POSIX thread APIs (V5R2)

Table of Contents

POSIX thread APIs

o What are Pthreads?

o Primitive data types

o Feature test macros

« 0OS/400 Pthreads versus other threads implementations

O

O

O

O

O

All thread definitions in pthread.h
Unsupported preprocessor and feature test macros
Unsupported Pthread APIs

Unsupported constants

Unsupported cancellation points

Unsupported sysconf() configuration variables
Thread priority and scheduling

Thread ID vs. Pthread Handle (pthread t)

Thread ID value and size

Mutexes return EDEADLK when re-locked by owner

Return values from thread start routines are not integers
Threads do not necessarily start before pthread create() returns
Initial thread is special, cannot pthread exit()

Pthread APIs cause asynchronous signals initialization

Not al jobs can create threads; pthread create() fails with EBUSY
Read/write |ocks are recursive

Shared read/write locks are released at thread termination
Read/write locks can be upgraded / downgraded

Read/write locks do not favor writers

Spawn AP provides more POSI X-like process model
C++ destructors and Pthread termination

Unhandled exceptions terminate the thread (not the process)

Exceptions vs. Asynchronous signals vs. ANSI C signals

Mutexes can be named to aid in application debug

o Header files for Pthread functions

« Pthread glossary

o Other sources of Pthread information

« Pthread programming basic tasks
o Writing and compiling threaded programs
o Usingthe MULTI THREADED preprocessor definition
o Running threaded programs
o SPAWN CL command, QUSRTOOL example
« Troubleshooting Pthread errors

O

0

O

0

O

Cannot find header files pthread.h or gpOztype.h or gpOzptha.h

Thread creation (pthread create()) fails with EBUSY or 3029

Mixing thread models or APl sets

Reserved fields must be binary zero

Powerful OS/400 cleanup mechanisms allow application deadlock (cancel handler and

C++ automatic destructors)

Thread creation using C++ methods as target does not work

M CH3402 from pointer returned by pthread join()

« Information on the Pthread APl examples

« Pthread API categories
o Thread management APIs

Thread specific storage APIs
Thread cancellation APIs
Mutex synchronization API

O
O

O

« APIs

Condition variable synchronization APIs

Read/write lock synchronization APIs

Signals APIs

Unsupported Pthread APIs

pthread atfork()--Register Fork Handlers

pthread

atfork np()--Reqister Fork Handlers with Extended Options

pthread

attr

destroy()--Destroy Thread Attributes Object

pthread

attr

getdetachstate()--Get Thread Attributes Object Detachstate

pthread

attr

getquardsize()--Get Guard Size

pthread

attr

getinheritsched()--Get Thread Attribute Object Inherit Scheduling Attributes

pthread

attr

getschedparam()--Get Thread Attributes Object Scheduling Parameters

pthread

attr

getschedpolicy()--Get Scheduling Policy

pthread

attr

getscope()--Get Scheduling Scope

pthread

attr

getstackaddr()--Get Stack Address

pthread

attr getstacksize()--Get Stack Size

pthread

attr init()--Initialize Thread Attributes Object

pthread

attr setdetachstate()--Set Thread Attributes Object Detachstate

pthread

attr setguardsize()--Set Guard Size

pthread

attr setinheritsched()--Set Thread Attribute Inherit Scheduling Attributes

pthread

attr setschedparam()--Set Thread Attributes Object Scheduling Parameters

pthread

attr setschedpolicy()--Set Scheduling Policy

pthread

attr setscope()--Set Scheduling Scope

pthread

attr setstackaddr()--Set Stack Address

pthread

attr setstacksize()--Set Stack Size

pthread

cancel ()--Cancel Thread

pthread

cleanup peek np()--Copy Cleanup Handler from Cancellation Cleanup Stack

pthread

cleanup pop()--Pop Cleanup Handler off of Cancellation Cleanup Stack

pthread

cleanup push()--Push Cleanup Handler onto Cancellation Cleanup Stack

pthread

clear exit np()--Clear Exit Status of Thread

pthread

cond broadcast()--Broadcast Condition to All Waiting Threads

pthread

cond destroy()--Destroy Condition Variable

pthread

cond init()--Initialize Condition Variable

pthread

cond signal()--Signal Condition to One Waiting Thread

pthread

cond timedwait()--Timed Wait for Condition

pthread

cond wait()--Wait for Condition

pthread

condattr destroy()--Destroy Condition Variable Attributes Object

pthread

condattr init()--Initialize Condition Variable Attributes Object

pthread

condattr getpshared()--Get Process Shared Attribute from Condition Attributes

Object
pthread

condattr setpshared()--Set Process Shared Attribute in Condition Attributes

Object
pthread

create()--Create Thread

pthread

delay np()--Delay Thread for Requested Interval

pthread

detach()--Detach Thread

pthread

equal ()--Compare Two Threads

pthread

exit()--Terminate Calling Thread

pthread

extendedjoin np()--Wait for Thread with Extended Options

pthread

get expiration np()--Get Condition Expiration Time from Relative Time

pthread

getcancelstate np()--Get Cancel State

pthread

getconcurrency()--Get Process Concurrency Level

pthread getpthreadoption np()--Get Pthread Run-Time Option Data
pthread getschedparam()--Get Thread Scheduling Parameters
pthread getspecific()--Get Thread L ocal Storage Value by Key
pthread getthreadid np()--Retrieve Unique ID for Calling Thread
pthread getunique np()--Retrieve Unique ID for Target Thread
pthread is initialthread np()--Check if Running in the Initial Thread
pthread is multithreaded np()--Check Current Number of Threads
pthread join()--Wait for and Detach Thread

