Second item

When you use these tags in an HTML page, it looks like this:

First item■

Second item■

Example: Creating nested lists

The following example creates a nested list:

 // Create an UnorderedList.
 UnorderedList uList = new UnorderedList(HTMLConstants.SQUARE);
 // Create and set the data for UnorderedListItems.
 UnorderedListItem listItem1 = new UnorderedListItem();
 UnorderedListItem listItem2 = new UnorderedListItem();
 listItem1.setItemData(new HTMLText("First item"));
 listItem2.setItemData(new HTMLText("Second item"));
 // Add the list items to the UnorderedList.
 uList.addListItem(listItem1);
 uList.addListItem(listItem2);

 // Create an OrderedList.
 OrderedList oList = new OrderedList(HTMLConstants.SMALL_ROMAN);
 // Create the OrderedListItems.
 OrderedListItem listItem1 = new OrderedListItem();
 OrderedListItem listItem2 = new OrderedListItem();
 OrderedListItem listItem3 = new OrderedListItem();
 // Set the data in the OrderedListItems.
 listItem1.setItemData(new HTMLText("First item"));
 listItem2.setItemData(new HTMLText("Second item"));
 listItem3.setItemData(new HTMLText("Third item"));
 // Add the list items to the OrderedList.
 oList.addListItem(listItem1);
 oList.addListItem(listItem2);
 // Add (nest) the unordered list to OrderedListItem2
 oList.addList(uList);
 // Add another OrderedListItem to the OrderedList
 // after the nested UnorderedList.

 oList.addListItem(listItem3);
 System.out.println(oList.getTag());

The previous example produces the following tags:

 <ol type="i">
 First item
 Second item
 <ul type="square">
 First item
 Second item

 Third item

HTMLMeta class
The HTMLMeta class represents meta-information used within an HTMLHead tag. Attributes in META tags
are used when identifying, indexing, and defining information within the HTML document.

Attributes of the META tag include:

NAME - the name associated with the contents of the META tag●

CONTENT - values associated with the NAME attribute●

HTTP-EQUIV - information gathered by HTTP servers for response message headers●

LANG - the language●

URL - used to redirect users from the current page to another URL●

For example, to help search engines determine the contents of a page, you might use the following META tag:

 <META name="keywords" lang="en-us" content="games, cards, bridge">

You can also use HTMLMeta to redirect a user from one page to another.

Methods for the HTMLMeta class include:

Get and set the NAME attribute●

Get and set the CONTENT attribute●

Get and set the HTTP-EQUIV attribute●

Get and set the LANG attribute●

Get and set the URL attribute●

Example: Creating META tags

The following example creates two META tags:

 // Create a META tag to help search engines determine page content.
 HTMLMeta meta1 = new HTMLMeta();
 meta1.setName("keywords");
 meta1.setLang("en-us");
 meta1.setContent("games, cards, bridge");
 // Create a META tag used by caches to determine when to refresh the
page.
 HTMLMeta meta2 = new HTMLMeta("Expires", "Mon, 01 Jun 2000 12:00:00
GMT");
 System.out.print(meta1 + "\r\n" + meta2);

The previous example produces the following tags:

 <meta name="keywords" content="games, cards, bridge">
 <meta http-equiv="Expires" content="Mon, 01 Jun 2000 12:00:00 GMT">

HTMLParameter class
The HTMLParameter class represents the parameters you can use with the HTMLServlet class. Each parameter
has its own name and value.

Methods for the HTMLParameter class include:

Get and set the name of the parameter●

Get and set the value of the parameter●

Example: Creating HTMLParameter tags

The following example creates an HTMLParameter tag:

 // Create an HTMLServletParameter.
 HTMLParameter parm = new HTMLParameter ("age", "21");
 System.out.println(parm);

The previous example produces the following tag:

 <param name="age" value="21">

HTMLServlet class
The HTMLServlet class represents a server-side include. The servlet object specifies the name of the servlet
and, optionally, its location. You may also choose to use the default location on the local system.

The HTMLServlet class works with the HTMLParameter class, which specifies the parameters available to the
servlet.

Methods for the HTMLServlet class include:

Add and remove HTMLParameters from the servlet tag●

Get and set the location of the servlet●

Get and set the name of the servlet●

Get and set the alternate text of the servlet●

Example: Creating HTMLServlet tags

The following example an HTMLServlet tag:

 // Create an HTMLServlet.
 HTMLServlet servlet = new HTMLServlet("myServlet",
"http://server:port/dir");
 // Create a parameter, then add it to the servlet.
 HTMLParameter param = new HTMLParameter("parm1", "value1");
 servlet.addParameter(param);
 // Create and add second parameter
 HTMLParameter param2 = servlet.add("parm2", "value2");
 // Create the alternate text if the Web server does not support
the servlet tag.
 servlet.setText("The Web server providing this page does not support
the SERVLET tag.")
 System.out.println(servlet);

The previous example produces the following tags:

 <servlet name="myServlet" codebase="http://server:port/dir">
 <param name="parm1" value="value1">
 <param name="parm2" value="value2">
 The Web server providing this page does not support the SERVLET tag.
 </servlet>

HTML Table classes
The HTMLTable class allows you to easily set up tables that you can use in HTML pages. This class provides
methods to get and set various attributes of the table, including:

Get and set the width of the border●

Get the number of rows in the table●

Add a column or row to the end of the table●

Remove a column or row at a specified column or row position●

The HTMLTable class uses other HTML classes to make creating a table easier. The other HTML classes that
work to create tables are:

HTMLTableCell: Creates a table cell●

HTMLTableRow: Creates a table row●

HTMLTableHeader: Creates a table header cell●

HTMLTableCaption: Creates a table caption●

Example

Example: Using HTMLTable classes.

HTMLTableCell class
The HTMLTableCell class takes any HTMLTagElement object as input and creates the table cell tag with the
specified element. The element can be set on the constructor or through either of two setElement() methods.

Many cell attributes can be retrieved or updating using methods that are provided in the HTMLTableCell class.
Some of the actions you can do with these methods are:

Get or set the row span●

Get or set the cell height●

Set whether or not the cell data will use normal HTML line breaking conventions●

The following example creates an HTMLTableCell object and displays the tag:

 //Create an HTMLHyperlink object.
 HTMLHyperlink link = new HTMLHyperlink("http://www.ibm.com",
 "IBM Home Page");
 HTMLTableCell cell = new HTMLTableCell(link);
 cell.setHorizontalAlignment(HTMLConstants.CENTER);
 System.out.println(cell.getTag());

The getTag() method above gives the output of the example:

<td align="center">IBM Home Page</td>

HTMLTableRow class
The HTMLTableRow class creates a row within a table. This class provides various methods for getting and
setting attributes of a row. Some things you can do with these methods are:

Add or remove a column from the row●

Get column data at the specified column Index●

Get column index for the column with the specified cell.●

Get the number of columns in a row●

Set horizontal and vertical alignments●

The following is an example for HTMLTableRow:

// Create a row and set the alignment.
HTMLTableRow row = new HTMLTableRow();
row.setHorizontalAlignment(HTMLTableRow.CENTER);

// Create and add the column information to the row.
HTMLText account = new HTMLText(customers_[rowIndex].getAccount());
HTMLText name = new HTMLText(customers_[rowIndex].getName());
HTMLText balance = new HTMLText(customers_[rowIndex].getBalance());

row.addColumn(new HTMLTableCell(account));
row.addColumn(new HTMLTableCell(name));
row.addColumn(new HTMLTableCell(balance));

// Add the row to an HTMLTable object (assume that the table already
exists).
table.addRow(row);

HTMLTableHeader class
The HTMLTableHeader class inherits from the HTMLTableCell class. It creates a specific type of cell, the
header cell, giving you a <th> cell instead of a <td> cell. Like the HTMLTableCell class, you call various
methods in order to update or retrieve attributes of the header cell.

The following is an example for HTMLTableHeader:

// Create the table headers.
HTMLTableHeader account_header = new HTMLTableHeader(new
HTMLText("ACCOUNT"));
HTMLTableHeader name_header = new HTMLTableHeader(new HTMLText("NAME"));
HTMLTableHeader balance_header = new HTMLTableHeader();
HTMLText balance = new HTMLText("BALANCE");
balance_header.setElement(balance);

// Add the table headers to an HTMLTable object (assume that the table
already exists).
table.addColumnHeader(account_header);
table.addColumnHeader(name_header);
table.addColumnHeader(balance_header);

HTMLTableCaption class
The HTMLTableCaption class creates a caption for your HTML table. The class provides methods for updating
and retrieving the attributes of the caption. For example, you can use the setAlignment() method to specify to
which part of the table the caption should be aligned. The following is an example for HTMLTableCaption:

// Create a default HTMLTableCaption object and set the caption text.
HTMLTableCaption caption = new HTMLTableCaption();
caption.setElement("Customer Account Balances - January 1, 2000");

// Add the table caption to an HTMLTable object (assume that the table
already exists).
table.setCaption(caption);

HTML Text class
The HTMLText class allows you to access text properties for your HTML page. Using the HTMLText class,
you can get, set and check the status of many text attributes, including:

Get or set the size of the font●

Set the bold attribute on (true) or off (false) or determine if it is already on●

Set the underscore attribute on (true) or off (false) or determine if it is already on●

Get or set the horizontal alignment of the text●

The following example shows you how to create an HTMLText object and set its bold attribute on and its font
size to 5.

 HTMLText text = new HTMLText("IBM");
 text.setBold(true);
 text.setSize(5);
 System.out.println(text.getTag());

The print statement produces the following tag:

 IBM

When you use this tag in an HTML page, it looks like this:

IBM

HTMLTree classes
The HTMLTree class allows you to easily set up a hierarchical tree of HTML elements that you can use in
HTML pages. This class provides methods to get and set various attributes of the tree, in addition to methods
allowing you to:

Get and set the HTTP Servlet Request●

Add an HTMLTreeElement or FileTreeElement to the tree●

Remove an HTMLTreeElement or FileTreeElement from the tree●

The HTMLTree class uses other HTML classes that make it easier to create a hierarchical tree:

HTMLTreeElement: Creates a tree element●

FileTreeElement: Creates a file tree element●

FileListElement: Creates a file list element●

FileListRenderer: Renders the list of files and directories●

Examples

The following examples show different ways to use the HTMLTree classes.

Example: Using the HTMLTree classes●

Example: Creating a traversable integrated file system tree●

HTMLTreeElement class
The HTMLTreeElement class represents an hierarchical element within an HTMLTree or other
HTMLTreeElements.

Many tree element attributes can be retrieved or updating using methods that are provided in the
HTMLTreeElement class. Some of the actions you can do with these methods are:

Get or set the visible text of the tree element●

Get or set the URL for the expanded and collapsed icon●

Set whether or not the tree element will be expanded●

The following example creates an HTMLTreeElement object and displays the tag:

 // Create an HTMLTree.
 HTMLTree tree = new HTMLTree();

 // Create parent HTMLTreeElement.
 HTMLTreeElement parentElement = new HTMLTreeElement();
 parentElement.setTextUrl(new HTMLHyperlink("http://myWebPage", "My
Web Page"));

 // Create HTMLTreeElement Child.
 HTMLTreeElement childElement = new HTMLTreeElement();
 childElement.setTextUrl(new HTMLHyperlink("http://anotherWebPage",
"Another Web Page"));
 parentElement.addElement(childElement);

 // Add the tree element to the tree.
 tree.addElement(parentElement);
 System.out.println(tree.getTag());

The getTag() method in the above example generates HTML tags like the following:

<table cellpadding="0" cellspacing="3">
<tr>
<td><u>-</u> </td>
<td><u>My Web Page</u></td>
</tr>

<tr>
<td> </td>
<td>
<table cellpadding="0" cellspacing="3">
<tr>
<td><u>-</u> </td>
<td><u>Another Web Page</u> </td>
</tr>
</table>
</td>
</tr>
</table>

FileTreeElement class
The FileTreeElement class represents the Integrated File System within an HTMLTree view.

Many tree element attributes can be retrieved or updating using methods that are provided in the
HTMLTreeElement class. You can also get and set the name and path of NetServer shared drives.

Some of the actions these methods enable you to perform are:

Get or set the URL for the expanded and collapsed icon (inherited method)●

Set whether or not the tree element will be expanded (inherited method)●

Get or set the name of the NetServer shared drive●

Get or set the path of the NetServer shared drive●

The following example creates a FileTreeElement object and displays the tag:

 // Create an HTMLTree.
 HTMLTree tree = new HTMLTree();

 // Create a URLParser object.
 URLParser urlParser = new
URLParser(httpServletRequest.getRequestURI());

 // Create an AS400 object.
 AS400 system = new AS400(mySystem, myUserId, myPassword);

 // Create an IFSJavaFile object.
 IFSJavaFile root = new IFSJavaFile(system, "/QIBM");

 // Create a DirFilter object and get the directories.
 DirFilter filter = new DirFilter();
 File[] dirList = root.listFiles(filter);

 for (int i=0; i < dirList.length; i++)
 {

 // Create a FileTreeElement.
 FileTreeElement node = new FileTreeElement(dirList[i]);

 // Set the Icon URL.
 ServletHyperlink sl = new ServletHyperlink(urlParser.getURI());
 sl.setHttpServletResponse(resp);
 element.setIconUrl(sl);

 // Add the FileTreeElement to the tree.
 tree.addElement(element);
 }

 System.out.println(tree.getTag());

The getTag() method above gives the output of the example.

FileListElement class
The FileListElement class allows you to create a file list element, which represents the contents of an integrated
file system directory.

You can use the FileListElement object to represent the contents of a NetServer shared drive by getting and
setting the name and path of NetServer shared drives.

The FileListElement class provides methods that allow you to:

List and sort the elements of the file list●

Get and set the HTTP Servlet Request●

Get and set the FileListRenderer●

Get and set the HTMLTable with which to display the file list●

Get or set the name of a NetServer shared drive●

Get or set the path of a NetServer shared drive●

You can use the FileListElement class with other classes in the html package:

With a FileListRenderer, you can specify how you want to display the list of files●

With the FileTreeElement class, you can create a traversable list of integrated file system files or
NetServer shared files

●

The FileListElement javadoc shows how to create and display a FileListElement object.

Example

The following example shows how you can use the FileListElement class with HTMLTree classes
(FileTreeElement and HTMLTreeElement) to create a traversable integrated file system tree. The example
also includes code for setting the path of a NetServer shared drive.

Example: Creating a traversable integrated file system tree●

FileListRenderer class
The FileListRenderer class renders any field for File objects (directories and files) in a FileListElement.

The FileListRenderer class offers methods that allow you to perform the following actions:

Get the name of the directory●

Get the name of the file●

Get the name of the parent directory●

Return the row data that you want to display in the FileListElement●

This example creates an FileListElement object with a renderer:

 // Create a FileListElement.
 FileListElement fileList = new FileListElement(sys, httpservletrequest);

 // Set the renderer specific to this servlet, which extends
 // FileListRenderer and overrides applicable methods.
 fileList.setRenderer(new myFileListRenderer(request));

If you don't want to use the default renderer, you can extend FileListRenderer and override methods or create
new ones. For example, you might want to ensure that you prevent passing the names of specific directories or
files with certain extensions to the FileListElement. By extending the class and overriding the appropriate
method, you can return null for these files and directories, ensuring that they are not displayed.

To fully customize the rows within a FileListElement, use the getRowData() method. An example of customizing
row data using getRowData() would be adding a column to the row data or rearranging the columns. When the
default behavior of FileListRenderer is satisfactory, you need no additional programming because the
FileListElement class creates a default FileListRenderer.

ReportWriter classes
The com.ibm.as400.util.reportwriter package provides classes that enable you to use your iSeries to more easily
access and format data from an XML source file or data produced by servlets or JavaServer Pages(TM). The
reportwriter package is a convenient way to name three different but related packages:

com.ibm.as400.util.reportwriter.pclwriter●

com.ibm.as400.util.reportwriter.pdfwriter●

com.ibm.as400.util.reportwriter.processor●

These packages include a variety of classes that allow you to format XML data streams and generate reports
in those formats. Make sure you have the necessary jar files in your CLASSPATH. For more information about
the reportwriter jar files, see Jar files.

Context classes (in the pclwriter and pdfwriter packages) define methods that the ReportProcessor classes need
to render XML and JSP data in the chosen format:

Use PCLContext in combination with a ReportWriter class to generate a report in the Hewlett Packard
Printer Control Language (PCL) format.

●

Use PDFContext in combination with a ReportWriter class to generate a report in the Adobe Portable
Document Format (PDF).

●

ReportProcessor classes (in the processor package) enable you to generate formatted reports from information
your application gathers from XML source data, Java servlets, and JavaServer Pages (JSPs).

Use the JSPReportProcessor class to retrieve data from servlets and JSP pages to produce reports in the
available formats (contexts).

●

Use the XSLReportProcessor class to process your XML data with XSL stylesheets to produce reports
in the available formats (contexts).

●

Context classes
The Context classes support specific data formats that, in combination with the OutputQueue and
SpooledFileOutputStream classes, enable the ReportWriter classes to generate reports in that format and put
those reports in a spool file.

Your application only has to create an instance of the Context class, which the ReportWriter classes then use to
generate the reports. Your application should never directly call any of the methods in either Context class. The
PCLContext and PDFContext methods are meant to be used internally by the ReportWriter classes.

Constructing an instance of the Context class requires an OutputStream (from the java.io package) and a
PageFormat (from the java.awt.print package). The following examples show how you can construct and use the
Context classes with other ReportWriter classes to generate reports:

Example: Using XSLReportProcessor with PCLContext

Example: Using JSPReportProcessor with PDFContext

JSPReportProcessor class
The JSPReportProcessor class enables you create a document or report from the contents of a JavaServer
Page(TM) (JSP) or Java servlet.

Use this class to obtain a JSP or servlet from a given URL and create a document from the contents. The JSP or
servlet must provide the document data, including XSL formatting objects. You must specify the output context
and the JSP input data source before you can generate any pages of the document. You can then convert the
report data to a specified output data stream format.

The JSPReportProcessor class allows you to:

Process the report●

Set a URL as the template●

The following examples show how you can use the JSPReportProcessor and the PDFContext classes to generate
a report. The examples include both the Java and the JSP code, which you can view by using the following
links. You can also download a zip file that contains the example JSP, XML, and XSL source files for both the
JSPReportProcessor and XSLReportProcessor examples:

Example: Using JSPReportProcessor with PDFContext●

Example: JSPReportProcessor sample JSP file●

For more information about JSPs, see Java Server Pages technology on Sun's Java Web site .

XSLReportProcessor class
The XSLReportProcessor class enables you to create a document or report by transforming and formatting your
XML source data using an XSL stylesheet. Use this class to create the report by using an XSL stylesheet that
contains XSL formatting objects (FOs), which must conform to the XSL specification. You then use a Context
class to convert the report data to a specified output data stream format.

The XSLReportProcessor class allows you to:

Set the XSL stylesheet●

Set the XML data source●

Set the XSL FO source●

Process a report●

The following example shows how you can use the XSLReportProcessor and the PCLContext classes to
generate a report. The examples include the Java, XML, and XSL code, which you can view by using the
following links. You can also download a zip file that contains the example XML, XSL, and JSP source files for
both the XSLReportProcessor and JSPReportProcessor examples:

Example: Using XSLReportProcessor with PCLContext●

Example: XSLReportProcessor sample XML file●

Example: XSLReportProcessor sample XSL file●

For more information about XML and XSL, see the XML topic in the Information Center.

Resource classes
The com.ibm.as400.resource package provides a generic framework for working with various AS400 objects
and lists. This framework provides a consistent programming interface to all such objects and lists.

The resource package includes the following classes:

Resource - an object that represents an iSeries resource, such as a user, printer, job, message, or file.
Concrete subclasses of resource include:

RIFSFile❍

RJavaProgram❍

RJob❍

RPrinter❍

RQueuedMessage❍

RSoftwareResource❍

RUser❍

Note: The NetServer classes in the access package are also concrete subclasses of Resource.

●

ResourceList - an object that represents a list of iSeries resources, such as a list of users, printers, jobs,
messages, or files. Concrete subclasses of resource include:

RIFSFileList❍

RJobList❍

RJobLog❍

RMessageQueue❍

RPrinterList❍

RUserList❍

●

Presentation - an object that allows you to present information about resource objects, resource lists,
attributes, selections, and sorts to end users

●

Resource and ChangeableResource classes
The com.ibm.as400.resource.Resource and com.ibm.as400.resource.ChangeableResource abstract classes
represent an iSeries resource.

Resource

Resource is an abstract class that provides generic access to the attributes of any resource. Every attribute is
identified using an attribute ID, and any given subclass of Resource will normally document the attribute IDs
that it supports.

Resource provides only read access to the attribute values.

IBM Toolbox for Java provides the following resource objects:

RIFSFile - represents a file or directory in the iSeries integrated file system●

RJavaProgram - represents a Java program on the iSeries●

RJob - represents an iSeries job●

RPrinter - represents an iSeries printer●

RQueuedMessage - represents a message in an iSeries message queue or job log●

RSoftwareResource - represents a licensed program on the iSeries●

RUser - represents an iSeries user●

ChangeableResource

The ChangeableResource abstract class, a subclass of Resource, adds the ability to change attribute values of an
iSeries resource. Attribute changes are cached internally until they are committed or canceled. This allows you
to change many attribute values at once.

Note: The NetServer classes in the access package are also concrete subclasses of Resource and
ChangeableResource.

Examples

The following examples show how you can directly use concrete subclasses of Resource and
ChangeableResource, and also how generic code can work with any Resource or ChangeableResource subclass.

Retrieving an attribute value from RUser, a concrete subclass of Resource●

Setting attribute values for RJob, a concrete subclass of ChangeableResource●

Using generic code to access resources●

Resource lists
The com.ibm.as400.resource.ResourceList class represents a list of iSeries resources. This is an abstract class
which provides generic access to the contents of the list.

IBM Toolbox for Java provides the following resource lists:

RIFSFileList - represents a list of files and directories in the iSeries integrated file system●

RJobList - represents a list of iSeries jobs●

RJobLog - represents a list of messages in an iSeries job log●

RMessageQueue - represents a list of messages in an iSeries message queue●

RPrinterList - represents a list of iSeries printers●

RUserList - represents a list of iSeries users●

A resource list is always either open or closed. The resource list must be open in order to access its contents. In
order to provide immediate access to the contents of the list and manage memory efficiently, most resource lists
are loaded incrementally.

Resource lists allow you to:

Open the list●

Close the list●

Access a specific Resource from the list●

Wait for a particular resource to load●

Wait for the complete resource list to load●

You can also filter resource lists by using selection values. Every selection value is identified using a selection
ID. Similarly, resource lists can be sorted using sort values. Every sort value is identified using a sort ID. Any
given subclass of ResourceList will normally document the selection IDs and sort IDs that it supports.

Examples

The following examples show various ways of working with resource lists:

Example: Getting and printing the contents of a ResourceList●

Example: Using generic code to access a ResourceList●

Example: Displaying a resource list in a servlet (HTML table)●

Presentation class
Every resource object, resource list, and meta data object has an associated com.ibm.as400.resource.Presentation
object that provides translated information, such as the name, full name, and icon.

Example: Printing a resource list and its sort values using their
Presentations

You can use the Presentation information to present resource objects, resource lists, attributes, selections, and
sorts to end users in text format.

 void printCurrentSort(ResourceList resourceList) throws ResourceException
 {
 // Get the presentation for the ResourceList and print its full name.
 Presentation resourceListPresentation =
resourceList.getPresentation();
 System.out.println(resourceListPresentation.getFullName());

 // Get the current sort value.
 Object[] sortIDs = resourceList.getSortValue();

 // Print each sort ID.
 for(int i = 0; i < sortIDs.length; ++i)
 {
 ResourceMetaData sortMetaData =
resourceList.getSortMetaData(sortIDs[i]);
 System.out.println("Sorting by " + sortMetaData.getName());
 }
 }

Security classes
You use the IBM Toolbox for Java security classes to provide secured connections to a server, verify a user's
identity, and associate a user with the operating system thread when running on the local server. The security
services included are:

Java Secure Socket Extension (JSSE) provides secure connections both by encrypting the data
exchanged between a client and a server session and by performing server authentication.

Note: Information about using Secure Sockets Layer (SSL) is included for backward compatibility
only.

●

Authentication Services provide the ability to:

Authenticate a user identity and password against the OS/400 user registry.❍

Ability to assign an identity to the current OS/400 thread.❍

●

Secure Sockets Layer
Secure Sockets Layer (SSL) provides secure connections by:

Encrypting the data exchanged between a client and server session●

Performing server authentication●

Note: Consider using Java Secure Socket Extension (JSSE) instead of the following methods of providing
secure connections. The following information about using SSL is included for backward compatibility only.

Using SSL negatively affects performance because SSL connections perform slower than connections that do
not have encryption. Use SSL connections when the sensitivity of the data transferred merits the increased cost
in performance, for example, when transferring credit card or bank statement information.

Before you begin using SSL with IBM Toolbox for Java, you must understand your legal responsibilities.

SSL algorithms

IBM Toolbox for Java does not contain the algorithms needed to encrypt and decrypt data. In V5R2, these
algorithms are shipped with the iSeries Client Encryption (128-bit) licensed program, 5722-CE3.

Note: Toolbox for Java is also compatible with iSeries Client Encryption (56-bit) licensed program, 5722-CE2,
which is no longer being updated and is not available for V5R2. Because Client Encryption (56-bit) contains
algorithms of lower strength than Client Encryption (128-bit), you should consider upgrading to 128-bit
encryption.

Contact your IBM representative for more information or to order Client Encryption (128-bit), 5722-CE3.

Setting up your SSL environment

IBM Toolbox for Java provides for two environments for using SSL to encrypt your data, which you must
properly set up.

Using encryption between the IBM Toolbox for Java classes and the OS/400 servers●

Using encryption between the proxy client and the proxy server●

Compatibility with earlier versions of IBM Toolbox for Java

The V5R2 version of IBM Toolbox for Java, the encryption algorithms, and the keyring class files requires that
you use either the V5R1 or V5R2 Client Encryption licensed programs.

Note: If you upgrade from OS/400 version V4R5 or earlier, you must update the KeyRing.class file.

When using V5R2 IBM Toolbox for Java and a compatible version of Client Encryption on your client, you can
connect to V4R4 and newer versions of OS/400. For more information about compatible versions of Client
Encryption, see SSL algorithms.

SSL legal responsibilities
The IBM iSeries Client Encryption (128-bit) licensed product provides SSL Version 3.0 encryption support
using 128-bit encryption algorithms.

This program contains data encryption technology that is subject to special export licensing requirements of the
US Department of Commerce. Other countries or regions also may have export and import licensing
requirements.

You are hereby notified that use by, or transfer to, users in the same or different countries/regions of the same
program may be prohibited or subject to:

Special import laws, regulations, or policies of the user's national government●

Special export laws, regulations, or policies from your national government●

You assume all responsibilities for ensuring that the program is used or transferred in accordance with all
applicable import and export laws, regulations, and policies from now and beyond the expiration of the license.

You and your users must comply with import/export laws of other countries or regions.

Using SSL to encrypt data between IBM Toolbox
for Java and OS/400 servers
You can use SSL to encrypt data exchanged between IBM Toolbox for Java classes and OS/400 servers. On the
client side, you use the files that come with the IBM iSeries Client Encryption licensed program (5722-CE2 or
5722-CE3) to encrypt the data. On the server side, you must use the OS/400 digital certificate manager to
configure the OS/400 servers to exchange encrypted data.

Setting up your client and server to use SSL

To encrypt data flowing between the IBM Toolbox for Java classes and OS/400 servers, complete the following
tasks:

Set up your servers to exchange encrypted data.1.

Set up the client (the IBM Toolbox for Java classes) to exchange encrypted data. The procedure for this
step depends on the kind of certificate you used when setting up SSL on your server:

Using a server certificate from a trusted authority●

Using a self-signed certificate

Note: Setting up your client by using a certificate from a trusted authority is significantly easier
and faster than using a self-signed certificate.

●

2.

Use the SecureAS400 object to force IBM Toolbox for Java to encrypt data.

Note: Completing the first two steps above only creates a secure path between the client and the server.
Your application must use the SecureAS400 object to tell the IBM Toolbox for Java which data to
encrypt. Data that flows through the SecureAS400 object is the only data that is encrypted. If you use an
AS400 object, data is not encrypted and the normal path to the server is used.

3.

Setting up iSeries servers to use SSL
To set up your iSeries servers to use SSL with IBM Toolbox for Java, complete the following steps:

Install the following to your iSeries servers:

IBM Cryptographic Access Provider 128-bit for iSeries, 5722-AC3, which provides server-side
encryption.

●

iSeries Client Encryption (128-bit), 5722-CE3, which provides the Java classes and utilities
used by the IBM Toolbox for Java classes on the client side.

●

Note: Toolbox for Java is also compatible with the V5R1 version of Cryptographic Access Provider
56-bit for iSeries, 5722-AC2, and the V5R1 version of Client Encryption (56-bit), 5722-CE2.

1.

Change the authority of the directory that contains the client encryption files.2.

Get and configure the server certificate.3.

Apply the certificate to the following iSeries servers that are used by IBM Toolbox for Java:

QIBM_OS400_QZBS_SVR_CENTRAL●

QIBM_OS400_QZBS_SVR_DATABASE●

QIBM_OS400_QZBS_SVR_DTAQ●

QIBM_OS400_QZBS_SVR_NETPRT●

QIBM_OS400_QZBS_SVR_RMTCMD●

QIBM_OS400_QZBS_SVR_SIGNON●

QIBM_OS400_QZBS_SVR_FILE●

QIBM_OS400_QRW_SVR_DDM_DRDA●

4.

Changing the authority of the directory that contains the client
encryption files

To help you meet the SSL legal responsibilities required when using cryptography algorithms, the directory that
contains the files is shipped with public authority *EXCLUDE. You must change the authority of the directory
to allow access by only those users authorized to use encryption algorithms.

Use OS/400 object security to control access to the client encryption files by completing the following steps:

On your server, enter the following command:

wrklnk '/QIBM/ProdData/HTTP/Public/jt400/*'

1.

Select option 9 in the SSL56 or SSL128 directory.2.

Ensure that *PUBLIC has *EXCLUDE authority.3.

Give *RX authority to the directory to individual or groups of users who need access to the SSL files.

Note: You can not deny access to the SSL files to users that have *ALLOBJ special authority.

4.

Getting and configuring server certificates

Before you get and configure your server certificate, you need to install the following products:

IBM HTTP Server for iSeries (5722-DG1) licensed program●

Base operating system option 34 (Digital Certificate Manager)●

The process you follow to get and configure your server certificate depends on the kind of certificate you use:

If you get a certificate from a trusted authority (such as VeriSign, Inc., or RSA Data Security, Inc.),
install the certificate on iSeries then apply it to the host servers.

●

If you choose not to use a certificate from a trusted authority, you can build your own certificate to be
used on iSeries. Build the certificate by using Digital Certificate Manager.

Create the certificate authority on the iSeries server. See the Information Center topic, Acting as
your own CA.

1.

Create a system certificate from the certificate authority that you created.2.

Assign which host servers will use the system certificate that you created.3.

●

Using a certificate from a trusted authority
IBM Toolbox for Java ships a keyring file that supports server certificates from a set of trusted authorities,
represented by the following companies:

IBM World Registry●

Integrion Financial Network●

RSA Data Security, Inc.●

Thawte Consulting●

VeriSign, Inc.●

The keyring file already supports certificates that you get from one of these trusted authorities. All you need to
do is get the zip files that contain the encryption algorithms and add it to your CLASSPATH statement.

To use the certificate, complete the following steps:

Select the directory where you want to put the zip files.1.

Download the version of SSL that you want to use by copying the zip files into the selected directory:

For 56-bit encryption (used with licensed program 5722-CE2), copy
/QIBM/ProdData/HTTP/Public/jt400/SSL56/sslightx.zip.

●

For 128-bit encryption (used with licensed program 5722-CE3), copy
/QIBM/ProdData/HTTP/Public/jt400/SSL128/sslightu.zip.

●

2.

Add the zip file to your CLASSPATH statement.3.

Using a self-signed certificate

When you choose not to use a certificate from a trusted authority, you must download the self-signed
Certificate Authority (CA) certificate (from each server that has a self-signed CA certificate) so that the IBM
Toolbox for Java classes can use it. You also have to get the zip files that contain the encryption algorithms
and add it to your CLASSPATH statement.

To use the self-signed certificate, complete the following steps:

Select the directory where you want to put the zip files.1.

Download the version of SSL that you want to use by copying both the encryption algorithms and the
utilities you need to work with a self-signed certificate:

For 56-bit encryption (used with the licensed programs 5722-CE2) copy
/QIBM/ProdData/HTTP/Public/jt400/SSL56/sslightx.zip, cfwk.zip, and ssltools.jar

●

For 128-bit encryption (used with the licensed programs 5722-CE3) copy
/QIBM/ProdData/HTTP/Public/jt400/SSL128/sslightu.zip, cfwk.zip, and ssltools.jar.

●

2.

Add ssltools.jar and the zip files to your CLASSPATH statement.3.

Create a directory on your client named <SSL>\com\ibm\as400\access where <SSL> is the directory
where you copied the jar and zip files.

4.

From a command prompt within the <SSL> directory on your client, run the following command:

 java utilities.KeyringDB com.ibm.as400.access.KeyRing -connect
<systemname>:<port>

where <port> is the server port of any of the host servers. For example, you can use 9476, which is the
default port for the secure sign-on server on the iSeries.

5.

Type the number of the Certificate Authority (CA) certificate that you want to add to your keyring.
Be sure to add the CA certificate and not the site certificate.

6.

When you are prompted to enter a certificate name, you can type any alphanumeric string.

Note: You need to run KeyringDB to each server that has a self-signed certificate to add each certificate
to the KeyRing class. On each iSeries that you wish to use SSL connections, run the following
command to add the certificates:

 java utilities.KeyringDB com.ibm.as400.access.KeyRing -connect
<systemname>:<port>

7.

After completing the above steps, you have finished setting up the self-certificates. You can run the application,
after you ensure the following are in your CLASSPATH statement:

the directory that contains com\ibm\as400\access\KeyRing.class●

jt400.jar●

sslightx.zip or sslightu.zip (depending on which file you downloaded)●

Because jt400.jar contains the default copy of KeyRing.class, the directory that contains
com\ibm\as400\access\KeyRing.class must be in the CLASSPATH before jt400.jar.

Note: Instead of adding the directory that contains the KeyRing.class file to your CLASSPATH statement, you
can replace the old class in jt400.jar with the new KeyRing.class.

Using SSL to encrypt data between the proxy
client and the proxy server
You can use SSL to encrypt data exchanged between the proxy client and proxy server. The files that come with
the IBM iSeries Client Encryption licensed program (5722-CE2 or 5722-CE3) are used to encrypt the data. Like
IBM Toolbox for Java, these files are platform-independent Java classes that enable the proxy client and proxy
server to run on any platform with a Java virtual machine.

Perform the following tasks to encrypt data flowing between the proxy client and the proxy server:

Set up the proxy server to handle encrypted data.1.

Set up the proxy client to handle encrypted data.2.

Use the SecureAS400 object to force the IBM Toolbox for Java to encrypt data.3.

Note: The first two steps only create a secure path between proxy client and the proxy server. The application
must use the SecureAS400 object to tell the IBM Toolbox for Java to flow data across the secure path. Using an
AS400 object does not encrypt the data, and instead uses the normal path to the server.

If you want to encrypt data flowing between the proxy client and the proxy server, you need only the Java
classes that come with the Client Encryption licensed program (5722-CE2 or 5722-CE3). If you want to encrypt
data flowing between the proxy server and the iSeries servers, you must also set up encryption between the
proxy server and the iSeries server.

Setting up SSL on the proxy server
To enable SSL, the proxy server must have a server certificate. Use the IKeyman graphical user interface (GUI)
to create the server certificate that the proxy server will use. IKeyman is a GUI tool, so you must run it on a
client machine. Once you have created the certificate, you can copy it to the iSeries if your proxy server runs on
iSeries.

To set up the proxy server to handle encrypted data, perform the following tasks:

Set up your client to run the IKeyman GUI.1.

Create a server certificate for the proxy server.2.

Start the proxy server using the certificate you just created.3.

Setting up your client to run the IKeyman GUI

The IKeyman GUI is a Java program based on Java Swing 1.1 interfaces. To use IKeyman, your client must be
running the Java 1.1.8 JVM (and the Swing 1.1 plug-in) or the Java 2 JVM.

The IKeyman GUI is part of the IBM iSeries Client Encryption licensed program (5722-CE2 or 5722-CE3) in
ssltools.jar. The procedure you use to set up your client to use SSL (and to run IKeyman) depends on which
version of the licensed program you are running.

Set up your client to use SSL by completing the following steps:

Select the directory on your workstation where you want to put the necessary jar and zip files.1.

Copy the necessary files to the selected directory:

When using 56-bit encryption, after loading licensed program 5722-CE2 on your iSeries, copy
the following files to your workstation:

/QIBM/ProdData/http/public/jt400/ssl56/sslightx.zip❍

/QIBM/ProdData/http/public/jt400/ssl56/ssltools.jar❍

/QIBM/ProdData/http/public/jt400/ssl56/cfwk.zip❍

/QIBM/ProdData/http/public/jt400/ssl56/cfwk.sec❍

●

When using 128-bit encryption, after loading licenced program 5722-CE3 on your iSeries, copy
the following files to your workstation:

/QIBM/ProdData/http/public/jt400/ssl128/sslightu.zip❍

/QIBM/ProdData/http/public/jt400/ssl128/ssltools.jar❍

/QIBM/ProdData/http/public/jt400/ssl128/cfwk.zip❍

/QIBM/ProdData/http/public/jt400/ssl128/cfwk.sec❍

●

2.

Add the jar file and the zip files to your CLASSPATH statement. Do not add the .sec file to your
CLASSPATH.

Note: cfwk.zip must be the first item in your classpath.

3.

Creating a server certificate

You use the IKeyman GUI to create a self-signed certificate.

Note: If the IKeyman GUI stops running, check to make sure that cfwk.zip is the first item in your

CLASSPATH and that cfwk.sec is in the same directory as the cfwk.zip.

Create a server certificate for the proxy server by completing the following steps:

Start the IKeyman GUI by using the following command:

 java -Dkeyman.javaOnly=true com.ibm.gsk.ikeyman.Ikeyman

1.

From the IKeyman Key Database File menu, select New.2.

In the New dialog, do not alter the the Key Database Type, which should be SSLight key database
class.

3.

Type a File Name (ProxyServerKeyring.class, for example) or click Browse to locate the class file you
want to use for the keyring.

Note: Remember the keyring file name, because you need it to start the secure proxy server.

4.

Type a Location (path) or accept the default location, which is the current working directory, then click
OK.

5.

In the Password Prompt dialog, type a Password and Confirm Password, then click OK. (Set
expiration time is optional, and you do not need to select it.)

Note: Remember your password, which you need to start the secure proxy server. The key icons in this
dialog represent the relative strength of your password. A strong password requires a mix of uppercase
and lowercase alphanumeric characters.

6.

From the IKeyman Create file menu, select New Self-Signed Certificate.7.

In the Create New Self-Signed Certificate dialog, type a Key Label (for example, MyCertificate) and
Organization.

8.

Click the Country list to select a country or region, type a Validity Period or accept the default value,
then click OK.

9.

From the IKeyman Key Database File menu, select Close, then (from the same menu) click Exit.10.

You should now be able to see the keyring that you just created in your current directory.

Starting the proxy server using the new certificate

Before starting the proxy server, make sure that the CLASSPATH for the proxy server contains jt400.jar,
sslightx.zip, and the location of the proxy server keyring.

Start the Proxy Server using the certificate you just created. Use the -keyringName and -keyringPassword
parameters to pass this information to the proxy server. For example:

 java com.ibm.as400.access.ProxyServer -keyringName ProxyServerKeyring
-keyringPassword pxypswrd

Setting up SSL on the proxy client
The following procedure leads you through adding the server certificate to the certificate database on the client,
which is stored in a Java .class file. Adding the server certificate to the client is necessary because the server uses a
self-signed certificate.

Set up the proxy client to exchange encrypted data by completing the following tasks:

Set up your proxy server to handle encrypted data, then start the proxy server.1.

Set up your client to use SSL.2.

Use KeyringDB to get the server certificate of the proxy server.3.

Set up the client to use the updated KeyRing.class file.4.

Set the secure proxy settings on the client.5.

Setting up your client to use SSL

The tool that downloads the certificate (KeyringDB) is a Java program. To use this program, you must be running
Java 1.1.8 or Java 2 JVM on your client. KeyringDB is part of the IBM iSeries Client Encryption licensed program
(5722-CE2 or 5722-CE3) in ssltools.jar. The procedure you use to set up your client to use SSL depends on which
version of the licensed program you are running.

After setting up your proxy server, set up your client to use SSL by completing the following steps:

Select the directory on your workstation where you want to put the necessary jar and zip files.1.

Copy the necessary files to the selected directory:

When using 56-bit encryption, after loading licenced program 5722-CE2 on your iSeries, copy the
following files to your workstation:

/QIBM/ProdData/http/public/jt400/ssl56/sslightx.zip❍

/QIBM/ProdData/http/public/jt400/ssl56/ssltools.jar❍

/QIBM/ProdData/http/public/jt400/ssl56/cfwk.zip❍

●

When using 128-bit encryption, after loading licenced program 5722-CE3 on your server, copy the
following files to your workstation:

/QIBM/ProdData/http/public/jt400/ssl128/sslightu.zip❍

/QIBM/ProdData/http/public/jt400/ssl128/ssltools.jar❍

/QIBM/ProdData/http/public/jt400/ssl128/cfwk.zip❍

●

2.

Add the jar file and the zip files to your CLASSPATH statement.3.

Create a directory on your client named <SSL>\com\ibm\as400\access where <SSL> is the directory where
you copied the jar and zip files.

4.

Adding the server certificate for the proxy server

KeyringDB creates a new KeyRing.class file that contains the server certificate and puts it in the
com\ibm\as400\access subdirectory off the current directory.

Use the KeyringDB tool to add the server certificate to KeyRing.class by completing the following steps:

From the directory where you put the jar and zip files, run the following command:

 java utilities.KeyringDB com.ibm.as400.access.KeyRing -connect

1.

proxyServerName:port

where:

proxyServerName is the name of the machine running the proxy server●

port is the port that the secure proxy server is listening to (3471 by default)

For example:

 java utilities.KeyringDB com.ibm.as400.access.KeyRing -connect
myProxyServer:3471

●

When asked which certificate to use, choose site certificate 0.2.

When you are prompted to enter a certificate name, you can type any alphanumeric string.3.

Setting up the client to use the updated KeyRing.class file

The jt400Proxy.jar file contains KeyRing.class. To set up the client to use the updated KeyRing.class file, ensure the
following are in your CLASSPATH statement:

the directory that contains com\ibm\as400\access\KeyRing.class●

jt400Proxy.jar●

sslightx.zip or sslightu.zip (depending on which file you downloaded)●

cfwk.zip●

Because jt400Proxy.jar contains the default copy of KeyRing.class, the directory that contains
com\ibm\as400\access\KeyRing.class must be in the CLASSPATH before jt400Proxy.jar.

Note: Instead of adding the directory that contains the KeyRing.class file to your CLASSPATH statement, you can
add the new KeyRing.class to your jt400Proxy.jar file. Adding the new KeyRing.class file to jt400Proxy.jar
overwrites the old version.

Setting the secure proxy settings on the client

To tell the proxy client to communicate with the proxy server across a secure connection, set the following system
properties:

 com.ibm.as400.access.AS400.proxyServer=proxyServer

where proxyServer is the name of the machine that is running the proxy server

 com.ibm.as400.access.SecureAS400.proxyEncryptionMode=mode

where mode is one of the following integers:

1 to encrypt between proxy client and proxy server●

2 to encrypt between proxy server and the iSeries server●

3 to encrypt between proxy client and proxy server, and between proxy server and the iSeries server

For example, the following command starts an application using SSL:

 java -Dcom.ibm.as400.access.AS400.proxyServer=myProxyServer
 -Dcom.ibm.as400.access.SecureAS400.proxyEncryptionMode=1
myApplication

●

Authentication services
Classes are provided by the IBM Toolbox for Java that interact with the security services provided by OS/400.
Specifically, support is provided to authenticate a user identity, sometimes referred to as a principal, and
password against the OS/400 user registry. A credential representing the authenticated user can then be
established. You can use the credential to alter the identity of the current OS/400 thread to perform work under
the authorities and permissions of the authenticated user. In effect, this swap of identity results in the thread
acting as if a signon was performed by the authenticated user.

Note: The services to establish and swap credentials are only supported for servers at release V5R1M0 or
greater.

Overview of support provided

The AS400 object provides authentication for a given user profile and password against the server. You can also
retrieve Kerberos tickets and profile tokens that represent authenticated user profiles and passwords for the
system.

Note: Using Kerberos tickets requires that you install J2SDK, v1.4 and configure the Java General Security
Services (JGSS) Application Programming Interface. For more information about JGSS, see the J2SDK, v1.4

Security Documentation .

To use Kerberos tickets, set only the system name (and not the password) into the AS400 object. The user
identity is retrieved through the JGSS framework. You can set only one means of authentication in an AS400
object at a time. Setting the password clears any Kerberos ticket or profile token.

To use profile tokens, use the getProfileToken() methods to retrieve instances of the ProfileTokenCredential
class. Think of profile tokens as a representation of an authenticated user profile and password for a specific
server. Profile tokens expire based on time, up to one hour, but can be refreshed in certain cases to provide an
extended life span.

The following example creates a system object and uses that object to generate a profile token. The example
then uses the profile token to create another system object, and uses the second system object to connect to the
command service:

AS400 system = new AS400("mySystemName", "MYUSERID", "MYPASSWORD");
ProfileTokenCredential myPT = system.getProfileToken();
AS400 system2 = new AS400("mySystemName", myPT);
system2.connectService(AS400.COMMAND);

Setting thread identities

You can establish a credential on either a remote or local context. Once created, you can serialize or distribute
the credential as required by the calling application. When passed to a running process on the associated server,
a credential can be used to modify or swap the OS/400 thread identity and perform work on behalf of the
previously authenticated user.

A practical application of this support might be in a two tier application, with authentication of a user profile
and password being performed by a graphical user interface on the first tier (i.e. a PC) and work being
performed for that user on the second tier (the server). By utilizing ProfileTokenCredentials, the application can
avoid directly passing user IDs and passwords over the network. The profile token can then be distributed to the
program on the second tier, which can perform the swap() and operate under the OS/400 authorities and
permissions assigned to the user.

Note: While inherently more secure than passing a user profile and password due to limited life span, profile
tokens should still be considered sensitive information by the application and handled accordingly. Since the
token represents an authenticated user and password, it could potentially be exploited by a hostile application to
perform work on behalf of that user. It is ultimately the responsibility of the application to ensure that
credentials are accessed in a secure manner.

Example

Refer to this code for an example of how to use a profile token credential to swap the OS/400 thread identity
and perform work on behalf of a specific user.

Servlet classes
The servlet classes that are provided with IBM Toolbox for Java work with the access classes, which are located
on the webserver, to give you access to information located on the iSeries server. You decide how to use the
servlet classes to assist you with your own servlet projects.

The following diagram shows how the servlet classes work between the browser, webserver, and iSeries data. A
browser connects to the webserver that is running the servlet. jt400Servlet.jar and jt400.jar files reside on
the webserver because the servlet classes use some of the access classes to retrieve the data and the HTML
classes to present the data. The webserver is connected to the iSeries system where the data is.

Figure 1: How servlets work

There are four types of servlet classes included with IBM Toolbox for Java:

Authentication classes●

RowData classes●

RowMetaData classes●

Converter classes●

Note: The jt400Servlet.jar file includes both the HTML and Servlet classes. You must update your
CLASSPATH to point to both jt400Servlet.jar and jt400.jar if you want to use classes in the
com.ibm.as400.util.html and com.ibm.as400.util.servlet packages.

For more information about servlets in general, see the reference section.

Authentication classes
Two classes in the servlet package perform authentication for servlets: AuthenticationServlet and AS400Servlet.

AuthenticationServlet class

AuthenticationServlet is an HttpServlet implementation that performs basic authentication for servlets.
Subclasses of AuthenticationServlet should override one or more of the following methods:

Override the validateAuthority() method to perform the authentication (required)●

Override the bypassAuthentication() method so that the subclass authenticates only certain requests●

Override the postValidation() method to allow additional processing of the request after authentication●

The AuthenticationServlet class provides methods that allow you to:

Initialize the servlet●

Get the authenticated user ID●

Set a user ID after bypassing authentication●

Log exceptions and messages●

AS400Servlet class

The AS400Servlet class is an abstract subclass of AuthenticationServlet that represents an HTML servlet. You
can use a connection pool to share connections and manage the number of connections a servlet user can have to
the server.

The AS400Servlet class provides methods that allow you to:

Validate user authority (by overriding the validateAuthority() method of the AuthenticationServlet
class)

●

Connect to a system●

Get and return connection pool objects to and from the pool●

Close a connection pool●

Get and set the HTML document head tags●

Get and set the HTML document end tags●

For more information about servlets in general, see the reference section.

RowData class
The RowData class is an abstract class that provides a way to describe and access a list of data.

There are four main classes that extend the RowData class:

ListRowData●

RecordListRowData●

ResourceListRowData●

SQLResultSetRowData●

The RowData classes allow you to:

Get and set the current position●

Get the row data at a given column using the getObject() method●

Get the meta data for the row●

Get or set the properties for an object at a given column●

Get the number of rows in the list using the length() method.●

RowData position

There are several methods that allow you to get and set the current position within a list. The following table
lists both the set and get methods for the RowData classes.

Set methods Get methods

absolute() next() getCurrentPosition()

afterLast() previous() isAfterLast()

beforeFirst() relative() isBeforeFirst()

first() isFirst()

last() isLast()

ListRowData class
The ListRowData class allows you to do the following:

Add and remove rows to and from the result list.●

Get and set the row●

Get information about the list's columns with the getMetaData() method●

Set column information with the setMetaData() method●

The ListRowData class represents a list of data. ListRowData can represent many types of information,
including the following, through IBM Toolbox for Java access classes:

A directory in the integrated file system●

A list of jobs●

A list of messages in a message queue●

A list of users●

A list of printers●

A list of spooled files●

This example shows you how ListRowData and HTMLTableConverter work. It shows the java code, HTML
code, and HTML look and feel.

RecordListRowData class
The RecordListRowData class allows you to do the following:

Add and remove rows to and from the record list.●

Get and set the row●

Set the record format with the setRecordFormat method●

Get the record format.●

The RecordListRowData class represents a list of records. A record can be obtained from the server in different
formats, including:

A record to be written to or read from a server file●

An entry in a data queue●

The parameter data from a program call●

Any data returned that needs to be converted between the server format and Java format●

This example shows you how RecordListRowData and HTMLTableConverter work. It shows the java code,
HTML code, and HTML look and feel.

ResourceListRowData class
The ResourceListRowData class represents a resource list of data. Use ResourceListRowData objects to
represent any implementation of the ResourceList interface.

Resource lists are formatted into a series of rows, where each row contains a finite number of columns
determined by the number of column attribute IDs. Each column within a row contains an individual data item.

The ResourceListRowData class offers methods that enable you to perform the following actions:

Get and set column attribute IDs●

Get and set the resource list●

Retrieve the number of rows in the list●

Get the column data for the current row●

Get the property list of the data object●

Get the metadata for the list●

Example: Presenting a resource list in a servlet

SQLResultSetRowData class
The SQLResultSetRowData class represents an SQL result set as a list of data. This data is generated by an SQL
statement through JDBC. With methods provided, you can get and set the result set metadata.

This example shows you how ListRowData and HTMLTableConverter work. It shows the java code, HTML
code, and HTML look and feel.

RowMetaData classes
The RowMetaData class defines an interface that you use to find out information about the columns of a
RowData object.

With the RowMetaData classes you can do the following:

Get the number of columns●

Get the name, type, or size of the column●

Get or set the column label●

Get the precision or scale of the column data●

Determine if the column data is text data●

There are three main classes that implement the RowMetaData class. These classes provide all the
RowMetaData functions listed above in addition to having their own specific functions:

ListMetaData●

RecordFormatMetaData●

SQLResultSetMetaData●

ListMetaData class
The ListMetaData lets you get information about and change settings for the columns in a ListRowData class. It
uses the setColumns() method to set the number of columns, clearing any previous column information.
Alternatively, you can also pass the number of columns when you set the constructor's parameters.

This example shows you how ListMetaData, ListRowData and HTMLTableConverter work. It shows the java
code, HTML code, and HTML look and feel.

RecordFormatMetaData class
The RecordFormatMetaData makes use of the IBM Toolbox for Java RecordFormat class. It allows you to
provide the record format when you set the constructor's parameters or use the get and set methods to access the
record format.

The following example shows you how to create a RecordFormatMetaData object:

// Create a RecordFormatMetaData object from a sequential file's record
format.
RecordFormat recordFormat = sequentialFile.getRecordFormat();
RecordFormatMetaData metadata = new RecordFormatMetaData(recordFormat);

// Display the file's column names.
int numberOfColumns = metadata.getColumnCount();
for (int column=0; column < numberOfColumns; column++)
{
 System.out.println(metadata.getColumnName(column));
}

SQLResultSetMetaData class
The SQLResultSetMetaData class returns information about the columns of an SQLResultSetRowData object.
You can either provide the result set when you set the constructor's parameters or use the get and set methods to
access the result set meta data.

The following example shows you how to create an SQLResultSetMetaData object:

// Create an SQLResultSetMetaData object from the result set's metadata.
SQLResultSetRowData rowdata = new SQLResultSetRowData(resultSet);
SQLResultSetMetaData sqlMetadata = rowdata.getMetaData();

// Display the column precision for non-text columns.
String name = null;
int numberOfColumns = sqlMetadata.getColumnCount();
for (int column=0; column < numberOfColumns; column++)
{
 name = sqlMetadata.getColumnName(column);
 if (sqlMetadata.isTextData(column))
 {
 System.out.println("Column: " + name + " contains text data.");
 }
 else
 {
 System.out.println("Column: " + name + " has a precision of " +
sqlMetadata.getPrecision(column));
 }
}

Converter classes
You use the converter classes to convert row data into formatted string arrays. The result is in HTML format
and ready for presentation on your HTML page. The following classes take care of the conversion for you:

StringConverter●

HTMLFormConverter●

HTMLTableConverter●

StringConverter class
The StringConverter class is an abstract class that represents a row data string converter. It provides a convert()
method to convert row data. This returns a string array representation of that row's data.

HTMLFormConverter class
The HTMLFormConverter classes extends StringConverter by providing an additional convert method called
convertToForms(). This method converts row data into an array of single-row HTML tables. You can use these
table tags to display the formatted information on a browser.

You can tailor the appearance of the HTML form by using the various get and set methods to view or change
the attributes of the form. For example, some of the attributes that you can set include:

Alignment●

Cell spacing●

Header hyperlinks●

Width●

Examples

Example: Using HTMLFormConverter. (Compile and run this example with a webserver running)

HTMLTableConverter class
The HTMLTableConverter class extends StringConverter by providing a convertToTables() method. This
method converts row data into an array of HTML tables that a servlet can use to display the list on a browser.

You can use the getTable() and setTable() methods to choose a default table that will be used during conversion.
You can set table headers within the HTML table object or you can use the meta data for the header information
by setting setUseMetaData() to true.

The setMaximumTableSize() method allows you to limit the number of rows in a single table. If the row data
does not all fit within the specified size of table, the converter will produce another HTML table object in the
output array. This will continue until all row data has been converted.

Examples

The following examples illustrate how to use the HTMLTableConverter class:

Example: Using ListRowData●

Example: Using RecordListRowData●

Example: Using SQLResultSetRowData●

Example: Presenting ResourceList in a servlet●

Utility classes
Utility classes help you perform specific tasks. IBM Toolbox for Java offers the following utilities:

AS400ToolboxInstaller: Allows you to install and update IBM Toolbox for Java classes on the client.
This function is available both as a Java program and has an application programming interface(API).

●

AS400ToolboxJarMaker: Generates a faster loading IBM Toolbox for Java JAR file by creating a
smaller JAR file from a larger one, or by selectively unzipping a JAR file to gain access to the
individual content files.

●

CommandPrompter: Prompts for the parameter on a given command. CommandPrompter offers
functionality that is similar to the iSeries CL command prompt (pressing F4) and the same as the
Management Central command prompt.

●

RunJavaApplication and VRunJavaApplication: Allow you to run a Java program on an iSeries server
from a command line prompt.

●

JPing: Allows you to query a server to find out which services are active. You can also specify if you
want to ping the SSL ports.

●

Client installation and update classes
The IBM Toolbox for Java classes can be referenced at their location in the integrated file system on the server.
Because program temporary fixes (PTFs) are applied to this location, Java programs that access these classes
directly on the server automatically receive these updates. Accessing the classes from the server does not always
work, specifically for the following situations:

If a low-speed communication link connects server and the client, the performance of loading the classes
from the server may be unacceptable.

●

If Java applications use the CLASSPATH environment variable to access the classes on the client file
system, you need iSeries Access for Windows to redirect file system calls to the server. It may not be
possible for iSeries Access for Windows to reside on the client.

●

In these cases, installing the classes on the client is a better solution. The AS400ToolboxInstaller class provides
client installation and update functions to manage IBM Toolbox for Java classes when they reside on a client.

Using the AS400ToolboxInstaller

The AS400ToolboxInstaller object is both a program and a programmable interface. The object has a main()
method so it can be run from the command line. It also has public worker methods so it can be included with and
called from your application.

The AS400ToolboxInstaller object can be used to both install the Toolbox files on the client and keep them up to
date. When first used Toolbox files are copied from the server to the workstation. When PTFs are applied to the
server, the AS400ToolboxInstaller object updates the files on the workstation with the new files on the server.

The AS400ToolboxInstaller class copies files to the client's local file system. This class may not work in an
applet; many browsers do not allow a Java program to write to the local file system.

Running the AS400ToolboxInstaller class from the command line

The AS400ToolboxInstaller class can be used as a stand-alone program, run from the command line. Running the
AS400ToolboxInstaller from the command line means you do not have to write a program. Instead, you run it as
a Java application to install, uninstall, or update the IBM Toolbox for Java classes.

Specifying the appropriate install, uninstall, or compare option, invoke the AS400ToolboxInstaller class with the
following command:

 java utilities.AS400ToolboxInstaller [options]

The -source option indicates where the IBM Toolbox for Java classes can be found and -target indicates where
the IBM Toolbox for Java classes are to be stored on the client.

Options are also available to install the entire toolbox or just certain functions. For example, to install or update
classes in the Toolbox for Java access package (jt400.jar) on your workstation, use the following command:

 java utilities.AS400ToolboxInstaller -install -package ACCESS -source
myAS400 -target c:\toolbox

The example above assumes that c:\toolbox is the directory that contains the Toolbox for Java jar files.

Embedding the AS400ToolboxInstaller class in your program

The AS400ToolboxInstaller class provides the application programming interfaces (APIs) that are necessary to
install, uninstall, and update IBM Toolbox for Java classes from within the program on the client.

Use the install() method to install or update the IBM Toolbox for Java classes. To install or update, provide the
source and target path, and the name of the package of classes in your Java program. The source URL points to
the location of the control files on the server. The directory structure is copied from the server to the client.

The install() method only copies files; it does not update the CLASSPATH environment variable. If the install()
method is successful, the Java program can call the getClasspathAdditions() method to determine what must be
added to the CLASSPATH environment variable.

The following example shows how to use the AS400ToolboxInstaller class to install files from a server called
"mySystem" to directory "jt400" on drive d:, and then how to determine what must be added to the CLASSPATH
environment variable:

 // Install the IBM Toolbox for Java
 // classes on the client.
 URL sourceURL = new
URL("http://mySystem.myCompany.com/QIBM/ProdData/HTTP/Public/jt400/");

 if (AS400ToolboxInstaller.install(
 "ACCESS",
 "d:\\jt400",
 sourceURL))

 {
 // If the IBM Toolbox for Java classes were installed
 // or updated, find out what must be added to the
 // CLASSPATH environment variable.
 Vector additions = AS400ToolboxInstaller.getClasspathAdditions();

 // If updates must be made to CLASSPATH
 if (additions.size() > 0)
 {
 // ... Process each classpath addition
 }
 }

 // ... Else no updates were needed.

Use the isInstalled() method to determine if the IBM Toolbox for Java classes are already installed on the client.
Using the isInstalled() method allows you to determine if you want to complete the install now or postpone it to a
more convenient time.

The install() method both installs and updates files on the client. A Java program can call the isUpdateNeeded()
method to determine if an update is needed before calling install().

Use the unInstall() method to remove the IBM Toolbox for Java classes from the client. The unInstall method
only removes files; the CLASSPATH environment variable is not changed. Call the getClasspathRemovals()
method to determine what can be removed from the CLASSPATH environment variable.

For more examples of how to install and update the AS400ToolboxInstaller class within a program on the client
workstation, refer to the Install/Update example.

AS400ToolboxJarMaker
While the JAR file format was designed to speed up the downloading of Java program files, the
AS400ToolboxJarMaker class generates an even faster loading IBM Toolbox for Java JAR file through its
ability to create a smaller JAR file from a larger one.

Also, the AS400ToolboxJarMaker class can unzip a JAR file for you to gain access to the individual content
files for basic use.

Flexibility of AS400ToolboxJarMaker

All of the AS400ToolboxJarMaker functions are performed with the JarMaker class and the
AS400ToolboxJarMaker subclass:

The generic JarMaker tool operates on any JAR or Zip file; it splits a jar file or reduces the size of a jar
file by removing classes that are not used.

●

The AS400ToolboxJarMaker customizes and extends JarMaker functions for easier use with IBM
Toolbox for Java JAR files.

●

According to your needs, you can invoke the AS400ToolboxJarMaker methods from within your own Java
program or from a command line. Call AS400ToolboxJarMaker from the command line by using the following
syntax:

 java utilities.JarMaker [options]

where

options = one or more of the available options●

For a complete set of options available to run at a command line prompt, see the following:

Options for the JarMaker base class●

Extended options for the AS00ToolboxJarMaker subclass●

Using AS400ToolboxJarMaker

Uncompressing a JAR file

Suppose you wanted to uncompress just one file bundled within a JAR file. AS400ToolboxJarMaker allows you
to expand the file into one of the following:

Current directory (extract(jarFile))●

Another directory (extract(jarFile, outputDirectory))●

For example, with the following code, you are extracting AS400.class and all of its dependent classes from
jt400.jar:

 java utilities.AS400ToolboxJarMaker -source jt400.jar
 -extract outputDir
 -requiredFile com/ibm/as400/access/AS400.class

Splitting up a single JAR file into multiple, smaller JAR files

Suppose you wanted to split up a large JAR file into smaller JAR files, according to your preference for
maximum JAR file size. AS400ToolboxJarMaker, accordingly, provides you with the split(jarFile, splitSize)
function.

In the following code, jt400.jar is split into a set of smaller JAR files, none larger than 300K:

 java utilities.AS400ToolboxJarMaker -split 300

Removing unused files from a JAR file With AS400ToolboxJarMaker, you can exclude any IBM Toolbox for
Java files not needed by your application by selecting only the IBM Toolbox for Java components, languages,
and CCSIDs that you need to make your application run. AS400ToolboxJarMaker also provides you with the
option of including or excluding the JavaBean files associated with the components you select.

For example, the following command creates a JAR file that contains only those IBM Toolbox for Java classes
needed to make the CommandCall and ProgramCall components of the IBM Toolbox for Java work:

 java utilities.AS400ToolboxJarMaker -component CommandCall,ProgramCall

Additionally, if it is unnecessary to convert text strings between Unicode and the double byte character set
(DBCS) conversion tables, you can create a 400K byte smaller JAR file by omitting the unneeded conversion
tables with the -ccsid option:

 java utilities.AS400ToolboxJarMaker -component CommandCall,ProgramCall
-ccsid 61952

Note: Conversion classes are not included with the program call classes. When including program call classes,
you must also explicitly include the conversion classes used by your program by using the -ccsid option.

Components supported by IBM Toolbox for Java
Following are the components IDs that you may specify when invoking the AS400ToolboxJarMaker tool.

The first column lists the common name for the component.●

The second column lists the keyword that you should specify when using the -component option tag.●

The third column lists the Integer value that you should specify in setComponents() and
getComponents().

●

Component Keyword Constant

Server
object

AS400 AS400ToolboxJarMaker.AS400

Command
Call

CommandCall AS400ToolboxJarMaker.COMMAND_CALL

Connection
Pool

ConnectionPool AS400ToolboxJarMaker.CONNECTION_POOL

Data Areas DataArea AS400ToolboxJarMaker.DATA_AREA

Data
Description
and
Conversion

DataDescription AS400ToolboxJarMaker.DATA_DESCRIPTION

Data
Queues

DataQueue AS400ToolboxJarMaker.DATA_QUEUE

Digital
Certificates

DigitalCertificate AS400ToolboxJarMaker.DIGITAL_CERTIFICATE

FTP FTP AS400ToolboxJarMaker.FTP

Integrated
File System

IntegratedFileSystem AS400ToolboxJarMaker.INTEGRATED_FILE_SYSTEM

JAAS JAAS AS400ToolboxJarMaker.JAAS

Java
Application
Call

JavaApplicationCall AS400ToolboxJarMaker.JAVA_APPLICATION_CALL

JDBC JDBC AS400ToolboxJarMaker.JDBC

Jobs and
Job Queues

Job AS400ToolboxJarMaker.JOB

Messages
and
Message
Queues

Message AS400ToolboxJarMaker.MESSAGE

Numeric
Data Types

NumericDataTypes AS400ToolboxJarMaker.NUMERIC_DATA_TYPES

NetServer NetServer AS400ToolboxJarMaker.NETSERVER

Network
Print

Print AS400ToolboxJarMaker.PRINT

Program
Call

ProgramCall AS400ToolboxJarMaker.PROGRAM_CALL

Record
Level
Access

RecordLevelAccess AS400ToolboxJarMaker.RECORD_LEVEL_ACCESS

Secure
server

SecureAS400 AS400ToolboxJarMaker.SECURE_AS400

Service
Program
Call

ServiceProgramCall AS400ToolboxJarMaker.SERVICE_PROGRAM_CALL

System
Status

SystemStatus AS400ToolboxJarMaker.SYSTEM_STATUS

System
Values

SystemValue AS400ToolboxJarMaker.SYSTEM_VALUE

Trace and
Logging

Trace AS400ToolboxJarMaker.TRACE

Users and
Groups

User AS400ToolboxJarMaker.USER

User Spaces UserSpace AS400ToolboxJarMaker.USER_SPACE

Visual
server
object

AS400Visual AS400ToolboxJarMaker.AS400_VISUAL

Visual
Command
Call

CommandCallVisual AS400ToolboxJarMaker.COMMAND_CALL_VISUAL

Visual Data
Queues

DataQueueVisual AS400ToolboxJarMaker.DATA_QUEUE_VISUAL

Visual
Integrated
File System

IntegratedFileSystemVisual AS400ToolboxJarMaker.INTEGRATED_FILE_SYSTEM_VISUAL

Visual Java
Application
Call

JavaApplicationCallVisual AS400ToolboxJarMaker.JAVA_APPLICATION_CALL_VISUAL

Visual
JDBC

JDBCVisual AS400ToolboxJarMaker.JDBC_VISUAL

Visual Jobs
and Job
Queues

JobVisual AS400ToolboxJarMaker.JOB_VISUAL

Visual
Messages
and
Message
Queues

MessageVisual AS400ToolboxJarMaker.MESSAGE_VISUAL

Visual
Network
Print

PrintVisual AS400ToolboxJarMaker.PRINT_VISUAL

Visual
Program
Call

ProgramCallVisual AS400ToolboxJarMaker.PROGRAM_CALL_VISUAL

Visual
Record
Level
Access

RecordLevelAccessVisual AS400ToolboxJarMaker.RECORD_LEVEL_ACCESS_VISUAL

Visual
Users and
Groups

UserVisual AS400ToolboxJarMaker.USER_VISUAL

CCSID and Encoding values
supported by IBM Toolbox for Java
The IBM Toolbox for Java is shipped with a set of conversion tables, named according to CCSID. These tables
are used internally by IBM Toolbox for Java classes (such as CharConverter) when converting data that is
transferred to or from an iSeries or AS/400e server. For example, the conversion table for CCSID 1027 is in file
com/ibm/as400/access/ConvTable1027.class. Conversion tables for the following CCSIDs are
included in the IBM Toolbox for Java jar file; other encodings are supported using the JDK. The central server
on the server is no longer used to download tables at runtime. Any specified CCSID for which a conversion
table or a JDK encoding cannot be found will cause an exception to be thrown. Some of these tables may be
redundant to tables included in your JDK. IBM Toolbox for Java presently supports the following 122 different
iSeries and AS/400e CCSIDs.

For additional information about CCSIDs, including a complete list of the CCSIDs recognized by the iSeries
and AS/400e servers, see the Globalization topic in the Information Center.

Supported CCSIDs in IBM Toolbox for Java

CCSID Format Description

37 Single-byte EBCDIC United States and others

273 Single-byte EBCDIC Austria, Germany

277 Single-byte EBCDIC Denmark, Norway

278 Single-byte EBCDIC Finland, Sweden

280 Single-byte EBCDIC Italy

284 Single-byte EBCDIC Spain, Latin America

285 Single-byte EBCDIC United Kingdom

290 Single-byte EBCDIC Japanese Katakana (single-byte only)

297 Single-byte EBCDIC France

300 Double-byte EBCDIC Japanese Graphic (subset of 16684)

367 ASCII/ISO/Windows ASCII (ANSI X3.4 standard)

420 Single-byte EBCDIC
(bidirectional)

Arabic EBCDIC ST4

423 Single-byte EBCDIC Greek (for compatibility; see 875)

424 Single-byte EBCDIC
(bidirectional)

Hebrew EBCDIC ST4

437 ASCII/ISO/Windows ASCII (USA PC Data)

500 Single-byte EBCDIC Latin-1 (MNCS)

720 ASCII/ISO/Windows Arabic (MS-DOS)

737 ASCII/ISO/Windows Greek (MS-DOS)

775 ASCII/ISO/Windows Baltic (MS-DOS)

813 ASCII/ISO/Windows ISO 8859-7 (Greek/Latin)

819 ASCII/ISO/Windows ISO 8859-1 (Latin-1)

833 Single-byte EBCDIC Korean (single-byte only)

834 Double-byte EBCDIC Korean Graphic (subset of 4930)

835 Double-byte EBCDIC Traditional Chinese Graphic

836 Single-byte EBCDIC Simplified Chinese (single-byte only)

837 Double-byte EBCDIC Simplified Chinese Graphic

838 Single-byte EBCDIC Thai

850 ASCII/ISO/Windows Latin-1

851 ASCII/ISO/Windows Greek

852 ASCII/ISO/Windows Latin-2

855 ASCII/ISO/Windows Cyrillic

857 ASCII/ISO/Windows Turkish

860 ASCII/ISO/Windows Portuguese

861 ASCII/ISO/Windows Iceland

862 ASCII/ISO/Windows
(bidirectional)

Hebrew ASCII ST4

863 ASCII/ISO/Windows Canada

864 ASCII/ISO/Windows
(bidirectional)

Arabic ASCII ST5

865 ASCII/ISO/Windows Denmark/Norway

866 ASCII/ISO/Windows Cyrillic/Russian

869 ASCII/ISO/Windows Greek

870 Single-byte EBCDIC Latin-2

871 Single-byte EBCDIC Iceland

874 ASCII/ISO/Windows Thai (subset of 9066)

875 Single-byte EBCDIC Greek

878 ASCII/ISO/Windows Russian

880 Single-byte EBCDIC Cyrillic Multilingual (for compatibility; see 1025)

912 ASCII/ISO/Windows ISO 8859-2 (Latin-2)

914 ASCII/ISO/Windows ISO 8859-4 (Latin-4)

915 ASCII/ISO/Windows ISO 8859-5 (Cyrillic 8-bit)

916 ASCII/ISO/Windows
(bidirectional)

ISO 8859-8 (Hebrew) ST5

920 ASCII/ISO/Windows ISO 8859-9 (Latin-5)

921 ASCII/ISO/Windows ISO 8859-13 (Baltic 8-bit)

922 ASCII/ISO/Windows Estonia ISO-8

923 ASCII/ISO/Windows ISO 8859-15 (Latin-9)

930 Mixed-byte EBCDIC Japanese (subset of 5026)

933 Mixed-byte EBCDIC Korean (subset of 1364)

935 Mixed-byte EBCDIC Simplified Chinese (subset of 1388)

937 Mixed-byte EBCDIC Traditional Chinese

939 Mixed-byte EBCDIC Japanese (subset of 5035)

1025 Single-byte EBCDIC Cyrillic

1026 Single-byte EBCDIC Turkish

1027 Single-byte EBCDIC Japanese Latin (single-byte only)

1046 ASCII/ISO/Windows
(bidirectional)

Windows Arabic ST5

1089 ASCII/ISO/Windows
(bidirectional)

ISO 8859-6 (Arabic) ST5

1112 Single-byte EBCDIC Baltic Multilingual

1122 Single-byte EBCDIC Estonian

1123 Single-byte EBCDIC Ukraine

1125 ASCII/ISO/Windows Ukraine

1129 ASCII/ISO/Windows Vietnamese

1130 Single-byte EBCDIC Vietnamese

1131 ASCII/ISO/Windows Belarus

1132 Single-byte EBCDIC Lao

1140 Single-byte EBCDIC United States and others (Euro support)

1141 Single-byte EBCDIC Austria, Germany (Euro support)

1142 Single-byte EBCDIC Denmark, Norway (Euro support)

1143 Single-byte EBCDIC Finland, Sweden (Euro support)

1144 Single-byte EBCDIC Italy (Euro support)

1145 Single-byte EBCDIC Spain, Latin America (Euro support)

1146 Single-byte EBCDIC United Kingdom (Euro support)

1147 Single-byte EBCDIC France (Euro support)

1148 Single-byte EBCDIC Latin-1 (MNCS) (Euro support)

1149 Single-byte EBCDIC Iceland (Euro support)

1200 Unicode Unicode UCS-2 (little-endian)

1250 ASCII/ISO/Windows Windows Latin-2

1251 ASCII/ISO/Windows Windows Cyrillic

1252 ASCII/ISO/Windows Windows Latin-1

1253 ASCII/ISO/Windows Windows Greek

1254 ASCII/ISO/Windows Windows Turkey

1255 ASCII/ISO/Windows
(bidirectional)

Windows Hebrew ST5

1256 ASCII/ISO/Windows
(bidirectional)

Windows Arabic ST5

1257 ASCII/ISO/Windows Windows Baltic

1258 ASCII/ISO/Windows Windows Vietnam

1364 Mixed-byte EBCDIC Japanese

1388 Mixed-byte EBCDIC Simplified Chinese

1399 Mixed-byte EBCDIC Japanese (in V4R5 and higher)

4396 Double-byte EBCDIC Japanese (subset of 300)

4930 Double-byte EBCDIC Korean

4931 Double-byte EBCDIC Traditional Chinese (subset of 835)

4933 Double-byte EBCDIC Simplified Chinese GBK Graphic

4948 ASCII/ISO/Windows Latin-2 (subset of 852)

4951 ASCII/ISO/Windows Cyrillic (subset of 855)

5026 Mixed-byte EBCDIC Japanese

5035 Mixed-byte EBCDIC Japanese

5123 Single-byte EBCDIC Japanese (single-byte only, Euro support)

5351 ASCII/ISO/Windows
(bidirectional)

Windows Hebrew (Euro support) ST5

8492 Double-byte EBCDIC Japanese (subset of 300)

8612 Single-byte EBCDIC Arabic EBCDIC ST5

9026 Double-byte EBCDIC Korean (subset of 834)

9029 Double-byte EBCDIC Simplified Chinese (subset of 4933)

9066 ASCII/ISO/Windows Thai (SBCS extended)

12588 Double-byte EBCDIC Japanese (subset of 300)

13122 Double-byte EBCDIC Korean (subset of 834)

16684 Double-byte EBCDIC Japanese (available in V4R5)

17218 Double-byte EBCDIC Korean (subset of 834)

12708 Single-byte EBCDIC Arabic EBCDIC ST7

13488 Unicode Unicode UCS-2 (big-endian)

28709 Single-byte EBCDIC Traditional Chinese (single-byte only)

61952 Unicode iSeries and AS/400e Unicode (used primarily in the IFS)

62211 Single-byte EBCDIC Hebrew EBCDIC ST5

62224 Single-byte EBCDIC Arabic EBCDIC ST6

62235 Single-byte EBCDIC Hebrew EBCDIC ST6

62245 Single-byte EBCDIC Hebrew EBCDIC ST10

CommandPrompter class
The CommandPrompter class prompts for the parameter on a given command. The CommandPrompter offers
functionality that is similar to the iSeries CL command prompt (pressing F4) and the same as the Management
Central command prompt.

To use the CommandPrompter, the server must be running OS/400 V4R4 or later. For more information, see
iSeries iSeries Navigator Information APARs and view the Required Fixes for Graphical Command Prompter
Support.

Using CommandPrompter also requires that you have the following jar files in your CLASSPATH:

jt400.jar●

jui400.jar●

util400.jar●

x4j400.jar●

jhall.jar●

All of the jar files, except for jhall.jar, are included in Toolbox for Java. For more information about Toolbox
for Java jar files, see Jar files. For more information about downloading jhall.jar, see the Sun JavaHelp(TM) Web

site .

To construct a CommandPrompter object, you pass it parameters for the parent frame that launches the
prompter, the AS400 object on which the command will be prompted, and the command string. The command
string can be a command name, a full command string, or a partial command name, such as crt*.

The CommandPrompter display is a modal dialog that the user must close before returning to the parent frame.
The CommandPrompter handles any errors encountered during prompting.

Example: Using CommandPrompter with the CommandCall and AS400Message classes to prompt for and run
a command

RunJavaApplication
The RunJavaApplication and VRunJavaApplication classes are utilities to run Java programs on the iSeries
JVM. Unlike JavaApplicationCall and VJavaApplicationCall classes that you call from your Java program,
RunJavaApplication and VRunJavaApplication are complete programs.

The RunJavaApplication class is a command line utility. It lets you set the environment (CLASSPATH and
properties, for example) for the Java program. You specify the name of the Java program and its parameters,
then you start the program. Once started, you can send input to the Java program which it receives via standard
input. The Java program writes output to standard output and standard error.

The VRunJavaApplication utility has the same capabilities. The difference is VJavaApplicationCall uses a
graphical user interface while JavaApplicationCall is a command line interface.

JPing
The JPing class is a command line utility that allows you to query your servers to see which services are running
and which ports are in service. To query your servers from within a Java application, use the AS400JPing class.

See the JPing javadoc for more information about using JPing from within your Java application.

Call JPing from the command line by using the following syntax:

 java utilities.JPing System [options]

where:

System = the iSeries server that you want to query●

[options] = one or more of the available options●

Options

You can use one or more of the following options. For options that have abbreviations, the abbreviation is listed
in parenthesis.

-help (-h or -?)

Displays the help text.

-service OS/400_Service (-s OS/400_Service)

Specifies one specific service to ping. The default action is to ping all services. You can use this option
to specify one of the following services: as-file, as-netprt, as-rmtcmd, as-dtaq, as-database, as-ddm,
as-central, and as-signon.

-ssl

Specifies whether or not to ping the ssl ports. The default action is not to ping the ssl ports.

-timeout (-t)

Specifies the timeout period in milliseconds. The default setting is 20000, or 20 seconds.

Example: Using JPing from the command line

For example, use the following command to ping the as-dtaq service, including ssl ports, with a timeout of 5
seconds:

 java utilities.JPing myServer -s as-dtaq -ssl -t 5000

Vaccess classes
IBM Toolbox for Java provides a set of graphical user interface (GUI) classes in the vaccess package. These
classes use the access classes to retrieve data and to present the data to the user.

Java programs that use the IBM Toolbox for Java vaccess classes need Swing 1.1. You get Swing 1.1 either by

running Java 2 or by downloading Swing 1.1 from Sun Microsystems, Inc. . In the past, IBM Toolbox for
Java has required Swing 1.0.3, and V4R5 is the first release that Swing 1.1 is supported. To move to Swing 1.1,
some programming changes were made; therefore, you may have to make some programming changes as

well.See the Sun Microsystems, Inc. JFC page for more information about Swing.

For more information about the relationships between the IBM Toolbox for Java GUI classes, the Access
classes, and Java Swing, see the Vaccess classes diagram.

Use the AS400 panes classes to display iSeries data.

APIs are available to access the following iSeries resources and their tools:

Command call●

Data queues●

Error events*●

Integrated file system●

JavaApplicationCall●

JDBC●

Jobs*●

Messages*●

Permission●

Print* including the spooled file viewer●

ProgramCall and ProgramParameter●

Record-level access●

Resource lists●

System status●

System values●

Users and Groups●

Note: AS400 panes are used with other vaccess classes (see items marked above with an asterisk) to present and
allow manipulation of iSeries resources.

When programming with the IBM Toolbox for Java graphical user interface components, use the Error events
classes to report and handle error events to the user.

See Access classes for more information about accessing iSeries data.

Vaccess classes
IBM Toolbox for Java provides graphical user interface (GUI) classes in the vaccess package to retrieve,
display, and in some cases manipulate, server data. These classes use the Java Swing 1.1 framework. Figure 1
shows the relationship between these classes:

Figure 1: Vaccess classes

AS400Panes
AS400Panes are components in the vaccess package that present and allow manipulation of one or more server resources in a GUI. The
behavior of each server resource varies depending on the type of resource.

All panes extend the Java Component class. As a result, they can be added to any AWT Frame, Window, or Container.

The following AS400Panes are available:

AS400DetailsPane presents a list of server resources in a table where each row displays various details about a single resource. The
table allows selection of one or more resources.

●

AS400ExplorerPane combines an AS400TreePane and AS400DetailsPane so that the resource selected in the tree is presented in the
details.

●

AS400JDBCDataSourcePane presents the property values of an AS400JDBCDataSource object.●

AS400ListPane presents a list of server resources and allows selection of one or more resources.●

AS400TreePane presents a tree hierarchy of server resources and allows selection of one or more resources.●

Server resources

Server resources are represented in the graphical user interface with an icon and text. Server resources are defined with hierarchical
relationships where a resource might have a parent and zero or more children. These are predefined relationships and are used to specify what
resources are displayed in an AS400Pane. For example, VJobList is the parent to zero or more VJobs, and this hierarchical relationship is
represented graphically in an AS400Pane.

The IBM Toolbox for Java provides access to the following server resources:

VIFSDirectory represents a directory in the integrated file system●

VJob and VJobList represent, respectively, a job or a list of jobs●

VMessageList and VMessageQueue represent, respectively, a list of messages returned from a CommandCall or ProgramCall or a
message queue

●

VPrinter, VPrinters, and VPrinterOutput represent, respectively, a printer, a list of printers, or a list of spooled files●

VUserList represents a list of users●

All resources are implementations of the VNode interface.

Setting the root

To specify which server resources are presented in an AS400Pane, set the root using the constructor or setRoot() method. The root defines the
top level object and is used differently based on the pane:

AS400ListPane presents all of the root's children in its list●

AS400DetailsPane presents all of the root's children in its table●

AS400TreePane uses the root as the root of its tree●

AS400ExplorerPane uses the root as the root of its tree●

Any combination of panes and roots is possible.

The following example creates an AS400DetailsPane to present the list of users defined on the system:

 // Create the server resource
 // representing a list of users.
 // Assume that "system" is an AS400
 // object created and initialized
 // elsewhere.
 VUserList userList = new VUserList (system);

 // Create the AS400DetailsPane object
 // and set its root to be the user
 // list.
 AS400DetailsPane detailsPane = new AS400DetailsPane ();
 detailsPane.setRoot (userList);

 // Add the details pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (detailsPane);

Loading the contents

When AS400Pane objects and server resource objects are created, they are initialized to a default state. The relevant information that makes up
the contents of the pane is not loaded at creation time.

To load the contents, the application must explicitly call the load() method. In most cases, this initiates communication to the server to gather
the relevant information. Because it can sometimes take a while to gather this information, the application can control exactly when it happens.
For example, you can:

Load the contents before adding the pane to a frame. The frame does not appear until all information is loaded.●

Load the contents after adding the pane to a frame and displaying that frame. The frame appears, but it does not contain much
information. A "wait cursor" appears and the information is filled in as it is loaded.

●

The following example loads the contents of a details pane before adding it to a frame:

 // Load the contents of the details
 // pane. Assume that the detailsPane
 // was created and initialized
 // elsewhere.
 detailsPane.load ();

 // Add the details pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (detailsPane);

Actions and properties panes

At run time, the user can select a pop-up menu on any server resource. The pop-up menu presents a list of relevant actions that are available for
the resource. When the user selects an action from the pop-up menu, that action is performed. Each resource has different actions defined.

In some cases, the pop-up menu also presents an item that allows the user to view a properties pane. A properties pane shows various details
about the resource and may allow the user to change those details.

The application can control whether actions and properties panes are available by using the setAllowActions() method on the pane.

Models

The AS400Panes are implemented using the model-view-controller paradigm, in which the data and the user interface are separated into
different classes. The AS400Panes integrate IBM Toolbox for Java models with Java GUI components. The models manage server resources
and the vaccess components display them graphically and handle user interaction.

The AS400Panes provide enough functionality for most requirements. However, if an application needs more control of the JFC component,
then the application can access a server model directly and provide customized integration with a different vaccess component.

The following models are available:

AS400ListModel implements the JFC ListModel interface as a list of server resources. This can be used with a JFC JList object.●

AS400DetailsModel implements the JFC TableModel interface as a table of server resources where each row contains various details
about a single resource. This can be used with a JFC JTable object.

●

AS400TreeModel implements the JFC TreeModel interface as a tree hierarchy of server resources. This can be used with a JFC JTree
object.

●

Examples

Present a list of users on the system using an AS400ListPane with a VUserList object. Figure 1 shows the finished product:

Figure 1: Using AS400ListPane with a VUserList object

●

Present the list of messages generated by a command call using an AS400DetailsPane with a VMessageList object. Figure 2 shows the
finished product:

Figure 2: Using AS400DetailsPane with a VMessageList object

●

Present an integrated file system directory hierarchy using an AS400TreePane with a VIFSDirectory object. Figure 3 shows the
finished product:

Figure 3: Using AS400TreePane with a VIFSDirectory object

●

Present print resources using an AS400ExplorerPane with a VPrinters object. Figure 4 shows the finished product:

Figure 4: Using AS400ExplorerPane with a VPrinters object

●

Command Call
The command call vaccess (GUI) components allow a Java program to present a button or menu item that calls
a non-interactive server command.

A CommandCallButton object represents a button that calls a server command when pressed. The
CommandCallButton class extends the Java Foundation Classes (JFC) JButton class so that all buttons have a
consistent appearance and behavior.

Similarly, a CommandCallMenuItem object represents a menu item that calls a server command when selected.
The CommandCallMenuItem class extends the JFC JMenuItem class so that all menu items also have a
consistent appearance and behavior.

To use a command call graphical user interface component, set both the system and command properties. These
properties can be set using a constructor or through the setSystem() and setCommand() methods.

The following example creates a CommandCallButton. At run time, when the button is pressed, it creates a
library called "FRED":

 // Create the CommandCallButton
 // object. Assume that "system" is
 // an AS400 object created and
 // initialized elsewhere. The button
 // text says "Press Me", and there is
 // no icon.
 CommandCallButton button = new CommandCallButton ("Press Me", null,
system);

 // Set the command that the button will run.
 button.setCommand ("CRTLIB FRED");

 // Add the button to a frame. Assume
 // that "frame" is a JFrame created
 // elsewhere.
 frame.getContentPane ().add (button);

When a server command runs, it may return zero or more server messages. To detect when the server command
runs, add an ActionCompletedListener to the button or menu item using the addActionCompletedListener()
method. When the command runs, it fires an ActionCompletedEvent to all such listeners. A listener can use the
getMessageList() method to retrieve any server messages that the command generated.

This example adds an ActionCompletedListener that processes all server messages that the command generated:

 // Add an ActionCompletedListener that
 // is implemented using an anonymous
 // inner class. This is a convenient
 // way to specify simple event
 // listeners.
 button.addActionCompletedListener (new ActionCompletedListener ()
 {
 public void actionCompleted (ActionCompletedEvent event)
 {
 // Cast the source of the event to a
 // CommandCallButton.

 CommandCallButton sourceButton = (CommandCallButton)
event.getSource ();

 // Get the list of server messages
 // that the command generated.
 AS400Message[] messageList = sourceButton.getMessageList ();

 // ... Process the message list.
 }
 });

Examples

This example shows how to use a CommandCallMenuItem in an application.

Figure 1 shows the CommandCall graphical user interface component:

Figure 1: CommandCall GUI component

Data queues
The data queue graphical components allow a Java program to use any Java Foundation Classes (JFC) graphical
text component to read or write to a server data queue.

The DataQueueDocument and KeyedDataQueueDocument classes are implementations of the JFC Document
interface. These classes can be used directly with any JFC graphical text component. Several text components,
such as single line fields (JTextField) and multiple line text areas (JTextArea), are available in JFC.

Data queue documents associate the contents of a text component with a server data queue. (A text component is a
graphical component used to display text that the user can optionally edit.) The Java program can read and write
between the text component and data queue at any time. Use DataQueueDocument for sequential data queues and
KeyedDataQueueDocument for keyed data queues.

To use a DataQueueDocument, set both the system and path properties. These properties can be set using a
constructor or through the setSystem() and setPath() methods. The DataQueueDocument object is then "plugged"
into the text component, usually using the text component's constructor or setDocument() method.
KeyedDataQueueDocuments work the same way.

The following example creates a DataQueueDocument whose contents are associated with a data queue:

 // Create the DataQueueDocument
 // object. Assume that "system" is
 // an AS400 object created and
 // initialized elsewhere.
 DataQueueDocument dqDocument = new DataQueueDocument (system,
"/QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ");

 // Create a text area to present the
 // document.
 JTextArea textArea = new JTextArea (dqDocument);

 // Add the text area to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (textArea);

Initially, the contents of the text component are empty. Use read() or peek() to fill the contents with the next entry
on the queue. Use write() to write the contents of the text component to the data queue. Note that these documents
only work with String data queue entries.

Examples

Example of using a DataQueueDocument in an application.

Figure 1 shows the DataQueueDocument graphical user interface component being used in a JTextField. A button
has been added to provide a GUI interface for the user to write the contents of the test field to the data queue.

Figure 1: DataQueueDocument GUI component

Error events
In most cases, the IBM Toolbox for Java graphical user interface (GUI) components fire error events instead of
throw exceptions.

An error event is a wrapper around an exception that is thrown by an internal component.

You can provide an error listener that handles all error events that are fired by a particular graphical user interface
component. Whenever an exception is thrown, the listener is called, and it can provide appropriate error
reporting. By default, no action takes place when error events are fired.

The IBM Toolbox for Java provides a graphical user interface component called ErrorDialogAdapter, which
automatically displays a dialog to the user whenever an error event is fired.

Examples

The following examples show how you can handle errors and define a simple error listener.

Example: Handling error events by displaying a dialog

The following example shows how you can handle error events by displaying a dialog:

 // ... all the setup work to lay out
 // a graphical user interface
 // component is done. Now add an
 // ErrorDialogAdapter as a listener
 // to the component. This will report
 // all error events fired by that
 // component through displaying a
 // dialog.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (parentFrame);
 component.addErrorListener (errorHandler);

You can write a custom error listener to handle errors in a different way. Use the ErrorListener interface to
accomplish this.

Example: Defining an error listener

The following example shows how to define an simple error listener that only prints errors to System.out:

 class MyErrorHandler
 implements ErrorListener
 {
 // This method is invoked whenever
 // an error event is fired.
 public void errorOccurred(ErrorEvent event)
 {
 Exception e = event.getException ();
 System.out.println ("Error: " + e.getMessage ());
 }
 }

Example: Handling error events by using an error listener

The following example shows how to handle error events for a graphical user interface component using this
customized handler:

 MyErrorHandler errorHandler = new MyErrorHandler ();
 component.addErrorListener (errorHandler);

Integrated file system
The integrated file system graphical user interface components allow a Java program to present directories and
files in the integrated file system on the server in a GUI.

The following components are available:

IFSFileDialog presents a dialog that allows the user to choose a directory and select a file by navigating
through the directory hierarchy.

●

VIFSDirectory is a resource that represents a directory in the integrated file system for use in
AS400Panes.

●

IFSTextFileDocument represents a text file for use in any Java Foundation Classes (JFC) graphical text
component.

●

To use the integrated file system graphical user interface components, set both the system and the path or
directory properties. These properties can be set using a constructor or through the setDirectory() (for
IFSFileDialog) or setSystem() and setPath() methods (for VIFSDirectory and IFSTextFileDocument).

You should set the path to something other than "/QSYS.LIB" because this directory is usually large, and
downloading its contents can take a long time.

File dialogs
The IFSFileDialog class is a dialog that allows the user to traverse the directories of the integrated file system
on the server and select a file. The caller can set the text on the buttons on the dialog. In addition, the caller can
use FileFilter objects, which allow the user to limit the choices to certain files.

If the user selects a file in the dialog, use the getFileName() method to get the name of the selected file. Use the
getAbsolutePath() method to get the full path name of the selected file.

The following example sets up an integrated file system file dialog with two file filters:

 // Create a IFSFileDialog object
 // setting the text of the title bar.
 // Assume that "system" is an AS400
 // object and "frame" is a JFrame
 // created and initialized elsewhere.
 IFSFileDialog dialog = new IFSFileDialog (frame, "Select a file",
system);

 // Set a list of filters for the dialog.
 // The first filter will be used
 // when the dialog is first displayed.
 FileFilter[] filterList = {new FileFilter ("All files (*.*)", "*.*"),
 new FileFilter ("HTML files (*.HTML",
"*.HTM")};
 // Then, set the filters in the dialog.
 dialog.setFileFilter (filterList, 0);

 // Set the text on the buttons.
 dialog.setOkButtonText ("Open");
 dialog.setCancelButtonText ("Cancel");

 // Show the dialog. If the user
 // selected a file by pressing the
 // "Open" button, then print the path
 // name of the selected file.
 if (dialog.showDialog () == IFSFileDialog.OK)
 System.out.println (dialog.getAbsolutePath ());

Example

Present an IFSFileDialog and print the selection, if any.

Figure 1 shows the IFSFileDialog graphical user interface component:

Figure 1: IFSFileDialog GUI component

Directories in AS400Panes
AS400Panes are GUI components that present and allow manipulation of one or more server resources. A
VIFSDirectory object is a resource that represents a directory in the integrated file system for use in
AS400Panes. AS400Pane and VIFSDirectory objects can be used together to present many views of the
integrated file system, and to allow the user to navigate, manipulate, and select directories and files.

To use a VIFSDirectory, set both the system and path properties. You set these properties using a constructor or
through the setSystem() and setPath() methods. You then plug the VIFSDirectory object into the AS400Pane as
the root, using the constructor or setRoot() method of the AS400Pane.

VIFSDirectory has some other useful properties for defining the set of directories and files that are presented in
AS400Panes. Use setInclude() to specify whether directories, files, or both appear. Use setPattern() to set a filter
on the items that are shown by specifying a pattern that the file name must match. You can use wildcard
characters, such as "*" and "?", in the patterns. Similarly, use setFilter() to set a filter with an IFSFileFilter
object.

When AS400Pane objects and VIFSDirectory objects are created, they are initialized to a default state. The
subdirectories and the files that make up the contents of the root directory have not been loaded. To load the
contents, the caller must explicitly call the load() method on either object to initiate communication to the server
to gather the contents of the directory.

At run-time, a user can perform actions on any directory or file by right-clicking it to display the context menu.
The directory context menu can include the following items:

Create file - creates a file in the directory. This will give the file a default name●

Create directory - creates a subdirectory with a default name●

Rename - renames a directory●

Delete - deletes a directory●

Properties - displays properties such as the location, number of files and subdirectories, and
modification date

●

The file context menu can include the following items:

Edit - edits a text file in a different window●

View - views a text file in a different window●

Rename - renames a file●

Delete - deletes a file●

Properties - displays properties such as the location, size, modification date, and attributes●

Users can only read or write directories and files to which they are authorized. In addition, the caller can prevent
the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VIFSDirectory and presents it in an AS400ExplorerPane:

 // Create the VIFSDirectory object.
 // Assume that "system" in an AS400
 // object created and initialized
 // elsewhere.
 VIFSDirectory root = new VIFSDirectory (system,
"/DirectoryA/DirectoryB");

 // Create and load an AS400ExplorerPane object.
 AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
 explorerPane.load ();

 // Add the explorer pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (explorerPane);

Example

Present an integrated file system directory hierarchy using an AS400TreePane with a VIFSDirectory object.

Figure 1 shows the VIFSDirectory graphical user interface component:

Figure 1: VIFSDirectory GUI component

IFSTextFileDocument
Text file documents allow a Java program to use any Java Foundation Classes (JFC) graphical text component to edit or
view text files in the integrated file system on a server. (A text component is a graphical component used to display text
that the user can optionally edit.)

The IFSTextFileDocument class is an implementation of the JFC Document interface. It can be used directly with any JFC
graphical text component. Several text components, such as single line fields (JTextField) and multiple line text areas
(JTextArea), are available in JFC.

Text file documents associate the contents of a text component with a text file. The Java program can load and save
between the text component and the text file at any time.

To use an IFSTextFileDocument, set both the system and path properties. These properties can be set using a constructor or
through the setSystem() and setPath() methods. The IFSTextFileDocument object is then "plugged" into the text
component, usually using the text component's constructor or setDocument() method.

Initially, the contents of the text component are empty. Use load() to load the contents from the text file. Use save() to save
the contents of the text component to the text file.

The following example creates and loads an IFSTextFileDocument:

 // Create and load the
 // IFSTextFileDocument object. Assume
 // that "system" is an AS400 object
 // created and initialized elsewhere.
 IFSTextFileDocument ifsDocument = new IFSTextFileDocument (system,
"/DirectoryA/MyFile.txt");
 ifsDocument.load ();

 // Create a text area to present the
 // document.
 JTextArea textArea = new JTextArea (ifsDocument);

 // Add the text area to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (textArea);

Example

Present an IFSTextFileDocument in a JTextPane.

Figure 1 shows the IFSTextFileDocument graphical user interface component:

Figure 1: IFS text file document example

VJavaApplicationCall class
The VJavaApplicationCall class allows you to run a Java application on the server from a client by using a
graphical user interface (GUI).

The GUI is a panel with two sections. The top section is an output window that displays output that the Java
program writes to standard output and standard error. The bottom section is an input field where the user enters
the Java environment, the Java program to run with parameters and input the Java program receives via standard
input. Refer to the Java command options for more information.

For example, this code would create the following GUI for your Java program.

VJavaApplicationCall is a class that you call from your Java program. However, the IBM Toolbox for Java also
provides a utility that is a complete Java application that can be used to call your Java program from a
workstation. Refer to the RunJavaApplication class for more information.

JDBC classes
The JDBC graphical user interface components allow a Java program to present various views and controls for
accessing a database using SQL (Structured Query Language) statements and queries.

The following components are available:

SQLStatementButton and SQLStatementMenuItem are, respectively, either a button or a menu item that
issues an SQL statement when clicked or selected.

●

SQLStatementDocument is a document that can be used with any Java Foundation Classes (JFC)
graphical text component to issue an SQL statement.

●

SQLResultSetFormPane presents the results of an SQL query in a form.●

SQLResultSetTablePane presents the results of an SQL query in a table.●

SQLResultSetTableModel manages the results of an SQL query in a table.●

SQLQueryBuilderPane presents an interactive tool for dynamically building SQL queries.●

All JDBC graphical user interface components communicate with the database using a JDBC driver. The JDBC
driver must be registered with the JDBC driver manager in order for any of these components to work. The
following example registers the AS/400 Toolbox for Java JDBC driver:

 // Register the JDBC driver.
 DriverManager.registerDriver (new com.ibm.as400.access.AS400JDBCDriver ());

SQL connections

An SQLConnection object represents a connection to a database using JDBC. The SQLConnection object is
used with all of the JDBC graphical user interface components.

To use an SQLConnection, set the URL property using the constructor or setURL(). This identifies the database
to which the connection is made. Other optional properties can be set:

Use setProperties() to specify a set of JDBC connection properties.●

Use setUserName() to specify the user name for the connection.●

Use setPassword() to specify the password for the connection.●

The actual connection to the database is not made when the SQLConnection object is created. Instead, it is made
when getConnection() is called. This method is normally called automatically by the JDBC graphical user
interface components, but it can be called at any time in order to control when the connection is made.

The following example creates and initializes an SQLConnection object:

 // Create an SQLConnection object.
 SQLConnection connection = new SQLConnection ();

 // Set the URL and user name properties of the
connection.
 connection.setURL ("jdbc:as400://MySystem");
 connection.setUserName ("Lisa");

An SQLConnection object can be used for more than one JDBC graphical user interface component. All such

components will use the same connection, which can improve performance and resource usage. Alternately, each
JDBC graphical user interface component can use a different SQL object. It is sometimes necessary to use
separate connections, so that SQL statements are issued in different transactions.

When the connection is no longer needed, close the SQLConnection object using close(). This frees up JDBC
resources on both the client and server.

Buttons and menu items

An SQLStatementButton object represents a button that issues an SQL (Structured Query Language) statement
when pressed. The SQLStatementButton class extends the Java Foundation Classes (JFC) JButton class so that
all buttons have a consistent appearance and behavior.

Similarly, an SQLStatementMenuItem object represents a menu item that issues an SQL statement when
selected. The SQLStatementMenuItem class extends the JFC JMenuItem class so that all menu items have a
consistent appearance and behavior.

To use either of these classes, set both the connection and the SQLStatement properties. These properties can be
set using a constructor or the setConnection() and setSQLStatement() methods.

The following example creates an SQLStatementButton. When the button is pressed at run time, it deletes all
records in a table:

 // Create an SQLStatementButton object.
 // The button text says "Delete All",
 // and there is no icon.
 SQLStatementButton button = new SQLStatementButton ("Delete All");

 // Set the connection and SQLStatement
 // properties. Assume that "connection"
 // is an SQLConnection object that is
 // created and initialized elsewhere.
 button.setConnection (connection);
 button.setSQLStatement ("DELETE FROM MYTABLE");

 // Add the button to a frame. Assume
 // that "frame" is a JFrame created
 // elsewhere.
 frame.getContentPane ().add (button);

After the SQL statement is issued, use getResultSet(), getMoreResults(), getUpdateCount(), or getWarnings() to
retrieve the results.

SQLStatementDocument class
The SQLStatementDocument class is an implementation of the Java Foundation Classes (JFC) Document
interface. It can be used directly with any JFC graphical text component. Several text components, such as
single line fields (JTextField) and multiple line text areas (JTextArea), are available in JFC.
SQLStatementDocument objects associate the contents of text components with SQLConnection objects. The
Java program can run the SQL statement contained in the document contents at any time and then process the
results, if any.

To use an SQLStatementDocument, you must set the connection property. Set this property by using the
constructor or the setConnection() method. The SQLStatementDocument object is then "plugged" into the text
component, usually using the text component's constructor or setDocument() method. Use execute() at any time
to run the SQL statement contained in the document.

The following example creates an SQLStatementDocument in a JTextField:

 // Create an SQLStatementDocument
 // object. Assume that "connection"
 // is an SQLConnection object that is
 // created and initialized elsewhere.
 // The text of the document is
 // initialized to a generic query.
 SQLStatementDocument document = new SQLStatementDocument (connection,
"SELECT * FROM QIWS.QCUSTCDT");

 // Create a text field to present the
 // document.
 JTextField textField = new JTextField ();
 textField.setDocument (document);

 // Add the text field to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (textField);

 // Run the SQL statement that is in
 // the text field.
 document.execute ();

After the SQL statement is issued, use getResultSet(), getMoreResults(), getUpdateCount(), or getWarnings() to
retrieve the results.

SQLResultSetFormPane class
An SQLResultSetFormPane presents the results of an SQL (Structured Query Language) query in a form. The
form displays one record at a time and provides buttons that allow the user to scroll forward, backward, to the
first or last record, or refresh the view of the results.

To use an SQLResultSetFormPane, set the connection and query properties. Set these properties by using the
constructor or the setConnection() and setQuery() methods. Use load() to execute the query and present the first
record in the result set. When the results are no longer needed, call close() to ensure that the result set is closed.

The following example creates an SQLResultSetFormPane object and adds it to a frame:

 // Create an SQLResultSetFormPane
 // object. Assume that "connection"
 // is an SQLConnection object that is
 // created and initialized elsewhere.
 SQLResultSetFormPane formPane = new SQLResultSetFormPane (connection,
"SELECT * FROM QIWS.QCUSTCDT");

 // Load the results.
 formPane.load ();

 // Add the form pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (formPane);

SQLResultSetTablePane class
An SQLResultSetTablePane presents the results of an SQL (Structured Query Language) query in a table. Each row in the table displays a
record from the result set and each column displays a field.

To use an SQLResultSetTablePane, set the connection and query properties. Set properties by using the constructor or the setConnection()
and setQuery() methods. Use load() to execute the query and present the results in the table. When the results are no longer needed, call
close() to ensure that the result set is closed.

The following example creates an SQLResultSetTablePane object and adds it to a frame:

 // Create an SQLResultSetTablePane
 // object. Assume that "connection"
 // is an SQLConnection object that is
 // created and initialized elsewhere.
 SQLResultSetTablePane tablePane = new SQLResultSetTablePane
(connection, "SELECT * FROM QIWS.QCUSTCDT");

 // Load the results.
 tablePane.load ();

 // Add the table pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (tablePane);

Example

Present an SQLResultSetTablePane that displays the contents of a table. This example uses an SQLStatementDocument (denoted in the
following image by the text, "Enter a SQL statement here") that allows the user to type in any SQL statement, and an SQLStatementButton
(denoted by the text, "Delete all rows") that allows the user to delete all rows from the table.

Figure 1 shows the SQLResultSetTablePane graphical user interface component:

Figure 1: SQLResultSetTablePane GUI component

SQLResultSetTableModel class
SQLResultSetTablePane is implemented using the model-view-controller paradigm, in which the data and the
user interface are separated into different classes. The implementation integrates SQLResultSetTableModel with
the Java Foundation Classes' (JFC) JTable. The SQLResultSetTableModel class manages the results of the
query and JTable displays the results graphically and handles user interaction.

SQLResultSetTablePane provides enough functionality for most requirements. However, if a caller needs more
control of the JFC component, then the caller can use SQLResultSetTableModel directly and provide
customized integration with a different graphical user interface component.

To use an SQLResultSetTableModel, set the connection and query properties. Set these properties by using the
constructor or the setConnection() and setQuery() methods. Use load() to execute the query and load the results.
When the results are no longer needed, call close() to ensure that the result set is closed.

The following example creates an SQLResultSetTableModel object and presents it with a JTable:

 // Create an SQLResultSetTableModel
 // object. Assume that "connection"
 // is an SQLConnection object that is
 // created and initialized elsewhere.
 SQLResultSetTableModel tableModel = new SQLResultSetTableModel
(connection, "SELECT * FROM QIWS.QCUSTCDT");

 // Load the results.
 tableModel.load ();

 // Create a JTable for the model.
 JTable table = new JTable (tableModel);

 // Add the table to a frame. Assume
 // that "frame" is a JFrame created
 // elsewhere.
 frame.getContentPane ().add (table);

SQL query builders
An SQLQueryBuilderPane presents an interactive tool for dynamically building SQL queries.

To use an SQLQueryPane, set the connection property. This property can be set using the constructor or the
setConnection() method. Use load() to load data needed for the query builder graphical user interface. Use
getQuery() to get the SQL query that the user has built.

The following example creates an SQLQueryBuilderPane object and adds it to a frame:

 // Create an SQLQueryBuilderPane
 // object. Assume that "connection"
 // is an SQLConnection object that is
 // created and initialized elsewhere.
 SQLQueryBuilderPane queryBuilder = new SQLQueryBuilderPane
(connection);

 // Load the data needed for the query
 // builder.
 queryBuilder.load ();

 // Add the query builder pane to a
 // frame. Assume that "frame" is a
 // JFrame created elsewhere.
 frame.getContentPane ().add (queryBuilder);

Example

Present an SQLQueryBuilderPane and a button. When the button is clicked, present the results of the query in
an SQLResultSetFormPane in another frame.

Figure 1 shows the SQLQueryBuilderPane graphical user interface component:

Figure 1: SQLQueryBuilderPane GUI component

Jobs
The jobs vaccess (GUI) components allow a Java program to present lists of server jobs and job log messages in a GUI.

The following components are available:

A VJobList object is a resource that represents a list of server jobs for use in AS400Panes.●

A VJob object is a resource that represents the list of messages in a job log for use in AS400Panes.●

You can use AS400Panes, VJobList objects, and VJob objects together to present many views of a job list or job log.

To use a VJobList, set the system, name, number, and user properties. Set these properties by using a constructor or through the
setSystem(), setName(), setNumber(), and setUser() properties.

To use a VJob, set the system property. Set this property by using a constructor or through the setSystem() method.

Either the VJobList or VJob object is then "plugged" into the AS400Pane as the root, using the pane's constructor or setRoot() method.

VJobList has some other useful properties for defining the set of jobs that are presented in AS400Panes. Use setName() to specify that only
jobs with a certain name should appear. Use setNumber() to specify that only jobs with a certain number should appear. Similarly, use
setUser() to specify that only jobs for a certain user should appear.

When AS400Pane, VJobList, and VJob objects are created, they are initialized to a default state. The list of jobs or job log messages are
not loaded at creation time. To load the contents, the caller must explicitly call the load() method on either object. This will initiate
communication to the server to gather the contents of the list.

At run-time, right-click a job, job list, or job log message to display the shortcut menu. Select Properties from the shortcut menu to
perform actions on the selected object:

Job - Work with properties, such as the type and status. You can also change the value of some of the properties.●

Job list - Work with the properties, such as name, number, and user properties. You can also change the contents of the list.●

Job log message - Display properties, such as the full text, severity, and time sent.●

Users can only access jobs to which they are authorized. In addition, the Java program can prevent the user from performing actions by
using the setAllowActions() method on the pane.

The following example creates a VJobList and presents it in an AS400ExplorerPane:

 // Create the VJobList object. Assume
 // that "system" is an AS400 object
 // created and initialized elsewhere.
 VJobList root = new VJobList (system);

 // Create and load an
 // AS400ExplorerPane object.
 AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
 explorerPane.load ();

 // Add the explorer pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (explorerPane);

Examples

This VJobList example presents an AS400ExplorerPane filled with a list of jobs. The list shows jobs on the system that have the same job
name.

The following image shows the VJobList graphical user interface component:

Vaccess message classes
The messages graphical user interface components allow a Java program to present lists of server messages in a
GUI.

The following components are available:

A Message list object is a resource that represents a list of messages for use in AS400Panes. This is for
message lists generated by command or program calls.

●

A Message queues object is a resource that represents the messages in a server message queue for use in
AS400Ppanes.

●

AS400Panes are graphical user interface components that present and allow manipulation of one or more server
resources. VMessageList and VMessageQueue objects are resources that represent lists of server messages in
AS400Panes.

You can use AS400Pane, VMessageList, and VMessageQueue objects together to present many views of a
message list and to allow the user to select and perform operations on messages.

VMessageList class
A VMessageList object is a resource that represents a list of messages for use in AS400Panes. This is for
message lists generated by command or program calls. The following methods return message lists:

CommandCall.getMessageList()●

CommandCallButton.getMessageList()●

CommandCallMenuItem.getMessageList()●

ProgramCall.getMessageList()●

ProgramCallButton.getMessageList()●

ProgramCallMenuItem.getMessageList()●

To use a VMessageList, set the messageList property. Set this property by using a constructor or through the
setMessageList() method. The VMessageList object is then "plugged" into the AS400Pane as the root, using the
constructor or setRoot() method of the AS400Pane.

When AS400Pane and VMessageList objects are created, they are initialized to a default state. The list of
messages is not loaded at creation time. To load the contents, the caller must explicitly call the load() method on
either object.

At run-time, a user can perform actions on a message by right-clicking it to display the context menu. The
message context menu can include an item called Properties that displays properties such as the severity, type,
and date.

The caller can prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VMessageList for the messages generated by a command call and presents it in
an AS400DetailsPane:

 // Create the VMessageList object.
 // Assume that "command" is a
 // CommandCall object created and run
 // elsewhere.
 VMessageList root = new VMessageList (command.getMessageList ());

 // Create and load an AS400DetailsPane
 // object.
 AS400DetailsPane detailsPane = new AS400DetailsPane (root);
 detailsPane.load ();

 // Add the details pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (detailsPane);

Example

Present the list of messages generated by a command call using an AS400DetailsPane with a VMessageList
object. Figure 1 shows the VMessageList graphical user interface component:

Figure 1: VMessageList GUI component

VMessageQueue class
A VMessageQueue object is a resource that represents the messages in a server message queue for use in AS400Panes.

To use a VMessageQueue, set the system and path properties. These properties can be set using a constructor or through the setSystem() and
setPath() methods. The VMessageQueue object is then "plugged" into the AS400Pane as the root by using the constructor or setRoot() method
of the AS400Pane.

VMessageQueue has some other useful properties for defining the set of messages that are presented in AS400Panes. Use setSeverity() to
specify the severity of messages that should appear. Use setSelection() to specify the type of messages that should appear.

When AS400Pane and VMessageQueue objects are created, they are initialized to a default state. The list of messages is not loaded at creation
time. To load the contents, the caller must explicitly call the load() method on either object. This will initiate communication to the server to
gather the contents of the list.

At run-time, a user can perform actions on a message or message queue by right-clicking it to display the context menu. The context menu for
message queues can include the following items:

Clear - clears the message queue●

Properties - allows the user to set the severity and selection properties. This may be used to change the contents of the list●

The following action is available for messages on a message queue:

Remove - removes the message from the message queue●

Reply - replies to an inquiry message●

Properties - displays properties such as the severity, type, and date●

Of course, users can only access message queues to which they are authorized. In addition, the caller can prevent the user from performing
actions by using the setAllowActions() method on the pane.

The following example creates a VMessageQueue and presents it in an AS400ExplorerPane:

 // Create the VMessageQueue object.
 // Assume that "system" is an AS400
 // object created and initialized
 // elsewhere.
 VMessageQueue root = new VMessageQueue (system,
"/QSYS.LIB/MYLIB.LIB/MYMSGQ.MSGQ");

 // Create and load an
 // AS400ExplorerPane object.
 AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
 explorerPane.load ();

 // Add the explorer pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (explorerPane);

Example

Present the list of messages in a message queue using an AS400ExplorerPane with a VMessageQueue object. Figure 1 shows the
VMessageQueue graphical user interface component:

Figure 1: VMessageQueue GUI component

Permission classes
The Permission classes information can be used in a graphical user interface (GUI) through the VIFSFile and
VIFSDirectory classes. Permission has been added as an action in each of these classes.

The following example shows how to use Permission with the VIFSDirectory class:

 // Create AS400 object
 AS400 as400 = new AS400();

 // Create an IFSDirectory using the system name
 // and the full path of a QSYS object
 VIFSDirectory directory = new VIFSDirectory(as400,
 "/QSYS.LID/testlib1.lib");

 // Create as explorer Pane
 AS400ExplorerPane pane = new AS400ExplorerPane((VNode)directory);

 // Load the information
 pane.load();

Vaccess print classes
The following components in the vaccess package allow a Java program to present lists of server print resources
in a graphical user interface:

A VPrinters object is a resource that represents a list of printers for use in AS400Panes.●

A VPrinter object is a resource that represents a printer and its spooled files for use in AS400Panes.●

A VPrinterOutput object is a resource that represents a list of spooled files for use in AS400Panes.●

A SpooledFileViewer object is a resource that visually represents spooled files.●

AS400Panes are GUI components that present and allow manipulation of one or more server resources.
VPrinters, VPrinter, and VPrinterOutput objects are resources that represent lists of server print resources in
AS400Panes.

You can use AS400Pane, VPrinters, VPrinter, and VPrinterOutput objects together to present many views of
print resources and to allow the user to select and perform operations on them.

VPrinters class

A VPrinters object is a resource that represents a list of printers for use in AS400Panes.

To use a VPrinters object, set the system property. Set this property by using a constructor or through the setSystem() method. The
VPrinters object is then "plugged" into the AS400Pane as the root, using the pane's constructor or setRoot() method.

A VPrinters object has another useful property for defining the set of printers that is presented in AS400Panes. Use setPrinterFilter() to
specify a filter that defines which printers should appear.

When AS400Pane and VPrinters objects are created, they are initialized to a default state. The list of printers has not been loaded. To
load the contents, the caller must explicitly call the load() method on either object.

At run-time, a user can perform actions on any printer list or printer by right-clicking it to display the context menu. The printer list
context menu can include an item called Properties that allows the user to set the printer filter property, which can change the contents
of the list.

The printer context menu can include the following items:

Hold - holds the printer●

Release - releases the printer●

Start - starts the printer●

Stop - stops the printer●

Make available - makes the printer available●

Make unavailable - makes the printer unavailable●

Properties - displays properties of the printer and allows the user to set filters●

Users can only access printers to which they are authorized. In addition, the caller can prevent the user from performing actions by
using the setAllowActions() method on the pane.

The following example creates a VPrinters object and presents it in an AS400TreePane

 // Create the VPrinters object.
 // Assume that "system" is an AS400
 // object created and initialized
 // elsewhere.
 VPrinters root = new VPrinters (system);

 // Create and load an AS400TreePane
 // object.
 AS400TreePane treePane = new AS400TreePane (root);
 treePane.load ();

 // Add the tree pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (treePane);

Example

Present print resources using an AS400ExplorerPane with a VPrinters object. Figure 1 shows the VPrinters graphical user interface
component:

Figure 1: VPrinters GUI component

VPrinter

A VPrinter object is a resource that represents a server printer and its spooled files for use in AS400Panes.

To use a VPrinter, set the printer property. Set this property by using a constructor or through the setPrinter() method. The VPrinter object is then
"plugged" into the AS400Pane as the root, using the pane's constructor or setRoot() method.

When AS400Pane and VPrinter objects are created, they are initialized to a default state. The printer's attributes and list of spooled files are not
loaded at creation time.

To load the contents, the caller must explicitly call the load() method on either object. This will initiate communication to the server to gather the
contents of the list.

At run-time, a user can perform actions on any printer or spooled file by right-clicking it to display the context menu. The context menu for message
queues can include the following items:

Hold - holds the printer●

Release - releases the printer●

Start - starts the printer●

Stop - stops the printer●

Make available - makes the printer available●

Make unavailable - makes the printer unavailable●

Properties - displays properties of the printer and allows the user to set filters●

The context menu for spooled files listed for a printer can include the following items:

Reply - replies to the spooled file●

Hold - holds the spooled file●

Release - releases the spooled file●

Print next - prints the next spooled file●

Send - sends the spooled file●

Move - moves the spooled file●

Delete - deletes the spooled file●

Properties - displays many properties of the spooled file and allows the user to change some of them●

Users can only access printers and spooled files to which they are authorized. In addition, the caller can prevent the user from performing actions by
using the setAllowActions() method on the pane.

The following example creates a VPrinter and presents it in an AS400ExplorerPane:

 // Create the VPrinter object.
 // Assume that "system" is an AS400
 // object created and initialized
 // elsewhere.
 VPrinter root = new VPrinter (new Printer (system, "MYPRINTER"));

 // Create and load an
 // AS400ExplorerPane object.
 AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
 explorerPane.load ();

 // Add the explorer pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (explorerPane);

Example

Present print resources using an AS400ExplorerPane with a VPrinter object. Figure 1 shows the VPrinter graphical user interface component:

Figure 1: VPrinter GUI component

VPrinterOutput class
A VPrinterOutput object is a resource that represents a list of spooled files on a server for use in AS400Panes.

To use a VPrinterOutput object, set the system property. This property can be set using a constructor or through the
setSystem() method. The VPrinterOutput object is then "plugged" into the AS400Pane as the root, using the constructor
or setRoot() method of the AS400Pane.

A VPrinterOutput object has other useful properties for defining the set of spooled files that is presented in AS400Panes.
Use setFormTypeFilter() to specify which types of forms should appear. Use setUserDataFilter() to specify which user
data should appear. Finally, use setUserFilter() to specify which users spooled files should appear.

When AS400Pane and VPrinterOutput objects are created, they are initialized to a default state. The list of spooled files
is not loaded at creation time. To load the contents, the caller must explicitly call the load() method on either object. This
will initiate communication to the server to gather the contents of the list.

At run-time, a user can perform actions on any spooled file or spooled file list by right-clicking it to display the context
menu. The spooled file list context menu can include an item called Properties that allows the user to set the filter
properties, which can change the contents of the list.

The spooled file context menu can include the following items:

Reply - replies to the spooled file●

Hold - holds the spooled file●

Release - releases the spooled file●

Print next - prints the next spooled file●

Send - sends the spooled file●

Move - moves the spooled file●

Delete - deletes the spooled file●

Properties - displays many properties of the spooled file and allows the user to change some of them●

Of course, users can only access spooled files to which they are authorized. In addition, the caller can prevent the user
from performing actions by using the setAllowActions() method on the pane.

The following example creates a VPrinterOutput and presents it in an AS400ListPane:

 // Create the VPrinterOutput object.
 // Assume that "system" is an AS400
 // object created and initialized
 // elsewhere.
 VPrinterOutput root = new VPrinterOutput (system);

 // Create and load an AS400ListPane
 // object.
 AS400ListPane listPane = new AS400ListPane (root);
 listPane.load ();

 // Add the list pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (listPane);

Example

Present a list of spooled files by using the print resource, VPrinterOutput object. Figure 1 shows the VPrinterOutput
graphical user interface component:

Figure 1: VPrinterOutput GUI component

SpooledFileViewer class
The SpooledFileViewer class creates a window for viewing Advanced Function Printing (AFP) and Systems
Network Architecture character string (SCS) files that have been spooled for printing. The class essentially adds
a "print preview" function to your spooled files, common to most word processing programs, as illustrated in
Figure 1.

The spooled file viewer is especially helpful when viewing the accuracy of the layout of the files is more
important than printing the files, or when viewing the data is more economical than printing, or when a printer is
not available.

Note: SS1 Option 8 (AFP Compatibility Fonts) must be installed on the host server.

Using the SpooledFileViewer class

Three constructor methods are available to create an instance of the SpooledFileViewer class. The
SpooledFileViewer() constructor can be used to create a viewer without a spooled file associated with it. If this
constructor is used, a spooled file will need to be set later using setSpooledFile(SpooledFile). The
SpooledFileViewer(SpooledFile) constructor can be used to create a viewer for the given spooled file, with page
one as the initial view. Finally, the SpooledFileViewer(spooledFile, int) constructor can be used to create a
viewer for the given spooled file with the specified page as the initial view. No matter which constructor is used,
once a viewer is created, a call to load() must be performed in order to actually retrieve the spooled file data.

Then, your program can traverse the individual pages of the spooled file by using the following methods:

load FlashPage()●

load Page()●

pageBack()●

pageForward()●

If, however, you need to examine particular sections of the document more closely, you can magnify or reduce
the image of a page of the document by altering the ratio proportions of each page with the following:

fitHeight()●

fitPage()●

fitWidth()●

actualSize()●

Your program would conclude with calling the close() method that closes the input stream and releases any
resource associations with the stream.

Using the SpooledFileViewer

An instance of the SpooledFileViewer class is actually a graphical representation of a viewer capable of
displaying and navigating through an AFP or SCS spooled file. For example, the following code creates the
spooled file viewer in Figure 1 to display a spooled file previously created on the server.

Note: You can either select a button on the image in Figure 1 for an explanation of its function, or (if your
browser is not JavaScript enabled) see the toolbar description.

// Assume splf is the spooled file.
// Create the spooled file viewer
SpooledFileViewer splfv = new SpooledFileViewer(splf, 1);
splfv.load();
// Add the spooled file viewer to a frame
JFrame frame = new JFrame("My Window");
frame.getContentPane().add(splfv);
frame.pack();
frame.show();

Figure 1: SpooledFileViewer

SpooledFileViewer Toolbar description

The actual size button returns the spooled file page image to its original size by using the actualSize()
method.

The fit width button stretches the spooled file page image to the left and right edges of the viewer's frame
by using the fitWidth() method.

 The fit page button stretches the spooled file page image vertically and horizontally to fit within the
spooled file viewer's frame by using the fitPage() method.

 The zoom button allows you to increase or decrease the size of the spooled file page image by selecting
one of the preset percentages or entering your own percent in a text field that appears in a dialog box after
selecting the zoom button.

 The go to page button allows you to go to a specific page within the spooled file when selected.

The first page button takes you to the first page of the spooled file when selected and indicates that you
are on the first page when deactivated.

 The previous page button takes you to the page immediately before the page you are viewing when
selected.

 The next page button advances you to the page immediately after the page you are viewing when
selected.

The last page button advances you to the last page of the spooled file when selected and indicates that
you are on the last page when deactivated.

 The load flash page button loads the previously viewed page by using the loadFlashPage() method when
selected.

The set paper size button allows you to set the paper size when selected.

 The set viewing fidelity button allows you to set the viewing fidelity when selected.

Vaccess ProgramCall classes
The program call components in the vaccess package allow a Java program to present a button or menu item
that calls a server program. Input, output, and input/output parameters can be specified using ProgramParameter
objects. When the program runs, the output and input/output parameters contain data returned by the server
program.

A ProgramCallButton object represents a button that calls an server program when pressed. The
ProgramCallButton class extends the Java Foundation Classes (JFC) JButton class so that all buttons have a
consistent appearance and behavior.

Similarly, a ProgramCallMenuItem object represents a menu item that calls an server program when selected.
The ProgramCallMenuItem class extends the JFC JMenuItem class so that all menu items also have a consistent
appearance and behavior.

To use a vaccess program call component, set both the system and program properties. Set these properties by
using a constructor or through the setSystem() and setProgram() methods.

The following example creates a ProgramCallMenuItem. At run time, when the menu item is selected, it calls a
program:

 // Create the ProgramCallMenuItem
 // object. Assume that "system" is
 // an AS400 object created and
 // initialized elsewhere. The menu
 // item text says "Select Me", and
 // there is no icon.
 ProgramCallMenuItem menuItem = new ProgramCallMenuItem ("Select Me",
null, system);

 // Create a path name object that
 // represents program MYPROG in
 // library MYLIB
 QSYSObjectPathName programName = new QSYSObjectPathName("MYLIB",
"MYPROG", "PGM");

 // Set the name of the program.
 menuItem.setProgram (programName.getPath());

 // Add the menu item to a menu.
 // Assume that the menu was created
 // elsewhere.
 menu.add (menuItem);

When a server program runs, it may return zero or more server messages. To detect when the server program
runs, add an ActionCompletedListener to the button or menu item using the addActionCompletedListener()
method. When the program runs, it fires an ActionCompletedEvent to all such listeners. A listener can use the
getMessageList() method to retrieve any server messages that the program generated.

This example adds an ActionCompletedListener that processes all server messages that the program generated:

 // Add an ActionCompletedListener
 // that is implemented by using an
 // anonymous inner class. This is a

 // convenient way to specify simple
 // event listeners.
 menuItem.addActionCompletedListener (new ActionCompletedListener ()
 {
 public void actionCompleted (ActionCompletedEvent event)
 {
 // Cast the source of the event to a
 // ProgramCallMenuItem.
 ProgramCallMenuItem sourceMenuItem = (ProgramCallMenuItem)
event.getSource ();

 // Get the list of server messages
 // that the program generated.
 AS400Message[] messageList = sourceMenuItem.getMessageList
();

 // ... Process the message list.
 }
 });

Parameters

ProgramParameter objects are used to pass parameter data between the Java program and the server program.
Input data is set with the setInputData() method. After the program is run, output data is retrieved with the
getOutputData() method.

Each parameter is a byte array. It is up to the Java program to convert the byte array between Java and server
formats. The data conversion classes provide methods for converting data.

You can add parameters to a program call graphical user interface component one at a time using the
addParameter() method or all at once using the setParameterList() method.

For more information about using ProgramParameter objects, see the ProgramCall access class.

The following example adds two parameters:

 // The first parameter is a String
 // name of up to 100 characters.
 // This is an input parameter.
 // Assume that "name" is a String
 // created and initialized elsewhere.
 AS400Text parm1Converter = new AS400Text (100, system.getCcsid (),
system);
 ProgramParameter parm1 = new ProgramParameter (parm1Converter.toBytes
(name));
 menuItem.addParameter (parm1);

 // The second parameter is an Integer
 // output parameter.
 AS400Bin4 parm2Converter = new AS400Bin4 ();
 ProgramParameter parm2 = new ProgramParameter
(parm2Converter.getByteLength ());
 menuItem.addParameter (parm2);

 // ... after the program is called,
 // get the value returned as the
 // second parameter.
 int result = parm2Converter.toInt (parm2.getOutputData ());

Examples

Example of using a ProgramCallButton in an application. Figure 1 shows how the ProgramCallButton looks:

Figure 1: Using ProgramCallButton in an application

Vaccess record-level access classes
The record-level access classes in the vaccess package allow a Java program to present various views of server
files.

The following components are available:

RecordListFormPane presents a list of records from a server file in a form.●

RecordListTablePane presents a list of records from a server file in a table.●

RecordListTableModel manages the list of records from a server file for a table.●

Keyed access

You can use the record-level access graphical user interface components with keyed access to a server file. Keyed
access means that the Java program can access the records of a file by specifying a key.

Keyed access works the same for each record-level access graphical user interface component. Use setKeyed() to
specify keyed access instead of sequential access. Specify a key using the constructor or the setKey() method.
See Specifying the key for more information about how to specify the key.

By default, only records whose keys are equal to the specified key are displayed. To change this, specify the
searchType property using the constructor or setSearchType() method. Possible choices are as follows:

KEY_EQ - Display records whose keys are equal to the specified key.●

KEY_GE - Display records whose keys are greater than or equal to the specified key.●

KEY_GT - Display records whose keys are greater than the specified key.●

KEY_LE - Display records whose keys are less than or equal to the specified key.●

KEY_LT - Display records whose keys are less than the specified key.●

The following example creates a RecordListTablePane object to display all records less than or equal to a key.

 // Create a key that contains a
 // single element, the Integer 5.
 Object[] key = new Object[1];
 key[0] = new Integer (5);

 // Create a RecordListTablePane
 // object. Assume that "system" is an
 // AS400 object that is created and
 // initialized elsewhere. Specify
 // the key and search type.
 RecordListTablePane tablePane = new RecordListTablePane (system,
 "/QSYS.LIB/QGPL.LIB/PARTS.FILE", key, RecordListTablePane.KEY_LE);

 // Load the file contents.
 tablePane.load ();

 // Add the table pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (tablePane);

RecordListFormPane class

A RecordListFormPane presents the contents of a server file in a form. The form displays one record at a time
and provides buttons that allow the user to scroll forward, backward, to the first or last record, or refresh the
view of the file contents.

To use a RecordListFormPane, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents and present
the first record. When the file contents are no longer needed, call close() to ensure that the file is closed.

The following example creates a RecordListFormPane object and adds it to a frame:

 // Create a RecordListFormPane
 // object. Assume that "system" is
 // an AS400 object that is created
 // and initialized elsewhere.
 RecordListFormPane formPane = new RecordListFormPane (system,
"/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

 // Load the file contents.
 formPane.load ();

 // Add the form pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (formPane);

Example

Present an RecordListFormPane which displays the contents of a file. Figure 1 shows the RecordListFormPane
graphical user interface component:

Figure 1: RecordListFormPane GUI component

RecordListTablePane class

A RecordListTablePane presents the contents of a server file in a table. Each row in the table displays a record
from the file and each column displays a field.

To use a RecordListTablePane, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents and present
the records in the table. When the file contents are no longer needed, call close() to ensure that the file is closed.

The following example creates a RecordListTablePane object and adds it to a frame:

 // Create an RecordListTablePane
 // object. Assume that "system" is
 // an AS400 object that is created
 // and initialized elsewhere.
 RecordListTablePane tablePane = new RecordListTablePane (system,
"/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

 // Load the file contents.
 tablePane.load ();

 // Add the table pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (tablePane);

RecordListTablePane and RecordListTableModel
classes
RecordListTablePane is implemented using the model-view-controller paradigm, in which the data and the user
interface are separated into different classes. The implementation integrates RecordListTableModel with Java
Foundation Classes' (JFC) JTable. The RecordListTableModel class retrieves and manages the contents of the
file and JTable displays the file contents graphically and handles user interaction.

RecordListTablePane provides enough functionality for most requirements. However, if a caller needs more
control of the JFC component, then the caller can use RecordListTableModel directly and provide customized
integration with a different graphical user interface component.

To use a RecordListTableModel, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents. When the file
contents are no longer needed, call close() to ensure that the file is closed.

The following example creates a RecordListTableModel object and presents it with a JTable:

 // Create a RecordListTableModel
 // object. Assume that "system" is
 // an AS400 object that is created
 // and initialized elsewhere.
 RecordListTableModel tableModel = new RecordListTableModel (system,
"/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

 // Load the file contents.
 tableModel.load ();

 // Create a JTable for the model.
 JTable table = new JTable (tableModel);

 // Add the table to a frame. Assume
 // that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (table);

ResourceListPane and ResourceListDetailsPane
Use the ResourceListPane and ResourceListDetailsPane classes to present a resource list in a graphical user
interface (GUI).

ResourceListPane displays the contents of the resource list in a graphical javax.swing.JList. Every item
displayed in the list represents a resource object from the resource list.

●

ResourceListDetailsPane displays the contents of the resource list in a graphical javax.swing.JTable.
Every row in the table represents a resource object from the resource list.

●

The table columns for a ResourceListDetailsPane are specified as an array of column attribute IDs. The table
contains a column for each element of the array and a row for each resource object.

Pop-up menus are enabled by default for both ResourceListPane and ResourceListDetailsPane.

Most errors are reported as com.ibm.as400.vaccess.ErrorEvents rather than thrown exceptions. Listen for
ErrorEvents in order to diagnose and recover from error conditions.

Example: Displaying a resource list in a GUI

This example creates a ResourceList of all users on a system and displays it in a GUI (details pane):

 // Create the resource list.
 AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
 RUserList userList = new RUserList(system);

 // Create the ResourceListDetailsPane. In this example,
 // there are two columns in the table. The first column
 // contains the icons and names for each user. The
 // second column contains the text description for each
 // user.
 Object[] columnAttributeIDs = new Object[] { null, RUser.TEXT_DESCRIPTION
};
 ResourceListDetailsPane detailsPane = new ResourceListDetailsPane();
 detailsPane.setResourceList(userList);
 detailsPane.setColumnAttributeIDs(columnAttributeIDs);

 // Add the ResourceListDetailsPane to a JFrame and show it.
 JFrame frame = new JFrame("My Window");
 frame.getContentPane().add(detailsPane);
 frame.pack();
 frame.show();

 // The ResourceListDetailsPane will appear empty until
 // we load it. This gives us control of when the list
 // of users is retrieved from the iSeries.
 detailsPane.load();

System status classes
The System Status components in the vaccess package allow you to create GUIs by using the existing
AS400Panes. You also have the option to create your own GUIs using the Java Foundation Classes (JFC). The
VSystemStatus object represents a system status on the server. The VSystemPool object represents a system
pool on the server. The VSystemStatusPane represents a visual pane that displays the system status information.

The VSystemStatus class allows you to get information about the status of a server session within a GUI
environment:

The getSystem() method returns the server where the system status information is contained●

The getText() method returns the description text●

The setSystem() method sets the server where the system status information is located●

In addition to the methods mentioned above, you can also access and change system pool information in a GUI.

You use VSystemStatus with VSystemStatusPane. VSystemPane is the visual display pane where information is
shown for both system status and system pool.

VSystemStatusPane class
The VSystemStatusPane class allows a Java program to display system status and system pool information.

VSystemStatusPane includes the following methods:

getVSystemStatus(): Returns the VSystemStatus information in a VSystemStatusPane.●

setAllowModifyAllPools(): Sets the value to determine if system pool information can be modified.●

The following example shows you how to use the VSystemStatusPane class:

 // Create an as400 object.
 AS400 mySystem = new AS400("mySystem.myCompany.com");

 // Create a VSystemStatusPane
 VSystemStatusPane myPane = new VSystemStatusPane(mySystem);

 // Set the value to allow pools to be modified
 myPane.setAllowModifyAllPools(true);

 //Load the information
 myPane.load();

System values GUI
The system value components in the vaccess package allow a Java program to create GUIs by using the existing
AS400Panes or by creating your own panes using the Java Foundation Classes(JFC). The VSystemValueList
object represents a system value list on the server.

To use the System Value GUI component, set the system name with a constructor or through the setSystem()
method.

Example

The following example creates a system value GUI using the AS400Explorer Pane:

//Create an AS400 object
AS400 mySystem = newAS400("mySystem.myCompany.com");
VSystemValueList mySystemValueList = new VSystemValueList(mySystem);
as400Panel=new AS400ExplorerPane((VNode)mySystemValueList);
//Create and load an AS400ExplorerPane object
as400Panel.load();

Vaccess users and groups classes
The users and groups components in the vaccess package allow you to present lists of server users and groups
through the VUser class.

The following components are available:

AS400Panes are GUI components that present and allow manipulation of one or more server resources.●

A VUserList object is a resource that represents a list of server users and groups for use in AS400Panes.●

A VUserAndGroup object is a resource for use in AS400Panes that represents groups of server users. It
allows a Java program to list all users, list all groups, or list users who are not in groups.

●

AS400Pane and VUserList objects can be used together to present many views of the list. They can also be used
to allow the user to select users and groups.

To use a VUserList, you must first set the system property. Set this property by using a constructor or through
the setSystem() method. The VUserList object is then "plugged" into the AS400Pane as the root, using the
constructor or setRoot() method of the AS400Pane.

VUserList has some other useful properties for defining the set of users and groups that are presented in
AS400Panes:

Use the setUserInfo() method to specify the types of users that should appear.●

Use the setGroupInfo() method to specify a group name.●

You can use the VUserAndGroup object to get information about the Users and Groups on the system. Before
you can get information about a particular object, you need to load the information so that it can be accessed.
You can display the server in which the information is found by using the getSystem method.

When AS400Pane objects and VUserList or VUserAndGroup objects are created, they are initialized to a
default state. The list of users and groups has not been loaded. To load the contents, the Java program must
explicitly call the load() method on either object to initiate communication to the server to gather the contents of
the list.

At run-time, right-click a user, user list, or group to display the shortcut menu. Select Properties from the
shortcut menu to perform actions on the selected object:

User - Display a list of user information including the description, user class, status, job description,
output information, message information, international information, security information, and group
information.

●

User list - Work with user information and group information properties. You can also change the
contents of the list.

●

Users and groups - Display properties, such as the user name and description.●

Users can only access users and groups to which they are authorized. In addition, the Java program can prevent
the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VUserList and presents it in an AS400DetailsPane:

 // Create the VUserList object.
 // Assume that "system" is an AS400
 // object created and initialized
 // elsewhere.

 VUserList root = new VUserList (system);

 // Create and load an
 // AS400DetailsPane object.
 AS400DetailsPane detailsPane = new AS400DetailsPane (root);
 detailsPane.load ();

 // Add the details pane to a frame.
 // Assume that "frame" is a JFrame
 // created elsewhere.
 frame.getContentPane ().add (detailsPane);

The following example shows how to use the VUserAndGroup object:

 // Create the VUserAndGroup object.
 // Assume that "system" is an AS400 object created and initialized
elsewhere.
 VUserAndGroup root = new VUserAndGroup(system);

 // Create and Load an AS400ExplorerPane
 AS400ExplorerPane explorerPane = new AS400ExplorerPane(root);
 explorerPane.load();

 // Add the explorer pane to a frame
 // Assume that "frame" is a JFrame created elsewhere
 frame.getContentPane().add(explorerPane);

Other Examples

Present a list of users on the system using an AS400ListPane with a VUserList object.

The following image shows the VUserList graphical user interface component:

Graphical Toolbox
The Graphical Toolbox, a set of UI tools, makes it easy to create custom user interface panels in Java. You can incorporate the panels
into your Java applications, applets, or iSeries Navigator plug-ins. The panels may contain data obtained from the iSeries, or data
obtained from another source such as a file in the local file system or a program on the network.

The GUI Builder is a WYSIWYG visual editor for creating Java dialogs, property sheets and wizards. With the GUI Builder you can
add, arrange, or edit user interface controls on a panel, and then preview the panel to verify the layout behaves the way you expected.
The panel definitions you create can be used in dialogs, inserted within property sheets and wizards, or arranged into splitter, deck,
and tabbed panes. The GUI Builder also allows you to build menu bars, toolbars, and context menu definitions. You can also
incorporate JavaHelp in your panels, including context sensitive help.

The Resource Script Converter converts Windows resource scripts into an XML representation that is usable by Java programs.
With the Resource Script Converter you can process Windows resource scripts (RC files) from your existing Windows dialogs and
menus. These converted files can then be edited with the GUI Builder. Property sheets and wizards can be made from RC files using
the resource script converter along with the GUI Builder.

Underlying these two tools is a new technology called the Panel Definition Markup Language, or PDML. PDML is based on the
Extensible Markup Language (XML) and defines a platform-independent language for describing the layout of user interface
elements. Once your panels are defined in PDML, you can use the runtime API provided by the Graphical Toolbox to display them.
The API displays your panels by interpreting the PDML and rendering your user interface using the Java Foundation Classes.

Benefits of the Graphical Toolbox

Write Less Code and Save Time

With the Graphical Toolbox you have the ability to create Java-based user interfaces quickly and easily. The GUI Builder lets
you have precise control over the layout of UI elements on your panels. Because the layout is described in PDML, you are not
required to develop any Java code to define the user interface, and you do not need to recompile code in order to make
changes. As a result, significantly less time is required to create and maintain your Java applications. The Resource Script
Converter lets you migrate large numbers of Windows panels to Java quickly and easily.

Custom Help

Defining user interfaces in PDML creates some additional benefits. Because all of a panel's information is consolidated in a
formal markup language, the tools can be enhanced to perform additional services on behalf of the developer. For example,
both the GUI Builder and the Resource Script Converter are capable of generating HTML skeletons for the panel's online
help. You decide which help topics are required and the help topics are automatically built based on your requirements.
Anchor tags for the help topics are built right into the help skeleton, which frees the help writer to focus on developing
appropriate content. The Graphical Toolbox runtime environment automatically displays the correct help topic in response to
a user's request.

Automatic Panel to Code Integration

In addition, PDML provides tags that associate each control on a panel with an attribute on a JavaBean. Once you have
identified the bean classes that will supply data to the panel and have associated a attribute with each of the appropriate
controls, you can request that the tools generate Java source code skeletons for the bean objects. At runtime, the Graphical
Toolbox automatically transfers data between the beans and the controls on the panel that you identified.

Platform Independent

The Graphical Toolbox runtime environment provides support for event handling, user data validation, and common types of
interaction among the elements of a panel. The correct platform look and feel for your user interface is automatically set
based on the underlying operating system, and the GUI Builder lets you toggle the look and feel so that you can evaluate how
your panels will look on different platforms.

Inside the Graphical Toolbox

The Graphical Toolbox provides you with two tools and, therefore, two ways of automating the creation of your user interfaces. You
can use the GUI Builder to quickly and easily create new panels from scratch, or you can use the Resource Script Converter to
convert existing Windows-based panels to Java. The converted files can then be edited with GUI Builder. Both tools support
internationalization.

GUI Builder

Two windows are displayed when you invoke the GUI Builder for the first time, as shown in Figure 1:

Figure 1: GUI Builder windows

Use the File Builder window to create and edit your PDML files.

Figure 2: File Builder window

Use the Properties window to view or change the properties of the currently selected control.

Figure 3: Properties window

Use the Panel Builder window to create and edit your graphical user interface components. Select the desired component from the
toolbar and click on the panel to place it where ever you want. The toolbar also facilities for aligning groups of controls, for
previewing the panel, and for requesting online help for a GUI Builder function. See GUI Builder Panel Builder toolbar for a
description of what each icon does.

Figure 4: Panel Builder window

The panel being edited is displayed in the Panel Builder window. Figure 5 shows how the windows work together:

Figure 5: Example of how GUI Builder windows work together

Resource Script Converter

The Resource Script Converter consists of a two-paned tabbed dialog. On the Convert pane you specify the name of the Microsoft or
VisualAge for Windows RC file that is to be converted to PDML. You can specify the name of the target PDML file and associated
Java resource bundle that will contain the translated strings for the panels. In addition, you can request that online help skeletons be
generated for the panels, generate Java source code skeletons for the objects that supply data to the panels, and serialize the panel
definitions for improved performance at runtime. The Converter's online help provides a detailed description of each input field on the
Convert pane.

Figure 6: Resource Script Converter Convert pane

After the conversion has run successfully, you can use the View pane to view the contents of your newly-created PDML file, and
preview your new Java panels. You can use the GUI Builder to make minor adjustments to a panel if needed. The Converter always
checks for an existing PDML file before performing a conversion, and attempts to preserve any changes in case you need to run the
conversion again later.

Figure 7: Resource Script Converter View pane

Getting started with the Graphical Toolbox

Use the following topics to to learn more about the Graphical Toolbox:

Setting up the Graphical Toolbox●

Creating your user interface●

Displaying your panels at runtime●

Generating online help files●

Graphical Toolbox example●

Using the Graphical Toolbox in a browser●

Panel Builder toolbar●

Setting up the Graphical Toolbox
The Graphical Toolbox is delivered as a set of JAR files. To set up the Graphical Toolbox you must install the
JAR files on your workstation and set your CLASSPATH environment variable.

You must also ensure that your workstation meets the requirements to run IBM Toolbox for Java.

Installing the Graphical Toolbox on your workstation

To develop Java programs using the Graphical Toolbox, first install the Graphical Toolbox JAR files on your
workstation. Use one of the following methods:

Transfer the JAR Files

Note: The following list represents some of the methods you can use to transfer the JAR files. The IBM
Toolbox for Java licensed program must be installed on your iSeries. Additionally, you need to
download the JAR file for JavaHelp, jhall.jar, from the Sun JavaHelp Web site.

Use FTP (ensure you transfer the files in binary mode) and copy the JAR files from the
directory /QIBM/ProdData/HTTP/Public/jt400/lib to a local directory on your workstation

❍

Use iSeries Access for Windows to map a network drive.❍

The AS400ToolboxInstaller class that comes with the IBM Toolbox for Java can also be used to
install the Graphical Toolbox JAR files - specify OPNAV for the package name. For more
information, see Client installation and update classes.

❍

Install JAR files with iSeries Access for Windows

You can also install the Graphical Toolbox when you install iSeries Access for Windows. The IBM
Toolbox for Java is now shipped as part of iSeries Access for Windows. If you are installing iSeries
Access for Windows for the first time, choose Custom Install and select the IBM Toolbox for Java
component on the install menu. If you have already installed iSeries Access for Windows, you can use
the Selective Setup program to install this component if it is not already present.

Setting your classpath

To use the Graphical Toolbox, you must add these JAR files to your CLASSPATH environment variable (or
specify them on the classpath option on the command line).

For example, if you have copied the files to the directory C:\gtbox\lib on your workstation, you must add the
following path names to your classpath:

 C:\gtbox\lib\uitools.jar;
 C:\gtbox\lib\jui400.jar;
 C:\gtbox\lib\data400.jar;
 C:\gtbox\lib\util400.jar;
 C:\gtbox\lib\x4j400.jar;
 C:\gtbox\lib\jhall.jar;

If you have installed the Graphical Toolbox using iSeries Access for Windows, the JAR files (except jhall.jar)
will all reside in the directory \Program Files\Ibm\Client Access\jt400\lib on the drive where you have
installed iSeries Access for Windows. iSeries Access for Windows installs jhall.jar in the \Program
Files\Ibm\Client Access\jre\lib directory. The path names in your classpath should reflect this.

JAR File Descriptions

uitools.jar Contains the GUI Builder and Resource Script Converter tools.●

jui400.jar Contains the runtime API for the Graphical Toolbox. Java programs use this API to display
the panels constructed using the tools. These classes may be redistributed with applications.

●

data400.jar Contains the runtime API for the Program Call Markup Language (PCML). Java programs
use this API to call iSeries programs whose parameters and return values are identified using PCML.
These classes may be redistributed with applications.

●

util400.jar Contains utility classes for formatting iSeries data and handling iSeries messages. These
classes may be redistributed with applications.

●

x4j400.jar Contains the XML parser used by the API classes to interpret PDML and PCML
documents.

●

jhall.jar Contains the JavaHelp classes that displays the online help and context sensitive help for the
panels you build with the GUI Builder.

●

Note: You can use internationalized versions of the GUI Builder and Resource Script Converter tools. To run a
non-U.S. English version, you must add to your Graphical Toolbox installation the correct version of uitools.jar
for your language and country or region. These JAR files are available on the iSeries server in
/QIBM/ProdData/HTTP/Public/jt400/Mri29xx, where 29xx is the 4-digit OS/400 NLV code that corresponds
to your language and country or region. (The names of the JAR files in the various Mri29xx directories include
2-character suffixes for the Java language code and the country or region code.) This additional JAR file should
be added to your classpath ahead of uitools.jar in the search order.

Using the Graphical Toolbox

Once you have installed the Graphical Toolbox, follow these links to learn how to use the tools:

Using the GUI Builder●

Using the Resource Script Converter●

Creating your user interface

Running the GUI Builder

To start the GUI Builder, invoke the Java interpreter as follows:

java com.ibm.as400.ui.tools.GUI Builder [-plaf look and feel]

If you did not set your CLASSPATH environment variable to contain the Graphical Toolbox JAR files, then
you will need to specify them on the command line using the classpath option. See Setting Up the Graphical
Toolbox.

Options -plaf look and feel

The desired platform look and feel. This option lets you override the default look and feel that is set
based on the platform you are developing on, so you can preview your panels to see how they will look
on different operating system platforms. The following look and feel values are accepted:

Windows❍

Metal❍

Motif❍

Currently, additional look and feel attributes that Swing 1.1 may support are not supported by the GUI
Builder

Types of user interface resources

When you start the GUI Builder for the first time, you need to create a new PDML file. From the menu bar on
the GUI Builder widow, select File --> New File. After you create your new PDML file, you can define any of
the following types of UI resources that you want it to contain.

Panel

The fundamental resource type. It describes a rectangular area within which UI elements are arranged.
The UI elements may consist of simple controls, such as radio buttons or text fields, images,
animations, custom controls, or more sophisticated subpanels (see the following definitions for Split
Pane, Deck Pane and Tabbed Pane). A panel may define the layout for a stand-alone window or dialog,
or it may define one of the subpanels that is contained in another UI resource.

Menu

A popup window containing one or more selectable actions, each represented by a text string ("Cut",
"Copy" and "Paste" are examples). You can define mnemonics and accelerator keys for each action,
insert separators and cascading submenus, or define special checked or radio button menu items. A
menu resource may be used as a stand-alone context menu, as a drop-down menu in a menu bar, or it
may itself define the menu bar associated with a panel resource.

Toolbar

A window consisting of a series of push buttons, each representing a possible user action. Each button
may contain text, an icon or both. You can define the toolbar as floatable, which lets the user drag the
toolbar out of a panel and into a stand-alone window.

Property Sheet

A stand-alone window or dialog consisting of a tabbed panels and OK, Cancel, and Help buttons. Panel
resources define the layout of each tabbed window.

Wizard

A stand-alone window or dialog consisting of a series of panels that are displayed to the user in a
predefined sequence, with Back, Next, Cancel, Finish, and Help buttons. The wizard window may also
display a list of tasks to the left of the panels which track the user's progress through the wizard.

Split Pane

A subpane consisting of two panels separated by a splitter bar. The panels may be arranged horizontally
or vertically.

Tabbed Pane

A subpane that forms a tabbed control. This tabbed control can be placed inside of another panel, split
pane, or deck pane.

Deck Pane

A subpane consisting of a collection of panels. Of these, only one panel can be displayed at a time. For
example, at runtime the deck pane could change the panel which is displayed depending on a given user
action.

String Table

A collection of string resources and their associated resource identifiers.

Generated files

The translatable strings for a panel are not stored in the PDML file itself, but in a separate Java resource bundle.
The tools let you specify how the resource bundle is defined, either as a Java PROPERTIES file or as a
ListResourceBundle subclass. A ListResourceBundle subclass is a compiled version of the translatable
resources, which enhances the performance of your Java application. However, it will slow down the GUI
Builder's saving process, because the ListResourceBundle will be compiled in each save operation. Therefore
it's best to start with a PROPERTIES file (the default setting) until you're satisfied with the design of your user
interface.

You can use the tools to generate HTML skeletons for each panel in the PDML file. At runtime, the correct help
topic is displayed when the user clicks on the panel's Help button or presses F1 while the focus is on one of the
panel's controls. You should insert your help content at the appropriate points in the HTML, within the scope of
the <!-- HELPDOC:SEGMENTBEGIN --> and <!-- HELPDOC:SEGMENTEND --> tags. For more specific help
information see Editing Help Documents generated by GUI builder.

You can generate source code skeletons for the JavaBeans that will supply the data for a panel. Use the
Properties window of the GUI Builder to fill in the DATACLASS and ATTRIBUTE properties for the controls
which will contain data. The DATACLASS property identifies the class name of the bean, and the
ATTRIBUTE property specifies the name of the gettor/settor methods that the bean class implements. Once
you've added this information to the PDML file, you can use the GUI Builder to generate Java source code
skeletons and compile them. At runtime, the appropriate gettor/settor methods will be called to fill in the data
for the panel.

Note: The number and type of gettor/settor methods is dependent on the type of UI control with which the
methods are associated. The method protocols for each control are documented in the class description for the
DataBean class.

Finally, you can serialize the contents of your PDML file. Serialization produces a compact binary
representation of all of the UI resources in the file. This greatly improves the performance of your user
interface, because the PDML file does not have to be interpreted in order to display your panels.

To summarize: If you have created a PDML file named MyPanels.pdml, the following files will also be
produced based on the options you have selected on the tools:

MyPanels.properties if you have defined the resource bundle as a PROPERTIES file●

MyPanels.java and MyPanels.class if you have defined the resource bundle as a ListResourceBundle
subclass

●

<panel name>.html for each panel in the PDML file, if you have elected to generate online help
skeletons

●

<dataclass name>.java and <dataclass name>.class for each unique bean class that you have specified
on your DATACLASS properties, if you have elected to generate source code skeletons for your
JavaBeans

●

<resource name>.pdml.ser for each UI resource defined in the PDML file, if you've elected to
serialize its contents.

●

Note: The conditional behavior functions (SELECTED/DESELECTED) will not work if the panel name is the
same as the one in which the conditional behavior function is being attached. For instance, if PANEL1 in FILE1
has a conditional behavior reference attached to a field that references a field in PANEL1 in FILE2, the
conditional behavior event will not work. To fix this, simply rename PANEL1 in FILE2 and then update the
conditional behavior event in FILE1 to reflect this change.

Running the Resource Script Converter

To start the Resource Script Converter, invoke the Java interpreter as follows:

java com.ibm.as400.ui.tools.PDMLViewer

If you did not set your CLASSPATH environment variable to contain the Graphical Toolbox JAR files, then
you will need to specify them on the command line using the classpath option. See Setting Up the
Graphical Toolbox.

You can also run the Resource Script Converter in batch mode using the following command:

java com.ibm.as400.ui.tools.RC2XML file [options]

Where file is the name of the resource script (RC file) to be processed. Options

-x name

The name of the generated PDML file. Defaults to the name of the RC file to be processed.

-p name

The name of the generated PROPERTIES file. Defaults to the name of the PDML file.

-r name

The name of the generated ListResourceBundle subclass. Defaults to the name of the PDML file.

-package name

The name of the package to which the generated resources will be assigned. If not specified, no
package statements will be generated.

-l locale

The locale in which to produce the generated resources. If a locale is specified, the appropriate
2-character ISO language and country or region codes are suffixed to the name of the generated
resource bundle.

-h

Generate HTML skeletons for online help.

-d

Generate source code skeletons for JavaBeans.

-s

Serialize all resources.

Mapping Windows Resources to PDML

All dialogs, menus, and string tables found in the RC file will be converted to the corresponding Graphical
Toolbox resources in the generated PDML file. You can also define DATACLASS and ATTRIBUTE
properties for Windows controls that will be propagated to the new PDML file by following a simple naming
convention when you create the identifiers for your Windows resources. These properties will be used to
generate source code skeletons for your JavaBeans when you run the conversion.

The naming convention for Windows resource identifiers is:

IDCB_<class name>_<attribute>

where <class name> is the fully-qualified name of the bean class that you wish to designate as the
DATACLASS property of the control, and <attribute> is the name of the bean property that you wish to
designate as the ATTRIBUTE property of the control.

For example, a Windows text field with the resource ID
IDCB_com_MyCompany_MyPackage_MyBean_SampleAttribute would produce a DATACLASS
property of com.MyCompany.MyPackage.MyBean and an ATTRIBUTE property of SampleAttribute. If
you elect to generate JavaBeans when you run the conversion, the Java source file MyBean.java would be
produced, containing the package statement package com.MyCompany.MyPackage, and gettor and settor
methods for the SampleAttribute property.

Displaying your panels at runtime
The Graphical Toolbox provides a redistributable API that your Java programs can use to display user interface panels defined using
PDML. The API displays your panels by interpreting the PDML and rendering your user interface using the Java Foundation Classes.

The Graphical Toolbox runtime environment provides the following services:

Handles all data exchanges between user interface controls and the JavaBeans that you identified in the PDML.●

Performs validation of user data for common integer and character data types, and defines an interface that allows you to
implement custom validation. If data is found to be invalid, an error message is displayed to the user.

●

Defines standardized processing for Commit, Cancel and Help events, and provides a framework for handling custom events.●

Manages interactions between user interface controls based on state information defined in the PDML. (For example, you may
want to disable a group of controls whenever the user selects a particular radio button.)

●

The package com.ibm.as400.ui.framework.java contains the Graphical Toolbox runtime API.

The elements of the Graphical Toolbox runtime environment are shown in Figure 1. Your Java program is a client of one or more of
the objects in the Runtime Managers box.

Figure 1: Graphical Toolbox Runtime Environment

Examples

Assume that the panel MyPanel is defined in the file TestPanels.pdml, and that a properties file TestPanels.properties is associated
with the panel definition. Both files reside in the directory com/ourCompany/ourPackage, which is accessible either from a directory
defined in the classpath or from a ZIP or JAR file defined in the classpath.

Example: Creating and displaying a panel

The following code creates and displays the panel:

import com.ibm.as400.ui.framework.java.*;

// Create the panel manager. Parameters:
// 1. Resource name of the panel definition
// 2. Name of panel
// 3. List of DataBeans omitted

PanelManager pm = null;
try {
 pm = new PanelManager("com.ourCompany.ourPackage.TestPanels",
 "MyPanel", null);
}

catch (DisplayManagerException e) {
 e.displayUserMessage(null);
 System.exit(-1);
}

// Display the panel
pm.setVisible(true);

Example: Creating a dialog

Once the DataBeans that supply data to the panel have been implemented and the attributes have been identified in the PDML, the
following code may be used to construct a fully-functioning dialog:

import com.ibm.as400.ui.framework.java.*;
import java.awt.Frame;

// Instantiate the objects which supply data to the panel
TestDataBean1 db1 = new TestDataBean1();
TestDataBean2 db2 = new TestDataBean2();

// Initialize the objects
db1.load();
db2.load();

// Set up to pass the objects to the UI framework
DataBean[] dataBeans = { db1, db2 };

// Create the panel manager. Parameters:
// 1. Resource name of the panel definition
// 2. Name of panel
// 3. List of DataBeans
// 4. Owner frame window

Frame owner;
...
PanelManager pm = null;
try {
 pm = new PanelManager("com.ourCompany.ourPackage.TestPanels",
 "MyPanel", dataBeans, owner);
}

catch (DisplayManagerException e) {
 e.displayUserMessage(null);
 System.exit(-1);
}

// Display the panel
pm.setVisible(true);

Example: Using the dynamic panel manager

A new service has been added to the existing panel manager. The dynamic panel manager dynamically sizes the panel at runtime. Let's
look at the MyPanel example again, using the dynamic panel manager:

import com.ibm.as400.ui.framework.java.*;

// Create the dynamic panel manager. Parameters:
// 1. Resource name of the panel definition
// 2. Name of panel
// 3. List of DataBeans omitted

DynamicPanelManager dpm = null;
try {
 pm = new DynamicPanelManager("com.ourCompany.ourPackage.TestPanels",
 "MyPanel", null);
}

catch (DisplayManagerException e) {
 e.displayUserMessage(null);
 System.exit(-1);
}

// Display the panel
pm.setVisible(true);

When you instantiate this panel application you can see the dynamic sizing feature of the panels. Move your cursor to the edge of the
GUI's display and, when you see the sizing arrows, you can change the size of the panel.

Editing help documents generated by GUI Builder
For each PDML project file, the GUI Builder generates a help skeleton and puts it into a single HTML
document. Before use, this HTML file is broken up into single topic HTML files for each dialog of the PDML
project. This provides the user with granular help for each topic and allows you to manage only a few large help
files.

The Help Document is a valid HTML file and can be viewed in any browser and edited using most HTML
editors. Tags that define the sections in a Help Document are embedded within comments, so they do not show
up in a browser. The comment tags are used to break the Help Document into several sections:

Header●

Topic section for each dialog●

Topic section for each control that is help-enabled●

Footer●

In addition, you can add additional topic sections before the footer to provide additional information or common
information. Topic sections have only the html body until they are split, when a header and footer are created.
When the Help Document is split up, the processor adds a header and footer to the topic section to make a
complete HTML file. The header and footer from the Help Document are used as default header and footer.
However, you can override the default header with your own.

Inside the Help Document

The following sections explain the parts of the Help Document:

Header

The end of the header section is shown by the following tag:
<!-- HELPDOC:HEADEREND -->
If you want to override the default header for all of the individual topics when they are split, use the
HEADER keyword and provide the name of an html fragment to include. For example:
<!-- HELPDOC:HEADEREND HEADER="defaultheader.html" -->

Topic segment

Each topic is surrounded by the following tags:
<!-- HELPDOC:SEGMENTBEGIN --> and <!-- HELPDOC:SEGMENTEND -->
Immediately following the SEGMENTBEGIN tag is an anchor tag which names the segment. It also
provides the file name of the HTML document that is created when the Help Document is split. The
name of the segment combines the panel identifier, control identifier, and future file extension (html).
For example: "MY_PANEL.MY_CONTROL.html" Segments for panels have only the panel identifier
and future file extension.

The help generator will place text in the document indicating where you should place your help
information:

<!-- HELPDOC:SEGMENTBEGIN PDMLSYNCH="YES" -->
<H2>My favorite control</H2>
Insert help for "My favorite control" here.
<P><!-- HELPDOC:SEGMENTEND -->

You can add additional HTML 2.0 tags as needed after the anchor tag and before the SEGMENTEND
tag.

The PDMLSYNCH tag controls how closely a segment is tied to the controls defined in PDML. If
PDMLSYCH is "YES", the Help Document segment will be removed if the control of the same name is
removed in the PDML. PDMLSYNCH="NO" indicates the topic should be kept in the Help Document
regardless of whether a corresponding control exists in the PDML. This is used, for example, when you
create additional topics for depth or a common topic.

The help generated for a panel has links to each control enabled for help on the panel. These links are
generated with a local anchor reference, so that you can test them as internal links in a standard
browser. When the Help Document is split, the processor removes the "#" on these internal links
making them external links in the resulting single topic HTML files. Because you may wish to have
internal links within a topic, the processor only removes any preceding "#" when the reference has
".html" embedded in it.

If you want to override the default header for any particular topic, use the HEADER keyword and
provide the name of an html fragment to include.. For example:
<!-- HELPDOC:SEGMENTBEGIN PDMLSYNCH="YES" HEADER="specialheader.html"
-->

Footer

The footer in the Help Document begins with the following tag:
<!-- HELPDOC:FOOTERBEGIN -->. The standard footer is </BODY></HTML>. This footer is
added to each HTML file.

Adding links

You can add links to any external or internal URL as well as any other segment. However, you must follow
some conventions:

External URLs are used in the standard manner. This includes internal links to external URLs●

Internal links within the same topic are written in the standard way, but must not have ".html" as part of
the tag name. This is because the Help Document processor assumes that any link with .html will need
to be an external link when the topics are separate. Therefore, it removes the preceding "#".

●

Links to other topic segments should be written with a preceding "#" as though they are an internal
anchor reference.

●

Internal links to other topic segments may also be created. Only the leading "#" is removed during
processing.

●

Notes:

At run-time, the PanelManager class looks for help files in a subdirectory with the same name as the
PDML file. When the processor splits the Help Document, it creates this subdirectory by default and
places the resulting HTML files in it.

●

The processor does not make any adjustments for external URL references that are relative links. When
you link from an individual topic file, any relative links will be searching from the new subdirectory.
Therefore, you will need to place copies of resources such as images where they can be found or use
"../" in the path in order to search from the panel directory.

●

Editing using a visual editor

You can edit your help content in almost any visual HTML editor. Because the HELPDOC tags are comments
they may not be obvious in some editors. For convenience, a horizontal rule is added to the help skeleton
immediately before the SEGMENTBEGIN tag and immediately after the SEGMENTEND tag. These
horizontal rules provide clear visual indication of the entire segment in a visual editor. If you select a segment
because you wish to move, copy, or delete it, select the surrounding horizontal rules to be sure you have

included the SEGMENTBEGIN and SEGMENTEND tags in your selection. These horizontal rules are not
copied to the final individual HTML files.

Creating Additional Topics

You can create additional topic segments in the Help Document. It is often easiest to do this by copying
another segment. When you copy the segment, you should copy the horizontal rules just before the
SEGMENTBEGIN and after the SEGMENTEND tag. This will make future visual editing much easier and
help avoid mismatched tags. For best results, use the following tips:

The name of the anchor should be the name you want for the resulting single file when the Help
Document is split. It should end in ".html".

●

You should use the PDMLSYNCH="NO" keyword on the SEGMENTBEGIN tag to prevent the
segment from being removed if the help skeleton is regenerated.

●

Any references to your new topic will be made as an internal link in the Help Document with a
preceding "#". This "#" will be removed in later processing when the segments are split into single
files.

●

Checking Your Links

For most writing, you can check your links by viewing your document in a Web browser and selecting different
links. In the single Help Document, the links are still in their internal form.

As you reach completion, or when you want to test with the application you are developing help for, you will
need to break the Help Document into single files. You do this with Help Document to HTML Processing.

If you need to regenerate the Help Document after editing, your writing will be preserved. You may want to
regenerate the Help Document if you add new controls after generating the original help skeleton. In this case,
the help generator checks for an existing Help Document before it creates a new skeleton. If one is found, it
preserves any existing segments and then adds the new controls.

Graphical Toolbox examples
We have provided examples to show you how to implement the tools within Graphical Toolbox for your own
UI programs.

Construct and display a panel: Shows you how to construct a simple panel. The example then shows
you how to build a small Java application that displays the panel. When the user enters data in the text
field and clicks on the Close button, the application will echo the data to the Java console. This example
illustrates the basic features and operation of the Graphical Toolbox environment as a whole.

●

Create and display a panel: Shows you how to create and display a panel when the panel and properties
file are in the same directory.

●

Construct a fully-functional dialog: Once the DataBeans that supply data to the panel have been
implemented and the attributes have been identified in the PDML this example shows you how to
construct a fully-functioning dialog

●

Size a panel using the dynamic panel manager: The dynamic panel manager dynamically sizes the panel
at runtime.

●

Editable combobox: Shows you a data bean coding example for an editable combobox.●

The following examples show you how the GUI Builder can help you to create:

Panels: Shows you how to create a sample panel and the data bean code that runs the panel●

Deckpanes: Shows you how to create a deckpane and what a final deckpane may look like●

Property sheets: Shows you how to create a property sheet and what a final property sheet may look like●

Split panes: Shows you how to create a split pane and what a final split pane may look like●

Tabbed panes: Shows you how to create a tabbed pane and what a final tabbed pane may look like●

Wizards: Shows you how to create a wizard and what the final product may look like●

Toolbars: Shows you how to create a tool bar and what a final tool bar may look like●

Menu bars: Shows you how to create a menu bar and what a final menu bar may look like●

Help: Shows how a Help Document is generated and ways to split the Help Document into topic pages.
Also, see Editing Help Documents generated by GUI builder

●

Sample: Shows what a whole PDML program may look like, including panels, a property sheet, a
wizard, select/deselect, and menu options.

●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Using the Graphical Toolbox in a browser
You can use the Graphical Toolbox to build panels for Java applets that run in a Web browser. This section describes how to convert the simple panel from the Graphical Toolbox Example to run in a
browser. The minimum browser levels supported are Netscape 4.05 and Internet Explorer 4.0. In order to avoid having to deal with the idiosyncrasies of individual browsers, we recommend that your
applets run using Sun's Java Plug-in. Otherwise, you will need to construct signed JAR files for Netscape, and separate signed CAB files for Internet Explorer.

Constructing the applet

The code to display a panel in an applet is nearly identical to the code used in the Java application example, but first, the code must be repackaged in the init method of a JApplet subclass. Also, we
must add some code to ensure that the applet panel is sized to the dimensions specified in the panel's PDML definition. Here is the source code for our example applet, SampleApplet.java.

import com.ibm.as400.ui.framework.java.*;

import javax.swing.*;
import java.awt.*;
import java.applet.*;
import java.util.*;

public class SampleApplet extends JApplet
{
 // The following are needed to maintain the panel's size
 private PanelManager m_pm;
 private Dimension m_panelSize;

 // Define an exception to throw in case something goes wrong
 class SampleAppletException extends RuntimeException {}

 public void init()
 {
 System.out.println("In init!");

 // Trace applet parameters
 System.out.println("SampleApplet code base=" + getCodeBase());
 System.out.println("SampleApplet document base=" + getDocumentBase());

 // Do a check to make sure we're running a Java virtual machine that's compatible with
Swing 1.1
 if (System.getProperty("java.version").compareTo("1.1.5") < 0)
 throw new IllegalStateException("SampleApplet cannot run on Java VM version " +
 System.getProperty("java.version") + " - requires
1.1.5 or higher");

 // Instantiate the bean object that supplies data to the panel
 SampleBean bean = new SampleBean();

 // Initialize the object
 bean.load();

 // Set up to pass the bean to the panel manager
 DataBean[] beans = { bean };

 // Update the status bar
 showStatus("Loading the panel definition...");

 // Create the panel manager. Parameters:
 // 1. PDML file as a resource name
 // 2. Name of panel to display
 // 3. List of data objects that supply panel data
 // 4. The content pane of the applet

 try { m_pm = new PanelManager("MyGUI", "PANEL_1", beans, getContentPane()); }
 catch (DisplayManagerException e)
 {
 // Something didn't work, so display a message and exit
 e.displayUserMessage(null);
 throw new SampleAppletException();
 }

 // Identify the directory where the online help resides
 m_pm.setHelpPath("http://MyDomain/MyDirectory/");

 // Display the panel
 m_pm.setVisible(true);
 }

 public void start()
 {
 System.out.println("In start!");

 // Size the panel to its predefined size
 m_panelSize = m_pm.getPreferredSize();
 if (m_panelSize != null)
 {
 System.out.println("Resizing to " + m_panelSize);
 resize(m_panelSize);
 }
 else
 System.err.println("Error: getPreferredSize returned null");
 }

 public void stop()
 {
 System.out.println("In stop!");
 }

 public void destroy()
 {
 System.out.println("In destroy!");
 }

 public void paint(Graphics g)
 {
 // Call the parent first
 super.paint(g);

 // Preserve the panel's predefined size on a repaint
 if (m_panelSize != null)
 resize(m_panelSize);
 }
}

The applet's content pane is passed to the Graphical Toolbox as the container to be laid out. In the start method, we size the applet pane to its correct size, and we override the paint method in order to
preserve the panel's size when the browser window is resized.

When running the Graphical Toolbox in a browser, the HTML files for your panel's online help cannot be accessed from a JAR file. They must reside as separate files in the directory where your
applet resides. The call to PanelManager.setHelpPath identifies this directory to the Graphical Toolbox, so that your help files can be located.

HTML tags

Because we recommend the use of Sun's Java Plug-in to provide the correct level of the Java runtime environment, the HTML for identifying a Graphical Toolbox applet is not as straightforward as
we would like. Fortunately, the same HTML template may be reused, with only slight changes, for other applets. The markup is designed to be interpreted in both Netscape Navigator and Internet
Explorer, and it generates a prompt for downloading the Java Plug-in from Sun's Web site if it's not already installed on the user's machine. For detailed information on the workings of the Java

Plug-in see the Java Plug-in HTML Specification.

Here is our HTML for the sample applet, in the file MyGUI.html:

<html>

<head>
<title>Graphical Toolbox Demo</title>
</head>

<body>
<h1>Graphical Toolbox Demo Using Java(TM) Plug-in</h1>
<p>

<!-- BEGIN JAVA(TM) PLUG-IN APPLET TAGS -->

<!-- The following tags use a special syntax which allows both Netscape and Internet Explorer to
load -->
<!-- the Java Plug-in and run the applet in the Plug-in's JRE. Do not modify this syntax.
-->
<!-- For more information see
http://java.sun.com/products/jfc/tsc/swingdoc-current/java_plug_in.html. -->

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 width="400"
 height="200"
 align="left"

codebase="http://java.sun.com/products/plugin/1.1.3/jinstall-113-win32.cab#Version=1,1,3,0">
 <PARAM name="code" value="SampleApplet">
 <PARAM name="codebase" value="http://www.mycompany.com/~auser/applets/">
 <PARAM name="archive" value="MyGUI.jar,jui400.jar,util400.jar,x4j400.jar">
 <PARAM name="type" value="application/x-java-applet;version=1.1">

 <COMMENT>
 <EMBED type="application/x-java-applet;version=1.1"

 width="400"
 height=200"
 align="left"
 code="SampleApplet"
 codebase="http://www.mycompany.com/~auser/applets/"
 archive="MyGUI.jar,jui400.jar,util400.jar,x4j400.jar"
 pluginspage="http://java.sun.com/products/plugin/1.1.3/plugin-install.html">
 <NOEMBED>
 </COMMENT>
 No support for JDK 1.1 applets found!
 </NOEMBED>
 </EMBED>
</OBJECT>

<!-- END JAVA(TM) PLUG-IN APPLET TAGS -->

<p>
</body>
</html>

It is important that the version information be set for 1.1.3.