pthread join_np()--Wait for Thread to End

pthread key create()--Create Thread Local Storage Key

pthread key delete()--Delete Thread Local Storage Key

pthread kill()--Send Signal to Thread

pthread lock global np()--Lock Global Mutex

pthread mutex_destroy()--Destroy Mutex

pthread mutex getpriocelling()--Get Mutex Priority Celling
pthread mutex_init()--Initialize Mutex
pthread mutex lock()--Lock Mutex

pthread mutex setprioceiling()--Set Mutex Priority Ceiling
pthread mutex timedlock np()--Lock Mutex with Time-Out
pthread mutex trylock()--Lock Mutex with No Wait

pthread mutex_unlock()--Unlock Mutex

pthread mutexattr_destroy()--Destroy Mutex Attributes Object

pthread mutexattr_getkind np()--Get Mutex Kind Attribute

pthread mutexattr getname np()--Get Name from Mutex Attributes Object

pthread mutexattr getprioceiling()--Get Mutex Priority Ceiling Attribute

pthread mutexattr getprotocol ()--Get Mutex Protocol Attribute

pthread mutexattr getpshared()--Get Process Shared Attribute from Mutex Attributes
Object

pthread mutexattr gettype()--Get Mutex Type Attribute

pthread mutexattr _init()--Initialize Mutex Attributes Object

pthread mutexattr setkind np()--Get Mutex Kind Attribute

pthread mutexattr setname np()--Set Name in Mutex Attributes Object

pthread mutexattr_setprioceiling()--Set Mutex Priority Ceiling Attribute

pthread mutexattr setprotocol()--Set Mutex Protocol Attribute

pthread mutexattr setpshared()--Set Process Shared Attribute in Mutex Attributes Object
pthread mutexattr settype()--Set Mutex Type Attribute

pthread once()--Perform One-Time Initialization

pthread rwlock destroy()--Destroy Read/Write L ock

pthread rwlock init()--Initialize Read/Write L ock

pthread rwlock rdlock()--Get Shared Read L ock

pthread rwlock_timedrdlock _np()--Get Shared Read L ock with Time-Out
pthread rwlock timedwrlock np()--Get Exclusive Write Lock with Time-Out
pthread rwlock_tryrdlock()--Get Shared Read L ock with No Wait

pthread rwlock _trywrlock()--Get Exclusive Write Lock with No Wait
pthread rwlock unlock()--Unlock Exclusive Write or Shared Read L ock
pthread rwlock wrlock()--Get Exclusive Write L ock

pthread rwlockattr destroy()--Destroy Read/Write L ock Attribute

pthread rwlockattr getpshared()--Get Pshared Read/Write Lock Attribute
pthread rwlockattr init()--Initialize Read/Write L ock Attribute

pthread rwlockattr setpshared()--Set Pshared Read/Write L ock Attribute
pthread self()--Get Pthread Handle

pthread set mutexattr default np()--Set Default Mutex Attributes Object Kind Attribute
pthread setcancelstate()--Set Cancel State

pthread setcanceltype()--Set Cancel Type

pthread setconcurrency()--Set Process Concurrency Level

pthread setpthreadoption np()--Set Pthread Run-Time Option Data

pthread setschedparam()--Set Target Thread Scheduling Parameters

pthread setspecific()--Set Thread L ocal Storage by Key

pthread sigmask()--Set or Get Signal Mask

pthread signal to cancel np()--Convert Signals to Cancel Requests

pthread test exit np()--Test Thread Exit Status

pthread testcancel ()--Create Cancellation Point

pthread trace init_np()--Initialize or Reinitialize Pthread Tracing

PTHREAD TRACE NP()--Macro to optionally execute code based on trace level
pthread unlock_globa_np()--Unlock Global Mutex

sched yield()--Yield Processor to Another Thread

POSIX thread APIs

Before you get started with Pthreads

Many details in Multithreaded applications will affect your interpretation of how the Pthread APIswork.

Multithreaded applications also containsimportant general information about threads. The information
includes how process architecture and process behavior change when running a threaded program, what
parts of the system are not available for use when running a threaded program, and tips on performance and
debugging of threaded jobs.

Programming with Pthreads
« Pthread concepts and references

O

O

O

0

O

O

O

What are Pthreads?
Primitive data types -- Naming conventions for primitive data typesin threaded programs.

Feature test macros -- Descriptions of supported and unsupported feature test macros.
0S/400 Pthreads versus other threads implementations
Header files for Pthread functions

Pthread glossary -- Definitions of some common Pthread terms.

Other sources of Pthread information

« Pthread programming basic tasks -- Information to get you started with Pthreads programming.