Note: In this example, we have chosen to store the XML parser JAR file, x4j400.jar, on the Web server. This is required only when you include your PDML file as part of your applet's installation.
For performance reasons, you would normally serialize your panel definitions so that the Graphical Toolbox does not have to interpret the PDML at runtime. This greatly improves the performance of
your user interface by creating compact binary representations of your panels. For more information see the description of files generated by the tools.

Installing and running the applet

Install the applet on your favorite Web server by performing the following steps:

Compile SampleApplet.java.●

Create a JAR file named MyGUI.jar to contain the applet binaries. These include the class files produced when you compiled SampleApplet.java and SampleBean.java, the PDML file
MyGUI.pdml, and the resource bundle MyGUI.properties.

●

Copy your new JAR file to a directory of your choice on your Web server. Copy the HTML files containing your online help into the server directory.●

Copy the Graphical Toolbox JAR files into the server directory.●

Finally, copy the HTML file MyGUI.html containing the embedded applet into the server directory.●

Tip: When testing your applets, ensure that you have removed the Graphical Toolbox jars from the CLASSPATH environment variable on your workstation. Otherwise, you will see error messages
saying that the resources for your applet cannot be located on the server.

Now you are ready to run the applet. Point your Web browser to MyGUI.html on the server. If you do not already have the Java Plug-in installed, you will be asked if you want to install it. Once the
Plug-in is installed and the applet is started, your browser display should look similar to the Figure 1:

Figure 1: Running the sample applet in a browser

GUI Builder Panel Builder toolbar
Figure 1 shows the GUI Builder Panel Builder window. Following Figure 1 is a list that shows each Panel Builder tool icon and
describes its function.

Figure 1: The GUI Builder Panel window

 Click Pointer to move and resize a component on a panel.

 Click Label to insert a static label on a panel.

 Click Text to insert a text box on a panel.

 Click Button to insert a button on a panel.

 Click Combo Box to insert a drop down list box on a panel.

 Click List Box to insert a list box on a panel.

 Click Radio Button to insert a radio button on a panel.

 Click Checkbox to insert a check box on a panel.

 Click Spinner to insert a spinner on a panel.

 Click Image to insert an image on a panel.

 Click Menu Bar to insert a menu bar on a panel.

 Click Group Box to insert a labeled group box on a panel.

 Click Tree to insert an hierarchical tree on a panel.

 Click Table to insert a table on a panel.

 Click Slider to insert an adjustable slider on a panel.

 Click Progress Bar to insert a progress bar on a panel.

 Click Deck Pane to insert a deck pane on a panel. A deck pane contains a stack of panels. The user can select any of the panels,
but only the selected panel is fully visible.

 Click Split Pane to insert a split pane on a panel. A split pane is one pane divided into two horizontal or vertical panes.

 Click Tabbed Pane to insert a tabbed pane on a panel. A tabbed pane contains a collection of panels with tabs at the top. The
user clicks a tab to display the contents of a panel. The title of the panel is used as the text for a tab.

 Click Custom to insert a custom-defined user interface component on a panel.

 Click Toolbar to insert a toolbar on a panel.

 Click Toggle Grid to enable a grid on a panel.

 Click Align Top to align multiple components on a panel with the top edge of a specific, or primary, component.

 Click Align Bottom to align multiple components on a panel with the bottom edge of a specific, or primary, component.

 Click Equalize Height to equalize the height of multiple components with the height of a specific, or primary, component.

 Click Center Vertically to center a selected component vertically relative to the panel.

 Click Toggle Margins to view the margins of the panel.

 Click Align Left to align multiple components on a panel with the left edge of a specific, or primary, component.

 Click Align Right to align multiple components on a panel with the left edge of a specific, or primary, component.

 Click Equalize Width to equalize the width of multiple components with the width of a specific, or primary, component.

 Click Center Horizontally to center a selected component horizontally relative to the panel.

 Click Cut to cut panel components.

 Click Copy button to copy panel components.

 Click Paste to paste panel components between different panels or files.

 Click Undo to undo the last action.

 Click Redo to redo the last action.

 Click Tab Order to control the selection order of each panel component when the user presses TAB to navigate through the
panel.

 Click Preview to display a preview of what a panel will look like.

 Click Help to get more specific information on the Graphical Toolbox.

IBM Toolbox for Java beans

JavaBeans(TM) are reuseable software components that are written in Java. The component is a piece of program
code that provides a well-defined, functional unit, which can be as small as a label for a button on a window or
as large as an entire application.

JavaBeans can be either visual or nonvisual components. Non-visual JavaBeans still have a visual
representation, such as an icon or a name, to allow visual manipulation.

All IBM Toolbox for Java public classes are also JavaBeans. These classes were built to Javasoft JavaBean
standards; they function as reuseable components. The properties and methods for an IBM Toolbox for Java
bean are the same as the properties and methods of the class.

JavaBeans can be used within an application program or they can be visually manipulated in builder tools, such
as the IBM VisualAge for Java product.

Examples

Example: The IBM Toolbox for Java bean example show one way to use JavaBeans in your program.●

Example: The Visual bean builder code example shows one way to create a program from JavaBeans by
using a visual bean builder such as IBM Visual Age for Java.

●

Program Call Markup Language

Overview

Program Call Markup Language (PCML) is a tag language that helps you call server programs, with less Java
code. PCML is based upon the Extensible Markup Language (XML), a tag syntax you use to describe the input
and output parameters for server programs. PCML enables you to define tags that fully describe server programs
called by your Java application. For more information about XML, see the XML reference section.

A huge benefit of PCML is that it allows you to write less code. Ordinarily, extra code is needed to connect,
retrieve, and translate data between a server and IBM Toolbox for Java objects. However, by using PCML, your
calls to the server with the IBM Toolbox for Java classes are automatically handled. PCML class objects are
generated from the PCML tags and help minimize the amount of code you need to write in order to call server
programs from your application.

Platform requirements

Although PCML was designed to support distributed program calls to server program objects from a Java
platform, you can also use PCML to make calls to a server program from within the server environment.

Topics for more information

Refer to the following topics on how to use PCML:

Call programs with the help of PCML●

Build program calls with PCML tags●

A PCML example●

Building iSeries program calls with PCML
To build iSeries program calls with PCML, you must start by creating a Java application and a PCML source file.

Depending upon your design process, you must write one or more PCML source files where you describe the interfaces to the
iSeries programs that will be called by your Java application. Refer to PCML syntax for a detailed description of the language.

Then your Java application interacts with the PCML classes (in this case, the ProgramCallDocument class). The
ProgramCallDocument class uses your PCML source file to pass information between your Java application and the iSeries
programs. Figure 1 illustrates how Java applications interact with the PCML classes.

Figure 1. Making program calls to the server using PCML.

When your application constructs the ProgramCallDocument object, the IBM XML parser reads and parses the PCML source
file.

After the ProgramCallDocument class has been created, the application program uses the ProgramCallDocument class's
methods to retrieve the necessary information from the server through the iSeries distributed program call (DPC) server.

To increase run-time performance, the ProgramCallDocument class can be serialized during your product build time. The
ProgramCallDocument is then constructed using the serialized file. In this case, the IBM XML parser is not used at run-time.

Refer to Using serialized PCML files.

Using PCML source files

Your Java application uses PCML by constructing a ProgramCallDocument object with a reference to the PCML source file.
The ProgramCallDocument object considers the PCML source file to be a Java resource.

The java application finds the he PCML source file by either using the Java CLASSPATH or the ProgramCallDocument
setPath() method. Use the setPath() method when your Java application program needs to set the path to the PCML file at run
time.

The following Java code constructs a ProgramCallDocument object:

 AS400 as400 = new AS400();
 ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400,
"myPcmlDoc");

The ProgramCallDocument object will look for your PCML source in a file called myPcmlDoc.pcml. Notice that the .pcml
extension is not specified on the constructor.

If you are developing a Java application in a Java package, you can package-qualify the name of the PCML resource:

 AS400 as400 = new AS400();
 ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400,
"com.company.package.myPcmlDoc");

Using serialized PCML files

To increase run-time performance, you can use a serialized PCML file. A serialized PCML file contains serialized Java objects
representing the PCML. The objects that are serialized are the same objects that are created when you construct the
ProgramCallDocument from a source file as described above.

Using serialized PCML files gives you better performance because the IBM XML parser is not needed at run-time to process
the PCML tags.

The PCML can be serialized using either of the following methods:

From the command line:

 java com.ibm.as400.data.ProgramCallDocument -serialize mypcml

This method is helpful for having batch processes to build your application.

●

From within a Java program:

 ProgramCallDocument pcmlDoc; // Initialized elsewhere
 pcmlDoc.serialize();

●

If your PCML is in a source file named myDoc.pcml, the result of serialization is a file named myDoc.pcml.ser.

PCML source files vs. serialized PCML files

Consider the following code to construct a ProgramCallDocument:

 AS400 as400 = new AS400();
 ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400,
"com.mycompany.mypackage.myPcmlDoc");

The ProgramCallDocument constructor will first try to find a serialized PCML file named myPcmlDoc.pcml.ser in the
com.mycompany.mypackage package in the Java CLASSPATH. If a serialized PCML file does not exist, the constructor will
then try to find a PCML source file named myPcmlDoc.pcml in the com.mycompany.mypackage package in the Java

CLASSPATH. If a PCML source file does not exist, an exception is thrown.

Qualified names

Your Java application uses ProgramCallDocument.setValue() to set input values for the iSeries program being called. Likewise,
your application uses ProgramCallDocument.getValue() to retrieve output values from the iSeries program.

When accessing values from the ProgramCallDocument class, you must specify the fully qualified name of the document
element or <data> tag. The qualified name is a concatenation of the names of all the containing tags with each name separated
by a period.

For example, given the following PCML source, the qualified name for the "nbrPolygons" item is
"polytest.parm1.nbrPolygons". The qualified name for accessing the "x" value for one of the points in one of the polygons is
"polytest.parm1.polygon.point.x".

If any one of the elements needed to make the qualified name is unnamed, all descendants of that element do not have a
qualified name. Any elements that do not have a qualified name cannot be accessed from your Java program.

<pcml version="1.0">
 <program name="polytest" path="/QSYS.lib/MYLIB.lib/POLYTEST.pgm">
 <!-- Parameter 1 contains a count of polygons along with an array of
polygons -->
 <struct name="parm1" usage="inputoutput">
 <data name="nbrPolygons" type="int" length="4" init="5" />
 <!-- Each polygon contains a count of the number of points along with
an array of points -->
 <struct name="polygon" count="nbrPolygons">
 <data name="nbrPoints" type="int" length="4" init="3" />
 <struct name="point" count="nbrPoints" >
 <data name="x" type="int" length="4" init="100" />
 <data name="y" type="int" length="4" init="200" />
 </struct>
 </struct>
 </struct>
 </program>
</pcml>

Accessing data in arrays

Any <data> or <struct> element can be defined as an array using the count attribute. Or, a <data> or <struct> element can be
contained within another <struct> element that is defined as an array.

Furthermore, a <data> or <struct> element can be in a multidimensional array if more than one containing element has a
count attribute specified.

In order for your application to set or get values defined as an array or defined within an array, you must specify the array index
for each dimension of the array. The array indices are passed as an array of int values. Given the source for the array of
polygons shown above, the following Java code can be used to retrieve the information about the polygons:

 ProgramCallDocument polytest; // Initialized elsewhere
 Integer nbrPolygons, nbrPoints, pointX, pointY;
 nbrPolygons = (Integer) polytest.getValue("polytest.parm1.nbrPolygons");
 System.out.println("Number of polygons:" + nbrPolygons);
 indices = new int[2];
 for (int polygon = 0; polygon < nbrPolygons.intValue(); polygon++)
 {
 indices[0] = polygon;
 nbrPoints = (Integer)
polytest.getValue("polytest.parm1.polygon.nbrPoints", indices);
 System.out.println(" Number of points:" + nbrPoints);

 for (int point = 0; point < nbrPoints.intValue(); point++)
 {
 indices[1] = point;
 pointX = (Integer)
polytest.getValue("polytest.parm1.polygon.point.x", indices);
 pointY = (Integer)
polytest.getValue("polytest.parm1.polygon.point.y", indices);
 System.out.println(" X:" + pointX + " Y:" + pointY);
 }
 }

Debugging

When you use PCML to call programs with complex data structures, it is easy to have errors in your PCML that result in
exceptions from the ProgramCallDocument class. If the errors are related to incorrectly describing offsets and lengths of data,
the exceptions can be difficult to debug.

Use the following method from the Trace class to turn on PCML tracing:

 Trace.setTraceOn(true); // Turn on tracing function.
 Trace.setTracePcmlOn(true); // Turn on PCML tracing.

Note: All public methods in the PcmlMessageLog class, including tracing, are deprecated in V5R2.

The Trace setFileName() method enables you to send the following types of information to specific log files or, by default, to
System.out:

A dump of the hexadecimal data being transferred between the Java application and the iSeries program. This shows
the program input parameters after character data is converted to EBCDIC and integers are converted to big-endian. It
also shows the output parameters before they are converted to the Java environment.

The data is shown in a typical hexadecimal dump format with hexadecimal digits on the left and a character
interpretation on the right. The following is an example of this dump format:

qgyolobj[6]
Offset : 0....... 4....... 8....... C....... 0....... 4....... 8.......
C....... 0...4...8...C...0...4...8...C...
 0 : 5CE4E2D9 D7D9C640 4040
**USRPRF *

In the above example, the dump shows the seventh parameter has 10 bytes of data set to "*USRPRF ".

●

For output parameters, following the hexadecimal dump is a description of how the data has been interpreted for the
document.

/QSYS.lib/QGY.lib/QGYOLOBJ.pgm[2]
Offset : 0....... 4....... 8....... C....... 0....... 4....... 8.......
C....... 0...4...8...C...0...4...8...C...
 0 : 0000000A 0000000A 00000001 00000068 D7F0F9F9 F0F1F1F5 F1F4F2F6
F2F5F400 *................P09901151426254.*
 20 : 00000410 00000001 00000000 00000000 00000000 00000000 00000000
00000000 *................................*
 40 : 00000000 00000000 00000000 00000000
*................ *
Reading data -- Offset: 0 Length: 4 Name: "qgyolobj.listInfo.totalRcds"
Byte data: 0000000A
Reading data -- Offset: 4 Length: 4 Name:
"qgyolobj.listInfo.rcdsReturned" Byte data: 0000000A
Reading data -- Offset: 8 Length: 4 Name: "qgyolobj.listInfo.rqsHandle"
Byte data: 00000001
Reading data -- Offset: c Length: 4 Name: "qgyolobj.listInfo.rcdLength"
Byte data: 00000068
Reading data -- Offset: 10 Length: 1 Name:
"qgyolobj.listInfo.infoComplete" Byte data: D7

●

Reading data -- Offset: 11 Length: 7 Name:
"qgyolobj.listInfo.dateCreated" Byte data: F0F9F9F0F1F1F5
Reading data -- Offset: 18 Length: 6 Name:
"qgyolobj.listInfo.timeCreated" Byte data: F1F4F2F6F2F5
Reading data -- Offset: 1e Length: 1 Name: "qgyolobj.listInfo.listStatus"
Byte data: F4
Reading data -- Offset: 1f Length: 1 Name: "qgyolobj.listInfo.[8]" Byte
data: 00
Reading data -- Offset: 20 Length: 4 Name:
"qgyolobj.listInfo.lengthOfInfo" Byte data: 00000410
Reading data -- Offset: 24 Length: 4 Name:
"qgyolobj.listInfo.firstRecord" Byte data: 00000001
Reading data -- Offset: 28 Length: 40 Name: "qgyolobj.listInfo.[11]"
Byte data:
00

The above messages can be very helpful in diagnosing cases where the output data coming from the iSeries program
does not match the PCML source. This can easily occur when you are using dynamic lengths and offsets.

PCML syntax
PCML consists of the following tags, each of which has its own attribute tags:

The program tag begins and ends code that describes one program●

The struct tag defines a named structure which can be specified as an argument to a program or as a
field within another named structure. A structure tag contains a data or a structure tag for each field in
the structure.

●

The data tag defines a field within a program or structure.●

In the following example the PCML syntax describes one program with one category of data and some isolated
data.

<program>

 <struct>
 <data> </data>
 </struct>

 <data> </data>

</program>

PCML program tag
The PCML program tag can be expanded with the following elements:

<program name="name"
 [entrypoint="entry-point-name"]
 [epccsid="ccsid"]

 [path="path-name"]
 [parseorder="name-list"]
 [returnvalue="{ void | integer }"]
 [threadsafe="{ true | false }"]>
</program>

The following table lists the program tag attributes. Each entry includes the attribute name, the possible valid
values, and a description of the attribute.

Attribute Value Description

entrypoint= entry-point-name Specifies the name of the entry point within a service
program object that is the target of this program call.

epccsid= ccsid Specifies the CCSID of the entry point within a service
program. For more information, see the service program
entry notes in the ServiceProgramCall javadoc.

name= name Specifies the name of the program.

path= path-name Specifies the path to the program object.
The default value is to assume the program is in the QSYS
library.

The path must be a valid IFS path name to a *PGM or
*SRVPGM object. If a *SRVPGM object is called, the
entrypoint attribute must be specified to indicate the name of
the entrypoint to be called.

If the entrypoint attribute is not specified, the default value
for this attribute is assumed to be a *PGM object from the
QSYS library. If the entrypoint attribute is specified, the
default value for this attribute is assumed to be a *SRVPGM
object in the QSYS library.

The path name should be specified as all uppercase
characters.

Do not use the path attribute when the application needs to
set the path at run time, for example, when a user specifies
what library is used for the install. In this case, use the
ProgramCallDocument.setPath() method.

parseorder= name-list Specifies the order in which output parameters will be
processed. The value specified is a blank separated list of
parameter names in the order in which the parameters are to
be processed. The names in the list must be identical to the
names specified on the name attribute of tags belonging to
the <program>. The default value is to process output
parameters in the order the tags appear in the document.

Some programs return information in one parameter that
describes information in a previous parameter. For example,
assume a program returns an array of structures in the first
parameter and the number of entries in the array in the
second parameter. In this case, the second parameter must be
processed in order for the ProgramCallDocument to
determine the number of structures to process in the first
parameter.

returnvalue= void
The program does not return a
value.

integer
The program returns a 4-byte
signed integer.

Specifies the type of value, if any, that is returned from a
service program call. This attribute is not allowed for *PGM
object calls.

threadsafe= true
The program is considered to be
thread-safe.

false
The program is not thread-safe.

When you call a Java program and an iSeries program that
are on the same server, use this property to specify whether
you want to call the iSeries program in the same job and on
the same thread as the Java program. If you know your
program is thread-safe, setting the property to true results in
better performance.

To keep the environment safe, the default is to call programs
in separate server jobs. The default value is false.

PCML struct tag
The PCML struct tag can be expanded with the following elements:

<struct name="name"
 [count="{number | data-name }"]
 [maxvrm="version-string"]
 [minvrm="version-string"]
 [offset="{number | data-name }"]
 [offsetfrom="{number | data-name | struct-name }"]
 [outputsize="{number | data-name }"]
 [usage="{ inherit | input | output | inputoutput }"]>
</struct>

The following table lists the struct tag attributes. Each entry includes the attribute name, the possible valid values,
and a description of the attribute.

Attribute Value Description

name= name Specifies the name of the <struct>
element

count= number
where number defines a fixed, never-changing sized array.

data-name
where data-name defines the name of a <data> element
within the PCML document that will contain, at runtime,
the number of elements in the array. The data-name
specified can be a fully qualified name or a name that is
relative to the current element. In either case, the name
must reference a <data> element that is defined with
type="int". See Resolving Relative Names for more
information on how relative names are resolved.

Specifies that the element is an array
and identifies the number of entries
in the array.

If this attribute is omitted, the
element is not defined as an array,
although it may be contained within
another element that is defined as an
array.

maxvrm= version-string Specifies the highest version of
OS/400 on which the element exists.
If the version of OS/400 is greater
than the version specified on the
attribute, the element and its
children, if any exist, will not be
processed during a call to a program.
The maxvrm element is helpful for
defining program interfaces which
differ between releases of OS/400.

The syntax of the version string must
be "VvRrMm," where the capitals
letters "V," "R," and "M" are literal
characters and "v," "r," and "m" are
one or more digits representing the
version, release and modification
level, respectively. The value for "v"
must be from 1 to 255 inclusively.
The value for "r" and "m" must be
from 0 to 255, inclusively.

minvrm= version-string Specifies the lowest version of
OS/400 on which this element exists.
If the version of OS/400 is less than
the version specified on this
attribute, this element and its
children, if any exist, will not be
processed during a call to a program.
This attribute is helpful for defining
program interfaces which differ
between releases of OS/400.

The syntax of the version string must
be "VvRrMm," where the capitals
letters "V," "R," and "M" are literal
characters and "v," "r," and "m" are
one or more digits representing the
version, release and modification
level, respectively. The value for "v"
must be from 1 to 255, inclusively.
The value for "r" and "m" must be
from 0 to 255, inclusively.

offset= number
where number defines a fixed, never-changing offset.

data-name
where data-name defines the name of a <data> element
within the PCML document that will contain, at runtime,
the offset to the element. The data-name specified can be
a fully qualified name or a name that is relative to the
current element. In either case, the name must reference a
<data> element that is defined with type="int". See
Resolving Relative Names for more information on how
relative names are resolved.

Specifies the offset to the <struct>
element within an output parameter.

Some programs return information
with a fixed structure followed by
one or more variable length fields or
structures. In this case, the location
of a variable length element is
usually specified as an offset or
displacement within the parameter.
The offset attribute is used to
describe the offset to this <struct>
element.

Offset is used in conjunction with
the offsetfrom attribute. If the
offsetfrom attribute is not specified,
the base location for the offset
specified on the offset attribute is the
parent of the element. See Specifying
Offsets for more information on how
to use the offset and offsetfrom
attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do
not control the offset or displacement
of input data.

If the attribute is omitted, the
location of the data for the element is
immediately following the preceding
element in the parameter, if any.

offsetfrom= number
where number defines a fixed, never-changing base
location. A number attribute is most typically used to
specify number="0" indicating that the offset is an
absolute offset from the beginning of the parameter.

data-name
where data-name defines the name of a <data> element to
be used as a base location for the offset. The element name
specified must be the parent or an ancestor of this element.
The value from the offset attribute will be relative to the
location of the element specified on this attribute. The
data-name specified can be a fully qualified name or a
name that is relative to the current element. In either case,
the name must reference an ancestor of this element. See
Resolving Relative Names for more information on how
relative names are resolved.

struct-name
where struct-name defines the name of a <struct> element
to be used as a base location for the offset. The element
name specified must be the parent or an ancestor of this
element. The value from the offset attribute will be relative
to the location of the element specified on this attribute.
The struct-name specified can be a fully qualified name or
a name that is relative to the current element. In either case,
the name must reference an ancestor of this element. See
Resolving Relative Names for more information on how
relative names are resolved.

Specifies the base location from
which the offset attribute is relative.

If the offsetfrom attribute is not
specified, the base location for the
offset specified on the offset attribute
is the parent of this element. See
Specifying Offsets for more
information on how to use the offset
and offsetfrom attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do
not control the offset or displacement
of input data.

outputsize= number
where number defines a fixed,never-changing number of
bytes to reserve.

data-name
where data-name defines the name of a <data> element
within the PCML document that will contain, at runtime,
the number of bytes to reserve for output data. The
data-name specified can be a fully qualified name or a
name that is relative to the current element. In either case,
the name must reference a <data> element that is defined
with type="int". See Resolving Relative Names for more
information on how relative names are resolved.

Specifies the number of bytes to
reserve for output data for the
element. For output parameters
which are variable in length, the
outputsize attribute is needed to
specify how many bytes should be
reserved for data to be returned from
the server program. Outputsize can
be specified on all variable length
fields and variable sized arrays, or it
can be specified for an entire
parameter that contains one or more
variable length fields.

Outputsize is not necessary and
should not be specified for fixed-size
output parameters.

The value specified on the attribute
is used as the total size for the
element including all children of the
element. Therefore, the outputsize
attribute is ignored on any children
or descendants of the element.

If the attribute is omitted, the number
of bytes to reserve for output data is

determined at runtime by adding the
number of bytes to reserve for all of
the children of the <struct> element.

usage= inherit Usage is inherited from the parent
element. If the structure does not
have a parent, usage is assumed to be
inputoutput.

input

The structure is an input value to the
host program. For character and
numeric types, the appropriate
conversion is performed.

output The structure is an output value from
the host program. For character and
numeric types, the appropriate
conversion is performed.

inputoutput The structure is both and input and
an output value.

Specifying offsets

Some programs return information with a fixed structure followed by one or more variable length fields or
structures. In this case, the location of a variable length element is usually specified as an offset or displacement
within the parameter.

An offset is the distance in bytes from a the beginning of the parameters to the beginning of a field or structure. A
displacement is the distance in bytes from the beginning of one structure to the beginning of another structure.

For offsets, since the distance is from the beginning of the parameter, you should specify offsetfrom="0". The
following is an example of an offset from the beginning of the parameter:

<pcml version="1.0">
 <program name="myprog" path="/QSYS.lib/MYLIB.lib/MYPROG.pgm">
 <!-- receiver variable contains a path -->
 <struct name="receiver" usage="output" outputsize="2048">
 <data name="pathType" type="int" length="4" />
 <data name="offsetToPathName" type="int" length="4" />
 <data name="lengthOfPathName" type="int" length="4" />
 <data name="pathName" type="char" length="lengthOfPathName"
 offset="offsetToPathName" offsetfrom="0"/>
 </struct>
 </program>
</pcml>

For displacements, since the distance is from the beginning of another structure, you specify the name of the
structure to which the offset is relative. The following is an example of an displacement from the beginning of a
named structure:

<pcml ="1.0">
 <program name="myprog" path="/QSYS.lib/MYLIB.lib/MYPROG.pgm">
 <!-- receiver variable contains an object -->
 <struct name="receiver" usage="output" >
 <data name="objectName" type="char" length="10" />
 <data name="libraryName" type="char" length="10" />

 <data name="objectType" type="char" length="10" />
 <struct name="pathInfo" usage="output" outputsize="2048" >
 <data name="pathType" type="int" length="4" />
 <data name="offsetToPathName" type="int" length="4" />
 <data name="lengthOfPathName" type="int" length="4" />
 <data name="pathName" type="char" length="lengthOfPathName"
 offset="offsetToPathName" offsetfrom="pathInfo"/>
 </struct>
 </struct>
 </program>
</pcml>

PCML data tag
The PCML data tag can have the following attributes. Attributes enclosed in brackets, [], indicate that the
attribute is optional. If you specify an optional attribute, do not include the brackets in your source. Some
attribute values are shown as a list of choices enclosed in braces, {}, with possible choices separated by vertical
bars, |. When you specify one of these attributes, do not include the braces in your source and only specify one of
the choices shown.

<data type="{ char | int | packed | zoned | float | byte | struct }"
 [bidistringtype="{ ST4 | ST5 | ST6 | ST7 | ST8 | ST9 | ST10 | ST11 |
DEFAULT }"]
 [ccsid="{ number | data-name }"]
 [chartype="{ onebyte | twobyte }"]

 [count="{ number | data-name }"]
 [init="string"]
 [length="{ number | data-name }"]
 [maxvrm="version-string"]
 [minvrm="version-string"]
 [name="name"]
 [offset="{ number | data-name }"]
 [offsetfrom="{ number | data-name | struct-name }"]
 [outputsize="{ number | data-name | struct-name }"]
 [passby= "{ reference | value }"]
 [precision="number"]
 [struct="struct-name"]
 [trim="{ right | left | both | none }"]

 [usage="{ inherit | input | output | inputoutput }"]>
</data>

The following table lists the data tag attributes. Each entry includes the attribute name, the possible valid values,
and a description of the attribute.

Attribute Value Description

type= char
where char indicates a character value. A char
data value is returned as a java.lang.String. For
more information, see the char values for length.

int
where int is an integer value. An int data value is
returned as a java.lang.Long. For more
information, see the int values for length and
precision.

packed
where packed is a packed decimal value. A
packed data value is returned as a
java.math.BigDecimal. For more information,
see the packed values for length and precision.

zoned
where zoned is a zoned decimal value. A zoned
data value is returned as a
java.math.BigDecimal. For more information,
see the zoned values for length and precision.

Indicates the type of data being used
(character, integer, packed, zoned, floating
point, byte, or struct).

Values for the length and precision
attributes are different for different data
types. For more information, see the Values
for length and precision.

float
where float is a floating point value. The length
attribute specifies the number of bytes, "4" or
"8". A 4-byte integer is returned as a
java.lang.Float. An 8-byte integer is returned as
a java.lang.Double. For more information, see
the float values for length.

byte
where byte is a byte value. No conversion is
performed on the data. A byte data value is
returned as an array of byte values (byte[]). For
more information, see the byte values for length.

struct
where struct specifies the name of the <struct>
element. A struct allows you to define a
structure once and reuse it multiple times within
the document. When you type="struct", it is as
if the structure specified appeared at this
location in the document. A struct does not
allow for a length value and has no value for
precision.

bidistringtype= DEFAULT
where DEFAULT is the default string type for
non-bidirectional data (LTR).

ST4
where ST4 is String Type 4.

ST5
where ST5 is String Type 5.

ST6
where ST6 is String Type 6.

ST7
where ST7 is String Type 7.

ST8
where ST8 is String Type 8.

ST9
where ST9 is String Type 9.

ST10
where ST10 is String Type 10.

ST11
where ST11 is String Type 11.

Specifies the bidirectional string type for
<data> elements with type="char". If this
attribute is omitted, string type for this
element is implied by the CCSID (whether
explicitly specified or the default CCSID of
the host environment).

String types are defined in the javadoc for
the BidiStringType class.

ccsid= number
where number defines a fixed, never-changing
CCSID.

data-name
where data-name defines the name that will
contain, at runtime, the CCSID of the character
data. The data-name specified can be a fully
qualified name or a name that is relative to the
current element. In either case, the name must
reference a <data> element that is defined with
type="int". See Resolving Relative Names for
more information on how relative names are
resolved.

Specifies the host Coded Character Set ID
(CCSID) for character data for the <data>
element. The ccsid attribute can be
specified only for <data> elements with
type="char".

If this attribute is omitted, character data for
this element is assumed to be in the default
CCSID of the host environment.

chartype= onebyte
where onebyte specifies the size of each
character.

twobyte
where twobyte specifies the size of each
character.

When using chartype, the length="number"
attribute specifies the number of characters, not
the number of bytes.

Specifies the size of each character.

count= number
where number defines a fixed, never-changing
number of elements in a sized array.

data-name
where data-name defines the name of a <data>
element within the PCML document that will
contain, at runtime, the number of elements in
the array. The data-name specified can be a
fully qualified name or a name that is relative to
the current element. In either case, the name
must reference a <data> element that is defined
with type="int". See Resolving Relative Names
for more information on how relative names are
resolved.

Specifies that the element is an array and
identifies the number of entries in the array.

If the count attribute is omitted, the element
is not defined as an array, although it may
be contained within another element that is
defined as an array.

init= string Specifies an initial value for the <data>
element. The init value is used if an initial
value is not explicitly set by the application
program when <data> elements with
usage="input" or usage="inputoutput" are
used.

The initial value specified is used to
initialize scalar values. If the element is
defined as an array or is contained within a
structure defined as an array, the initial
value specified is used as an initial value for
all entries in the array.

length= number
where number defines the number of bytes that
the data requires. However, when using the
chartype attribute, number specifies the number
of characters, not the number of bytes.

data-name
where data-name defines the name of a <data>
element within the PCML document that will
contain, at runtime, the length. A data-name can
be specified only for <data> elements with
type="char" or type="byte". The data-name
specified can be a fully qualified name or a
name that is relative to the current element. In
either case, the name must reference a <data>
element that is defined with type="int". See
Resolving Relative Names for more information
on how relative names are resolved.

Specifies the length of the data element.
Usage of this attribute varies depending on
the data type. For more information, see the
Values for length and precision.

maxvrm= version-string Specifies the highest version of iSeries on
which this element exists. If the iSeries
version is greater than the version specified
on this attribute, this element and its
children, if any exist, will not be processed
during a call to a program. This attribute is
helpful for defining program interfaces
which differ between releases of iSeries.

The syntax of the version string must be
"VvRrMm", where the capitals letters "V,"
"R," and "M" are literal characters and "v,"
"r," and "m" are one or more digits
representing the version, release and
modification level, respectively. The value
for "v" must be from 1 to 255 inclusively.
The value for "r" and "m" must be from 0 to
255, inclusively.

minvrm= version-string Specifies the lowest version of iSeries on
which this element exists. If the iSeries
version is less than the version specified on
this attribute, this element and its children,
if any exist, will not be processed during a
call to a program. This attribute is helpful
for defining program interfaces which differ
between releases of iSeries.

The syntax of the version string must be
"VvRrMm," where the capitals letters "V,"
"R," and "M" are literal characters and "v,"
"r," and "m" are one or more digits
representing the version, release and
modification level, respectively. The value
for "v" must be from 1 to 255 inclusively.
The value for "r" and "m" must be from 0 to
255, inclusively.

name= name Specifies the name of the <data> element.

offset= number
where number defines a fixed, never-changing
offset.

data-name
where data-name defines the name of a <data>
element within the PCML document that will
contain, at runtime, the offset to this element.
The data-name specified can be a fully qualified
name or a name that is relative to the current
element. In either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative Names for
more information on how relative names are
resolved.

Specifies the offset to the <data> element
within an output parameter.

Some programs return information with a
fixed structure followed by one or more
variable length fields or structures. In this
case, the location of a variable length
element is usually specified as an offset or
displacement within the parameter.

An offset attribute is used in conjunction
with the offsetfrom attribute. If the
offsetfrom attribute is not specified, the
base location for the offset specified on the
offset attribute is the parent of this element.
See Specifying Offsets for more
information on how to use the offset and
offsetfrom attributes.

The offset and offsetfrom attributes are
only used to process output data from a
program. These attributes do not control the
offset or displacement of input data.

If this attribute is omitted, the location of
the data for this element is immediately
following the preceding element in the
parameter, if any.

offsetfrom= number
where number defines a fixed, never-changing
base location. Number is most typically used to
specify number="0" indicating that the offset is
an absolute offset from the beginning of the
parameter.

data-name
where data-name defines the name of a <data>
element used as a base location for the offset.
The element name specified must be the parent
or an ancestor of this element. The value from
the offset attribute will be relative to the
location of the element specified on this
attribute. The data-name specified can be a fully
qualified name or a name that is relative to the
current element. In either case, the name must
reference an ancestor of this element. See
Resolving Relative Names for more information
on how relative names are resolved.

struct-name
where struct-name defines the name of a
<struct> element used as a base location for the
offset. The element name specified must be the
parent or an ancestor of this element. The value
from the offset attribute will be relative to the
location of the element specified on this

Specifies the base location from which the
offset attribute is relative.

If the offsetfrom attribute is not specified,
the base location for the offset specified on
the offset attribute is the parent of this
element. See Specifying Offsets for more
information on how to use the offset and
offsetfrom attributes.

The offset and offsetfrom attributes are
only used to process output data from a
program. These attributes do not control the
offset or displacement of input data.

attribute. The struct-name specified can be a
fully qualified name or a name that is relative to
the current element. In either case, the name
must reference an ancestor of this element. See
Resolving Relative Names for more information
on how relative names are resolved.

outputsize= number
where a number defines a fixed, never-changing
number of bytes to reserve.

data-name
where data-name defines the name of a <data>
element within the PCML document that will
contain, at runtime, the number of bytes to
reserve for output data. The data-name specified
can be a fully qualified name or a name that is
relative to the current element. In either case, the
name must reference a <data> element that is
defined with type="int". See Resolving Relative
Names for more information on how relative
names are resolved.

Specifies the number of bytes to reserve for
output data for the element. For output
parameters which are variable in length, the
outputsize attribute is needed to specify
how many bytes should be reserved for data
to be returned from the iSeries program. An
outputsize attribute can be specified on all
variable length fields and variable sized
arrays, or it can be specified for an entire
parameter that contains one or more
variable length fields.

Outputsize is not necessary and should not
be specified for fixed-size output
parameters.

The value specified on this attribute is used
as the total size for the element including all
the children of the element. Therefore, the
outputsize attribute is ignored on any
children or descendants of the element.

If outputsize is omitted, the number of
bytes to reserve for output data is
determined at runtime by adding the
number of bytes to reserve for all of the
children of the <struct> element.

passby= reference
where reference indicates that the parameter will
be passed by reference. When the program is
called, the program will be passed a pointer to
the parameter value.

value
where value indicates an integer value. This
value is allowed only when
type= "int" and length="4" is specified.

Specifies whether the parameter is passed
by reference or passed by value. This
attribute is allowed only when this element
is a child of a <program> element defining
a service program call.

precision= number Specifies the number of bytes of precision
for some numeric data types. For more
information, see the Values for length and
precision.

struct= name Specifies the name of a <struct> element
for the <data> element. A struct attribute
can be specified only for <data> elements
with type="struct".

trim= right
where right is the default behavior that means to
trim trailing white spaces.

left
where left means to trim preceding white spaces.

both
where both means to trim both preceding and
trailing white spaces.

none
where none means that white spaces are not
trimmed.

Specifies how to trim white space from
character data.

usage= inherit Usage is inherited from the parent element.
If the structure does not have a parent,
usage is assumed to be inputoutput.

input Defines an input value to the host program.
For character and numeric types, the
appropriate conversion is performed.

output Defines an output value from the host
program. For character and numeric types,
the appropriate conversion is performed.

inputoutput Defines both and input and an output value.

Specifying offsets

Some programs return information with a fixed structure followed by one or more variable length fields or
structures. In this case, the location of a variable length element is usually specified as an offset or displacement
within the parameter.

An offset is the distance in bytes from the beginning of the parameters to the beginnings of a field or structure. A
displacement is the distance in bytes from the beginning of one structure to the beginning of another structure.

For offsets, since the distance is from the beginning of the parameter, you should specify offsetfrom="0". The
following is an example of an offset from the beginning of the parameter:

<pcml version="1.0">
 <program name="myprog" path="/QSYS.lib/MYLIB.lib/MYPROG.pgm">
 <!-- receiver variable contains a path -->
 <struct name="receiver" usage="output" outputsize="2048">
 <data name="pathType" type="int" length="4" />
 <data name="offsetToPathName" type="int" length="4" />
 <data name="lengthOfPathName" type="int" length="4" />
 <data name="pathName" type="char" length="lengthOfPathName"
 offset="offsetToPathName" offsetfrom="0"/>
 </struct>
 </program>
</pcml>

For displacements, since the distance is from the beginning of another structure, you specify the name of the
structure to which the offset is relative. The following is an example of an displacement from the beginning of a
named structure:

<pcml version="1.0">
 <program name="myprog" path="/QSYS.lib/MYLIB.lib/MYPROG.pgm">
 <!-- receiver variable contains an object -->
 <struct name="receiver" usage="output" >
 <data name="objectName" type="char" length="10" />
 <data name="libraryName" type="char" length="10" />
 <data name="objectType" type="char" length="10" />
 <struct name="pathInfo" usage="output" outputsize="2048" >
 <data name="pathType" type="int" length="4" />
 <data name="offsetToPathName" type="int" length="4" />
 <data name="lengthOfPathName" type="int" length="4" />
 <data name="pathName" type="char" length="lengthOfPathName"
 offset="offsetToPathName" offsetfrom="pathInfo"/>
 </struct>
 </struct>
 </program>
</pcml>

Values for length and precision

Values for the length and precision attributes are different for different data types. The following table lists each
data type with a description of the possible values for length and precision.

Data type Length Precision

type="char" The number of
bytes of data for this
element, which is
not necessarily the
number of
characters. You
must specify either
a literal number or a
data-name.

Not applicable

type="int" The number of
bytes of data for this
element: 2, 4, or 8.
You must specify a
literal number.

Indicates the number of bits of precision and whether the
integer is signed or unsigned:

For length="2"

Use precision="15" for a signed 2-byte
integer. This is the default value

❍

Use precision="16" for an unsigned
2-byte integer

❍

●

For length="4"

Use precision="31" for a signed 4-byte
integer

❍

Use precision="32" for an unsigned
4-byte integer

❍

●

For length="8" use precision="63" for a signed
8-byte integer

●

type="packed" or "zoned" The number of
numeric digits of
data for this
element. You must
specify a literal
number.

The number of decimal digits for the element. This number
must be greater than or equal to zero and less than or equal
to the total number of digits specified on the length
attribute.

type="float" The number of
bytes, 4 or 8, of
data for this
element. You must
specify a literal
number.

Not applicable

type="byte" The number of
bytes of data for this
element. You must
specify either a
literal number or
data-name.

Not applicable

type="struct" Not allowed. Not applicable

Resolving relative names

Several attributes allow you to specify the name of another element, or tag, within the document as the attribute
value. The name specified can be a name that is relative to the current tag.

Names are resolved by seeing if the name can be resolved as a child or descendent of the tag containing the
current tag. If the name cannot be resolved at this level, the search continues with the next highest containing tag.
This resolution must eventually result in a match of a tag that is contained by either the <pcml> tag or the
<rfml> tag, in which case the name is considered to be an absolute name, not a relative name.

Here is an example using PCML:

<pcml version="1.0">
 <program name="polytest" path="/QSYS.lib/MYLIB.lib/POLYTEST.pgm">
 <!-- Parameter 1 contains a count of polygons along with an array of
polygons -->
 <struct name="parm1" usage="inputoutput">
 <data name="nbrPolygons" type="int" length="4" init="5" />
 <!-- Each polygon contains a count of the number of points along with
an array of points -->
 <struct name="polygon" count="nbrPolygons">
 <data name="nbrPoints" type="int" length="4" init="3" />
 <struct name="point" count="nbrPoints" >
 <data name="x" type="int" length="4" init="100" />
 <data name="y" type="int" length="4" init="200" />
 </struct>
 </struct>
 </struct>
 </program>
</pcml>

Here is an example using RFML:

<rfml version="4.0">
 <struct name="polygon">
 <!-- Each polygon contains a count of the number of points along with an
array of points. -->
 <data name="nbrPoints" type="int" length="4" init="3" />
 <data name="point" type="struct" struct="point" count="nbrPoints" />
 </struct>
 <struct name="point" >
 <data name="x" type="int" length="4" init="100" />
 <data name="y" type="int" length="4" init="200" />
 </struct>
 <recordformat name="polytest">
 <!-- This format contains a count of polygons along with an array of
polygons -->
 <data name="nbrPolygons" type="int" length="4" init="5" />
 <data name="polygon" type="struct" struct="polygon" count="nbrPolygons"
/>
 </recordformat>
</rfml>

Proxy Support
IBM Toolbox for Java includes proxy support for some classes. Proxy support is the processing that IBM Toolbox for
Java needs to carry out a task on a Java virtual machine (JVM) when the application is on a different JVM. Proxy
support includes using the Secure Sockets Layer (SSL) protocol to encrypt data.

The proxy classes reside in jt400Proxy.jar, which ships with the rest of the IBM Toolbox for Java. The proxy classes,
like the other classes in the IBM Toolbox for Java, comprise a set of platform independent Java classes that can run on
any computer with a Java virtual machine. The proxy classes dispatch all method calls to a server application, or proxy
server. The full IBM Toolbox for Java classes are on the proxy server. When a client uses a proxy class, the request is
transferred to the proxy server which creates and administers the real IBM Toolbox for Java objects.

Figure 1 shows how the standard and proxy client connect to the server. The proxy server can be the iSeries that
contains the data.

Figure 1: How a standard client and a proxy client connect to a server

An application that uses proxy support performs more slowly than if it uses standard IBM Toolbox for Java classes due
to the extra communication needed to support the smaller proxy classes. Applications that make fewer method calls
have less performance degradation.

Before proxy support, the classes containing the public interface, all the classes needed to process a request, and the
application itself ran on the same JVM. When using proxy support, the public interface must be with the application,
but classes for processing requests can run on a different JVM. Proxy support does not change the public interface. The
same program can run with either the proxy version of IBM Toolbox for Java or the standard version.

Using the jt400Proxy.jar file

The goal of the multiple-tier, proxy scenario is to make the public interface jar file as small as possible, so that
downloading it from an applet takes less time. When you use the proxy classes, you don't need to install the entire IBM
Toolbox for Java on the client. Instead, use AS400JarMaker on the jt400Proxy.jar file to include only the required
components, which makes the jar file as small as possible.

Figure 2 compares the size of the proxy jar files with the standard jar files:

Figure 2: Size comparison of proxy jar files and standard jar files

An additional benefit is that proxy support requires you have to have fewer ports open through a firewall. With standard
IBM Toolbox for Java, you must have multiple ports open. This is because each IBM Toolbox for Java service uses a
different port to communicate with the server. For example, Command call uses a different port than JDBC, which uses
a different port than print, and so on. You must allow each of these ports through the firewall. However, when using
proxy support, all the data flows through the same port.

Standard proxy and HTTP tunneling

Two options are available for running via a proxy: standard proxy and HTTP tunneling:

Standard proxy is where the proxy client and proxy server communicate by using a socket over a port. The
default port is 3470. Change the default port by using the setPort() method on the ProxyServer class, or by
using the -port option when starting the proxy server. For example:

 java com.ibm.as400.access.ProxyServer -port 1234

●

HTTP tunneling is where the proxy client and proxy server communicate by way of the HTTP server. The IBM
Toolbox for Java provides a servlet that handles the proxy request. The proxy client calls the servlet by way of
the HTTP server. The advantage of tunneling is that you do not have to open an additional port through the
firewalls, because communication is by way of the HTTP port. The disadvantage of tunneling is that it is
slower than standard proxy.

●

IBM Toolbox for Java uses the proxy server name to determine if standard proxy or tunneling proxy is being used:

For standard proxy, just use the server name. For example:

 com.ibm.as400.access.AS400.proxyServer=myServer

●

For tunneling, use a URL to force the proxy client to use tunneling. For example:

 com.ibm.as400.access.AS400.proxyServer=http://myServer

●

When running standard proxy, a socket connection exists between the client and server. If that connection fails, the
server cleans up resources associated with that client.

When using HTTP tunneling, using the HTTP protocol makes proxy connectionless. That is, a new connection is made
for each data flow. Because the protocol is connectionless, the server does not know if the client application is no
longer active. Consequently, the server does not know when to clean up resources. The tunneling server solves this
problem by using a thread to clean up resources at a predetermined interval (which is based on a timeout value).

At the end of the predetermined interval, the thread runs and cleans up resources that have not been used lately. Two
system properties govern the thread:

com.ibm.as400.access.TunnelProxyServer.clientCleanupInterval is how often, in seconds, the cleanup thread
runs. The default is every two hours.

●

com.ibm.as400.access.TunnelProxyServer.clientLifetime is how long, in seconds, a resource can be idle before
it is cleaned up. The default is 30 minutes.

●

Using proxy server

To use the proxy server implementation of the IBM Toolbox for Java classes, complete the following steps:

Run AS400ToolboxJarMaker on jt400Proxy.jar to discard classes that you do not need. This step is optional
but recommended.

1.

Determine how to get jt400Proxy.jar to the client.

For Java programs, use the AS400ToolboxInstaller class or another method to get it to the client.●

For Java applets, you may be able to download the jar file from the HTML server.●

2.

Determine what server you will use for the proxy server.

For Java applications, the proxy server can be any computer.●

For Java applets, the proxy server must be running on the same computer as the HTTP server.●

3.

Ensure that you have put jt400.jar in the CLASSPATH on the server.4.

Start the proxy server or use the proxy servlet:

For standard proxy, start the proxy server by using the following command:

 java com.ibm.as400.access.ProxyServer

●

For tunneling proxy, configure your HTTP server to use the proxy servlet. The servlet class name is
com.ibm.as400.access.TunnelProxyServer and it is contained in jt400.jar.

●

5.

On the client, set a system property to identify the proxy server. IBM Toolbox for Java uses this system
property to determine if standard proxy or tunneling proxy is being used.

For standard proxy, the property value is the name of the machine that runs the proxy server. For
example:

 com.ibm.as400.access.AS400.proxyServer=myServer

●

For tunneling proxy, use a URL to force the proxy client to use tunneling. For example:●

6.

 com.ibm.as400.access.AS400.proxyServer=http://myServer

Run the client program.7.

When you want to work with both the proxy classes and classes not in jt400Proxy.jar, you can refer to jt400.jar instead
of jt400Proxy.jar. jt400Proxy.jar is a subset of the jt400.jar and, therefore, all of the proxy classes are contained in the
jt400.jar file.

Using SSL

When using proxy, three options are available for encrypting data as it flows from the proxy client to the target iSeries
server. SSL algorithms are used to encrypt data.

The data flows between the proxy client and proxy server can be encrypted.1.

The data flows between the proxy server and target iSeries server can be encrypted.2.

Both one and two. The data flow between proxy client and proxy server, and the flow between the proxy server
and the target iSeries can be encrypted.

3.

See Secure Sockets Layer for more information.

Examples: Using proxy servers

We have provided three specific examples for using a proxy server with the steps listed above.

Running a Java application using proxy support●

Running a Java applet using proxy support●

Running a Java application using tunneling proxy support.●

Classes enabled to work with proxy server

Some IBM Toolbox for Java classes are enabled to work with the proxy server application. These include the
following:

JDBC●

Record-level access●

Integrated file system●

Print●

Data Queues●

Command Call●

Program Call●

Service Program Call●

User space●

Data area●

AS400 class●

SecureAS400 class●

Other classes are not supported at this time by jt400Proxy. Also, integrated file system permissions are not functional
using only the proxy jar file. However, you can use the JarMaker class to include these classes from the jt400.jar file.

Record Format Markup Language
The Record Format Markup Language (RFML) is an XML extension for specifying record formats. The IBM
Toolbox for Java RFML component enables your Java applications to use RFML documents to specify and
manipulate fields within certain kinds of records.

RFML documents, called RFML source files, represent a useful subset of the data description specification
(DDS) data types defined for physical and logical files on iSeries systems. You can use RFML documents to
manage the information in the following:

File records●

Data queue entries●

User spaces●

Arbitrary data buffers●

Note: For more information about using DDS to describe data attributes, see the DDS Reference.

RFML closely resembles Program Call Markup Language (PCML), another XML extension that is supported by
Toolbox for Java. RFML is neither a subset nor a superset of PCML, but rather a kind of sibling language that
adds a few new elements and attributes and omits others.

PCML provides an XML-oriented alternative to using the ProgramCall and ProgramParameter classes.
Similarly, RFML provides a user-friendly, easily maintainable alternative to the Record, RecordFormat, and
FieldDescription classes.

For more information about RFML, see the following topics:

Requirements
Read about the requirements for using RFML.

RFML example
See how using RFML in your application reduces the amount and sometimes the complexity of
code that you have to write. The example includes a sample RFML source file.

RecordFormatDocument class
Read about how to use the RecordFormatDocument class with other Toolbox for Java classes to
read and write data.

RFML documents and RFML syntax
Learn about RFML documents, called RFML source files, and RFML syntax as defined in the
RFML data type definition.

RFML is only one way to use XML with your server. For more information about using XML with iSeries
servers, see Toolbox for Java XML extensions and Extensible Markup Language (XML).

Requirements for using RFML
The RFML component has the same workstation Java virtual machine requirements as the rest of the IBM
Toolbox for Java.

In addition, in order to parse RFML at run-time, the CLASSPATH for the application must include an XML
parser. The XML parser must extend class org.apache.xerces.parsers.SAXParser. Toolbox for Java includes a
compatible parser, the XML Parser for Java, which is included in the Toolbox for Java x4j400.jar file. For more
information, see Jar files.

Note: RFML has the same parser requirements as PCML. As with PCML, if you preserialize the RFML file,
you do not need to include an XML parser in the application CLASSPATH to run the application.

Example: Using RFML compared to using
Toolbox for Java Record classes
This example illustrates the differences between using RFML and using the Toolbox for Java Record classes.

Using the traditional Record classes, you interweave the data format specifications with the business logic of
your application. Adding, changing, or deleting a field means that you have to edit and recompile your Java code.
However, using RFML isolates the data format specifications into RFML source files that are entirely separate
from the business logic. Accommodating field changes means simply modifying the RFML file, often without
having to change or recompile your Java application.

The example assumes that your application deals with customer records, which you have defined in an RFML
source file and named qcustcdt.rfml. The source file represents the fields that compose each customer record.

The listing below shows how a Java application might interpret a customer record using the Toolbox for Java
Record, RecordFormat, and FieldDescription classes:

// Buffer containing the binary representation of one record of information.
 byte[] bytes;

 // ... Read the record data into the buffer ...

 // Set up a RecordFormat object to represent one customer record.
 RecordFormat recFmt1 = new RecordFormat("cusrec");
 recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(6, 0), "cusnum"));
 recFmt1.addFieldDescription(new CharacterFieldDescription(new
AS400Text(8, 37), "lstnam"));
 recFmt1.addFieldDescription(new CharacterFieldDescription(new
AS400Text(3, 37), "init"));
 recFmt1.addFieldDescription(new CharacterFieldDescription(new
AS400Text(13, 37), "street"));
 recFmt1.addFieldDescription(new CharacterFieldDescription(new
AS400Text(6, 37), "city"));
 recFmt1.addFieldDescription(new CharacterFieldDescription(new
AS400Text(2, 37), "state"));
 recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(5, 0), "zipcod"));
 recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(4, 0), "cdtlmt"));
 recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(1, 0), "chgcod"));
 recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(6, 2), "baldue"));
 recFmt1.addFieldDescription(new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(6, 2), "cdtdue"));

 // Read the byte buffer into the RecordFormatDocument object.
 Record rec1 = new Record(recFmt1, bytes);

 // Get the field values.
 System.out.println("cusnum: " + rec1.getField("cusnum"));
 System.out.println("lstnam: " + rec1.getField("lstnam"));
 System.out.println("init: " + rec1.getField("init"));
 System.out.println("street: " + rec1.getField("street"));

 System.out.println("city: " + rec1.getField("city"));
 System.out.println("state: " + rec1.getField("state"));
 System.out.println("zipcod: " + rec1.getField("zipcod"));
 System.out.println("cdtlmt: " + rec1.getField("cdtlmt"));
 System.out.println("chgcod: " + rec1.getField("chgcod"));
 System.out.println("baldue: " + rec1.getField("baldue"));
 System.out.println("cdtdue: " + rec1.getField("cdtdue"));

By comparison, here is how the same record could be interpreted using RFML.

The Java code to interpret the contents of the customer data record using RFML might look like this:

 // Buffer containing the binary representation of one record of
information.
 byte[] bytes;

 // ... Read the record data into the buffer ...

 // Parse the RFML file into a RecordFormatDocument object.
 // The RFML source file is called qcustcdt.rfml.
 RecordFormatDocument rfml1 = new RecordFormatDocument("qcustcdt");

 // Read the byte buffer into the RecordFormatDocument object.
 rfml1.setValues("cusrec", bytes);

 // Get the field values.
 System.out.println("cusnum: " + rfml1.getValue("cusrec.cusnum"));
 System.out.println("lstnam: " + rfml1.getValue("cusrec.lstnam"));
 System.out.println("init: " + rfml1.getValue("cusrec.init"));
 System.out.println("street: " + rfml1.getValue("cusrec.street"));
 System.out.println("city: " + rfml1.getValue("cusrec.city"));
 System.out.println("state: " + rfml1.getValue("cusrec.state"));
 System.out.println("zipcod: " + rfml1.getValue("cusrec.zipcod"));
 System.out.println("cdtlmt: " + rfml1.getValue("cusrec.cdtlmt"));
 System.out.println("chgcod: " + rfml1.getValue("cusrec.chgcod"));
 System.out.println("baldue: " + rfml1.getValue("cusrec.baldue"));
 System.out.println("cdtdue: " + rfml1.getValue("cusrec.cdtdue"));

Example: RFML source file
This example RFML source file defines the format of customer records as used in the RFML example Using
RFML compared to using Toolbox for Java Record classes. This RFML source file would be a text file named
qcustcdt.rfml.

Note: Read the Code example disclaimer for important legal information.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE rfml SYSTEM "rfml.dtd">

<rfml version="4.0" ccsid="819">

 <recordformat name="cusrec">

 <data name="cusnum" type="zoned" length="6" precision="0" init="0"/>
 <data name="lstnam" type="char" length="8" ccsid="37" init="A"/>
 <data name="init" type="char" length="3" ccsid="37" init="B"/>
 <data name="street" type="char" length="13" ccsid="37" init="C"/>
 <data name="city" type="char" length="6" ccsid="37" init="D"/>
 <data name="state" type="char" length="2" ccsid="37" init="E"/>
 <data name="zipcod" type="zoned" length="5" init="1"/>
 <data name="cdtlmt" type="zoned" length="4" init="2"/>
 <data name="chgcod" type="zoned" length="1" init="3"/>
 <data name="baldue" type="zoned" length="6" precision="2" init="4"/>
 <data name="cdtdue" type="zoned" length="6" precision="2" init="5"/>

 </recordformat>

 <recordformat name="cusrec1">

 <data name="cusnum" type="zoned" length="6" precision="0" init="0"/>
 <data name="lstnam" type="char" length="8" ccsid="37" init="A"/>
 <data name="init" type="char" length="3" ccsid="37" init="B"/>
 <data name="street" type="char" length="13" ccsid="37" init="C"/>
 <data name="city" type="char" length="6" ccsid="37" init="D"/>
 <data name="state" type="char" length="2" ccsid="37" init="E"/>
 <data name="zipcod" type="zoned" length="5" init="1"/>
 <data name="cdtlmt" type="zoned" length="4" init="2"/>
 <data name="chgcod" type="zoned" length="1" init="3"/>
 <data name="baldue" type="struct" struct="balance"/>
 <data name="cdtdue" type="struct" struct="balance"/>

 </recordformat>

 <recordformat name="cusrecAscii">

 <data name="cusnum" type="zoned" length="6" precision="0" init="0"/>
 <data name="lstnam" type="char" length="8" init="A"/>
 <data name="init" type="char" length="3" init="B"/>
 <data name="street" type="char" length="13" init="C"/>
 <data name="city" type="char" length="6" init="D"/>
 <data name="state" type="char" length="2" init="E"/>
 <data name="zipcod" type="zoned" length="5" init="1"/>

 <data name="cdtlmt" type="zoned" length="4" init="2"/>
 <data name="chgcod" type="zoned" length="1" init="3"/>
 <data name="baldue" type="zoned" length="6" precision="2" init="4"/>
 <data name="cdtdue" type="zoned" length="6" precision="2" init="5"/>

 </recordformat>

 <struct name="balance">
 <data name="amount" type="zoned" length="6" precision="2" init="7"/>
 </struct>

</rfml>

RecordFormatDocument class
The RecordFormatDocument class enables your Java programs to convert between RFML representations of
data and Record and RecordFormat objects for use with other Toolbox for Java components.

The RecordFormatDocument class represents an RFML source file, and it provides methods that allow your
Java program to perform the following actions:

Compose RFML source files from Record objects, RecordFormat objects, and byte arrays●

Generate Record objects, RecordFormat objects, and byte arrays that represent the information that the
RecordFormatDocument object contains

●

Get and set the values of different objects and data types●

Generate XML (RFML) that represents the data that the RecordFormatDocument object contains●

Serialize the RFML source file that the RecordFormatDocument object represents●

For more information about the available methods, see the javadoc method summary for the
RecordFormatDocument class.

Using the RecordFormatDocument class with other Toolbox for Java
classes

Use the RecordFormatDocument class with the following Toolbox for Java classes:

Record-oriented classes, which include the record-level access file classes (AS400File, SequentialFile,
and KeyedFile) that read, manipulate, and write Record objects. This category also includes the
LineDataRecordWriter class.

●

Byte-oriented classes, which include certain DataQueue, UserSpace, and IFSFile classes that read and
write a byte-array of data at a time.

●

Do not use RecordFormatDocument class with the following Toolbox for Java classes, which read and write
data in forms that RecordFormatDocument does not address:

The DataArea classes because the read and write methods deal only with String, boolean, and
BigDecimal data types.

●

IFSTextFileInputStream and IFSTextFileOutputStream because these read and write methods deal only
with String.

●

JDBC classes because RFML focuses only on data described by the iSeries data description
specification (DDS).

●

Record format documents and RFML syntax
RFML documents, called RFML source files, contain tags that define the specification for a particular data
format.

Because RFML is based on PCML, the syntax is familiar to PCML users. Because RFML is an XML extension,
RFML source files are easy to read and simple to create. For example, you can create an RFML source file by
using a simple text editor. Also, RFML source files reveal the structure of the data in a way that is easier to
understand than in a programming language like Java.

The RFML example Using RFML compared to using Toolbox for Java Record classes includes an example
RFML source file.

RFML DTD

The RFML document type definition (DTD) defines valid RFML elements and syntax. To ensure that an XML
parser can validate your RFML source file at runtime, declare the RFML DTD in the source file:

<!DOCTYPE rfml SYSTEM "rfml.dtd">

The RFML DTD resides in the jt400.jar file (com/ibm/as400/data/rfml.dtd).

RFML syntax

The RFML DTD defines tags, each of which has its own attribute tags. You use the RFML tags to declare and
define the following elements in your RFML source files:

The rfml tag begins and ends the RFML source file that describes the data format.●

The struct tag defines a named structure that you can reuse within the RFML source file. The structure
contains a data tag for each field in the structure.

●

The recordformat tag defines a record format, which contains either data elements or references to
structure elements.

●

The data tag defines a field within a record format or structure.●

In the following example, RFML syntax describes one record format and one structure:

<rfml>

 <recordformat>
 <data> </data>
 </recordformat>

 <struct>
 <data> </data>
 </struct>

</rfml>

RFML document type definition
This is the RFML DTD. Note that the version is 4.0. The RFML DTD resides in the jt400.jar file
(com/ibm/as400/data/rfml.dtd).

<!--
Record Format Markup Language (RFML) Document Type Definition.

RFML is an XML language. Typical usage:
 <?xml version="1.0"?>
 <!DOCTYPE rfml SYSTEM "rfml.dtd">
 <rfml version="4.0">
 ...
 </rfml>

(C) Copyright IBM Corporation, 2001,2002
All rights reserved. Licensed Materials Property of IBM
US Government Users Restricted Rights
Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.
-->

<!-- Convenience entities -->
<!ENTITY % string "CDATA"> <!-- a string of length 0 or
greater -->
<!ENTITY % nonNegativeInteger "CDATA"> <!-- a non-negative integer -->
<!ENTITY % binary2 "CDATA"> <!-- an integer in range 0-65535
-->
<!ENTITY % boolean "(true|false)">
<!ENTITY % datatype "(char | int | packed | zoned | float | byte |
struct)">
<!ENTITY % biditype "(ST4 | ST5 | ST6 | ST7 | ST8 | ST9 | ST10 | ST11 |
DEFAULT)">

<!-- The document root element -->
<!ELEMENT rfml (struct | recordformat)+>
<!ATTLIST rfml
 version %string; #FIXED "4.0"
 ccsid %binary2; #IMPLIED
>
<!-- Note: The ccsid is the default value that will be used for any
contained <data type="char"> elements that do not specify a ccsid. -->

<!-- Note: RFML does not support nested struct declarations. All struct
elements are direct children of the root node. -->
<!ELEMENT struct (data)+>
<!ATTLIST struct
 name ID #REQUIRED
>

<!-- <!ELEMENT recordformat (data | struct)*> -->
<!ELEMENT recordformat (data)*>
<!ATTLIST recordformat
 name ID #REQUIRED
 description %string; #IMPLIED
>
<!-- Note: On the server, the Record "text description" field is limited to
50 bytes. -->

<!ELEMENT data EMPTY>
<!ATTLIST data
 name %string; #REQUIRED

 count %nonNegativeInteger; #IMPLIED

 type %datatype; #REQUIRED
 length %nonNegativeInteger; #IMPLIED
 precision %nonNegativeInteger; #IMPLIED
 ccsid %binary2; #IMPLIED
 init CDATA #IMPLIED
 struct IDREF #IMPLIED

 bidistringtype %biditype; #IMPLIED
>
<!-- Note: The 'name' attribute must be unique within a given recordformat.
-->
<!-- Note: On the server, the length of Record field names is limited to 10
bytes. -->
<!-- Note: The 'length' attribute is required, except when type="struct".
-->
<!-- Note: If type="struct", then the 'struct' attribute is required. -->
<!-- Note: The 'ccsid' and 'bidistringtype' attributes are valid only when
type="char". -->
<!-- Note: The 'precision' attribute is valid only for types "int",
"packed", and "zoned". -->

<!-- The standard predefined character entities -->
<!ENTITY quot """> <!-- quotation mark -->
<!ENTITY amp "&#38;"> <!-- ampersand -->
<!ENTITY apos "'"> <!-- apostrophe -->
<!ENTITY lt "&#60;"> <!-- less than -->
<!ENTITY gt ">"> <!-- greater than -->
<!ENTITY nbsp " "> <!-- non-breaking space -->
<!ENTITY shy "­"> <!-- soft hyphen (discretionary hyphen) -->
<!ENTITY mdash "&#x2014;">
<!ENTITY ldquo "&#x201C;">
<!ENTITY rdquo "&#x201D;">

The RFML data tag
The data tag can have the following attributes. Attributes enclosed in brackets, [], indicate that the attribute is
optional. If you specify an optional attribute, do not include the brackets in your source. Some attribute values
are shown as a list of choices enclosed in braces, {}, with possible choices separated by vertical bars, |. When
you specify one of these attributes, do not include the braces in your source and only specify one of the choices
shown.

<data type="{ char | int | packed | zoned | float | byte | struct }"]
 [bidistringtype="{ ST4 | ST5 | ST6 | ST7 | ST8 | ST9 | ST10 | ST11 |
DEFAULT }"]
 [ccsid="{ number | data-name }"]
 [count="{ number | data-name }"]
 [init="string"]
 [length="{ number | data-name }"]
 [name="name"]
 [precision="number"]
 [struct="struct-name"]>
</data>

The following table lists the data tag attributes. Each entry includes the attribute name, the possible valid values,
and a description of the attribute.

Attribute Value Description

type= char
A character value. A char data value is returned as
a java.lang.String. For more information, see the
char values for length.

int
An integer value. An int data value is returned as a
java.lang.Long. For more information, see the int
values for length and precision.

packed
A packed decimal value. A packed data value is
returned as a java.math.BigDecimal. For more
information, see the packed values for length and
precision.

zoned
A zoned decimal value. A zoned data value is
returned as a java.math.BigDecimal. For more
information, see the zoned values for length and
precision.

float
A floating point value. The length attribute
specifies the number of bytes: either 4 or 8. A
4-byte integer is returned as a java.lang.Float. An
8-byte integer is returned as a java.lang.Double.
For more information, see the float values for
length.

Indicates the type of data being used
(character, integer, packed, zoned,
floating point, byte, or struct).

Values for the length and precision
attributes are different for different data
types. For more information, see the
Values for length and precision.

byte
A byte value. No conversion is performed on the
data. A byte data value is returned as an array of
byte values (byte[]). For more information, see the
byte values for length.

struct
The name of the <struct> element. A struct
allows you to define a structure once and reuse it
multiple times within the document. When you
use type="struct", it is as if the structure
specified appears at this location in the document.
A struct does not allow for a length value and has
no value for precision.

bidistringtype= DEFAULT
where DEFAULT is the default string type for
non-bidirectional data (LTR).

ST4
where ST4 is String Type 4.

ST5
where ST5 is String Type 5.

ST6
where ST6 is String Type 6.

ST7
where ST7 is String Type 7.

ST8
where ST8 is String Type 8.

ST9
where ST9 is String Type 9.

ST10
where ST10 is String Type 10.

ST11
where ST11 is String Type 11.

Specifies the bidirectional string type for
<data> elements with type="char". If
this attribute is omitted, string type for
this element is implied by the CCSID
(whether explicitly specified or the
default CCSID of the host environment).

String types are defined in the javadoc
for the BidiStringType class.

ccsid= number
where number defines a fixed, never-changing
CCSID.

data-name
where data-name defines the name that will
contain, at runtime, the CCSID of the character
data. The data-name specified can be a fully
qualified name or a name that is relative to the
current element. In either case, the name must
reference a <data> element that is defined with
type="int". See Resolving Relative Names for
more information on how relative names are
resolved.

Specifies the host coded character set
identifier (CCSID) for character data for
the <data> element. The ccsid attribute
can be specified only for <data>
elements with type="char".

If this attribute is omitted, character data
for this element is assumed to be in the
default CCSID of the host environment.

count= number
where number defines a fixed, never-changing
number of elements in a sized array.

data-name
where data-name defines the name of a <data>
element within the RFML document that will
contain, at runtime, the number of elements in the
array. The data-name specified can be a fully
qualified name or a name that is relative to the
current element. In either case, the name must
reference a <data> element that is defined with
type="int". See Resolving Relative Names for
more information on how relative names are
resolved.

Specifies that the element is an array and
identifies the number of entries in the
array.

If the count attribute is omitted, the
element is not defined as an array,
although it may be contained within
another element that is defined as an
array.

init= string Specifies an initial value for the <data>
element.

The initial value specified is used to
initialize scalar values. If the element is
defined as an array or is contained
within a structure defined as an array,
the initial value specified is used as an
initial value for all entries in the array.

length= number
where number defines a fixed, never-changing
length.

data-name
where data-name defines the name of a <data>
element within the RFML document that will
contain, at runtime, the length. A data-name can
be specified only for <data> elements with
type="char" or type="byte". The data-name
specified can be a fully qualified name or a name
that is relative to the current element. In either
case, the name must reference a <data> element
that is defined with type="int". See Resolving
Relative Names for more information on how
relative names are resolved.

Specifies the length of the data element.
Usage of this attribute varies depending
on the data type. For more information,
see the Values for length and precision.

name= name Specifies the name of the <data>
element.

precision= number Specifies the number of bytes of
precision for some numeric data types.
For more information, see the Values for
length and precision.

struct= name Specifies the name of a <struct>
element for the <data> element. A
struct attribute can be specified only for
<data> elements with
type="struct".

The RFML rfml tag
The rfml tag can have the following attributes. Attributes enclosed in brackets, [], indicate that the attribute is
optional. If you specify an optional attribute, do not include the brackets in your source.

<rfml version="version-string"
 [ccsid="number"]>
</rfml>

The following table lists the rfml tag attributes. Each entry includes the attribute name, the possible valid values,
and a description of the attribute.

Attribute Value Description

version= version-string
A fixed version of the RFML DTD. For V5R2, 4.0
is the only valid value.

Specifies the version of the RFML DTD,
which you can use to verify the correct value.

ccsid= number
A fixed, never-changing coded character set
identifier (CCSID).

Specifies the host CCSID, which applies to
all enclosed <data type="char"> elements
that do not specify a CCSID. For more
information, see the RFML <data> tag.
When you omit this attribute, the default
CCSID of the host environment is used.

The RFML recordformat tag
The recordformat tag can have the following attributes. Attributes enclosed in brackets, [], indicate that the
attribute is optional. If you specify an optional attribute, do not include the brackets in your source.

<recordformat name="name"
 [description="description"]>
</recordformat>

The following table lists the recordformat tag attributes. Each entry includes the attribute name, the possible
valid values, and a description of the attribute.

Attribute Value Description

name= name Specifies the name of the recordformat.

description= description Specifies the description of the recordformat.

The RFML struct tag
The struct tag can have the following attributes. Attributes enclosed in brackets, [], indicate that the attribute is
optional. If you specify an optional attribute, do not include the brackets in your source.

<struct name="name">
</struct>

The following table lists the struct tag attributes. Each entry includes the attribute name, the possible valid
values, and a description of the attribute.

Attribute Value Description

name= name Specifies the name of the <struct> element.

Secure Sockets Layer and Java Secure Socket
Extension
IBM Toolbox for Java supports using Java Secure Socket Extension (JSSE) for Java Secure Sockets Layer
(SSL) connections. JSSE is available as an optional package to the Java 2 Platform, Standard Edition (J2SE),
versions 1.2 and 1.3. JSSE is integrated into J2SE, version 1.4.

For more information about JSSE, see the Sun JSSE Web site .

JSSE provides the ability to perform server authentication, enable secure communications, and encrypt data.
Using JSSE, you can provide for secure data exchange between clients and servers that run any application
protocol (for example, HTTP and FTP) over TCP/IP.

After you install and configure JSSE, Toolbox for Java uses it by default. You should consider migrating to
JSSE because sslight will no longer be enhanced. Information about using sslight to enable SSL is included for
backward compatibility only.

Before you begin using SSL with IBM Toolbox for Java, you must understand your legal responsibilities.

iSeries System Debugger
IBM iSeries System Debugger provides a new graphical user debugging environment on the iSeries server. Use
iSeries System Debugger to debug and test programs that run on your iSeries server, including those that run in
the OS/400 PASE environment.

For more information about iSeries System Debugger, see the following topics:

Components
Read about the different components that comprise iSeries System Debugger and how they
work together to provide a powerful debugging tool.

Installation
Find out about iSeries System Debugger installation requirements and learn how to install it to
your workstation.

Running iSeries System Debugger
See how to you can run the different debugging components.

iSeries System Debugger components
The iSeries System Debugger consists of the following components:

A client-based Debug Manager●

A client-based System Debugger●

A client-based OS/400 PASE Debugger●

A host-based Debug Hub●

A host-based Debug Server●

The descriptions below provide only general information about the iSeries System Debugger components. To
learn more about the components, run the iSeries System Debugger and consult the online help. To view the
iSeries System Debugger online help, perform one of the following actions:

From the Help menu in any debugger interface, click Help●

Press F1●

Debug Manager

The Debug Manager registers the client with the Debug Hub, which enables using the graphical debugging
mode for the selected systems. Once registered, a client that issues the Start Debugging (STRDBG) CL
command from an emulation session starts the System Debugger.

Use the Debug Manager to manage your debugging operations and connections:

Add and remove systems●

Add and remove users●

Start debugging operations●

Launch the System Debugger●

System Debugger

Use System Debugger to debug programs that run on the iSeries server. You can debug programs that are
running in existing jobs on the system or use the System Debugger to launch and then debug programs in a
system batch job.

You can set up System Debugger to start automatically, manually from a workstation command prompt, or by
using the Debug Manager interface.

Use System Debugger to perform debugging activities that include:

Setting breakpoints●

Stepping through programs●

Inspecting variables●

Examining the callstack●

Examining memory associated with program variables●

Examining thread activity●

OS/400 PASE Debugger

Use OS/400 PASE Debugger to debug programs that run in an OS/400 PASE environment. You can debug
programs that are running in an existing process on the system or use OS/400 PASE Debugger to launch and
then debug a program.

You can launch OS/400 PASE Debugger directly from the command line or by using the Debug Manager
interface.

In addition to the debugging activites listed previously for System Debugger, you can use OS/400 PASE
Debugger to perform OS/400 PASE-specific debugging activities that include:

Using the program loadmap to debug●

Viewing a list of source files and methods●

Tracking parent and child processes●

Examining registers●

Debug Hub

The Debug Hub provides the following functions:

Serves as a registry for clients that want to use System Debugger or OS/400 PASE Debugger●

Handles incoming requests for starting debug servers●

Use the Debug Manager interface to register your client with the Debug Hub. Registering a client stores both the
user information and the TCP/IP address of the client in the registry. Using the Start Debugging (STRDBG) CL
command from an emulation session contacts the Debug Hub to see if the user executing the command is
registered with the Debug Manager. It also checks to see if the command being executed is from the same
TCP/IP addess as the Debug Manager. When these qualifications are met, the graphical iSeries System Debug
application is started instead of the traditional debug environment.

The Debug Hub also serves as a single point of contact for all iSeries System Debugging applications. When an
iSeries System Debugger component peforms a start debug operation, the Debug Hub submits a Debug
Server job on the users behalf and passes it the associated TCP/IP connection.

Debug Server

The Debug Server is a TCP/IP server that is started by the Debug Hub when one of the debuggers issues a
request to start debugging. The server job then services the job that is being debugged and issues the appropriate
debugger APIs and commands.

Installing the iSeries System Debugger
To run the iSeries System Debugger, your client workstation must meet the following hardware and software
requirements.

Hardware requirements

You must have the following hardware installed on your client:

CPU: 400 - 500 MHz●

Memory: minimum 128 MB (256 MB recommended)●

Software requirements

You must have the following software installed on your client:

One of the following:

Java 2 Platform, either the Standard Edition (J2SE) or the Enterprise Edition (J2EE), version
1.3 or later

❍

Java 2 Runtime Environment (JRE), Standard Edition, version 1.3.1 or later❍

●

jhall.jar (one of the jar files in JavaHelp(TM))●

Note: Be sure to add jhall.jar to your client CLASSPATH environment variable.

For information about installing the previously mentioned software, see the Sun Java Web site .

Installing the iSeries System Debugger jar file

The iSeries System Debugger is packaged as part of the IBM Toolbox for Java. If you do not have the Toolbox
for Java jt400.jar file already installed on your client, you will need to install it when you install the iSeries
system Debugger.

Before installing the iSeries system Debugger, ensure that your client system meets the previously listed
requirements. To install the iSeries System Debugger, complete the following steps:

Install Toolbox for Java, making sure to copy jt400.jar and tes.jar to your client.

Note: If you already installed Toolbox for Java on your server, both the jt400.jar and the tes.jar files are
in the same directory on the server:

/QIBM/ProdData/HTTP/Public/jt400/lib/

1.

After copying the jar files to your client, add them to your client CLASSPATH environment variable.2.

Now you can use your client to run the iSeries System Debugger.

Running iSeries System Debugger
You can use a client command prompt to start Debug Manager, start System Debugger, or start OS/400 PASE
Debugger.

To learn more about iSeries System Debugger, start iSeries System Debugger and consult the online help. To
view iSeries System Debugger online help, perform one of the following actions:

From the Help menu in any debugger interface, click Help●

Press F1●

Starting Debug Manager

To start the Debug Manager from a command prompt on your client, run the following command:

 java utilities.DebugMgr

Starting System Debugger

To start System Debugger from a command prompt on your client, run the following command:

 java utilities.Debug <args>

where <args> represents any of the following command arguments:

-u = User●

-s = System name●

-j = Job description, in the form of: job number/job user/job name●

-p = Program to run, in the form of: program library/program name●

Note: Once you use the Debug Manager to register your client, you can issue the Start Debugging (STRDBG)
CL command from an emulation session to start System Debugger. You can also launch System Debugger
directly from the System Debug Manager.

Starting OS/400 PASE Debugger

To start OS/400 PASE Debugger from a command prompt on your client, run the following command:

 java utilities.DebugPASE <args>

where <args> represents any of the following command arguments:

-u = User●

-s = System name●

-p = Fully qualified path of program to run●

-pid = Process ID●

Note: You can launch OS/400 PASE Debugger directly from the System Debug Manager. Unlike System
Debugger, you can not launch OS/400 PASE Debugger from an emulator session.

To learn more about the iSeries System Debugger, run the iSeries System Debugger and consult the online help.
To view the iSeries System Debugger online help:

From the Help menu in any iSeries System Debugger interface, click Help●

From any iSeries System Debugger interface, press F1●

Example: Properties File

#===#
IBM Toolbox for Java
#---#
Sample properties file
#
Name this file jt400.properties and store it in a
com/ibm/as400/access directory that is pointed to by
the classpath.
#===#

#---#
Proxy server system properties
#---#

This system property specifies the proxy server host name
and port number, specified in the format: hostName:portNumber
The port number is optional.
com.ibm.as400.access.AS400.proxyServer=hqoffice

This system property specifies which portion of the proxy
data flow is encrypted via SSL. Valid values are:
1 - Proxy client to proxy server
2 - Proxy server to AS/400
3 - Proxy client to proxy, and proxy server to AS/400
com.ibm.as400.access.SecureAS400.proxyEncryptionMode=1

This system property specifies how often, in seconds,
the proxy server will look for idle connections. The
proxy server starts a thread to look for clients that are
no longer communicating. Use this property to set how
often the thread looks for idle connections.
com.ibm.as400.access.TunnelProxyServer.clientCleanupInterval=7200

This system property specifies how long, in seconds, a
client can be idle before it is cleaned up. The proxy server
starts a thread to look for clients that are no longer
communicating. Use this property to set long a client can
be idle before it is cleaned up.
com.ibm.as400.access.TunnelProxyServer.clientLifetime=2700

#---#
Trace system properties
#---#

This system property specifies which trace categories to enable.
This is a comma-delimited list containing any combination of trace
categories. The complete list of trace categories is defined in
the Trace class.
com.ibm.as400.access.Trace.category=error,warning,information

This system property specifies the file to which trace output

is written. The default is to write trace output to System.out.
com.ibm.as400.access.Trace.file=c:\\temp\\trace.out

#---#
Command Call system properties
#---#

This system property specifies whether CommandCalls should
be assumed to be thread-safe. If true, all CommandCalls are
assumed to be thread-safe. If false, all CommandCalls are
assumed to be non-thread-safe. This property is ignored
for a given CommandCall object if either
CommandCall.setThreadSafe(true/false) or
AS400.setMustUseSockets(true) has been performed on the object.
com.ibm.as400.access.CommandCall.threadSafe=true

#---#
Program Call system properties
#---#

This system property specifies whether ProgramCalls should
be assumed to be thread-safe. If true, all ProgramCalls are
assumed to be thread-safe. If false, all ProgramCalls are
assumed to be non-thread-safe. This property is ignored
for a given ProgramCall object if either
ProgramCall.setThreadSafe(true/false) or
AS400.setMustUseSockets(true) has been performed on the object.
com.ibm.as400.access.ProgramCall.threadSafe=true

End

Example: System Properties Class Source File

//===
// IBM Toolbox for Java
//---
// Sample properties class source file
//
// Compile this source file and store the class file in
// the classpath.
//===
package com.ibm.as400.access;

public class Properties
extends java.util.Properties
{
 public Properties ()
 {
 /*---*/
 /* Proxy server system properties */
 /*---*/

 // This system property specifies the proxy server host name
 // and port number, specified in the format: hostName:portNumber
 // The port number is optional.
 put ("com.ibm.as400.access.AS400.proxyServer", "hqoffice");

 // This system property specifies which portion of the proxy
 // data flow is encrypted via SSL. Valid values are:
 // 1 - Proxy client to proxy server
 // 2 - Proxy server to iSeries or AS/400e server
 // 3 - Proxy client to proxy, and proxy server to iSeries or AS/400e
server
 put("com.ibm.as400.access.SecureAS400.proxyEncryptionMode", "1");

 // This system property specifies how often, in seconds,
 // the proxy server will look for idle connections. The
 // proxy server starts a thread to look for clients that are
 // no longer communicating. Use this property to set how
 // often the thread looks for idle connections.
 put("com.ibm.as400.access.TunnelProxyServer.clientCleanupInterval",
"7200");

 // This system property specifies how long, in seconds, a
 // client can be idle before it is cleaned up. The proxy server
 // starts a thread to look for clients that are no longer
 // communicating. Use this property to set long a client can
 // be idle before it is cleaned up.
 put("com.ibm.as400.access.TunnelProxyServer.clientLifetime", "2700");

 /*---*/
 /* Trace system properties */
 /*---*/

 // This system property specifies which trace categories to enable.

 // This is a comma-delimited list containing any combination of trace
 // categories. The complete list of trace categories is defined in
 // the Trace class.
 put ("com.ibm.as400.access.Trace.category",
"error,warning,information");

 // This system property specifies the file to which trace output
 // is written. The default is to write trace output to System.out.
 put ("com.ibm.as400.access.Trace.file", "c:\temp\trace.out");

 /*---*/
 /* Command Call system properties */
 /*---*/

 // This system property specifies whether CommandCalls should
 // be assumed to be thread-safe. If true, all CommandCalls are
 // assumed to be thread-safe. If false, all CommandCalls are
 // assumed to be non-thread-safe. This property is ignored
 // for a given CommandCall object if either
 // CommandCall.setThreadSafe(true/false) or
 // AS400.setMustUseSockets(true) has been performed on the object.
 put ("com.ibm.as400.access.CommandCall.threadSafe", "true");

 /*---*/
 /* Program Call system properties */
 /*---*/

 // This system property specifies whether ProgramCalls should
 // be assumed to be thread-safe. If true, all ProgramCalls are
 // assumed to be thread-safe. If false, all ProgramCalls are
 // assumed to be non-thread-safe. This property is ignored
 // for a given ProgramCall object if either
 // ProgramCall.setThreadSafe(true/false) or
 // AS400.setMustUseSockets(true) has been performed on the object.
 put ("com.ibm.as400.access.ProgramCall.threadSafe", "true");
 }
}

IBM Toolbox for Java 2 Micro Edition
The IBM Toolbox for Java 2 Micro Edition package (com.ibm.as400.micro) enables you to write Java programs
that allow a variety of Tier0 wireless devices, like personal digital assistants (PDAs) and cell phones, to directly
access iSeries data and resources.

For more information about ToolboxME for iSeries, see the following topics:

Requirements
Find out about requirements for developing applications with ToolboxME for iSeries and for
running those applications on your Tier0 devices.

Downloading and setting up ToolboxME for iSeries
Learn how to download and set up ToolboxME for iSeries on your server, workstation, and
Tier0 device.

Concepts
Read a brief introduction that defines concepts important to developing applications that run on
Tier0 devices.

ToolboxME for iSeries classes
Read about the classes in the ToolboxME for iSeries component (com.ibm.as400.micro
package). The classes provide a reduced set of functions available in the Toolbox for Java
access classes, JDBC support, and more.

Creating a ToolboxME for iSeries program
Learn about the steps for creating ToolboxME for iSeries programs that run on your Tier0
device. Follow the instructions and create your first ToolboxME for iSeries program.

Examples
Examine, download, and run the ToolboxMe for iSeries working examples to help you
understand how to create and use wireless applications.

Downloading and setting up ToolboxME for
iSeries
You must separately download ToolboxME for iSeries (jt400Micro.jar), which is contained in JTOpen. You can

download ToolboxME for iSeries from the IBM Toolbox for Java/JTOpen Web site that also offers
additional information about setting up ToolboxME for iSeries.

How you set up ToolboxME for iSeries is different for the Tier0 device, the development workstation, and the
server:

Build an application for your wireless device (using jt400Micro.jar) and install the application as
documented by the device manufacturer.

●

Make sure that the iSeries Host Servers are started on the server that contains the target data.●

Make sure that the system that you want to run the MEServer has access to jt400.jar. For more
information, see Installing Toolbox for Java on your workstation and Installing Toolbox for Java on an
iSeries server.

●

Concepts important for using ToolboxME for
iSeries
Before you begin developing ToolboxME for iSeries Java applications, you need to understand the following
concepts and standards that govern such development.

Java 2 Platform, Micro Edition (J2ME)

The J2ME(TM) is the implementation of the Java 2 standard that provides Java runtime environments for Tier0
wireless devices, like personal digital assistants (PDAs) and cell phones. IBM Toolbox for Java 2 Micro Edition
adheres to this standard.

Tier0 devices

Wireless devices, such as PDAs and cell phones, that use wireless technology to connect to computers and
networks are referred to as Tier0 devices. This name is based on the common 3-tier application model. The
3-tier model describes a distributed program that is organized into three major parts, each of which resides on a
different computer or network:

The third tier is the database and related programs that reside on a server, often a different server than
the second tier. This tier provides the information and the access to that information that the other tiers
use to perform work.

●

The second tier is the business logic, which usually resides on a different computer, usually a server,
shared on a network.

●

The first tier is generally the part of the application that resides on a workstation, including the user
interface.