O

O

Writing and compiling threaded programs

Running threaded programs

« Troubleshooting Pthread errors -- Descriptions of common errors users encounter when

programming with Pthreads.

Pthread APIs

For information about the examples included with the APIs, see the Information on the Pthread API
examples. See Code disclaimer information for information pertaining to code examples.

For information about specific groups of Pthread APIs, see:
« Thread management APIs

Thread specific storage APIs

Thread cancellation APIs

« Mutex synchronization API

Condition variable synchronization APIs

o Read/write lock synchronization APls

o SignalsAPIs

« Unsupported Pthread APIs

The Pthread APls are;

pthread

atfork()--Reqister Fork Handlers

pthread

atfork np()--Register Fork Handlers with Extended Options

pthread

attr destroy()--Destroy Thread Attributes Object

pthread

attr getdetachstate()--Get Thread Attributes Object Detachstate

pthread

attr getguardsize()--Get Guard Size

pthread

attr getinheritsched()--Get Thread Attribute Object Inherit Scheduling Attributes

pthread

attr getschedparam()--Get Thread Attributes Object Scheduling Parameters

pthread

attr getschedpolicy()--Get Scheduling Policy

pthread

attr getscope()--Get Scheduling Scope

pthread

attr_getstackaddr()--Get Stack Address

pthread

attr getstacksize()--Get Stack Size

pthread

attr_init()--Initialize Thread Attributes Object

pthread

attr setdetachstate()--Set Thread Attributes Object Detachstate

pthread

attr setguardsize()--Set Guard Size

pthread

attr setinheritsched()--Set Thread Attribute Inherit Scheduling Attributes

pthread

attr _setschedparam()--Set Thread Attributes Object Scheduling Parameters

pthread

attr setschedpolicy()--Set Scheduling Policy

pthread

attr setscope()--Set Scheduling Scope

pthread

attr setstackaddr()--Set Stack Address

pthread

attr setstacksize()--Set Stack Size

pthread

cancel ()--Cancel Thread

pthread

cleanup_peek np()--Copy Cleanup Handler from Cancellation Cleanup Stack

pthread

cleanup pop()--Pop Cleanup Handler off of Cancellation Cleanup Stack

pthread

cleanup push()--Push Cleanup Handler onto Cancellation Cleanup Stack

pthread

clear exit np()--Clear Exit Status of Thread

pthread

cond broadcast()--Broadcast Condition to All Waiting Threads

pthread

cond destroy()--Destroy Condition Variable

pthread

cond init()--Initialize Condition Variable

pthread

cond signal()--Signal Condition to One Waiting Thread

pthread

cond timedwait()--Timed Wait for Condition

pthread

cond wait()--Wait for Condition

pthread

condattr destroy()--Destroy Condition Variable Attributes Object

pthread condattr _init()--Initialize Condition Variable Attributes Object

pthread condattr getpshared()--Get Process Shared Attribute from Condition Attributes Object
pthread condattr setpshared()--Set Process Shared Attribute in Condition Attributes Object
pthread create()--Create Thread

pthread delay np()--Delay Thread for Requested Interval

pthread detach()--Detach Thread

pthread equal ()--Compare Two Threads

pthread exit()--Terminate Calling Thread

pthread extendedjoin _np()--Wait for Thread with Extended Options

pthread get expiration _np()--Get Condition Expiration Time from Relative Time
pthread getcancelstate np()--Get Cancel State

pthread getconcurrency()--Get Process Concurrency Level

pthread getpthreadoption np()--Get Pthread Run-Time Option Data

pthread getschedparam()--Get Thread Scheduling Parameters

pthread getspecific()--Get Thread L ocal Storage Value by Key

pthread getthreadid np()--Retrieve Unique ID for Calling Thread

pthread getunique np()--Retrieve Unique ID for Target Thread

pthread is initialthread np()--Check if Running in the Initial Thread

pthread is multithreaded np()--Check Current Number of Threads

pthread join()--Wait for and Detach Thread

pthread join_np()--Wait for Thread to End

pthread key create()--Create Thread Local Storage Key

pthread key delete()--Delete Thread Local Storage Key

pthread kill()--Send Signal to Thread

pthread lock global np()--Lock Global Mutex

pthread mutex_destroy()--Destroy Mutex

pthread mutex getpriocelling()--Get Mutex Priority Celling
pthread mutex_init()--Initialize Mutex
pthread mutex lock()--Lock Mutex

pthread mutex setprioceiling()--Set Mutex Priority Ceiling
pthread mutex timedlock np()--Lock Mutex with Time-Out
pthread mutex trylock()--Lock Mutex with No Wait

pthread mutex_unlock()--Unlock Mutex

pthread mutexattr _destroy()--Destroy Mutex Attributes Object

pthread mutexattr _getkind np()--Get Mutex Kind Attribute

pthread mutexattr getname np()--Get Name from Mutex Attributes Object

pthread mutexattr getprioceiling()--Get Mutex Priority Ceiling Attribute
pthread mutexattr getprotocol()--Get Mutex Protocol Attribute

pthread mutexattr _getpshared()--Get Process Shared Attribute from Mutex Attributes Object
pthread mutexattr_gettype()--Get Mutex Type Attribute