●

Tier0 devices are often small, portable, resource-constrained devices, like PDAs and cell phones. Tier0 devices
substitute for or complement the functionality of devices on the first tier.

Connected Limited Device Configuration (CLDC)

A configuration defines a minimal set of APIs and the necessary capabilities of a Java virtual machine to
provide the functions expected for a large set of devices. The CLDC targets the broad set of
resource-constrained devices that include Tier0 devices.

For more information, see CLDC and the K Virtual Machine (KVM) .

Mobile Information Device Profile (MIDP)

A profile represents a set of APIs built on an existing configuration that target a specific type of device or
operating system. The MIDP, built on the CLDC, provides a standard runtime environment that enables you to
dynamically deploy applications and services to Tier0 devices.

For more information, see Mobile Information Device Profile (MIDP) .

Java virtual machine for wireless devices

In order to run Java application, your Tier0 device requires a Java virtual machine that is specially designed for
the limited resources of a wireless device. Some of the possible JVMs that you can use include the following:

IBM J9 virtual machine ●

Sun K Virtual Machine (KVM) ●

MIDP ●

Related information

You can use any one of a number of development tools created to help you build wireless Java applications. For
a brief list of such tools, see Related information for IBM Toolbox for Java.

To learn more about and to download wireless device simulators and emulators, consult the Web site for the
device or operating system on which you want your application to run.

ToolboxME for iSeries classes
The com.ibm.as400.micro package provides the classes necessary to write applications that enable your Tier 0
device to access iSeries server data and resources.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component.

ToolboxME for iSeries provides the following classes:

MEServer mediates requests from the Tier0 device to the host server●

Several classes provide a subset of functions from the Toolbox for Java access package

AS400 - signs on to an iSeries system❍

CommandCall - calls an iSeries command❍

DataQueue - reads from and writes to an iSeries server data queue❍

ProgramCall - calls an iSeries server program and accesses the data that is returned after the
program runs

❍

●

Other classes provide JDBC support, which also includes the smallest useful set of methods and data
from the java.sql package

●

MEServer class
Use the MEServer class to fulfill requests from your Tier0 client application that uses the ToolboxME for
iSeries jar file. The MEServer creates Toolbox for Java objects and invokes methods on them on behalf of the
client application.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component. For more information, see Downloading and setting up ToolboxME for iSeries.

Use the following command to start an MEServer:

 java com.ibm.as400.micro.MEServer [options]

where [options] is one or more of the following:

-pcml pcml-doc1 [;pcml_doc2;...]

Specifies the PCML document to preload and parse. You can abbreviate this option by using -pc.

For important information about using this option, see the MEServer javadoc.

-port port

Specifies the port to use for accepting connections from clients. This option may be abbreviated -po.
The default port is 3470. You can abbreviate this option by using -po.

-verbose [true|false]

Specifies whether to print status and connection information to System.out. You can abbreviate this
option by using -v.

-help

Prints usage information to System.out. You can abbreviate this option by using -h or -?. The default is
not to print usage information.

MEServer will not start if another server is already active on the specified port.

AS400 class
The AS400 class in the micro package (com.ibm.as400.micro.AS400) provides a modified subset of the
functions available in the AS400 class in the access package (com.ibm.as400.access.AS400). Use the
ToolboxMe for iSeries AS400 class to sign on an iSeries system from a Tier0 device.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component. For more information, see Downloading and setting up ToolboxME for iSeries.

The AS400 class provides the following functions:

Connect to the MEServer●

Disconnect from the MEServer●

The connection to the MEServer is made implicitly. For example, after you create an AS400 object, you can use
the run() method in CommandCall to automatically perform connect(). In other words, you do not have to
explicitly call the connect() method unless you want to control when the connection is established.

The following example shows how to use the AS400 class to sign on to on an iSeries system:

 AS400 system = new AS400("mySystem", "myUserid", "myPwd", "myMEServer");
 try
 {
 system.connect();
 }
 catch (Exception e)
 {
 // Handle the exception
 }
 // Done with the system object.
 system.disconnect();

CommandCall class
The CommandCall class in the micro package (com.ibm.as400.micro.CommandCall) provides a modified
subset of the functions available in the CommandCall class in the access package
(com.ibm.as400.access.CommandCall). Use the CommandCall class to call an iSeries command from a Tier0
device.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component.

The CommandCall run() method requires a String (the command you want to run) and returns any messages
resulting from running the command as a String. If the command completes but does not generate any messages,
the run() method returns an empty String array.

The following example demonstrates how you can use CommandCall:

 // Work with commands.
 AS400 system = new AS400("mySystem", "myUserid", "myPwd", "myMEServer");
 try
 {
 // Run the command "CRTLIB FRED."
 String[] messages = CommandCall.run(system, "CRTLIB FRED");
 if (messages != null)
 {
 // Note that there was an error.
 System.out.println("Command failed:");
 for (int i = 0; i < messages.length; ++i)
 {
 System.out.println(messages[i]);
 }
 }
 else
 {
 System.out.println("Command succeeded!");
 }
 }
 catch (Exception e)
 {
 // Handle the exception
 }
 // Done with the system object.
 system.disconnect();

DataQueue class
The DataQueue class in the micro package (com.ibm.as400.micro.DataQueue) provides a modified subset of the
functions available in the DataQueue class in the access package (com.ibm.as400.access.DataQueue). Use the
DataQueue class to have your Tier0 device read from or write to a data queue on the iSeries server.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component.

The DataQueue class includes the following methods:

Read or write an entry as a String●

Read or write an entry as an array of bytes●

To read or write entries, you need to supply the name of the iSeries system where the data queue resides and the
fully qualified integrated file system path name of the data queue. When no entries are available, reading an
entry returns a null value.

The following example demonstrates how to use the DataQueue class to read entries from and write entries to a
data queue on an iSeries system:

 AS400 system = new AS400("mySystem", "myUserid", "myPwd", "myMEServer");
 try
 {
 // Write to the Data Queue.
 DataQueue.write(system, "/QSYS.LIB/FRED.LIB/MYDTAQ.DTAQ", "some
text");

 // Read from the Data Queue.
 String txt = DataQueue.read(system,
"/QSYS.LIB/FRED.LIB/MYDTAQ.DTAQ");
 }
 catch (Exception e)
 {
 // Handle the exception
 }
 // Done with the system object.
 system.disconnect();

ProgramCall class
The ProgramCall class in the micro package (com.ibm.as400.micro.ProgramCall) provides a modified subset of
the functions available in the ProgramCall class in the access package (com.ibm.as400.access.ProgramCall).
Use the ProgramCall class to enable a Tier0 device to call an iSeries program and access the data that is
returned after the program runs.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component. For more information, see ToolboxME for iSeries requirements and installation.

To use the ProgramCall.run() method, you have to provide the following parameters:

The system on which you want to run the program●

The name of the Program Call Markup Language (PCML) document●

The name of the program that you want to run●

The hashtable that contains the name of one or more program parameters that you want to set and the
associated values

●

The string array that contains the name of any parameters to be returned after the program executes●

ProgramCall uses PCML to describe the input and output parameters for the program. The PCML file must be
on the same machine as the MEServer, and you must have an entry for the directory that contains the PCML file
in the CLASSPATH of that machine.

You must register each PCML document with the MEServer. Registering a PCML document is simply telling
the MEServer which PCML-defined program you want to run. Register the PCML document either during
runtime or when you start the MEServer.

For more information about the hashtable that contains program parameters or how to register a PCML
document, see the ToolboxME for iSeries ProgramCall javadoc. For more information about PCML, see
Program Call Markup Language.

The following example shows how to use the ProgramCall class to use your Tier 0 device to run a program on a
server:

 // Call programs.
 AS400 system = new AS400("mySystem", "myUserid", "myPwd", "myMEServer");

 String pcmlName = "qsyrusri.pcml"; // The PCML document describing the
program we want to use.
 String apiName = "qsyrusri";

 Hashtable parametersToSet = new Hashtable();
 parametersToSet.put("qsyrusri.receiverLength", "2048");
 parametersToSet.put("qsyrusri.profileName", "JOHNDOE" };

 String[] parametersToGet = { "qsyrusri.receiver.userProfile",
 "qsyrusri.receiver.previousSignonDate",
 "qsyrusri.receiver.previousSignonTime",
 "qsyrusri.receiver.displaySignonInfo" };

 String[] valuesToGet = null;

 try
 {
 valuesToGet = ProgramCall.run(system, pcmlName, apiName,
parametersToSet, parametersToGet);

 // Get and display the user profile.
 System.out.println("User profile: " + valuesToGet[0]);

 // Get and display the date in a readable format.
 char[] c = valuesToGet[1].toCharArray();
 System.out.println("Last Signon Date: " +
c[3]+c[4]+"/"+c[5]+c[6]+"/"+c[1]+c[2]);

 // Get and display the time in a readable format.
 char[] d = valuesToGet[2].toCharArray();
 System.out.println("Last Signon Time: " + d[0]+d[1]+":"+d[2]+d[3]);

 // Get and display the signon info.
 System.out.println("Signon Info: " + valuesToGet[3]);
 }
 catch (MEException te)
 {
 // Handle the exception.
 }
 catch (IOException ioe)
 {
 // Handle the exception
 }

 // Done with the system object.
 system.disconnect();

JdbcMe classes
The ToolboxME for iSeries classes provide JDBC support, including support for the java.sql package. The
classes are meant to be used in a program that runs on a Tier 0 device.

The following sections discuss accessing and using data and describe what is in JdbcMe, including links to
information about the individual JdbcMe classes.

Accessing and using data

When using a Tier0 device to access and update data, you want it to work exactly like it would if you were
sitting at a system in your office. However, much of the development in Tier0 devices focuses on data
synchronization. Using data synchronization, each Tier0 device has a copy of specific data from the main
database. Periodically, users synchronize the data on each device with the main database.

Data synchronization does not work well with data that is dynamic. Working with dynamic data requires quick
access to up-to-date data. Having to wait to access synchronized data is not an option for many businesses. Plus,
the software and hardware demands for the servers and devices to main synchronous data can be significant.

To help solve the problems inherent in the data synchronization model, the JdbcMe classes in ToolboxME for
iSeries enable you to perform live updates and access the main database, but still allow off-line data storage.
Your application can have access to valuable off-line data without sacrificing the ability for to have live updates
immediately become part of the main database. This middle ground approach provides the benefits of both the
synchronous data model and the live data model.

What is in JdbcMe

By definition, a driver of any kind for a Tier0 device must be very small. The JDBC API, however, is very
large. The JdbcMe classes had to be extremely small but still support enough of the JDBC interfaces so that
Tier0 devices could use it to perform meaningful work.

JdbcMe classes offer the following JDBC functionality:

The ability to insert or update data●

Transaction control and the ability to modify transaction isolation levels●

Result sets that are both scrollable and updatable●

SQL support for calls to stored procedures and drive triggers●

In addition, JdbcMe classes include some unique features:

A universal driver that enables the majority of the configuration details to be consolidated at a single
point on the server side

●

A standard mechanism for persisting data to off-line storage●

JdbcMe includes the following classes:

JdbcMeConnection●

JdbcMeDriver●

JdbcMeException●

JdbcMeLiveResultSet●

JdbcMeOfflineData●

JdbcMeOfflineResultSet●

JdbcMeResultSetMetaData●

JdbcMeStatement●

SQL conformance

ToolboxME for iSeries provides a java.sql package that follows the JDBC specification but contains only the
smallest set of useful classes and methods. Providing a minimal set of sql function allows the JdbcMe classes to
be small in size yet useful enough to perform common JDBC tasks.

Using ToolboxME for iSeries to connect to a database on the host
server

The JdbcMeConnection class provides a subset of functions available in the Toolbox for Java
AS400JDBCConnection class. Use JdbcMeConnection to enable your Tier0 device to access DB2 Universal
Database (UDB) databases on the host server.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component. For more information, see ToolboxME for iSeries requirements and installation.

Use JdbcMeDriver.getConnection() to connect to the server database. The getConnection() method takes a
uniform resource locator (URL) string as an argument, the user ID, and password. The JDBC driver manager on
the host server attempts to locate a driver that can connect to the database that is represented by the URL.
JdbcMeDriver uses the following syntax for the URL:

jdbc:as400://server-name/default-schema;meserver=<server>[:port];[other
properties];

You must specify a server name, or JdbcMeDriver throws an exception. The default schema is optional. If you
do not specify a port, the JdbcMeDriver uses port 3470. Also, you can set a variety of JDBC properties within
the URL. To set properties, use the following syntax:

 name1=value1;name2=value2;...

See JDBC properties for a complete list of properties supported by JdbcMeDriver.

Examples: Using the JdbcMeDriver to connect to a server

Example 1: Connecting to the server database without specifying a default schema, a port, or JDBC properties.
User ID and password are specified as parameters on the method.

 // Connect to system 'mysystem'. No default schema, port or
 // properties are specified.
 Connection c = JdbcMeDriver.getConnection
 ("jdbc:as400://mysystem.helloworld.com;
 meserver=myMeServer;"
 "auser",
 "apassword");

Example 2: Connecting to the server database when specifying the schema and JDBC properties. User ID and
password are specified as parameters on the method.

 // Connect to system 'mysystem'. Specify a schema and
 // two JDBC properties. Do not specify a port.
 Connection c2 = JdbcMeDriver.getConnection
 ("jdbc:as400://mysystem.helloworld.com/mySchema;
 meserver=myMeServer;
 naming=system;
 errors=full;"
 "auser",
 "apassword");

Example 3: Connecting to the server database; properties (including user ID and password) are specified using
a uniform resource locator (URL).

 // Connect using properties. The properties are set on the URL
 // instead of through a properties object.
 Connection c = DriverManager.getConnection
 ("jdbc:as400://mySystem;
 meserver=myMeServer;
 naming=sql;
 errors=full;
 user=auser;
 password=apassword");

Example 4: Disconnecting from the database. Use the close() method on the connecting object to disconnect
from the server:

 c.close();

JdbcMeDriver class

The JdbcMeDriver class provides a subset of functions available in the Toolbox for Java AS400JDBCDriver
class. Use JdbcMeDriver in your Tier0 client application to run simple SQL statements that have no parameters
and obtain ResultSets that the statements produce.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component. For more information, see Downloading and setting up ToolboxME for iSeries.

You don't explicitly register the JdbcMeDriver; instead the driver property you specify on the URL in the
JdbcMeConnection.getConnection() method determines the driver. For example, to load the IBM Developer Kit
for Java JDBC driver (called the 'native' driver), use the following code:

 Connection c = JdbcMeDriver.getConnection
 ("jdbc:as400://mysystem.helloworld.com;
 meserver=myMeServer;
 driver=native;
 user=auser;
 password=apassword");

The IBM Toolbox for Java JDBC driver does not require an AS400 object as an input parameter like the other
IBM Toolbox for Java classes that get data from a server. However, an AS400 object is used internally and you
must explicitly provide a user ID and password. Provide the user ID and password either in the URL or by way
of the parameters on the getConnection() method.

For examples of using getConnection(), see JDBCMeConnection.

Result sets
The ToolboxME for iSeries result set classes are:

JdbcMeLiveResultSet●

JdbcMeOfflineResultSet●

JdbcMeResultSetMetaData●

JdbcMeLiveResultSet and JdbcMeOfflineResultSet contain the same functionality, except that:

JdbcMeLiveResultSet retrieves data by making a call to the database on the server●

JdbcMeOfflineResultSet retrieves data from the database on the local device●

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component. For more information, see Downloading and setting up ToolboxME for iSeries.

JdbcMeLiveResultSet

The JdbcMeLiveResultSet class provides a subset of functions available in the Toolbox for Java
AS400JDBCResultSet class. Use JdbcMeLiveResultSet in your Tier0 client application to access a table of data
that is generated by running a query.

JdbcMeLiveResultSet retrieves the table rows in sequence. Within a row, you can access column values in any
order. JdbcMeLiveResultSet includes methods that enable you to perform the following actions:

Retrieve data of various types that are stored in the result set●

Move the cursor to the row you specify (previous row, current row, next row, and so on)●

Insert, update, and delete rows●

Update columns (using String and int values)●

Retrieve the ResultSetMetaData object that describes the columns in the result set●

A cursor, which is an internal pointer, is used by a result set to point the row in the result set that is being
accessed by the Java program. JDBC 2.0 provides additional methods for accessing specific positions within a
database:

Scrollable cursor positions

absolute
first
last
moveToCurrentRow

moveToInsertRow
previous
relative

Scrolling capabilities

If a result set is created by executing a statement, you can move (scroll) backward (last-to-first) or forward
(first-to-last) through the rows in a table.

A result set that supports this movement is called a scrollable result set. Scrollable result sets also support
relative and absolute positioning. Relative positioning allows you to move to a row in the result set by

specifying a position that is relative to the current row. Absolute positioning allows you to move directly to a
row by specifying its position in the result set.

With JDBC 2.0, you have two additional scrolling capabilities available to use when working with the ResultSet
class: scroll-insensitive and scroll-sensitive result sets.

A scroll-insensitive result set is not usually sensitive to changes that are made while it is open, while the
scroll-sensitive result set is sensitive to changes. The IBM Toolbox for Java JDBC driver does not support
scroll-insensitive result sets.

Updatable result sets

In your application, you can use result sets that use either read-only concurrency (no updates can be made to the
data) or updatable concurrency (allows updates to the data and may use database write locks to control access to
the same data item by different transactions). In an updatable result set, rows can be updated, inserted, and
deleted.

See Method Summary for a complete listing of the update methods available in JdbcMeResultSet.

Example: Updatable result sets

The following example shows how to use a result set that allows updates to the data (update concurrency) and
allows changes to be made to the result set while it is open (scroll sensitive).

 // Connect to the server.
 Connection c = JdbcMeDriver.getConnection
 ("jdbc:as400://mySystem;
 meserver=myMeServer;
 user=auser;
 password=apassword");

 // Create a Statement object. Set the result set
 // concurrency to updatable.
 Statement s = c.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

 // Run a query. The result is placed
 // in a ResultSet object.
 ResultSet rs = s.executeQuery ("SELECT NAME,ID FROM MYLIBRARY.MYTABLE
FOR UPDATE");

 // Iterate through the rows of the ResultSet. As we read
 // the row, we will update it with a new ID.
 int newId = 0;
 while (rs.next ())
 {

 // Get the values from the ResultSet. The first value
 // is a string, and the second value is an integer.
 String name = rs.getString("NAME");
 int id = rs.getInt("ID");

 System.out.println("Name = " + name);
 System.out.println("Old id = " + id);

 // Update the id with a new integer.
 rs.updateInt("ID", ++newId);

 // Send the updates to the server.
 rs.updateRow ();

 System.out.println("New id = " + newId);
 }

 // Close the Statement and the Connection.
 s.close();
 c.close();

JdbcMeOfflineResultSet class

The JdbcMeOfflineResultSet class provides a subset of functions available in the Toolbox for Java
AS400JDBCResultSet class. Use JdbcMeOfflineResultSet in in your Tier0 client application to access a table of
data that is generated by running a query.

Use the JdbcMeOfflineResultSet class to work with data that resides on your Tier0 device. The data that resides
on the device could already reside there or you could have put it there by calling
JdbcMeStatement.executeToOfflineData() method. the executeToOfflineData() method downloads and stores to
the device all of the data that satisfies the query. You can then use JdbcMeOfflineResultSet class to access the
stored data.

JdbcMeOfflineResultSet includes methods that enable you to perform the following actions:

Retrieve data of various types that are stored in the result set●

Move the cursor to the row you specify (previous row, current row, next row, and so on)●

Insert, update, and delete rows●

Update columns (using String and int values)●

Retrieve the ResultSetMetaData object that describes the columns in the result set●

You can provide the ability to synchronize the local device database with the database on the iSeries server by
using the functions present in the JdbcMe classes.

JdbcMeResultSetMetaData class

The JdbcMeResultSetMetaData class provides a subset of functions available in the Toolbox for Java
AS400JDBCResultSetMetaData class. Use JdbcMeResultSetMetaData in your Tier0 client application to
determine the types and properties of the columns in a JDBCResultSet.

The following example shows how to use the JdbcMeResultSetMetaData class:

 // Connect to the server.
 Connection c = JdbcMeDriver.getConnection
 ("jdbc:as400://mySystem;
 meserver=myMeServer;
 user=auser;
 password=apassword");

 // Create a Statement object.
 Statement s = c.createStatement();

 // Run a query. The result is placed in a ResultSet object.
 JdbcMeLiveResultSet rs = s.executeQuery ("SELECT NAME,ID FROM
MYLIBRARY.MYTABLE");

 // Iterate through the rows of the ResultSet.
 while (rs.next ())
 {

 // Get the values from the ResultSet. The first value is
 // a string, and the second value is an integer.
 String name = rs.getString("NAME");
 int id = rs.getInt("ID");

 System.out.println("Name = " + name);
 System.out.println("ID = " + id);
 }

 // Close the Statement and the Connection.
 s.close();
 c.close();

JdbcMeOfflineData class
The JdbcMeOfflineData class is an offline data repository meant to be used on a Tier0 device. The repository is
generic, regardless of the profile and Java virtual machine that you are using. For more information, see
ToolboxME for iSeries Concepts.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component. For more information, see Downloading and setting up ToolboxME for iSeries.

The JdbcMeOfflineData class provides methods that enable you to perform the following functions:

Create an offline data repository●

Open an existing repository●

Get the number of records in the repository●

Get and delete individual records●

Update records (Robb: the set() method, right?)●

Add a record to the end of the repository●

Close the repository●

For an example of using the JdbcMeOfflineData class, see the ToolboxMe for iSeries example: Using
ToolboxME for iSeries, MIDP, and IBM Toolbox for Java.

JdbcMeStatement class
The JdbcMeStatement class provides a subset of functions available in the Toolbox for Java
AS400JDBCStatement class. Use JdbcMeStatement in your Tier0 client application to run simple SQL
statements that have no parameters and obtain ResultSets that the statements produce.

Note: To use ToolboxMe for iSeries classes, you must separately download and set up the ToolboxME for
iSeries component. For more information, see Downloading and setting up ToolboxME for iSeries.

Statement class

Use JdbcMeConnection.createStatement() to create new Statement objects.

The following example shows how to use a JdbcMeStatement object:

 // Connect to the server.
 JdbcMeConnection c = JdbcMeDriver.getConnection(
 "jdbc:as400://mysystem.helloworld.com/mylibrary;
 naming=system;
 errors=full;
 meserver=myMeServer;
 user=auser;
 password=apassword");

 // Create a Statement object.
 JdbcMeStatement s = c.createStatement();

 // Run an SQL statement that creates a table in the database.
 s.executeUpdate("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID
INTEGER)");

 // Run an SQL statement that inserts a record into the table.
 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES
('DAVE', 123)");

 // Run an SQL statement that inserts a record into the table.
 s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES
('CINDY', 456)");

 // Run an SQL query on the table.
 JdbcMeLiveResultSet rs = s.executeQuery("SELECT * FROM
MYLIBRARY.MYTABLE");

 // Close the Statement and the Connection.
 s.close();
 c.close();

Creating and running a ToolboxME for iSeries
program
This information will enable you to edit, compile, and run the example ToolboxME for iSeries program. You
can also use this information as a general guide for creating, testing, and running the ToolboxME for iSeries
working examples and your own ToolboxME for iSeries applications.

The example program uses the K Virtual Machine (KVM) and allows the user to perform any JDBC query. The
user can then perform JDBC actions (next, previous, close, commit, and rollback) against the result of the query.

Before you begin creating any of the ToolboxME for iSeries examples, make sure that your environment meets
the ToolboxME for iSeries requirements.

Creating the ToolboxME for iSeries example

To create the ToolboxME for iSeries example program for your Tier0 device, complete the following steps:

Copy the Java code for the ToolboxME for iSeries example, called JdbcDemo.java.1.

In your chosen text or Java editor, change the portions of the code as indicated in the program
comments and save the file with the name JdbcDemo.java.

Note: Consider using a wireless application development tool, which makes it easier to complete the
remaining steps. Some wireless application development tools may compile, preverify, and build your
program in a single step, then automatically run it in an emulator.

2.

Compile JdbcDemo.java, making sure you point to the .jar file that contains the KVM classes.3.

Preverify the executable file, either by using your wireless application development tool or by using the
Java preverify command.

4.

Build the appropriate type of executable file for the operating system of your Tier0 device. For
example, for the Palm OS, you would build a file called JdbcDemo.prc.

5.

Test the program. If you have installed an emulator, you can test the program and see what it will look
like by running it in the emulator.

Note: If you test the program on your wireless device and you do not use a wireless application
development tool, make sure that you preload your chosen Java virtual machine or MIDP on the device.

6.

See ToolboxME for iSeries concepts for related information about concepts, wireless application development
tools, and emulators.

Running the ToolboxME for iSeries example

To run the ToolboxME for iSeries example program on your Tier0 device, complete the following tasks:

Load the executable file to the device, using the instructions provided by your Tier0 device
manufacturer.

●

Start the MEServer●

Run the JdbcDemo program on your Tier0 device by clicking the JdbcDemo icon.●

ToolboxME for iSeries working examples
The following ToolboxMe for iSeries working examples illustrate ways to use ToolboxME for iSeries with the
Mobile Information Device Profile (MIDP). Use the following links to view selected example source files or to
download all the exource files required to build the working example wireless applications:

Example: ToolboxME for iSeries, MIDP, and JDBC

Example: ToolboxME for iSeries, MIDP, and IBM Toolbox for Java

Download the ToolboxME for iSeries working examples

For more information about how to build a ToolboxME for iSeries application, see Creating and running a
ToolboxME for iSeries program.

Frequently asked questions (FAQ)
IBM Toolbox for Java frequently asked questions (FAQs) provide answers to questions about optimizing your
IBM Toolbox for Java performance, performing troubleshooting, using JDBC, and more:

IBM Toolbox for Java FAQ : Find answers to many types of questions, including increasing
performance, using OS/400, performing troubleshooting, and more.

●

IBM Toolbox for Java JDBC FAQ : Find answers to questions about using JDBC with Toolbox for
Java

●

Code examples
The following list provides links to entry points for many of the examples used throughout the IBM Toolbox for
Java topic.

Access classes Beans Graphical Toolbox

HTML classes PCML ReportWriter classes

Resource classes RFML Security classes

Servlet classes Simple examples Tips for programming

ToolboxMe for iSeries Utility classes Vaccess classes

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Examples: Access classes
This section lists the code examples that are provided throughout the documentation of the access classes.

AS400JPing

Example: Using AS400JPing within a Java program●

BidiTransform

Example: Using the AS400BidiTransform class to transform bidirectional text●

CommandCall

Example: Using CommandCall to run a command on the server●

Example: Using CommandCall to prompt for the name of the server, command to run, and print the
result

●

ConnectionPool

Example: Using AS400ConnectionPool to create connections to the server●

DataArea

Example: Creating and writing to a decimal data area●

Data conversion and description

Example: Using the FieldDescription, RecordFormat, and Record classes●

Example: Putting data on a queue●

Example: Reading data from a queue●

DataQueue

Example: How to create a DataQueue object, read data, and disconnect●

Example: Putting data on a queue●

Example: Reading data from a queue●

Digital certificate

Example: Listing digital certificates that belong to a user●

EnvironmentVariable

Example: Creating, setting, and getting environment variables●

Exceptions

Example: Catching a thrown exception, retrieving the return code, and displaying the exception text●

FTP

Example: Using the FTP class to Copy a set of files from a server directory●

Example: Using the AS400FTP class to copy a set of files from a directory●

Integrated file system

Examples: Using IFSFile●

Example: Using the IFSFile.listFiles() method to list the contents of a directory●

Example: Using IFSFile classes to copy files●

Example: Using IFSFile classes to list the contents of a directory●

Example: How to use IFSJavaFile instead of java.io.File●

Example: Using the IFSFile classes to list the contents of a directory on the server●

JavaApplicationCall

Example: Running a program on the server from the client that outputs "Hello World!"●

JDBC

Example: Using the JDBC driver to create and populate a table●

Example: Using the JDBC driver to query a table and output its contents●

Jobs

Example: Retrieving and changing job information using the cache●

Example: Listing all active jobs●

Example: Printing all of the messages in the job log for a specific user●

Example: Listing the job identification information for a specific user●

Example: Getting a list of jobs on the server and listing the job status and the job identifier●

Example: Displaying messages in the job log for a job that belongs to the current user●

Message queue

Example: How to use the message queue object●

Example: Printing the contents of the message queue●

Example: Retrieving and printing a message●

Example: Listing the contents of the message queue●

Example: Using AS400Message with CommandCall●

Example: Using AS400Message with ProgramCall●

NetServer

Example: Using a NetServer object to change the name of the NetServer●

Print

Example: Creating a spooled file from an input stream●

Example: Generating an SCS data stream using the SCS3812Writer class●

Example: Reading an existing spooled file●

Example: Asynchronously listing all spooled files using the PrintObjectListListener interface●

Example: Asynchronously listing all spooled files without using the PrintObjectListListener interface●

Example: Synchronously listing all spooled files●

Permission

Example: Set the authority of an AS400 object●

Program call

Example: Using ProgramCall●

Example: Using ProgramCall to retrieve system status●

Example: Passing parameter data with a Program parameter object●

QSYSObjectPathName

Example: Building an integrated file system name●

Example: Using QSYSObjectPathName.toPath() to build an AS400 object name●

Example: Using QSYSObjectPathName to parse the integrated file system path name●

Record-level access

Example: Sequentially accessing a file●

Example: Using the record-level access classes to read a file●

Example: Using the record-level access classes to read records by key●

Example: Using the LineDataRecordWriter class●

Service program call

Example: Using ServiceProgramCall to call a procedure●

System Status

Example: Use caching with the SystemStatus class●

System Pool

Example: Setting the maximum faults size for SystemPool●

SystemValue

Example: Using SystemValue and SystemValueList●

Trace

Example: Using the Trace.setTraceOn() method●

Example: Preferred way to use Trace●

Example: Using component tracing●

User Groups

Example: Retrieving a list of users●

Example: Listing all the users of a group●

User Space

Example: How to create a user space●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Using CommandCall
Note: Read the Code example disclaimer for important legal information.

//
//
// Command call example. This program prompts the user
// for the name of the server and the command to run, then
// prints the result of the command.
//
// This source is an example of IBM Toolbox for Java "CommandCall"
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class CommandCallExample extends Object
{
 public static void main(String[] parmeters)
 {

 // Created a reader to get input from the user
 BufferedReader inputStream = new BufferedReader(new
InputStreamReader(System.in),1);

 // Declare variables to hold the system name and the command to run
 String systemString = null;
 String commandString = null;

 System.out.println(" ");

 // Get the system name and the command to run from the user
 try
 {
 System.out.print("System name: ");
 systemString = inputStream.readLine();

 System.out.print("Command: ");
 commandString = inputStream.readLine();
 }
 catch (Exception e) {};

 System.out.println(" ");

 // Create an AS400 object. This is the system we send the command to
 AS400 as400 = new AS400(systemString);

 // Create a command call object specifying the server that will

 // recieve the command.
 CommandCall command = new CommandCall(as400);

 try
 {
 // Run the command.
 if (command.run(commandString))
 System.out.print("Command successful");
 else
 System.out.print("Command failed");

 // If messages were produced from the command, print them
 AS400Message[] messagelist = command.getMessageList();

 if (messagelist.length > 0)
 {
 System.out.println(", messages from the command:");
 System.out.println(" ");
 }

 for (int i=0; i < messagelist.length; i++)
 {
 System.out.print (messagelist[i].getID());
 System.out.print (": ");
 System.out.println(messagelist[i].getText());
 }
 }
 catch (Exception e)
 {
 System.out.println("Command " + command.getCommand() + " did not
run");
 }

 System.exit(0);
 }
}

Example: Using AS400ConnectionPool
Note: Read the Code example disclaimer for important legal information.

//
//
// AS400ConnectionPooling example. This program uses an AS400ConnectionPool
to
// create connections to an iSeries system.
// Command syntax:
// AS400ConnectionPooling system myUserId myPassword
//
// For example,
// AS400ConnectionPooling MySystem MyUserId MyPassword
//
//

import com.ibm.as400.access.*;

public class AS400ConnectionPooling
{
 public static void main (String[] parameters)
 {
 // Check the input parameters.
 if (parameters.length != 3)
 {
 System.out.println("");
 System.out.println("Usage:");
 System.out.println("");
 System.out.println(" AS400ConnectionPooling system userId
password");
 System.out.println("");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println("");
 System.out.println(" AS400ConnectionPooling MySystem MyUserId
MyPassword");
 System.out.println("");
 return;
 }

 String system = parameters[0];
 String userId = parameters[1];
 String password = parameters[2];

 try
 {
 // Create an AS400ConnectionPool.
 AS400ConnectionPool testPool = new AS400ConnectionPool();

 // Set a maximum of 128 connections to this pool.
 testPool.setMaxConnections(128);

 // Set a maximum lifetime for 30 minutes for connections.
 testPool.setMaxLifetime(1000*60*30); // 30 min Max lifetime
since created.

 // Preconnect 5 connections to the AS400.COMMAND service.

 testPool.fill(system, userId, password, AS400.COMMAND, 1);
 System.out.println();
 System.out.println("Preconnected 1 connection to the AS400.COMMAND
service");

 // Call getActiveConnectionCount and getAvailableConnectionCount to
see how many
 // connections are in use and available for a particular system.
 System.out.println("Number of active connections: " +
testPool.getActiveConnectionCount(system, userId));
 System.out.println("Number of available connections for use: " +
testPool.getAvailableConnectionCount(system, userId));

 // Create a connection to the AS400.COMMAND service. (Use the
service number constants
 // defined in the AS400 class (FILE, PRINT, COMMAND, DATAQUEUE,
etc.))
 // Since connections have already been filled, the usual time spent
connecting to the command
 // service is avoided.
 AS400 newConn1 = testPool.getConnection(system, userId, password,
AS400.COMMAND);

 System.out.println();
 System.out.println("getConnection gives out an existing connection
to user");
 System.out.println("Number of active connections: " +
testPool.getActiveConnectionCount(system, userId));
 System.out.println("Number of available connections for use: " +
testPool.getAvailableConnectionCount(system, userId));

 // Create a new command call object and run a command.
 CommandCall cmd1 = new CommandCall(newConn1);
 cmd1.run("CRTLIB FRED");

 // Return the connection to the pool.
 testPool.returnConnectionToPool(newConn1);

 System.out.println();
 System.out.println("Returned a connection to pool");
 System.out.println("Number of active connections: " +
testPool.getActiveConnectionCount(system, userId));
 System.out.println("Number of available connections for reuse: " +
testPool.getAvailableConnectionCount(system, userId));

 // Create a connection to the AS400.COMMAND service. This will
return the same
 // object as above for reuse.
 AS400 newConn2 = testPool.getConnection(system, userId, password,
AS400.COMMAND);

 System.out.println();
 System.out.println("getConnection gives out an existing connection
to user");
 System.out.println("Number of active connections: " +
testPool.getActiveConnectionCount(system, userId));
 System.out.println("Number of available connections for reuse: " +
testPool.getAvailableConnectionCount(system, userId));

 // Create a connection to the AS400.COMMAND service. This will
create a new

 // connection as there are not any connections in the pool to
reuse.
 AS400 newConn3 = testPool.getConnection(system, userId, password,
AS400.COMMAND);

 System.out.println();
 System.out.println("getConnection creates a new connection since
there are no connections available");
 System.out.println("Number of active connections: " +
testPool.getActiveConnectionCount(system, userId));
 System.out.println("Number of available connections for reuse: " +
testPool.getAvailableConnectionCount(system, userId));

 // Close the test pool.
 testPool.close();
 }
 catch (Exception e)
 {
 // If any of the above operations failed say the pool operations
failed
 // and output the exception.

 System.out.println("Pool operations failed");
 System.out.println(e);
 e.printStackTrace();
 }
 }
}

Example: Using DataQueue classes to put data on a queue

Note: Read the Code example disclaimer for important legal information.

//
//
// Data Queue example. This program uses the DataQueue class to put
// records on a data queue.
//
// This example uses the Record and Record format classes to put data
// on the queue. String data is converted from Unicode to ebcdic
// and numbers are converted from Java to the server format. Since data
// is converted the data queue entries can be read by a server program
// or a iSeries Access for Windows program as well as another Java program.
//
// This is the producer side of the producer/consumer example. It puts work
// items on the queue for the consumer to process.
//
// Command syntax:
// DQProducerExample system
//
//

import java.io.*;
import java.util.*;
import java.net.*;
import com.ibm.as400.access.*;

public class DQProducerExample extends Object
{
 // Create a reader to get input from the user.
 static BufferedReader inputStream = new BufferedReader(new
InputStreamReader(System.in),1);

 public static void main(String[] parameters)
 {
 System.out.println(" ");

 // if the system name was not specified, display help text and exit.
 if (parameters.length >= 1)
 {
 try
 {
 // The first parameter is the system that contains the data
queue.
 String system = parameters[0];

 // Create an AS400 object for the server that has the data
queue.
 AS400 as400 = new AS400(system);

 // Build a record format for the format of the data queue
entry.
 // This format matches the format in the DQConsumer class. A
 // record consists of:
 // - a four byte number -- the customer number
 // - a four byte number -- the part number
 // - a 20 character string -- the part description
 // - a four byte number -- the number of parts in this
order

 // First create the base data types.
 BinaryFieldDescription customerNumber =
 new BinaryFieldDescription(new AS400Bin4(),
"CUSTOMER_NUMBER");

 BinaryFieldDescription partNumber =
 new BinaryFieldDescription(new AS400Bin4(), "PART_NUMBER");

 CharacterFieldDescription partName =
 new CharacterFieldDescription(new AS400Text(20, as400),
"PART_NAME");

 BinaryFieldDescription quantity =
 new BinaryFieldDescription(new AS400Bin4(), "QUANTITY");

 // Build a record format and fill it with the base data types.
 RecordFormat dataFormat = new RecordFormat();
 dataFormat.addFieldDescription(customerNumber);
 dataFormat.addFieldDescription(partNumber);
 dataFormat.addFieldDescription(partName);
 dataFormat.addFieldDescription(quantity);

 // Create the library that contains the data queue using
CommandCall.
 CommandCall crtlib = new CommandCall(as400);
 crtlib.run("CRTLIB JAVADEMO");

 // Create the data queue object.
 DataQueue dq = new DataQueue(as400,
"/QSYS.LIB/JAVADEMO.LIB/PRODCONS.DTAQ");

 // Create the data queue just in case this is the first time
this
 // program has run. The queue already exists exception is
caught
 // and ignored.
 try
 {
 dq.create(96);
 }
 catch (Exception e) {};

 // Get the first field of data from the user.
 System.out.print("Enter customer number (or 0 to quit): ");
 int customer = getInt();

 // While there is data to put on the queue.
 while (customer > 0)
 {
 // Get the rest of the data for this order from the user.
 System.out.print("Enter part number: ");
 int part = getInt();

 System.out.print("Enter quantity: ");
 int quantityToOrder = getInt();

 String description = "part " + part;

 // Create a record based on the record format. The record
 // is empty now but will eventually contain the data.
 Record data = new Record(dataFormat);

 // Set the values we received from the user into the record.
 data.setField("CUSTOMER_NUMBER", new Integer(customer));
 data.setField("PART_NUMBER", new Integer(part));
 data.setField("QUANTITY", new
Integer(quantityToOrder));
 data.setField("PART_NAME", description);

 // Convert the record into a byte array. The byte array is
what
 // is actually put to the data queue.
 byte [] byteData = data.getContents();

 System.out.println("");
 System.out.println("Writing record to the server ...");
 System.out.println("");

 // Write the record to the data queue.
 dq.write(byteData);

 // Get the next value from the user.
 System.out.print("Enter customer number (or 0 to quit): ");
 customer = getInt();
 }
 }
 catch (Exception e)
 {
 // If any of the above operations failed say the data queue
 // operation failed and output the exception.

 System.out.println("Data Queue operation failed");
 System.out.println(e);
 }
 }

 // Display help text when parameters are incorrect.
 else
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" DQProducter system");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" system = Server that has the data queue");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" DQProducerExample mySystem");
 System.out.println("");
 System.out.println("");
 }

 System.exit(0);
 }

 // This is the subroutine that gets a character string from the user

 // and converts it into an int.
 static int getInt()
 {
 int i = 0;
 boolean Continue = true;

 while (Continue)
 {
 try
 {
 String s = inputStream.readLine();

 i = (new Integer(s)).intValue();
 Continue = false;
 }
 catch (Exception e)
 {
 System.out.println(e);
 System.out.print("Please enter a number ==>");
 }
 }

 return i;
 }
}

Example: Using DataQueue classes to read entries off a data queue

Note: Read the Code example disclaimer for important legal information.

//
//
// Data Queue example. This program uses the Data Queue classes to read
// entries off a data queue on the server. The entries were put on the
// queue with the DQProducer example program.
//
// This is the consumer side of the producer/consumer example. It reads
// entries off the queue and process them.
//
// Command syntax:
// DQConsumerExample system
//
//

import java.io.*;
import java.util.*;
import java.net.*;
import com.ibm.as400.access.*;

public class DQConsumerExample extends Object
{
 public static void main(String[] parameters)
 {
 System.out.println(" ");

 // if a system name was not specified, display help text and exit.
 if (parameters.length >= 1)
 {
 try
 {

 // The first parameter is the system that contains the data
queue.
 String system = parameters[0];

 // Create an AS400 object for the server that has the data
queue.
 AS400 as400 = new AS400(system);

 // Build a record format for the format of the data queue
entry.
 // This format matches the format in the DQProducer class. A
 // record consists of:
 // - a four byte number -- the customer number
 // - a four byte number -- the part number
 // - a 20 character string -- the part description
 // - a four byte number -- the number of parts in this order

 // First create the base data types.
 BinaryFieldDescription customerNumber =
 new BinaryFieldDescription(new AS400Bin4(),
"CUSTOMER_NUMBER");

 BinaryFieldDescription partNumber =
 new BinaryFieldDescription(new AS400Bin4(), "PART_NUMBER");

 CharacterFieldDescription partName =
 new CharacterFieldDescription(new AS400Text(20, as400),
"PART_NAME"

 BinaryFieldDescription quantity =
 new BinaryFieldDescription(new AS400Bin4(), "QUANTITY"

 // Build a record format and fill it with the base data types.
 RecordFormat dataFormat = new RecordFormat();

 dataFormat.addFieldDescription(customerNumber);
 dataFormat.addFieldDescription(partNumber);
 dataFormat.addFieldDescription(partName);
 dataFormat.addFieldDescription(quantity);

 // Create the data queue object that represents the data queue
on
 // the server.
 DataQueue dq = new DataQueue(as400,
"/QSYS.LIB/JAVADEMO.LIB/PRODCONS.DTAQ");

 boolean Continue = true;

 // Read the first entry off the queue. The timeout value is
 // set to -1 so this program will wait forever for an entry.
 System.out.println("*** Waiting for an entry for process ***");

 DataQueueEntry DQData = dq.read(-1);

 while (Continue)
 {

 // We just read an entry off the queue. Put the data into
 // a record object so the program can access the fields of
 // the data by name. The Record object will also convert
 // the data from server format to Java format.
 Record data = dataFormat.getNewRecord(DQData.getData());

 // Get two values out of the record and display them.
 Integer amountOrdered = (Integer) data.getField("QUANTITY");
 String partOrdered = (String)
data.getField("PART_NAME");

 System.out.println("Need " + amountOrdered + " of " +
partOrdered);
 System.out.println(" ");
 System.out.println("*** Waiting for an entry for process
***");

 // Wait for the next entry.
 DQData = dq.read(-1);
 }
 }
 catch (Exception e)
 {
 // If any of the above operations failed say the data queue
operation
 // failed and output the exception.
 System.out.println("Data Queue operation failed");
 System.out.println(e);

 }
 }

 // Display help text when parameters are incorrect.
 else
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" DQConsumerExample system");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" system = Server that has the data queue");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" DQConsumerExample mySystem");
 System.out.println("");
 System.out.println("");
 }

 System.exit(0);
 }
}

Examples: Using IFSFile
The following examples show how to use the IFSFile class:

Example: Creating a directory●

Example: Using IFSFile exceptions to track errors●

Example: Listing files with a .txt extension●

Example: Using the IFSFile listFiles() method to list the contents of a directory●

Example: Creating a directory

 // Create an AS400 object. This new
 // directory will be created on this
 // iSeries.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a file object that
 // represents the directory.
 IFSFile aDirectory = new IFSFile(sys, "/mydir1/mydir2/newdir");

 // Create the directory.
 if (aDirectory.mkdir())
 System.out.println("Create directory was successful");

 // Else the create directory failed.
 else
 {
 // If the object already exists,
 // find out if it is a directory or
 // file, then display a message.
 if (aDirectory.exists())
 {
 if (aDirectory.isDirectory())
 System.out.println("Directory already exists");
 else
 System.out.println("File with this name already exists");
 }
 else
 System.out.println("Create directory failed");
 }

 // Disconnect since I am done
 // accessing files.
 sys.disconnectService(AS400.FILE);

Example: Using IFSFile exceptions to track errors

When an error occurs, the IFSFile class throws the ExtendedIOException exception. This exception contains a
return code that indicates the cause of the failure. The IFSFile class throws the exception even when the java.io
class that IFSFile duplicates does not. For example, the delete method from java.io.File returns a boolean to
indicate success or failure. The delete method in IFSFile returns a boolean, but if the delete fails, an

ExtendedIOException is thrown. The ExtendedIOException provides the Java program with detailed
information about why the delete failed.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create a file object that
 // represents the file.
 IFSFile aFile = new IFSFile(sys, "/mydir1/mydir2/myfile");

 // Delete the file.
 try
 {
 aFile.delete();

 // The delete was successful.
 System.out.println("Delete successful ");
 }

 // The delete failed. Get the return
 // code out of the exception and
 // display why the delete failed.
 catch (ExtendedIOException e)
 {
 int rc = e.getReturnCode();

 switch (rc)
 {
 case ExtendedIOException.FILE_IN_USE:
 System.out.println("Delete failed, file is in use ");
 break;

 case ExtendedIOException.PATH_NOT_FOUND:
 System.out.println("Delete failed, path not found ");
 break;

 // ... for every specific error
 // you want to track.

 default:
 System.out.println("Delete failed, rc = ");
 System.out.println(rc);
 }
 }

Example: Listing files with a .txt extension

Example 3: The Java program can optionally specify match criteria when listing files in the directory. Match
criteria reduce the number of files that are returned by the server to the IFSFile object, which improves
performance. The following example shows how to list files with extension .txt:

 // Create the AS400 object.
 AS400 system = new AS400("mySystem.myCompany.com");

 // Create the file object.
 IFSFile directory = new IFSFile(system, "/");

 // Generate a list of all files with
 // extension .txt
 String[] names = directory.list("*.txt");

 // Display the names.
 if (names != null)
 for (int i = 0; i < names.length; i++)
 System.out.println(names[i]);
 else
 System.out.println("No .txt files");

Example: Using the IFSFile listFiles() method to list the contents of a
directory

Note: Read the Code example disclaimer for important legal information.

//
//
// IFSListFiles example. This program uses the integrated file system
// classes to list the contents of a directory on the server.
//
// Command syntax:
// IFSListFiles system directory
//
// For example,
// IFSListFiles MySystem /path1
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class IFSListFiles extends Object
{
 public static void main(String[] parameters)
 {
 System.out.println(" ");

 String directoryName = "";
 String system = "";

 // if both parameters were not specified, display help text and
exit.

 if (parameters.length >= 2)
 {

 // Assume the first parameter is the system name and
 // the second parameter is the directory name

 system = parameters[0];
 directoryName = parameters[1];

 try
 {
 // Create an AS400 object for the server that holds the
files.

 AS400 as400 = new AS400(system);

 // Create the IFSFile object for the directory.

 IFSFile directory = new IFSFile(as400, directoryName);

 // Generate a list of IFSFiles. Pass the listFiles method

 // the directory filter object and the search match
 // criteria. This method caches attribute information. For
 // instance, when isDirectory() is called on an IFSFile
 // object in the file array returned in the following code,
 // no call to the server is required.
 //
 // However, with the user of the listFiles method, attribute
 // information will not be refreshed automatically from the
 // server. This means attribute information can become
 // inconsistent with information on the server.

 IFSFile[] directoryFiles = directory.listFiles(new
MyDirectoryFilter(),"*");

 // Tell the user if the directory doesn't exist or is empty

 if (directoryFiles == null)
 {
 System.out.println("The directory does not exist");
 return;
 }

 else if (directoryFiles.length == 0)
 {
 System.out.println("The directory is empty");
 return;
 }

 for (int i=0; i< directoryFiles.length; i++)
 {
 // Print out information on list.
 // Print the name of the current file

 System.out.print(directoryFiles[i].getName());

 // Pad the output so the columns line up

 for (int j = directoryFiles[i].getName().length(); j
<18; j++)
 System.out.print(" ");

 // Print the date the file was last changed.

 long changeDate = directoryFiles[i].lastModified();
 Date d = new Date(changeDate);
 System.out.print(d);
 System.out.print(" ");

 // Print if the entry is a file or directory

 System.out.print(" ");

 if (directoryFiles[i].isDirectory())
 System.out.println("");
 else
 System.out.println(directoryFiles[i].length());

 }

 }

 catch (Exception e)
 {
 // If any of the above operations failed say the list failed
 // and output the exception.

 System.out.println("List failed");
 System.out.println(e);
 }
 }

 // Display help text when parameters are incorrect.

 else
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" IFSListFiles as400 directory");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" as400 = system that contains the files");
 System.out.println(" directory = directory to be listed");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" IFSListFiles mySystem /dir1/dir2");
 System.out.println("");
 System.out.println("");
 }

 System.exit(0);
 }
}

//
//
// The directory filter class prints information from the file object.
//
// Another way to use the filter is to simply return true or false
// based on information in the file object. This lets the mainline
// function decide what to do with the list of files that meet the
// search criteria.
//
//

class MyDirectoryFilter implements IFSFileFilter
{
 public boolean accept(IFSFile file)
 {
 try
 {
 // Keep this entry. Returning true tells the IFSList object

 // to return this file in the list of entries returned to the
 // .list() method.

 return true;
 }

 catch (Exception e)
 {
 return false;
 }
 }
}

Example: Using IFS classes to copy a file from one directory to another

Note: Read the Code example disclaimer for important legal information.

//
//
// IFSCopyFile example. This program uses the installable file system
classes
// to copy a file from one directory to another on the server.
//
// Command syntax:
// IFSCopyFile system sourceName TargetName
//
// For example,
// IFSCopyFile MySystem /path1/path2/file.ext
/path3/path4/path5/file.ext
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class IFSCopyFile extends Object
{
 public static void main(String[] parameters)
 {
 System.out.println(" ");

 String sourceName = "";
 String targetName = "";
 String system = "";
 byte[] buffer = new byte[1024 * 64];

 IFSFileInputStream source = null;
 IFSFileOutputStream target = null;

 // if all three parameters were not specified, display help text and
exit.

 if (parameters.length > 2)
 {

 // Assume the first parameter is the system name,
 // the second parameter is the source name and
 // the third parameter is the target name.

 system = parameters[0];
 sourceName = parameters[1];
 targetName = parameters[2];

 try
 {
 // Create an AS400 object for the server that holds the files.

 AS400 as400 = new AS400(system);

 // Open the source file for exclusive access.

 source = new IFSFileInputStream(as400,
 sourceName,
 IFSFileInputStream.SHARE_NONE);

 System.out.println("Source file successfully opened");

 // Open the target file for exclusive access.

 target = new IFSFileOutputStream(as400,
 targetName,
 IFSFileOutputStream.SHARE_NONE,
 false);

 System.out.println("Target file successfully opened");

 // Read the first 64K bytes from the source file.

 int bytesRead = source.read(buffer);

 // While there is data in the source file copy the data from
 // the source file to the target file.

 while (bytesRead > 0)
 {
 target.write(buffer, 0, bytesRead);
 bytesRead = source.read(buffer);
 }

 System.out.println("Data successfully copied");

 // Clean up by closing the source and target files.

 source.close();
 target.close();

 // Get the last changed date/time from the source file and
 // set it on the target file.

 IFSFile src = new IFSFile(as400, sourceName);
 long dateTime = src.lastModified();

 IFSFile tgt = new IFSFile(as400, targetName);
 tgt.setLastModified(dateTime);

 System.out.println("Date/Time successfully set on target file");
 System.out.println("Copy Successful");

 }
 catch (Exception e)

 {
 // If any of the above operations failed say the copy failed
 // and output the exception.

 System.out.println("Copy failed");
 System.out.println(e);
 }
 }

 // Display help text when parameters are incorrect.

 else
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" IFSCopyFile as400 source target");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" as400 = system that contains the files");
 System.out.println(" source = source file in /path/path/name
format");
 System.out.println(" target = target file in /path/path/name
format");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" IFSCopyFile myAS400 /dir1/dir2/a.txt
/dir3/b.txt");
 System.out.println("");
 System.out.println("");
 }

 System.exit(0);
 }
}

Example: Using the IFS classes to list the contents of a directory

Note: Read the Code example disclaimer for important legal information.

//
//
// IFSListFile example. This program uses the integrated file system
classes
// to list the contents of a directory on the server.
//
// Command syntax:
// IFSList system directory
//
// For example,
// IFSList MySystem /path1
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class IFSList extends Object
{
 public static void main(String[] parameters)
 {
 System.out.println(" ");

 String directoryName = "";
 String system = "";

 // if both parameters were not specified, display help text and exit.

 if (parameters.length >= 2)
 {

 // Assume the first parameter is the system name and
 // the second parameter is the directory name

 system = parameters[0];
 directoryName = parameters[1];

 try
 {
 // Create an AS400 object for the server that holds the files.

 AS400 as400 = new AS400(system);

 // Create the IFSFile object for the directory.

 IFSFile directory = new IFSFile(as400, directoryName);

 // Generate the list of name. Pass the list method the
 // directory filter object and the search match criteria.
 //

 // Note - this example does the processing in the filter
 // object. An alternative is to process the list after
 // it is returned from the list method call.

 String[] directoryNames = directory.list(new
MyDirectoryFilter(),"*");

 // Tell the user if the directory doesn't exist or is empty

 if (directoryNames == null)
 System.out.println("The directory does not exist");

 else if (directoryNames.length == 0)
 System.out.println("The directory is empty");
 }

 catch (Exception e)
 {
 // If any of the above operations failed say the list failed
 // and output the exception.

 System.out.println("List failed");
 System.out.println(e);
 }
 }

 // Display help text when parameters are incorrect.

 else
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" IFSList as400 directory");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" as400 = system that contains the files");
 System.out.println(" directory = directory to be listed");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" IFSCopyFile mySystem /dir1/dir2");
 System.out.println("");
 System.out.println("");
 }

 System.exit(0);
 }
}

//
//
// The directory filter class prints information from the file object.
//

// Another way to use the filter is to simply return true or false
// based on information in the file object. This lets the mainline
// function decide what to do with the list of files that meet the
// search criteria.
//
//

class MyDirectoryFilter implements IFSFileFilter
{
 public boolean accept(IFSFile file)
 {
 try
 {
 // Print the name of the current file

 System.out.print(file.getName());

 // Pad the output so the columns line up

 for (int i = file.getName().length(); i < 18; i++)
 System.out.print(" ");

 // Print the date the file was last changed.

 long changeDate = file.lastModified();
 Date d = new Date(changeDate);
 System.out.print(d);
 System.out.print(" ");

 // Print if the entry is a file or directory

 System.out.print(" ");

 if (file.isDirectory())
 System.out.println("<DIR>");
 else
 System.out.println(file.length());

 // Keep this entry. Returning true tells the IFSList object
 // to return this file in the list of entries returned to the
 // .list() method.

 return true;
 }

 catch (Exception e)
 {
 return false;
 }
 }
}

Example: Using JDBCPopulate to create and populate a table

Note: Read the Code example disclaimer for important legal information.

//
//
// JDBCPopulate example. This program uses the IBM Toolbox for Java JDBC
driver to
// create and populate a table.
//
// Command syntax:
// JDBCPopulate system collectionName tableName
//
// For example,
// JDBCPopulate MySystem MyLibrary MyTable
//
//

import java.sql.*;

public class JDBCPopulate
{

 // Strings to be added in the WORD column of the table.
 private static final String words[]
 = { "One", "Two", "Three", "Four", "Five",
 "Six", "Seven", "Eight", "Nine", "Ten",
 "Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen",
 "Sixteen", "Seventeen","Eighteen", "Nineteen", "Twenty" };

 public static void main (String[] parameters)
 {
 // Check the input parameters.
 if (parameters.length != 3) {
 System.out.println("");
 System.out.println("Usage:");
 System.out.println("");
 System.out.println(" JDBCPopulate system collectionName
tableName");
 System.out.println("");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println("");
 System.out.println(" JDBCPopulate MySystem MyLibrary
MyTable");
 System.out.println("");
 return;
 }

 String system = parameters[0];
 String collectionName = parameters[1];
 String tableName = parameters[2];

 Connection connection = null;

 try {

 // Load the IBM Toolbox for Java JDBC driver.
 DriverManager.registerDriver(new
com.ibm.as400.access.AS400JDBCDriver());

 // Get a connection to the database. Since we do not
 // provide a user id or password, a prompt will appear.
 //
 // Note that we provide a default schema here so
 // that we do not need to qualify the table name in
 // SQL statements.
 //
 connection = DriverManager.getConnection ("jdbc:as400://"
 + system + "/" + collectionName);

 // Drop the table if it already exists.
 try {
 Statement dropTable = connection.createStatement ();
 dropTable.executeUpdate ("DROP TABLE " + tableName);
 }
 catch (SQLException e) {
 // Ignore.
 }

 // Create the table.
 Statement createTable = connection.createStatement ();
 createTable.executeUpdate ("CREATE TABLE " + tableName
 + " (I INTEGER, WORD VARCHAR(20), SQUARE INTEGER, "
 + " SQUAREROOT DOUBLE)");

 // Prepare a statement for inserting rows. Since we
 // execute this multiple times, it is best to use a
 // PreparedStatement and parameter markers.
 PreparedStatement insert = connection.prepareStatement ("INSERT
INTO "
 + tableName + " (I, WORD, SQUARE, SQUAREROOT) "
 + " VALUES (?, ?, ?, ?)");

 // Populate the table.
 for (int i = 1; i <= words.length; ++i) {
 insert.setInt (1, i);
 insert.setString (2, words[i-1]);
 insert.setInt (3, i*i);
 insert.setDouble (4, Math.sqrt(i));
 insert.executeUpdate ();
 }

 // Output a completion message.
 System.out.println ("Table " + collectionName + "." + tableName
 + " has been populated.");
 }

 catch (Exception e) {
 System.out.println ();
 System.out.println ("ERROR: " + e.getMessage());
 }

 finally {

 // Clean up.
 try {

 if (connection != null)
 connection.close ();
 }
 catch (SQLException e) {
 // Ignore.
 }
 }

 System.exit (0);
 }

}

Example: Using JDBCQuery to query a table

Note: Read the Code example disclaimer for important legal information.

//
//
// JDBCQuery example. This program uses the IBM Toolbox for Java JDBC
driver to
// query a table and output its contents.
//
// Command syntax:
// JDBCQuery system collectionName tableName
//
// For example,
// JDBCQuery MySystem qiws qcustcdt
//
//

import java.sql.*;

public class JDBCQuery
{

 // Format a string so that it has the specified width.
 private static String format (String s, int width)
 {
 String formattedString;

 // The string is shorter than specified width,
 // so we need to pad with blanks.
 if (s.length() < width) {
 StringBuffer buffer = new StringBuffer (s);
 for (int i = s.length(); i < width; ++i)
 buffer.append (" ");
 formattedString = buffer.toString();
 }

 // Otherwise, we need to truncate the string.
 else
 formattedString = s.substring (0, width);

 return formattedString;
 }

 public static void main (String[] parameters)
 {
 // Check the input parameters.
 if (parameters.length != 3) {
 System.out.println("");
 System.out.println("Usage:");
 System.out.println("");
 System.out.println(" JDBCQuery system collectionName
tableName");
 System.out.println("");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");

 System.out.println("");
 System.out.println(" JDBCQuery mySystem qiws qcustcdt");
 System.out.println("");
 return;
 }

 String system = parameters[0];
 String collectionName = parameters[1];
 String tableName = parameters[2];

 Connection connection = null;

 try {

 // Load the IBM Toolbox for Java JDBC driver.
 DriverManager.registerDriver(new
com.ibm.as400.access.AS400JDBCDriver());

 // Get a connection to the database. Since we do not
 // provide a user id or password, a prompt will appear.
 connection = DriverManager.getConnection ("jdbc:as400://" +
system);
 DatabaseMetaData dmd = connection.getMetaData ();

 // Execute the query.
 Statement select = connection.createStatement ();
 ResultSet rs = select.executeQuery ("SELECT * FROM "
 + collectionName + dmd.getCatalogSeparator() + tableName);

 // Get information about the result set. Set the column
 // width to whichever is longer: the length of the label
 // or the length of the data.
 ResultSetMetaData rsmd = rs.getMetaData ();
 int columnCount = rsmd.getColumnCount ();
 String[] columnLabels = new String[columnCount];
 int[] columnWidths = new int[columnCount];
 for (int i = 1; i <= columnCount; ++i) {
 columnLabels[i-1] = rsmd.getColumnLabel (i);
 columnWidths[i-1] = Math.max (columnLabels[i-1].length(),
 rsmd.getColumnDisplaySize (i));
 }

 // Output the column headings.
 for (int i = 1; i <= columnCount; ++i) {
 System.out.print (format (rsmd.getColumnLabel(i),
columnWidths[i-1]));
 System.out.print (" ");
 }
 System.out.println ();

 // Output a dashed line.
 StringBuffer dashedLine;
 for (int i = 1; i <= columnCount; ++i) {
 for (int j = 1; j <= columnWidths[i-1]; ++j)
 System.out.print ("-");
 System.out.print (" ");
 }
 System.out.println ();

 // Iterate throught the rows in the result set and output
 // the columns for each row.

 while (rs.next ()) {
 for (int i = 1; i <= columnCount; ++i) {
 String value = rs.getString (i);
 if (rs.wasNull ())
 value = "<null>";
 System.out.print (format (value, columnWidths[i-1]));
 System.out.print (" ");
 }
 System.out.println ();
 }

 }

 catch (Exception e) {
 System.out.println ();
 System.out.println ("ERROR: " + e.getMessage());
 }

 finally {

 // Clean up.
 try {
 if (connection != null)
 connection.close ();
 }
 catch (SQLException e) {
 // Ignore.
 }
 }

 System.exit (0);
 }

}

Example: Using JobList to list job identification information

Note: Read the Code example disclaimer for important legal information.

///
//
// This program is an example of the Job support in the IBM Toolbox
// for Java. It lists job identification information for a specific
// user on the system.
//
// Command syntax:
// listJobs2 system userID password
//
///

import java.io.*;
import java.lang.*;
import java.util.*;
import com.ibm.as400.access.*;

public class listJobs2 extends Object
{

 // Create an object in case we want to call
 // any non-staic methods.
 public static void main(String[] parameters)
 {
 listJobs2 me = new listJobs2();
 me.Main(parameters);

 System.exit(0);
 }

 void Main(String[] parameters)
 {

 // If a system was not specified, display help text and
exit.
 if (parameters.length == 0)
 {
 showHelp();
 return;
 }

 // Assign the parameters to variables. The
 // first parameter is assumed to be the system
 // name the second is a userID and the third
 // is a password.
 String systemName = parameters[0];
 String userID = null;
 String password = null;

 if (parameters.length > 1)
 userID = parameters[1].toUpperCase();

 if (parameters.length >= 2)
 password = parameters[2].toUpperCase();

 System.out.println(" ");

 try
 {

 // Create an AS400 object using the system name
 // specified by the user. Set the userid and
 // password if specified by the user.
 AS400 as400 = new AS400(parameters[0]);

 if (userID != null)
 as400.setUserId(userID);

 if (password != null)
 as400.setPassword(password);

 System.out.println("retrieving list ... ");

 // Create a jobList object. This object is used
 // to retrieve the list of active jobs on the server.
 JobList jobList = new JobList(as400);

 // Get the list of active jobs.
 Enumeration list = jobList.getJobs();

 // For each job in the list ...
 while (list.hasMoreElements())
 {

 // Get a job off the list. If a userID was
 // specified then print identification information
 // only if the job's user matches the userID. If
 // no userID was specified then print information
 // for every job on the system.
 Job j = (Job) list.nextElement();

 if (userID != null)
 {
 if (j.getUser().trim().equalsIgnoreCase(userID))
 {
 System.out.println(j.getName().trim() + "." +
 j.getUser().trim() + "." +
 j.getNumber());
 }
 }

 else
 System.out.println(j.getName().trim() + "." +
 j.getUser().trim() + "." +
 j.getNumber());
 }

 }
 catch (Exception e)
 {
 System.out.println("Unexpected error");
 e.printStackTrace();
 }
 }

 // Display help text when parameters are incorrect.
 void showHelp()
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" listJobs2 System UserID Password");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" System = server to connect to");
 System.out.println(" UserID = valid userID on that system ");
 System.out.println(" Password = password for the UserID
(optional)");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" listJobs2 MYAS400 JavaUser pwd1");
 System.out.println("");
 System.out.println("");
 }
}

Example: Using JobList to get a list of jobs

Note: Read the Code example disclaimer for important legal information.

///
//
// This program is an example of the "job" classes in the IBM
// Toolbox for Java. It gets a list of jobs on the server and
// outputs the job's status followed by job identifier.
//
//
// Command syntax:
// listJobs system userID password
//
// (UserID and password are optional)
//
///

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class listJobs extends Object
{
 public static void main(String[] parameters)
 {
 listJobs me = new listJobs();
 me.Main(parameters);

 System.exit(0);
 }

 void Main(String[] parameters)
 {

 // If a system was not specified, display help text and exit.
 if (parameters.length == 0)
 {
 showHelp();
 return;
 }

 // Set up AS400 object parms. The first is the system name and must
 // be specified by the user. The second and third are optional. They
 // are the userid and password. Convert the userid and password
 // to uppercase before setting them on the AS400 object.
 String userID = null;
 String password = null;

 if (parameters.length > 1)
 userID = parameters[1].toUpperCase();

 if (parameters.length >= 2)
 password = parameters[2].toUpperCase();

 System.out.println(" ");

 try
 {

 // Create an AS400 object using the system name specified by the
user.
 AS400 as400 = new AS400(parameters[0]);

 // If a userid and/or password was specified, set them on the
 // AS400 object.
 if (userID != null)
 as400.setUserId(userID);

 if (password != null)
 as400.setPassword(password);

 // Create a job list object. Input parm is the AS400 we want job
 // information from.
 JobList jobList = new JobList(as400);

 // Get a list of jobs running on the server.
 Enumeration listOfJobs = jobList.getJobs();

 // For each job in the list print information about the job.
 while (listOfJobs.hasMoreElements())
 {
 printJobInfo((Job) listOfJobs.nextElement(), as400);
 }

 }
 catch (Exception e)
 {
 System.out.println("Unexpected error");
 System.out.println(e);
 }
 }

 void printJobInfo(Job job, AS400 as400)
 {

 // Create the various converters we need
 AS400Bin4 bin4Converter = new AS400Bin4();
 AS400Text text26Converter = new AS400Text(26, as400);
 AS400Text text16Converter = new AS400Text(16, as400);
 AS400Text text10Converter = new AS400Text(10, as400);
 AS400Text text8Converter = new AS400Text(8, as400);
 AS400Text text6Converter = new AS400Text(6, as400);
 AS400Text text4Converter = new AS400Text(4, as400);

 // We have the job name/number/etc. from the list request. Now
 // make a server API call to get the status of the job.
 try

 {
 // Create a program call object
 ProgramCall pgm = new ProgramCall(as400);

 // The server program we call has five parameters
 ProgramParameter[] parmlist = new ProgramParameter[5];

 // The first parm is a byte array that holds the output
 // data. We will allocate a 1k buffer for output data.
 parmlist[0] = new ProgramParameter(1024);

 // The second parm is the size of our output data buffer (1K).
 Integer iStatusLength = new Integer(1024);
 byte[] statusLength = bin4Converter.toBytes(iStatusLength);
 parmlist[1] = new ProgramParameter(statusLength);

 // The third parm is the name of the format of the data.
 // We will use format JOBI0200 because it has job status.
 byte[] statusFormat = text8Converter.toBytes("JOBI0200");
 parmlist[2] = new ProgramParameter(statusFormat);

 // The fourth parm is the job name is format "name user number".
 // Name must be 10 characters, user must be 10 characters and
 // number must be 6 characters. We will use a text converter
 // to do the conversion and padding.
 byte[] jobName = text26Converter.toBytes(job.getName());

 int i = text10Converter.toBytes(job.getUser(),
 jobName,
 10);

 i = text6Converter.toBytes(job.getNumber(),
 jobName,
 20);

 parmlist[3] = new ProgramParameter(jobName);

 // The last paramter is job identifier. We will leave this blank.
 byte[] jobID = text16Converter.toBytes(" ");
 parmlist[4] = new ProgramParameter(jobID);

 // Run the program.
 if (pgm.run("/QSYS.LIB/QUSRJOBI.PGM", parmlist)==false)
 {
 // if the program failed display the error message.
 AS400Message[] msgList = pgm.getMessageList();
 System.out.println(msgList[0].getText());
 }
 else
 {
 // else the program worked. Output the status followed by
 // the jobName.user.jobID
 byte[] as400Data = parmlist[0].getOutputData();
 System.out.print(" " + text4Converter.toObject(as400Data, 107)
+ " ");

 System.out.println(job.getName().trim() + "." +
 job.getUser().trim() + "." +
 job.getNumber() + " ");
 }

 }
 catch (Exception e)
 {
 System.out.println(e);
 }

 }

 // Display help text when parameters are incorrect.
 void showHelp()
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" listJobs System UserID Password");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" System = server to connect to");
 System.out.println(" UserID = valid userID on that system
(optional)");
 System.out.println(" Password = password for the UserID
(optional)");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" listJobs MYAS400 JavaUser pwd1");
 System.out.println("");
 System.out.println("");
 }
}

Example: Using JobLog to display messages in the job log

Note: Read the Code example disclaimer for important legal information.

///
//
// This program is an example of the job log fuction of the IBM
// Toolbox for Java. It will display the messages in the job log
// for a job that belongs to the current user.
//
// Command syntax:
// jobLogExample system userID password
//
// (Password is optional)
//
///

import java.lang.*;
import java.util.*;
import com.ibm.as400.access.*;

public class jobLogExample
{

 public static void main (String[] args)
 {
 // If a system and user were not specified, display help text and
exit.
 if (args.length < 2)
 {
 System.out.println("Usage: jobLogExample system userid
<password>");
 return;
 }

 String userID = null;

 try
 {
 // Create an AS400 object. The system name was passed
 // as the first command line argument. If a userid
 // and password were passed on the command line,
 // set those as well.
 AS400 system = new AS400 (args[0]);

 if (args.length > 1)
 {
 userID = args[1];
 system.setUserId(userID);
 }

 if (args.length > 2)
 system.setPassword(args[2]);

 // Create a job list object. This object will be used to get
 // the list of active jobs on the system. Once the list of
 // jobs is retrieved, the program will find a job for the
 // current user.
 JobList jobList = new JobList(system);

 // Get the list of active jobs on the AS/400
 Enumeration list = jobList.getJobs();

 boolean Continue = true;

 // Look through the list to find a job for the current user.
 while (list.hasMoreElements() && Continue)
 {
 Job j = (Job) list.nextElement();

 if (j.getUser().trim().equalsIgnoreCase(userID))
 {
 // A job matching the current user was found. Create
 // a job log object for this job.
 JobLog jlog = new JobLog(system,
 j.getName(),
 j.getUser(),
 j.getNumber());

 // Enumerate the messages in the job log then print them.
 Enumeration messageList = jlog.getMessages();

 while (messageList.hasMoreElements())
 {
 AS400Message message = (AS400Message)
messageList.nextElement();
 System.out.println(message.getText());
 }

 // We found one job matching the current user so exit.
 Continue = false;
 }
 }
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 }

 System.exit(0);
 }

}

Example: Creating spooled files

Note: Read the Code example disclaimer for important legal information.

///
//
// Example that shows creating a spooled file on a server from an input
stream.
//
///

import java.io.*;
import java.util.*;

import com.ibm.as400.access.*;

class NPExampleCreateSplf
{

// method to create the spooled file on the specified system, in the
specified
// output queue from the given input stream.
public SpooledFile createSpooledFile(AS400 system,
 OutputQueue outputQueue,
 InputStream in)
{
 SpooledFile spooledFile = null;
 try
 {
 byte[] buf = new byte[2048];
 int bytesRead;
 SpooledFileOutputStream out;
 PrintParameterList parms = new PrintParameterList();

 // create a PrintParameterList with the values that we want
 // to override from the default printer file...we will override
 // the output queue and the copies value.
 parms.setParameter(PrintObject.ATTR_COPIES, 4);
 if (outputQueue != null)
 {
 parms.setParameter(PrintObject.ATTR_OUTPUT_QUEUE,
outputQueue.getPath());
 }
 out = new SpooledFileOutputStream(system,
 parms,
 null,
 null);

 // read from the inputstream in until end of stream, passing all
data
 // to the spooled file output stream.
 do
 {
 bytesRead = in.read(buf);
 if (bytesRead != -1)
 {

 out.write(buf);
 }
 } while (bytesRead != -1);

 out.close(); // close the spooled file

 spooledFile = out.getSpooledFile(); // get a reference to the new
spooled file

 }
 catch (Exception e)
 {
 //...handle exception...
 }
 return spooledFile;
}

}

Example: Creating SCS spooled files

This example uses the SCS3812Writer class to generate an SCS data stream and write it to a spooled file on the
server.

This application can take the following arguments, or it can use the defined defaults:

Name of the server to receive the spooled file.●

Name of the outqueue on the server to receive the spooled file.●

Note: Read the Code example disclaimer for important legal information.

Note: Read the Code example disclaimer for important legal information.

///
//
// This source is an example of IBM Toolbox for Java "SCS3812Writer".
//
///

import com.ibm.as400.access.*;

class NPExampleCreateSCSSplf
{
 private static final String DEFAULT_SYSTEM = new String("RCHAS1");
 private static final String DEFAULT_OUTQ = new
String("/QSYS.LIB/QUSRSYS.LIB/PRT01.OUTQ");

 public static void main(String [] args)
 {
 try
 {
 AS400 system;
 SpooledFileOutputStream out;
 PrintParameterList parms = new PrintParameterList();
 SCS3812Writer scsWtr;

 // Process the arguments.
 if (args.length >= 1)
 {
 system = new AS400(args[0]); // Create an AS400 object
 } else {
 system = new AS400(DEFAULT_SYSTEM);
 }

 if (args.length >= 2) // Set the outq
 {
 parms.setParameter(PrintObject.ATTR_OUTPUT_QUEUE, args[1]);
 } else {
 parms.setParameter(PrintObject.ATTR_OUTPUT_QUEUE,
DEFAULT_OUTQ);
 }

 out = new SpooledFileOutputStream(system, parms, null, null);

 scsWtr = new SCS3812Writer(out, 37);

 // Write the contents of the spool file.
 scsWtr.setLeftMargin(1.0);
 scsWtr.absoluteVerticalPosition(6);
 scsWtr.setFont(scsWtr.FONT_COURIER_BOLD_5);
 scsWtr.write(" Java Printing");
 scsWtr.newLine();
 scsWtr.newLine();
 scsWtr.setCPI(10);
 scsWtr.write("This document was created using the IBM Toolbox
for Java.");
 scsWtr.newLine();
 scsWtr.write("The rest of this document shows some of the things
that");
 scsWtr.newLine();
 scsWtr.write("can be done with the SCS3812Writer class.");
 scsWtr.newLine();
 scsWtr.newLine();
 scsWtr.setUnderline(true); scsWtr.write("Setting fonts:");
scsWtr.setUnderline(false);
 scsWtr.newLine();
 scsWtr.setFont(scsWtr.FONT_COURIER_10); scsWtr.write("Courier
font ");
 scsWtr.setFont(scsWtr.FONT_COURIER_BOLD_10); scsWtr.write("
Courier bold font ");
 scsWtr.setFont(scsWtr.FONT_COURIER_ITALIC_10); scsWtr.write("
Courier italic font ");
 scsWtr.newLine();
 scsWtr.setBold(true); scsWtr.write("Courier bold italic font ");
 scsWtr.setBold(false);
 scsWtr.setCPI(10);
 scsWtr.newLine();
 scsWtr.newLine();
 scsWtr.setUnderline(true); scsWtr.write("Lines per inch:");
scsWtr.setUnderline(false);
 scsWtr.newLine();
 scsWtr.write("The following lines should print at 8 lines per
inch.");
 scsWtr.newLine();
 scsWtr.newLine();
 scsWtr.setLPI(8);
 scsWtr.write("Line one"); scsWtr.newLine();
 scsWtr.write("Line two"); scsWtr.newLine();
 scsWtr.write("Line three"); scsWtr.newLine();
 scsWtr.write("Line four"); scsWtr.newLine();
 scsWtr.write("Line five"); scsWtr.newLine();
 scsWtr.write("Line six"); scsWtr.newLine();
 scsWtr.write("Line seven"); scsWtr.newLine();
 scsWtr.write("Line eight"); scsWtr.newLine();
 scsWtr.endPage();
 scsWtr.setLPI(6);
 scsWtr.setSourceDrawer(1);
 scsWtr.setTextOrientation(0);
 scsWtr.absoluteVerticalPosition(6);
 scsWtr.write("This page should print in portrait orientation
from drawer 1.");
 scsWtr.endPage();
 scsWtr.setSourceDrawer(2);

 scsWtr.setTextOrientation(90);
 scsWtr.absoluteVerticalPosition(6);
 scsWtr.write("This page should print in landscape orientation
from drawer 2.");
 scsWtr.endPage();
 scsWtr.close();
 System.out.println("Sample spool file created.");
 System.exit(0);
 }
 catch (Exception e)
 {
 // Handle error.
 System.out.println("Exception occured while creating spooled
file. " + e);
 System.exit(0);
 }
 }
}

Example: Reading spooled files

Note: Read the Code example disclaimer for important legal information.

///
//
// Example that reads an existing server spooled file.
//
// This source is an example of IBM Toolbox for Java
"PrintObjectInputStream".
//
///
 try{
 byte[] buf = new byte[2048];
 int bytesRead;
 AS400 sys = new AS400();
 SpooledFile splf = new SpooledFile(sys, // AS400
 "MICR", // splf name
 17, // splf number
 "QPRTJOB", // job name
 "QUSER", // job user
 "020791"); // job number

 // open the spooled file for reading and get the input stream to
 // read from it.
 InputStream in = splf.getInputStream(null);

 do
 {
 // read up to buf.length bytes of raw spool data into
 // our buffer. The actual bytes read will be returned.
 // The data will be a binary printer data stream that is the
 // contents of the spooled file.
 bytesRead = in.read(buf);
 if(bytesRead != -1)
 {
 // process the spooled file data.
 System.out.println("Read " + bytesRead + " bytes");
 }
 } while(bytesRead != -1);

 in.close();
 }
 catch(Exception e)
 {
 // exception
 }

Example: Listing spooled files asynchronously (using listeners)

Note: Read the Code example disclaimer for important legal information.

///
//
// Example that shows listing all spooled files on a system Asynchronously
using
// the PrintObjectListListener interface to get feedback as the list is
being built.
// Listing Asynchronously allows the caller to start processing the list
objects
// before the entire list is built for a faster perceived response time
// for the user.
//
///

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.SpooledFileList;
import com.ibm.as400.access.SpooledFile;
import com.ibm.as400.access.ExtendedIllegalStateException;
import com.ibm.as400.access.PrintObjectListListener;
import com.ibm.as400.access.PrintObjectListEvent;

public class NPExampleListSplfAsynch extends Object
 implements PrintObjectListListener
{
 private AS400 system_;
 private boolean fListError;
 private boolean fListClosed;
 private boolean fListCompleted;
 private Exception listException;
 private int listObjectCount;

 public NPExampleListSplfAsynch(AS400 system)
 {
 system_ = system;
 }

 // list all spooled files on the system asynchronously using a listener
 public void listSpooledFiles()
 {
 fListError = false;
 fListClosed = false;
 fListCompleted = false;
 listException = null;
 listObjectCount = 0;

 try
 {
 String strSpooledFileName;
 boolean fCompleted = false;
 int listed = 0, size;

 if(system_ == null)
 {

 system_ = new AS400();
 }

 System.out.println(" Now receiving all spooled files
Asynchronously using a listener");

 SpooledFileList splfList = new SpooledFileList(system_);

 // set filters, all users, on all queues
 splfList.setUserFilter("*ALL");
 splfList.setQueueFilter("/QSYS.LIB/%ALL%.LIB/%ALL%.OUTQ");

 // add the listener.
 splfList.addPrintObjectListListener(this);

 // open the list, openAsynchronously returns immediately
 splfList.openAsynchronously();

 do
 {
 // wait for the list to have at least 25 objects or to be
done
 waitForWakeUp();

 fCompleted = splfList.isCompleted();
 size = splfList.size();

 // output the names of all objects added to the list
 // since we last woke up
 while (listed < size)
 {
 if (fListError)
 {
 System.out.println(" Exception on list - " +
listException);
 break;
 }

 if (fListClosed)
 {
 System.out.println(" The list was closed before it
completed!");
 break;
 }

 SpooledFile splf =
(SpooledFile)splfList.getObject(listed++);
 if (splf != null)
 {
 // output this spooled file name
 strSpooledFileName =
splf.getStringAttribute(SpooledFile.ATTR_SPOOLFILE);
 System.out.println(" spooled file = " +
strSpooledFileName);
 }
 }

 } while (!fCompleted);

 // clean up after we are done with the list
 splfList.close();
 splfList.removePrintObjectListListener(this);
 }

 catch(ExtendedIllegalStateException e)
 {
 System.out.println(" The list was closed before it completed!");
 }

 catch(Exception e)
 {
 // ...handle any other exceptions...
 e.printStackTrace();
 }

 }

 // This is where the foreground thread waits to be awaken by the
 // the background thread when the list is updated or it ends.
 private synchronized void waitForWakeUp()
 throws InterruptedException
 {
 // don''t go back to sleep if the listener says the list is done
 if (!fListCompleted)
 {
 wait();
 }
 }

 // The following methods implement the PrintObjectListListener interface

 // This method is invoked when the list is closed.
 public void listClosed(PrintObjectListEvent event)
 {
 System.out.println("*****The list was closed*****");
 fListClosed = true;
 synchronized(this)
 {
 // Set flag to indicate that the list has
 // completed and wake up foreground thread.
 fListCompleted = true;
 notifyAll();
 }
 }

 // This method is invoked when the list is completed.
 public void listCompleted(PrintObjectListEvent event)
 {
 System.out.println("*****The list has completed*****");
 synchronized (this)
 {
 // Set flag to indicate that the list has
 // completed and wake up foreground thread.

 fListCompleted = true;
 notifyAll();
 }
 }

 // This method is invoked if an error occurs while retrieving
 // the list.
 public void listErrorOccurred(PrintObjectListEvent event)
 {
 System.out.println("*****The list had an error*****");
 fListError = true;
 listException = event.getException();
 synchronized(this)
 {
 // Set flag to indicate that the list has
 // completed and wake up foreground thread.
 fListCompleted = true;
 notifyAll();
 }
 }

 // This method is invoked when the list is opened.
 public void listOpened(PrintObjectListEvent event)
 {
 System.out.println("*****The list was opened*****");
 listObjectCount = 0;
 }

 // This method is invoked when an object is added to the list.
 public void listObjectAdded(PrintObjectListEvent event)
 {
 // every 25 objects we'll wake up the foreground
 // thread to get the latest objects...
 if((++listObjectCount % 25) == 0)
 {
 System.out.println("*****25 more objects added to the
list*****");
 synchronized (this)
 {
 // wake up foreground thread
 notifyAll();
 }
 }
 }

 public static void main(String args[])
 {
 NPExampleListSplfAsynch list = new NPExampleListSplfAsynch(new
AS400());
 try{
 list.listSpooledFiles();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 System.exit(0);

 }

}

Example: Listing spooled files asynchronously (without using
listeners)

Note: Read the Code example disclaimer for important legal information.

///
//
// Example that shows listing all spooled files on a system Asynchronously
without
// using the PrintObjectListListener interface. After opening the list the
caller
// can do some additional work before waiting for the list to complete.
//
///
//
// This source is an example of IBM Toolbox for Java "PrintObjectList".
//
///

import java.util.Enumeration;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.SpooledFileList;
import com.ibm.as400.access.SpooledFile;

public class NPExampleListSplfAsynch2 extends Object
{
 private AS400 system_;

 public NPExampleListSplfAsynch2(AS400 system)
 {
 system_ = system;
 }

 // list all spooled files on the system asynchronously
 public void listSpooledFiles()
 {
 try
 {
 String strSpooledFileName;
 int listed, size;

 if(system_ == null)
 {
 system_ = new AS400();
 }

 System.out.println(" Now receiving all spooled files
Asynchronously without using a listener");

 SpooledFileList splfList = new SpooledFileList(system_);

 // set filters, all users, on all queues
 splfList.setUserFilter("*ALL");
 splfList.setQueueFilter("/QSYS.LIB/%ALL%.LIB/%ALL%.OUTQ");

 // open list, openAsynchronously() returns immediately
 // we have not added any listeners...
 splfList.openAsynchronously();

 System.out.println(" Do some processing before waiting...");

 // ... do some processing here while the list is being built....

 System.out.println(" Now wait for list to complete.");

 // wait for the list to complete
 splfList.waitForListToComplete();

 Enumeration enum = splfList.getObjects();

 // output the name of all objects on the list
 while(enum.hasMoreElements())
 {
 SpooledFile splf = (SpooledFile)enum.nextElement();
 if (splf != null)
 {
 // output this spooled file's name
 strSpooledFileName =
splf.getStringAttribute(SpooledFile.ATTR_SPOOLFILE);
 System.out.println(" spooled file = " +
strSpooledFileName);
 }
 }
 // clean up after we are done with the list
 splfList.close();
 }

 catch(Exception e)
 {
 // ...handle any exceptions...
 e.printStackTrace();
 }
 }

 public static void main(String args[])
 {
 NPExampleListSplfAsynch2 list = new NPExampleListSplfAsynch2(new
AS400());
 try{
 list.listSpooledFiles();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 System.exit(0);
 }
}

Example: Listing spooled files synchronously

Note: Read the Code example disclaimer for important legal information.