pthread mutexattr_init()--Initialize Mutex Attributes Object

pthread mutexattr setkind np()--Get Mutex Kind Attribute

pthread mutexattr setname np()--Set Name in Mutex Attributes Object
pthread mutexattr setprioceiling()--Set Mutex Priority Ceiling Attribute
pthread mutexattr setprotocol()--Set Mutex Protocol Attribute

pthread mutexattr _setpshared()--Set Process Shared Attribute in Mutex Attributes Object
pthread mutexattr settype()--Set Mutex Type Attribute

pthread once()--Perform One-Time Initialization

pthread rwlock destroy()--Destroy Read/Write L ock

pthread rwlock_init()--Initialize Read/Write L ock

pthread rwlock rdlock()--Get Shared Read L ock

pthread rwlock timedrdlock np()--Get Shared Read L ock with Time-Out
pthread rwlock_timedwrlock np()--Get Exclusive Write L ock with Time-Out
pthread rwlock tryrdlock()--Get Shared Read L ock with No Wait

pthread rwlock trywrlock()--Get Exclusive Write Lock with No Wait
pthread rwlock unlock()--Unlock Exclusive Write or Shared Read L ock
pthread rwlock wrlock()--Get Exclusive Write L ock

pthread rwlockattr destroy()--Destroy Read/Write L ock Attribute

pthread rwlockattr getpshared()--Get Pshared Read/Write L ock Attribute
pthread rwlockattr init()--Initialize Read/Write Lock Attribute

pthread rwlockattr setpshared()--Set Pshared Read/Write L ock Attribute
pthread self()--Get Pthread Handle

pthread set mutexattr default np()--Set Default Mutex Attributes Object Kind Attribute
pthread setcancelstate()--Set Cancel State

pthread setcanceltype()--Set Cancel Type

pthread setconcurrency()--Set Process Concurrency Level

pthread setpthreadoption np()--Set Pthread Run-Time Option Data

pthread setschedparam()--Set Target Thread Scheduling Parameters

pthread setspecific()--Set Thread L ocal Storage by Key

pthread sigmask()--Set or Get Signal Mask

pthread signal_to_cancel_np()--Convert Signals to Cancel Requests

pthread test exit np()--Test Thread Exit Status

pthread testcancel ()--Create Cancellation Point

pthread trace init_np()--Initialize or Reinitialize Pthread Tracing

PTHREAD TRACE NP()--Macro to optionally execute code based on trace level
pthread unlock globa np()--Unlock Global Mutex

sched yield()--Yield Processor to Another Thread

Top | APIs by category

What are Pthreads?

Portable Operating System Interface for Computer Environments (POSIX) is an interface standard
governed by the |EEE and based on UNIX. POSIX is an evolving family of standards that describe awide
spectrum of operating system components ranging from C language and shell interfaces to system
administration.

The Pthread interfaces described in this section are based on a subset of the application programming
interfaces (APIs) defined in the POSIX standard (ANSI/IEEE Standard 1003.1, 1996 Edition OR I1SO/IEC
9945-1: 1996) and the Single UNIX Specification, Version 2, 1997. The implementation of these APIsis
not compliant with these standards. However, the implementation does attempt to duplicate the portable
nature of the interfaces defined by the standards. Differences between Pthreads in OS/400 and other thread
types are described in OS/400 Pthreads versus other threads implementations.

Pthread APIs | APIs by category

Primitive data types for Pthreads

The Pthread types and functions have the following naming conventions. If the type of object is not a
thread, object represents the type of object, action is an operation to be performed on the object, np or NP
indicates that the name or symbol is a non-portable extension to the API set, and PURPOSE indicates the
use or purpose of the symbol.
types

pthread[_object][_np]_t

functions
pthread[_object]_action[_np]

Constants and M acr os
PTHREAD_PURPOSE[_NP]

| Type | Description

|pthread_attr_t | Thread creation attribute
pthread_cleanup_entry_np_t |Cancellation cleanup handler entry
|pthread_condattr_t |Condition variable creation attribute
pthread_cond_t |Condition Variable synchronization primitive
|pthread_j oinoption_np_t |Opti ons structure for extensions to pthread join()
pthread_key _t |Thread local storage key

|pthread_mutexattr_t |Mutex creation attribute

|pthread_mutex_t |Mutex (Mutual exclusion) synchronization primitive
|pthread_once _t |Once time initialization control variable
|pthread_opti on_np_t | Pthread run-time options structure
pthread_rwlockattr_t |Read/Write lock attribute

|pthread_rwlock _t |Read/Write synchronization primitive

pthread_t |Pthread handle

pthread_id_np_t |Thread ID. For use as an integral type.

|struct sched_param |Scheduling parameters (priority and policy)

After creating the primitive objects of type pthread_cond_t and pthread_mutex_t using the appropriate
initialization functions, those objects must not be copied or moved to a new location. If the condition
variable or mutex is copied or moved to a new location, the new primitive object is not valid or usable.
Attempts to use the new object result in the EINVAL error.

Top | Pthread APIs | APIs by category

Feature test macros for Pthreads
| Constant | Description
|_POSIX_THREADS |Base threads

“POSIX_THREAD_ATTR_STACKADDR

Stack address attribute. Not present in the OS/400
implementation.