///
//
// Example that shows listing all spooled files on a system Synchronously.
// Listing Synchronously does not return to the caller until the complete
list
// is built. The user perceives a slower response time then listing
Asynchronously.
//
///
//
// This source is an example of IBM Toolbox for Java "PrintObjectList".
//
///

import java.util.Enumeration;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.SpooledFileList;
import com.ibm.as400.access.SpooledFile;

public class NPExampleListSplfSynch
{
 private AS400 system_ = new AS400();

 public NPExampleListSplfSynch(AS400 system)
 {
 system_ = system;
 }

 public void listSpooledFiles()
 {
 try{
 String strSpooledFileName;

 if(system_ == null)
 {
 system_ = new AS400();
 }

 System.out.println(" Now receiving all spooled files
Synchronously");

 SpooledFileList splfList = new SpooledFileList(system_);

 // set filters, all users, on all queues
 splfList.setUserFilter("*ALL");
 splfList.setQueueFilter("/QSYS.LIB/%ALL%.LIB/%ALL%.OUTQ");

 // open list, openSynchronously() returns when the list is
completed.
 splfList.openSynchronously();
 Enumeration enum = splfList.getObjects();

 while(enum.hasMoreElements())
 {
 SpooledFile splf = (SpooledFile)enum.nextElement();
 if (splf != null)
 {
 // output this spooled file's name
 strSpooledFileName =
splf.getStringAttribute(SpooledFile.ATTR_SPOOLFILE);
 System.out.println(" spooled file = " +
strSpooledFileName);
 }
 }
 // clean up after we are done with the list
 splfList.close();
 }
 catch(Exception e)
 {
 // ...handle any exceptions...
 e.printStackTrace();
 }
 }

 public static void main(String args[])
 {
 NPExampleListSplfSynch list = new NPExampleListSplfSynch(new
AS400());
 try{
 list.listSpooledFiles();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 System.exit(0);
 }
}

Example: Using ProgramCall

Note: Read the Code example disclaimer for important legal information.

///
//
// Program call example. This program calls the QWCRSSTS server program
// to retrieve the status of the system.
//
// Command syntax:
// PCSystemStatusExample system
//
// This source is an example of IBM Toolbox for Java "ProgramCall".
//
///

import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.Thread.*;
import com.ibm.as400.access.*;

public class PCSystemStatusExample extends Object
{
 public static void main(String[] parameters)
 {
 System.out.println(" ");

 // if a system was not specified, display help text and exit.

 if (parameters.length >= 1)
 {

 try
 {
 // Create an AS400 object for the server that contains the
 // program. Assume the first parameter is the system name.

 AS400 as400 = new AS400(parameters[0]);

 // Create the path to the program.

 QSYSObjectPathName programName = new QSYSObjectPathName("QSYS",

"QWCRSSTS",
 "PGM");

 // Create the program call object. Assocate the object with the
 // AS400 object that represents the server we get status from.

 ProgramCall getSystemStatus = new ProgramCall(as400);

 // Create the program parameter list. This program has five
 // parameters that will be added to this list.

 ProgramParameter[] parmlist = new ProgramParameter[5];

 // The server program returns data in parameter 1. It is an
output
 // parameter. Allocate 64 bytes for this parameter.

 parmlist[0] = new ProgramParameter(64);

 // Parameter 2 is the buffer size of parm 1. It is a numeric
input
 // parameter. Sets its value to 64, convert it to the server
format,
 // then add the parm to the parm list.

 AS400Bin4 bin4 = new AS400Bin4();
 Integer iStatusLength = new Integer(64);
 byte[] statusLength = bin4.toBytes(iStatusLength);
 parmlist[1] = new ProgramParameter(statusLength);

 // Parameter 3 is the status-format parameter. It is a string
input
 // parameter. Set the string value, convert it to the server
format,
 // then add the parameter to the parm list.

 AS400Text text1 = new AS400Text(8, as400);
 byte[] statusFormat = text1.toBytes("SSTS0200");
 parmlist[2] = new ProgramParameter(statusFormat);

 // Parameter 4 is the reset-statistics parameter. It is a
string input
 // parameter. Set the string value, convert it to the server
format,
 // then add the parameter to the parm list.

 AS400Text text3 = new AS400Text(10, as400);
 byte[] resetStats = text3.toBytes("*NO ");
 parmlist[3] = new ProgramParameter(resetStats);

 // Parameter 5 is the error info parameter. It is an
input/output
 // parameter. Add it to the parm list.

 byte[] errorInfo = new byte[32];
 parmlist[4] = new ProgramParameter(errorInfo, 0);

 // Set the program to call and the parameter list to the program
 // call object.

 getSystemStatus.setProgram(programName.getPath(), parmlist);

 // Run the program then sleep. We run the program twice because
 // the first set of results are inflated. If we discard the
first
 // set of results and run the command again five seconds later
the
 // number will be more accurate.

 getSystemStatus.run();
 Thread.sleep(5000);

 // Run the program

 if (getSystemStatus.run()!=true)
 {

 // If the program did not run get the list of error messages
 // from the program object and display the messages. The
error
 // would be something like program-not-found or
not-authorized
 // to the program.

 AS400Message[] msgList = getSystemStatus.getMessageList();

 System.out.println("The program did not run. Server
messages:");

 for (int i=0; i<msgList.length; i++)
 {
 System.out.println(msgList[i].getText());
 }
 }

 // Else the program did run.

 else
 {

 // Create a server to Java numeric converter. This converter
 // will be used in the following section to convert the
numeric
 // output from the server format to Java format.

 AS400Bin4 as400Int = new AS400Bin4();

 // Get the results of the program. Output data is in
 // a byte array in the first parameter.

 byte[] as400Data = parmlist[0].getOutputData();

 // CPU utilization is a numeric field starting at byte
 // 32 of the output buffer. Convert this number from the
 // server format to Java format and output the number.

 Integer cpuUtil = (Integer)as400Int.toObject(as400Data, 32
);
 cpuUtil = new Integer(cpuUtil.intValue()/10);
 System.out.print("CPU Utilization: ");
 System.out.print(cpuUtil);
 System.out.println("%");

 // DASD utilization is a numeric field starting at byte
 // 52 of the output buffer. Convert this number from the
 // server format to Java format and output the number.

 Integer dasdUtil = (Integer)as400Int.toObject(as400Data, 52
);
 dasdUtil = new Integer(dasdUtil.intValue()/10000);
 System.out.print("Dasd Utilization: ");
 System.out.print(dasdUtil);
 System.out.println("%");

 // Number of jobs is a numeric field starting at byte
 // 36 of the output buffer. Convert this number from the
 // server format to Java format and output the number.

 Integer nj = (Integer)as400Int.toObject(as400Data, 36);
 System.out.print("Active jobs: ");
 System.out.println(nj);

 }

 // This program is done running program so disconnect from
 // the command server on the server. Program call and

command
 // call use the same server on the server.

 as400.disconnectService(AS400.COMMAND);
 }
 catch (Exception e)
 {
 // If any of the above operations failed say the program failed
 // and output the exception.

 System.out.println("Program call failed");
 System.out.println(e);
 }
 }

 // Display help text when parameters are incorrect.

 else
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" PCSystemStatusExample myServer");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" myServer = get status of this server ");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" PCSystemStatusExample mySystem");
 System.out.println("");
 System.out.println("");
 }

 System.exit(0);
 }
}

Example: Using record-level access classes

Note: Read the Code example disclaimer for important legal information.

//
//
// Record level access example. This program will prompt the user
// for the name of the server and the file to display. The file must exist
// and should contain records. Each record in the file will be displayed
// to System.out.
//
// Calling syntax: java RLSequentialAccessExample
//
// This source is an example of IBM Toolbox for Java "RecordLevelAccess"
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class RLSequentialAccessExample
{
 public static void main(String[] parmeters)
 {
 // Created a reader to get input from the user
 BufferedReader inputStream = new BufferedReader(new
InputStreamReader(System.in),1);

 // Declare variables to hold the system name, library, file and member
names
 String systemName = "";
 String library = "";
 String file = "";
 String member = "";

 // Get the system name and and file to display from the user
 System.out.println();
 try
 {
 System.out.print("System name: ");
 systemName = inputStream.readLine();

 System.out.print("Library in which the file exists: ");
 library = inputStream.readLine();

 System.out.print("File name: ");
 file = inputStream.readLine();

 System.out.print("Member name (press enter for first member): ");
 member = inputStream.readLine();
 if (member.equals(""))
 {
 member = "*FIRST";
 }

 System.out.println();
 }
 catch (Exception e)

 {
 System.out.println("Error obtaining user input.");
 e.printStackTrace();
 System.exit(0);
 }

 // Create AS400 object and connect for the record level access
service.
 AS400 system = new AS400(systemName);
 try
 {
 system.connectService(AS400.RECORDACCESS);
 }
 catch(Exception e)
 {
 System.out.println("Unable to connect for record level access.");
 System.out.println("Check the readme file for special instructions
regarding record level access");
 e.printStackTrace();
 System.exit(0);
 }

 // Create a QSYSObjectPathName object to obtain the integrated file
system path name form
 // of the file to be displayed.
 QSYSObjectPathName filePathName = new QSYSObjectPathName(library,
file, member, "MBR");

 // Create a SequentialFile object representing the file to be
displayed
 SequentialFile theFile = new SequentialFile(system,
filePathName.getPath());

 // Retrieve the record format for the file
 AS400FileRecordDescription recordDescription = new
AS400FileRecordDescription(system, filePathName.getPath());
 try
 {
 RecordFormat[] format = recordDescription.retrieveRecordFormat();

 // Set the record format for the file
 theFile.setRecordFormat(format[0]);

 // Open the file for reading. Read 100 records at a time if
possible.
 theFile.open(AS400File.READ_ONLY, 100,
AS400File.COMMIT_LOCK_LEVEL_NONE);

 // Display each record in the file
 System.out.println("Displaying file " + library.toUpperCase() + "/"
+ file.toUpperCase() + "(" + theFile.getMemberName().trim() + "):");

 Record record = theFile.readNext();
 while (record != null)
 {
 System.out.println(record);
 record = theFile.readNext();
 }
 System.out.println();

 // Close the file

 theFile.close();

 // Disconnect from the record level access service
 system.disconnectService(AS400.RECORDACCESS);
 }
 catch (Exception e)
 {
 System.out.println("Error occurred attempting to display the
file.");
 e.printStackTrace();

 try
 {
 // Close the file
 theFile.close();
 }
 catch(Exception x)
 {
 }

 // Disconnect from the record level access service
 system.disconnectService(AS400.RECORDACCESS);
 System.exit(0);
 }

 // Make sure that the application ends; see readme for details
 System.exit(0);
 }
 }

Example: Using record-level access classes to read records from a file

Note: Read the Code example disclaimer for important legal information.

///
//
// Record-Level Access example. This program uses the record-level
// access classes to read records from a file on the server.
//
// Command syntax:
// java RLReadFile system
//
// This program reads the records from CA/400's sample database file
// (QCUSTCDT in library QIWS). If you change this example to update
// records you should make a copy of QCUSTCDT and update the copy.
//
// This source is an example of IBM Toolbox for Java "Record-level access".
//
///

import java.io.*;
import java.util.*;
import java.math.*;
import com.ibm.as400.access.*;

public class RLReadFile extends Object
{
 public static void main(String[] parameters)
 {

 String system = "";

 // Continue only if a system name was specified.

 if (parameters.length >= 1)
 {

 try
 {

 // Assume the first parameter is the system name.

 system = parameters[0];

 // Create an AS400 object for the server that has the file.

 AS400 as400 = new AS400(system);

 // Create a record description for the file. The file is
QCUSTCDT
 // in library QIWS.

 ZonedDecimalFieldDescription customerNumber =
 new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(6,0),
 "CUSNUM");

 CharacterFieldDescription lastName =
 new CharacterFieldDescription(new AS400Text(8,
as400), "LSTNAM");

 CharacterFieldDescription initials =
 new CharacterFieldDescription(new AS400Text(3,
as400), "INIT");

 CharacterFieldDescription street =
 new CharacterFieldDescription(new AS400Text(13,
as400), "STREET");

 CharacterFieldDescription city =
 new CharacterFieldDescription(new AS400Text(6,
as400), "CITY");

 CharacterFieldDescription state =
 new CharacterFieldDescription(new AS400Text(2,
as400), "STATE");

 ZonedDecimalFieldDescription zipCode =
 new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(5,0),
 "ZIPCOD");
 ZonedDecimalFieldDescription creditLimit =
 new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(4,0),
 "CDTLMT");
 ZonedDecimalFieldDescription chargeCode =
 new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(1,0),
 "CHGCOD");
 ZonedDecimalFieldDescription balanceDue =
 new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(6,2),
 "BALDUE");
 ZonedDecimalFieldDescription creditDue =
 new ZonedDecimalFieldDescription(new
AS400ZonedDecimal(6,2),
 "CDTDUE");

 // The record format name should be specified for a DDM file.
 // In the case of the QCUSTCDT file, its record format is called
CUSREC.

 RecordFormat qcustcdt = new RecordFormat("CUSREC");

 qcustcdt.addFieldDescription(customerNumber);
 qcustcdt.addFieldDescription(lastName);
 qcustcdt.addFieldDescription(initials);
 qcustcdt.addFieldDescription(street);
 qcustcdt.addFieldDescription(city);
 qcustcdt.addFieldDescription(state);
 qcustcdt.addFieldDescription(zipCode);
 qcustcdt.addFieldDescription(creditLimit);
 qcustcdt.addFieldDescription(chargeCode);
 qcustcdt.addFieldDescription(balanceDue);
 qcustcdt.addFieldDescription(creditDue);

 // Create the sequential file object that represents the
 // file on the server. We use a QSYSObjectPathName object
 // to get the name of the file into the correct format.

 QSYSObjectPathName fileName = new QSYSObjectPathName("QIWS",
 "QCUSTCDT",
 "FILE");

 SequentialFile file = new SequentialFile(as400,
fileName.getPath());

 // Let the file object know the format of the records.

 file.setRecordFormat(qcustcdt);

 // Open the file for read-only access. Specify a blocking
 // factor of 10 (the file object will get 10 records when
 // it accesses the server for data). Do not use commitment
 // control.

 file.open(SequentialFile.READ_ONLY,
 10,
 SequentialFile.COMMIT_LOCK_LEVEL_NONE);

 // Read the first record of the file.

 Record data = file.readNext();

 // Loop while there are records in the file (while we have not
 // reached end-of-file).

 while (data != null)
 {

 // Display the record only if balance due is greater than
 // zero. In that case display the customer name and
 // the balance due. The following code pulls fields out
 // of the record by field name. As the field is retrieved
 // from the record it is converted from server format to
 // Java format.

 if (((BigDecimal)data.getField("BALDUE")).floatValue() > 0.0)
 {
 System.out.print((String) data.getField("INIT") + " ");
 System.out.print((String) data.getField("LSTNAM") + " ");
 System.out.println((BigDecimal) data.getField("BALDUE"));
 }

 // Read the next record in the file.

 data = file.readNext();
 }

 // When there are no more records to read, disconnect from the
server.

 as400.disconnectAllServices();
 }

 catch (Exception e)
 {

 // If any of the above operations failed, print an error message
 // and output the exception.

 System.out.println("Could not read the file");
 System.out.println(e);
 }
 }

 // Display help text when parameters are incorrect.

 else
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" RLReadFile as400");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" as400 = system that contains the file");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" RLReadFile mySystem");
 System.out.println("");
 System.out.println("");
 System.out.println("Note, this program reads data base file
QIWS/QCUSTCDT. ");
 System.out.println("");
 System.out.println("");
 }

 System.exit(0);

 }
}

Example: Using record-level access classes to read records by key

Note: Read the Code example disclaimer for important legal information.

///
//
// Record-Level Access example. This program uses the record-level
// access classes to read records by key from a file on the server.
// The user will be prompted for the server name to which to run and
// the library in which to create file QCUSTCDTKY.
//
// Command syntax:
// java RLKeyedFileExample
//
// This program will copy the records from the iSeries Access for Windows
sample
// database file (QCUSTCDT in library QIWS) to file QCUSTCDTKY which has
// the same format as QIWS/QCUSTCDT but has set the CUSNUM field as the key
// for the file.
//
// This source is an example of IBM Toolbox for Java "Record-level access".
//
///

import java.io.*;
import java.util.*;
import java.math.*;
import com.ibm.as400.access.*;

public class RLKeyedFileExample
{
 public static void main(String[] parameters)
 {

 // Created a reader to get input from the user
 BufferedReader inputStream = new BufferedReader(new
InputStreamReader(System.in),1);

 // Declare variables to hold the system name, library, file and member
names
 String systemName = "";
 String library = "";

 // Get the system name from the user
 System.out.println();
 try
 {
 System.out.print("System name: ");
 systemName = inputStream.readLine();

 System.out.print("Library in which to create file QCUSTCDTKY: ");
 library = inputStream.readLine();
 }
 catch(Exception e)
 {
 System.out.println("Error obtaining user input.");
 e.printStackTrace();

 System.exit(0);
 }

 // Create AS400 object and connect for the record level access service.
 AS400 system = new AS400(systemName);
 try
 {
 system.connectService(AS400.RECORDACCESS);
 }
 catch(Exception e)
 {
 System.out.println("Unable to connect for record level access.");
 System.out.println("Check the readme file for special instructions
regarding record level access");
 e.printStackTrace();
 System.exit(0);
 }

 RecordFormat qcustcdtFormat = null;
 try
 {
 // Create the RecordFormat object for creating the file. The record
format for the new
 // file will be the same as the record format for file QIWS/QCUSTCDT.
However we will
 // make the CUSNUM field a key field.
 AS400FileRecordDescription recordDescription = new
AS400FileRecordDescription(system, "/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

 // There is only one record format for the file, so take the first
(and only) element
 // of the RecordFormat array returned as the RecordFormat for the
file.
 System.out.println("Retrieving record format of QIWS/QCUSTCDT...");
 qcustcdtFormat = recordDescription.retrieveRecordFormat()[0];
 // Indicate that CUSNUM is a key field
 qcustcdtFormat.addKeyFieldDescription("CUSNUM");
 }
 catch(Exception e)
 {
 System.out.println("Unable to retrieve record format from
QIWS/QCUSTCDT");
 e.printStackTrace();
 System.exit(0);
 }

 // Create the keyed file object that represents the
 // file we will create on the server. We use a QSYSObectPathName object
 // to get the name of the file into the correct format.
 QSYSObjectPathName fileName = new QSYSObjectPathName(library,
 "QCUSTCDTKY",
 "*FILE",
 "MBR");
 KeyedFile file = new KeyedFile(system, fileName.getPath());

 try
 {
 System.out.println("Creating file " + library + "/QCUSTCDTKY...");
 // Create the file using the qcustcdtFormat object

 file.create(qcustcdtFormat, "Keyed QCUSTCDT file");

 // Populate the file with the records contained in QIWS/QCUSTCDT
 copyRecords(system, library);

 // Open the file for read-only access. Because we will be randomly
 // accessing the file, specify a blocking factor of 1. The
 // commit lock level parameter will be ignored since commitment
 // control has not been started.
 file.open(AS400File.READ_ONLY,
 1,
 AS400File.COMMIT_LOCK_LEVEL_NONE);

 // Assume that we want to display the information for customers
 // 192837, 392859 and 938472
 // The CUSNUM field is a zoned decimal field of length 6 with
 // no decimal positions. Therefore, the key field value is
 // represented with a BigDecimal.
 BigDecimal[] keyValues = {new BigDecimal(192837), new
BigDecimal(392859), new BigDecimal(938472)};

 // Create the key for reading the records. The key for a KeyedFile
 // is specified with an Object[]
 Object[] key = new Object[1];

 Record data = null;
 for (int i = 0; i < keyValues.length; i++)
 {
 // Setup the key for reading
 key[0] = keyValues[i];

 // Read the record for customer number keyValues[i]
 data = file.read(key);
 if (data != null)
 {
 // Display the record only if balance due is greater than
 // zero. In that case display the customer name and
 // the balance due. The following code pulls fields out
 // of the record by field name. As the field is retrieved
 // from the record it is converted from the server format to
 // Java format.
 if (((BigDecimal)data.getField("BALDUE")).floatValue() > 0.0)
 {
 System.out.print((String) data.getField("INIT") + " ");
 System.out.print((String) data.getField("LSTNAM") + " ");
 System.out.println((BigDecimal) data.getField("BALDUE"));
 }
 }
 }

 // All done with the file
 file.close();

 // Get rid of the file from the user's system
 file.delete();
 }
 catch(Exception e)
 {
 System.out.println("Unable to create/read from QTEMP/QCUSTCDT");

 e.printStackTrace();
 try
 {
 file.close();
 // Get rid of the file from the user's system
 file.delete();
 }
 catch(Exception x)
 {
 }
 }

 // All done with record level access; disconnect from the
 // record-level access server.
 system.disconnectService(AS400.RECORDACCESS);
 System.exit(0);
 }

 public static void copyRecords(AS400 system, String library)
 {
 // Use the CommandCall class to run the CPYF command to copy the records
 // in QIWS/QCUSTCDT to QTEMP/QCUSTCDT
 CommandCall c = new CommandCall(system, "CPYF FROMFILE(QIWS/QCUSTCDT)
TOFILE(" + library + "/QCUSTCDTKY) MBROPT(*REPLACE)");
 try
 {
 System.out.println("Copying records from QIWS/QCUSTCDT to " + library
+ "/QCUSTCDTKY...");
 c.run();
 AS400Message[] msgs = c.getMessageList();
 if (!msgs[0].getID().equals("CPC2955"))
 {
 System.out.println("Unable to populate " + library + "/QCUSTCDTKY");
 for (int i = 0; i < msgs.length; i++)
 {
 System.out.println(msgs[i]);
 }
 System.exit(0);
 }
 }
 catch(Exception e)
 {
 System.out.println("Unable to populate " + library + "/QCUSTCDTKY");
 System.exit(0);
 }
 }
}

Example: Using UserList to list all of the user in a given group

Note: Read the Code example disclaimer for important legal information.

///
//
// User list example. This program lists all of the users in a given
// group.
//
// Command syntax:
// UserListExample system group
//
// This source is an example of IBM Toolbox for Java "UserList".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import java.util.Enumeration;

public class UserListExample
{

 public static void main (String[] args)
 {
 // If a system and group were not specified, then display
 // help text and exit.
 if (args.length != 2)
 {
 System.out.println("Usage: UserListExample system group");
 return;
 }

 try
 {
 // Create an AS400 object. The system name was passed
 // as the first command line argument.
 AS400 system = new AS400 (args[0]);

 // The group name was passed as the second command line
 // argument.
 String groupName = args[1];

 // Create the user list object.
 UserList userList = new UserList (system);

 // Get a list of the users in the given group.
 userList.setUserInfo (UserList.MEMBER);
 userList.setGroupInfo (groupName);
 Enumeration enum = userList.getUsers ();

 // Iterate through the list and print out the
 // users' names and descriptions.
 while (enum.hasMoreElements ())
 {

 User u = (User) enum.nextElement ();
 System.out.println ("User name: " + u.getName ());
 System.out.println ("Description: " + u.getDescription ());
 System.out.println ("");
 }

 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 }

 System.exit (0);
 }

}

Examples: JavaBeans
This section lists the code examples that are provided throughout the documentation of the bean topics.

Example: Using listeners to print a comment when you connect and disconnect to the system and run
commands

●

Example: Using applets and IBM VisualAge for Java to create buttons that run commands●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: IBM Toolbox for Java bean code
The following example creates an AS400 object and a CommandCall object, and then registers listeners on the objects.
The listeners on the objects print a comment when the server connects or disconnects and when the CommandCall object
completes the running of a command.

Note: Read the Code example disclaimer for important legal information.

//
//
// Beans example. This program uses the JavaBeans support in the
// IBM Toolbox for Java classes.
//
// Command syntax:
// BeanExample
//
//

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.CommandCall;
import com.ibm.as400.access.ConnectionListener;
import com.ibm.as400.access.ConnectionEvent;
import com.ibm.as400.access.ActionCompletedListener;
import com.ibm.as400.access.ActionCompletedEvent;

class BeanExample
{
 AS400 as400_ = new AS400();
 CommandCall cmd_ = new CommandCall(as400_);

 BeanExample()
 {
 // Whenever the system is connected or disconnected print a
 // comment. Do this by adding a listener to the AS400 object.
 // When a system is connected or disconnected, the AS400 object
 // will call this code.

 as400_.addConnectionListener
 (new ConnectionListener()
 {
 public void connected(ConnectionEvent event)
 {
 System.out.println("System connected.");
 }
 public void disconnected(ConnectionEvent event)
 {
 System.out.println("System disconnected.");
 }
 }
);

 // Whenever a command runs to completion print a comment. Do this
 // by adding a listener to the commandCall object. The commandCall
 // object will call this code when it runs a command.

 cmd_.addActionCompletedListener(
 new ActionCompletedListener()
 {
 public void actionCompleted(ActionCompletedEvent event)

 {
 System.out.println("Command completed.");
 }
 }
);
 }

 void runCommand()
 {
 try
 {
 // Run a command. The listeners will print comments when the
 // system is connected and when the command has run to
 // completion.
 cmd_.run("TESTCMD PARMS");
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }

 public static void main(String[] parameters)
 {
 BeanExample be = new BeanExample();

 be.runCommand();

 System.exit(0);
 }
}

Visual bean builder code example
This example uses the IBM VisualAge for Java Enterprise Edition V2.0 Composition Editor, but other visual bean builders are similar.
This example creates an applet for a button that, when pressed, runs a command on the iSeries or AS/400e server.

Drag and drop a Button on the applet. (The Button can be found in the bean builder on the left side of the Visual Composition
tab in Figure 1.)

●

Drop a CommandCall bean and an AS400 bean outside the applet. (The beans can be found in the bean builder on the left side
of the Visual Composition tab in Figure 1.)

●

Figure 1: VisualAge Visual Composition Editor window - gui.BeanExample

Edit the bean properties. (To edit, select the bean and then right-click to display a pop-up window, which has Properties as an
option.)

Change the label of the Button to Run command, as shown in Figure 2.

Figure 2: Changing the label of the button to Run command

❍

●

Change the system name of the AS400 bean to TestSys❍

Change the user ID of the AS400 bean to TestUser, as shown in Figure 3.

Figure 3: Changing the name of the user ID to TestUser

❍

Change the command of the CommandCall bean to SNDMSG MSG('Testing') TOUSR('TESTUSER'), as shown in
Figure 4.

Figure 4: Changing the command of the CommandCall bean

❍

Connect the AS400 bean to the CommandCall bean. The method you use to do this varies between bean builders. For this
example, do the following:

Select the CommandCall bean and then click the right mouse button❍

Select Connect❍

Select Connectable Features❍

Select system from the list of features as shown in Figure 5.❍

Select the AS400 bean❍

Select this from the pop-up menu that appears over the AS400 bean

Figure 5: Connecting AS400 bean to CommandCall bean

❍

●

Connect the button to the CommandCall bean.

Select the Button bean and then click the right mouse button❍

Select Connect❍

Select actionPerformed❍

Select the CommandCall bean❍

Select Connectable Features from the pop-up menu that appears❍

Select run() from the list of methods as shown in Figure 6.

Figure 6: Connecting a method to a button

❍

●

When you are finished, the VisualAge Visual Composition Editor window should look like Figure 7.

Figure 7: VisualAge Visual Composition Editor window - Finished bean example

Example: Constructing a panel with the GUI Builder
This example demonstrates how to use the Graphical Toolbox by constructing a simple panel. It is an overview that illustrates the basic features and operation of the Graphical Toolbox
environment. After showing you how to construct a panel, the example goes on to show you how to build a small Java application that displays the panel. In this example, the user
enters data in a text field and clicks on the Close button. The application then echos the data to the Java console.

Constructing the panel

When you start the GUI Builder, the Properties and GUI Builder windows appear. Create a new file named "MyGUI.pdml". For this example, insert a new panel. Click the "Insert
Panel" icon in File Builder window. Its name is "PANEL1". Change the title by modifying information in the Properties window; type "Simple Example" in the "Title" field. Remove
the three default buttons by selecting them with your mouse and pressing "Delete". Using the buttons in the Panel Builder window, add the three elements shown in Figure 1: a label, a
text field, and a pushbutton.

Figure 1: GUI Builder windows: Beginning to construct a panel

By selecting the label, you can change its text in the Properties window. In this example, the same has been done for the pushbutton, changing its text to "Close".

Figure 2: GUI Builder windows: Changing text in the Properties window

Text field

The text field will contain data and, therefore, you can set several properties that will allow the GUI Builder to perform some additional work. For this example, you set the Data Class
property to the name of a bean class named SampleBean. This databean will supply the data for this text field.

Figure 3: GUI Builder windows: Setting the Data Class property

Set the Attribute property to the name of the bean property that will contain the data. In this case, the name is UserData.

Figure 4: GUI Builder windows: Setting the Attribute property

Following the above steps binds the UserData property to this text field. At run-time, the Graphical Toolbox obtains the initial value for this field by calling
SampleBean.getUserData. The modified value is then sent back to the application when the panel closes by calling SampleBean.setUserData.

Specify that the user is required to supply some data, and that the data must be a string with a maximum length of 15 characters.

Figure 5: GUI Builder windows: Setting the maximum length of the text field

Indicate that the context-sensitive help for the text field will be the help topic associated with the label "Enter some data".

Figure 6: GUI Builder windows: Setting context-sensitive help for the text field

Button

Modify the style property to give the button default emphasis.

Figure 7: GUI Builder windows: Setting the Style property to give the button default emphasis

Set the ACTION property to COMMIT, which causes the setUserData method on the bean to be called when the button is selected.

Figure 8: GUI Builder windows: Setting the Action property to COMMIT

Before you save the panel, set properties at the level of the PDML file to generate both the online help skeleton and the Java bean. Then you save the file by clicking on the icon in
the GUI Builder window. When prompted, specify a file name of MyGUI.pdml.

Figure 9: GUI Builder windows: Setting properties to generate the online help skeleton and the Java bean

Generated files

After you save the panel definition, you can look at the files produced by the GUI Builder. PDML file Here is the content of MyGUI.pdml to give you an idea of how the Panel
Definition Markup Language works. Because you use PDML only through the tools provided by the Graphical Toolbox, it is not necessary to understand the format of this file in
detail:

<!-- Generated by GUI Builder -->
<PDML version="2.0" source="JAVA" basescreensize="1280x1024">

 <PANEL name="PANEL1">
 <TITLE>PANEL1</TITLE>
 <SIZE>351,162</SIZE>
 <LABEL name="LABEL1"">
 <TITLE>PANEL1.LABEL1</TITLE>
 <LOCATION>18,36</LOCATION>
 <SIZE>94,18</SIZE>

 <HELPLINK>PANEL1.LABEL1</HELPLINK>
 </LABEL>
 <TEXTFIELD name="TEXTFIELD1">
 <TITLE>PANEL1.TEXTFIELD1</TITLE>
 <LOCATION>125,31</LOCATION>
 <SIZE>191,26</SIZE>
 <DATACLASS>SampleBean</DATACLASS>
 <ATTRIBUTE>UserData</ATTRIBUTE>
 <STRING minlength="0" maxlength="15"/>
 <HELPALIAS>LABEL1</HELPALIAS>
 </TEXTFIELD>
 <BUTTON name="BUTTON1">
 <TITLE>PANEL1.BUTTON1</TITLE>
 <LOCATION>125,100</LOCATION>
 <SIZE>100,26</SIZE>
 <STYLE>DEFAULT</STYLE>
 <ACTION>COMMIT</ACTION>
 <HELPLINK>PANEL1.BUTTON1</HELPLINK>
 </BUTTON>
 </PANEL>

</PDML>

Resource bundle

Associated with every PDML file is a resource bundle. In this example, the translatable resources were saved in a PROPERTIES file, which is called MyGUI.properties. Notice that
the PROPERTIES file also contains customization data for the GUI Builder.

##Generated by GUI Builder
BUTTON_1=Close
TEXT_1=
@GenerateHelp=1
@Serialize=0
@GenerateBeans=1
LABEL_1=Enter some data:
PANEL_1.Margins=18,18,18,18,18,18
PANEL_1=Simple Example

JavaBean

The example also generated a Java source code skeleton for the JavaBean object. Here is the content of SampleBean.java:

import com.ibm.as400.ui.framework.java.*;

public class SampleBean extends Object
 implements DataBean
{
 private String m_sUserData;

 public String getUserData()
 {
 return m_sUserData;

 }

 public void setUserData(String s)
 {
 m_sUserData = s;
 }

 public Capabilities getCapabilities()
 {
 return null;
 }

 public void verifyChanges()
 {
 }

 public void save()
 {
 }

 public void load()
 {
 m_sUserData ="";
 }
}

Note that the skeleton already contains an implementation of the gettor and settor methods for the UserData property. The other methods are defined by the DataBean interface and,
therefore, are required.

The GUI Builder has already invoked the Java compiler for the skeleton and produced the corresponding class file. For the purposes of this simple example, you do not need to modify
the bean implementation. In a real Java application you would typically modify the load and save methods to transfer data from an external data source. The default implementation
of the other two methods is often sufficient. For more information, see the documentation on the DataBean interface in the javadocs for the PDML runtime framework.

Help file

The GUI Builder also creates an HTML framework called a Help Document. Help writers can easily manage help information by editing this file. For more information, see the
following topics:

Creating the Help Document●

Editing Help Documents generated by GUI builder●

Constructing the application

Once the panel definition and the generated files have been saved, you are ready to construct the application. All you need is a new Java source file that will contain the main entry
point for the application. For this example, the file is called SampleApplication.java. It contains the following code:

import com.ibm.as400.ui.framework.java.*;
import java.awt.Frame;

public class SampleApplication

{
 public static void main(String[] args)
 {
 // Instantiate the bean object that supplies data to the panel
 SampleBean bean = new SampleBean();

 // Initialize the object
 bean.load();

 // Set up to pass the bean to the panel manager
 DataBean[] beans = { bean };

 // Create the panel manager. Parameters:
 // 1. PDML file as a resource name
 // 2. Name of panel to display
 // 3. List of data objects that supply panel data
 // 4. An AWT Frame to make the panel modal

 PanelManager pm = null;
 try { pm = new PanelManager("MyGUI", "PANEL_1", beans, new Frame()); }
 catch (DisplayManagerException e)
 {
 // Something didn't work, so display a message and exit
 e.displayUserMessage(null);
 System.exit(1);
 }

 // Display the panel - we give up control here
 pm.setVisible(true);

 // Echo the saved user data
 System.out.println("SAVED USER DATA: '" + bean.getUserData() + "'");

 // Exit the application
 System.exit(0);
 }
}

It is the responsibility of the calling program to initialize the bean object or objects by calling load. If the data for a panel is supplied by multiple bean objects, then each of the objects
must be initialized before passing them to the Graphical Toolbox environment.

The class com.ibm.as400.ui.framework.java.PanelManager supplies the API for displaying standalone windows and dialogs. The name of the PDML file as supplied
on the constructor is treated as a resource name by the Graphical Toolbox - the directory, ZIP file, or JAR file containing the PDML must be identified in the classpath.

Because a Frame object is supplied on the constructor, the window will behave as a modal dialog. In a real Java application, this object might be obtained from a suitable parent
window for the dialog. Because the window is modal, control does not return to the application until the user closes the window. At that point, the application simply echoes the
modified user data and exits.

Running the application

Here is what the window looks like when the application is compiled and run:

Figure 10: The Simple Example application window

If the user presses F1 while focus is on the text field, the Graphical Toolbox will display a help browser containing the online help skeleton that the GUI Builder generated.

Figure 11: The Simple Example online help skeleton

You can edit the HTML and add actual help content for the help topics shown.

If the data in the text field is not valid (for example, if the user clicked on the Close button without supplying a value), the Graphical Toolbox will display an error message and return
focus to the field so that data can be entered.

Figure 12: Data Error message

For information on how to run this sample as an applet, see Using the Graphical Toolbox in a Browser.

Editable Comboboxes
When the bean generator creates a gettor and settor for an Editable ComboBox, by default it returns a String on
the settor and takes a string parameter on the gettor. It can be useful to change the settor to take an Object class
and the gettor to return an Object type. This allows you to determine the user selection using ChoiceDescriptors.

If a type of Object is detected for the gettor and settor, the system will expect either a ChoiceDescriptor or a
type Object instead of a formatted string.

Example

Assume that Editable is an editable ComboBox which has either a Double value, uses a system value, or is not
set.

public Object getEditable()
{
 if (m_setting == SYSTEMVALUE)
 {
 return new ChoiceDescriptor("choice1","System Value");
 }
 else if (m_setting == NOTSET)
 {
 return new ChoiceDescriptor("choice2","Value not set");
 }
 else
 {
 return m_doubleValue;
 }
}

Similarly, when a type of Object is detected for the gettor and settor, the system will return an Object which is
either a ChoiceDescriptor containing the selected choice or a type Object.

public void setEditable(Object item)
{
 if (ChoiceDescriptor.class.isAssignableForm(obj.getClass()))
 {
 if (((ChoiceDescriptor)obj).getName().equalsIgnoreCase("choice1"))
 m_setting = SYSTEMVALUE;
 else
 m_setting = NOTSET;
 }
 else if (Double.class.isAssignableFrom(obj.getClass()))
 {
 m_setting = VALUE;
 m_doubleValue = (Double)obj;
 }
 else
 { /* error processing */ }
}

Creating a panel with GUI Builder

Creating a panel with GUI Builder is simple. From the menu bar on the main GUI Builder window, select File
--> New File.

From the menu bar on the GUI Builder File window, click the Insert New Panel icon to display a panel
builder where you can insert the components for your panel. The toolbar buttons on the Panel window represent
various components that you can add to the panel. Select the component you want and then click on the place
you want to position it.

The following picture shows a panel that has been created with several of the options available to you.

Figure 1: Creating a sample Panel with GUI Builder

The sample panel in Figure 1 uses the following DataBean code to bring together the various components:

import com.ibm.as400.ui.framework.java.*;

public class PanelSampleDataBean extends Object
 implements DataBean
{
 private String m_sName;
 private Object m_oFavoriteFood;
 private ChoiceDescriptor[] m_cdFavoriteFood;
 private Object m_oAge;
 private String m_sFavoriteMusic;

 public String getName()

 {
 return m_sName;
 }

 public void setName(String s)
 {
 m_sName = s;
 }

 public Object getFavoriteFood()
 {
 return m_oFavoriteFood;
 }

 public void setFavoriteFood(Object o)
 {
 m_oFavoriteFood = o;
 }

 public ChoiceDescriptor[] getFavoriteFoodChoices()
 {
 return m_cdFavoriteFood;
 }

 public Object getAge()
 {
 return m_oAge;
 }

 public void setAge(Object o)
 {
 m_oAge = o;
 }

 public String getFavoriteMusic()
 {
 return m_sFavoriteMusic;
 }

 public void setFavoriteMusic(String s)
 {
 m_sFavoriteMusic = s;
 }

 public Capabilities getCapabilities()
 {
 return null;
 }

 public void verifyChanges()
 {
 }

 public void save()
 {
 System.out.println("Name = " + m_sName);

 System.out.println("Favorite Food = " + m_oFavoriteFood);
 System.out.println("Age = " + m_oAge);
 String sMusic = "";
 if (m_sFavoriteMusic != null)
 {
 if (m_sFavoriteMusic.equals("RADIOBUTTON1"))
 sMusic = "Rock";
 else if (m_sFavoriteMusic.equals("RADIOBUTTON2"))
 sMusic = "Jazz";
 else if (m_sFavoriteMusic.equals("RADIOBUTTON3"))
 sMusic = "Country";
 }
 System.out.println("Favorite Music = " + sMusic);
 }

 public void load()
 {
 m_sName = "Sample Name";
 m_oFavoriteFood = null;
 m_cdFavoriteFood = new ChoiceDescriptor[0];
 m_oAge = new Integer(50);
 m_sFavoriteMusic = "RADIOBUTTON1";
 }
}

The panel is the most simple component available within the GUI Builder, but from a simple panel you can
build great UI applications.

Creating a deck pane with GUI Builder

GUI Builder makes creating a deck pane simple. From the menu bar on the GUI Builder window, select File -->
New File.

From the menu bar on the GUI Builder File window, click the Insert Deck Pane tool button to display a
panel builder where you can insert the components for your deck pane. In the following example, three
components are added.

Figure 1: Creating a Deck Pane with GUI Builder

After you create the deck pane, click the Preview tool button to preview it. A deck pane looks plain until
you select the View menu.

Figure 2: Previewing the Deck Pane with GUI Builder

From the Deck Pane View menu, select the component you want to view. For this example, you can choose to
view the PanelSample, TABBEDPANE1, or the TablePanel. The following figures illustrate what you see when
you view these components.

Figure 3: Viewing the PanelSample with GUI Builder

Figure 4: Viewing TABBEDPANE1 with GUI Builder

Figure 5: Viewing the TablePanel with GUI Builder

Creating a property sheet with GUI Builder

GUI Builder makes creating a property sheet simple. From the menu bar on the main GUI Builder window,
select File --> New File.

From the menu bar on the GUI Builder File window, click the Insert Property Sheet icon to display a
panel builder where you can insert the components for your property sheet.

Figure 1: Creating a Property Sheet with GUI Builder

After you create the property sheet, use the icon to preview it. For this example, you can choose from three
tabs.

Figure 2: Previewing a Property Sheet with GUI Builder

Creating a split pane with GUI Builder

GUI Builder makes creating a split pane simple. From the menu bar on the main GUI Builder window, select
File --> New File.

From the menu bar on the GUI Builder File window, click the Insert Split Pane tool button to display a
panel builder where you can insert the components you want in your split pane. In the following example, two
components are added.

Figure 1: Creating a Split Pane with GUI Builder

After you create the split pane, click the Preview tool button icon to preview it, as shown in Figure 2.

Figure 2: Previewing the Split Pane with GUI Builder

Creating a tabbed pane with GUI Builder

GUI Builder makes creating a tabbed pane simple. From the menu bar on the main GUI Builder window, select
File --> New File.

From the menu bar on the GUI Builder File window, click the Insert Tabbed Pane icon to display a panel
builder where you can insert the components for your tabbed pane. In the following example, two components
are added.

Figure 1: Creating a Tabbed Pane in GUI Builder

After you create the tabbed pane, click the Preview tool button to preview it.

Figure 2: Previewing the Tabbed Pane with GUI Builder

Creating a wizard with GUI Builder

GUI Builder makes creating a wizard interface simple. From the menu bar on the GUI Builder window, select File -->
New File.

From the menu bar on the GUI Builder File window, click the Insert Wizard toobar button to display a panel
builder where you can add panels to the wizard.

Figure 1: Creating a Wizard with GUI Builder

After you have create the wizard, use the Preview tool button to preview it. Figure 2 shows the panel that first
displays for this example.

Figure 2: Previewing the first wizard panel with GUI Builder

Figure 2 shows the second panel that displays when the user selects Rock and clicks Next.

Figure 2: Previewing the second wizard panel with GUI Builder

Clicking Next on the second wizard panel displays the final wizard panel, as shown in Figure 3.

Figure 3: Previewing the final wizard panel with GUI Builder

Creating a toolbar with GUI Builder

GUI Builder makes creating a toolbar simple. From the menu bar on the GUI Builder window, select File -->
New File.

From the menu bar on the GUI Builder File window, click the Insert Tool Bar tool button to display a panel
builder where you can insert the components for your toolbar.

Figure 1: Creating a Tool Bar with GUI Builder

After you create the toolbar, click the Preview tool button to preview it. For this example, you can use the
toolbar to display either a property sheet or wizard.

Figure 2: Previewing the Tool Bar with GUI Builder

Creating a menubar with GUI Builder

GUI Builder makes creating a menu bar simple. From the menu bar on the GUI Builder window, select File -->
New File.

From the tool bar on the GUI Builder File window, click the Insert Menu tool button to create a panel builder
where you can insert the components for your menu.

Figure 1: GUI Builder: Creating a Menu

After you create the menu, use the Preview tool button to preview it. For this example, from the newly
created Launch menu you can select either Property Sheet or Wizard. The following figures illustrate what
you see when you select these menu items.

Figure 2: GUI Builder: Viewing Property Sheet on the Launch menu

Figure 3: GUI Builder: Viewing Wizard on the Launch menu

Example: Creating the Help Document

Creating help files with GUI Builder is simple. On the properties panel for the file you are working with, set
"Generate help" to true.

Figure 1: Setting the Generate Help property on the GUI Builder Properties panel

The GUI Builder creates an HTML framework called a Help Document, which you can edit.

In order to be used at runtime, the topics within the PDML file need to be separated into individual HTML files.
When you run Help Document to HTML Processing, the topics are broken into individual files and put into a
subdirectory named after the Help Document and PDML file. The runtime environment expects the individual
HTML files to be in a subdirectory with the same name as the Help Document and PDML file. The Help
Document to HTML Processing dialog gathers the information needed and calls the HelpDocSplitter program
to do the processing:

Figure 2: Help Document to HTML Processing dialog

The Help Document to HTML Processing is started from a command prompt by typing:

jre com.ibm.as400.ui.tools.hdoc2htmViewer

Running this command requires that your classpath be set up correctly.

To use the Help Document to HTML Processing, you first select the Help Document that has the same name as
the PDML file. Next, you specify a subdirectory with the same name as the Help Document and PDML file for
output. Select "Process" to complete the processing.

You can split up the help document from the command line with the following command:

jre com.ibm.as400.ui.tools.HelpDocSplitter "helpdocument.htm" [output
directory]

This command runs the processing that breaks up the file. You provide the name of the Help Document as input
along with an optional output directory. By default, a subdirectory of the same name as the Help Document is
created and the resulting files are put in that directory.

This is an example of what a help file may look like:

Figure 3: GUI Builder help file example

Example: Using GUI Builder
When the examples contained in this section are put together with the correct data beans working behind the scenes,
you get a total GUI application.

Figure 1 shows the first panel that displays when you run this example.

Figure 1: The GUI Builder example main window

Notice that this screen allows you to use the dynamic panel manager. Figures 2 and 3 show how you can resize the
window to be larger or smaller.

Figure 2: Resizing the GUI Builder example main window (larger)

Figure 3: Resizing the GUI Builder example main window (smaller)

When you use the dynamic panel manager, while the size of the panel and the panel controls changes, the size of the
text does not.

The panel allows you to perform the following actions:

Launch a property sheet●

Launch a wizard●

Display the samples listed in the left pane●

Launching the property sheet

You can launch the property sheet by clicking the Property Sheet toolbar button or by using the Launch menu. Being
able to choose between the toolbar and the menu illustrates linking menu items. Figure 4 shows Property Sheet being
selected from Launch menu on the GUI Builder example main window.

Figure 4: Selecting Property Sheet from the Launch menu

Selecting Property Sheet displays the panel in Figure 5.

Figure 5: Property Sheet Sample dialog

When the Property Sheet Sample first appears, Tab 1 displays by default. Figures 6 and 7 show how the panel display
changes when you select the other tabs.

Figure 6: Selecting the Panel Sample tab

Figure 7: Selecting the Table Cell Editor tab

Launching the wizard

You can launch the wizard by clicking the Wizard toolbar button or by using the Launch menu. Being able to choose
between the toolbar and the menu illustrates linking menu items. Figure 8 shows Wizard being selected from Launch
menu on the GUI Builder example main window.

Figure 8: Selecting Wizard from the Launch menu

Figure 9 shows how the first wizard dialog gives you many options.

Figure 9: Selecting Rock in the first wizard dialog

In the first wizard dialog, select Rock and click Next to display the second wizard dialog as shown in Figure 10.

Figure 10: The second wizard dialog (after selecting Rock)

On the second wizard dialog, click Next to display the final wizard dialog as shown in Figure 11.

Figure 11: The final wizard dialog

However, this example has been programmed to have a loop. Select Country in the first wizard dialog (Figure 12),
then click Next to display the second wizard dialog (Figure 13). Clicking Next in the second wizard dialog loops back
to display the first dialog again (Figure 14) instead of the final wizard dialog.

Figure 12: Selecting Country in the first wizard dialog

Figure 13: The second wizard dialog (after selecting Country)

Figure 14: Looping back to the first wizard dialog

In other words, the programmer has determined that nobody should select country as their favorite form of music.

Displaying the samples

From the GUI Builder example main window, you can also select other functions from the left pane below the toolbar.
Figure 15 shows how selecting Panel in the left pane displays the Panel sample in the right pane.

Figure 15: Selecting Panel in the left pane

The Panel sample has been programmed with an option to disable the image. Select Disable Image to display the

same screen with the image grayed out, as shown in Figure 16.

Figure 16: Selecting Disable Image in the right pane

The Panel sample also illustrates the drop-down list box option, as shown in Figure 17.

Figure 17: Selecting an item from the Favorite Food list in the right pane

Figure 18 shows how selecting Tabbed Pane in the left pane of the GUI Builder example main window displays the
Tabbed Pane sample in the right pane.

Figure 18: Selecting Tabbed Pane in the left pane

Figure 19 shows the results of selecting the Panel Sample tab in the right pane.

Figure 19: Selecting the Panel Sample tab in the right pane

Select Tab 1 again (in the right pane), then click Disable Age Field on Tab 2 to deselect it.

Figure 20: Selecting Disable Age Field on Tab 2 in the right pane

Selecting the Disable Age Field on Tab 2 option deactivates and grays out the Age field in the Panel Sample tab, as
shown in Figure 21.

Figure 21: Result of disabling age in the Panel Sample tab

Selecting Table Pane in the left pane of the GUI Builder example main window illustrates the use of a table panel
with a custom renderer and a custom cell editor, as shown in Figure 22.

Figure 22: Selecting Table Panel in the left pane

Examples from the HTML classes
The following examples show you some of the ways that you can use the HTML classes:

Example: Using the BidiOrdering class●

Example Creating HTMLAlign objects●

Example: Using the HTML form classes●

Form input class examples:

Example: Creating a ButtonFormInput object❍

Example: Creating a FileFormInput object❍

Example: Creating a HiddenFormInput object❍

Example: Creating an ImageFormInput object❍

Example: Creating a ResetFormInput object❍

Example: Creating a SubmitFormInput object❍

Example: Creating a TextFormInput object❍

Example: Creating a PasswordFormInput object❍

Example: Creating a RadioFormInput object❍

Example: Creating a CheckboxFormInput object❍

●

Example Creating HTMLHeading objects●

Example: Using the HTMLHyperlink class●

Example: Using the HTMLImage class●

HTMLList examples

Example: Creating ordered lists❍

Example: Creating unordered lists❍

Example: Creating nested lists❍

●

Example: Creating HTMLMeta tags●

Example: Creating HTMLParameter tags●

Example: Creating HTMLServlet tags●

Example: Using the HTMLText class●

HTMLTree examples

Example: Using the HTMLTree class❍

Example: Creating a traversable integrated file system tree❍

●

Layout form classes:

Example: Using the GridLayoutFormPanel class❍

Example: Using the LineLayoutFormPanel class❍

●

Example: Using the TextAreaFormElement class●

Example: Using the LabelFormOutput class●

Example: Using the SelectFormElement class●

Example: Using the SelectOption class●

Example: Using the RadioFormInputGroup class●

Example: Using the RadioFormInput class●

Example: Using the HTMLTable classes

Example: Using the HTMLTableCell class❍

Example: Using the HTMLTableRow class❍

Example: Using the HTMLTableHeader class❍

Example: Using the HTMLTableCaption class❍

●

You can also use the HTML and servlet classes together, like in this example.

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Using the HTML form classes
The following example shows you how to use the HTML form classes. You can also view a sample output from running this code. The
HTML classes used in the "showHTML" method are bold.

Note: Read the Code example disclaimer for important legal information.

//
//
// This source is an example of using the IBM Toolbox for Java HTML
// package classes, which allow you to easily build HTML Forms.
//
//

package customer;

import java.io.*;
import java.awt.Color;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.access.*;
import com.ibm.as400.util.html.*;

public class HTMLExample extends HttpServlet
{

 private static boolean found = false; // Determines if user
already exists in
 // the list of registrants.

 String regPath = "c:\\registration.txt"; // Registration information
will be stored here

 public void init(ServletConfig config)
 {

 try
 {
 super.init(config);

 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 }

 /**
 * Process the GET request.
 * @param req The request.
 * @param res The response.
 **/
 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");
 ServletOutputStream out = res.getOutputStream();

 // Display the Web using the new HTML classes
 out.println(showHTML());
 out.close();

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 String nameStr = req.getParameter("name");
 String emailStr = req.getParameter("email");
 String errorText= "";

 // Output stream to write to the servlet
 ServletOutputStream out = res.getOutputStream();

 res.setContentType("text/html");

 // Check name & e-mail parameters for valid values
 if (nameStr.length() == 0)
 errorText += "Customer Name not entered. ";
 if (emailStr.length() == 0)
 errorText += "E-mail not entered. " ;

 // If name & e-mail have both been provided, continue.
 if (errorText.length() == 0)
 {

 try
 {
 //Create the registration.txt file
 FileWriter f = new FileWriter(regPath, true);
 BufferedWriter output = new BufferedWriter(f);

 //buffered reader for searching the file
 BufferedReader in = new BufferedReader(new
FileReader(regPath));

 String line = in.readLine();

 // reset the found flag
 found = false;

 // Check to see if this customer has already registered
 // or has already used the same e-mail address
 while (!found)
 {
 // if file is empty or end of file reached.
 if (line == null)
 break;

 // if customer already registered
 if ((line.equals("Customer Name: " + nameStr)) ||
(line.equals("Email address: " + emailStr)))
 {
 // Output a message to the customer saying they have
already
 // registered
 out.println ("<HTML> " +
 "<TITLE> Toolbox Registration</TITLE> " +
 "<META HTTP-EQUIV=\"pragma\"
content=\"no-cache\"> " +
 "<BODY BGCOLOR=\"blanchedalmond\"
TEXT=\"black\"> ");
 out.println ("<P><HR>" +
 "<P>" + nameStr + ", you have already
registered using that " +
 "Name or E-mail address." +
 "<P> Thank You!...<P><HR>");

 // Create a HTMLHyperlink object and display it

 out.println ("" + new
HTMLHyperlink("./customer.HTMLExample", "Back to Registration Form") +
"</BODY></HTML>");
 found = true;
 break;

 }
 else // read the next line
 line = in.readLine();

 }

 // String object to hold data submitted from the HTML Form
 String data;

 // If the users name or e-mail aren't found in our text file,
continue.
 if (!found)
 {

//--
 // Insert the new customer info into a file
 output.newLine();
 output.write("Customer Name: " + nameStr);
 output.newLine();
 output.write("Email address: " + emailStr);
 output.newLine();

//--

//--
 //Getting "USE" checkbox from form
 data = req.getParameter("use");
 if(data != null)
 {
 output.write("Currently Using Toolbox: " + data);
 output.newLine();
 }

//--

//--
 //Getting "More Information" checkbox from form
 data = req.getParameter("contact");
 if (data != null)
 {
 output.write("Requested More Information: " + data);
 output.newLine();
 }

//--

//--
 //Getting "AS400 Version" from form
 data = req.getParameter("version");
 if (data != null)
 {
 if (data.equals("multiple versions"))
 {
 data = req.getParameter("MultiList");
 output.write("Multiple Versions: " + data);
 }

 else
 output.write("AS400 Version: " + data);

 output.newLine();
 }

//--

//--
 //Getting "Current Projects" from form
 data = req.getParameter("interest");
 if (data != null)
 {
 output.write("Using Java or Interested In: " + data);
 output.newLine();
 }

//--

//--
 //Getting "Platforms" from form
 data = req.getParameter("platform");
 if (data != null)
 {
 output.write("Platforms: " + data);
 output.newLine();
 if (data.indexOf("Other") >= 0)
 {
 output.write("Other Platforms: " +
req.getParameter("OtherPlatforms"));
 output.newLine();
 }
 }

//--

//--
 //Getting "Number of iSeries or AS/400e servers" from form
 data = req.getParameter("list1");
 if (data != null)
 {
 output.write("Number of iSeries servers: " + data);
 output.newLine();
 }

//--

//--
 //Getting "Comments" from form
 data = req.getParameter("comments");
 if (data != null && data.length() > 0)
 {
 output.write("Comments: " + data);
 output.newLine();
 }

//--

//--
 //Getting "Attachment"
 data = req.getParameter("myAttachment");
 if (data != null && data.length() > 0)
 {
 output.write("Attachment File: " + data);
 output.newLine();
 }

//--

//--
 //Getting Hidden "Copyright" infomation
 data = req.getParameter("copyright");
 if (data != null)
 {
 output.write(data);
 output.newLine();
 }

//--

 output.flush();
 output.close();

 // Print a thanks to the customer
 out.println("<HTML>");
 out.println("<TITLE>Thank You!</TITLE>");
 out.println("<META HTTP-EQUIV=\"pragma\"
content=\"no-cache\"> ");
 out.println("<BODY BGCOLOR=\"blanchedalmond\">");
 out.println("<HR><P>Thank You for Registering, " +
nameStr + "!<P><HR>");

 // Create a HTMLHyperlink object and display it
 out.println("" + new
HTMLHyperlink("./customer.HTMLExample", "Back to Registration Form"));
 out.println("</BODY></HTML>");

 }

 }
 catch (Exception e)
 {
 // Show error in browser
 out.println("<HTML>");
 out.println("<TITLE>ERROR!</TITLE>");
 out.println("<META HTTP-EQUIV=\"pragma\" content=\"no-cache\">
");
 out.println("<BODY BGCOLOR=\"blanchedalmond\">");
 out.println("
Error Message:<P>");
 out.println(e + "<P>");

 // Create a HTMLHyperlink object and display it
 out.println("" + new
HTMLHyperlink("./customer.HTMLExample", "Back to Registration Form"));
 out.println("</BODY></HTML>");

 e.printStackTrace();
 }
 }
 else
 {
 // Output a message to the customer saying customer name & e-mail
not entered. Please

 // try again
 out.println ("<HTML> " +
 "<TITLE>Invalid Registration Form</TITLE> " +
 "<META HTTP-EQUIV=\"pragma\" content=\"no-cache\"> "
+
 "<BODY BGCOLOR=\"blanchedalmond\" TEXT=\"black\"> "
);

 out.println ("<HR>ERROR in customer data - <P>" +
 errorText + "<P> Please Try Again... <HR>");

 // Create a HTMLHyperlink object and display it
 out.println("" + new
HTMLHyperlink("./customer.HTMLExample", "Back to Registration Form") +
"</BODY></HTML>");
 }
 // Close the writer
 out.close();

 }

 public void destroy(ServletConfig config)
 {
 // do nothing
 }

 public String getServletInfo()
 {
 return "My Product Registration";
 }

 private String showHTML()
 {
 // String Buffer to hold HTML Page
 StringBuffer page = new StringBuffer();

 // Create the HTML Form object
 HTMLForm form = new HTMLForm("/servlet/customer.HTMLExample");;
 HTMLText txt;

 // Build the beginning of the HTML Page and add it to the String
Buffer
 page.append("<HTML>\n");
 page.append("<TITLE> Welcome!!</TITLE>\n");
 page.append("<HEAD><SCRIPT LANGUAGE=\"JavaScript\">function
test(){alert(\"This is a sample script executed with a
ButtonFormInput.\")}</SCRIPT></HEAD>");
 page.append("<META HTTP-EQUIV=\"pragma\" content=\"no-cache\">\n");
 page.append("<BODY BGCOLOR=\"blanchedalmond\" TEXT=\"black\">
\n");

 try
 {

//--
 // Create page title using HTML Text
 txt = new HTMLText("Product Registration");
 txt.setSize(5);
 txt.setBold(true);
 txt.setColor(new Color(199, 21, 133));
 txt.setAlignment(HTMLConstants.CENTER);

 // Add HTML Text to the String Buffer
 page.append(txt.getTag(true) + "<HR>
\n");

//--

//--
 // Create a Line Layout
 LineLayoutFormPanel line = new LineLayoutFormPanel();
 txt = new HTMLText("Enter your name and e-mail address:");
 txt.setSize(4);
 line.addElement(txt);

 // Add the Line Layout to String Buffer
 page.append(line.toString());
 page.append("
");

//--

//--
 // Set the HTML Form METHOD
 form.setMethod(HTMLForm.METHOD_POST);

//--

//--
 // Create a Text input for the name.
 TextFormInput user = new TextFormInput("name");
 user.setSize(25);
 user.setMaxLength(40);

 // Create a Text input for the email address.
 TextFormInput email = new TextFormInput("email");
 email.setSize(30);
 email.setMaxLength(40);

 // Create a ImageFormInput
 ImageFormInput img = new ImageFormInput("Submit Form",
"..\\images\\myPiimages/c.gif");
 img.setAlignment(HTMLConstants.RIGHT);

//--

//--
 // Create a LineLayoutFormPanel object for the name & e-mail
address
 LineLayoutFormPanel line2 = new LineLayoutFormPanel();

 // Add elements to the line form
 line2.addElement(new LabelFormElement("Name:"));
 line2.addElement(user);
 // Create and add a Label Element to the Line Layout
 line2.addElement(new LabelFormElement("E-mail:"));
 line2.addElement(email);
 line2.addElement(img);

//--

//--
 // Create Questions line layout
 LineLayoutFormPanel line3 = new LineLayoutFormPanel();

 // Add elements to the line layout
 line3.addElement(new LineLayoutFormPanel());

 line3.addElement(new CheckboxFormInput("use", "yes", "Do you
currently use the Toolbox?", false));
 line3.addElement(new LineLayoutFormPanel());
 line3.addElement(new CheckboxFormInput("contact", "yes", "Would you
like information on future Toolbox releases?", true));
 line3.addElement(new LineLayoutFormPanel());

//--

//--
 // Create Version Radio Group
 RadioFormInputGroup group = new RadioFormInputGroup("version");

 // Add Radio Form Inputs to the Group
 group.add(new RadioFormInput("version", "v3r2", "V3R2", false));
 group.add(new RadioFormInput("version", "v4r1", "V4R1", false));
 group.add(new RadioFormInput("version", "v4r2", "V4R2", false));
 group.add(new RadioFormInput("version", "v4r3", "V4R3", false));
 group.add(new RadioFormInput("version", "v4r4", "V4R4", false));
 group.add(new RadioFormInput("version", "multiple versions",
"Multiple Versions? Which ones:", false));

 //Create a Select Form Element
 SelectFormElement mlist = new SelectFormElement("MultiList");
 mlist.setMultiple(true);
 mlist.setSize(3);

 //Create the Options for the Select Form Element
 SelectOption option1 = mlist.addOption("V3R2", "v3r2");
 SelectOption option2 = mlist.addOption("V4R1", "v4r1");
 SelectOption option3 = mlist.addOption("V4R2", "v4r2");
 SelectOption option4 = mlist.addOption("V4R3", "v4r3");
 SelectOption option5 = mlist.addOption("V4R4", "v4r4");

 // Create HTML text
 txt = new HTMLText("Current Server Level:");
 txt.setSize(4);

 // Create Grid Layout
 GridLayoutFormPanel grid1 = new GridLayoutFormPanel(3);

 // Add radio group & select form element to the grid
 grid1.addElement(txt);
 grid1.addElement(group);
 grid1.addElement(mlist);

//--

//--
 // Create Grid Layout for interests
 GridLayoutFormPanel grid2 = new GridLayoutFormPanel(1);
 txt = new HTMLText("Current Projects or Area of Interest: (check
all that apply)");
 txt.setSize(4);

 // Add elements to Grid Layout
 grid2.addElement(new LineLayoutFormPanel());
 grid2.addElement(txt);
 // Create and add a Checkbox to the Grid Layout
 grid2.addElement(new CheckboxFormInput("interest", "applications",
"Applications", true));
 grid2.addElement(new CheckboxFormInput("interest", "applets",
"Applets", false));
 grid2.addElement(new CheckboxFormInput("interest", "servlets",
"Servlets", false));

//--

//--
 // Create Line Layout for platforms
 LineLayoutFormPanel line4 = new LineLayoutFormPanel();
 txt = new HTMLText("Client Platforms Used: (check all that
apply)");
 txt.setSize(4);

 // Add elements to Line Layout
 line4.addElement(new LineLayoutFormPanel());
 line4.addElement(txt);
 line4.addElement(new LineLayoutFormPanel());
 line4.addElement(new CheckboxFormInput("platform", "95",
"Windows95", false));
 line4.addElement(new CheckboxFormInput("platform", "98",
"Windows98", false));
 line4.addElement(new CheckboxFormInput("platform", "NT",
"WindowsNT", false));
 line4.addElement(new CheckboxFormInput("platform", "OS2", "OS/2",
false));
 line4.addElement(new CheckboxFormInput("platform", "AIX", "AIX",
false));
 line4.addElement(new CheckboxFormInput("platform", "Linux",
"Linux", false));
 line4.addElement(new CheckboxFormInput("platform", "AS400",
"iSeries", false));
 line4.addElement(new CheckboxFormInput("platform", "Other",
"Other:", false));

 TextFormInput other = new TextFormInput("OtherPlatforms");
 other.setSize(20);
 other.setMaxLength(50);

 line4.addElement(other);

//--

//--
 // Create a Line Layout for number of servers
 LineLayoutFormPanel grid3 = new LineLayoutFormPanel();

 txt = new HTMLText("How many iSeries or AS/400e servers do you have?
");
 txt.setSize(4);

 // Create a Select Form Element for number of servers owned
 SelectFormElement list = new SelectFormElement("list1");
 // Create and add the Select Options to the Select Form Element
List
 SelectOption opt0 = list.addOption("0", "zero");
 SelectOption opt1 = list.addOption("1", "one", true);
 SelectOption opt2 = list.addOption("2", "two");
 SelectOption opt3 = list.addOption("3", "three");
 SelectOption opt4 = list.addOption("4", "four");
 SelectOption opt5 = new SelectOption("5+", "FiveOrMore", false);
 list.addOption(opt5);

 // Add Elements to the Grid Layout
 grid3.addElement(new LineLayoutFormPanel());
 grid3.addElement(txt);
 grid3.addElement(list);

//--

//--
 // Create a Grid Layout for Product Comments
 GridLayoutFormPanel grid4 = new GridLayoutFormPanel(1);
 txt = new HTMLText("Product Comments:");
 txt.setSize(4);

 // Add elements to the Grid Layout
 grid4.addElement(new LineLayoutFormPanel());
 grid4.addElement(txt);
 //grid4.addElement(new LineLayoutFormPanel());
 // Create a Text Area Form
 grid4.addElement(new TextAreaFormElement("comments", 5, 75));
 grid4.addElement(new LineLayoutFormPanel());

//--

//--
 // Create a Grid Layout
 GridLayoutFormPanel grid5 = new GridLayoutFormPanel(2);
 txt = new HTMLText("Would you like to sign on to a server?");
 txt.setSize(4);

 // Create a Text input and Label for the system name.
 TextFormInput sys = new TextFormInput("system");
 LabelFormElement sysLabel = new LabelFormElement("System:");

 // Create a Text input and Label for the userid.
 TextFormInput uid = new TextFormInput("uid");
 LabelFormElement uidLabel = new LabelFormElement("UserID");

 // Create a Password input and Label for the password.
 PasswordFormInput pwd = new PasswordFormInput("pwd");
 LabelFormElement pwdLabel = new LabelFormElement("Password");

 // Add the Text inputs, password inputs, and Labels to the grid
 grid5.addElement(sysLabel);
 grid5.addElement(sys);
 grid5.addElement(uidLabel);
 grid5.addElement(uid);
 grid5.addElement(pwdLabel);
 grid5.addElement(pwd);

//--

//--
 // Add the various panels created to the HTML Form in the order you
wish them to appear
 form.addElement(line2);
 form.addElement(line3);
 form.addElement(grid1);
 form.addElement(grid2);
 form.addElement(line4);
 form.addElement(grid3);
 form.addElement(grid4);
 form.addElement(txt);
 form.addElement(new LineLayoutFormPanel());
 form.addElement(grid5);
 form.addElement(new LineLayoutFormPanel());
 form.addElement(new HTMLText("Submit an attachment Here:
"));
 // Add a File Input to the form
 form.addElement(new FileFormInput("myAttachment"));
 form.addElement(new ButtonFormInput("button", "TRY ME!",
"test()"));
 // Adds a empty Line Layout, which in turn
 // adds a line break
 to the form

 form.addElement(new LineLayoutFormPanel());
 form.addElement(new LineLayoutFormPanel());
 form.addElement(new SubmitFormInput("submit", "Register"));
 form.addElement(new LineLayoutFormPanel());
 form.addElement(new LineLayoutFormPanel());
 form.addElement(new ResetFormInput("reset", "Reset"));

 // Add a Hidden Input to the form
 form.addElement(new HiddenFormInput("copyright", "(C) Copyright IBM
Corp. 1999, 1999"));

//--

 // Add the entire HTML Form to the String Buffer
 page.append(form.toString());

 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 // Add the Ending HTML tags to the Buffer
 page.append("</BODY>\n");
 page.append("</HTML>\n");

 // Return the entire HTML page string
 return page.toString();

 }
}

Example: Using HTMLTree classes
Note: Read the Code example disclaimer for important legal information.

//
//
// This source is an example of using the IBM Toolbox for Java HTML
// package classes, which allow you to easily build HTML and File Trees.
//
//

import java.io.File;
import java.io.PrintWriter;
import java.io.IOException;

import java.util.Vector;
import java.util.Properties;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.Trace;
import com.ibm.as400.access.IFSJavaFile;
import com.ibm.as400.util.html.HTMLMeta;
import com.ibm.as400.util.html.HTMLTree;
import com.ibm.as400.util.html.HTMLTreeElement;
import com.ibm.as400.util.html.URLParser;
import com.ibm.as400.util.html.DirFilter;
import com.ibm.as400.util.html.FileTreeElement;
import com.ibm.as400.util.servlet.ServletHyperlink;

/**
 * An example of using the HTMLTree and FileTreeElement classes in a
servlet.
 **/
public class TreeNav extends HttpServlet
{
 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);

 // The Toolbox uses a set of default icons to represents expanded,
collapsed, and documents within the HTMLTree.
 // To enhance those icons, the Toolbox ships three gifs (expanded.gif,
collapsed.gif, bullet.gif) in the
 // jt400Servlet.jar file. Browsers do not have the ability to find
gifs in a jar or zip file, so those images
 // need to be extracted from the jar file and placed in the
appropriate webserver directory (by default it is the
 // /html directory). Then uncomment the following lines of code and
specify the correct location in the these
 // set methods. The location can be absolute or relative.

 HTMLTreeElement.setExpandedGif("/images/expanded.gif");
 HTMLTreeElement.setCollapsedGif("/images/collapsed.gif");
 HTMLTreeElement.setDocGif("/images/bullet.gif");
 }

 /**
 * Process the GET request.
 * @param req The request.
 * @param res The response.
 **/
 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {
 HttpSession session = req.getSession(true);
 HTMLTree fileTree = (HTMLTree)session.getValue("filetree");

 // If this session does not already have a file tree, then
 // create the initial tree.
 if (fileTree == null)
 fileTree = createTree(req, resp, req.getRequestURI());

 // Set the Http servlet request on the HTMLTree.
 fileTree.setHttpServletRequest(req);

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();
 out.println("<html>\n");
 out.println(new HTMLMeta("Expires", "Mon, 03 Jan 1990 13:00:00 GMT"));
 out.println("<body>\n");

 // Get the tag for the HTMLTree.
 out.println(fileTree.getTag());

 out.println("</body>\n");
 out.println("</html>\n");
 out.close();

 // Set the session tree value, so when entering this servlet for
 // the second time, the FileTree object will be reused.
 session.putValue("filetree", fileTree);
 }

 /**
 * Process the POST request.
 * @param req The request.
 * @param res The response.
 **/
 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");
 ServletOutputStream out = res.getOutputStream();
 }

 /**
 * This method will create the initial HTMLTree.
 **/
 private HTMLTree createTree(HttpServletRequest req, HttpServletResponse
resp, String uri)
 {
 // Create an HTMLTree object.
 HTMLTree tree = new HTMLTree(req);

 try
 {
 // Create a URLParser object.
 URLParser urlParser = new URLParser(uri);

 AS400 sys = new AS400(CPUStatus.systemName_, "javactl", "jteam1");

 // Create a File object and set the root IFS directory.
 IFSJavaFile root = new IFSJavaFile(sys, "/QIBM");

 // Create a Filter and list all of the directories.
 DirFilter filter = new DirFilter();
 //File[] dirList = root.listFiles(filter);

 // Get the list of files that satisfy the directory filter.
 String[] list = root.list(filter);

 File[] dirList = new File[list.length];

 // We don't want to require webservers to use JDK1.2 because
 // most webserver JVM's are slower to upgrade to the latest JDK
level.
 // The most efficient way to create these file objects is to use
 // the listFiles(filter) method in JDK1.2 which would be done
 // like the following, instead of using the list(filter) method
 // and then converting the returned string arrary into the
appropriate
 // File array.
 // File[] dirList = root.listFiles(filter);

 for (int j=0; j<dirList.length; ++j)
 {
 if (root instanceof IFSJavaFile)
 dirList[j] = new IFSJavaFile((IFSJavaFile)root, list[j]);
 else
 dirList[j] = new File(list[j]);
 }

 for (int i=0; i<dirList.length; i++)
 {
 // Create a FileTreeElement for each directory in the list.
 FileTreeElement node = new FileTreeElement(dirList[i]);

 // Create a ServletHyperlink for the expand/collapse icons.
 ServletHyperlink sl = new ServletHyperlink(urlParser.getURI());
 //sl.setHttpServletResponse(resp);
 node.setIconUrl(sl);

 // Create a ServletHyperlink to the TreeList servlet, which will
 // display the contents of thie FileTreeElement (directory).
 ServletHyperlink tl = new ServletHyperlink("/servlet/TreeList");
 tl.setTarget("list");

 // If the ServletHyperlink doesn't have a name, then set it to
the
 // name of the directory.
 if (tl.getText() == null)
 tl.setText(dirList[i].getName());

 // Set the TextUrl for the FileTreeElement.
 node.setTextUrl(tl);

 // Add the FileTreeElement to the HTMLTree.
 tree.addElement(node);
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 return tree;
 }

 public void destroy(ServletConfig config)
 {
 // do nothing
 }

 public String getServletInfo()
 {
 return "FileTree Navigation";
 }
}

Example: Creating a traversable integrated file
system tree
(File one of three)
This example code, in conjunction with the code in the other two example files, displays an HTMLTree and
FileListElement in a servlet. The three files in the example are:

FileTreeExample.java - this file, which generates the HTML frames and starts the servlet●

TreeNav.java - builds and manages the tree●

TreeList.java - displays the contents of selections made in the TreeNav.java class●

Note: Read the Code example disclaimer for important legal information.

//
//
// This source is an example of using the IBM Toolbox for Java HTML package
// classes, which allow you to easily build HTML and File Trees.
//
//

import java.io.PrintWriter;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.util.html.HTMLMeta;

//
// An example of using frames to display an HTMLTree and FileListElement
// in a servlet.
//

public class FileTreeExample extends HttpServlet
{
 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);
 }

 /**
 * Process the GET request.
 * @param req The request.
 * @param res The response.
 **/

 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {
 resp.setContentType("text/html");

 // Set up two frames. The first, a navigation frame, will display
 // the HTMLTree, which will contain FileTreeElements and allow
 // navigation of the File system. The second frame will display/list
 // the contents of a selected directory from the navigation frame.

 PrintWriter out = resp.getWriter();
 out.println("<html>\n");
 out.println(new HTMLMeta("Expires","Mon, 04 Jan 1990 13:00:00 GMT"));
 out.println("<frameset cols=\"25%,*\">");
 out.println("<frame frameborder=\"5\" src=\"/servlet/TreeNav\"
name=\"nav\">");
 out.println("<frame frameborder=\"3\" src=\"/servlet/TreeList\"
name=\"list\">");
 out.println("</frameset>");
 out.println("</html>\n");
 out.close();
 }

 /**
 * Process the POST request.
 * @param req The request.
 * @param res The response.
 **/

 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");
 ServletOutputStream out = res.getOutputStream();
 }

 public void destroy(ServletConfig config)
 {
 // do nothing
 }

 public String getServletInfo()
 {
 return "FileTree Servlet";
 }
}

Example: Creating a traversable integrated file
system tree
(File two of three)
This example code, in conjunction with the code in the other two example files, displays an HTMLTree and
FileListElement in a servlet. The three files in the example are:

FileTreeExample.java - generates the HTML frames and starts the servlet●

TreeNav.java - this file, which builds and manages the tree●

TreeList.java - displays the contents of selections made in the TreeNav.java class●

Note: Read the Code example disclaimer for important legal information.

//
//
// This source is an example of using the IBM Toolbox for Java HTML
// package classes, which allow you to easily build HTML and File Trees.
//
//

import java.io.File;
import java.io.PrintWriter;
import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.IFSJavaFile;
import com.ibm.as400.util.html.HTMLMeta;
import com.ibm.as400.util.html.HTMLTree;
import com.ibm.as400.util.html.HTMLTreeElement;
import com.ibm.as400.util.html.URLParser;
import com.ibm.as400.util.html.DirFilter;
import com.ibm.as400.util.html.FileTreeElement;
import com.ibm.as400.util.servlet.ServletHyperlink;

//
// An example of using the HTMLTree and FileTreeElement classes
// in a servlet.
//

public class TreeNav extends HttpServlet
{
 private AS400 sys_;

 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);

 // Create an AS400 object.
 sys_ = new AS400("mySystem", "myUserID", "myPassword");

 // The Toolbox uses a set of default icons to represents expanded,
collapsed,
 // and documents within the HTMLTree. To enhance those icons, the

Toolbox ships
 // three gifs (expanded.gif, collapsed.gif, bullet.gif) in the
jt400Servlet.jar
 // file. Browsers do not have the ability to find gifs in a jar or
zip file, so
 // you need to extract those images from the jar file and place them
in the
 // appropriate webserver directory (by default it is the /html
directory). Then
 // change the following lines of code to specify the correct location
in the
 // set methods. The location can be absolute or relative.

 HTMLTreeElement.setExpandedGif("http://myServer/expanded.gif");
 HTMLTreeElement.setCollapsedGif("http://myServer/collapsed.gif");
 HTMLTreeElement.setDocGif("http://myServer/bullet.gif");
 }

 /**
 * Process the GET request.
 * @param req The request.
 * @param res The response.
 **/

 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {
 // Use session data to remember the state of the tree.
 HttpSession session = req.getSession(true);
 HTMLTree fileTree = (HTMLTree)session.getValue("filetree");

 // If this session does not already have a file tree, then
 // create the initial tree.
 if (fileTree == null)
 fileTree = createTree(req, resp, req.getRequestURI());

 // Set the Http servlet request on the HTMLTree.
 fileTree.setHttpServletRequest(req);

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();
 out.println("<html>\n");
 out.println(new HTMLMeta("Expires","Mon, 03 Jan 1990 13:00:00 GMT"));
 out.println("<body>\n");

 // Get the tag for the HTMLTree.
 out.println(fileTree.getTag());

 out.println("</body>\n");
 out.println("</html>\n");
 out.close();

 // Set the session tree value, so when entering this servlet for
 // the second time, the FileTree object will be reused.
 session.putValue("filetree", fileTree);
 }

 /**
 * Process the POST request.
 * @param req The request.

 * @param res The response.
 **/

 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");
 ServletOutputStream out = res.getOutputStream();
 }

 /**
 * This method will create the initial HTMLTree.
 **/

 private HTMLTree createTree(HttpServletRequest req,
 HttpServletResponse resp, String uri)
 {
 // Create an HTMLTree object.
 HTMLTree tree = new HTMLTree(req);

 try
 {
 // Create a URLParser object.
 URLParser urlParser = new URLParser(uri);

 // Create a File object and set the root IFS directory.
 IFSJavaFile root = new IFSJavaFile(sys_, "/QIBM");

 // Create a Filter.
 DirFilter filter = new DirFilter();

 // Get the list of files that satisfy the directory filter.
 String[] list = root.list(filter);

 File[] dirList = new File[list.length];

 // We don't want to require webservers to use JDK1.2 because
 // most webserver JVM's are slower to upgrade to the latest
 // JDK level. The most efficient way to create these file objects
 // is to use the listFiles(filter) method in JDK1.2 which would
 // be done like the following, instead of using the list(filter)
 // method and then converting the returned string arrary into the
 // appropriate File array.
 // File[] dirList = root.listFiles(filter);

 for (int j=0; j<dirList.length; ++j)
 {
 if (root instanceof IFSJavaFile)
 dirList[j] = new IFSJavaFile((IFSJavaFile)root, list[j]);
 else
 dirList[j] = new File(list[j]);
 }

 for (int i=0; i<dirList.length; i++)
 {
 // Create a FileTreeElement for each directory in the list.
 FileTreeElement node = new FileTreeElement(dirList[i]);

 // Create a ServletHyperlink for the expand/collapse icons.
 ServletHyperlink sl = new ServletHyperlink(urlParser.getURI());
 sl.setHttpServletResponse(resp);

 node.setIconUrl(sl);

 // Create a ServletHyperlink to the TreeList servlet, which will
 // display the contents of thie FileTreeElement (directory).
 ServletHyperlink tl = new ServletHyperlink("/servlet/TreeList");
 tl.setTarget("list");

 // If the ServletHyperlink doesn't have a name, then set it to
the
 // name of the directory.
 if (tl.getText() == null)
 tl.setText(dirList[i].getName());

 // Set the TextUrl for the FileTreeElement.
 node.setTextUrl(tl);

 // Add the FileTreeElement to the HTMLTree.
 tree.addElement(node);
 }

 sys_.disconnectAllServices();
 }

 catch (Exception e)
 {
 e.printStackTrace();
 }

 return tree;
 }

 public void destroy(ServletConfig config)
 {
 // do nothing
 }

 public String getServletInfo()
 {
 return "FileTree Navigation";
 }
}

Example: Creating a traversable integrated file
system tree
(File three of three)
This example code, in conjunction with the code in the other two example files, displays an HTMLTree and
FileListElement in a servlet. The three files in the example are:

FileTreeExample.java - generates the HTML frames and starts the servlet●

TreeNav.java - builds and manages the tree●

TreeList.java - this file, which displays the contents of selections made in the TreeNav.java class●

Note: Read the Code example disclaimer for important legal information.

//
//
// This source is an example of using the IBM Toolbox for Java HTML
// package classes, which allow you to easily build HTML and File Lists.
//
//

import java.io.PrintWriter;
import java.io.IOException;
import java.io.File;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.Trace;
import com.ibm.as400.access.IFSJavaFile;
import com.ibm.as400.util.html.HTMLMeta;
import com.ibm.as400.util.html.HTMLHeading;
import com.ibm.as400.util.html.HTMLConstants;
import com.ibm.as400.util.html.FileListElement;
import com.ibm.as400.util.html.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**
 * An example of using the FileListElement class in a servlet.
 **/
public class TreeList extends HttpServlet
{

 private AS400 sys_;

 /**
 * Process the GET request.
 * @param req The request.
 * @param res The response.
 **/
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {
 resp.setContentType("text/html");

 try

 {

 PrintWriter out = resp.getWriter();
 out.println("<html>\n");
 out.println(new HTMLMeta("Expires", "Mon, 02 Jan 1990 13:00:00
GMT"));
 out.println("<body>\n");

 // If the path parameter is not null, then the user has selected
an element from
 // the FileTreeElement list in the navigation frame.
 if (req.getPathInfo() != null)
 {
 // Create a FileListElement passing in an AS400 system
object and the Http servlet request.
 // The request will contain the necessary path information
to list out the contents of
 // the FileTreeElement (directory) selected.
 FileListElement fileList = new FileListElement(sys_, req);

 // Alternately, create a FileListElement from a NetServer
share name and share path.
 //
 // FileListElement fileList = new FileListElement(sys_,
req, "TreeShare", "/QIBM/ProdData/HTTP/Public/jt400");

 // Display the FileListElement contents.
 out.println(fileList.list());
 }
 else // Display this HTMLHeading if no FileTreeElement has
been selected.
 {
 HTMLHeading heading = new HTMLHeading(1,"An HTML File List
Example");
 heading.setAlign(HTMLConstants.CENTER);

 out.println(heading.getTag());
 }

 out.println("</body>\n");
 out.println("</html>\n");
 out.close();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 /**
 * Process the POST request.
 * @param req The request.
 * @param res The response.
 **/
 public void doPost (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {

 res.setContentType("text/html");
 ServletOutputStream out = res.getOutputStream();

 }

 public void init(ServletConfig config)
 throws ServletException
 {
 super.init(config);

 // Create an AS400 object.
 sys_ = new AS400("mySystem", "myUID", "myPWD");
 }
}

Example: Using HTMLTable classes
The following example shows you how the HTMLTable classes work:

// Create a default HTMLTable object.
HTMLTable table = new HTMLTable();

// Set the table attributes.
table.setAlignment(HTMLTable.CENTER);
table.setBorderWidth(1);

// Create a default HTMLTableCaption object and set the caption text.
HTMLTableCaption caption = new HTMLTableCaption();
caption.setElement("Customer Account Balances - January 1, 2000");

// Set the caption.
table.setCaption(caption);

// Create the table headers and add to the table.
HTMLTableHeader account_header = new HTMLTableHeader(new
HTMLText("ACCOUNT"));
HTMLTableHeader name_header = new HTMLTableHeader(new HTMLText("NAME"));
HTMLTableHeader balance_header = new HTMLTableHeader(new
HTMLText("BALANCE"));

table.addColumnHeader(account_header);
table.addColumnHeader(name_header);
table.addColumnHeader(balance_header);

// Add rows to the table. Each customer record represents a row in the
table.
int numCols = 3;
for (int rowIndex=0; rowIndex< numCustomers; rowIndex++)
{
 HTMLTableRow row = new HTMLTableRow();
 row.setHorizontalAlignment(HTMLTableRow.CENTER);

 HTMLText account = new HTMLText(customers[rowIndex].getAccount());
 HTMLText name = new HTMLText(customers[rowIndex].getName());
 HTMLText balance = new HTMLText(customers[rowIndex].getBalance());

 row.addColumn(new HTMLTableCell(account));
 row.addColumn(new HTMLTableCell(name));
 row.addColumn(new HTMLTableCell(balance));

 // Add the row to the table.
 table.addRow(row);
}
System.out.println(table.getTag());

The Java code example above generates the following HTML code:

<table align="center" border="1">
<caption>Customer Account Balances - January 1, 2000</caption>

<tr>
<th>ACCOUNT</th>
<th>NAME</th>
<th>BALANCE</th>
</tr>
<tr align="center">
<td>0000001</td>
<td>Customer1</td>
<td>100.00</td>
</tr>
<tr align="center">
<td>0000002</td>
<td>Customer2</td>
<td>200.00</td>
</tr>
<tr align="center">
<td>0000003</td>
<td>Customer3</td>
<td>550.00</td>
</tr>

</table>

The following table shows how the HTML code above displays in a Web browser.

Customer Account Balances - January
1, 2000

ACCOUNT NAME BALANCE

0000001 Customer1 100.00

0000002 Customer2 200.00

0000003 Customer3 550.00

Examples: Program Call Markup Language
(PCML)
The following examples use Program Call Markup Language to call OS/400 APIs, and each one links to a page
that shows the PCML source followed by a Java program.

Simple example of retrieving data: Shows the PCML source and Java program needed to retrieve
information about a user profile on the server. The API being called is the Retrieve User Information
(QSYRUSRI) API.

●

Retrieving a list of information: Shows the PCML source and Java program needed to retrieve a list of
authorized users on a server. The API being called is the Open List of Authorized Users (QGYOLAUS)
API. This example illustrates how to access an array of structures returned by a server program.

●

Retrieving multidimensional data: Shows the PCML source and Java program needed to retrieve a list
Network File System (NFS) exports from a server. The API being called is the Retrieve NFS Exports
(QZNFRTVE) API. This example illustrates how to access arrays of structures within an array of
structures.