_POSIX_THREAD_ATTR_STACKSIZE

Stack size attribute. Not present in the OS/400
implementation.

“POSIX_THREAD_PRIORITY_SCHEDULING

Thread priority scheduling. Not present in the OS/400
implementation.

_POSIX_THREAD_PRIO_INHERIT

Mutex priority inheritance. Not present in the OS/400
implementation.

_POSIX_THREAD_PRIO_PROTECT

Mutex priority ceiling. Not present in the 0S/400
implementation.

_POSIX_THREAD_PROCESS_SHARED

Synchronization primitives may be shared between
Processes.

The OS/400 implementation of pthreads definesthe POSIX THREADS and
POSIX THREAD_PROCESS SHARED feature test macros. See Unsupported preprocessor and

feature test macros for a complete list of unsupported feature test macros.

Pthread APIs | APIs by category

0OS/400 Pthreads versus the POSIX standard,
the Single UNIX Specification, and other
threads implementations

Although the Pthread interfaces described in this document are based on a subset of the APIs defined in the
POSIX standard and the Single UNIX Specification, the implementation of these APIsis not compliant
with these standards. This means that applications written in other versions of threads are not necessarily
portable to OS/400. Below isalist of the differences between the Pthread APIs and other threads
implementations.

o All thread definitionsin pthread.h
o Unsupported preprocessor and feature test macros
o Unsupported APIs

« Unsupported constants

« Unsupported cancellation points

« Unsupported sysconf() configuration variables

» Thread priority and scheduling

« Thread ID vs. Pthread Handle (pthread t)

o Thread ID value and size

o Mutexesreturn EDEADLK when re-locked by owner

« Return values from thread start routines are not integers
o Threads do not necessarily start before pthread create() returns
o Initial thread is special, cannot pthread exit()

« Pthread APIs cause asynchronous signals initialization

« Not al jobs can create threads; pthread create() fails with EBUSY
« Read/write locks are recursive

» Shared read/write locks are released at thread termination

» Read/write locks can be upgraded / downgraded

« Read/write locks do not favor writers

« Spawn API provides more POSI X-like process model
o C++ destructors and Pthread termination

« Unhandled exceptions terminate the thread (not the process)

o Exceptions vs. Asynchronous signalsvs. ANSI C signals

« Mutexes can be named to aid in application debug

Top | Pthread APIs | APIs by category

All thread definitions in pthread.h

For Pthreads on the i Series, all feature test macros, preprocessor values, data structures, types, and function

prototypes are located in the pthread.h header file instead of the system header files that are specified by
POSIX or the Single UNIX Specification.

Pthread APIs | APIs by category

Unsupported preprocessor and feature test
macros

The following Pthread feature test macros are not defined on the server:

« POSIX_THREAD_ATTR_STACKADDR

« POSIX_THREAD_ATTR_STACKSIZE

e POSIX_ THREAD_PRIO_INHERIT

« POSIX_ THREAD_PRIO_PROTECT
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREAD_PRIORITY_SCHEDULING

Pthread APIs | APIs by category

Unsupported Pthread APIs

The following functions are not supported by the i Series implementation of pthreads. These functions are
all defined and provided by the system. Y ou can create and compile with these functions in your
application. If the unsupported functions are called, when the application runs the functions immediately
fail with the ENOSY S error, and your application can take the appropriate action, such asignoring the error
and continuing.

» pthread atfork()--Register Fork Handlers

» pthread atfork np()--Register Fork Handlers with Extended Options

o pthread attr getquardsize()--Get Guard Size

« pthread attr getschedpolicy()--Get Scheduling Policy

» pthread attr getscope()--Get Scheduling Scope

» pthread attr getstackaddr()--Get Stack Address

« pthread attr getstacksize()--Get Stack Size

« pthread attr setguardsize()--Set Guard Size

o pthread attr_setschedpolicy()--Set Scheduling Policy

» pthread attr setscope()--Set Scheduling Scope

» pthread attr setstackaddr()--Set Stack Address

» pthread attr setstacksize()--Set Stack Size

« pthread mutexattr getprioceiling()--Get Mutex Priority Ceiling Attribute
« pthread mutexattr getprotocol()--Get Mutex Protocol Attribute

« pthread mutexattr setprioceiling()--Set Mutex Priority Ceiling Attribute
» pthread mutexattr setprotocol()--Set Mutex Protocol Attribute

o pthread mutex getprioceiling()--Get Mutex Priority Ceiling

o pthread mutex setprioceiling()--Set Mutex Priority Ceiling

pthread atfork()--Register Fork Handlers

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread_atfork(void (*prepare)(void),
void (*parent) (void),
void (*child)(void));

The pthread_atfork() function is not supported by this implementation. The function returns ENOSY S.

pthread atfork np()--Register Fork Handlers
with Extended Options

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread_atfork(int *userstate,
void (*prepare)(void),
void (*parent)(void),
void (*child)(void));

The pthread_atfork_np() function is not supported by thisimplementation. The function returns ENOSY S.

pthread attr _getguardsize()--Get Guard Size

Syntax:

#i ncl ude <pt hread. h>
int pthread attr_getguardsi ze(const pthread attr_t *attr,
size_t *guardsi ze);

The pthread_attr_getguardsize() function is not supported by this implementation. The function returns
ENOSYS.

pthread attr _getschedpolicy()--Get Scheduling
Policy

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread attr_getschedpolicy(pthread attr_t *attr,
int *policy);

The pthread_attr_getschedpolicy() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr _getscope()--Get Scheduling
Scope

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread attr_getscope(pthread attr_t *attr,
int *contentionscope);

The pthread_attr_getscope() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr _getstackaddr()--Get Stack
Address

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread attr_getstackaddr(const pthread attr_t *attr,
voi d **stackaddr);

The pthread_attr_getstackaddr() function is not supported by this implementation. The function returns
ENOSYS.

pthread_ attr getstacksize()--Get Stack Size

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread attr_getstacksize(const pthread attr_t *attr,
size_t *stacksize);

The pthread_attr_getstacksize() function is not supported by this implementation. The function returns
ENOSYS.

pthread attr _setguardsize()--Set Guard Size

Syntax:

#i ncl ude <pt hread. h>
int pthread attr_setguardsi ze(pthread attr_t *attr,
size_t qguardsize);

The pthread_attr_setguardsize() function is not supported by this implementation. The function returns
ENOSYS.

pthread attr setschedpolicy()--Set Scheduling
Policy

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>

int pthread attr_setschedpolicy(pthread attr_t *attr,
int policy);

The pthread_attr_setschedpolicy() function is not supported by this implementation. The function returns
ENOSYS.

pthread attr _setscope()--Set Scheduling Scope

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>

int pthread _attr_setscope(pthread attr_t *attr,
i nt contentionscope);

The pthread_attr_setscope() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr setstackaddr()--Set Stack
Address

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread attr_setstackaddr(pthread attr_t *attr,
voi d *stackaddr);

The pthread_attr_setstackaddr() function is not supported by this implementation. The function returns
ENOSYS.

pthread attr setstacksize()--Set Stack Size

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>

int pthread attr_setstacksize(pthread attr_t *attr,
size_t stacksize);

The pthread_attr_setstacksize() function is not supported by this implementation. The function returns
ENOSYS.

pthread mutexattr_getprioceiling()--Get Mutex
Priority Ceiling Attribute

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread nmutexattr_getprioceiling(const pthread nutexattr _t *attr,
int *prioceiling);

The pthread_mutexattr_getprioceiling() function is not supported by this implementation. The function
returns ENOSY S.

pthread mutexattr_getprotocol()--Get Mutex
Protocol Attribute

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread nutexattr_getprotocol (const pthread nutexattr_t *attr,
int *protocol);

The pthread _mutexattr_getprotocol () function is not supported by this implementation. The function returns
ENOSYS.

pthread mutexattr_setprioceiling()--Set Mutex
Priority Ceiling Attribute

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>

int pthread nutexattr_setprioceiling(pthread nmutexattr t *attr,
int prioceiling);

The pthread mutexatttr_setprioceiling() function is not supported by this implementation. The function
returns ENOSY S.

pthread mutexattr_setprotocol()--Set Mutex
Protocol Attribute

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>

int pthread nutexattr_setprotocol (pthread nutexattr_t *attr,
i nt protocol);

The pthread _mutexattr_setprotocol () function is not supported by this implementation. The function returns
ENOSYS.

pthread _mutex_getprioceiling()--Get Mutex
Priority Ceiling

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread _nutex_getprioceiling(const pthread mutex_t *nmutex,
int *prioceiling);

The pthread_mutex_getprioceiling() function is not supported by this implementation. The function returns
ENOSYS.

pthread _mutex_setprioceiling()--Set Mutex
Priority Ceiling

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>

int pthread_nutex_setprioceiling(pthread_nmutex_ t *nmutex,
int prioceiling, int *oldceiling);

The pthread mutex_setprioceiling() function is not supported by thisimplementation. The function returns
ENOSYS.

Top | Pthread APIs | APIs by category

Unsupported constants

The following constants related to threads are not defined on the server.
« PTHREAD_STACK_MIN
« PTHREAD_PRIO_INHERIT
« PTHREAD_PRIO_NONE
« PTHREAD_PRIO_PROTECT

Pthread APIs | APIs by category

Unsupported cancellation points

0OS/400 does not support the full set of cancellation points. Although the APIs may be provided, they are not
necessarily cancellation points. The only cancellation points currently supported are those APIs that are part of
the Pthread run-time. Those APIs are the following:

« pthread_cond_timedwait()
« pthread cond_wait()
« pthread delay np()
« pthread join()
« pthread_join_np()
« pthread_testcancel()
An appropriate alternative to create cancellation points for these APIs might be like the following example. You

can use this example to create a cancellation point out of any function that is asynchronous signal safe. See
Signal Conceptsfor alist of functions that are asynchronous signal safe. If afunction is not asynchronous signal

safe, you should not use this form of asynchronous cancellation because it corrupt data.

Example

See Code disclaimer information for information pertaining to code examples.

precedi ng code ...

i nt ol dtype=0;
/* If cancellation is currently disabled, this will have no effect */
[* if cancellation is currently enabled, we'll set it to asynchronous */

[* for the duration of this call to try to sinulate a cancellation point */
pt hr ead_set cancel t ype(PTHREAD_ CANCEL_ASYNCHRONQUS, &ol dtype);
/* Call kernel API that you want to be a cancel point. You should */
/* only call functions which are asynchronous signal safe in this block. */
/* Validating the asynchronous signal safety of the function will */
/* ensure that the asynchronous cancell ati on does not negatively */
/* affect the APl or corrupt the data that the APl uses */
API Cal | Here();
/* Restore the cancellation type that was previously in effect */
pt hr ead_set cancel t ype(ol dt ype, &ol dtype);
foll owi ng code ...

Top | Pthread APIs | APIs by category

Unsupported sysconf() configuration variables

The following sysconf() configuration variables related to threads are not supported on the server.
e SC_THREAD_DESTRUCTOR_ITERATIONS
o« _SC_THREAD_PRIORITY_SCHEDULING
o« _SC_THREADS
o SC_THREAD_ATTR_STACKADDR
o _SC_THREAD_ATTR_STACKSIZE
_SC_THREAD_KEYS MAX
e _SC_THREAD_PRIO_INHERIT
_SC_THREAD_PRIO_PROTECT
_SC_THREAD_PROCESS_SHARED
o« _SC_THREAD_SAFE_FUNCTIONS
o _SC_THREAD_STACK_MIN
o« _SC_THREAD_THREADS MAX

Pthread APIs | APIs by category

Thread priority and scheduling

The default thread creation attributes of the i Series implementation of Pthreads uses an explicitly specified
priority of DEFAULT_PRIO_NP. Some implementations inherit the scheduling priority and policy of the
creating thread by default. For better performance, the i Series implementation chooses to start each thread
with an explicit priority so that, when athread is created, the priority of the creating thread does not need to
be retrieved at run-time.

AniSeries thread competes for scheduling resources against other threads in the system, not solely against
other threads in the process. The scheduler is a delay cost scheduler based on several delay cost curves
(priority ranges). The POSIX standard and the Single UNIX Specification refers to this as scheduling scope
and scheduling policy, which cannot be changed from the default of SCHED _OTHER in this
implementation.

The following Pthread APIs support a scheduling policy of only SCHED OTHER.
« pthread_setschedparam (SCHED_OTHER only supported)
« pthread_getschedparam
« pthread_attr_setschedparam
« pthread_attr_getschedparam

The priority of athread is specified as a number that represents the value that is added to the priority of the
process. Changing the priority of the process affects the priority of al of the threads within that process.
The default priority for athread isDEFAULT_PRIO_NP, which is no change from the process priority.

On theiSeries, numerically lower priority valuesindicate higher priority with regard to scheduling. The
pthread.h and sched.h header files define the priority constantsin away that is consistent with the threads
standard, but opposite of priority specifications on the i Series. When you specify a priority of -99 in acall
to pthread_setschedparam(), the priority of the target thread is lowered to the lowest possible value.

For example, process Pl is at iSeries priority 20 and contains athread T1 that specifies a Pthread priority
adjustment of -18. Process P2 is at iSeries priority 25 and contains thread T2 that specifies a priority of -5.
Theresult is that the system schedules the threads using the iSeries priority for T1 as 38 and for T2 as 30.
The thread scheduling is specified at a system level, and although process P2 runs at alower priority
ranking than process P1, thread T2 within process P2 runs at a higher priority ranking than thread T1 in
process P1, and thus gets more processing resources.

Top | Pthread APIs| APIs by category

Thread ID vs. Pthread Handle (pthread t)

In many threads implementations, the pthread_t abstract type isimplemented as an integer (4 byte) thread
ID. In the iSeries implementation of Pthreads, the thread ID is a 64-bit integral value and the pthread tisan
abstraction (structure) that contains that value and others. This abstraction helpsto allow the
implementation to scale to thousands of threads in a process.

Do not alow your program to rely on the internal structure or size of the pthread t in a non-portable
fashion, such as comparisons of thread IDs. For portable comparison, use the pthread equal() API. This
documentation occasionally refersto the pthread t as a Pthread handle to try to prevent the misconception

that it represents a single integer value.

Pthread APIs | APIs by category

Thread ID value and size

In some threads implementations, the thread ID is a 4-byte integer that startsat 1 and increases by 1 every
time athread is created. Thisinteger can be used in a non-portable fashion by an application.

To assist in the portability problem with the application and to alow retrieval of the thread ID, the iSeries
implementation has provided the pthread_getunique _np() function to retrieve the thread 1D from the
Pthread handle. Thisthread ID is a 64-hit integer value. Because some compilers do not yet support a full
64-bit integer datatype, the valueis returned in a structure containing two 4-byte integers.

Pthread APIs | APIs by category

Mutexes return EDEADLK when re-locked by
owner

Some threads implementations return the EDEADLK error when a mutex attempts to relock a mutex that it
already owns. The POSIX standard specifies that the results are undefined when a mutex is re-locked by the
owner. The Single UNIX Specification addresses these issues by providing a new mutex attribute called

type.