●

Note: The proper authority for each example varies but may include specific object authorities and special
authorities. In order to run these examples, you must sign on with a user profile that has authority to do the
following:

Call the OS/400 API in the example●

Access the information being requested●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Simple example of retrieving data
This simple example has two parts:

PCML source for calling QSYRUSRI●

Java program source for calling QSYRUSRI●

PCML source for calling QSYRUSRI

<pcml version="1.0">

<!-- PCML source for calling "Retrieve user Information" (QSYRUSRI) API -->

 <!-- Format USRI0150 - Other formats are available -->
 <struct name="usri0100">
 <data name="bytesReturned" type="int" length="4"
usage="output"/>
 <data name="bytesAvailable" type="int" length="4"
usage="output"/>
 <data name="userProfile" type="char" length="10"
usage="output"/>
 <data name="previousSignonDate" type="char" length="7"
usage="output"/>
 <data name="previousSignonTime" type="char" length="6"
usage="output"/>
 <data type="byte" length="1"
usage="output"/>
 <data name="badSignonAttempts" type="int" length="4"
usage="output"/>
 <data name="status" type="char" length="10"
usage="output"/>
 <data name="passwordChangeDate" type="byte" length="8"
usage="output"/>
 <data name="noPassword" type="char" length="1"
usage="output"/>
 <data type="byte" length="1"
usage="output"/>
 <data name="passwordExpirationInterval" type="int" length="4"
usage="output"/>
 <data name="datePasswordExpires" type="byte" length="8"
usage="output"/>
 <data name="daysUntilPasswordExpires" type="int" length="4"
usage="output"/>
 <data name="setPasswordToExpire" type="char" length="1"
usage="output"/>
 <data name="displaySignonInfo" type="char" length="10"
usage="output"/>
 </struct>

 <!-- Program QSYRUSRI and its parameter list for retrieving USRI0100
format -->
 <program name="qsyrusri" path="/QSYS.lib/QSYRUSRI.pgm">
 <data name="receiver" type="struct" struct="usri0100"

usage="output"/>
 <data name="receiverLength" type="int" length="4"
usage="input" />
 <data name="format" type="char" length="8"
usage="input" init="USRI0100"/>
 <data name="profileName" type="char" length="10"
usage="input" init="*CURRENT"/>
 <data name="errorCode" type="int" length="4"
usage="input" init="0"/>
 </program>

</pcml>

Java program source for calling QSYRUSRI

import com.ibm.as400.data.ProgramCallDocument;
import com.ibm.as400.data.PcmlException;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve User Information" (QSYRUSRI) API
public class qsyrusri {

 public qsyrusri() {
 }

 public static void main(String[] argv)
 {
 AS400 as400System; // com.ibm.as400.access.AS400
 ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
 boolean rc = false; // Return code from
ProgramCallDocument.callProgram()
 String msgId, msgText; // Messages returned from the server
 Object value; // Return value from
ProgramCallDocument.getValue()

 System.setErr(System.out);

 // Construct AS400 without parameters, user will be prompted
 as400System = new AS400();

 try
 {
 // Uncomment the following to get debugging information
 //com.ibm.as400.data.PcmlMessageLog.setTraceEnabled(true);

 System.out.println("Beginning PCML Example..");
 System.out.println(" Constructing ProgramCallDocument for
QSYRUSRI API...");

 // Construct ProgramCallDocument
 // First parameter is system to connect to
 // Second parameter is pcml resource name. In this example,
 // serialized PCML file "qsyrusri.pcml.ser" or
 // PCML source file "qsyrusri.pcml" must be found in the

classpath.
 pcml = new ProgramCallDocument(as400System, "qsyrusri");

 // Set input parameters. Several parameters have default values
 // specified in the PCML source. Do not need to set them using
Java code.
 System.out.println(" Setting input parameters...");
 pcml.setValue("qsyrusri.receiverLength", new
Integer((pcml.getOutputsize("qsyrusri.receiver"))));

 // Request to call the API
 // User will be prompted to sign on to the system
 System.out.println(" Calling QSYRUSRI API requesting
information for the sign-on user.");
 rc = pcml.callProgram("qsyrusri");

 // If return code is false, we received messages from the server
 if(rc == false)
 {
 // Retrieve list of server messages
 AS400Message[] msgs = pcml.getMessageList("qsyrusri");

 // Iterate through messages and write them to standard
output
 for (int m = 0; m < msgs.length; m++)
 {
 msgId = msgs[m].getID();
 msgText = msgs[m].getText();
 System.out.println(" " + msgId + " - " + msgText);
 }
 System.out.println("** Call to QSYRUSRI failed. See messages
above **");
 System.exit(0);
 }
 // Return code was true, call to QSYRUSRI succeeded
 // Write some of the results to standard output
 else
 {
 value = pcml.getValue("qsyrusri.receiver.bytesReturned");
 System.out.println(" Bytes returned: " + value);
 value = pcml.getValue("qsyrusri.receiver.bytesAvailable");
 System.out.println(" Bytes available: " + value);
 value = pcml.getValue("qsyrusri.receiver.userProfile");
 System.out.println(" Profile name: " + value);
 value =
pcml.getValue("qsyrusri.receiver.previousSignonDate");
 System.out.println(" Previous signon date:" + value);
 value =
pcml.getValue("qsyrusri.receiver.previousSignonTime");
 System.out.println(" Previous signon time:" + value);
 }
 }
 catch (PcmlException e)
 {
 System.out.println(e.getLocalizedMessage());
 e.printStackTrace();
 System.out.println("*** Call to QSYRUSRI failed. ***");

 System.exit(0);
 }

 System.exit(0);
 } // End main()

}

Example: Retrieving a list of information
This example has two parts:

PCML source for calling QGYOLAUS●

Java program source for calling QGYOLAUS●

PCML source for calling QGYOLAUS

<pcml version="1.0">

<!-- PCML source for calling "Open List of Authorized Users" (QGYOLAUS) API
-->

 <!-- Format AUTU0150 - Other formats are available -->
 <struct name="autu0150">
 <data name="name" type="char" length="10" />
 <data name="userOrGroup" type="char" length="1" />
 <data name="groupMembers" type="char" length="1" />
 <data name="description" type="char" length="50" />
 </struct>

 <!-- List information structure (common for "Open List" type APIs) -->
 <struct name="listInfo">
 <data name="totalRcds" type="int" length="4" />
 <data name="rcdsReturned" type="int" length="4" />
 <data name="rqsHandle" type="byte" length="4" />
 <data name="rcdLength" type="int" length="4" />
 <data name="infoComplete" type="char" length="1" />
 <data name="dateCreated" type="char" length="7" />
 <data name="timeCreated" type="char" length="6" />
 <data name="listStatus" type="char" length="1" />
 <data type="byte" length="1" />
 <data name="lengthOfInfo" type="int" length="4" />
 <data name="firstRecord" type="int" length="4" />
 <data type="byte" length="40" />
 </struct>

 <!-- Program QGYOLAUS and its parameter list for retrieving AUTU0150
format -->
 <program name="qgyolaus" path="/QSYS.lib/QGY.lib/QGYOLAUS.pgm"
parseorder="listInfo receiver">
 <data name="receiver" type="struct" struct="autu0150"
usage="output"
 count="listInfo.rcdsReturned" outputsize="receiverLength" />
 <data name="receiverLength" type="int" length="4"
usage="input" init="16384" />
 <data name="listInfo" type="struct" struct="listInfo"
usage="output" />
 <data name="rcdsToReturn" type="int" length="4"
usage="input" init="264" />
 <data name="format" type="char" length="10"
usage="input" init="AUTU0150" />

 <data name="selection" type="char" length="10"
usage="input" init="*USER" />
 <data name="member" type="char" length="10"
usage="input" init="*NONE" />
 <data name="errorCode" type="int" length="4"
usage="input" init="0" />

 </program>

 <!-- Program QGYGTLE returned additional "records" from the list
 created by QGYOLAUS. -->
 <program name="qgygtle" path="/QSYS.lib/QGY.lib/QGYGTLE.pgm"
parseorder="listInfo receiver">
 <data name="receiver" type="struct" struct="autu0150"
usage="output"
 count="listInfo.rcdsReturned" outputsize="receiverLength" />
 <data name="receiverLength" type="int" length="4"
usage="input" init="16384" />
 <data name="requestHandle" type="byte" length="4"
usage="input" />
 <data name="listInfo" type="struct" struct="listInfo"
usage="output" />
 <data name="rcdsToReturn" type="int" length="4"
usage="input" init="264" />
 <data name="startingRcd" type="int" length="4"
usage="input" />
 <data name="errorCode" type="int" length="4"
usage="input" init="0" />
 </program>

 <!-- Program QGYCLST closes the list, freeing resources on the server -->
 <program name="qgyclst" path="/QSYS.lib/QGY.lib/QGYCLST.pgm" >
 <data name="requestHandle" type="byte" length="4"
usage="input" />
 <data name="errorCode" type="int" length="4"
usage="input" init="0" />
 </program>
</pcml>

Java program source for calling QGYOLAUS

import com.ibm.as400.data.ProgramCallDocument;
import com.ibm.as400.data.PcmlException;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve List of Authorized Users" (QGYOLAUS)
API
public class qgyolaus
{

 public static void main(String[] argv)
 {
 AS400 as400System; // com.ibm.as400.access.AS400
 ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument

 boolean rc = false; // Return code from
ProgramCallDocument.callProgram()
 String msgId, msgText; // Messages returned from the server
 Object value; // Return value from
ProgramCallDocument.getValue()

 int[] indices = new int[1]; // Indices for access array value
 int nbrRcds, // Number of records returned from QGYOLAUS
and QGYGTLE
 nbrUsers; // Total number of users retrieved
 String listStatus; // Status of list on the server
 byte[] requestHandle = new byte[4];

 System.setErr(System.out);

 // Construct AS400 without parameters, user will be prompted
 as400System = new AS400();

 try
 {
 // Uncomment the following to get debugging information
 //com.ibm.as400.data.PcmlMessageLog.setTraceEnabled(true);

 System.out.println("Beginning PCML Example..");
 System.out.println(" Constructing ProgramCallDocument for QGYOLAUS
API...");

 // Construct ProgramCallDocument
 // First parameter is system to connect to
 // Second parameter is pcml resource name. In this example,
 // serialized PCML file "qgyolaus.pcml.ser" or
 // PCML source file "qgyolaus.pcml" must be found in the classpath.
 pcml = new ProgramCallDocument(as400System, "qgyolaus");

 // All input parameters have default values specified in the PCML
source.
 // Do not need to set them using Java code.

 // Request to call the API
 // User will be prompted to sign on to the system
 System.out.println(" Calling QGYOLAUS API requesting information
for the sign-on user.");
 rc = pcml.callProgram("qgyolaus");

 // If return code is false, we received messages from the server
 if(rc == false)
 {
 // Retrieve list of server messages
 AS400Message[] msgs = pcml.getMessageList("qgyolaus");

 // Iterate through messages and write them to standard output
 for (int m = 0; m < msgs.length; m++)
 {
 msgId = msgs[m].getID();
 msgText = msgs[m].getText();
 System.out.println(" " + msgId + " - " + msgText);
 }

 System.out.println("** Call to QGYOLAUS failed. See messages above
**");
 System.exit(0);
 }
 // Return code was true, call to QGYOLAUS succeeded
 // Write some of the results to standard output
 else
 {
 boolean doneProcessingList = false;
 String programName = "qgyolaus";
 nbrUsers = 0;
 while (!doneProcessingList)
 {
 nbrRcds = pcml.getIntValue(programName +
".listInfo.rcdsReturned");
 requestHandle = (byte[]) pcml.getValue(programName +
".listInfo.rqsHandle");

 // Iterate through list of users
 for (indices[0] = 0; indices[0] < nbrRcds; indices[0]++)
 {
 value = pcml.getValue(programName + ".receiver.name",
indices);
 System.out.println("User: " + value);

 value = pcml.getValue(programName + ".receiver.description",
indices);
 System.out.println("\t\t" + value);
 }

 nbrUsers += nbrRcds;

 // See if we retrieved all the users.
 // If not, subsequent calls to "Get List Entries" (QGYGTLE)
 // would need to be made to retrieve the remaining users in the
list.
 listStatus = (String) pcml.getValue(programName +
".listInfo.listStatus");
 if (listStatus.equals("2") // List is marked as "Complete"
 || listStatus.equals("3")) // Or list is marked "Error
building"
 {
 doneProcessingList = true;
 }
 else
 {
 programName = "qgygtle";

 // Set input parameters for QGYGTLE
 pcml.setValue("qgygtle.requestHandle", requestHandle);
 pcml.setIntValue("qgygtle.startingRcd", nbrUsers + 1);

 // Call "Get List Entries" (QGYGTLE) to get more users from list
 rc = pcml.callProgram("qgygtle");

 // If return code is false, we received messages from the server

 if(rc == false)
 {
 // Retrieve list of server messages
 AS400Message[] msgs = pcml.getMessageList("qgygtle");

 // Iterate through messages and write them to standard output
 for (int m = 0; m < msgs.length; m++)
 {
 msgId = msgs[m].getID();
 msgText = msgs[m].getText();
 System.out.println(" " + msgId + " - " + msgText);
 }
 System.out.println("** Call to QGYGTLE failed. See messages
above **");
 System.exit(0);
 }
 // Return code was true, call to QGYGTLE succeeded

 }
 }
 System.out.println("Number of users returned: " + nbrUsers);

 // Call the "Close List" (QGYCLST) API
 pcml.setValue("qgyclst.requestHandle", requestHandle);
 rc = pcml.callProgram("qgyclst");
 }
 }
 catch(PcmlException e)
 {
 System.out.println(e.getLocalizedMessage());
 e.printStackTrace();
 System.out.println("*** Call to QGYOLAUS failed. ***");
 System.exit(0);
 }

 System.exit(0);
 }
}

Example: Retrieving multidimensional data
This example has two parts:

PCML source for calling QZNFRTVE●

Java program source for calling QZNFRTVE●

PCML source for calling QZNFRTVE

<pcml version="1.0">

 <struct name="receiver">
 <data name="lengthOfEntry" type="int" length="4" />
 <data name="dispToObjectPathName" type="int" length="4" />
 <data name="lengthOfObjectPathName" type="int" length="4" />
 <data name="ccsidOfObjectPathName" type="int" length="4" />
 <data name="readOnlyFlag" type="int" length="4" />
 <data name="nosuidFlag" type="int" length="4" />
 <data name="dispToReadWriteHostNames" type="int" length="4" />
 <data name="nbrOfReadWriteHostNames" type="int" length="4" />
 <data name="dispToRootHostNames" type="int" length="4" />
 <data name="nbrOfRootHostNames" type="int" length="4" />
 <data name="dispToAccessHostNames" type="int" length="4" />
 <data name="nbrOfAccessHostNames" type="int" length="4" />
 <data name="dispToHostOptions" type="int" length="4" />
 <data name="nbrOfHostOptions" type="int" length="4" />
 <data name="anonUserID" type="int" length="4" />
 <data name="anonUsrPrf" type="char" length="10" />
 <data name="pathName" type="char"
length="lengthOfObjectPathName"
 offset="dispToObjectPathName" offsetfrom="receiver" />

 <struct name="rwAccessList" count="nbrOfReadWriteHostNames"
 offset="dispToReadWriteHostNames" offsetfrom="receiver">
 <data name="lengthOfEntry" type="int" length="4" />
 <data name="lengthOfHostName" type="int" length="4" />
 <data name="hostName" type="char"
length="lengthOfHostName" />
 <data type="byte" length="0"
 offset="lengthOfEntry" />
 </struct>

 <struct name="rootAccessList" count="nbrOfRootHostNames"
 offset="dispToRootHostNames" offsetfrom="receiver">
 <data name="lengthOfEntry" type="int" length="4" />
 <data name="lengthOfHostName" type="int" length="4" />
 <data name="hostName" type="char"
length="lengthOfHostName" />
 <data type="byte" length="0"
 offset="lengthOfEntry" />
 </struct>

 <struct name="accessHostNames" count="nbrOfAccessHostNames"

 offset="dispToAccessHostNames" offsetfrom="receiver" >
 <data name="lengthOfEntry" type="int" length="4" />
 <data name="lengthOfHostName" type="int" length="4" />
 <data name="hostName" type="char"
length="lengthOfHostName" />
 <data type="byte" length="0"
 offset="lengthOfEntry" />
 </struct>

 <struct name="hostOptions" offset="dispToHostOptions"
offsetfrom="receiver" count="nbrOfHostOptions">
 <data name="lengthOfEntry" type="int" length="4" />
 <data name="dataFileCodepage" type="int" length="4" />
 <data name="pathNameCodepage" type="int" length="4" />
 <data name="writeModeFlag" type="int" length="4" />
 <data name="lengthOfHostName" type="int" length="4" />
 <data name="hostName" type="char"
length="lengthOfHostName" />
 <data type="byte" length="0"
 offset="lengthOfEntry" />
 </struct>

 <data type="byte" length="0" offset="lengthOfEntry" />
 </struct>

 <struct name="returnedRcdsFdbkInfo">
 <data name="bytesReturned" type="int" length="4" />
 <data name="bytesAvailable" type="int" length="4" />
 <data name="nbrOfNFSExportEntries" type="int" length="4" />
 <data name="handle" type="int" length="4" />
 </struct>

 <program name="qznfrtve" path="/QSYS.lib/QZNFRTVE.pgm"
parseorder="returnedRcdsFdbkInfo receiver" >
 <data name="receiver" type="struct" struct="receiver"
usage="output"
 count="returnedRcdsFdbkInfo.nbrOfNFSExportEntries"
outputsize="receiverLength"/>
 <data name="receiverLength" type="int" length="4" usage="input"
init="4096" />
 <data name="returnedRcdsFdbkInfo" type="struct"
struct="returnedRcdsFdbkInfo" usage="output" />
 <data name="formatName" type="char" length="8" usage="input"
init="EXPE0100" />
 <data name="objectPathName" type="char"
length="lengthObjPathName" usage="input" init="*FIRST" />
 <data name="lengthObjPathName" type="int" length="4" usage="input"
init="6" />
 <data name="ccsidObjectPathName" type="int" length="4" usage="input"
init="0" />
 <data name="desiredCCSID" type="int" length="4" usage="input"
init="0" />
 <data name="handle" type="int" length="4" usage="input"
init="0" />
 <data name="errorCode" type="int" length="4" usage="input"
init="0" />
 </program>

</pcml>

Java program source for calling QZNFRTVE

import com.ibm.as400.data.ProgramCallDocument;
import com.ibm.as400.data.PcmlException;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve NFS Exports" (QZNFRTVE) API
public class qznfrtve
{
 public static void main(String[] argv)
 {
 AS400 as400System; // com.ibm.as400.access.AS400
 ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
 boolean rc = false; // Return code from
ProgramCallDocument.callProgram()
 String msgId, msgText; // Messages returned from the server
 Object value; // Return value from
ProgramCallDocument.getValue()

 System.setErr(System.out);

 // Construct AS400 without parameters, user will be prompted
 as400System = new AS400();

 int[] indices = new int[2]; // Indices for access array value
 int nbrExports; // Number of exports returned
 int nbrOfReadWriteHostNames, nbrOfRWHostNames,
 nbrOfRootHostNames, nbrOfAccessHostnames, nbrOfHostOpts;

 try
 {
 // Uncomment the following to get debugging information
 // com.ibm.as400.data.PcmlMessageLog.setTraceEnabled(true);

 System.out.println("Beginning PCML Example..");
 System.out.println(" Constructing ProgramCallDocument for QZNFRTVE
API...");

 // Construct ProgramCallDocument
 // First parameter is system to connect to
 // Second parameter is pcml resource name. In this example,
 // serialized PCML file "qznfrtve.pcml.ser" or
 // PCML source file "qznfrtve.pcml" must be found in the classpath.
 pcml = new ProgramCallDocument(as400System, "qznfrtve");

 // Set input parameters. Several parameters have default values
 // specified in the PCML source. Do not need to set them using Java
code.
 System.out.println(" Setting input parameters...");
 pcml.setValue("qznfrtve.receiverLength", new Integer((
pcml.getOutputsize("qznfrtve.receiver"))));

 // Request to call the API
 // User will be prompted to sign on to the system
 System.out.println(" Calling QZNFRTVE API requesting NFS
exports.");
 rc = pcml.callProgram("qznfrtve");

 if (rc == false)
 {
 // Retrieve list of server messages
 AS400Message[] msgs = pcml.getMessageList("qznfrtve");

 // Iterate through messages and write them to standard output
 for (int m = 0; m < msgs.length; m++)
 {
 msgId = msgs[m].getID();
 msgText = msgs[m].getText();
 System.out.println(" " + msgId + " - " + msgText);
 }
 System.out.println("** Call to QZNFRTVE failed. See messages above
**");
 System.exit(0);
 }
 // Return code was true, call to QZNFRTVE succeeded
 // Write some of the results to standard output
 else
 {
 nbrExports =
pcml.getIntValue("qznfrtve.returnedRcdsFdbkInfo.nbrOfNFSExportEntries");
 // Iterate through list of exports
 for (indices[0] = 0; indices[0] < nbrExports; indices[0]++)
 {
 value = pcml.getValue("qznfrtve.receiver.pathName", indices);
 System.out.println("Path name = " + value);

 // Iterate and write out Read Write Host Names for this export
 nbrOfReadWriteHostNames =
pcml.getIntValue("qznfrtve.receiver.nbrOfReadWriteHostNames", indices);
 for(indices[1] = 0; indices[1] < nbrOfReadWriteHostNames;
indices[1]++)
 {
 value = pcml.getValue("qznfrtve.receiver.rwAccessList.hostName",
indices);
 System.out.println(" Read/write access host name = " +
value);
 }

 // Iterate and write out Root Host Names for this export
 nbrOfRootHostNames =
pcml.getIntValue("qznfrtve.receiver.nbrOfRootHostNames", indices);
 for(indices[1] = 0; indices[1] < nbrOfRootHostNames; indices[1]++)
 {
 value =
pcml.getValue("qznfrtve.receiver.rootAccessList.hostName", indices);
 System.out.println(" Root access host name = " + value);
 }

 // Iterate and write out Access Host Names for this export
 nbrOfAccessHostnames =
pcml.getIntValue("qznfrtve.receiver.nbrOfAccessHostNames", indices);
 for(indices[1] = 0; indices[1] < nbrOfAccessHostnames;
indices[1]++)
 {
 value =
pcml.getValue("qznfrtve.receiver.accessHostNames.hostName", indices);
 System.out.println(" Access host name = " + value);
 }

 // Iterate and write out Host Options for this export
 nbrOfHostOpts =
pcml.getIntValue("qznfrtve.receiver.nbrOfHostOptions", indices);
 for(indices[1] = 0; indices[1] < nbrOfHostOpts; indices[1]++)
 {
 System.out.println(" Host options:");
 value =
pcml.getValue("qznfrtve.receiver.hostOptions.dataFileCodepage", indices);
 System.out.println(" Data file code page = " + value);
 value =
pcml.getValue("qznfrtve.receiver.hostOptions.pathNameCodepage", indices);
 System.out.println(" Path name code page = " + value);
 value =
pcml.getValue("qznfrtve.receiver.hostOptions.writeModeFlag", indices);
 System.out.println(" Write mode flag = " + value);
 value = pcml.getValue("qznfrtve.receiver.hostOptions.hostName",
indices);
 System.out.println(" Host name = " + value);
 }
 } // end for loop iterating list of exports
 } // end call to QZNFRTVE succeeded
 }
 catch(PcmlException e)
 {
 System.out.println(e.getLocalizedMessage());
 e.printStackTrace();
 System.exit(-1);
 }

 System.exit(0);
 } // end main()
}

Examples: ReportWriter classes
This section lists the code examples that are provided throughout the documentation of the ReportWriter
classes.

JSPReportProcessor and PDFContext

Example: Using JSPReportProcessor with PDFContext●

Example: JSPReportProcessor sample JSP file●

XSLReportProcessor and PCLContext

Example: Using XSLReportProcessor with PCLContext●

Example: XSLReportProcessor sample XML file●

Example: XSLReportProcessor sample XSL file●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Using JSPReportProcessor with
PDFContext
Note: Read the Code example disclaimer for important legal information.

//
//
// The following example (JSPRunReport) uses the JSPReportProcessor and the
// PDFContext classes to obtain data from a specified URL and convert the
data
// to the PDF format. The data is then streamed to a file as a PDF document.
//
// To view the contents of an example JSP source file that you can use with
// JSPRunReport, see JSPcust_table.jsp. You can also download a zip file
// that contains the JSP example file. The zip file also contains XML and
XSL
// example files that you can use with the XSLReportProcessor example
// (PCLRunReport).
//
// Command syntax:
// java JSPRunReport <jsp_Url> <output_filename>
//
//

import java.lang.*;
import java.awt.*;
import java.io.*;
import java.net.*;
import java.awt.print.*;
import java.awt.event.*;
import java.util.LinkedList;
import java.util.ListIterator;
import java.util.HashMap;

import com.ibm.xsl.composer.flo.*;
import com.ibm.xsl.composer.areas.*;
import com.ibm.xsl.composer.framework.*;
import com.ibm.xsl.composer.java2d.*;
import com.ibm.xsl.composer.prim.*;
import com.ibm.xsl.composer.properties.*;
import com.ibm.as400.util.reportwriter.processor.*;
import com.ibm.as400.util.reportwriter.pdfwriter.*;
import java.io.IOException;
import java.io.Serializable;
import org.xml.sax.SAXException;

public class JSPRunReport

{

 public static void main(String args[])
 {
 FileOutputStream fileout = null;

 /** specify the URL that contains the data you want
 to use in your report **/
 String JSPurl = args[0];

 URL jspurl = null;
 try {
 jspurl = new URL(JSPurl);
 }
 catch (MalformedURLException e)
 {}

 /** get output PDF file name **/
 String filename = args[1];
 try {
 fileout = new FileOutputStream(filename);
 }
 catch (FileNotFoundException e)
 {}

 /** set up page format **/
 Paper paper = new Paper();
 paper.setSize(612,792);
 paper.setImageableArea(18, 18, 576, 756);
 PageFormat pf = new PageFormat();
 pf.setPaper(paper);

 /** create a PDFContext object and cast FileOutputStream
 as an OutputStream **/
 PDFContext pdfcontext = new PDFContext((OutputStream)fileout, pf);

 System.out.println(Ready to parse XSL document);

 /** create the JSPReportProcessor object and set the template
 to the specified JSP **/
 JSPReportProcessor jspprocessor = new
JSPReportProcessor(pdfcontext);
 try {
 jspprocessor.setTemplate(jspurl);
 }

 catch (NullPointerException np){
 String mes = np.getMessage();
 System.out.println(mes);
 System.exit(0);
 }

 /** process the report **/
 try {
 jspprocessor.processReport();
 }
 catch (IOException e) {
 String mes = e.getMessage();
 System.out.println(mes);
 System.exit(0);
 }
 catch (SAXException se) {
 String mes = se.getMessage();
 System.out.println(mes);
 System.exit(0);
 }

 System.exit(0);
 }
}

Example: JSPReportProcessor sample JSP file
Note: Read the Code example disclaimer for important legal information.

<?xml version="1.0"?>

<!--
 Copyright (c) 1999 The Apache Software Foundation. All rights
 reserved.
-->

<%@ page session="false"%>
<%@ page language="java" contentType="text/html" %>
<%@ page import="java.lang.*" %>
<%@ page import="java.util.*" %>

<%-- <jsp:useBean id='cust_table' scope='page' class='table.JSPcust_table'/>
--%>

<%!
 String[][] cust_data = new String [4][5];

 public void jspInit()
 {
 //cust_record_field [][] cust_data;
 // cust_record holds customer name, customer address, customer
city, customer state,
 // customer zip

 String [] cust_record_1 = {"IBM","3602 4th
St","Rochester","Mn","55901"};
 String [] cust_record_2 = {"HP","400 2nd","Springfield","Mo","33559"};
 String [] cust_record_3 = {"Wolzack","34 Hwy
52N","Lansing","Or","67895"};
 String [] cust_record_4 = {"Siems","343 60th","Salem","Tx","12345"};

 cust_data[0] = cust_record_1;
 cust_data[1] = cust_record_2;
 cust_data[2] = cust_record_3;
 cust_data[3] = cust_record_4;
 }
%>

<!-- First test of parse and compose. -->
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="theMaster" >
 <fo:region-body region-name="theRegion" margin-left=".2in"/>

 </fo:simple-page-master>
 <fo:page-sequence-master master-name="theMaster">
 <fo:single-page-master-reference master-name="thePage"/>
 </fo:page-sequence-master>
 </fo:layout-master-set>
 <fo:page-sequence master-name="theMaster">
 <fo:flow flow-name="theRegion">
 <fo:block>
 <fo:block text-align="center"> NORCAP </fo:block>
 <fo:block space-before=".2in" text-align="center"> PAN PACIFIC
HOTEL IN SAN FRANCISCO </fo:block>
 <fo:block text-align="center"> FRIDAY, DECEMBER 8-9, 2000
</fo:block>
 </fo:block>
 <fo:block space-before=".5in" font-size="8pt">
 <fo:table table-layout="fixed">
 <fo:table-column column-width="3in"/>
 <fo:table-column column-width="3in"/>
 <fo:table-column column-width="3in"/>
 <fo:table-column column-width="3in"/>
 <fo:table-column column-width="3in"/>
 <fo:table-body>
 <fo:table-row>
 <fo:table-cell column-number="1">
 <fo:block border-bottom-style="solid">NAME
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="2">
 <fo:block border-bottom-style="solid">ADDRESS
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="3">
 <fo:block border-bottom-style="solid">CITY
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="4">
 <fo:block border-bottom-style="solid">STATE
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="5">
 <fo:block border-bottom-style="solid">ZIP CODE
 </fo:block>
 </fo:table-cell>
 </fo:table-row>

 <%
 // add row to table
 for(int i = 0; i <= 3; i++)
 {
 String[] _array = cust_data[i];
 %>

 <fo:table-row>
 <fo:table-cell column-number="1">
 <fo:block space-before=".1in">
 <% if(_array[0].equals("IBM")) { %>
 <fo:inline background-color="blue">

 <% out.print(_array[0]); %>
 </fo:inline>
 <% } else { %>
 <% out.print(_array[0]); %>
 <% } %>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="2">
 <fo:block space-before=".1in">
 <% out.print(_array[1]); %>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="3">
 <fo:block space-before=".1in">
 <% out.print(_array[2]); %>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="4">
 <fo:block space-before=".1in">
 <% out.print(_array[3]); %>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="5">
 <fo:block space-before=".1in">
 <% out.print(_array[4]); %>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>

 <%
 } // end row while
 %>

 </fo:table-body>
 </fo:table>
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>

Example: Using XSLReportProcessor with
PCLContext
Note: Read the Code example disclaimer for important legal information.

//
//
// The following example (PCLRunReport) uses the XSLPReportProcessor and the
// PCLContext classes to obtain XML data and convert the data to the PCL
format.
// The data is then streamed to a printer OutputQueue.
//
// To view the contents of example XML and XSL source files that you can use
// with PCLRunReport, see realestate.xml and realestate.xsl. You can also
// download a zip file that contains the XML and XSL example files. The zip
// file also contains a JSP example file that you can use with the
// JSPReportProcessor example (JSPRunReport).
//
// Command syntax:
// java PCLRunReport <xml_file> <xsl_file>
//
//

import java.lang.*;
import java.awt.*;
import java.io.*;
import java.awt.print.*;
import java.awt.event.*;
import java.util.LinkedList;
import java.util.ListIterator;
import java.util.HashMap;

import com.ibm.xsl.composer.flo.*;
import com.ibm.xsl.composer.areas.*;
import com.ibm.xsl.composer.framework.*;
import com.ibm.xsl.composer.java2d.*;
import com.ibm.xsl.composer.prim.*;
import com.ibm.xsl.composer.properties.*;
import com.ibm.as400.util.reportwriter.processor.*;
import com.ibm.as400.util.reportwriter.pclwriter.*;
import java.io.IOException;
import java.io.Serializable;
import org.xml.sax.SAXException;
import com.ibm.as400.access.*;

public class PCLRunReport

{

 public static void main(String args[])
 {
 SpooledFileOutputStream fileout = null;
 String xmldocumentName = args[0];
 String xsldocumentName = args[1];

 String sys = "<system>"; /* Insert ISeries system name */
 String user = "<user>"; /* Insert ISeries user profile name */
 String pass = "<password>"; /* Insert ISeries password */

 AS400 system = new AS400(sys, user, pass);

 /* Insert ISeries output queue */
 String outqname = "/QSYS.LIB/qusrsys.LIB/<outq>.OUTQ";
 OutputQueue outq = new OutputQueue(system, outqname);
 PrintParameterList parms = new PrintParameterList();
 parms.setParameter(PrintObject.ATTR_OUTPUT_QUEUE, outq.getPath());

 try{
 fileout = new SpooledFileOutputStream(system, parms, null, null);
 }
 catch (Exception e)
 {}

 /** set up page format **/
 Paper paper = new Paper();
 paper.setSize(612,792);
 paper.setImageableArea(18, 36, 576, 720);
 PageFormat pf = new PageFormat();
 pf.setPaper(paper);

 /** create a PCLContext object and case FileOutputStream
 as an OutputStream **/
 PCLContext pclcontext = new PCLContext((OutputStream)fileout, pf);

 System.out.println("Ready to parse XSL document");

 /** create the XSLReportProcessor object **/
 XSLReportProcessor xslprocessor = new
XSLReportProcessor(pclcontext);
 try {
 xslprocessor.setXMLDataSource(xmldocumentName);
 }
 catch (SAXException se) {
 String mes = se.getMessage();
 System.out.println(mes);
 System.exit(0);
 }
 catch (IOException ioe) {
 String mes = ioe.getMessage();
 System.out.println(mes);
 System.exit(0);
 }
 catch (NullPointerException np){
 String mes = np.getMessage();
 System.out.println(mes);
 System.exit(0);
 }
 /** set the template to the specified XML data source **/
 try {
 xslprocessor.setTemplate(xsldocumentName);
 }
 catch (NullPointerException np){
 String mes = np.getMessage();
 System.out.println(mes);
 System.exit(0);
 }
 catch (IOException e) {
 String mes = e.getMessage();
 System.out.println(mes);

 System.exit(0);
 }
 catch (SAXException se) {
 String mes = se.getMessage();
 System.out.println(mes);
 System.exit(0);
 }

 /** process the report **/
 try {
 xslprocessor.processReport();
 }
 catch (IOException e) {
 String mes = e.getMessage();
 System.out.println(mes);
 System.exit(0);
 }
 catch (SAXException se) {
 String mes = se.getMessage();
 System.out.println(mes);
 System.exit(0);
 }

 System.exit(0);
 }

}

Example: XSLReportProcessor sample XML file
Note: Read the Code example disclaimer for important legal information.

<?xml version="1.0"?>

<RESIDENTIAL-LISTINGS VERSION="061698">

<RESIDENTIAL-LISTING ID="ID1287" VERSION="061698">
 <GENERAL>
 <TYPE>Apartment</TYPE>
 <PRICE>$110,000</PRICE>

<STRUCTURE><NUM-BEDS>3</NUM-BEDS><NUM-BATHS>1</NUM-BATHS></STRUCTURE>
 <AGE UNITS="YEARS">15</AGE>
 <LOCATION COUNTRY="USA" STATE="MA" COUNTY="MIDDLESEX" SECURITY="Public">
 <ADDRESS>13 Some Avenue</ADDRESS>
 <CITY>Dorchester</CITY><ZIP>02121</ZIP>
 </LOCATION>
 <IMAGE FORMAT="JPG" WIDTH="300" HEIGHT="150" SRC="house1.jpg"/>
 <MLS>
 <MLS-CODE SECURITY="Restricted">
 30224877
 </MLS-CODE>
 <MLS-SOURCE SECURITY="Public">
 <NAME>Bob the Realtor</NAME>
 <PHONE>1-617-555-1212</PHONE>
 <FAX>1-617-555-1313</FAX>
 <WEB>
 <EMAIL>Bob@bigbucks.com</EMAIL>
 <SITE>www.bigbucks.com</SITE>
 </WEB>
 </MLS-SOURCE>
 </MLS>
 <DATES><LISTING-DATE>3/5/98</LISTING-DATE></DATES>
 <LAND-AREA UNITS="ACRES">0.01</LAND-AREA>

 </GENERAL>

 <FEATURES>
 <DISCLOSURES>
 In your dreams.
 </DISCLOSURES>
 <UTILITIES>
 Yes
 </UTILITIES>
 <EXTRAS>
 Pest control included.
 </EXTRAS>
 <CONSTRUCTION>
 Wallboard and glue
 </CONSTRUCTION>

 <ACCESS>
 Front door.
 </ACCESS>
 </FEATURES>

 <FINANCIAL>
 <ASSUMABLE>
 I assume so.
 </ASSUMABLE>
 <OWNER-CARRY>
 Too heavy.
 </OWNER-CARRY>
 <ASSESMENTS>
 $150,000
 </ASSESMENTS>
 <DUES>
 $100
 </DUES>
 <TAXES>
 $2,000
 </TAXES>
 <LENDER>
 Fly by nite mortgage co.
 </LENDER>
 <EARNEST>
 Burt
 </EARNEST>
 <DIRECTIONS>
 North, south, east, west
 </DIRECTIONS>
 </FINANCIAL>

 <REMARKS>
 </REMARKS>

 <CONTACTS>
 <COMPANY>
 <NAME>
 Noplace Realty
 </NAME>
 <ADDRESS>
 12 Main Street
 </ADDRESS>
 <CITY>
 Lowell, MA
 </CITY>
 <ZIP>
 34567
 </ZIP>
 </COMPANY>
 <AGENT>
 <NAME>
 Mary Jones
 </NAME>
 <ADDRESS>
 </ADDRESS>

 <CITY>
 </CITY>
 <ZIP>
 </ZIP>
 </AGENT>
 <OWNER>
 <NAME>
 </NAME>
 <ADDRESS>
 </ADDRESS>
 <CITY>
 </CITY>
 <ZIP>
 </ZIP>
 </OWNER>
 <TENANT>
 Yes.
 </TENANT>
 <COMMISION>
 15%
 </COMMISION>
 </CONTACTS>

</RESIDENTIAL-LISTING>

<RESIDENTIAL-LISTING VERSION="061698" ID="ID1289">
 <GENERAL>

 <IMAGE FORMAT="JPG" WIDTH="300" HEIGHT="150" SRC="house2.jpg">
 </IMAGE>

 <MLS>
 <MLS-CODE SECURITY="Restricted">
 30298877
 </MLS-CODE>
 <MLS-SOURCE SECURITY="Public">
 <NAME>
 Mary the Realtor
 </NAME>
 <PHONE>
 1-617-555-3333
 </PHONE>
 <FAX>
 1-617-555-4444
 </FAX>
 <WEB>
 <EMAIL>
 Mary@somebucks.com
 </EMAIL>
 <SITE>
 www.bigbucks.com
 </SITE>
 </WEB>
 </MLS-SOURCE>
 </MLS>

 <TYPE>
 Home
 </TYPE>

 <PRICE>
 $200,000
 </PRICE>

 <AGE UNITS="MONTHS">
 3
 </AGE>

 <LOCATION COUNTRY="USA" STATE="CO" COUNTY="MIDDLESEX"
SECURITY="Public">
 <ADDRESS>
 1 Main Street
 </ADDRESS>
 <CITY>
 Boulder
 </CITY>
 <ZIP>
 11111
 </ZIP>
 </LOCATION>

 <STRUCTURE>
 <NUM-BEDS>
 2
 </NUM-BEDS>
 <NUM-BATHS>
 2
 </NUM-BATHS>
 </STRUCTURE>

 <DATES>
 <LISTING-DATE>
 4/3/98
 </LISTING-DATE>
 </DATES>

 <LAND-AREA UNITS="ACRES">
 0.01
 </LAND-AREA>

 </GENERAL>

 <FEATURES>
 <DISCLOSURES>
 In your dreams.
 </DISCLOSURES>
 <UTILITIES>
 Yes
 </UTILITIES>
 <EXTRAS>
 Pest control included.
 </EXTRAS>

 <CONSTRUCTION>
 Wallboard and glue
 </CONSTRUCTION>
 <ACCESS>
 Front door.
 </ACCESS>
 </FEATURES>

 <FINANCIAL>
 <ASSUMABLE>
 I assume so.
 </ASSUMABLE>
 <OWNER-CARRY>
 Too heavy.
 </OWNER-CARRY>
 <ASSESMENTS>
 $150,000
 </ASSESMENTS>
 <DUES>
 $100
 </DUES>
 <TAXES>
 $2,000
 </TAXES>
 <LENDER>
 Fly by nite mortgage co.
 </LENDER>
 <EARNEST>
 Burt
 </EARNEST>
 <DIRECTIONS>
 North, south, east, west
 </DIRECTIONS>
 </FINANCIAL>

 <REMARKS>
 </REMARKS>

 <CONTACTS>
 <COMPANY>
 <NAME>
 Noplace Realty
 </NAME>
 <ADDRESS>
 12 Main Street
 </ADDRESS>
 <CITY>
 Lowell, MA
 </CITY>
 <ZIP>
 34567
 </ZIP>
 </COMPANY>
 <AGENT>
 <NAME>
 Mary Jones

 </NAME>
 <ADDRESS>
 </ADDRESS>
 <CITY>
 </CITY>
 <ZIP>
 </ZIP>
 </AGENT>
 <OWNER>
 <NAME>
 </NAME>
 <ADDRESS>
 </ADDRESS>
 <CITY>
 </CITY>
 <ZIP>
 </ZIP>
 </OWNER>
 <TENANT>
 Yes.
 </TENANT>
 <COMMISION>
 15%
 </COMMISION>
 </CONTACTS>

</RESIDENTIAL-LISTING>
<RESIDENTIAL-LISTING VERSION="061698" ID="ID1290">
 <GENERAL>

 <IMAGE FORMAT="JPG" WIDTH="300" HEIGHT="150" SRC="house3.jpg">
 </IMAGE>

 <MLS>
 <MLS-CODE SECURITY="Restricted">
 20079877
 </MLS-CODE>
 <MLS-SOURCE SECURITY="Public">
 <NAME>
 Bob the Realtor
 </NAME>
 <PHONE>
 1-617-555-1212
 </PHONE>
 <FAX>
 1-617-555-1313
 </FAX>
 <WEB>
 <EMAIL>
 Bob@bigbucks.com
 </EMAIL>
 <SITE>
 www.bigbucks.com
 </SITE>
 </WEB>
 </MLS-SOURCE>

 </MLS>

 <TYPE>
 Apartment
 </TYPE>

 <PRICE>
 $65,000
 </PRICE>

 <AGE UNITS="YEARS">
 30
 </AGE>

 <LOCATION COUNTRY="USA" STATE="MA" COUNTY="MIDDLESEX"
SECURITY="Public">
 <ADDRESS>
 25 Which Ave.
 </ADDRESS>
 <CITY>
 Cambridge
 </CITY>
 <ZIP>
 02139
 </ZIP>
 </LOCATION>

 <STRUCTURE>
 <NUM-BEDS>
 3
 </NUM-BEDS>
 <NUM-BATHS>
 1
 </NUM-BATHS>
 </STRUCTURE>

 <DATES>
 <LISTING-DATE>
 3/5/97
 </LISTING-DATE>
 </DATES>

 <LAND-AREA UNITS="ACRES">
 0.05
 </LAND-AREA>

 </GENERAL>

 <FEATURES>
 <DISCLOSURES>
 In your dreams.
 </DISCLOSURES>
 <UTILITIES>
 Yes
 </UTILITIES>
 <EXTRAS>

 Pest control included.
 </EXTRAS>
 <CONSTRUCTION>
 Wallboard and glue
 </CONSTRUCTION>
 <ACCESS>
 Front door.
 </ACCESS>
 </FEATURES>

 <FINANCIAL>
 <ASSUMABLE>
 I assume so.
 </ASSUMABLE>
 <OWNER-CARRY>
 Too heavy.
 </OWNER-CARRY>
 <ASSESMENTS>
 $150,000
 </ASSESMENTS>
 <DUES>
 $100
 </DUES>
 <TAXES>
 $2,000
 </TAXES>
 <LENDER>
 Fly by nite mortgage co.
 </LENDER>
 <EARNEST>
 Burt
 </EARNEST>
 <DIRECTIONS>
 North, south, east, west
 </DIRECTIONS>
 </FINANCIAL>

 <REMARKS>
 </REMARKS>

 <CONTACTS>
 <COMPANY>
 <NAME>
 Noplace Realty
 </NAME>
 <ADDRESS>
 12 Main Street
 </ADDRESS>
 <CITY>
 Lowell, MA
 </CITY>
 <ZIP>
 34567
 </ZIP>
 </COMPANY>
 <AGENT>

 <NAME>
 Mary Jones
 </NAME>
 <ADDRESS>
 </ADDRESS>
 <CITY>
 </CITY>
 <ZIP>
 </ZIP>
 </AGENT>
 <OWNER>
 <NAME>
 </NAME>
 <ADDRESS>
 </ADDRESS>
 <CITY>
 </CITY>
 <ZIP>
 </ZIP>
 </OWNER>
 <TENANT>
 Yes.
 </TENANT>
 <COMMISION>
 15%
 </COMMISION>
 </CONTACTS>

</RESIDENTIAL-LISTING>
<RESIDENTIAL-LISTING VERSION="061698" ID="ID1291">
 <GENERAL>

 <IMAGE FORMAT="JPG" WIDTH="300" HEIGHT="150" SRC="house4.jpg">
 </IMAGE>

 <MLS>
 <MLS-CODE SECURITY="Restricted">
 29389877
 </MLS-CODE>
 <MLS-SOURCE SECURITY="Public">
 <NAME>
 Mary the Realtor
 </NAME>
 <PHONE>
 1-617-555-3333
 </PHONE>
 <FAX>
 1-617-555-4444
 </FAX>
 <WEB>
 <EMAIL>
 Mary@somebucks.com
 </EMAIL>
 <SITE>
 www.bigbucks.com
 </SITE>

 </WEB>
 </MLS-SOURCE>
 </MLS>

 <TYPE>
 Home
 </TYPE>

 <PRICE>
 $449,000
 </PRICE>

 <AGE UNITS="YEARS">
 7
 </AGE>

 <LOCATION COUNTRY="USA" STATE="MA" COUNTY="MIDDLESEX"
SECURITY="Public">
 <ADDRESS>
 100 Any Road
 </ADDRESS>
 <CITY>
 Lexington
 </CITY>
 <ZIP>
 02421
 </ZIP>
 </LOCATION>

 <STRUCTURE>
 <NUM-BEDS>
 7
 </NUM-BEDS>
 <NUM-BATHS>
 3
 </NUM-BATHS>
 </STRUCTURE>

 <DATES>
 <LISTING-DATE>
 6/8/98
 </LISTING-DATE>
 </DATES>

 <LAND-AREA UNITS="ACRES">
 2.0
 </LAND-AREA>

 </GENERAL>

 <FEATURES>
 <DISCLOSURES>
 In your dreams.
 </DISCLOSURES>
 <UTILITIES>
 Yes

 </UTILITIES>
 <EXTRAS>
 Pest control included.
 </EXTRAS>
 <CONSTRUCTION>
 Wallboard and glue
 </CONSTRUCTION>
 <ACCESS>
 Front door.
 </ACCESS>
 </FEATURES>

 <FINANCIAL>
 <ASSUMABLE>
 I assume so.
 </ASSUMABLE>
 <OWNER-CARRY>
 Too heavy.
 </OWNER-CARRY>
 <ASSESMENTS>
 $300,000
 </ASSESMENTS>
 <DUES>
 $100
 </DUES>
 <TAXES>
 $2,000
 </TAXES>
 <LENDER>
 Fly by nite mortgage co.
 </LENDER>
 <EARNEST>
 Burt
 </EARNEST>
 <DIRECTIONS>
 North, south, east, west
 </DIRECTIONS>
 </FINANCIAL>

 <REMARKS>
 </REMARKS>

 <CONTACTS>
 <COMPANY>
 <NAME>
 Noplace Realty
 </NAME>
 <ADDRESS>
 12 Main Street
 </ADDRESS>
 <CITY>
 Lowell, MA
 </CITY>
 <ZIP>
 34567
 </ZIP>

 </COMPANY>
 <AGENT>
 <NAME>
 Mary Jones
 </NAME>
 <ADDRESS>
 </ADDRESS>
 <CITY>
 </CITY>
 <ZIP>
 </ZIP>
 </AGENT>
 <OWNER>
 <NAME>
 </NAME>
 <ADDRESS>
 </ADDRESS>
 <CITY>
 </CITY>
 <ZIP>
 </ZIP>
 </OWNER>
 <TENANT>
 Yes.
 </TENANT>
 <COMMISION>
 15%
 </COMMISION>
 </CONTACTS>

</RESIDENTIAL-LISTING>

</RESIDENTIAL-LISTINGS>

Example: XSLReportProcessor sample XSL file
Note: Read the Code example disclaimer for important legal information.

<?xml version="1.0"?>

<!-- Sample of styling an imagined real estate document. -->
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format" >

 <xsl:template match="RESIDENTIAL-LISTINGS">
 <fo:root>
 <fo:layout-master-set>
 <fo:simple-page-master master-name="theMaster">
 <fo:region-body region-name="theRegion"/>
 </fo:simple-page-master>
 <fo:page-sequence-master master-name="theMaster">
 <fo:single-page-master-reference master-name="thePage" />
 </fo:page-sequence-master>
 </fo:layout-master-set>
 <fo:page-sequence master-name="theMaster">
 <fo:flow flow-name="theRegion">
 <xsl:apply-templates/>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
 </xsl:template>
 <xsl:template match="RESIDENTIAL-LISTING">

 <fo:block font-family="Times New Roman" font-weight="normal"
font-size="24pt"
 background-color="silver" padding-before="5px" padding-after="5px"
 padding-start="5px" padding-end="5px" border-before-style="solid"
 border-before-color="blue" border-after-style="solid"
border-after-color="blue"
 border-start-style="solid" border-start-color="blue"
border-end-style="solid"
 border-end-color="blue">

 <fo:character character="y" background-color="blue"
border-before-style="solid"
 border-before-color="yellow" border-after-style="solid"
border-after-color="yellow"
 border-start-style="solid" border-start-color="yellow"
border-end-style="solid"
 border-end-color="yellow" />
 </fo:block>

 </xsl:template>

</xsl:stylesheet>

Examples: Resource classes
This section lists the code examples that are provided throughout the documentation of the Resource classes.

Resource and ChangeableResource

Example: Retrieving an attribute value from RUser, a concrete subclass of Resource●

Example: Setting attribute values for RJob, a concrete subclass of ChangeableResource●

Example: Using generic code to access resources●

ResourceList

Example: Getting and printing the contents of a ResourceList●

Example: Using generic code to access a ResourceList●

Example: Displaying a resource list in a servlet●

Presentation

Example: Using Presentations●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Retrieving an attribute value from a
Resource
One concrete subclass of Resource is com.ibm.as400.resource.RUser, which represents an iSeries user. RUser
supports many attribute IDs, each of which you can use to get attribute values.

This example retrieves an attribute value from an RUser:

 // Create an RUser object to refer to a specific user.
 AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
 RUser user = new RUser(system, "AUSERID");

 // Get the text description attribute value.
 String textDescription =
(String)user.getAttributeValue(RUser.TEXT_DESCRIPTION);

Example: Setting attribute values for a
ChangeableResource
One concrete subclass of ChangeableResource is com.ibm.as400.resource.RJob, which represents an iSeries job.
RJob supports many attribute IDs, each of which you can use to access attribute values. This example sets two
attribute values for an RJob:

 // Create an RJob object to refer to a specific job.
 AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
 RJob job = new RJob(system, "AJOBNAME", "AUSERID", "AJOBNUMBER");

 // Set the date format attribute value.
 job.setAttributeValue(RJob.DATE_FORMAT, RJob.DATE_FORMAT_JULIAN);

 // Set the country or region ID attribute value.
 job.setAttributeValue(RJob.COUNTRY_ID, RJob.USER_PROFILE);

 // Commit both attribute changes.
 job.commitAttributeChanges();

Example: Using generic code to access
resources
You can write generic code to work with any Resource or ChangeableResource subclass. Such code may
improve reusability and maintainability and will work with future Resource or ChangeableResource subclasses
without modification.

Every attribute has an associated attribute meta data object (com.ibm.as400.resource.ResourceMetaData) that
describes various properties of the attribute. These properties include whether or not the attribute is read only
and what the default and possible values are.

This is an example of generic code that prints the value of every attribute supported by a resource:

void printAllAttributeValues(Resource resource) throws ResourceException
{
 // Get the attribute meta data.
 ResourceMetaData[] attributeMetaData = resource.getAttributeMetaData();

 // Loop through all attributes and print the values.
 for(int i = 0; i < attributeMetaData.length; ++i)
 {
 Object attributeID = attributeMetaData[i].getID();
 Object value = resource.getAttributeValue(attributeID);
 System.out.println("Attribute " + attributeID + " = " + value);
 }
}

This is an example of generic code that resets all attributes of a ChangeableResource to their default values:

void resetAttributeValues(ChangeableResource resource) throws
ResourceException
{
 // Get the attribute meta data.
 ResourceMetaData[] attributeMetaData = resource.getAttributeMetaData();

 // Loop through all attributes.
 for(int i = 0; i < attributeMetaData.length; ++i)
 {
 // If the attribute is changeable (not read only), then
 // reset its value to the default.
 if (! attributeMetaData[i].isReadOnly())
 {
 Object attributeID = attributeMetaData[i].getID();
 Object defaultValue = attributeMetaData[i].getDefaultValue();
 resource.setAttributeValue(attributeID, defaultValue);
 }
 }

 // Commit all of the attribute changes.
 resource.commitAttributeChanges();
}

Examples: Resource list
The following examples show various ways of working with resource lists:

Example: Getting and printing the contents of a ResourceList●

Example: Using generic code to access a ResourceList●

Example: Displaying a resource list in a servlet●

Example: Getting and printing the contents of a ResourceList

One example of a concrete subclass of ResourceList is com.ibm.as400.resource.RJobList, which represents a
list of iSeries jobs. RJobList supports many selection IDs and sort IDs, each of which can be used to filter or
sort the list.This example prints the contents of an RJobList:

 // Create an RJobList object to represent a list of jobs.
 AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
 RJobList jobList = new RJobList(system);

 // Filter the list to include only interactive jobs.
 jobList.setSelectionValue(RJobList.JOB_TYPE, RJob.JOB_TYPE_INTERACTIVE);

 // Sort the list by user name, then job name.
 Object[] sortValue = new Object[] { RJob.USER_NAME, RJob.JOB_NAME };
 jobList.setSortValue(sortValue);

 // Open the list and wait for it to complete.
 jobList.open();
 jobList.waitForComplete();

 // Read and print the contents of the list.
 long length = jobList.getListLength();
 for(long i = 0; i < length; ++i)
 {
 System.out.println(jobList.resourceAt(i));
 }

 // Close the list.
 jobList.close();

Example: Using generic code to work with resources

In addition to using concrete subclasses directly, you can write generic code to work with any ResourceList
subclass. Such code may improve reusability and maintainability and will work with future ResourceList
subclasses without modification.

Example: Printing the contents of a ResourceList

Here is an example of generic code that prints some of the contents of a ResourceList:

 void printContents(ResourceList resourceList, long numberOfItems) throws
ResourceException
 {

 // Open the list and wait for the requested number of items
 // to become available.
 resourceList.open();
 resourceList.waitForResource(numberOfItems);

 for(long i = 0; i < numberOfItems; ++i)
 {
 System.out.println(resourceList.resourceAt(i));
 }
 }

Example: Using ResourceMetaData to access every attribute supported by a resource

Every attribute has an associated attribute meta data object (com.ibm.as400.resource.ResourceMetaData) that
describes various properties of the attribute. These properties include whether or not the attribute is read only
and what the default and possible values are.

This is an example of generic code that prints the value of every attribute supported by a resource:

void printAllAttributeValues(Resource resource) throws ResourceException
{
 // Get the attribute meta data.
 ResourceMetaData[] attributeMetaData = resource.getAttributeMetaData();

 // Loop through all attributes and print the values.
 for(int i = 0; i < attributeMetaData.length; ++i)
 {
 Object attributeID = attributeMetaData[i].getID();
 Object value = resource.getAttributeValue(attributeID);
 System.out.println("Attribute " + attributeID + " = " + value);
 }
}

Example: Using ResourceMetaData to reset every attribute of a ChangeableResource

This is an example of generic code that resets all attributes of a ChangeableResource to their default values:

void resetAttributeValues(ChangeableResource resource) throws
ResourceException
{
 // Get the attribute meta data.
 ResourceMetaData[] attributeMetaData = resource.getAttributeMetaData();

 // Loop through all attributes.
 for(int i = 0; i < attributeMetaData.length; ++i)
 {
 // If the attribute is changeable (not read only), then
 // reset its value to the default.
 if (! attributeMetaData[i].isReadOnly())
 {
 Object attributeID = attributeMetaData[i].getID();
 Object defaultValue = attributeMetaData[i].getDefaultValue();
 resource.setAttributeValue(attributeID, defaultValue);
 }

 }

 // Commit all of the attribute changes.
 resource.commitAttributeChanges();
}

Example: Presenting a resource list in a servlet

Use the ResourceListRowData class in conjunction with the HTMLFormConverter or HTMLTableConverter
class to present a resource list in a servlet.

HTMLFormConverter displays the contents of the resource list as a series of forms, where each form
contains attribute values for a resource in the resource list.

●

HTMLTableConverter displays the contents of the resource list as a table, with each row contains
information about a resource in the resource list.

●

The columns for a ResourceListRowData object are specified as an array of column attribute IDs while each
row represents a resource object.

 // Create the resource list. This example creates
 // a list of all messages in the current user's message
 // queue.
 AS400 system = new AS400("MYSYSTEM", "MYUSERID", "MYPASSWORD");
 RMessageQueue messageQueue = new RMessageQueue(system,
RMessageQueue.CURRENT);

 // Create the ResourceListRowData object. In this example,
 // there are four columns in the table. The first column
 // contains the icons and names for each message in the
 // message queue. The remaining columns contain the text,
 // severity, and type for each message.
 ResourceListRowData rowdata = new ResourceListRowData(messageQueue,
 new Object[] { null, RQueuedMessage.MESSAGE_TEXT,
RQueuedMessage.MESSAGE_SEVERITY,
 RQueuedMessage.MESSAGE_TYPE });

 // Create HTMLTable and HTMLTableConverter objects to
 // use for generating and customizing the HTML tables.
 HTMLTable table = new HTMLTable();
 table.setCellSpacing(6);
 table.setBorderWidth(8);

 HTMLTableConverter converter = new HTMLTableConverter();
 converter.setTable(table);
 converter.setUseMetaData(true);

 // Generate the HTML table.
 String[] html = converter.convert(rowdata);
 System.out.println(html[0]);

Examples: RFML
This section lists the code examples that are provided throughout the RFML documentation:

Example: Using RFML compared to using Toolbox for Java Record classes●

Example: RFML source file●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Using a profile token credential to swap
the OS/400 thread identity
Note: Read the Code example disclaimer for important legal information.

The following code example shows you how to use a profile token credential to swap the OS/400 thread identity
and perform work on behalf of a specific user:

 // Prepare to work with the local AS/400 system.
 AS400 system = new AS400("localhost", "*CURRENT", "*CURRENT");

 // Create a single-use ProfileTokenCredential with a 60 second timeout.
 // A valid user ID and password must be substituted.
 ProfileTokenCredential pt = new ProfileTokenCredential();
 pt.setSystem(system);
 pt.setTimeoutInterval(60);
 pt.setTokenType(ProfileTokenCredential.TYPE_SINGLE_USE);

 pt.setToken("USERID", "PASSWORD");

 // Swap the OS/400 thread identity, retrieving a credential to
 // swap back to the original identity later.
 AS400Credential cr = pt.swap(true);

 // Perform work under the swapped identity at this point.

 // Swap back to the original OS/400 thread identity.
 cr.swap();

 // Clean up the credentials.
 cr.destroy();
 pt.destroy();

Examples from the servlet classes
The following examples show you some of the ways that you can use the servlet classes:

Example: Using the ListRowData class●

Example: Using the RecordListRowData class●

Example: Using the SQLResultSetRowData class●

Example: Using the HTMLFormConverter class●

Example: Using the ListMetaData class●

Example: Using the SQLResultSetMetaData class●

Example: Presenting a resource list in a servlet●

You can also use the servlet and HTML classes together, like in this example.

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Using ListRowData
This example has three parts:

Java source that shows how the ListRowData class works●

HTML source generated from the Java source by the using HTMLTableConverter●

How a browser displays the generated HTML●

Java source that shows how the ListRowData class works

 // Access an existing non-empty data queue
 KeyedDataQueue dq = new KeyedDataQueue(systemObject_,
"/QSYS.LIB/MYLIB.LIB/MYDQ.DTAQ");

 // Create a metadata object.
 ListMetaData metaData = new ListMetaData(2);

 // Set first column to be the customer ID.
 metaData.setColumnName(0, "Customer ID");
 metaData.setColumnLabel(0, "Customer ID");
 metaData.setColumnType(0, RowMetaDataType.STRING_DATA_TYPE);

 // Set second column to be the order to be processed.
 metaData.setColumnName(1, "Order Number");
 metaData.setColumnLabel(1, "Order Number");
 metaData.setColumnType(1, RowMetaDataType.STRING_DATA_TYPE);

 // Create a ListRowData object.
 ListRowData rowData = new ListRowData();
 rowData.setMetaData(metaData);

 // Get the entries off the data queue.
 KeyedDataQueueEntry data = dq.read(key, 0, "EQ");
 while (data != null)
 {
 // Add queue entry to row data object.
 Object[] row = new Object[2];
 row[0] = new String(key);
 row[1] = new String(data.getData());
 rowData.addRow(row);

 // Get another entry from the queue.
 data = dq.read(key, 0, "EQ");
 }

 // Create an HTML converter object and convert the rowData to HTML.
 HTMLTableConverter conv = new HTMLTableConverter();
 conv.setUseMetaData(true);
 HTMLTable[] html = conv.convertToTables(rowData);

 // Display the output from the converter.
 System.out.println(html[0]);

HTML source generated from the Java source by the using
HTMLTableConverter

Using the HTMLTableConverter class in the Java source example above generates the following HTML code.

<table>
<tr>
<th>Customer ID</th>
<th>Order Number</th>
</tr>
<tr>
<td>777-53-4444</td>
<td>12345-XYZ</td>
</tr>
<tr>
<td>777-53-4444</td>
<td>56789-ABC</td>
</tr>
</table>

How a browser displays the generated HTML

The following table shows how the HTML source code looks when viewed in a browser.

Customer ID Order Number
777-53-4444 12345-XYZ
777-53-4444 56789-ABC

Example: Using RecordListRowData
This example has three parts:

Java source that shows how the RecordListRowData class works●

HTML source generated from the Java source by the using HTMLTableConverter●

How a browser displays the generated HTML●

Java source that shows how the RecordListRowData class works

 // Create a server object.
 AS400 mySystem = new AS400 ("mySystem.myComp.com", "UserId",
"Password");

 // Get the path name for the file.
 QSYSObjectPathName file = new QSYSObjectPathName(myLibrary, myFile,
"%first%", "mbr");
 String ifspath = file.getPath();

 // Create a file object that represents the file.
 SequentialFile sf = new SequentialFile(mySystem, ifspath);

 // Retrieve the record format from the file.
 AS400FileRecordDescription recordDescription = new
AS400FileRecordDescription(mySystem, ifspath);
 RecordFormat recordFormat =
recordDescription.retrieveRecordFormat()[0];

 // Set the record format for the file.
 sf.setRecordFormat(recordFormat);

 // Get the records in the file.
 Record[] records = sf.readAll();

 // Create a RecordListRowData object and add the records.
 RecordListRowData rowData = new RecordListRowData(recordFormat);

 for (int i=0; i < records.length; i++)
 {
 rowData.addRow(records[i]);
 }

 // Create an HTML converter object and convert the rowData to HTML.
 HTMLTableConverter conv = new HTMLTableConverter();
 conv.setMaximumTableSize(3);
 HTMLTable[] html = conv.convertToTables(rowData);

 // Display the first HTML table generated by the converter.
 System.out.println(html[0]);

HTML source generated from the Java source by the using
HTMLTableConverter

Using the HTMLTableConverter class in the Java source example above generates the following HTML code.

<table>
<tr>
<th>CUSNUM</th>
<th>LSTNAM</th>
<th>INIT</th>
<th>STREET</th>
<th>CITY</th>
<th>STATE</th>
<th>ZIPCOD</th>
<th>CDTLMT</th>
<th>CHGCOD</th>
<th>BALDUE</th>
<th>CDTDUE</th>
</tr>
<tr>
<td>938472</td>
<td>Henning </td>
<td>G K</td>
<td>4859 Elm Ave </td>
<td>Dallas</td>
<td>TX</td>
<td align="right">75217</td>
<td align="right">5000</td>
<td align="right">3</td>
<td align="right">37.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>839283</td>
<td>Jones </td>
<td>B D</td>
<td>21B NW 135 St</td>
<td>Clay </td>
<td>NY</td>
<td align="right">13041</td>
<td align="right">400</td>
<td align="right">1</td>
<td align="right">100.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>392859</td>
<td>Vine </td>
<td>S S</td>
<td>PO Box 79 </td>
<td>Broton</td>
<td>VT</td>
<td align="right">5046</td>
<td align="right">700</td>
<td align="right">1</td>

<td align="right">439.00</td>
<td align="right">0.00</td>
</tr>
</table>

How a browser displays the generated HTML

The following table shows how the HTML source code looks when viewed in a browser.

CUSNUM LSTNAM INIT STREET CITY STATE ZIPCOD CDTLMT CHGCOD BALDUE CDTDUE

938472 Henning G K 4859 Elm
Ave Dallas TX 75217 5000 3 37.00 0.00

839283 Jones B D 21B NW
135 St Clay NY 13041 400 1 100.00 0.00

392859 Vine S S PO Box 79 Broton VT 5046 700 1 439.00 0.00

Example: Using SQLResultSetRowData
This example has three parts:

Java source that shows how the SQLResultSetRowData class works●

HTML source generated from the Java source by the using HTMLTableConverter●

How a browser displays the generated HTML●

Java source that shows how the SQLResultSetRowData class works

 // Create a server object.
 AS400 mySystem = new AS400 ("mySystem.myComp.com", "UserId",
"Password");

 // Register and get a connection to the database.
 DriverManager.registerDriver(new
com.ibm.as400.access.AS400JDBCDriver());
 Connection connection = DriverManager.getConnection("jdbc:as400://"
+ mySystem.getSystemName());

 // Execute an SQL statement and get the result set.
 Statement statement = connection.createStatement();
 statement.execute("select * from qiws.qcustcdt");
 ResultSet resultSet = statement.getResultSet();

 // Create the SQLResultSetRowData object and initialize to the
result set.
 SQLResultSetRowData rowData = new SQLResultSetRowData(resultSet);

 // Create an HTML table object to be used by the converter.
 HTMLTable table = new HTMLTable();

 // Set descriptive column headers.
 String[] headers = {"Customer Number", "Last Name", "Initials",
 "Street Address", "City",
"State", "Zip Code",
 "Credit Limit", "Charge
Code", "Balance Due",
 "Credit Due"};
 table.setHeader(headers);

 // Set several formatting options within the table.
 table.setBorderWidth(2);
 table.setCellSpacing(1);
 table.setCellPadding(1);

 // Create an HTML converter object and convert the rowData to HTML.
 HTMLTableConverter conv = new HTMLTableConverter();
 conv.setTable(table);
 HTMLTable[] html = conv.convertToTables(rowData);

 // Display the HTML table generated by the converter.
 System.out.println(html[0]);

HTML source generated from the Java source by the using
HTMLTableConverter

Using the HTMLTableConverter class in the Java source example above generates the following HTML code.

<table border="2" cellpadding="1" cellspacing="1">
<tr>
<th>Customer Number</th>
<th>Last Name</th>
<th>Initials</th>
<th>Street Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
<th>Credit Limit</th>
<th>Charge Code</th>
<th>Balance Due</th>
<th>Credit Due</th>
</tr>
<tr>
<td>938472</td>
<td>Henning </td>
<td>G K</td>
<td>4859 Elm Ave </td>
<td>Dallas</td>
<td>TX</td>
<td align="right">75217</td>
<td align="right">5000</td>
<td align="right">3</td>
<td align="right">37.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>839283</td>
<td>Jones </td>
<td
>B D</td>
<td>21B NW 135 St</td>
<td>Clay </td>
<td>NY</td>
<td align="right">13041</td>
<td align="right">400</td>
<td align="right">1</td>
<td align="right">100.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>392859</td>
<td>Vine </td>
<td>S S</td>
<td>PO Box 79 </td>
<td>Broton</td>
<td>VT</td>
<td align="right">5046</td>

<td align="right">700</td>
<td align="right">1</td>
<td align="right">439.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>938485</td>
<td>Johnson </td>
<td>J A</td>
<td>3 Alpine Way </td>
<td>Helen </td>
<td>GA</td>
<td align="right">30545</td>
<td align="right">9999</td>
<td align="right">2</td>
<td align="right">3987.50</td>
<td align="right">33.50</td>
</tr>
<tr>
<td>397267</td>
<td>Tyron </td>
<td>W E</td>
<td>13 Myrtle Dr </td>
<td>Hector</td>
<td>NY</td>
<td align="right">14841</td>
<td align="right">1000</td>
<td align="right">1</td>
<td align="right">0.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>389572</td>
<td>Stevens </td>
<td>K L</td>
<td>208 Snow Pass</td>
<td>Denver</td>
<td>CO</td>
<td align="right">80226</td>
<td align="right">400</td>
<td align="right">1</td>
<td align="right">58.75</td>
<td align="right">1.50</td>
</tr>
<tr>
<td>846283</td>
<td>Alison </td>
<td>J S</td>
<td>787 Lake Dr </td>
<td>Isle </td>
<td>MN</td>
<td align="right">56342</td>
<td align="right">5000</td>
<td align="right">3</td>
<td align="right">10.00</td>
<td align="right">0.00</td>
</tr>

<tr>
<td>475938</td>
<td>Doe </td>
<td>J W</td>
<td>59 Archer Rd </td>
<td>Sutter</td>
<td>CA</td>
<td align="right">95685</td>
<td align="right">700</td>
<td align="right">2</td>
<td align="right">250.00</td>
<td align="right">100.00</td>
</tr>
<tr>
<td>693829</td>
<td>Thomas </td>
<td>A N</td>
<td>3 Dove Circle</td>
<td>Casper</td>
<td>WY</td>
<td align="right">82609</td>
<td align="right">9999</td>
<td align="right">2</td>
<td align="right">0.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>593029</td>
<td>Williams</td>
<td>E D</td>
<td>485 SE 2 Ave </td>
<td>Dallas</td>
<td>TX</td>
<td align="right">75218</td>
<td align="right">200</td>
<td align="right">1</td>
<td align="right">25.00</td>
<td align="right">0.00</td>
</tr>
<tr>
<td>192837</td>
<td>Lee </td>
<td>F L</td>
<td>5963 Oak St </td>
<td>Hector</td>
<td>NY</td>
<td align="right">14841</td>
<td align="right">700</td>
<td align="right">2</td>
<td align="right">489.50</td>
<td align="right">0.50</td>
</tr>
<tr>
<td>583990</td>
<td>Abraham </td>
<td>M T</td>

<td>392 Mill St </td>
<td>Isle </td>
<td>MN</td>
<td align="right">56342</td>
<td align="right">9999</td>
<td align="right">3</td>
<td align="right">500.00</td>
<td align="right">0.00</td>
</tr>
</table>

How a browser displays the generated HTML

The following table shows how the HTML source code looks when viewed in a browser.

Customer
Number

Last
Name Initials Street

Address City State Zip
Code

Credit
Limit

Charge
Code

Balance
Due

Credit
Due

938472 Henning G K 4859 Elm
Ave Dallas TX 75217 5000 3 37.00 0.00

839283 Jones B D 21B NW
135 St Clay NY 13041 400 1 100.00 0.00

392859 Vine S S PO Box
79 Broton VT 5046 700 1 439.00 0.00

938485 Johnson J A 3 Alpine
Way Helen GA 30545 9999 2 3987.50 33.50

397267 Tyron W E 13 Myrtle
Dr Hector NY 14841 1000 1 0.00 0.00

389572 Stevens K L 208 Snow
Pass Denver CO 80226 400 1 58.75 1.50

846283 Alison J S 787 Lake
Dr Isle MN 56342 5000 3 10.00 0.00

475938 Doe J W 59 Archer
Rd Sutter CA 95685 700 2 250.00 100.00

693829 Thomas A N 3 Dove
Circle Casper WY 82609 9999 2 0.00 0.00

593029 Williams E D 485 SE 2
Ave Dallas TX 75218 200 1 25.00 0.00

192837 Lee F L 5963 Oak
St Hector NY 14841 700 2 489.50 0.50

583990 Abraham M T 392 Mill
St Isle MN 56342 9999 3 500.00 0.00

Example: Using HTMLFormConverter
While running a web server with servlet support, compile and run the following example to see how the
HTMLFormConverter works:

import java.awt.Color;
import java.io.IOException;
import java.io.PrintWriter;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.Enumeration;
import java.util.Hashtable;
import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.util.html.GridLayoutFormPanel;
import com.ibm.as400.util.html.HTMLConstants;
import com.ibm.as400.util.html.HTMLForm;
import com.ibm.as400.util.html.HTMLTable;
import com.ibm.as400.util.html.HTMLTableCaption;
import com.ibm.as400.util.html.HTMLText;
import com.ibm.as400.util.html.LabelFormElement;
import com.ibm.as400.util.html.LineLayoutFormPanel;
import com.ibm.as400.util.html.SubmitFormInput;
import com.ibm.as400.util.html.TextFormInput;

import com.ibm.as400.util.servlet.HTMLFormConverter;
import com.ibm.as400.util.servlet.SQLResultSetRowData;

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400JDBCDriver;

/**
 * An example of using the HTMLFormConverter class in a servlet.
 */
public class HTMLFormConverterExample extends HttpServlet

{
 private String userId_ = "myUserId";
 private String password_ = "myPwd";
 private AS400 system_;

 private Connection databaseConnection_;

 // Perform cleanup before returning to the main HTML form.
 public void cleanup()
 {
 try
 {
 // Close the database connection.
 if (databaseConnection_ != null)

 {
 databaseConnection_.close();
 databaseConnection_ = null;
 }
 }
 catch (Exception e)
 {
 e.printStackTrace ();
 }
 }

 // Convert the row data to formatted HTML.
 private HTMLTable[] convertRowData(SQLResultSetRowData rowData)
 {
 try
 {
 // Create the converter, which will generate HTML from
 // the result set that comes back from the database query.
 HTMLFormConverter converter = new HTMLFormConverter();

 // Set the form attributes.
 converter.setBorderWidth(3);
 converter.setCellPadding(2);
 converter.setCellSpacing(4);

 // Convert the row data to HTML.
 HTMLTable[] htmlTable = converter.convertToForms(rowData);
 return htmlTable;
 }
 catch (Exception e)
 {
 e.printStackTrace ();
 return null;
 }

 }

 // Return the response to the client.
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println(showHtmlMain());
 out.close();
 }

 // Handle the data posted to the form.
 public void doPost (HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {

 SQLResultSetRowData rowData = new SQLResultSetRowData();
 HTMLTable[] htmlTable = null;

 // Get the current session object or create one if needed.
 HttpSession session = request.getSession(true);

 ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");

 Hashtable parameters = getRequestParameters (request);

 // Retrieve the row data and HTML table values for this session.
 rowData = (SQLResultSetRowData) session.getValue("sessionRowData");
 htmlTable = (HTMLTable[]) session.getValue("sessionHtmlTable");

 // if this is the first time through, show first record
 if (parameters.containsKey("getRecords"))
 {
 rowData = getAllRecords(parameters, out);

 if (rowData != null)
 {
 // Set the row data value for this session.
 session.putValue("sessionRowData", rowData);

 // Position to the first record.
 rowData.first();

 // Convert the row data to formatted HTML.
 htmlTable = convertRowData(rowData);

 if (htmlTable != null)
 {
 rowData.first();
 session.putValue("sessionHtmlTable", htmlTable);
 out.println(showHtmlForRecord(htmlTable, 0));
 }
 }
 }
 // if the "Return To Main" button was pressed, go back to the main
HTML form
 else if (parameters.containsKey("returnToMain"))
 {
 session.invalidate();
 cleanup();
 out.println(showHtmlMain());
 }
 // if the "First" button was pressed, show the first record
 else if (parameters.containsKey("getFirstRecord"))
 {
 rowData.first();
 out.println(showHtmlForRecord(htmlTable, 0));
 }
 // if the "Previous" button was pressed, show the previous record
 else if (parameters.containsKey("getPreviousRecord"))

 {
 if (!rowData.previous())
 {
 rowData.first();
 }
 out.println(showHtmlForRecord(htmlTable,
rowData.getCurrentPosition()));
 }
 // if the "Next" button was pressed, show the next record
 else if (parameters.containsKey("getNextRecord"))
 {
 if (!rowData.next())
 {
 rowData.last();
 }
 out.println(showHtmlForRecord(htmlTable,
rowData.getCurrentPosition()));
 }
 // if the "Last" button was pressed, show the last record
 else if (parameters.containsKey("getLastRecord"))
 {
 rowData.last();
 out.println(showHtmlForRecord(htmlTable,
rowData.getCurrentPosition()));
 }
 // if none of the above, there must have been an error
 else
 {
 out.println(showHtmlForError("Internal error occurred. Unexpected
parameters."));
 }

 // Save the row data value for this session so the current position
 // is updated in the object associated with this session.
 session.putValue("sessionRowData", rowData);

 // Close the output stream
 out.close();
 }

 // Get all the records from the file input by the user.
 private SQLResultSetRowData getAllRecords(Hashtable parameters,
ServletOutputStream out)
 throws IOException
 {
 SQLResultSetRowData records = null;

 try
 {
 // Get the system, library and file name from the parameter list.
 String sys = ((String) parameters.get("System")).toUpperCase();
 String lib = ((String) parameters.get("Library")).toUpperCase();
 String file = ((String) parameters.get("File")).toUpperCase();
 if ((sys == null || sys.equals("")) ||
 (lib == null || lib.equals("")) ||
 (file == null || file.equals("")))

 {
 out.println(showHtmlForError("Invalid system, file or library
name."));
 }
 else
 {
 // Get the connection to the server.
 getDatabaseConnection (sys, out);
 if (databaseConnection_ != null)
 {
 Statement sqlStatement =
databaseConnection_.createStatement();

 // Query the database to get the result set.
 String query = "SELECT * FROM " + lib + "." + file;
 ResultSet rs = sqlStatement.executeQuery (query);

 boolean rsHasRows = rs.next(); // position cursor to first
row

 // Show error message if the file contains no record;
 // otherwise, set row data to result set data.
 if (!rsHasRows)
 {
 out.println(showHtmlForError("No records in the file."));
 }
 else
 {
 records = new SQLResultSetRowData (rs);
 }

 // Don't close the Statement before we're done using the
ResultSet
 // or bad things may happen.
 sqlStatement.close();
 }
 }
 }
 catch (Exception e)
 {
 e.printStackTrace ();
 out.println(showHtmlForError(e.toString()));
 }

 return records;
 }

 // Establish a database connection.
 private void getDatabaseConnection (String sysName, ServletOutputStream
out)
 throws IOException
 {
 if (databaseConnection_ == null)
 {
 try

 {
 databaseConnection_ =
DriverManager.getConnection("jdbc:as400://" + sysName, userId_, password_);
 }
 catch (Exception e)
 {
 e.printStackTrace ();
 out.println(showHtmlForError(e.toString()));
 }
 }
 }

 // Gets the parameters from an HTTP servlet request.
 private static Hashtable getRequestParameters (HttpServletRequest
request)
 {
 Hashtable parameters = new Hashtable ();
 Enumeration enum = request.getParameterNames();
 while (enum.hasMoreElements())
 {
 String key = (String) enum.nextElement();
 String value = request.getParameter (key);
 parameters.put (key, value);
 }
 return parameters;
 }

 // Get the servlet information.
 public String getServletInfo()
 {
 return "HTMLFormConverterExample";
 }

 // Perform initialization steps.
 public void init(ServletConfig config)
 {
 try
 {
 super.init(config);

 // Register the JDBC driver
 try
 {
 DriverManager.registerDriver(new AS400JDBCDriver());
 }
 catch (Exception e)
 {
 System.out.println("JDBC Driver not found");
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 // Set the page header info.
 private String showHeader(String title)
 {
 StringBuffer page = new StringBuffer();
 page.append("<html><head><title>" + title + "</title>");
 page.append("</head><body bgcolor=\"blanchedalmond\">");
 return page.toString ();
 }

 // Show the HTML page with the appropriate error information.
 private String showHtmlForError(String message)
 {
 String title = "Error";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));
 try
 {
 // Create the HTML Form object
 HTMLForm errorForm = new HTMLForm("HTMLFormConverterExample");

 // Set up so that doPost() gets called when the form is submitted.
 errorForm.setMethod(HTMLForm.METHOD_POST);

 // Create a single-column panel to which the HTML elements will be
added.
 GridLayoutFormPanel grid = new GridLayoutFormPanel();

 // Create the text element for the error and add it to the panel.
 HTMLText text = new HTMLText(message);
 text.setBold(true);
 text.setColor(Color.red);
 grid.addElement(text);

 // Create the button to return to main and add it to the panel.
 grid.addElement(new SubmitFormInput("returnToMain", "Return to
Main"));

 // Add the panel to the HTML form.
 errorForm.addElement(grid);

 page.append(errorForm.toString());
 }
 catch (Exception e)
 {
 e.printStackTrace ();
 }
 page.append("</body></html>");
 return page.toString();
 }

 // Show the HTML form for an individual record.

 private String showHtmlForRecord(HTMLTable[] htmlTable, int position)
 {
 String title = "HTMLFormConverter Example";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 page.append("<h1>" + title + "</h1>");

 try
 {
 // Create the HTML Form object
 HTMLForm recForm = new HTMLForm("HTMLFormConverterExample");

 // Set up so that doPost() gets called when the form is submitted.
 recForm.setMethod(HTMLForm.METHOD_POST);

 // Set up a single-column panel layout, within which to arrange
 // the generated HTML elements.
 GridLayoutFormPanel grid = new GridLayoutFormPanel();

 // Create and add a table caption that keeps track of the current
record.
 HTMLText recNumText = new HTMLText("Record number: " + (position +
1));
 recNumText.setBold(true);
 grid.addElement(recNumText);

 // Set up a two-column panel layout, within which to arrange
 // the table and text to comment on the converter output.
 GridLayoutFormPanel tableGrid = new GridLayoutFormPanel(2);
 tableGrid.addElement(htmlTable[position]);
 HTMLText comment = new HTMLText(" <---- Output from the
HTMLFormConverter class");
 comment.setBold(true);
 comment.setColor(Color.blue);
 tableGrid.addElement(comment);

 // Add the table line to the panel.
 grid.addElement(tableGrid);

 // Set up a single-row panel layout, within which to arrange
 // the buttons for moving through the record list.
 LineLayoutFormPanel buttonLine = new LineLayoutFormPanel();
 buttonLine.addElement(new SubmitFormInput("getFirstRecord",
"First"));
 buttonLine.addElement(new SubmitFormInput("getPreviousRecord",
"Previous"));
 buttonLine.addElement(new SubmitFormInput("getNextRecord",
"Next"));
 buttonLine.addElement(new SubmitFormInput("getLastRecord",
"Last"));

 // Set up another single-row panel layout for the Return To Main
button.
 LineLayoutFormPanel returnToMainLine = new LineLayoutFormPanel();
 returnToMainLine.addElement(new SubmitFormInput("returnToMain",
"Return to Main"));

 // Add the lines containing the buttons to the grid panel.
 grid.addElement(buttonLine);
 grid.addElement(returnToMainLine);

 // Add the panel to the form.
 recForm.addElement(grid);

 // Add the form to the HTML page.
 page.append(recForm.toString());
 }
 catch (Exception e)
 {
 e.printStackTrace ();
 }

 page.append("</body></html>");
 return page.toString();
 }

 // Show the main HTML form (request input for system, file, and library
name).
 private String showHtmlMain()
 {
 String title = "HTMLFormConverter Example";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 page.append("<h1>" + title + "</h1>");

 // Create the HTML Form object
 HTMLForm mainForm = new HTMLForm("HTMLFormConverterExample");

 try
 {
 // Set up so that doPost() gets called when the form is submitted.
 mainForm.setMethod(HTMLForm.METHOD_POST);

 // Add a brief description to the form.
 HTMLText desc = new HTMLText("<P>This example uses the
HTMLFormConverter class " +
 "to convert data retrieved from a
server " +
 "file. The converter produces an
array of HTML " +
 "tables. Each entry in the array is a
record from " +
 "the file. " +
 "Records are displayed one at a time,
" +
 "giving you buttons to move forward or
backward " +
 "through the list of records.</P>");
 mainForm.addElement(desc);

 // Add instructions to the form.
 HTMLText instr = new HTMLText("<P>Please input the name of the
server, " +
 "and the file and library name for
the file you " +
 "wish to access. Then push the Show
Records " +
 "button to continue.</P>");
 mainForm.addElement(instr);

 // Create a grid layout panel and add the system, file and library
input fields.
 GridLayoutFormPanel panel = new GridLayoutFormPanel(2);

 LabelFormElement sysPrompt = new LabelFormElement("Server: ");
 TextFormInput system = new TextFormInput("System");
 system.setSize(10);

 LabelFormElement filePrompt = new LabelFormElement("File name: ");
 TextFormInput file = new TextFormInput("File");
 file.setSize(10);

 LabelFormElement libPrompt = new LabelFormElement("Library name:
");
 TextFormInput library = new TextFormInput("Library");
 library.setSize(10);

 panel.addElement(sysPrompt);
 panel.addElement(system);
 panel.addElement(filePrompt);
 panel.addElement(file);
 panel.addElement(libPrompt);
 panel.addElement(library);

 // Add the panel to the form.
 mainForm.addElement(panel);

 // Create the submit button and add it to the form.
 mainForm.addElement(new SubmitFormInput("getRecords", "Show
Records"));
 }
 catch (Exception e)
 {
 e.printStackTrace ();
 }

 page.append(mainForm.toString());
 page.append("</body></html>");

 return page.toString();
 }

}

The HTML generated by the above example looks like this:

<table border="0">
<tr>
<td>Record number: 1</td>
</tr>
<tr>
<td><table border="0">
<tr>
<td><table border="3" cellpadding="2" cellspacing="4">
<tr>
<th>CUSNUM</th>
<td>839283</td>
</tr>
<tr>
<th>LSTNAM</th>
<td>Jones </td>
</tr>
<tr>
<th>INIT</th>
<td>B D</td>
</tr>
<tr>
<th>STREET</th>
<td>21B NW 135 St</td>
</tr>
<tr>
<th>CITY</th>
<td>Clay </td>
</tr>
<tr>
<th>STATE</th>
<td>NY</td>
</tr>
<tr>
<th>ZIPCOD</th>
<td>13041</td>
</tr>
<tr>
<th>CDTLMT</th>
<td>400</td>
</tr>
<tr>
<th>CHGCOD</th>
<td>1</td>
</tr>
<tr>
<th>BALDUE</th>
<td>100.00</td>
</tr>
<tr>
<th>CDTDUE</th>
<td>0.00</td>
</tr>
</table>
</td>
<td> <!-- Output from the HTMLFormConverter

class-->
</td>
</tr>
</table>
</td>
</tr>
<tr>
<form>
<td><input type="submit" name="getFirstRecord" value="First" />
<input type="submit" name="getPreviousRecord" value="Previous" />
<input type="submit" name="getNextRecord" value="Next" />
<input type="submit" name="getLastRecord" value="Last" />

</td>
</tr>
<tr>
<td><input type="submit" name="returnToMain" value="Return to Main" />

</td>
</tr>
</table>
</form>

Lights On example for the HTML and servlet
classes
This example shows you how the HTML and servlet classes work. It is a general overview. To view this
example, compile and run it with a webserver and browser running.

import java.io.IOException;
import java.io.CharArrayWriter;
import java.io.PrintWriter;
import java.sql.*;
import java.util.Enumeration;
import java.util.Hashtable;
import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.as400.util.html.*;
import com.ibm.as400.util.servlet.*;
import com.ibm.as400.access.*;

/*
An example of using Toolbox classes in a servlet.

Schemas of SQL databases on the server:

File LICENSES
Library . . . LIGHTSON

 Field Type Length Nulls
 LICENSE CHARACTER 10 NOT NULL
 USER_ID CHARACTER 10 NOT NULL WITH DEFAULT
 E_MAIL CHARACTER 20 NOT NULL
 WHEN_ADDED DATE NOT NULL WITH DEFAULT
 TIME_STAMP TIMESTAMP NOT NULL WITH DEFAULT

File REPORTS
Library . . . LIGHTSON

 Field Type Length Nulls
 LICENSE CHARACTER 10 NOT NULL
 REPORTER CHARACTER 10 NOT NULL WITH DEFAULT
 DATE_ADDED DATE NOT NULL WITH DEFAULT
 TIME_ADDED TIME NOT NULL WITH DEFAULT
 TIME_STAMP TIMESTAMP NOT NULL WITH DEFAULT
 LOCATION CHARACTER 10 NOT NULL
 COLOR CHARACTER 10 NOT NULL
 CATEGORY CHARACTER 10 NOT NULL
*/

public class LightsOn extends javax.servlet.http.HttpServlet

{
 private AS400 system_;
 private String password_; // password for the server and for the SQL

database
 private java.sql.Connection databaseConnection_;

 public void destroy (ServletConfig config)
 {
 try {
 if (databaseConnection_ != null) {
 databaseConnection_.close();
 }
 }
 catch (Exception e) { e.printStackTrace (); }
 }

 public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 HttpSession session = request.getSession();

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println(showHtmlMain());

 out.close();
 }

 public void doPost (HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 HttpSession session = request.getSession(true);
 ServletOutputStream out = response.getOutputStream();
 response.setContentType("text/html");

 Hashtable parameters = getRequestParameters (request);

 if (parameters.containsKey("askingToReport"))
 out.println (showHtmlForReporting ());
 else if (parameters.containsKey("askingToRegister"))
 out.println (showHtmlForRegistering ());
 else if (parameters.containsKey("askingToUnregister"))
 out.println(showHtmlForUnregistering());
 else if (parameters.containsKey("askingToListRegistered"))
 out.println (showHtmlForListingAllRegistered ());
 else if (parameters.containsKey("askingToListReported"))
 out.println (showHtmlForListingAllReported ());
 else if (parameters.containsKey("returningToMain"))
 out.println (showHtmlMain ());

 else { // None of the above, so assume the user has filled out a form
 // and is submitting information. Grab the incoming info
 // and do the requested action.

 if (parameters.containsKey("submittingReport")) {
 String acknowledgement = reportLightsOn (parameters, out);
 out.println (showAcknowledgement(acknowledgement));
 }

 else if (parameters.containsKey("submittingRegistration")) {
 String acknowledgement = registerLicense (parameters, out);
 out.println (showAcknowledgement(acknowledgement));
 }

 else if (parameters.containsKey("submittingUnregistration")) {
 String acknowledgement = unregisterLicense (parameters, out);
 out.println (showAcknowledgement(acknowledgement));
 }

 else {
 out.println (showAcknowledgement("Error (internal): " +
 "Neither Report, Register, " +
 "Unregister, ListRegistered, or ListReported."));
 }
 }

 out.close(); // Close the output stream.

 }

 // Gets the parameters from an HTTP servlet request, and packages them
 // into a hashtable for convenience.
 private static Hashtable getRequestParameters (HttpServletRequest request)
 {
 Hashtable parameters = new Hashtable ();
 Enumeration enum = request.getParameterNames();
 while (enum.hasMoreElements()) {
 String key = (String) enum.nextElement();
 String value = request.getParameter (key);
 parameters.put (key, value);
 }
 return parameters;
 }

 // Removes blanks and hyphens from a String, and sets it to all uppercase.
 private static String normalize (String oldString)
 {
 if (oldString == null || oldString.length() == 0) return null;
 StringBuffer newString = new StringBuffer ();
 for (int i=0; i<oldString.length(); i++) {
 if (oldString.charAt(i) != ' ' && oldString.charAt(i) != '-')
 newString.append (oldString.charAt(i));
 }
 return newString.toString().toUpperCase();
 }

 // Composes a list of single-quoted strings.
 private static String quoteList (String[] inList)
 {

 StringBuffer outList = new StringBuffer();
 for (int i=0; i<inList.length; i++)
 {
 outList.append ("'" + inList[i] + "'");
 if (i<inList.length-1)
 outList.append (",");
 }
 return outList.toString();
 }

 public String getServletInfo ()
 {
 return "Lights-On Servlet";
 }

 private AS400 getSystem ()
 {
 try
 {
 if (system_ == null)
 {
 system_ = new AS400();

 // Note: It would be better to get these values
 // from a properties file.
 String sysName = "MYSYSTEM"; // TBD
 String userId = "MYUSERID"; // TBD
 String password = "MYPASSWD"; // TBD

 system_.setSystemName(sysName);
 system_.setUserId(userId);
 system_.setPassword(password);
 password_ = password;

 system_.connectService(AS400.DATABASE);
 system_.connectService(AS400.FILE);
 system_.addPasswordCacheEntry(sysName, userId, password_);
 }
 }
 catch (Exception e) { e.printStackTrace (); system_ = null; }

 return system_;
 }

 public void init (ServletConfig config)
 {
 boolean rc;

 try {
 super.init(config);

 // Register the JDBC driver.
 try {
 java.sql.DriverManager.registerDriver(new
com.ibm.as400.access.AS400JDBCDriver());

 }
 catch (Exception e)
 {
 System.out.println("JDBC Driver not found");
 }

 }
 catch (Exception e) { e.printStackTrace(); }
 }

 private void getDatabaseConnection ()
 {
 if (databaseConnection_ == null) {
 try {
 databaseConnection_ = java.sql.DriverManager.getConnection(
 "jdbc:as400://" + getSystem().getSystemName() + "/" +
 "LIGHTSON", getSystem().getUserId(), password_);

 }
 catch (Exception e) { e.printStackTrace (); }
 }
 }

 private String registerLicense (Hashtable parameters, ServletOutputStream
out)
 {
 String licenseNum = normalize ((String)parameters.get("licenseNum"));
 String eMailAddress = (String)parameters.get("eMailAddress");
 StringBuffer acknowledgement = new StringBuffer();

 if (licenseNum == null || licenseNum.length() == 0)
 acknowledgement.append ("Error: License number not specified.\n");

 if (eMailAddress == null || eMailAddress.length() == 0)
 acknowledgement.append ("Error: Notification e-mail address not
specified.\n");

 if (acknowledgement.length() == 0)
 {
 try
 {
 // Insert the new license number and e-mail address into the
database.
 getDatabaseConnection ();
 Statement sqlStatement = databaseConnection_.createStatement();

 // Issue the request.
 String cmd = "INSERT INTO LICENSES " +
 "(LICENSE, E_MAIL) VALUES (" +
 quoteList (new String[] {licenseNum, eMailAddress}) +
 ")";
 sqlStatement.executeUpdate(cmd);
 sqlStatement.close();

 // Acknowledge the request.
 acknowledgement.append ("License number " + licenseNum + " has been
registered.");
 acknowledgement.append ("Notification e-mail address is: " +
eMailAddress);
 }
 catch (Exception e) { e.printStackTrace (); }
 }
 return acknowledgement.toString();
 }

 private String unregisterLicense (Hashtable parameters,
ServletOutputStream out)
 {
 String licenseNum = normalize ((String)parameters.get("licenseNum"));
 StringBuffer acknowledgement = new StringBuffer();

 if (licenseNum == null || licenseNum.length() == 0)
 acknowledgement.append ("Error: License number not specified.\n");

 if (acknowledgement.length() == 0)
 {
 try
 {
 // Remove the specified license number and e-mail address from
database.
 getDatabaseConnection ();
 Statement sqlStatement = databaseConnection_.createStatement();

 // Delete the row(s) from the LICENSES database.
 String cmd = "DELETE FROM LICENSES WHERE LICENSE = '" + licenseNum +
"'";
 sqlStatement.executeUpdate(cmd);
 sqlStatement.close();

 // Acknowledge the request.
 acknowledgement.append ("License number " + licenseNum + " has been
unregistered.");
 }
 catch (Exception e) { e.printStackTrace (); }
 }
 return acknowledgement.toString();
 }

 private String reportLightsOn (Hashtable parameters, ServletOutputStream
out)
 {
 String licenseNum = normalize ((String)parameters.get("licenseNum"));
 String location = (String)parameters.get("location");
 String color = (String)parameters.get("color");
 String category = (String)parameters.get("category");
 StringBuffer acknowledgement = new StringBuffer();
 if (licenseNum == null || licenseNum.length() == 0)
 acknowledgement.append ("Error: License number not specified.");

 if (acknowledgement.length() == 0)
 {
 try
 {
 // Report "lights on" for a specified vehicle.
 getDatabaseConnection ();
 Statement sqlStatement = databaseConnection_.createStatement();

 // Add an entry to the REPORTS database.
 String cmd = "INSERT INTO REPORTS " +
 "(LICENSE, LOCATION, COLOR, CATEGORY) VALUES (" +
 quoteList (new String[] {licenseNum, location, color, category})
+
 ")";
 sqlStatement.executeUpdate(cmd);
 sqlStatement.close();

 // Acknowledge the request.
 acknowledgement.append ("License number " + licenseNum +
 " has been reported. Thanks!");
 }
 catch (Exception e) { e.printStackTrace (); }
 }
 return acknowledgement.toString();
 }

 private String showHeader (String title)
 {
 StringBuffer page = new StringBuffer();
 page.append("<html><head><title>" + title + "</title>");
 page.append("</head><body bgcolor=\"blanchedalmond\">");
 return page.toString ();
 }

 private String showAcknowledgement (String acknowledgement)
 {
 String title = "Acknowledgement";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 try {
 HTMLForm form = new HTMLForm("LightsOn");
 GridLayoutFormPanel grid = new GridLayoutFormPanel();
 HTMLText text = new HTMLText(acknowledgement);
 if (acknowledgement.startsWith("Error")) text.setBold(true);
 grid.addElement(text);
 grid.addElement(new SubmitFormInput("returningToMain", "Home"));
 form.addElement(grid);
 page.append(form.toString());
 }
 catch (Exception e) { e.printStackTrace (); }
 page.append("</body></html>");
 return page.toString();
 }

 private String showHtmlMain ()
 {
 String title = "Lights-On tool";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 page.append("<h1>" + title + "</h1>");

 // Create the HTML Form object.
 HTMLForm mainForm = new HTMLForm("LightsOn");
 GridLayoutFormPanel grid = new GridLayoutFormPanel();

 try {
 // Set up so that doPost() gets called when the form is submitted.
 mainForm.setMethod(HTMLForm.METHOD_POST);

 // Create some buttons.
 grid.addElement(new SubmitFormInput("askingToReport",
 "Report a vehicle with lights
on"));
 grid.addElement(new SubmitFormInput("askingToRegister",
 "Register my license number"));
 grid.addElement(new SubmitFormInput("askingToUnregister",
 "Unregister my license number"));
 grid.addElement(new SubmitFormInput("askingToListRegistered",
 "List all registered licenses"));
 grid.addElement(new SubmitFormInput("askingToListReported",
 "List all vehicles with lights
on"));

 mainForm.addElement(grid);
 }
 catch (Exception e) { e.printStackTrace (); }

 page.append(mainForm.toString());
 page.append("</body></html>");

 return page.toString();
 }

 private String showHtmlForReporting ()
 {
 String title = "Report a vehicle with lights on";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 page.append("<h1>" + title + "</h1>");

 // Create the HTML Form object.
 HTMLForm reportForm = new HTMLForm("LightsOn");
 GridLayoutFormPanel grid = new GridLayoutFormPanel(2);

 try {

 // Set up so that doPost() gets called when the form is submitted.
 reportForm.setMethod(HTMLForm.METHOD_POST);

 TextFormInput licenseNum = new TextFormInput("licenseNum");
 licenseNum.setSize(10);
 licenseNum.setMaxLength(10);

 // Add elements to the line form
 grid.addElement(new LabelFormElement("Vehicle license number:"));
 grid.addElement(licenseNum);

 // Create a radio button group and add the radio buttons.
 RadioFormInputGroup colorGroup = new RadioFormInputGroup("color");

 colorGroup.add("color", "white", "white", true);
 colorGroup.add("color", "black", "black", false);
 colorGroup.add("color", "gray", "gray", false);
 colorGroup.add("color", "red", "red", false);
 colorGroup.add("color", "yellow", "yellow", false);
 colorGroup.add("color", "green", "green", false);
 colorGroup.add("color", "blue", "blue", false);
 colorGroup.add("color", "brown", "brown", false);

 // Create a selection list for category of vehicle.
 SelectFormElement category = new SelectFormElement("category");
 category.addOption("sedan", "sedan", true);
 category.addOption("convertible", "convertibl"); // 10-char field in
DB
 category.addOption("truck", "truck");
 category.addOption("van", "van");
 category.addOption("SUV", "SUV");
 category.addOption("motorcycle", "motorcycle");
 category.addOption("other", "other");

 // Create a selection list for vehicle location (building number).
 SelectFormElement location = new SelectFormElement("location");
 location.addOption("001", "001", true);
 location.addOption("002", "002");
 location.addOption("003", "003");
 location.addOption("005", "005");
 location.addOption("006", "006");
 location.addOption("015", "015");

 grid.addElement(new LabelFormElement("Color:"));
 grid.addElement(colorGroup);

 grid.addElement(new LabelFormElement("Vehicle type:"));
 grid.addElement(category);

 grid.addElement(new LabelFormElement("Building:"));
 grid.addElement(location);

 grid.addElement(new SubmitFormInput("submittingReport", "Submit
report"));
 grid.addElement(new SubmitFormInput("returningToMain", "Home"));

 reportForm.addElement(grid);
 }
 catch (Exception e) { e.printStackTrace (); }

 page.append(reportForm.toString());

 page.append("</body></html>");

 return page.toString();
 }

 private String showHtmlForRegistering ()
 {
 String title = "Register my license number";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 page.append("<h1>" + title + "</h1>");

 // Create the HTML Form object.
 HTMLForm registrationForm = new HTMLForm("LightsOn");

 // Set up a two-column panel layout, within which to arrange
 // the generated HTML elements.
 GridLayoutFormPanel grid = new GridLayoutFormPanel(2);

 try {
 // Set up so that doPost() gets called when the form is submitted.
 registrationForm.setMethod(HTMLForm.METHOD_POST);

 TextFormInput licenseNum = new TextFormInput("licenseNum");
 licenseNum.setSize(10);
 licenseNum.setMaxLength(10);

 TextFormInput eMailAddress = new TextFormInput("eMailAddress");
 eMailAddress.setMaxLength(20);

 grid.addElement(new LabelFormElement("License number:"));
 grid.addElement(licenseNum);

 grid.addElement(new LabelFormElement("E-mail notification address:"));
 grid.addElement(eMailAddress);

 grid.addElement(new SubmitFormInput("submittingRegistration",
"Register"));
 grid.addElement(new SubmitFormInput("returningToMain", "Home"));

 registrationForm.addElement(grid);
 }
 catch (Exception e) { e.printStackTrace (); }

 page.append(registrationForm.toString());

 page.append("</body></html>");

 return page.toString();

 }

 private String showHtmlForUnregistering ()
 {
 String title = "Unregister my license number";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 page.append("<h1>" + title + "</h1>");

 // Create the HTML Form object.
 HTMLForm unregistrationForm = new HTMLForm("LightsOn");
 GridLayoutFormPanel grid = new GridLayoutFormPanel(2);

 try {
 // Set up so that doPost() gets called when the form is submitted.
 unregistrationForm.setMethod(HTMLForm.METHOD_POST);

 // Create the LineLayoutFormPanel object.
 TextFormInput licenseNum = new TextFormInput("licenseNum");
 licenseNum.setSize(10);
 licenseNum.setMaxLength(10);

 grid.addElement(new LabelFormElement("Vehicle license number:"));
 grid.addElement(licenseNum);

 grid.addElement(new SubmitFormInput("submittingUnregistration",
"Unregister"));
 grid.addElement(new SubmitFormInput("returningToMain", "Home"));

 unregistrationForm.addElement(grid);
 }
 catch (Exception e) {
 e.printStackTrace ();
 CharArrayWriter cWriter = new CharArrayWriter();
 PrintWriter pWriter = new PrintWriter (cWriter, true);
 e.printStackTrace (pWriter);
 page.append (cWriter.toString());
 }

 page.append(unregistrationForm.toString());

 page.append("</body></html>");

 return page.toString();
 }

 private String showHtmlForListingAllRegistered ()
 {
 String title = "All registered licenses";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 try

 {
 // Create the HTML Form object.
 HTMLForm mainForm = new HTMLForm("LightsOn");

 // Set up a single-column panel layout, within which to arrange
 // the generated HTML elements.
 GridLayoutFormPanel grid = new GridLayoutFormPanel();

 // Specify the layout for the generated table.
 HTMLTable table = new HTMLTable();
 table.setAlignment(HTMLConstants.LEFT);
 table.setBorderWidth(3);

 // Create and add the table caption and header.
 HTMLTableCaption caption = new HTMLTableCaption();
 caption.setAlignment(HTMLConstants.TOP);
 caption.setElement(title);
 table.setCaption(caption);
 table.setHeader(new String[] { "License", "Date added" });

 // Create the converter, which will generate table HTML from
 // the result set that comes back from the database query.
 HTMLTableConverter converter = new HTMLTableConverter();
 converter.setTable(table);

 getDatabaseConnection ();
 Statement sqlStatement = databaseConnection_.createStatement();

 // First pre-query the database to verify that it's not empty.
 String query = "SELECT COUNT(*) FROM LICENSES";
 ResultSet rs = sqlStatement.executeQuery (query);
 rs.next(); // position cursor to first row
 int rowCount = rs.getInt(1);

 if (rowCount == 0) {
 page.append ("No vehicles have been
reported.");
 }
 else {
 query = "SELECT LICENSE,WHEN_ADDED FROM LICENSES";
 rs = sqlStatement.executeQuery (query);
 SQLResultSetRowData rowData = new SQLResultSetRowData (rs);
 HTMLTable[] generatedHtml = converter.convertToTables(rowData);
 grid.addElement(generatedHtml[0]);
 }
 sqlStatement.close();
 // Note: Mustn't close statement before we're done using result set.

 grid.addElement(new SubmitFormInput("returningToMain", "Home"));

 mainForm.addElement(grid);
 page.append(mainForm.toString());
 }
 catch (Exception e) { e.printStackTrace (); }
 page.append("</body></html>");
 return page.toString();
 }

 private String showHtmlForListingAllReported ()
 {
 String title = "All vehicles with lights on";
 StringBuffer page = new StringBuffer();
 page.append (showHeader (title));

 try
 {
 // Create the HTML Form object.
 HTMLForm form = new HTMLForm("LightsOn");

 // Set up a single-column panel layout, within which to arrange
 // the generated HTML elements.
 GridLayoutFormPanel grid = new GridLayoutFormPanel();

 // Specify the layout for the generated table.
 HTMLTable table = new HTMLTable();
 table.setAlignment(HTMLConstants.LEFT);
 table.setBorderWidth(3);

 // Create and add the table caption and header.
 HTMLTableCaption caption = new HTMLTableCaption();
 caption.setAlignment(HTMLConstants.TOP);
 caption.setElement(title);
 table.setCaption(caption);
 table.setHeader(new String[] { "License", "Color", "Category", "Date",
"Time" });

 // Create the converter, which will generate table HTML from
 // the result set that comes back from the database query.
 HTMLTableConverter converter = new HTMLTableConverter();
 converter.setTable(table);

 getDatabaseConnection ();
 Statement sqlStatement = databaseConnection_.createStatement();

 // First pre-query the database to verify that it's not empty.
 String query = "SELECT COUNT(*) FROM REPORTS";
 ResultSet rs = sqlStatement.executeQuery (query);
 rs.next(); // position cursor to first row
 int rowCount = rs.getInt(1);

 if (rowCount == 0) {
 page.append ("No vehicles have been
reported.");
 }
 else {
 query = "SELECT LICENSE,COLOR,CATEGORY,DATE_ADDED,TIME_ADDED FROM
REPORTS";
 rs = sqlStatement.executeQuery (query);
 SQLResultSetRowData rowData = new SQLResultSetRowData (rs);
 HTMLTable[] generatedHtml = converter.convertToTables(rowData);
 grid.addElement(generatedHtml[0]);
 }

 sqlStatement.close();
 // Note: Mustn't close statement before we're done using result set.

 grid.addElement(new SubmitFormInput("returningToMain", "Home"));
 form.addElement(grid);
 page.append(form.toString());
 }
 catch (Exception e) { e.printStackTrace (); }
 page.append("</body></html>");
 return page.toString();
 }

}

Writing your first Toolbox for Java program
To begin this simple exercise, you must have installed Java on your workstation. You can decide which version
you want to install by reviewing Requirements for running Java applications.

After you have Java installed on your client, complete the following tasks:

Copy jt400.jar to the workstation.1.

Add jt400.jar to the CLASSPATH on your workstation by appending the full path of the JAR file to the
CLASSPATH. For example, when the jt400.jar file resides in the c:\lib directory on your workstation
(running Windows), add the following to the end of your CLASSPATH statement:

 ;c:\lib\jt400.jar

2.

Open a text editor and type the first simple programming example.

Note: Make sure to leave out the text that refers to the Notes (for example, Note 1, Note 2, and so on).
Save the new document with the name CmdCall.java.

3.

Start a command session on your workstation and use the following command to compile the simple
programming example:

 javac CmdCall.java

4.

In the command session, type the following command to run the simple programming example:

 java CmdCall

5.

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Simple programming examples]

Example: Using CommandCall
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// Example using the IBM Toolbox for Java's access class, CommandCall.
//
// This source is an example of IBM Toolbox for Java "Job List".
//
//
//
// The access classes of the Toolbox are in the
com.ibm.as400.access.package.
// Import this package to use the Toolbox classes.
//
//

import com.ibm.as400.access.*;

public class CmdCall
{
 public static void main(String[] args)
 {
 // Like other Java classes the Toolbox classes throw
 // exceptions when something goes wrong. These must be
 // caught by programs that use the Toolbox.

 tryNote 1
 {
 AS400 system = new AS400();

 CommandCall cc = new CommandCall(system);Note 2

 cc.run("CRTLIB MYLIB");Note 3

 AS400Message[] ml = cc.getMessageList();Note 4

 for (int i=0; i<ml.length; i++)
 {

 System.out.println(ml[i].getText());Note 5
 }
 }

 catch (Exception e)
 {
 e.printStackTrace();
 }

 System.exit(0);
 }
}

Toolbox for Java uses the "AS400" object to identify the target server. If you construct the AS400 object with no
parameters, Toolbox for Java prompts for the system name, userid and password. The AS400 class also includes a
constructor that takes the system name, userid and password.

1.

Use the Toolbox for Java CommandCall object to send commands to the server. When you create the
CommandCall object, you pass it an AS400 object so that it knows which server is the target of the command.

2.

Use the run() method on the command call object to run a command.3.

The result of running a command is a list of OS/400 messages. The Toolbox represents these messages as
AS400Message objects. When the command is complete, you get the resulting messages from the CommandCall
object.

4.

Print the message text. Also available are the message ID, message severity, and other information. This program
prints only the message text.

5.

[Simple programming examples]

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Next part | Simple programming examples]

Example: Using message queues (part 1 of 3)
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// Example using the Message Queue function of the IBM Toolbox for Java
//
// This source is an example of IBM Toolbox for Java "Message Queue".
//
//

package examples; Note 1

import java.io.*;
import java.util.*;

import com.ibm.as400.access.*; Note 2

public class displayMessages extends Object
{

 public static void main(String[] parameters) Note 3
 {
 displayMessages me = new displayMessages();

 me.Main(parameters); Note 4

 System.exit(0); Note 5
 }

 void displayMessage()
 {
 }

 void Main(String[] parms)
 {

 try Note 6
 {

 // IBM Toolbox for Java code goes here
 }
 catch (Exception e)
 {

 e.printStackTrace(); Note 7
 }
 }
}

This class is in the 'examples' package. Java uses packages to avoid name conflicts between Java class files.1.

This line makes all of the IBM Toolbox for Java classes in the access package available to this program. The
classes in the access package have the common prefix com.ibm.as400. By using an import statement, the program
can refer to a class using just its name, not its fully-qualified name. For example, you can reference the AS400
class by using AS400, instead of com.ibm.as400.AS400.

2.

This class has a main method; therefore, it can be run as an application. To invoke the program, you run java
examples.displayMessages. Note that case must match when running the program. Because an IBM Toolbox for
Java class is used, jt400.zip must be in the classpath environment variable.

3.

The main method mentioned in Note 3 is static. One of the restrictions of static methods is that static methods can
call only other static methods in their class. To avoid this restriction, many java programs create an object, and
then do initialization processing in a method called Main. The Main() method can call any other method in the
displayMessages object.

4.

The IBM Toolbox for Java creates threads on behalf of the application to carry out IBM Toolbox for Java activity.
If the program does not issue System.exit(0) at termination time, the program may not terminate normally. For
example, suppose this program was run from a Windows 95 DOS prompt. Without this line, the command prompt
would not return when the program finished. The user would have to enter Ctrl-C to get a command prompt.

5.

The IBM Toolbox for Java code throws exceptions that your program must catch.6.

This program displays the text of the exception while the program is performing error processing. Exceptions
thrown by the IBM Toolbox for Java are translated, so the text of the exception will be the same as the language
of the workstation.

7.

[Next part | Simple programming examples]

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Previous part | Next part | Simple programming examples]

Example: Using message queues (part 2 of 3)
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// Example using the Message Queue function of the IBM Toolbox for Java
//
// This source is an example of IBM Toolbox for Java "Message Queue".
//
//

package examples;

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class displayMessages extends Object
{

 public static void main(String[] parameters)
 {
 displayMessages me = new displayMessages();

 me.Main(parameters);

 System.exit(0);
 }

 void displayMessage()
 {
 }

 void Main(String[] parms)
 {
 try
 {

 AS400 system = new AS400(); Note 1

 if (parms.length > 0)

 system.setSystemName(parms[0]); Note 2

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

A program uses the AS400 object to designate which server to connect to. With one exception, all programs that
need resources from a server must have an AS400 object. The exception is JDBC. If your program uses JDBC,
then the IBM Toolbox for Java JDBC driver creates the AS400 object for the program.

1.

This program assumes the first command line parameter is the name of the server. If a parameter is passed to the
program, the setSystemName method of the AS400 object is used to set the system name. The AS400 object also
needs server sign-on information:

If the program is running on a workstation, the IBM Toolbox for Java program prompts the user for a user
ID and password. Note: If a system name is not specified as a command line parameter, the AS400 object
also prompts for the system name.

●

If the program is running on the iSeries JVM, then the user ID and password of the user running the Java
program is used. In this case, the user does not specify a system name, but lets the system name default to
the name of the system that the program is running on.

●

2.

[Previous part | Next part | Simple programming examples]

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Previous part | Simple programming examples]

Example: Using message queues (part 3 of 3)
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// Example using the Message Queue function of the IBM Toolbox for Java
//
// This source is an example of IBM Toolbox for Java "Message Queue".
//
//

package examples;

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class displayMessages extends Object
{

 public static void main(String[] parameters)
 {
 displayMessages me = new displayMessages();

 me.Main(parameters);

 System.exit(0);
 }

 void displayMessage()
 {
 }

 void Main(String[] parms)
 {
 try
 {
 AS400 system = new AS400();

 if (parms.length > 0)
 system.setSystemName(parms[0]);

 MessageQueue queue = new MessageQueue(system,

MessageQueue.CURRENT); Note 1

 Enumeration e = queue.getMessages(); Note 2

 while (e.hasMoreElements())
 {

 QueuedMessage message = (QueuedMessage)

e.nextElement(); Note 3

 System.out.println(message.getText()); Note 4
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

The purpose of this program is to display messages in a server message queue. The MessageQueue object of the
IBM Toolbox for Java is used for this task. When the message queue object is constructed, the parameters are the
AS400 object and the message queue name. The AS400 object indicates which server contains the resource, and
the message queue name identifies which message queue on the server. In this case, a constant is used, which tells
the message queue object to access the queue of the signed-on user.

1.

The message queue object gets a list of messages from the server. A connection to the server is made at this point.2.

Remove a message from the list. The message is in the IBM Toolbox for Java program's QueuedMessage object.3.

Print the text of the message.4.

[Previous part | Simple programming examples]

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Next part | Simple programming examples]

Example: Using record-level access (part 1 of 2)
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// Record level access example. This program will prompt the user
// for the name of the server and the file to display. The file must exist
// and should contain records. Each record in the file will be displayed
// to System.out.
//
// Calling syntax: java RLSequentialAccessExample
//
// This source is an example of IBM Toolbox for Java "RecordLevelAccess"
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class RLSequentialAccessExample
{
 public static void main(String[] parameters)
 {
 BufferedReader inputStream = new BufferedReader(new
InputStreamReader(System.in),1);

 String systemName = "";
 String library = "";
 String file = "";
 String member = "";

 System.out.println();
 try
 {
 System.out.print("System name: ");
 systemName = inputStream.readLine();

 System.out.print("Library in which the file exists: ");
 library = inputStream.readLine();

 System.out.print("File name: ");
 file = inputStream.readLine();

 System.out.print("Member name (press enter for first member): ");

 member = inputStream.readLine();
 if (member.equals(""))
 {
 member = "*FIRST";
 }

 System.out.println();
 }
 catch (Exception e)
 {
 System.out.println("Error obtaining user input.");
 e.printStackTrace();
 System.exit(0);
 }

 AS400 system = new AS400(systemName); Note 1
 try
 {
 system.connectService(AS400.RECORDACCESS);
 }
 catch(Exception e)
 {
 System.out.println("Unable to connect for record level access.");
 System.out.println("Check the programmer's guide setup file for
special instructions regarding record level access");
 e.printStackTrace();
 System.exit(0);
 }

 QSYSObjectPathName filePathName = new QSYSObjectPathName(library,

file, member, "MBR"); Note 2

 SequentialFile theFile = new SequentialFile(system,

filePathName.getPath()); Note 3

 AS400FileRecordDescription recordDescription = new
AS400FileRecordDescription(system, filePathName.getPath());
 try
 {
 RecordFormat[] format = recordDescription.retrieveRecordFormat();

Note 4

 theFile.setRecordFormat(format[0]); Note 5

 theFile.open(AS400File.READ_ONLY, 100,

AS400File.COMMIT_LOCK_LEVEL_NONE); Note 6

 System.out.println("Displaying file " + library.toUpperCase() + "/"
+ file.toUpperCase() + "(" + theFile.getMemberName().trim() + "):");

 Record record = theFile.readNext(); Note 7
 while (record != null)
 {
 System.out.println(record);
 record = theFile.readNext();
 }
 System.out.println();

 theFile.close(); Note 8

 system.disconnectService(AS400.RECORDACCESS); Note 9
 }
 catch (Exception e)
 {
 System.out.println("Error occurred attempting to display the
file.");
 e.printStackTrace();

 try
 {
 // Close the file
 theFile.close();
 }
 catch(Exception x)
 {
 }

 system.disconnectService(AS400.RECORDACCESS);
 System.exit(0);
 }

 // Make sure that the application ends; see readme for details
 System.exit(0);
 }
 }

This line of code creates an AS400 object and connects to the record-level access service.1.

This line creates a QSYSObjectPathName object that obtains the integrated file system path name form of the
object to be displayed.

2.

This statement creates an object that represents an existing sequential file on the server you are connected to. This
sequential file is the file that will be displayed.

3.

These lines retrieve the record format of the file.4.

This line sets the record format for the file.5.

This line opens the selected file for reading. It will read 100 records at a time, when it is possible.6.

This line of code reads each record in sequence.7.

This line closes the file.8.

This line disconnects from the record-level access service.9.

[Next part | Simple programming examples]

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Previous part | Simple programming examples]

Example: Using record-level access (part 2 of 2)
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// Record level access example.
//
// Calling syntax: java RLACreateExample
//
//

import java.io.*;
import java.util.*;
import com.ibm.as400.access.*;

public class RLACreateExample
{
 public static void main(String[] args)
 {
 AS400 system = new AS400(args[0]);
 String filePathName = "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/MBR1.MBR"; Note 1

 try
 {
 SequentialFile theFile = new SequentialFile(system, filePathName);

 // Begin Note Two
 CharacterFieldDescription lastNameField = new
CharacterFieldDescription(new AS400Text(20), "LNAME");
 CharacterFieldDescription firstNameField = new
CharacterFieldDescription(new AS400Text(20), "FNAME");
 BinaryFieldDescription yearsOld = new BinaryFieldDescription(new
AS400Bin4(), "AGE");

 RecordFormat fileFormat = new RecordFormat("RF");
 fileFormat.addFieldDescription(lastNameField);
 fileFormat.addFieldDescription(firstNameField);
 fileFormat.addFieldDescription(yearsOld);

 theFile.create(fileFormat, "A file of names and ages"); Note 2
 // End Note Two

 theFile.open(AS400File.READ_WRITE, 1,
AS400File.COMMIT_LOCK_LEVEL_NONE);

 // Begin Note Three
 Record newData = fileFormat.getNewRecord();
 newData.setField("LNAME", "Doe");
 newData.setField("FNAME", "John");
 newData.setField("AGE", new Integer(63));

 theFile.write(newData); Note 3
 // End Note Three

 theFile.close();
 }
 catch(Exception e)
 {
 System.out.println("An error has occurred: ");
 e.printStackTrace();
 }

 system.disconnectService(AS400.RECORDACCESS);

 System.exit(0);
 }
}

(args[0]) in the previous line and MYFILE.FILE are pieces of code that are prerequisites for the rest of the
example to run. The program assumes that the library MYLIB exists on the server and that the user has access to
it.

1.

The text within the Java comments labeled "Begin Note Two" and "End Note Two" shows how to create a record
format yourself instead of getting the record format from an existing file. The last line in this block creates the file
on the server.

2.

The text within the Java comments labeled "Begin Note Three" and "End Note Three" shows a way to create a
record and then write it to a file.

3.

[Previous part | Simple programming examples]

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Next part | Simple programming examples]

Example: Using JDBC classes to create and populate
a table (part 1 of 2)
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// JDBCPopulate example. This program uses the IBM Toolbox for Java JDBC
driver
// to create and populate a table.
//
// Command syntax:
// JDBCPopulate system collectionName tableName
//
// For example,
// JDBCPopulate MySystem MyLibrary MyTable
//
// This source is an example of IBM Toolbox for Java JDBC driver.
//
//

import java.sql.*;

public class JDBCPopulate
{

 private static final String words[]
 = { "One", "Two", "Three", "Four", "Five",
 "Six", "Seven", "Eight", "Nine", "Ten",
 "Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen",
 "Sixteen", "Seventeen","Eighteen", "Nineteen", "Twenty" };

 public static void main (String[] parameters)
 {

 if (parameters.length != 3) {
 System.out.println("");
 System.out.println("Usage:");
 System.out.println("");
 System.out.println(" JDBCPopulate system collectionName
tableName");
 System.out.println("");
 System.out.println("");

 System.out.println("For example:");
 System.out.println("");
 System.out.println("");
 System.out.println(" JDBCPopulate MySystem MyLibrary
MyTable");
 System.out.println("");
 return;
 }

 String system = parameters[0];
 String collectionName = parameters[1];
 String tableName = parameters[2];

 Connection connection = null;

 try {

 DriverManager.registerDriver(new

com.ibm.as400.access.AS400JDBCDriver()); Note 1

 connection = DriverManager.getConnection ("jdbc:as400://"

 + system + "/" + collectionName); Note 2

 try {
 Statement dropTable = connection.createStatement ();
 dropTable.executeUpdate ("DROP TABLE " + tableName); Note 3

 }
 catch (SQLException e) {
 }

 Statement createTable = connection.createStatement ();
 createTable.executeUpdate ("CREATE TABLE " + tableName
 + " (I INTEGER, WORD VARCHAR(20), SQUARE INTEGER, "

 + " SQUAREROOT DOUBLE)"); Note 4

 PreparedStatement insert = connection.prepareStatement ("INSERT
INTO "
 + tableName + " (I, WORD, SQUARE, SQUAREROOT) "

 + " VALUES (?, ?, ?, ?)"); Note 5

 for (int i = 1; i <= words.length; ++i) {
 insert.setInt (1, i);
 insert.setString (2, words[i-1]);
 insert.setInt (3, i*i);
 insert.setDouble (4, Math.sqrt(i));

 insert.executeUpdate (); Note 6
 }

 System.out.println ("Table " + collectionName + "." + tableName

 + " has been populated.");
 }

 catch (Exception e) {
 System.out.println ();
 System.out.println ("ERROR: " + e.getMessage());
 }

 finally {

 try {
 if (connection != null)

 connection.close (); Note 7
 }
 catch (SQLException e) {
 // Ignore.
 }
 }

 System.exit (0);
 }

}

This line loads the IBM Toolbox for Java JDBC driver. A JDBC driver is necessary to mediate between JDBC
and the database you are working with.

1.

This statement connects to the database. A prompt will appear for the user ID and password. A default schema is
provided so that you will not need to qualify the table name in SQL statements.

2.

These lines delete the table if it already exists.3.

These lines create the table.4.

This line prepares a statement that will insert rows into the table. Because you will be executing this statement
several times, you should use a PreparedStatement and parameter markers.

5.

This block of code populates the table for you; every time the loop is executed, it inserts a row into the table.6.

Now that the table has been created and filled in, this statement closes the connection to the database.7.

[Next part | Simple programming examples]

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Previous part | Simple programming examples]

Example: Using JDBC classes to create and populate
a table (part 2 of 2)
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// JDBCQuery example. This program uses the IBM Toolbox for Java JDBC
driver to
// query a table and output its contents.
//
// Command syntax:
// JDBCQuery system collectionName tableName
//
// For example,
// JDBCQuery MySystem qiws qcustcdt
//
// This source is an example of IBM Toolbox for Java JDBC driver.
//
//

import java.sql.*;

public class JDBCQuery
{

 // Format a string so that it has the specified width.
 private static String format (String s, int width)
 {
 String formattedString;

 // The string is shorter than specified width,
 // so we need to pad with blanks.
 if (s.length() < width) {
 StringBuffer buffer = new StringBuffer (s);
 for (int i = s.length(); i < width; ++i)
 buffer.append (" ");
 formattedString = buffer.toString();
 }

 // Otherwise, we need to truncate the string.
 else
 formattedString = s.substring (0, width);

 return formattedString;
 }

 public static void main (String[] parameters)
 {
 // Check the input parameters.
 if (parameters.length != 3) {
 System.out.println("");
 System.out.println("Usage:");
 System.out.println("");
 System.out.println(" JDBCQuery system collectionName
tableName");
 System.out.println("");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println("");
 System.out.println(" JDBCQuery mySystem qiws qcustcdt");
 System.out.println("");
 return;
 }

 String system = parameters[0];
 String collectionName = parameters[1];
 String tableName = parameters[2];

 Connection connection = null;

 try {

 DriverManager.registerDriver(new

com.ibm.as400.access.AS400JDBCDriver()); Note 1

 // Get a connection to the database. Since we do not
 // provide a user id or password, a prompt will appear.
 connection = DriverManager.getConnection ("jdbc:as400://" +
system);

 DatabaseMetaData dmd = connection.getMetaData (); Note 2

 // Execute the query.
 Statement select = connection.createStatement ();
 ResultSet rs = select.executeQuery ("SELECT * FROM "
 + collectionName + dmd.getCatalogSeparator() + tableName);

Note 3

 // Get information about the result set. Set the column
 // width to whichever is longer: the length of the label
 // or the length of the data.
 ResultSetMetaData rsmd = rs.getMetaData ();

 int columnCount = rsmd.getColumnCount (); Note 4
 String[] columnLabels = new String[columnCount];
 int[] columnWidths = new int[columnCount];
 for (int i = 1; i <= columnCount; ++i) {
 columnLabels[i-1] = rsmd.getColumnLabel (i);

 columnWidths[i-1] = Math.max (columnLabels[i-1].length(),

 rsmd.getColumnDisplaySize (i)); Note 5
 }

 // Output the column headings.
 for (int i = 1; i <= columnCount; ++i) {
 System.out.print (format (rsmd.getColumnLabel(i),
columnWidths[i-1]));
 System.out.print (" ");
 }
 System.out.println ();

 // Output a dashed line.
 StringBuffer dashedLine;
 for (int i = 1; i <= columnCount; ++i) {
 for (int j = 1; j <= columnWidths[i-1]; ++j)
 System.out.print ("-");
 System.out.print (" ");
 }
 System.out.println ();

 // Iterate throught the rows in the result set and output
 // the columns for each row.
 while (rs.next ()) {
 for (int i = 1; i <= columnCount; ++i) {
 String value = rs.getString (i);
 if (rs.wasNull ())

 value = "<null>"; Note 6
 System.out.print (format (value, columnWidths[i-1]));
 System.out.print (" ");
 }
 System.out.println ();
 }

 }

 catch (Exception e) {
 System.out.println ();
 System.out.println ("ERROR: " + e.getMessage());
 }

 finally {

 // Clean up.
 try {
 if (connection != null)
 connection.close ();
 }
 catch (SQLException e) {
 // Ignore.
 }
 }

 System.exit (0);
 }

}

This line loads the IBM Toolbox for Java JDBC driver. A JDBC driver mediates between JDBC and the database
with which you are working.

1.

This line retrieves the connection's meta data, an object that describes many of the characteristics of the database.2.

This statement executes the query on the specified table.3.

These lines retrieve information about the table.4.

These lines set the column width to either the length of the label or the length of the data, whichever is longer.5.

This block of code iterates through all of the rows in the table and displays the contents of each column in each
row.

6.

[Previous part | Simple programming examples]

To see a detailed explanation in a separate window, you browser must have JavaScript support enabled. If your browser
does not have JavaScript enabled or does not support JavaScript, click the Note text link or scroll to the bottom of the page
to see the explanation.

[Simple programming examples]

Example: Displaying a list of server jobs in a GUI
Use the following as an example for your program. The example includes detailed explanations about key lines in the
code. You can view the detailed explanations in the following ways:

Click the image to display the detailed explanation in a pop-up window.●

Click the text link to see the detailed explanation provided at the bottom of the example.●

Note: Read the Code example disclaimer for important legal information.

//
//
// Example using the IBM Toolbox for Java's vaccess
// class, VJobList.
//
// This source is an example of IBM Toolbox for Java "Job List".
//
//

package examples; Note 1

import com.ibm.as400.access.*;

import com.ibm.as400.vaccess.*; Note 2

import javax.swing.*; Note 3
import java.awt.*;
import java.awt.event.*;

public class GUIExample
{

 public static void main(String[] parameters) Note 4
 {
 GUIExample example = new GUIExample(parameters);

 }

 public GUIExample(String[] parameters)
 {

 try Note 5
 {
 // Create an AS400 object.
 //The system name was passed as the first command line argument.

 AS400 system = new AS400 (parameters[0]); Note 6

 VJobList jobList = new VJobList (system); Note 7

 // Create a frame.

 JFrame frame = new JFrame ("Job List Example"); Note 8

 // Create an error dialog adapter. This will display any errors to the
user.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (frame); Note

9

 // Create an explorer pane to present the job list.
 AS400ExplorerPane explorerPane = new AS400ExplorerPane (jobList); Note

10

 explorerPane.addErrorListener (errorHandler); Note 11

 // Use load to load the information from the system.

 explorerPane.load(); Note 12

 // When the frame closes, exit the program.

 frame.addWindowListener (new WindowAdapter () Note 13
 {
 public void windowClosing (WindowEvent event)
 {
 System.exit(0);
 }
 });

 // Layout the frame with the explorer pane.
 frame.getContentPane().setLayout(new BorderLayout());

 frame.getContentPane().add("Center", explorerPane); Note 14

 frame.pack();

 frame.show(); Note 15
 }

 catch (Exception e)
 {

 e.printStackTrace(); Note 16

 System.exit(0); Note 17
 }
 }
}

This class is in the examples package. Java uses packages to avoid name conflicts between Java class files.1.

This line makes all of the IBM Toolbox for Java classes in the vaccess package available to this program. The
classes in the vaccess package have the common prefix com.ibm.as400.vaccess. By using an import statement, the
program calls the name instead of the package plus name. For example, you can reference the
AS400ExplorerPane class by using AS400ExplorerPane, not com.ibm.as400.AS400ExplorerPane.

2.

This line makes all of the Java Foundation Classes (JFC) in the Swing package available to this program. Java
programs that use the IBM Toolbox for Java vaccess (GUI) classes need JDK 1.1.2 plus Java Swing 1.0.3 from

3.

Sun Microsystems, Inc. Swing is available with Sun's JFC 1.1.

This class has a main method so it can be run as an application. To invoke the program, run "java
examples.GUIExample serverName", where serverName is the name of your server. Either the jt400.zip or
jt400.jar must be in your classpath for this to work.

4.

The IBM Toolbox for Java code throws exceptions that your program must catch.5.

The AS400 class is used by IBM Toolbox for Java. This class manages sign-on information, creates and maintains
socket connections, and sends and receives data. In this example, the program will pass the server name to the
AS400 object.

6.

The VJobList class is used by the IBM Toolbox for Java to represent a list of server jobs that can be displayed in a
vaccess (GUI) component. Notice that the AS400 object is used to specify the server on which the list resides.

7.

This line constructs a frame or a top-level window that will be used to display the job list.8.

ErrorDialogAdapter is an IBM Toolbox for Java graphical user interface (GUI) component that is created to
automatically display a dialog window whenever an error event occurs in the application.

9.

This line creates an AS400ExplorerPane, a graphical user interface (GUI) that represents a hierarchy of objects
within a server resource. The AS400ExplorerPane presents a tree on the left side rooted at the VJobList and the
details of the resource in the right side. This only initializes the pane to a default state and does not load the
contents of the VJobList to the pane.

10.

This line adds the error handler you created in step nine as a listener on the VJobList graphical user interface
(GUI) component.

11.

This line loads the contents of the JobList into the ExplorerPane. This method must be called explicitly to
communicate to and load information from the server. This gives the application control over when the
communication with the server will occur. With this you can:

Load the contents before adding the pane to a frame. The frame does not appear until all the information
is loaded, as in this example.

●

Load the contents after adding the pane to a frame and displaying that frame. The frame appears with a
"wait cursor" and the information is filled in as it is loaded.

●

12.

This line adds a window listener so that the application ends when the frame closes.13.

This line adds the job list graphical user interface GUI component to the center of the controlling frame.14.

This line calls the show method to make the window visible to the user.15.

IBM Toolbox for Java exceptions are translated so the text will appear in the language of the workstation. For
example, this program displays the text of the exception as its error processing.

16.

The IBM Toolbox for Java creates threads to carry out IBM Toolbox for Java activity. If the program does not do
System.exit(0) when it is terminated, the program may not exit normally. For example, if the program was run
from a Windows 95 DOS prompt without this line, the command prompt would not return when the program
finished.

17.

[Simple programming examples]

Examples: Tips for programming
This section lists the code examples that are provided throughout the documentation of the managing
connections topic.

Managing connections

Example: Making a connection to the iSeries server with a CommandCall object●

Example: Making two connections to the iSeries server with a CommandCall object●

Example: Creating CommandCall and IFSFileInputStream objects with an AS400 object●

Example: Using AS400ConnectionPool to preconnect to the iSeries server●

Example: Using AS400ConnectionPool to preconnect to a specific service on the iSeries server, then
reuse the connection

●

Starting and ending connections

Example: How a Java program preconnects to an iSeries server●

Example: How a Java program disconnects from an iSeries server●

Example: How a Java program disconnects and reconnects to the iSeries server with
disconnectService() and run()

●

Example: How a Java program disconnects from the iSeries server and fails to reconnect●

Exceptions

Example: Using exceptions●

Error events

Example: Handling error events●

Example: Defining an error listener●

Example: Using a customized handler to handle error events●

Trace

Example: Using trace●

Example: Using setTraceOn()●

Example: Using component trace●

Optimization

Example: Creating two AS400 objects●

Example: Using an AS400 object to represent a second server●

Install and update

Example: Using the AS400Toolbox Installer class●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Examples: ToolboxME for iSeries
This section lists the code examples that are provided throughout the ToolboxME for iSeries documentation.

Example: Creating a ToolboxME for iSeries example - JdbcDemo.java●

Example: Using ToolboxME for iSeries, MIDP, and JDBC●

Example: Using ToolboxME for iSeries, MIDP, and Toolbox for Java●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Using ToolboxME for iSeries, MIDP, and
JDBC
The following source illustrates one way that your ToolboxME for iSeries application can use the Mobile Information
Device Profile (MIDP) and JDBC to access a database and store information offline.

This example demonstrates how a real estate agent might be able to view and bid on properties that are currently for sale.
The agent uses a Tier0 device to access information for the properties, which is stored in the iSeries server database.

When built as a working program, the example code below connects to a database created for this purpose.

To create a working version of the source code and to obtain the source for creating and populating the required database,
you must download the example. You also may want to review the instructions for creating and running the example
program.

Note: Read the Code example disclaimer for important legal information.

//
//
// ToolboxME for iSeries example. This program is an example MIDlet that
shows how
// you might code a JdbcMe application for the MIDP profile. Refer to the
// startApp, pauseApp, destroyApp and commandAction methods to see how it
handles
// each requested transition.
//
//

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.sql.*;
import javax.microedition.rms.*;

import com.ibm.as400.micro.*;

public class JdbcMidpBid extends MIDlet implements CommandListener
{
 private static int BID_PROPERTY = 0;
 private Display display;

 private TextField urlText = new TextField("urltext",
"jdbc:as400://mySystem;user=myUid;password=myPwd;", 65, TextField.ANY);
 private TextField jdbcmeText = new TextField("jdbcmetext",
"meserver=myMEServer", 40, TextField.ANY);
 private TextField jdbcmeTraceText = new TextField("jdbcmetracetext",
"0", 10, TextField.ANY);
 private final static String GETBIDS = "No bids are available, select
here to download bids";
 private List main = new List("JdbcMe Bid Demo", Choice.IMPLICIT);
 private List listings = null;
 private Form aboutBox;
 private Form bidForm;
 private Form settingsForm;
 private int bidRow = 0;

 private String bidTarget = null;
 private String bidTargetKey = null;
 private TextField bidText = new TextField("bidtext", "", 10,
TextField.NUMERIC);
 private Form errorForm = null;

 private Command exitCommand = new Command("Exit", Command.SCREEN, 0);
 private Command backCommand = new Command("Back", Command.SCREEN, 0);
 private Command cancelCommand = new Command("Cancel", Command.SCREEN,
0);
 private Command goCommand = new Command("Go", Command.SCREEN, 1);
 private Displayable onErrorGoBackTo = null;

 /*
 * Construct a new JdbcMidpBid.
 */
 public JdbcMidpBid()
 {
 display = Display.getDisplay(this);
 }

 /**
 * Show the main screen
 */
 public void startApp()
 {
 main.append("Show Bids", null);
 main.append("Get New Bids", null);
 main.append("Settings", null);
 main.append("About", null);
 main.addCommand(exitCommand);
 main.setCommandListener(this);

 display.setCurrent(main);
 }

 public void commandAction(Command c, Displayable s)
 {
 // All exitCommand processing is the same.
 if (c == exitCommand)
 {
 destroyApp(false);
 notifyDestroyed();
 return;
 }
 if (s instanceof List)
 {
 List current = (List)s;

 // An action occurred on the main page
 if (current == main)
 {
 int idx = current.getSelectedIndex();
 switch (idx)
 {
 case 0: // Show current bids
 showBids();
 break;
 case 1: // Get New Bids
 getNewBids();
 break;

 case 2: // Settings
 doSettings();
 break;
 case 3: // About
 aboutBox();
 break;
 default :
 break;
 }
 return;
 } // current == main

 // An action occurred on the listings page
 if (current == listings)
 {
 if (c == backCommand)
 {
 display.setCurrent(main);
 return;
 }
 if (c == List.SELECT_COMMAND)
 {
 int idx = listings.getSelectedIndex();
 String stext = listings.getString(idx);
 if (stext.equals(GETBIDS))
 {
 getNewBids();
 return;
 }
 int commaIdx = stext.indexOf(',');
 bidTargetKey = stext.substring(0, commaIdx);
 bidTarget = stext.substring(commaIdx+1) + "\n";
 // Also keep track of which offline result set row
 // This is. It happens to be the same as the index
 // in the list.
 bidRow = idx;

 bidOnProperty();
 }
 } // current == listings
 return;
 } // instanceof List
 if (s instanceof Form)
 {
 Form current = (Form)s;
 if (current == errorForm)
 {
 if (c == backCommand)
 display.setCurrent(onErrorGoBackTo);

 return;
 } // errorForm
 if (current == settingsForm)
 {
 if (c == backCommand)
 {
 // Done with settings.
 display.setCurrent(main);
 settingsForm = null;
 return;
 }

 } // settingsForm
 if (current == aboutBox)
 {
 if (c == backCommand)
 {
 // Done with about box.
 display.setCurrent(main);
 aboutBox = null;
 return;
 }
 }
 if (current == bidForm)
 {
 if (c == cancelCommand)
 {
 display.setCurrent(listings);
 bidForm = null;
 return;
 }
 if (c == goCommand)
 {
 submitBid();
 if (display.getCurrent() != bidForm)
 {
 // If we're no longer positioned at the
 // bidForm, we will get rid of it.
 bidForm = null;
 }
 return;
 }
 return;
 } // current == bidForm
 } // instanceof Form
 }

 public void aboutBox()
 {
 aboutBox = new Form("aboutbox");
 aboutBox.setTitle("About");
 aboutBox.append(new StringItem("", "Midp RealEstate example for
JdbcMe "));
 aboutBox.addCommand(backCommand);
 aboutBox.setCommandListener(this);
 display.setCurrent(aboutBox);
 }

 /**
 * The settings form.
 */
 public void doSettings()
 {
 settingsForm = new Form("settingsform");
 settingsForm.setTitle("Settings");
 settingsForm.append(new StringItem("", "DB URL"));
 settingsForm.append(urlText);
 settingsForm.append(new StringItem("", "JdbcMe server"));
 settingsForm.append(jdbcmeText);
 settingsForm.append(new StringItem("", "Trace"));

 settingsForm.addCommand(backCommand);
 settingsForm.setCommandListener(this);

 display.setCurrent(settingsForm);
 }

 /**
 * Show the bid screen for the bid target
 * that we selected.
 */
 public void bidOnProperty()
 {
 StringItem item = new StringItem("", bidTarget);

 bidText = new TextField("bidtext", "", 10, TextField.NUMERIC);
 bidText.setString("");

 bidForm = new Form("bidform");
 bidForm.setTitle("Submit a bid for:");
 BID_PROPERTY = 0;
 bidForm.append(item);
 bidForm.append(new StringItem("", "Your bid:"));
 bidForm.append(bidText);
 bidForm.addCommand(cancelCommand);
 bidForm.addCommand(goCommand);
 bidForm.setCommandListener(this);
 display.setCurrent(bidForm);
 }

 /**
 * Update the listings card with the
 * current list of bids that we're interested in.
 */
 public void getNewBids()
 {
 // Reset the old listing
 listings = null;
 listings = new List("JdbcMe Bids", Choice.IMPLICIT);
 java.sql.Connection conn = null;
 Statement stmt = null;
 try
 {
 conn = DriverManager.getConnection(urlText.getString() + ";" +
jdbcmeText.getString());

 stmt = conn.createStatement();

 // Since we don't want the prepared statement to persist,
 // a normal statement is really better in this environemnt.
 String sql = "select mls, address, currentbid from
qjdbcme.realestate where currentbid <> 0";

 boolean results
=((JdbcMeStatement)stmt).executeToOfflineData(sql,"JdbcMidpBidListings",0,
0);
 if (results)
 {
 setupListingsFromOfflineData();
 }
 else
 {
 listings.append("No bids found", null);
 listings.addCommand(backCommand);

 listings.setCommandListener(this);
 }
 }
 catch (Exception e)
 {
 // Currently no valid listings retrieved, so lets
 // reset it to empty.
 listings = new List("JdbcMe Bids", Choice.IMPLICIT);
 listings.append(GETBIDS, null);
 listings.addCommand(backCommand);
 listings.setCommandListener(this);

 // Return to main after showing the error.
 showError(main, e);
 return;
 }
 finally
 {
 if (conn != null)
 {
 try
 {
 conn.close();
 }
 catch (Exception e)
 {
 }
 }
 conn = null;
 stmt = null;
 }
 showBids();
 }

 public void setupListingsFromOfflineData()
 {
 // Skip the first four rows in the record store
 // (eyecatcher, version, num columns, sql column
 // types)
 // and each subsequent row in the record store is
 // a single column. Our query returns 3 columns which
 // we'll return concatenated as a single string.
 ResultSet rs = null;
 listings.addCommand(backCommand);
 listings.setCommandListener(this);
 try
 {
 int i = 5;
 int max = 0;
 StringBuffer buf = new StringBuffer(20);

 // Creator and dbtype unused in MIDP
 rs = new JdbcMeOfflineResultSet("JdbcMidpBidListings", 0, 0);
 if (rs == null)
 {
 // New listings...
 listings = new List("JdbcMe Bids", Choice.IMPLICIT);
 listings.append(GETBIDS, null);
 listings.addCommand(backCommand);
 listings.setCommandListener(this);
 return;

 }

 i = 0;
 String s = null;
 while (rs.next())
 {
 ++i;

 s = rs.getString(1);
 buf.append(s);

 buf.append(",");
 s = rs.getString(2);
 buf.append(s);

 buf.append(", $");
 s = rs.getString(3);
 buf.append(s);

 listings.append(buf.toString(), null);
 buf.setLength(0);
 }

 if (i == 0)
 {
 listings.append("No bids found", null);
 return;
 }
 }
 catch (Exception e)
 {
 // Currently no valid listings retrieved, so lets
 // reset it to empty.
 listings = new List("JdbcMe Bids", Choice.IMPLICIT);
 listings.append(GETBIDS, null);
 listings.addCommand(backCommand);
 listings.setCommandListener(this);

 // Return to main after showing the error.
 showError(main, e);
 return;
 }
 finally
 {
 if (rs != null)
 {
 try
 {
 rs.close();
 }
 catch (Exception e)
 {
 }
 rs = null;
 }
 System.gc();
 }
 }

 /**
 * Update the listings card with the

 * current list of bids that we're interested in.
 */
 public void submitBid()
 {
 java.sql.Connection conn = null;
 Statement stmt = null;
 try
 {
 conn = DriverManager.getConnection(urlText.getString() + ";" +
jdbcmeText.getString());

 stmt = conn.createStatement();

 // Since we don't want the prepared statement to persist,
 // a normal statement is really better in this environemnt.
 StringBuffer buf = new StringBuffer(100);
 buf.append("Update QJdbcMe.RealEstate Set CurrentBid = ");
 buf.append(bidText.getString());
 buf.append(" Where MLS = '");
 buf.append(bidTargetKey);
 buf.append("' and CurrentBid < ");
 buf.append(bidText.getString());
 String sql = buf.toString();

 int updated = stmt.executeUpdate(sql);
 if (updated == 1)
 {
 // BID Accepted.
 String oldS = listings.getString(bidRow);
 int commaIdx = bidTarget.indexOf(',');
 String bidAddr = bidTarget.substring(0, commaIdx);

 String newS = bidTargetKey + "," + bidAddr + ", $" +
bidText.getString();

 ResultSet rs = null;
 try
 {
 // Creator and dbtype unused in MIDP
 rs = new JdbcMeOfflineResultSet("JdbcMidpBidListings",
0, 0);
 rs.absolute(bidRow+1);
 rs.updateString(3, bidText.getString());
 rs.close();
 }
 catch (Exception e)
 {
 if (rs != null)
 rs.close();
 }

 // Also update our live list of that result set.
 listings.set(bidRow, newS, null);
 display.setCurrent(listings);
 conn.commit();
 }
 else
 {
 conn.rollback();
 throw new SQLException("Failed to bid, someone beat you to
it");

 }
 }
 catch (SQLException e)
 {
 // Return to the bid form after showing the error.
 showError(bidForm, e);
 return;
 }
 finally
 {
 if (conn != null)
 {
 try
 {
 conn.close();
 }
 catch (Exception e)
 {
 }
 }
 conn = null;
 stmt = null;
 }

 // Exit without exception, then show the current bids
 showBids();
 }

 /**
 * Show an error condition.
 */
 public void showError(Displayable d, Exception e)
 {
 String s = e.toString();

 onErrorGoBackTo = d;
 errorForm = new Form("Error");
 errorForm.setTitle("SQL Error");
 errorForm.append(new StringItem("", s));
 errorForm.addCommand(backCommand);
 errorForm.setCommandListener(this);
 display.setCurrent(errorForm);
 }

 /**
 * Show the current bids.
 */
 public void showBids()
 {
 if (listings == null)
 {
 // If we have no current listings, lets set
 // them up.
 listings = new List("JdbcMe Bids", Choice.IMPLICIT);
 setupListingsFromOfflineData();
 }
 display.setCurrent(listings);
 }

 /**
 * Time to pause, free any space we don't need right now.

 */
 public void pauseApp()
 {
 display.setCurrent(null);
 }

 /**
 * Destroy must cleanup everything.
 */
 public void destroyApp(boolean unconditional)
 {
 }
}

Example: Using ToolboxME for iSeries, MIDP, and
Toolbox for Java
The following source illustrates one way that your ToolboxME for iSeries application can use the Mobile Information
Device Profile (MIDP) and IBM Toolbox for Java to access data and services on an iSeries server.

This example demonstrates each of the functions built into the IBM Toolbox for Java 2 Micro Edition support. This
application features different pages or screens that illustrate some of the many ways in which your Tier0 device can use
these functions.

When built as a working program, the example code below uses a Program Call Markup Language (PCML) file to run
commands on the iSeries server.

To create a working version of the source code and to obtain the required PCML source for running server commands, you
must download the example. You also may want to review the instructions for creating and running the example program.

Note: Read the Code example disclaimer for important legal information.

//
//
// ToolboxME for iSeries example. This program is an example that shows how
// ToolboxME for iSeries can use PCML to access data and services on an
// iSeries server.
//
// This application requires that the qsyrusri.pcml file is present in the
// CLASSPATH of the MEServer.
//
//

import java.io.*;
import java.sql.*;
import java.util.Hashtable;

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;

import com.ibm.as400.micro.*;

public class ToolboxMidpDemo extends MIDlet implements CommandListener
{
 private Display display_;

 // A ToolboxME system object.
 private AS400 system_;

 private List main_ = new List("Toolbox MIDP Demo",
Choice.IMPLICIT);

 // Create a form for each component.
 private Form signonForm_;
 private Form cmdcallForm_;
 private Form pgmcallForm_;
 private Form dataqueueForm_;

 private Form aboutForm_;

 // Visable Text for each component.
 static final String SIGN_ON = "SignOn";
 static final String COMMAND_CALL = "CommandCall";
 static final String PROGRAM_CALL = "ProgramCall";
 static final String DATA_QUEUE = "DataQueue";
 static final String ABOUT = "About";

 static final String NOT_SIGNED_ON = "Not signed on.";
 static final String DQ_READ = "Read";
 static final String DQ_WRITE = "Write";

 // A ticker to display the signon status.
 private Ticker ticker_ = new Ticker(NOT_SIGNED_ON);

 // Commands that can be performed.
 private static final Command actionExit_ = new Command("Exit",
Command.SCREEN, 0);
 private static final Command actionBack_ = new Command("Back",
Command.SCREEN, 0);
 private static final Command actionGo_ = new Command("Go",
Command.SCREEN, 1);
 private static final Command actionClear_ = new Command("Clear",
Command.SCREEN, 1);
 private static final Command actionRun_ = new Command("Run",
Command.SCREEN, 1);
 private static final Command actionSignon_ = new Command(SIGN_ON,
Command.SCREEN, 1);
 private static final Command actionSignoff_= new Command("SignOff",
Command.SCREEN, 1);

 private Displayable onErrorGoBackTo_; // the form to return to when
done displaying the error form

 // TextFields for the SignOn form.
 private TextField signonSystemText_ = new TextField("System",
"rchasdm3", 20, TextField.ANY);
 private TextField signonUidText_ = new TextField("UserId", "JAVA", 10,
TextField.ANY);
 private TextField signonPwdText_ = new TextField("Password", "JTEAM1",
10, TextField.PASSWORD); // TBD temporary
 private TextField signonServerText_ = new TextField("MEServer",
"localhost", 10, TextField.ANY);
 private StringItem signonStatusText_ = new StringItem("Status",
NOT_SIGNED_ON);

 // TextFields for the CommandCall form.
 private TextField cmdText_ = new TextField("Command", "CRTLIB FRED",
256, TextField.ANY); // TBD: max size; TBD: TextBox???
 private StringItem cmdMsgText_ = new StringItem("Messages", null);
 private StringItem cmdStatusText_ = new StringItem("Status", null);

 // TextFields for the ProgramCall form.
 private StringItem pgmMsgDescription_ = new StringItem("Messages",
null);
 private StringItem pgmMsgText_ = new StringItem("Messages", null);

 // TextFields for the DataQueue form.
 private TextField dqInputText_ = new TextField("Data to write", "Hi
there", 30, TextField.ANY);

 private StringItem dqOutputText_ = new StringItem("DQ contents", null);
 private ChoiceGroup dqReadOrWrite_ = new ChoiceGroup("Action",
Choice.EXCLUSIVE, new String[] { DQ_WRITE, DQ_READ}, null);
 private StringItem dqStatusText_ = new StringItem("Status", null);

 /**
 * Creates a new ToolboxMidpDemo.
 **/
 public ToolboxMidpDemo()
 {
 display_ = Display.getDisplay(this);
 // Note: The KVM-based demo used TabbedPane for the main panel.
MIDP has no similar class, so we use a List instead.
 }

 /**
 * Show the main screen.
 * Implements abstract method of class Midlet.
 **/
 protected void startApp()
 {
 main_.append(SIGN_ON, null);
 main_.append(COMMAND_CALL, null);
 main_.append(PROGRAM_CALL, null);
 main_.append(DATA_QUEUE, null);
 main_.append(ABOUT, null);

 main_.addCommand(actionExit_);
 main_.setCommandListener(this);

 display_.setCurrent(main_);
 }

 // Implements method of interface CommandListener.
 public void commandAction(Command action, Displayable dsp)
 {
 // All 'exit' and 'back' processing is the same.
 if (action == actionExit_)
 {
 destroyApp(false);

 notifyDestroyed();
 }
 else if (action == actionBack_)
 {
 // Return to main menu.
 display_.setCurrent(main_);
 }
 else if (dsp instanceof List)
 {
 List current = (List)dsp;

 // An action occurred on the main page
 if (current == main_)
 {
 int idx = current.getSelectedIndex();

 switch (idx)
 {
 case 0: // SignOn

 showSignonForm();
 break;
 case 1: // CommandCall
 showCmdForm();
 break;
 case 2: // ProgramCall
 showPgmForm();
 break;
 case 3: // DataQueue
 showDqForm();
 break;
 case 4: // About
 showAboutForm();
 break;
 default: // None of the above
 feedback("Internal error: Unhandled selected index in
main: " + idx, AlertType.ERROR);
 break;
 }
 } // current == main
 else
 feedback("Internal error: The Displayable object is a List
but is not main_.", AlertType.ERROR);
 } // instanceof List
 else if (dsp instanceof Form)
 {
 Form current = (Form)dsp;

 if (current == signonForm_)
 {
 if (action == actionSignon_)
 {
 // Create a ToolboxME system object.
 system_ = new AS400(signonSystemText_.getString(),
signonUidText_.getString(), signonPwdText_.getString(),
signonServerText_.getString());

 try
 {
 // Connect to the iSeries.
 system_.connect();

 // Set the signon status text.
 signonStatusText_.setText("Signed on.");

 // Display a confirmation dialog that the user is
signed on.
 feedback("Successfully signed on.", AlertType.INFO,
main_);

 // Replace the SignOn button with SignOff.
 signonForm_.removeCommand(actionSignon_);
 signonForm_.addCommand(actionSignoff_);

 // Update the ticker.
 ticker_.setString("... Signed on to '" +
signonSystemText_.getString() + "' as '" + signonUidText_.getString() + "'
via '" + signonServerText_.getString() + "' ... ");
 }
 catch (Exception e)
 {

 e.printStackTrace();

 // Set the signon status text.
 signonStatusText_.setText(NOT_SIGNED_ON);

 feedback("Signon failed. " + e.getMessage(),
AlertType.ERROR);
 }
 }
 else if (action == actionSignoff_)
 {
 if (system_ == null)
 feedback("Internal error: System is null.",
AlertType.ERROR);
 else
 {
 try
 {
 // Disconnect from the iSeries.
 system_.disconnect();
 system_ = null;

 // Set the signon status text.
 signonStatusText_.setText(NOT_SIGNED_ON);

 // Display a confirmation dialog that the user
is no longer signed on.
 feedback("Successfully signed off.",
AlertType.INFO, main_);

 // Replace the SignOff button with SignOn.
 signonForm_.removeCommand(actionSignoff_);
 signonForm_.addCommand(actionSignon_);

 // Update the ticker.
 ticker_.setString(NOT_SIGNED_ON);
 }
 catch (Exception e)
 {
 feedback(e.toString(), AlertType.ERROR);

 e.printStackTrace();

 signonStatusText_.setText("Error.");

 feedback("Error during signoff.",
AlertType.ERROR);
 }
 }
 }
 else // None of the above.
 {
 feedback("Internal error: Action is not recognized.",
AlertType.INFO);
 }
 } // signonForm_
 else if (current == cmdcallForm_)
 {
 if (action == actionRun_)
 {
 // If the user has not signed on, display an alert.

 if (system_ == null)
 {
 feedback(NOT_SIGNED_ON, AlertType.ERROR);
 return;
 }

 // Get the command the user entered in the wireless
device.
 String cmdString = cmdText_.getString();

 // If the command was not specified, display an alert.
 if (cmdString == null || cmdString.length() == 0)
 feedback("Specify command.", AlertType.ERROR);
 else
 {
 try
 {
 // Run the command.
 String[] messages = CommandCall.run(system_,
cmdString);

 StringBuffer status = new StringBuffer("Command
completed with ");

 // Check to see if their are any messages.
 if (messages.length == 0)
 {
 status.append("no returned messages.");

 cmdMsgText_.setText(null);

 cmdStatusText_.setText("Command completed
successfully.");
 }
 else
 {
 if (messages.length == 1)
 status.append("1 returned message.");
 else
 status.append(messages.length + "
returned messages.");

 // If there are messages, display only the
first message.
 cmdMsgText_.setText(messages[0]);

 cmdStatusText_.setText(status.toString());
 }

 repaint();
 }
 catch (Exception e)
 {
 feedback(e.toString(), AlertType.ERROR);

 e.printStackTrace();

 feedback("Error when running command.",
AlertType.ERROR);
 }
 }

 }
 else if (action == actionClear_)
 {
 // Clear the command text and messages.
 cmdText_.setString("");

 cmdMsgText_.setText(null);

 cmdStatusText_.setText(null);

 repaint();
 }
 else // None of the above.
 {
 feedback("Internal error: Action is not recognized.",
AlertType.INFO);
 }
 } // cmdcallForm_
 else if (current == pgmcallForm_)
 {
 if (action == actionRun_)
 {
 // If the user is not signed on before doing a program
call, display an alert.
 if (system_ == null)
 {
 feedback(NOT_SIGNED_ON, AlertType.ERROR);
 return;
 }

 pgmMsgText_.setText(null);

 // See the PCML example in the Toolbox programmer's
guide.
 String pcmlName = "qsyrusri.pcml"; // The PCML file we
want to use.
 String apiName = "qsyrusri";

 // Create a hashtable that contains the input parameters
for the program call.
 Hashtable parmsToSet = new Hashtable(2);
 parmsToSet.put("qsyrusri.receiverLength", "2048");
 parmsToSet.put("qsyrusri.profileName",
signonUidText_.getString().toUpperCase());

 // Create a string array that contains the output
parameters to retrieve.
 String[] parmsToGet = { "qsyrusri.receiver.userProfile",
 "qsyrusri.receiver.previousSignonDate",
 "qsyrusri.receiver.previousSignonTime",
 "qsyrusri.receiver.daysUntilPasswordExpires"};

 // A string array containing the descriptions of the
parameters to display.
 String[] displayParm = { "Profile", "Last signon Date",
"Last signon Time", "Password Expired (days)"};

 try
 {
 // Run the program.
 String[] valuesToGet = ProgramCall.run(system_,

pcmlName, apiName, parmsToSet, parmsToGet);

 // Create a StringBuffer and add each of the
parameters we retreived.
 StringBuffer txt = new StringBuffer();
 txt.append(displayParm[0] + ": " + valuesToGet[0] +
"\n");

 char[] c = valuesToGet[1].toCharArray();
 txt.append(displayParm[1] + ": " +
c[3]+c[4]+"/"+c[5]+c[6]+"/"+c[1]+c[2] + "\n");

 char[] d = valuesToGet[2].toCharArray();
 txt.append(displayParm[2] + ": " +
d[0]+d[1]+":"+d[2]+d[3] + "\n");
 txt.append(displayParm[3] + ": " + valuesToGet[3] +
"\n");

 // Set the displayable text of the program call
results.
 pgmMsgText_.setText(txt.toString());

 StringBuffer status = new StringBuffer("Program
completed with ");

 if (valuesToGet.length == 0)
 {
 status.append("no returned values.");

 feedback(status.toString(), AlertType.INFO);
 }
 else
 {
 if (valuesToGet.length == 1)
 status.append("1 returned value.");
 else
 status.append(valuesToGet.length + "
returned values.");

 feedback(status.toString(), AlertType.INFO);
 }
 }
 catch (Exception e)
 {
 feedback(e.toString(), AlertType.ERROR);

 e.printStackTrace();

 feedback("Error when running program.",
AlertType.ERROR);
 }
 }
 else if (action == actionClear_)
 {
 // Clear the program call results.
 pgmMsgText_.setText(null);

 repaint();
 }
 } // pgmcallForm_
 else if (current == dataqueueForm_) // DataQueue

 {
 if (action == actionGo_)
 {
 // If the user has not signed on before performing Data
Queue actions, display an alert.
 if (system_ == null)
 {
 feedback(NOT_SIGNED_ON, AlertType.ERROR);

 return;
 }

 // Create a library to create the data queue in.
 try
 {
 CommandCall.run(system_, "CRTLIB FRED");
 }
 catch (Exception e)
 {
 }

 // Run a command to create a data queue.
 try
 {
 CommandCall.run(system_, "CRTDTAQ FRED/MYDTAQ
MAXLEN(2000)");
 }
 catch (Exception e)
 {
 feedback("Error when creating data queue. " +
e.getMessage(), AlertType.WARNING);
 }

 try
 {
 // See which action was selected (Read or Write).
 if
(dqReadOrWrite_.getString(dqReadOrWrite_.getSelectedIndex()).equals(DQ_WRITE))
 {
 // Write
 dqOutputText_.setText(null);

 // Get the text from the wireless device input
to be written to the data queue.
 if (dqInputText_.getString().length() == 0)
 dqStatusText_.setText("No data specified.");
 else
 {
 // Write to the data queue.
 DataQueue.write(system_,
"/QSYS.LIB/FRED.LIB/MYDTAQ.DTAQ", dqInputText_.getString().getBytes());

 dqInputText_.setString(null);

 // Display the status.
 dqStatusText_.setText("The 'write' operation
completed.");
 }
 }
 else // Read
 {

 // Read from the data queue.
 byte[] b = DataQueue.readBytes(system_,
"/QSYS.LIB/FRED.LIB/MYDTAQ.DTAQ");

 // Determine if the data queue contained entries
or not and display the appropriate message.
 if (b == null)
 {
 dqStatusText_.setText("No dataqueue entries
are available.");

 dqOutputText_.setText(null);
 }
 else if (b.length == 0)
 {
 dqStatusText_.setText("Dataqueue entry has
no data.");

 dqOutputText_.setText(null);
 }
 else
 {
 dqStatusText_.setText("The 'read' operation
completed.");

 dqOutputText_.setText(new String(b));
 }
 }

 repaint();
 }
 catch (Exception e)
 {
 e.printStackTrace();

 feedback(e.toString(), AlertType.ERROR);

 feedback("Error when running command. " +
e.getMessage(), AlertType.ERROR);
 }
 } // actionGo_
 else if (action == actionClear_)
 {
 // Clear the data queue form.
 dqInputText_.setString("");

 dqOutputText_.setText(null);

 dqReadOrWrite_.setSelectedFlags(new boolean[] { true,
false});

 dqStatusText_.setText(null);

 repaint();
 }
 else // None of the above.
 {
 feedback("Internal error: Action is not recognized.",
AlertType.INFO);
 }
 } // dataqueueForm_

 else if (current == aboutForm_) // "About".
 {
 // Should never reach here, since the only button is "Back".
 } // None of the above.
 else
 feedback("Internal error: Form is not recognized.",
AlertType.ERROR);
 } // instanceof Form
 else
 feedback("Internal error: Displayable object not recognized.",
AlertType.ERROR);
 }

 /**
 * Displays the "About" form.
 **/
 private void showAboutForm()
 {
 // If the about form is null, create and append it.
 if (aboutForm_ == null)
 {
 aboutForm_ = new Form(ABOUT);
 aboutForm_.append(new StringItem(null, "This is a MIDP example
application that uses the Toolbox Micro Edition (ToolboxME)."));

 aboutForm_.addCommand(actionBack_);
 aboutForm_.setCommandListener(this);
 }

 display_.setCurrent(aboutForm_);
 }

 /**
 * Displays the "SignOn" form.
 **/
 private void showSignonForm()
 {
 // Create the signon form.
 if (signonForm_ == null)
 {
 signonForm_ = new Form(SIGN_ON);
 signonForm_.append(signonSystemText_);
 signonForm_.append(signonUidText_);
 signonForm_.append(signonPwdText_);
 signonForm_.append(signonServerText_);
 signonForm_.append(signonStatusText_);
 signonForm_.addCommand(actionBack_);
 signonForm_.addCommand(actionSignon_);
 signonForm_.setCommandListener(this);
 signonForm_.setTicker(ticker_);
 }

 display_.setCurrent(signonForm_);
 }

 /**
 * Displays the "CommandCall" form.
 **/
 private void showCmdForm()
 {
 // Create the command call form.
 if (cmdcallForm_ == null)
 {
 cmdcallForm_ = new Form(COMMAND_CALL);
 cmdcallForm_.append(cmdText_);
 cmdcallForm_.append(cmdMsgText_);
 cmdcallForm_.append(cmdStatusText_);
 cmdcallForm_.addCommand(actionBack_);
 cmdcallForm_.addCommand(actionClear_);
 cmdcallForm_.addCommand(actionRun_);
 cmdcallForm_.setCommandListener(this);
 cmdcallForm_.setTicker(ticker_);
 }

 display_.setCurrent(cmdcallForm_);
 }

 /**
 * Displays the "ProgramCall" form.
 **/
 private void showPgmForm()
 {
 // Create the program call form.
 if (pgmcallForm_ == null)
 {
 pgmcallForm_ = new Form(PROGRAM_CALL);
 pgmcallForm_.append(new StringItem(null, "This calls the
Retrieve User Information (QSYRUSRI) API, and returns information about the
current user profile."));
 pgmcallForm_.append(pgmMsgText_);
 pgmcallForm_.addCommand(actionBack_);
 pgmcallForm_.addCommand(actionClear_);
 pgmcallForm_.addCommand(actionRun_);
 pgmcallForm_.setCommandListener(this);
 pgmcallForm_.setTicker(ticker_);
 }

 display_.setCurrent(pgmcallForm_);
 }

 /**
 * Displays the "DataQueue" form.
 **/
 private void showDqForm()
 {
 // Create the data queue form.
 if (dataqueueForm_ == null)
 {
 dataqueueForm_ = new Form(DATA_QUEUE);
 dataqueueForm_.append(dqInputText_);
 dataqueueForm_.append(dqOutputText_);
 dataqueueForm_.append(dqReadOrWrite_);
 dataqueueForm_.append(dqStatusText_);

 dataqueueForm_.addCommand(actionBack_);
 dataqueueForm_.addCommand(actionClear_);
 dataqueueForm_.addCommand(actionGo_);
 dataqueueForm_.setCommandListener(this);
 dataqueueForm_.setTicker(ticker_);
 }

 display_.setCurrent(dataqueueForm_);
 }

 private void feedback(String text, AlertType type)
 {
 feedback(text, type, display_.getCurrent());
 }

 /**
 * This method is used to create a dialog and display feedback
information using an Alert to the user.
 **/
 private void feedback(String text, AlertType type, Displayable
returnToForm)
 {
 System.err.flush();
 System.out.flush();

 Alert alert = new Alert("Alert", text, null, type);

 if (type == AlertType.INFO)
 alert.setTimeout(3000); // milliseconds
 else
 alert.setTimeout(Alert.FOREVER); // Require user to dismiss the
alert.

 display_.setCurrent(alert, returnToForm);
 }

 // Force a repaint of the current form.
 private void repaint()
 {
 Alert alert = new Alert("Updating display ...", null, null,
AlertType.INFO);
 alert.setTimeout(1000); // milliseconds

 display_.setCurrent(alert, display_.getCurrent());
 }

 /**
 * Time to pause, free any space we don't need right now.
 * Implements abstract method of class Midlet.
 **/
 protected void pauseApp()
 {
 display_.setCurrent(null);
 }

 /**
 * Destroy must cleanup everything.
 * Implements abstract method of class Midlet.
 **/
 protected void destroyApp(boolean unconditional)
 {
 // Disconnect from the iSeries if the Midlet is being destroyed or
exited.
 if (system_ != null)
 {
 try
 {
 system_.disconnect();
 }
 catch (Exception e)
 {
 }
 }
 }
}

Examples: Utility classes
This section lists the code examples that are provided throughout the documentation of the utility classes.

IBM Toolbox Installer

Example: Using the AS400ToolboxInstaller class●

Example: Installing the IBM Toolbox for Java by using the AS400ToolboxInstaller●

Example: Installing the ACCESS package from the command line●

Example: Working with the Graphical Toolbox class from the command line●

JarMaker

Example: Extracting AS400.class and all its dependent classes from jt400.jar●

Example: Splitting jt400.jar into a set of 300K files●

Example: Removing unused files from a JAR file●

Example: Creating a 400K byte smaller JAR file by omitting the conversion tables with the -ccsid
parameter

●

CommandPrompter

Example: Using CommandPrompter to prompt for and run a command●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Using AS400ToolboxInstaller to install and update IBM Toolbox
for Java

Note: Read the Code example disclaimer for important legal information.

//
//
// Install/Update example. This program uses the AS400ToolboxInstaller
class
// to install and update the IBM Toolbox for Java package on the
workstation.
//
// The program checks the target path for the IBM Toolbox for Java package.
// If the package is not found, it installs the package on the workstation.
// If the package is found it checks the source path for updates. If
// updates are found they are copied to the workstation.
//
// Command syntax:
// checkToolbox source target
//
// Where
// source = location of the source files. This name is in URL format.
// target = location of the target files.
//
//

import java.io.*;
import java.util.*;
import java.net.*;
import utilities.*;

public class checkToolbox extends Object
{
 public static void main(String[] parameters)
 {
 System.out.println(" ");

 // Continue with the install/update only if both source and target
 // names were specified.

 if (parameters.length >= 2)
 {

 // The first parameter is the source for the files, the second is
the target.

 String sourcePath = parameters[0];
 String targetPath = parameters[1];

 boolean installIt = false;
 boolean updateIt = false;

 // Created a reader to get input from the user.

 BufferedReader inputStream = new BufferedReader(new
InputStreamReader(System.in),1);

 try
 {
 // Point at the source package. AS400ToolboxInstaller uses the
URL
 // class to access the files.

 URL sourceURL = new URL(sourcePath);

 // See if the package is installed on the client. If not, ask
the user
 // if install should be performed at this time.

 if (AS400ToolboxInstaller.isInstalled("ACCESS", targetPath) ==
false)
 {
 System.out.print("IBM Toolbox for Java is not installed.
Install now (Y/N):");

 String userInput = inputStream.readLine();

 if ((userInput.charAt(0) == 'y') ||
 (userInput.charAt(0) == 'Y'))
 installIt = true;
 }

 // The package is installed. See if updates need to be copied
from the
 // server. If the target is out of data ask the user if update
should
 // be performed at this time.

 else
 {
 if (AS400ToolboxInstaller.isUpdateNeeded("ACCESS",
targetPath, sourceURL) == true)
 {
 System.out.print("IBM Toolbox for Java is out of date.
Install fixes (Y/N):");

 String userInput = inputStream.readLine();

 if ((userInput.charAt(0) == 'y') ||
 (userInput.charAt(0) == 'Y'))
 updateIt = true;
 }
 else
 System.out.println("Target directory is current, no update
needed.");
 }

 // If the package needs to be installed or updated.

 if (updateIt || installIt)
 {

 // Copy the files from the server to the target.

 AS400ToolboxInstaller.install("ACCESS", targetPath,
sourceURL);

 // Report that the install/update was successful.

 System.out.println(" ");

 if (installIt)
 System.out.println("Install successful!");
 else
 System.out.println("Update Successful!");

 // Tell the user what must be added to the CLASSPATH
environment
 // variable.

 Vector classpathAdditions =
AS400ToolboxInstaller.getClasspathAdditions();

 if (classpathAdditions.size() > 0)
 {
 System.out.println("");
 System.out.println("Add the following to the CLASSPATH
environment variable:");

 for (int i = 0; i < classpathAdditions.size(); i++)
 {
 System.out.print(" ");

System.out.println((String)classpathAdditions.elementAt(i));
 }
 }

 // Tell the user what can be revmoed from the CLASSPATH
environment
 // variable.

 Vector classpathRemovals =
AS400ToolboxInstaller.getClasspathRemovals();

 if (classpathRemovals.size() > 0)
 {
 System.out.println("");
 System.out.println("Remove the following from the
CLASSPATH environment variable:");

 for (int i = 0; i < classpathRemovals.size(); i++)
 {
 System.out.print(" ");

System.out.println((String)classpathRemovals.elementAt(i));
 }

 }
 }
 }

 catch (Exception e)
 {
 // If any of the above operations failed say the operation
failed
 // and output the exception.

 System.out.println("Install/Update failed");
 System.out.println(e);
 }
 }

 // Display help text when parameters are incorrect.

 else
 {
 System.out.println("");
 System.out.println("");
 System.out.println("");
 System.out.println("Parameters are not correct. Command syntax
is:");
 System.out.println("");
 System.out.println(" checkToolbox sourcePath targetPath");
 System.out.println("");
 System.out.println("Where");
 System.out.println("");
 System.out.println(" sourcePath = source for IBM Toolbox for Java
files");
 System.out.println(" targetPath = target for IBM Toolbox for Java
files");
 System.out.println("");
 System.out.println("For example:");
 System.out.println("");
 System.out.println(" checkToolbox
http://mySystem/QIBM/ProdData/HTTP/Public/jt400/ d:\\jt400");
 System.out.println("");
 System.out.println("");
 }

 System.exit(0);
 }
}

Example: Using CommandPrompter
Note: Read the Code example disclaimer for important legal information.

//
//
// CommandPrompter example. This program uses CommandPrompter, CommandCall,
and
// AS400Message to prompt for a command, run the command, and display any
// messages returned if the command does not run.
//
// Command syntax:
// Prompter commandString
//
//

import com.ibm.as400.ui.util.CommandPrompter;
import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;
import com.ibm.as400.access.CommandCall;
import javax.swing.JFrame;
import java.awt.FlowLayout;
public class Prompter
{
public static void main (String args[]) throws Exception
 {
 JFrame frame = new JFrame();
 frame.getContentPane().setLayout(new FlowLayout());
 AS400 system = new AS400("mySystem", "myUserId", "myPasswd");
 String cmdName = args[0];

 // Launch the CommandPrompter
 CommandPrompter cp = new CommandPrompter(frame, system, cmdName);
 if (cp.showDialog() == CommandPrompter.OK)
 {
 String cmdString = cp.getCommandString();
 System.out.println("Command string: " + cmdString);

 // Run the command that was built in the prompter.
 CommandCall cmd = new CommandCall(system, cmdString);
 if (!cmd.run())
 {
 AS400Message[] msgList = cmd.getMessageList();
 for (int i = 0; i < msgList.length; ++i)
 {
 System.out.println(msgList[i].getText());
 }
 }
 }
 System.exit(0);
 }
}

Examples: Vaccess classes
This section lists the code examples that are provided throughout the documentation of the vaccess classes.

AS400Panes

Example: Creating an AS400DetailsPane to present the list of users defined on the
systemAS400DetailsPane

●

Example: Loading the contents of a details pane before adding it to a frame●

Example: Using an AS400ListPane to present a list of users●

Example: Using an AS400DetailsPane to display messages returned from a command call●

Example: Using an AS400TreePane to display a tree view of a directory●

Example: Using an AS400ExplorerPane to present various print resources●

Command call

Example: Creating a CommandCallButton●

Example: Adding the ActionCompletedListener to process all iSeries messages that a command
generates

●

Example: Using the CommandCallMenuItem●

Data queues

Example: Creating a DataQueueDocument●

Example: Using a DataQueueDocument●

Error events

Example: Handling error events●

Example: Defining an error listener●

Example: Using a customized handler to handle error events●

JDBC

Example: Using the JDBC driver to create and populate a table●

Example: Using the JDBC driver to query a table and output its contents●

Example: Creating an AS400JDBCDataSourcePane●

Jobs

Example: Creating a VJobList and presenting the list in an AS400ExplorerPane●

Example: Presenting a list of jobs in an explorer pane●

Program call

Example: Creating a ProgramCallMenuItem●

Example: Processing all program generated iSeries messages●

Example: Adding two parameters●

Example: Using a ProgramCallButton in an application●

Record-level access

Example: Creating a RecordListTablePane object to display all records less than or equal to a key●

SpooledFileViewer

Example: Creating a Spooled File Viewer to view a spooled file previously created on an iSeries●

System Values

Example: Creating a system value GUI using the AS400Explorer pane●

Users and groups

Example: Creating a VUserList with the AS400DetailsPane●

Example: Using an AS400ListPane to create a list of users for selection●

The following disclaimer applies to all of the IBM Toolbox for Java examples:

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from
which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind.
The implied warranties of non-infringement, merchantability and fitness for a particular
purpose are expressly disclaimed.

Example: Using VUserList

Note: Read the Code example disclaimer for important legal information.

///
//
// VUserList example. This program presents a list of users on
// a system in a list pane, and allows selection of one or more
// users.
//
// Command syntax:
// VUserListExample system
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VUserListExample
{

 private static AS400ListPane listPane;

 public static void main (String[] args)
 {
 // If a system is not specified, display help text and
 // exit.
 if (args.length != 1)
 {
 System.out.println("Usage: VUserListExample system");
 return;
 }

 try
 {
 // Create an AS400 object. The system name is passed
 // as the first command line argument.
 AS400 system = new AS400 (args[0]);

 // Create a VUserList. This represents a list of users
 // displayed in the list pane.
 VUserList userList = new VUserList (system);

 // Create a frame.
 JFrame f = new JFrame ("VUserList example");

 // Create an error dialog adapter. This displays
 // any errors to the user.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

 // Create a list pane to display the user list.

 // Use load to get the information from the server.
 listPane = new AS400ListPane (userList);
 listPane.addErrorListener (errorHandler);
 listPane.load ();

 // When the frame closes, report the selected
 // users and exit.
 f.addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent event)
 {
 reportSelectedUsers ();
 System.exit (0);
 }
 });

 // Layout the frame with the list pane.
 f.getContentPane ().setLayout (new BorderLayout ());
 f.getContentPane ().add ("Center", listPane);
 f.pack ();
 f.show ();
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 System.exit (0);
 }
 }

 private static void reportSelectedUsers ()
 {
 VObject[] selectedUsers = listPane.getSelectedObjects ();

 if (selectedUsers.length == 0)
 System.out.println ("No users were selected.");
 else
 {
 System.out.println ("The selected users were:");
 for (int i = 0; i < selectedUsers.length; ++i)
 System.out.println (selectedUsers[i]);
 }
 }

}

Example: Using VMessageList

Note: Read the Code example disclaimer for important legal information.

///
//
// VMessageList example. This program presents a details
// view of messages returned from a command call.
//
// Command syntax:
// VMessageListExample system
//
// This source is an example of IBM Toolbox for Java "VMessageList".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VMessageListExample
{

 public static void main (String[] args)
 {
 // If a system was not specified, then display help text and
 // exit.
 if (args.length != 1)
 {
 System.out.println("Usage: VMessageListExample system");
 return;
 }

 try
 {
 // Create an AS400 object. The system name was passed
 // as the first command line argument.
 AS400 system = new AS400 (args[0]);

 // Create a CommandCall object a run the command.
 CommandCall command = new CommandCall (system);
 command.run ("CRTLIB FRED");

 // Create a VMessageList object with the messages
 // returned from the command call.
 VMessageList messageList = new VMessageList
(command.getMessageList ());

 // Create a frame.
 JFrame f = new JFrame ("VMessageList example");

 // Create an error dialog adapter. This will display
 // any errors to the user.

 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

 // Create a details pane to display the message list.
 // Use load to load the information.
 AS400DetailsPane detailsPane = new AS400DetailsPane
(messageList);
 detailsPane.addErrorListener (errorHandler);
 detailsPane.load ();

 // When the frame closes, exit.
 f.addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent event)
 {
 System.exit (0);
 }
 });

 // Layout the frame with the details pane.
 f.getContentPane ().setLayout (new BorderLayout ());
 f.getContentPane ().add ("Center", detailsPane);
 f.pack ();
 f.show ();
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 System.exit (0);
 }
 }

}

Example: Using VIFSDirectory

Note: Read the Code example disclaimer for important legal information.

///
//
// VIFSDirectory example. This program presents a tree view of
// some directories in the integrated file system.
//
// Command syntax:
// VIFSDirectoryExample system
//
// This source is an example of IBM Toolbox for Java "VIFSDirectory".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VIFSDirectoryExample
{

 public static void main (String[] args)
 {
 // If a system was not specified, then display help text and
 // exit.
 if (args.length != 1)
 {
 System.out.println("Usage: VIFSDirectoryExample system");
 return;
 }

 try
 {
 // Create an AS400 object. The system name was passed
 // as the first command line argument.
 AS400 system = new AS400 (args[0]);

 // Create a VIFSDirectory object which represents the root
 // of the directory tree that we are going to show.
 VIFSDirectory directory = new VIFSDirectory (system,
"/QIBM/ProdData");

 // Create a frame.
 JFrame f = new JFrame ("VIFSDirectory example");

 // Create an error dialog adapter. This will display
 // any errors to the user.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

 // Create a tree pane to present the directories hierarchically.
 // Load the information from the system.

 AS400TreePane treePane = new AS400TreePane (directory);
 treePane.addErrorListener (errorHandler);
 treePane.load ();

 // When the frame closes, exit.
 f.addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent event)
 {
 System.exit (0);
 }
 });

 // Layout the frame with the tree pane.
 f.getContentPane ().setLayout (new BorderLayout ());
 f.getContentPane ().add ("Center", treePane);
 f.pack ();
 f.show ();
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 System.exit (0);
 }
 }

}

Example: Using VPrinters

Note: Read the Code example disclaimer for important legal information.

///
//
// VPrinters example. This program presents various network
// print resources with an explorer pane.
//
// Command syntax:
// VPrintersExample system
//
// This source is an example of IBM Toolbox for Java "VPrinters".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VPrintersExample
{

 public static void main (String[] args)
 {
 // If a system was not specified, then display help text and
 // exit.
 if (args.length != 1)
 {
 System.out.println("Usage: VPrintersExample system");
 return;
 }

 try
 {
 // Create an AS400 object. The system name was passed
 // as the first command line argument.
 AS400 system = new AS400 (args[0]);

 // Create a VPrinters object which represents the list
 // of printers attached to the system.
 VPrinters printers = new VPrinters (system);

 // Create a frame.
 JFrame f = new JFrame ("VPrinters example");

 // Create an error dialog adapter. This will display
 // any errors to the user.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

 // Create an explorer pane to present the network print
resources.
 // Use load to load the information from the system.

 AS400ExplorerPane explorerPane = new AS400ExplorerPane
(printers);
 explorerPane.addErrorListener (errorHandler);
 explorerPane.load ();

 // When the frame closes, exit.
 f.addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent event)
 {
 System.exit (0);
 }
 });

 // Layout the frame with the explorer pane.
 f.getContentPane ().setLayout (new BorderLayout ());
 f.getContentPane ().add ("Center", explorerPane);
 f.pack ();
 f.show ();
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 System.exit (0);
 }
 }

}

Example: Using CommandCallMenuItem

Note: Read the Code example disclaimer for important legal information.

///
//
// Command call menu item example. This program demonstrates how to
// use a menu item that calls a server command. It will display
// any messages that are returned in a dialog.
//
// Command syntax:
// CommandCallMenuItemExample system
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class CommandCallMenuItemExample
{

 private static JFrame f;

 public static void main (String[] args)
 {
 // If a system was not specified, then display help text and
 // exit.
 if (args.length != 1)
 {
 System.out.println("Usage: CommandCallMenuItemExample system");
 return;
 }

 try
 {
 // Create an AS400 object. The system name was passed
 // as the first command line argument.
 AS400 system = new AS400 (args[0]);

 // Create a frame.
 f = new JFrame ("Command call menu item example"

 // Create an error dialog adapter. This will display
 // any errors to the user.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

 // Create a CommandCallMenuItem object to run the command.
 CommandCallMenuItem menuItem = new CommandCallMenuItem ("Clear
library FRED",

 null, system, "CLRLIB FRED"
 menuItem.addErrorListener (errorHandler);

 // Add an action completed listener to display any
 // returned messages in a dialog.
 menuItem.addActionCompletedListener (new ActionCompletedListener
()
 {
 public void actionCompleted (ActionCompletedEvent event)
 {
 // Get the message list from the event source.
 CommandCallMenuItem item = (CommandCallMenuItem)
event.getSource ();
 AS400Message[] messageList = item.getMessageList ();

 // Use an AS400DetailsPane to display the messages.
 VMessageList vmessageList = new VMessageList
(messageList);
 AS400DetailsPane messageDetails = new AS400DetailsPane
(vmessageList);
 messageDetails.load ();

 // Show the details in a dialog.
 JDialog dialog = new JDialog(f);
 dialog.getContentPane().setLayout(new BorderLayout());
 dialog.getContentPane().add("Center"messageDetails);
 dialog.pack();
 dialog.setVisible(true);
 }
 });

 // Create a menu with the item.
 JMenu menu = new JMenu ("Server Command Calls");
 menu.add (menuItem);

 JMenuBar menuBar = new JMenuBar ();
 menuBar.add (menu);

 f.getRootPane ().setJMenuBar (menuBar);

 // When the frame closes, exit.
 f.addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent event)
 {
 System.exit (0);
 }
 });

 // Layout the frame with the details pane.
 f.getContentPane ().setLayout (new BorderLayout ());
 f.setSize (300, 400);
 f.show ();
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 System.exit (0);

 }
 }

}

Example: Using DataQueueDocument

Note: Read the Code example disclaimer for important legal information.

///
//
// Data queue document example. This program demonstrates how to
// use a document that is associated with a server data queue.
//
// Command syntax:
// DataQueueDocumentExample system read|write
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DataQueueDocumentExample
{
 private static DataQueueDocument dqDocument;
 private static JTextField text;
 private static boolean rw;

 public static void main (String[] args)
 {
 // If a system or read|write was not specified, then display
 // help text and exit.
 if (args.length != 2)
 {
 System.out.println("Usage: DataQueueDocumentExample system
read|write");
 return;
 }

 rw = args[1].equalsIgnoreCase ("read");
 String mode = rw ? "Read" : "Write";

 try
 {
 // Create two frames.
 JFrame f = new JFrame ("Data queue document example - " + mode);

 // Create an error dialog adapter. This will display
 // any errors to the user.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

 // Create a working cursor adapter. This will adjust
 // the cursor whenever a data queue is read or written.
 WorkingCursorAdapter cursorAdapter = new WorkingCursorAdapter
(f);

 // Create an AS400 object. The system name was passed
 // as the first command line argument.

 AS400 system = new AS400 (args[0]);

 // Create the data queue path name.
 QSYSObjectPathName dqName = new QSYSObjectPathName ("QGPL",
 "JAVATALK", "DTAQ");

 // Make sure the the data queue exists.
 DataQueue dq = new DataQueue (system, dqName.getPath ());
 try
 {
 dq.create (200);
 }
 catch (Exception e)
 {
 // Ignore exceptions. Most likely, the data queue
 // already exists.
 }

 // Create a DataQueueDocument object.
 dqDocument = new DataQueueDocument (system, dqName.getPath ());
 dqDocument.addErrorListener (errorHandler);
 dqDocument.addWorkingListener (cursorAdapter);

 // Create a text field used to present the document.
 text = new JTextField (dqDocument, "", 40);
 text.setEditable (! rw);

 // When the program runs, we need a way to control when
 // the reads and writes take place. We will let the
 // use control this with a button.
 Button button = new Button (mode);
 button.addActionListener (new ActionListener ()
 {
 public void actionPerformed (ActionEvent event)
 {
 if (rw)
 dqDocument.read ();
 else {
 dqDocument.write ();
 text.setText ("");
 }
 }
 });

 // When the the frame closes, exit.
 f.addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent event)
 {
 System.exit (0);
 }
 });

 // Layout the frame.
 f.getContentPane ().setLayout (new FlowLayout ());
 f.getContentPane ().add (text);
 f.getContentPane ().add (button);
 f.pack ();

 f.show ();
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 System.exit (0);
 }
 }
}

AS400 JDBCDataSourcePane
The AS400JDBCDataSourcePane class presents the property values of an AS400JDBCDataSource object.
Optionally, changes can be made to the AS400JDBCDataSource object.

AS400JDBCDataSourcePane extends JComponent. To use an AS400JDBCDataSourcePane to display the
properties of a data source, the data source can either be specified on the AS400JDBCDataSourcePane
constructor or set after the AS400JDBCDataSourcePane has been created using setDataSource(). Changes made
to the graphical user interface (GUI) can be applied to the data source object using applyChanges().

The following example creates an AS400JDBCDataSourcePane and an OK button and adds them to a frame.
Changes made to the GUI are applied to the data source when you click OK.

Example: Using AS400JDBCDataSourcePane

 // Create a data source.
 myDataSource = new AS400JDBCDataSource();

 // Create a window to hold the pane and an OK button.
 JFrame frame = new JFrame ("JDBC Data Source Properties");

 // Create a data source pane.
 dataSourcePane = new AS400JDBCDataSourcePane(myDataSource);

 // Create an OK button
 JButton okButton = new JButton("OK");

 // Add an ActionListener to the OK button. When OK is
 // pressed, applyChanges() will be called to commit any
 // changes to the data source.
 okButton.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent ev)
 {
 // Apply all changes made on the data source pane
 // to the data source. If all changes are applied
 // successfully, get the data source from the pane.
 if (dataSourcePane.applyChanges())
 {
 System.out.println("ok pressed");
 myDataSource = dataSourcePane.getDataSource();
 System.out.println(myDataSource.getServerName());
 }
 }
 }
);

 // Setup the frame to show the pane and OK button.
 frame.getContentPane ().setLayout (new BorderLayout ());
 frame.getContentPane ().add ("Center", dataSourcePane);
 frame.getContentPane ().add ("South", okButton);

 // Pack the frame.

 frame.pack ();

 //Display the pane and OK button.
 frame.show ();

Example: Using VJobList to present a list of jobs

Note: Read the Code example disclaimer for important legal information.

///
//
// Job list example. This program presents a list of jobs in an
// explorer pane.
//
// Command syntax:
// VJobListExample system
//
// This source is an example of IBM Toolbox for Java "AS400ExplorerPane".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class VJobListExample
{

 public static void main (String[] args)
 {
 // If a system was not specified, then display help text and
 // exit.
 if (args.length != 1)
 {
 System.out.println("Usage: VJobListExample system");
 return;
 }

 try
 {
 // Create an AS400 object. The system name was passed
 // as the first command line argument.
 AS400 system = new AS400 (args[0]);

 // Create a VJobList object which represents the list
 // of jobs named QZDASOINIT.
 VJobList jobList = new VJobList (system);
 jobList.setName ("QZDASOINIT");

 // Create a frame.
 JFrame f = new JFrame ("Job list example");

 // Create an error dialog adapter. This will display
 // any errors to the user.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

 // Create an explorer pane to present the job list.
 // Use load to load the information from the system.

 AS400ExplorerPane explorerPane = new AS400ExplorerPane
(jobList);
 explorerPane.addErrorListener (errorHandler);
 explorerPane.load ();

 // When the frame closes, exit.
 f.addWindowListener (new WindowAdapter () {
 public void windowClosing (WindowEvent event)
 {
 System.exit (0);
 }
 });

 // Layout the frame with the explorer pane.
 f.getContentPane ().setLayout (new BorderLayout ());
 f.getContentPane ().add ("Center", explorerPane);
 f.pack ();
 f.show ();
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 System.exit (0);
 }
 }

}

Example: Using a button to call a program on the
server
Note: Read the Code example disclaimer for important legal information.

///
//
// Program call button example. This program demonstrates how to
// use a button that calls a program on the server. It will exchange data
// with the server program via an input and output parameter.
//
// Command syntax:
// ProgramCallButtonExample system
//
// This source is an example of IBM Toolbox for Java "ProgramCallButton".
//
///

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ProgramCallButtonExample
{

 private ProgramParameter parm1, parm2, parm3, parm4, parm5;
 private JTextField cpuField;
 private JTextField dasdField;
 private JTextField jobsField;

 // Create a ProgramCallButtonExample object, then call the
 // non-static version of main(). If we don't to this then
 // the class variables (parm1, parm2, ...) must be declared
 // static. If they are static they cannot be used by the
 // action completed listener in Java 1.1.7 or 1.1.8.
 public static void main (String[] args)
 {
 ProgramCallButtonExample me = new ProgramCallButtonExample();
 me.Main(args);
 }

 public void Main (String[] args)
 {
 // If a system was not specified, then display help text and
 // exit.
 if (args.length != 1)
 {
 System.out.println("Usage: ProgramCallButtonExample system");
 return;
 }

 try

 {
 // Create a frame.
 JFrame f = new JFrame ("Program call button example");

 // Create an error dialog adapter. This will display
 // any errors to the user.
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

 // Create an AS400 object. The system name was passed
 // as the first command line argument.
 AS400 system = new AS400 (args[0]);

 // Create the program path name.
 QSYSObjectPathName programName = new QSYSObjectPathName ("QSYS",
 "QWCRSSTS", "PGM");

 // Create a ProgramCallButton object. The button
 // will have the text "Refresh" and no icon.
 ProgramCallButton button = new ProgramCallButton ("Refresh",
null);
 button.setSystem (system);
 button.setProgram (programName.getPath ());
 button.addErrorListener (errorHandler);

 // The first parameter is an 64 byte output parameter.
 parm1 = new ProgramParameter (64);
 button.addParameter (parm1);

 // We use the second parameter to set the buffer size
 // of the first parameter. We will always set this to
 // 64. Remember that we need to convert the Java int
 // value 64 to the format used on the server.
 AS400Bin4 parm2Converter = new AS400Bin4 ();
 byte[] parm2Bytes = parm2Converter.toBytes (64);
 parm2 = new ProgramParameter (parm2Bytes);
 button.addParameter (parm2);

 // The third parameter is the status format. We will
 // always use "SSTS0200". This is a String value, and
 // again we need to convert it to the format used on the server.
 AS400Text parm3Converter = new AS400Text (8, system);
 byte[] parm3Bytes = parm3Converter.toBytes ("SSTS0200");
 parm3 = new ProgramParameter (parm3Bytes);
 button.addParameter (parm3);

 // The fourth parameter is the reset statistics parameter.
 // We will always pass "*NO" as a 10 character String.
 AS400Text parm4Converter = new AS400Text (10, system);
 byte[] parm4Bytes = parm4Converter.toBytes ("*NO ");
 parm4 = new ProgramParameter (parm4Bytes);
 button.addParameter (parm4);

 // The fifth parameter is for error information. It
 // is an input/output parameter. We will not use it
 // for this example, but we need to set it to something,
 // or else the number of parameters will not match
 // what the server is expecting.

 byte[] parm5Bytes = new byte[32];
 parm5 = new ProgramParameter (parm5Bytes, 0);
 button.addParameter (parm5);

 // When the program runs, we will get a bunch of data.
 // We need a way to display that data to the user.
 // In this case, we will just use simple labels and text
 // fields.
 JLabel cpuLabel = new JLabel ("CPU Utilitization: ");
 cpuField = new JTextField (10);
 cpuField.setEditable (false);

 JLabel dasdLabel = new JLabel ("DASD Utilitization: ");
 dasdField = new JTextField (10);
 dasdField.setEditable (false);

 JLabel jobsLabel = new JLabel ("Number of active jobs: ");
 jobsField = new JTextField (10);
 jobsField.setEditable (false);

 // When the frame closes, exit.
 f.addWindowListener (new WindowAdapter ()
 {
 public void windowClosing (WindowEvent event)
 {
 System.exit (0);
 }
 });

 // When the program is called, we need to process the
 // information that comes back in the first parameter.
 // The format of the data in this parameter was documented
 // by the program we are calling.
 button.addActionCompletedListener (new ActionCompletedListener
()
 {
 public void actionCompleted (ActionCompletedEvent event)
 {
 try
 {
 // Get the data from the first parameter.
 // It is in the server format.
 byte[] parm1Bytes = parm1.getOutputData ();

 // Each of the pieces of data that we need
 // is an int. We can create one converter
 // to do all of our conversions.
 AS400Bin4 parm1Converter = new AS400Bin4 ();

 // Get the CPU utilitization starting at byte 32.
 // Set this value in the corresponding text field.
 int cpu = parm1Converter.toInt (parm1Bytes, 32);
 cpuField.setText (Integer.toString (cpu / 10) + "%");

 // Get the DASD utilitization starting at byte 52.
 // Set this value in the corresponding text field.

 int dasd = parm1Converter.toInt (parm1Bytes, 52);
 dasdField.setText (Integer.toString (dasd / 10000) +
"%");

 // Get the number of active jobs starting at byte 36.
 // Set this value in the corresponding text field.
 int jobs = parm1Converter.toInt (parm1Bytes, 36);
 jobsField.setText (Integer.toString (jobs));
 }
 catch (Exception e) { e.printStackTrace(); }
 }
 });

 // Layout the frame.
 JPanel outputPanel = new JPanel ();
 outputPanel.setLayout (new GridLayout (3, 2, 5, 5));
 outputPanel.add (cpuLabel);
 outputPanel.add (cpuField);
 outputPanel.add (dasdLabel);
 outputPanel.add (dasdField);
 outputPanel.add (jobsLabel);
 outputPanel.add (jobsField);

 Panel buttonPanel = new Panel ();
 buttonPanel.add (button);

 f.getContentPane ().setLayout (new BorderLayout ());
 f.getContentPane ().add ("Center", outputPanel);
 f.getContentPane ().add ("South", buttonPanel);
 f.pack ();
 f.show ();
 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e.getMessage ());
 System.exit (0);
 }
 }

}

Tips for programming
This section features a variety of tips that can help you use IBM Toolbox for Java:

Shutting down your Java program
Find out how to properly shut down your Java program.

Using integrated file system path names
Read about using integrated file system path names in your programs. This section includes
integrated file system path names, parameters, and special values.

Managing connections
See how to use the AS400 class to start and end socket connections, including how to comply
with the Enterprise JavaBean specification.

Using the OS/400 Java virtual machine (JVM)
Learn about running IBM Toolbox for Java classes on the OS/400 JVM. This section covers
how to best access server resources, how to run the classes, and what sign-on factors to
consider.

Connecting to an independent auxiliary storage pool (IASP)
Read about connecting to an IASP. An IASP is a collection of disk units that you can bring
online or take offline independent of the rest of the storage on a system.

Handling errors when using the Toolbox for Java access classes
Find out about using the Toolbox for Java exception classes to handle errors when you use the
Toolbox for Java access classes in your program.

Handling errors when using the Toolbox for Java vaccess classes
See how to use the Toolbox for Java error events classes to handle errors when you use the
Toolbox for Java vaccess classes in your program.

Using the Trace class
Learn about using the Trace class to log trace points and diagnostic messages to help you
reproduce and diagnose problems in your programs.

Optimizing your programs
Find out how to optimize your programs for better performance.

Getting better performance by using the OS/400 JVM
Read about the improved performance that results from using the OS/400 JVM.

Managing Toolbox for Java classes on your client
Learn how to use the AS400ToolboxInstaller class to manage IBM Toolbox for Java classes on
your client.

Improve JAR file performance
See how to use the Toolbox for Java JarMaker class to create smaller, faster loading IBM
Toolbox for Java JAR files.

Using Java national language support
Read about about using IBM Toolbox for Java and Java national language support.

Obtaining service and support
Use these resources to find support services for Toolbox for Java.

Shutting down your Java program
To ensure that your program shuts down properly, issue System.exit(0) as the last instruction before your Java
program ends.

Note: Avoid using System.exit(0) with servlets because doing so shuts down the entire Java virtual machine.

IBM Toolbox for Java connects to the server with user threads. Because of this, a failure to issue System.exit(0)
may keep your Java program from properly shutting down.

Using System.exit(0) is not a requirement, but a precaution. There are times that you must use this command to
exit a Java program and it is not problematic to use System.exit(0) when it is not necessary.

Integrated file system path names for server
objects
Your Java program must use integrated file system names to refer to server objects, such as programs, libraries,
commands, or spooled files. The integrated file system name is the name of a server object as it would be
accessed in the library file system of the integrated file system on the iSeries or AS/400e server.

The path name may consist of the following components:

Path name component Description

library The library in which the object resides. The library is a required portion of an
integrated file system path name. The library name must be 10 or fewer characters
and be followed by .lib.

object The name of the object that the integrated file system path name represents. The
object is a required portion of an integrated file system path name. The object name
must be 10 or fewer characters and be followed by .type, where type is the type of
the object. Types can be found by prompting for the OBJTYPE parameter on control
language (CL) commands, such as the Work with Objects (WRKOBJ) command.

type The type of the object. The type of the object must be specified when specifying the
object. (See object above.) The type name must be 6 or fewer characters.

member The name of the member that this integrated file system path name represents. The
member is an optional portion of an integrated file system path name. It can be
specified only when the object type is FILE. The member name must be 10 or fewer
characters and followed by .mbr.

Follow these conditions when determining and specifying the integrated file system name:

The forward slash (/) is the path separator character.●

The root-level directory, called QSYS.LIB, contains the server library structure.●

Objects that reside in the server library QSYS have the following format:●

 /QSYS.LIB/object.type

Objects that reside in other libraries have the following format:●

 /QSYS.LIB/library.LIB/object.type

The object type extension is the server abbreviation used for that type of object.●

To see a list of these types, enter a CL command that has object type as a parameter and press F4 (Prompt) for
the type. For example, the Work with Objects (WRKOBJ) command has an object type parameter.

The following table is a list of some commonly used object types and the abbreviation for each type:

Object type Abbreviation

command .CMD

data queue .DTAQ

file .FILE

font resource .FNTRSC

form definition .FORMDF

library .LIB

member .MBR

overlay .OVL

page definition .PAGDFN

page segment .PAGSET

program .PGM

output queue .OUTQ

spooled file .SPLF

Use the following descriptions to help you determine how to specify integrated file system path names:

Integrated file system name Description

/QSYS.LIB/MY_LIB.LIB/MY_PROG.PGM Program MY_PROG
in library MY_LIB
on the server

/QSYS.LIB/MY_LIB.LIB/MY_QUEUE.DTAQ Data queue MY_QUEUE
in library MY_LIB
on the server

/QSYS.LIB/YEAR1998.LIB/MONTH.FILE/JULY.MBR Member JULY
in file MONTH
in library YEAR1998
on the server

Integrated file system special values

Various IBM Toolbox for Java classes recognize special values in integrated file system path names. The
traditional format for these special values (as used on an iSeries command line) begins with an asterisk (*ALL).
However, in a Java program that uses Toolbox for Java classes, the format for these special values begins and
ends with percent signs (%ALL%).

Note: In the integrated file system, an asterisk is a wildcard character.

The following table shows which of these special values the IBM Toolbox for Java classes recognize for
particular path name components. The table also shows how the traditional format for these special values differ
from the format used in Toolbox for Java classes.

Path name component Traditional format Toolbox for Java format

Library name *ALL %ALL%

*ALLUSR %ALLUSR%

*CURLIB %CURLIB%

*LIBL %LIBL%

*USRLIBL %USRLIBL%

Object name *ALL %ALL%

Member name *ALL %ALL%

*FILE %FILE%

*FIRST %FIRST%

*LAST %LAST%

See the QSYSObjectPathName class for information about building and parsing integrated file system names.

For more information about integrated file system concepts, see Integrated file system concepts.

Managing connections
It is important to be able to create, start, and end connections to your server. The following discussion explains concepts
central to managing connections to your server and also offers some code examples.

To connect to an iSeries system, your Java program must create an AS400 object. The AS400 object contains up to one
socket connection for each iSeries server type. A service corresponds to a job on the server and is the interface to the data on
the server.

Note:When you create Enterprise JavaBeans (EJB), comply with the EJB specification that does not allow threads during
your connection. Although turning off IBM Toolbox for Java thread support may slow your application, it is required to
comply with the EJB specification.

Every connection to each server has its own job on the iSeries. A different server supports each of the following:

JDBC●

Program call and command call●

Integrated file system●

Print●

Data queue●

Record-level access●

Notes:

The print classes use one socket connection per AS400 object if the application does not try to do two things that
require the network print server at the same time.

●

A print class creates additional socket connections to the network print server if needed. The extra conversations are
disconnected if they are not used for 5 minutes.

●

The Java program can control the number of connections to iSeries. To optimize communications performance, a Java
program can create multiple AS400 objects for the same system as shown in Figure 1. This creates multiple socket
connections to the iSeries.

Figure 1: Java program creating multiple AS400 objects and socket connections for the same iSeries system

To conserve iSeries system resources, create only one AS400 object as shown in Figure 2. This approach reduces the number
of connections, which reduces the amount of resource used on the system.

Figure 2: Java program creating a single AS400 object and socket connection for the same iSeries system

Note: Although creating more connections increases the amount of resource used on the system, creating more connections
can have a benefit. Having more connections enables your Java program to process things in parallel, which can give better
throughput (transactions-per-second) and speed up your application.

You can also choose to use a connection pool to manage connections as shown in Figure 3. This approach reduces the amount
of time it takes to connect to iSeries by reusing a connection previously established for the user.

Figure 3: Java program getting a connection from an AS400ConnectionPool to an iSeries server

The following examples show how to create and use AS400 objects:

Example 1: In the following example, two CommandCall objects are created that send commands to the same iSeries system.
Because the CommandCall objects use the same AS400 object, only one connection to the system is created.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create two command call objects that use
 // the same AS400 object.
 CommandCall cmd1 = new CommandCall(sys,"myCommand1");
 CommandCall cmd2 = new CommandCall(sys,"myCommand2");

 // Run the commands. A connection is made when the
 // first command is run. Since they use the same
 // AS400 object the second command object will use
 // the connection established by the first command.
 cmd1.run();
 cmd2.run();

Example 2: In the following example, two CommandCall objects are created that send commands to the same iSeries system.
Because the CommandCall objects use different AS400 objects, two connections to the system are created.

 // Create two AS400 objects to the same server.
 AS400 sys1 = new AS400("mySystem.myCompany.com");
 AS400 sys2 = new AS400("mySystem.myCompany.com");

 // Create two command call objects. They use
 // different AS400 objects.
 CommandCall cmd1 = new CommandCall(sys1,"myCommand1");
 CommandCall cmd2 = new CommandCall(sys2,"myCommand2");

 // Run the commands. A connection is made when the
 // first command is run. Since the second command
 // object uses a different AS400 object, a second
 // connection is made when the second command is run.
 cmd1.run();
 cmd2.run();

Example 3: In the following example, a CommandCall object and an IFSFileInputStream object are created using the same
AS400 object. Because the CommandCall object and the IFSFileInput Stream object use different services on the iSeries
system, two connections are created.

 // Create an AS400 object.
 AS400 newConn1 = new AS400("mySystem.myCompany.com");

 // Create a command call object.
 CommandCall cmd = new CommandCall(newConn1,"myCommand1");

 // Create the file object. Creating it causes the
 // AS400 object to connect to the file service.
 IFSFileInputStream file = new IFSFileInputStream(newConn1,"/myfile");

 // Run the command. A connection is made to the
 // command service when the command is run.
 cmd.run();

Example 4: In the following example, an AS400ConnectionPool is used to get an iSeries connection. This example (like
Example 3 above) does not specify a service, so the connection to the command service is made when the command is run.

 // Create an AS400ConnectionPool.

 AS400ConnectionPool testPool1 = new AS400ConnectionPool();
 // Create a connection.
 AS400 newConn1 = testPool1.getConnection("myAS400", "myUserID",
"myPassword");
 // Create a command call object that uses the AS400
object.
 CommandCall cmd = new CommandCall(newConn1,"myCommand1");
 // Run the command. A connection is made to the
 // command service when the command is run.
 cmd.run();
 // Return connection to pool.
 testPool1.returnConnectionToPool(newConn1);

Example 5: The following example uses AS400ConnectionPool to connect to a particular service when requesting the
connection from the pool. This eliminates the time required to connect to the service when the command is run (see Example
4 above). If the connection is returned to the pool, the next call to get a connection can return the same connection object.
This means that no extra connection time is needed, either on creation or use.

 // Create an AS400ConnectionPool.
 AS400ConnectionPool testPool1 = new AS400ConnectionPool();
 // Create a connection to the AS400.COMMAND service.
(Use the service number constants
 // defined in the AS400 class (FILE, PRINT, COMMAND,
DATAQUEUE, etc.))
 AS400 newConn1 = testPool1.getConnection("myAS400", "myUserID",
"myPassword", AS400.COMMAND);
 // Create a command call object that uses the AS400
object.
 CommandCall cmd = new CommandCall(newConn1,"myCommand1");
 // Run the command. A connection has already been
made
 // to the command service.
 cmd.run();
 // Return connection to pool.
 testPool1.returnConnectionToPool(newConn1);
 // Get another connection to command service. In
this case, it will return the same
 // connection as above, meaning no extra connection
time will be needed either now or when the
 // command service is used.
 AS400 newConn2 = testPool1.getConnection("myAS400", "myUserID",
"myPassword", AS400.COMMAND);

Starting and ending connections

The Java program can control when a connection is started and ended. By default, a connection is started when information is
needed from the server. You can control exactly when the connection is made by calling the connectService() method on the
AS400 object to preconnect to the server.

Using an AS400ConnectionPool, you can create a connection preconnected to a service without calling the connectService()
method, as in Example 5 above.

The following examples show Java programs connecting to and disconnecting from iSeries.

Example 1: This example shows how to preconnect to iSeries:

 // Create an AS400 object.
 AS400 system1 = new AS400("mySystem.myCompany.com");

 // Connect to the command service. Do it now
 // instead of when data is first sent to the
 // command service. This is optional since the
 // AS400 object will connect when necessary.
 system1.connectService(AS400.COMMAND);

Example 2: Once a connection is started, the Java program is responsible for disconnecting, which is done either implicitly
by the AS400 object, or explicitly by the Java program. A Java program disconnects by calling the disconnectService()
method on the AS400 object. To improve performance, the Java program should disconnect only when the program is
finished with a service. If the Java program disconnects before it is finished with a service, the AS400 object reconnects, if it
is possible to reconnect, when data is needed from the service.

Figure 4 shows how disconnecting the connection for the first integrated file system object connection ends only that single
instance of the AS400 object connection, not all of the integrated file system object connections.

Figure 4: Single object using its own service for an instance of an AS400 object is disconnected

This example shows how the Java program disconnects a connection:

 // Create an AS400 object.
 AS400 system1 = new AS400("mySystem.myCompany.com");

 // ... use command call to send several commands
 // to the server. Since connectService() was not
 // called, the AS400 object automatically
 // connects when the first command is run.

 // All done sending commands so disconnect the
 // connection.
 system1.disconnectService(AS400.COMMAND);

Example 3: Multiple objects that use the same service and share the same AS400 object share a connection. Disconnecting
ends the connection for all objects that are using the same service for each instance of an AS400 object as is shown in Figure
5.

Figure 5: All objects using the same service for an instance of an AS400 object are disconnected

For example, two CommandCall objects use the same AS400 object. When disconnectService() is called, the connection is
ended for both CommandCall objects. When the run() method for the second CommandCall object is called, the AS400
object must reconnect to the service:

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create two command call objects.
 CommandCall cmd1 = new CommandCall(sys,"myCommand1");
 CommandCall cmd2 = new CommandCall(sys,"myCommand2");

 // Run the first command
 cmd1.run();

 // Disconnect from the command service.
 sys.disconnectService(AS400.COMMAND);

 // Run the second command. The AS400 object
 // must reconnect to the server.
 cmd2.run();

 // Disconnect from the command service. This
 // is the correct place to disconnect.
 sys.disconnectService(AS400.COMMAND);

Example 4: Not all IBM Toolbox for Java classes automatically reconnect. Some method calls in the integrated file system
classes do not reconnect because the file may have changed. While the file was disconnected, some other process may have
deleted the file or changed its contents. In the following example, two file objects use the same AS400 object. When
disconnectService() is called, the connection is ended for both file objects. The read() for the second IFSFileInputStream
object fails because it no longer has a connection to the server.

 // Create an AS400 object.
 AS400 sys = new AS400("mySystem.myCompany.com");

 // Create two file objects. A connection to the

 // server is created when the first object is
 // created. The second object uses the connection
 // created by the first object.
 IFSFileInputStream file1 = new IFSFileInputStream(sys,"/file1");
 IFSFileInputStream file2 = new IFSFileInputStream(sys,"/file2");

 // Read from the first file, then close it.
 int i1 = file1.read();
 file1.close();

 // Disconnect from the file service.
 sys.disconnectService(AS400.FILE);

 // Attempt to read from the second file. This
 // fails because the connection to the file service
 // no longer exists. The program must either
 // disconnect later or have the second file use a
 // different AS400 object (which causes it to
 // have its own connection).
 int i2 = file2.read();

 // Close the second file.
 file2.close();

 // Disconnect from the file service. This
 // is the correct place to disconnect.
 sys.disconnectService(AS400.FILE);

OS/400 Java virtual machine
The IBM Toolbox for Java classes run on the IBM Developer Kit for Java (OS/400) Java virtual machine
(JVM). In fact, the classes run on any platform that supports the Java Development Kit (JDK) 1.1.x and the Java
2 Software Development Kit (J2SDK) specifications.

When you run IBM Toolbox for Java classes on the OS/400 JVM, do the following:

Choose whether to use the OS/400 JVM or the IBM Toolbox for Java classes to access iSeries server
resources when running in the OS/400 JVM.

●

Check out Running IBM Toolbox for Java classes on the OS/400 JVM.●

Read about setting system name, user ID, and password in the OS/400 JVM.●

For more information about iSeries server support for different Java platforms, see the Support for multiple
JDKs in IBM Developer Kit for Java.

Comparing the OS/400 Java virtual machine and
the IBM Toolbox for Java classes
You always have at least two ways to access an iSeries server resource when your Java program is running on
the IBM Developer Kit for Java (OS/400) Java virtual machine (JVM). You can use either of the following
interfaces:

Facilities built into Java●

An IBM Toolbox for Java class●

When deciding which interface to use, consider the following factors:

Location - Where a program runs is the most important factor in deciding which interface set to use.
Does the program do the following:

Run only on the client?❍

Run only on the server?❍

Run on both client and server, but in both cases the resource is an iSeries server resource?❍

Run on one OS/400 JVM and access resources on another iSeries server?❍

Run on different kinds of servers?❍

If the program runs on both client and server (including an iSeries server as a client to a second iSeries
server) and accesses only iSeries server resources, it may be best to use the IBM Toolbox for Java
interfaces.

If the program must access data on many types of servers, it may be best to use Java native interfaces.

●

Consistency / Portability - The ability to run IBM Toolbox for Java classes on iSeries servers means
that the same interfaces can be used for both client programs and server programs. When you have only
one interface to learn for both client programs and server programs, you can be more productive.

Writing to IBM Toolbox for Java interfaces makes your program less server portable, however.

If your program must run to an iSeries server as well as other servers, you may find it better to use the
facilities that are built into Java.

●

Complexity - The IBM Toolbox for Java interface is built especially for easy access to an iSeries server
resource. Often, the only alternative to using the IBM Toolbox for Java interface is to write a program
that accesses the resource and communicates with that program through Java Native Interface (JNI).

You must decide whether it is more important to have better Java neutrality and write a program to
access the resource, or to use the IBM Toolbox for Java interface, which is less portable.

●

Function - The IBM Toolbox for Java interface often provides more function than the Java interface.
For example, the IFSFileOutputStream class of the IBM Toolbox for Java licensed program has more
function than the FileOutputStream class of java.io. Using IFSFileOutputStream makes your program
specific to iSeries servers, however. You lose server portability by using the IBM Toolbox for Java
class.

You must decide whether portability is more important or whether you want to take advantage of the
additional function.

●

Resource - When running on the OS/400 JVM, many of the IBM Toolbox for Java classes still make
requests through the host servers. Therefore, a second job (the server job) carries out the request to
access a resource.

●

This request may take more resource than a Java native interface that runs under the job of the Java
program.

iSeries server as a client - If your program runs on one iSeries server and accesses data on a second
iSeries server, your best choice may be to use IBM Toolbox for Java classes. These classes provide easy
access to the resource on the second iSeries server.

An example of this is Data Queue access. The Data Queue interfaces of the IBM Toolbox for Java
licensed program provide easy access to the data queue resource.

Using the IBM Toolbox for Java also means your program works on both a client and server to access a
data queue on an iSeries server. It also works when running on one iSeries server to access a data queue
on another iSeries server.

The alternative is to write a separate program (in C, for example) that accesses the data queue. The Java
program calls this program when it needs to access the data queue.

This method is more server-portable; you can have one Java program that handles data queue access
and different versions of the program for each server you support.

●

Running IBM Toolbox for Java classes on the
OS/400 Java virtual machine
What follows are special considerations for running the IBM Toolbox for Java classes on the IBM Developer
Kit for Java (OS/400) Java virtual machine (JVM):

JDBC

Two IBM-supplied JDBC drivers are available to programs running on the OS/400 JVM:

The IBM Toolbox for Java JDBC driver●

The IBM Developer Kit for Java JDBC driver●

The IBM Toolbox for Java JDBC driver is best to use when the program is running in a client/server
environment.

The IBM Developer Kit for Java JDBC driver is best to use when the program is running on an iSeries server.

If the same program runs on both the workstation and the server, you should load the correct driver through a
system property instead of coding the driver name into your program.

Program call

Two common ways to call a program are as follows:

The ProgramCall class of the IBM Toolbox for Java●

Through a Java Native Interface (JNI) call●

The ProgramCall class of the IBM Toolbox for Java licensed program has the advantage that it can call any
iSeries server program.

You may not be able to call your iSeries server program through JNI. An advantage of JNI is that it is more
portable across server platforms.

Command call

Two common ways to call a command are as follows:

The CommandCall class of the IBM Toolbox for Java●

java.lang.runtime.exec()●

The CommandCall class generates a list of messages that are available to the Java program once the command
completes. This list of messages is not available through java.lang.runtime.exec().

java.lang.runtime.exec() is portable across many platforms, so if your program must access files on different
types of servers, java.lang.runtime.exec() is a better solution.

Integrated file system

Common ways to access a file in the integrated file system of the iSeries server:

The IFSFile classes of the IBM Toolbox for Java licensed program●

The file classes that are a part of java.io●

The IBM Toolbox for Java integrated file system classes have the advantage of providing more function than

the java.io classes. The IBM Toolbox for Java classes also work in applets, and they do not need a method of
redirection (such as iSeries Access for Windows) to get from a workstation to the server.

The java.io classes are portable across many platforms, which is an advantage. If your program must access files
on different types of servers, java.io is a better solution.

If you use java.io classes on a client, you need a method of redirection (such as the iSeries Access for Windows)
to get to the server file system.

Setting system name, user ID, and password with
an AS400 object in the OS/400 Java virtual
machine
The AS400 object allows special values for system name, user ID, and password when the Java program is
running on the IBM Developer Kit for Java (OS/400) Java virtual machine (JVM).

When you run a program on the OS/400 JVM, be aware of some special values and other considerations:

User ID and password prompting is disabled when the program runs on the server. For more
information about user ID and password values in the server environment, see Summary of user ID and
password values on an AS400 object.

●

If system name, user ID, or password is not set on the AS400 object, the AS400 object connects to the
current server by using the user ID and password of the job that started the Java program. A password
must be supplied when using record-level access while connecting to v4r3 and earlier machines.
When connecting to a v4r4 or later machine, it can propagate the signed-on user's password like
the rest of the IBM Toolbox for Java components.

●

The special value, localhost, can be used as the system name. In this case, the AS400 object connects to
the current server.

●

The special value, *current, can be used as the user ID or password on the AS400 object. In this case,
the user ID or password (or both) of the job that started the Java program is used. For more information
about *current, see the following Notes.

●

The special value, *current, can be used as the user ID or password on the AS400 object when the Java
program is running on the OS/400 JVM of one iSeries server, and the program is accessing resources on
another iSeries server. In this case, the user ID and password of the job that started the Java program on
the source system are used when connecting to the target system. For more information about *current,
see the following Notes.

Notes:

The Java program cannot set the password to "*current" if you are using record-level access and
V4R3 or earlier. When you use record-level access, "localhost" is valid for system name and
"*current" is valid for user ID; however, the Java program must supply the password.

❍

*current works only on systems running at Version 4 Release 3 (V4R3) and later. Password and
user ID must be specified on system running on V4R2 systems.

❍

●

The following examples show how to use the AS400 object with the OS/400 JVM.

Example 1: When a Java program is running in the OS/400 JVM, the program does not have to supply a system
name, user ID, or password.

A password must be supplied when using record-level access.

If these values are not supplied, the AS400 object connects to the local system by using the user ID and
password of the job that started the Java program.

When the program is running on the OS/400 JVM, setting the system name to localhost is the same as not
setting the system name. The following example shows how to connect to the current server:

 // Create two AS400 objects. If the Java program is running in the
 // OS/400 JVM, the behavior of the two objects is the same.

 // They will connect to the current server using the user ID and
 // password of the job that started the Java program.
 AS400 sys = new AS400()
 AS400 sys2 = new AS400("localhost")

Example 2: The Java program can set a user ID and password even when the program is running on the OS/400
JVM. These values override the user ID and password of the job that started the Java program.

In the following example, the Java program connects to the current server, but the program uses a user ID and
password that differs from those of the job that started the Java program.

 // Create an AS400 object. Connect to the current server but do
 // not use the user ID and password of the job that started the
 // program. The supplied values are used.
 AS400 sys = new AS400("localhost", "USR2", "PSWRD2")

Example 3: A Java program that is running on one server can connect to and use the resources of other iSeries
systems.

If *current is used for user ID and password, the user ID and password of the job that started the Java program
is used when the Java program connects to the target server.

In the following example, the Java program is running on one server, but uses resources from another server.
The user ID and password of the job that started the Java program are used when the program connects to the
second server.

 // Create an AS400 object. This program will run on one server
 // but will connect to a second server (called "target").
 // Because *current is used for user ID and password, the user
 // ID and password of the job that started the program will be
 // used when connecting to the second server.
 AS400 target = new AS400("target", "*current", "*current")

Independent auxiliary storage pool (IASP)
An independent auxiliary storage pool (IASP) is a collection of disk units that you can bring online or take
offline independent of the rest of the storage on a system. IASPs contain any of the following:

one or more user-defined file systems●

one or more external libraries●

Each IASP contains all of the necessary system information associated with the data it contains. So, while the
system is active, you can take the IASP offline, bring it online, or switch between systems.

For more information, see Independent ASPs and User ASPs.

You can use the "database name" JDBC property or the setDatabaseName() method from the
AS400JDBCDataSource class to specify the ASP to which you want to connect.

All other Toolbox for Java classes (IFSFile, Print, DataQueues, and so on) use the IASP specified by the the job
description of the user profile that connects to the server.

OS/400 optimization
The IBM Toolbox for Java licensed program is written in Java, so it runs on any platform with a certified Java
virtual machine (JVM). The IBM Toolbox for Java classes function in the same way no matter where they run.

Additional classes come with OS/400 that enhance the behavior of the IBM Toolbox for Java when it is running
on the iSeries JVM. Sign-on behavior and performance are improved when running on the iSeries JVM and
connecting to the same iSeries. OS/400 incorporated the additional classes starting at Version 4 Release 3.

Enabling the Optimizations

IBM Toolbox for Java comes in two packages: as a separate licensed program and with OS/400.

Licensed Program 5722-JC1. The licensed program version of IBM Toolbox for Java ships files in the
following directory:

 /QIBM/ProdData/http/public/jt400/lib

These files do not contain OS/400 optimizations. Use these files if you want behavior consistent with
running the IBM Toolbox for Java on a client.

●

OS/400. IBM Toolbox for Java is also shipped with OS/400 in directory

 /QIBM/ProdData/OS400/jt400/lib

These files do contain the classes that optimize the IBM Toolbox for Java when running on the iSeries
JVM.

●

For more information see Note 1 in the information about Jar files.

Sign-on considerations

With the additional classes provided with OS/400, Java programs have additional options for providing system
name, user ID and password information to the IBM Toolbox for Java.

When accessing an iSeries resource, the IBM Toolbox for Java classes must have a system name, user ID and
password.

When running on a client, the system name, user ID and password are provided by the Java program,
or the IBM Toolbox for Java retrieves these values from the user through a sign-on dialog.

●

When running on the iSeries Java virtual machine, the IBM Toolbox for Java has one more option.
It can send requests to the current (local) server using the user ID and password of the job that started
the Java program.

●

With the additional classes, the user ID and password of the current job also can be used when a Java program
that is running on one iSeries accesses the resources on another iSeries. In this case, the Java program sets the
system name, then uses the special value "*current" for the user ID and password.

The Java program can only set the password to "*current" if you are using record-level access V4R4 or later.
Otherwise, when you use record-level access, "localhost" is valid for system name and "*current" is valid for
user ID; however, the Java program must supply the password.

A Java program sets system name, user ID, and password values in the AS400 object.

To use the job's user ID and password, the Java program can use "*current" as user ID and password, or it can

use the constructor that does not have user ID and password parameters.

To use the current iSeries, the Java program can use "localhost" as the system name or use the default
constructor. That is,

 AS400 system = new AS400();

is the same as

 AS400 system = new AS400("localhost", "*current", "*current");

Two AS400 objects are created in the following example. The two objects have the same behavior: they both
run a command to the current iSeries using the job's user ID and password. One object uses the special value for
the user ID and password, while the other uses the default constructor and does not set user ID or password.

 // Create an AS400 object. Since the default
 // constructor is used and system, user ID and
 // password are never set, the AS400 object sends
 // requests to the local iSeries using the job's
 // user ID and password. If this program were run
 // on a client, the user would be prompted for
 // system, user ID and password.
 AS400 sys1 = new AS400();

 // Create an AS400 object. This object sends
 // requests to the local iSeries using the job's
 // user ID and password. This object will not work
 // on a client.
 AS400 sys2 = new AS400("localhost", "*current", "*current");

 // Create two command call objects that use the
 // AS400 objects.
 CommandCall cmd1 = new CommandCall(sys1,"myCommand1");
 CommandCall cmd2 = new CommandCall(sys2,"myCommand2");

 // Run the commands.
 cmd1.run();
 cmd2.run();

In the following example an AS400 object is created that represents a second iSeries system. Since "*current" is
used, the job's user ID and password from the iSeries running the Java program are used on the second (target)
iSeries.

 // Create an AS400 object. This object sends
 // requests to a second iSeries using the user ID
 // and password from the job on the current iSeries.
 AS400 sys = new AS400("mySystem.myCompany.com", "*current",
"*current");

 // Create a command call object to run a command
 // on the target iSeries.
 CommandCall cmd = new CommandCall(sys,"myCommand1");

 // Run the command.
 cmd.run();

Performance improvements
With the additional classes provided by OS/400, Java programs running on the Java virtual machine for iSeries
experience improved performance. Performance is improved in some cases because less communication
function is used, and in other cases, an iSeries API is used instead of calling the server program.

Shorter download time

In order to download the minimum number of IBM Toolbox for Java class files, use the proxy server in
combination with the AS400ToolboxJarMaker tool.

Faster communication

For all IBM Toolbox for Java functions except JDBC and integrated file system access, Java programs running
on the Java virtual machine for iSeries will run faster. The programs run faster because less communication
code is used when communicating between the Java program and the server program on the server that does the
request.

JDBC and integrated file system access were not optimized because facilities already exist that make these
functions run faster. When running on the iSeries, you can use the JDBC driver for iSeries instead of the JDBC
driver that comes with the IBM Toolbox for Java. To access files on the server, you can use java.io instead of
the integrated file system access classes that come with the IBM Toolbox for Java.

Directly calling iSeries APIs

Performance of the following classes of the IBM Toolbox for Java is improved because these classes directly
call iSeries APIs instead of calling a server program to carry out the request:

AS400Certificate classes●

CommandCall●

DataQueue●

ProgramCall●

Record-level database access classes●

ServiceProgramCall●

UserSpace●

APIs are directly called only if the user ID and password match the user ID and password of the job running the
Java program. To get the performance improvement, the user ID and password must match the user ID and
password of the job that starts the Java program. For best results, use "localhost" for system name, "*current"
for user ID, and "*current" for password.

Port mapping changes

The port mapping system has been changed, which makes accessing a port faster. Before this change, a request
for a port would be sent to the port mapper. From there, the iSeries server would determine which port was
available and return that port to the user to be accepted. Now, you can either tell the server which port to use or
specify that the default ports be used. This option eliminates the wasted time of the server determining the port
for you. Use the WRKSRVTBLE command to view or change the list of ports for the server.

For the port mapping improvement, a few methods have been added to AS400 class:

getServicePort●

setServicePort●

setServicePortsToDefault●

MRI changes

MRI files are now shipped within the IBM Toolbox for Java program as class files instead of property files. The
iSeries server finds messages in class files faster than in property files. ResourceBundle.getString() now runs
faster because the MRI files are stored in the first place that the computer searches. Another advantage of
changing to class files is that the server can find the translated version of a string faster.

Converters

Two classes allow faster, more efficient conversion between Java and the iSeries:

Binary Converter: Converts between Java byte arrays and Java simple types.●

Character Converter: Converts between Java string objects and iSeries code packages.●

Also, the IBM Toolbox for Java now incorporates its own conversion tables for over 100 commonly used
CCSIDs. Previously, the IBM Toolbox for Java either deferred to Java for nearly all text conversion. If Java did
not possess the correct conversion table, IBM Toolbox for Java downloaded the conversion table from the
server.

The IBM Toolbox for Java performs all text conversion for any CCSID of which it is aware. When it encounters
an unknown CCSID, it attempts to let Java handle the conversion. At no point does the IBM Toolbox for Java
attempt to download a conversion table from the server. This technique greatly reduces the amount of time it
takes for an IBM Toolbox for Java application to perform text conversion. No action is required by the user to
take advantage of this new text conversion; the performance gains all occur in the underlying converter tables.

Performance tip regarding the Create Java Program (CRTJVAPGM)
command

If your Java application runs on the iSeries Java virtual machine (JVM), you can significantly improve
performance if you create a Java program from an IBM Toolbox for Java zip file or jar file. Enter the
CRTJVAPGM command on an iSeries command line to create the program. (See the online help information
for the CRTJVAPGM command for more information.) By using the CRTJVAPGM command, you save the
Java program that is created (and that contains the IBM Toolbox for Java classes) when your Java application
starts. Saving the Java program that is created allows you to save startup processing time. You save startup
processing time because the Java program on the server does not have to be re-created each time your Java
application is started.

If you are using the V4R2 or V4R3 version of IBM Toolbox for Java, you cannot run the CRTJVAPGM
command against the jt400.zip or jt400.jar file because it is too big; however, you may be able to run it against
the jt400Access.zip file. At V4R3, IBM Toolbox for Java licensed program includes an additional file,
jt400Access.zip. jt400Access.zip contains only the access classes, not the visual classes.

When you run Java applications on a V4R5 (or earlier) system, use jt400Access.zip. When you run Java
applications on a V5R1 system, use jt400Native.jar. The CRTJVAPGM command has already been run against
jt400Native.jar.

Java national language support
Java supports a set of national languages, but it is a subset of the languages that the server supports.

When a mismatch between languages occurs, for example, if you are running on a local workstation that is
using a language that is not supported by Java, the IBM Toolbox for Java licensed program may issue some
error messages in English.

Service and support for the IBM Toolbox for Java
Use the following resources for service and support:

Toolbox for Java troubleshooting information
Use this information to help you resolve problems when using Toolbox for Java.

JTOpen/Toolbox for Java forum
Join the community of Java programmers who use Toolbox for Java. This forum is an effective
way to get assistance and advice from other Java programmers and sometimes from the
Toolbox for Java developers themselves

Server support
Use the IBM Server support Web site to find out about the tools and resources that help you
streamline the technical planning and support for your iSeries server.

Software support
Use the IBM Software Support Services Web site to find out about the wide array of software
support services offered by IBM.

Support services for the IBM Toolbox for Java, 5722-JC1, are provided under the usual terms and conditions for
iSeries software products. Support services include program services, voice support, and consulting services.
Contact your local IBM representative for more information.

Resolving IBM Toolbox for Java program defects is supported under program services and voice support, while
resolving application programming and debugging issues is supported under consulting services.

IBM Toolbox for Java application program interface (API) calls are supported under consulting services unless
any of the following are true:

It is clearly a Java API defect, as demonstrated by re-creation in a relatively simple program.●

It is a question asking for documentation clarification.●

It is a question about the location of samples or documentation.●

All programming assistance is supported under consulting services including those program samples provided in
the IBM Toolbox for Java licensed program. Additional samples may be made available on the Internet at the

iSeries home page on an unsupported basis.

Problem solving information is provided with the IBM Toolbox for Java Licensed Program Product. If you
believe there is a potential defect in the IBM Toolbox for Java API, a simple program that demonstrates the
error will be required.

Related information for IBM Toolbox for Java
The following list includes Web sites and Information Center topics that relate to the IBM Toolbox for Java
information.

IBM Toolbox for Java resources

Use the following sites to learn more about the IBM Toolbox for Java:

IBM Toolbox for Java and JTOpen : Offers information about service packs, performance tips,
examples, and much more. You can also download a zipped package of this information, including the
javadocs.

●

IBM Toolbox for Java Frequently Asked Questions (FAQ) : Provides answers to questions about
performance, troubleshooting, JDBC, and more.

●

IBM Toolbox for Java and JTOpen forum : Offers an effective way to communicate with the
community of Java programmers who use Toolbox for Java and the Toolbox for Java developers
themselves.

●

IBM Toolbox for Java 2 Micro Edition resources

Use the following sites to learn more about ToolboxME for iSeries and the Java implementation of wireless
technologies:

IBM Toolbox for Java and JTOpen : Offers more information about ToolboxME for iSeries.●

IBM alphaWorks Wireless : Offers information about new wireless technologies, including
downloads and links to development resources.

●

Sun Java 2 Platform, Micro Edition : Provides additional information about the Java wireless
technologies, including the following:

K Virtual Machine (KVM)❍

Connected Limited Device Configuration (CLDC)❍

Mobile Information Device Profile (MIDP)❍

●

Java Wireless Developer : Offers a wide range of technical information for Java wireless
application developers.

●

Wireless application development tools:

IBM VisualAge Micro Edition ❍

Java 2 Platform Micro Edition, Wireless Toolkit ❍

CodeWarrior Wireless Development Kit❍

●

Java

Java is a programming language that allows you to develop portable object-oriented applications and applets.
Use the following sites to learn more about Java:

IBM developerWorks Java technology zone : Offers information, education, and tool to help you
use Java, IBM products, and other technologies to create business solutions.

●

IBM alphaWorks Java : Offers information about new Java technologies, including downloads and
links to development resources.

●

"The Source for Java Technology" from Sun Microsystems : Offers information about the various
uses for Java, including new technologies.

●

Java for iSeries, PartnerWorld for Developers : Provides information about Java and the ways IBM
business partners can and are using it.

●

Java Naming and Directory Interface

Java Naming and Directory Interface(TM) (JNDI) : Offers an overview of JNDI, technical
information, examples, and a list of available service providers.

●

iSeries 400 Directory Services (LDAP) : Provides information about LDAP (Lightweight Directory
Access Protocol) on OS/400.

●

Java Secure Socket Extension

Java Secure Socket Extension (JSSE) : Offers a brief overview of JSSE and links to more
information.

●

Servlets

Servlets are small Java programs that run on a server and mediate requests from one or many clients (each of
which runs in a browser) to one or more databases. Because servlets are programmed in Java, they can execute
requests as multiple threads within a single process, thereby saving system resources. Use the following sites to
learn more about servlets:

IBM Websphere, PartnerWorld for Developers : Offers information about the servlet-based Web
application server.

●

Java Servlet technology : Provides technical information, instructions, and tools to help you
understand and use servlets.

●

XHTML

XHTML is touted as the successor to HTML 4.0. It is based on HTML 4.0, but incorporates the extensibility of
XML. Use following sites to learn more about XHTML:

The Web Developer's Virtual Library : Offers an introduction to XHTML, including examples and●

links to additional information.

W3C : Provides technical information about XHTML standards and recommendations.●

XML

Extensible Markup Language (XML) is a metalanguage that allows you to describe and organize information in
ways that are easily understandable by both humans and computers. A metalanguage allows you to define a
document markup language and its structure. Use the following sites to learn more about XML:

IBM developerWorks XML zone : Provides a site dedicated to the work IBM does with XML and
how it works to facilitate e-commerce

●

IBM alphaWorks XML : Offers information about emerging XML standards and tools, including
downloads and links to development resources.

●

XML Support on iSeries, PartnerWorld for Developers : Provides information about XML and the
ways IBM business partners can and are using it.

●

W3C XML : Offers technical resources for XML developers.●

XML.com : Offers updated information about XML in the computer industry●

XML.org : Provides news and information about the XML community, including industry news,
calendars of events, and more.

●

XMLephant : Offers resources for learning XML that includes links to many other XML sites.●

XML Cover Pages : Provides a comprehensive online reference work for XML, SGML, and related
XML standards, like XSL and XSLT.

●

Other references

IBM HTTP Server for iSeries : Provides information, resources, and tips about the IBM HTTP
Server for iSeries.

●

iSeries Access for Windows : Offers information about iSeries Access for Windows, including
downloads, FAQs, and links to additional sites.

●

IBM WebSphere Host On-Demand : Provides information about the browser-based emulator that
offers support for S/390, iSeries, and DEC/Unix emulation.

●

IBM Support and downloads : Offers a portal to IBM hardware and software support.●

Code disclaimer information
This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you can
generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of
these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The implied
warranties of non-infringement, merchantability and fitness for a particular purpose are expressly disclaimed.

	Local Disk
	Table of contents
	IBM Toolbox for Java
	IBM Toolbox for Java: What's new
	IBM Toolbox for Java: Print this topic
	IBM Toolbox for Java: Getting started
	IBM Toolbox for Java: Managing your IBM Toolbox for Java installation
	IBM Toolbox for Java: Installing Toolbox for Java
	IBM Toolbox for Java: OS/400 requirements for using Toolbox for Java
	IBM Toolbox for Java: Required OS/400 options
	IBM Toolbox for Java: Determining if Toolbox for Java is installed on your server
	IBM Toolbox for Java: Checking the QUSER profile
	IBM Toolbox for Java: Changing the QUSER user profile
	IBM Toolbox for Java: Dependencies on other licensed programs
	IBM Toolbox for Java: OS/400 compatibility
	IBM Toolbox for Java: Native optimizations
	IBM Toolbox for Java 2 Micro Edition: Requirements
	IBM Toolbox for Java: Workstation requirements
	IBM Toolbox for Java: Workstation requirements for running applications
	IBM Toolbox for Java: Workstation requirementsfor running applets
	IBM Toolbox for Java: Workstation requirements for using Swing
	IBM Toolbox for Java: Installing on iSeries
	IBM Toolbox for Java: Copying class files on your workstation
	IBM Toolbox for Java: Jar files
	IBM Toolbox for Java: System properties
	IBM Toolbox for Java: Simple programming examples
	IBM Toolbox for Java: List of packages
	IBM Toolbox for Java: Access classes
	IBM Toolbox for Java: AS400 class
	IBM Toolbox for Java: SecureAS400
	IBM Toolbox for Java: AS400JPing class
	IBM Toolbox for Java: AS400BidiTransform class
	IBM Toolbox for Java: ClusteredHashTable classes
	IBM Toolbox for Java: Command Call
	IBM Toolbox for Java: Connection pooling
	IBM Toolbox for Java: Data Area
	IBM Toolbox for Java: Data Conversion and Description
	IBM Toolbox for Java: Conversion classes for numeric data
	IBM Toolbox for Java: Text Conversion
	IBM Toolbox for Java: Conversion classes for composite types
	IBM Toolbox for Java: Field Description classes
	IBM Toolbox for Java: RecordFormat class
	IBM Toolbox for Java: Record class
	IBM Toolbox for Java: LineDataRecordWriter class
	IBM Toolbox for Java: Data Queues
	IBM Toolbox for Java: Sequential Data Queues
	IBM Toolbox for Java: Keyed Data Queues
	IBM Toolbox for Java: Digital Certificates
	IBM Toolbox for Java: EnvironmentVariable class
	IBM Toolbox for Java: Exceptions and Error Events
	IBM Toolbox for Java: FTP Class
	IBM Toolbox for Java: Integrated File System
	IBM Toolbox for Java: IFSFile class
	IBM Toolbox for Java: IFSJavaFile class
	IBM Toolbox for Java: IFSFileInputStream
	IBM Toolbox for Java: IFSTextFileInputStream class
	IBM Toolbox for Java: IFSFileOutputStream
	IBM Toolbox for Java: IFSTextFileOutputStream class
	IBM Toolbox for Java: IFSRandomAccessFile
	IBM Toolbox for Java: IFSFileDialog
	IBM Toolbox for Java: IFSKey class
	IBM Toolbox for Java: File sharing mode
	IBM Toolbox for Java: JavaApplicationCall
	IBM Toolbox for Java: JDBC
	IBM Toolbox for Java: Enhancements to JDBC support
	IBM Toolbox for Java: JDBC properties
	IBM Toolbox for Java: AS400JDBCBlob class
	IBM Toolbox for Java: CallableStatement interface
	IBM Toolbox for Java: AS400JDBCClob class
	IBM Toolbox for Java: JDBC Connection
	IBM Toolbox for Java: AS400JDBCConnectionPool
	IBM Toolbox for Java: DatabaseMetaData interface
	IBM Toolbox for Java: AS400JDBCDataSource class
	IBM Toolbox for Java: JDBC Driver
	IBM Toolbox for Java: AS400JDBCParameterMetaData
	IBM Toolbox for Java: PreparedStatement interface
	IBM Toolbox for Java: ResultSet interface
	IBM Toolbox for Java: AS400JDBCRowSet
	IBM Toolbox for Java: AS400JDBCSavepoint class
	IBM Toolbox for Java: JDBC SQL Statements
	IBM Toolbox for Java: JDBC XA distributed transaction management
	IBM Toolbox for Java: Jobs classes
	IBM Toolbox for Java: Job
	IBM Toolbox for Java: JobList class
	IBM Toolbox for Java: JobLog
	IBM Toolbox for Java: Message classess
	IBM Toolbox for Java: NetServer
	IBM Toolbox for Java: Permission Classes
	IBM Toolbox for Java: DLOPermission class
	IBM Toolbox for Java: QSYSPermission
	IBM Toolbox for Java: RootPermission
	IBM Toolbox for Java: Print Classes
	IBM Toolbox for Java: Listing Print Objects
	IBM Toolbox for Java: Working with Print Objects
	IBM Toolbox for Java: Retrieving PrintObject Attributes
	IBM Toolbox for Java: Printer file attributes
	IBM Toolbox for Java: Spooled file attributes
	IBM Toolbox for Java: Creating New Spooled Files
	IBM Toolbox for Java: Generating an SCS Data Stream
	IBM Toolbox for Java: Spooled File and AFP Resources
	IBM Toolbox for Java: Reading Spooled Files Using PrintObjectPageInputStream and PrintObjectTransformedInputStream
	IBM Toolbox for Java: Product license
	IBM Toolbox for Java: ProgramCall class
	IBM Toolbox for Java: QSYSObjectPathName
	IBM Toolbox for Java: Record-level access classes
	IBM Toolbox for Java: AS400File
	IBM Toolbox for Java: KeyedFile
	IBM Toolbox for Java: SequentialFile
	IBM Toolbox for Java: AS400FileRecordDescription
	IBM Toolbox for Java: ServiceProgramCall
	IBM Toolbox for Java: SystemStatus classes
	IBM Toolbox for Java: System Values
	IBM Toolbox for Java: Using the Trace class
	IBM Toolbox for Java: Users and Groups
	IBM Toolbox for Java: UserSpace
	IBM Toolbox for Java: HTML classes
	IBM Toolbox for Java: BidiOrdering class
	IBM Toolbox for Java: HTMLAlign class
	IBM Toolbox for Java: HTML form classes
	IBM Toolbox for Java: FormInput classes
	IBM Toolbox for Java: ButtonFormInput class
	IBM Toolbox for Java: FileFormInput class
	IBM Toolbox for Java: HiddenFormInput class
	IBM Toolbox for Java: ImageFormInput class
	IBM Toolbox for Java: ResetFormInput class
	IBM Toolbox for Java: SubmitFormInput class
	IBM Toolbox for Java: TextFormInput class
	IBM Toolbox for Java: PasswordFormInput class
	IBM Toolbox for Java: RadioFormInput class
	IBM Toolbox for Java: CheckboxFormInput class
	IBM Toolbox for Java: LayoutFormPanel class
	IBM Toolbox for Java: GridLayoutFormPanel
	IBM Toolbox for Java: LineLayoutFormPanel class
	IBM Toolbox for Java: TextAreaFormElement class
	IBM Toolbox for Java: LabelFormElement class
	IBM Toolbox for Java: SelectFormElement class
	IBM Toolbox for Java: SelectOption class
	IBM Toolbox for Java: RadioFormInputGroup class
	IBM Toolbox for Java: HTMLHeading class
	IBM Toolbox for Java: HTMLHyperlink
	IBM Toolbox for Java: HTMLImage class
	IBM Toolbox for Java: HTMLList classes
	IBM Toolbox for Java: HTMLMeta class
	IBM Toolbox for Java: HTMLParameter class
	IBM Toolbox for Java: HTMLServlet class
	IBM Toolbox for Java: HTML Table classes
	IBM Toolbox for Java: HTMLTableCell class
	IBM Toolbox for Java: HTMLTableRow class
	IBM Toolbox for Java: HTMLTableHeader class
	IBM Toolbox for Java: HTMLTableCaption class
	IBM Toolbox for Java: HTMLText class
	IBM Toolbox for Java: HTMLTree class
	IBM Toolbox for Java: HTMLTreeElement class
	IBM Toolbox for Java: FileTreeElement
	IBM Toolbox for Java: FileListElement class
	IBM Toolbox for Java: FileListRenderer class
	IBM Toolbox for Java: ReportWriter classes
	IBM Toolbox for Java: Context classes
	IBM Toolbox for Java: JSPReportProcessor class
	IBM Toolbox for Java: XSLReportProcessor class
	IBM Toolbox for Java: Resource classes
	IBM Toolbox for Java: Resource and ChangeableResource classes
	IBM Toolbox for Java: Resource classes
	IBM Toolbox for Java: Presentation class
	IBM Toolbox for Java: Security Classes
	IBM Toolbox for Java: Secure Sockets Layer (SSL)
	IBM Toolbox for Java: SSL legal responsibilities
	IBM Toolbox for Java: Using SSL
	IBM Toolbox for Java: Setting up iSeries servers to use SSL
	IBM Toolbox for Java: Using a certificate from a trusted authority
	IBM Toolbox for Java: Building your own certificate (SSL)
	IBM Toolbox for Java: Using SSL
	IBM Toolbox for Java: Setting up SSL on the proxy server
	IBM Toolbox for Java: Setting up SSL on the proxy client
	IBM Toolbox for Java: Authentication services
	IBM Toolbox for Java: Servlet classes
	IBM Toolbox for Java: Authentication classes
	IBM Toolbox for Java: RowData class
	IBM Toolbox for Java: ListRowData class
	IBM Toolbox for Java: RecordListRowData
	IBM Toolbox for Java: ResourceListRowData class
	IBM Toolbox for Java: SQLResultSetRowData class
	IBM Toolbox for Java: RowMetaData classes
	IBM Toolbox for Java: ListMetaData class
	IBM Toolbox for Java: RecordFormatMetaData class
	IBM Toolbox for Java: SQLResultSetMetaData class
	IBM Toolbox for Java: Converter classes
	IBM Toolbox for Java: StringConverter class
	IBM Toolbox for Java: HTMLFormConverter class
	IBM Toolbox for Java: HTMLTableConverter class
	IBM Toolbox for Java: Utility classes
	IBM Toolbox for Java: AS400ToolboxInstaller
	IBM Toolbox for Java: AS400ToolboxJarMaker
	IBM Toolbox for Java: Supported components
	IBM Toolbox for Java: CCSIDs and encodings
	IBM Toolbox for Java: CommandPrompter class
	IBM Toolbox for Java: RunJavaApplication
	IBM Toolbox for Java: JPing class
	IBM Toolbox for Java: Vaccess classes
	IBM Toolbox for Java: Vaccess package diagram
	IBM Toolbox for Java: AS400Panes
	IBM Toolbox for Java: Vaccess Command Call
	IBM Toolbox for Java: Vaccess Data Queues
	IBM Toolbox for Java: Error Events
	IBM Toolbox for Java: Vaccess Integrated File System
	IBM Toolbox for Java: VIFSFileDialog
	IBM Toolbox for Java: VIFSDirectory
	IBM Toolbox for Java: IFSTextFileDocument
	IBM Toolbox for Java: VJavaApplicationCall class
	IBM Toolbox for Java: JDBC (SQL) classes
	IBM Toolbox for Java SQL Buttons and menu items
	IBM Toolbox for Java: SQLStatementDocument class
	IBM Toolbox for Java: SQLResultSetFormPane class
	IBM Toolbox for Java: SQLResultSetTablePane class
	IBM Toolbox for Java: SQLResultSetTableModel class
	IBM Toolbox for Java: SQL query builders
	IBM Toolbox for Java: Vaccess Jobs
	IBM Toolbox for Java: Vaccess Messages
	IBM Toolbox for Java: VMessageList
	IBM Toolbox for Java: VMessageQueue
	IBM Toolbox for Java: Permission classes
	IBM Toolbox for Java: Vaccess Print Classes
	IBM Toolbox for Java: VPrinters
	IBM Toolbox for Java: VPrinter
	IBM Toolbox for Java: VPrinterOutput
	IBM Toolbox for Java: SpooledFileViewer
	IBM Toolbox for Java: Vaccess ProgramCall
	IBM Toolbox for Java: Vaccess Record-Level Access classes
	IBM Toolbox for Java: RecordListFormPane
	IBM Toolbox for Java: RecordListTablePane
	IBM Toolbox for Java: RecordListTablePane and RecordListTableMOdel classes
	IBM Toolbox for Java Example: Using generic code to access resources
	IBM Toolbox for Java: Vaccess System Status classes
	IBM Toolbox for Java: VSystemStatusPane class
	IBM Toolbox for Java: Vaccess System Values Classes
	IBM Toolbox for Java: Vaccess Users and Groups Classes
	IBM Toolbox for Java: Graphical Toolbox
	IBM Toolbox for Java: Setting up the Graphical Toolbox
	IBM Toolbox for Java: Creating your user interface
	IBM Toolbox for Java: Displaying your panels at runtime
	IBM Toolbox for Java: Editing help documents
	IBM Toolbox for Java: Graphical Toolbox examples
	IBM Toolbox for Java: Using the Graphical Toolbox in a browser
	IBM Toolbox for Java: Graphical Toolbox widgets
	IBM Toolbox for Java: Java beans
	IBM Toolbox for Java: Program Call Markup Language
	IBM Toolbox for Java: PCML Process
	IBM Toolbox for Java: PCML Syntax
	IBM Toolbox for Java: PCML program tag
	IBM Toolbox for Java: PCML struct tag
	IBM Toolbox for Java: PCML data tag
	IBM Toolbox for Java: Additional information about PCML and RFML tags
	IBM Toolbox for Java: Proxy Support
	IBM Toolbox for Java: Record Format Markup Language
	IBM Toolbox for Java: Requirements for using RFML
	IBM Toolbox for Java: Comparing RFML and traditional Record classes
	IBM Toolbox for Java: RFML source file example
	IBM Toolbox for Java: RecordFormatDocument class
	IBM Toolbox for Java: Record Format documents and RFML syntax
	IBM Toolbox for Java: RFML Data Type Definition
	IBM Toolbox for Java: RFML data tag
	IBM Toolbox for Java: RFML rfml tag
	IBM Toolbox for Java: RFML recordformat tag
	IBM Toolbox for Java: RFML struct tag
	IBM Toolbox for Java: Secure Sockets Layer and Java Secure Socket Extension
	IBM Toolbox for Java: iSeries System Debugger
	IBM Toolbox for Java: iSeries System Debugger components
	IBM Toolbox for Java: Installing the iSeries System Debugger
	IBM Toolbox for Java: Running iSeries System Debugger
	IBM Toolbox for Java System Properties Example
	IBM Toolbox for Java Example: System Properties
	IBM Toolbox for Java 2 Micro Edition
	IBM Toolbox for Java 2 Micro Edition: Requirements and installation
	IBM Toolbox for Java 2 Micro Edition: Concepts
	IBM Toolbox for Java 2 Micro Edition: ToolboxME for iSeries classes
	IBM Toolbox for Java 2 Micro Edition: MEServer class
	IBM Toolbox for Java 2 Micro Edition: AS400 class
	IBM Toolbox for Java 2 Micro Edition: CommandCall class
	IBM Toolbox for Java 2 Micro Edition: DataQueue class
	IBM Toolbox for Java 2 Micro Edition: ProgramCall class
	IBM Toolbox for Java 2 Micro Edition: JdbcMe classes
	IBM Toolbox for Java 2 Micro Edition: JdbcMeConnection class
	IBM Toolbox for Java 2 Micro Edition: JdbcMeDriver class
	IBM Toolbox for Java 2 Micro Edition: JdbcMeResultSet classes
	IBM Toolbox for Java 2 Micro Edition: JdbcMeOfflineData class
	IBM Toolbox for Java 2 Micro Edition: JdbcMeStatement class
	IBM Toolbox for Java 2 Micro Edition: Creating a ToolboxME for iSeries program
	IBM Toolbox for Java 2 Micro Edition: Working examples
	IBM Toolbox for Java: Frequently asked questions
	IBM Toolbox for Java: Examples
	IBM Toolbox for Java: Access Package Examples
	IBM Toolbox for Java Example: Using CommandCall
	IBM Toolbox for Java Example: Using AS400ConnectionPool
	IBM Toolbox for Java Example: Using DataQueue classes
	IBM Toolbox for Java Example: Using DataQueue classes
	IBM Toolbox for Java Examples: Using IFSFile
	IBM Toolbox for Java Example: Using the IFSFile listFiles() method to list the contents of a directory
	IBM Toolbox for Java Example: Using IFS classes to copy a file from one directory to another
	IBM Toolbox for Java Example: Using the IFS classes to list the contents of a directory
	IBM Toolbox for Java Example: Using JDBCPopulate
	IBM Toolbox for Java Example: Using JDBCQuery
	IBM Toolbox for Java Example: Using JobList
	IBM Toolbox for Java Example: Using JobList
	IBM Toolbox for Java Example: Using JobLog
	IBM Toolbox for Java Example: Creating spooled files
	IBM Toolbox for Java Example: Creating SCS spooled files
	IBM Toolbox for Java Example: Listing spooled files
	IBM Toolbox for Java Example: Listing spooled files
	IBM Toolbox for Java Example: Listing spooled files
	IBM Toolbox for Java Example: Listing spooled files
	IBM Toolbox for Java Example: Using ProgramCall
	IBM Toolbox for Java Example: Using record-level access classes
	IBM Toolbox for Java Example: Using Record-level Access Classes
	IBM Toolbox for Java Example: Using Record-level Access Classes
	IBM Toolbox for Java Example: Using UserList
	IBM Toolbox for Java Examples: JavaBeans Examples
	IBM Toolbox for Java Example: Bean code example
	IBM Toolbox for Java: Using a visual bean builder
	IBM Toolbox for Java Graphical Toolbox Example: Constructing a panel
	IBM Toolbox for Java: Editable Combobox example
	IBM Toolbox for Java Example: Creating a panel with GUI Builder
	IBM Toolbox for Java Example: Creating a deck pane with GUI Builder
	IBM Toolbox for Java Example: Creating a property sheet with GUI Builder
	IBM Toolbox for Java Example: Creating a split pane with GUI Builder
	IBM Toolbox for Java Example: Creating a tabbed pane with GUI Builder
	IBM Toolbox for Java Example: Creating a wizard with GUI Builder
	IBM Toolbox for Java Example: Creating a toolbar with GUI Builder
	IBM Toolbox for Java Example: Creating a menubar with GUI Builder
	IBM Toolbox for Java Example: Creating the Help Document
	IBM Toolbox for Java Example: Using GUI Builder
	IBM Toolbox for Java: Examples from the HTML classes
	IBM Toolbox for Java: Example of using the HTML form classes
	IBM Toolbox for Java: Using HTMLTree classes
	IBM Toolbox for Java Example: Creating a traversable integrated file system tree
	IBM Toolbox for Java Example: Creating a traversable integrated file system tree
	IBM Toolbox for Java Example: Creating a traversable integrated file system tree
	IBM Toolbox for Java Example: Using HTMLTable classes
	IBM Toolbox for Java: PCML Examples
	PCML example: Simple example of retrieving data
	PCML example: Retrieving a list of information
	PCML example: Retrieving multidimensional data
	IBM Toolbox for Java Examples: ReportWriter Package Examples
	IBM Toolbox for Java Example: Using JSPReportProcessor with PDFContext
	IBM Toolbox for Java Example: JSPReportWriter sample JSP file
	IBM Toolbox for Java Example: Using XSLReportProcessor with PCLContext
	IBM Toolbox for Java Example: XSLReportProcessor sample XML file
	IBM Toolbox for Java Example: XSLReportProcessor sample XSL file
	IBM Toolbox for Java Examples: Resource Package Examples
	IBM Toolbox for Java Example: Retrieving an attribute value from a Resource
	IBM Toolbox for Java Example: Setting attribute values for a ChangeableResource
	IBM Toolbox for Java Example: Using generic code to access resources
	IBM Toolbox for Java: Resource list examples
	IBM Toolbox for Java: RFML examples
	IBM Toolbox for Java Example: Using profile tokens
	IBM Toolbox for Java: Examples from the servlet classes
	IBM Toolbox for Java Example: List row data
	IBM Toolbox for Java Example: Using RecordListRowData
	IBM Toolbox for Java Example: Using SQLResultSetRowData
	IBM Toolbox for Java Example: Using HTMLFormConverter
	IBM Toolbox for Java: LightsOn Example
	IBM Toolbox for Java Examples: Writing your first Toolbox for Java program
	IBM Toolbox for Java simple example: Using CommandCall
	IBM Toolbox for Java simple example: Using message queues
	IBM Toolbox for Java simple example: Using message queues
	IBM Toolbox for Java simple example: Using message queues
	IBM Toolbox for Java simple example: Using record-level access
	IBM Toolbox for Java simple example: Using record-level access
	IBM Toolbox for Java simple example: Using JDBC classes to create and populate a table
	IBM Toolbox for Java simple example: Using JDBC classes to create and populate a table
	IBM Toolbox for Java simple example: Displaying a list of server jobs
	IBM Toolbox for Java: Tips for Programming Examples
	IBM Toolbox for Java: ToolboxME for iSeries examples
	ToolboxME for iSeries example: Using ToolboxME for iSeries, MIDP, and JDBC
	ToolboxME for iSeries example: Using ToolboxME for iSeries, MIDP, and Toolbox for Java
	IBM Toolbox for Java: Utility Package Examples
	IBM Toolbox for Java Example: Using AS400ToolboxInstaller
	IBM Toolbox for Java Example: Using CommandPrompter
	IBM Toolbox for Java: Vaccess Package Examples
	IBM Toolbox for Java Example: Using VuserList
	IBM Toolbox for Java Example: Using VMessageList
	IBM Toolbox for Java Example: Using VIFSDirectory
	IBM Toolbox for Java Example: Using VPrinters
	IBM Toolbox for Java Example: CommandCallMenuItem
	IBM Toolbox for Java Example: Using DataQueueDocument
	IBM Toolbox for Java: AS400JDBCDataSourcePane
	IBM Toolbox for Java Example: Using VJobList
	IBM Toolbox for Java Example: Program Call Button
	IBM Toolbox for Java: Tips for programming
	IBM Toolbox for Java: Shutting down your Java program
	IBM Toolbox for Java: Integrated File System Path Names
	IBM Toolbox for Java: Managing connections
	IBM Toolbox for Java: iSeries Java virtual machine
	IBM Toolbox for Java: Comparing iSeries Java virtual machine and IBM Toolbox for Java classes
	IBM Toolbox for Java: Running classes on the iSeries JVM
	IBM Toolbox for Java: Setting values with an AS400 object in the iSeries JVM
	IBM Toolbox for Java: IASP
	IBM Toolbox for Java: OS/400 optimization
	IBM Toolbox for Java: Performance improvements
	IBM Toolbox for Java: Java NLS
	IBM Toolbox for Java: Service and support
	IBM Toolbox for Java: Related information
	Code disclaimer information