The iSeries threads support takes the same implementation route that the Single UNIX Specification
suggests, and it also causes the thread to deadlock when it attempts to re-lock anormal (non-recursive)
mutex. Because many users of Pthreads do not check return codes from functions, the deadlock protects
applications from corrupted data that might result if they attempt to relock an already held mutex, then
unlock the mutex asif the lock was successful.

See pthread mutexattr gettype()--Get Mutex Type Attribute and pthread mutexattr settype()--Set Mutex
Type Attribute if you need error-checking mutexes for your application.

Pthread APIs | APIs by category

Return values from thread start routines are
not integers

Return values from athread are defined to be of type void *. On some platforms, avoid * and an integer
can be easily interchanged with no loss of information. Until Version 4 Release 2, this was not true on the
iSeries. The iSeries enforces stricter pointer rules to both prevent and detect application bugs or a malicious
program'’s behavior. Thus, when converting integers to pointers by a mechanism not directly supported by
your compiler, the valid pointer information islost, and the pointer is always set to NULL (regardless of its
binary value).

New support put into the system in Version 4 Release 2 alows you to store an integer into a pointer, and
still have the pointer be non-NULL . Y ou cannot store to, read from, or defer a pointer created by this
mechanism, but the pointer appears non-NULL.

Themacros __ INT() and __ VOID() are provided to aid in compatibility and allow you to easily store and
retrieve integer information in pointer variables even if your compiler does not support the direct typecast.
These macros alow explicit conversion from a pointer to an integer and from an integer to a pointer.

Note: Themacros__INT() and __VOID() result in function calls.

Example

The following example shows the correct way to store and retrieve integer information in pointer variables.

See Code disclaimer information for information pertaining to code examples.

#define MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

int main(int argc, char **argv)
{
voi d *status

i 1 __vVaD(5);
void *status?2

= __ VO D(999);
if (statusl == NULL) {
printf("Statusl pointer is NULL\n");

el se {
printf("Statusl pointer is non-NULL\n");

if (statusl == status2) {
printf("Both status variables as pointers are equal\n");

el se {
if (statusl < status2) {
printf("Statusl is greater than status2\n");

el se {
if (statusl < status2) {

printf("Statusl is | ess then status2\n");

el se {
printf("The pointers are unordered!'\n");

}
}

printf("Pointer values stored in status variables are:\n"
" statusl = % 8x % 8x % 8x % 8x\n"
" status2 = % 8x % 8x % 8x % 8x\n",
statusl, status2);

printf("Integer values stored in status variables are:\n"
" statusl = %\ n"
" status2 = %\ n",
__INT(statusl), _ INT(status2));

return;

}
Output:

Statusl pointer is non-NULL

Statusl is |l ess then status?

Poi nter values stored in status variabl es are:
statusl = 80000000 00000000 00008302 00000005
status2 = 80000000 00000000 00008302 000003e7
I nt eger values stored in status variables are:
statusl 5

st at us? 999

Top | Pthread APIs | APIs by category

Threads do not necessarily start before
pthread create() returns

A thread may or may not start running before the return from pthread_create(). Depending on the amount
of time left in the creating threads, time slice, and the other activity on the system, the creating thread may
return before the new thread runs.

The thread implementations of some systems guarantee a certain ordered behavior for thread creation
versus the execution of the first statement in the new thread. On the iSeries, it is unknown which happens
first, the execution of the first instruction in the new thread or the return from pthread_create().

The following example shows an incorrectly written application.

See Code disclaimer information for information pertaining to code examples.

#define _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_t t hread

void *threadfunc(void *parn)
{
pthread id np t tid;
#error "This is an ERROR "
#error "The 'thread' variable is shared between threads"
#error "and nmust be protected by a nutex."
pt hread _get uni que_np(& hread, &tid);
printf("Thread 0x% 8x % 8x started\n", tid);
return NULL;

}

int main(int argc, char **argv)

{

int rc=0;
printf("Enter Testcase - %\n", argv[O0]);

#error "This is an ERROR "

#error "The order of thread thread startup, and return front
#error "the pthread create() APl is NOT deterninistic."

rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create(NULL)\n", rc);

/* sleep() isn't a very robust way to wait for the thread */
sl eep(5);

printf("Min conpleted\n");
return O;

Top | Pthread APIs| APIs by category

Initial thread is special, cannot pthread_exit()

Theinitia thread in an OS/400 process is special because of these characteristics:
« If theinitial thread calls pthread_exit(), the process terminates.

« If theinitial thread isthetarget of apthread_cancel() request that is acted upon, the process
terminates.

« If theinitia thread terminates through any other action, the process terminates.

« Many 0OS/400 APIs and commands target jobs. Some of those APIs target resources that are
alocated to threads for retrieval or modification. If thisisthe case, the resources that displayed,
modified, or retrieved may be the resources owned by the initial thread.

For example, the CL command WRKACTJOB allows you to display information such as the call
stack for ajob. Since ajob does not have acall stack and the call stack is thread scoped, the call
stack of theinitial thread is displayed when you choose to display the call stack of ajob.

Other APIsor CL commands that operate against jobs have undergone similar changes. See the
specific documentation for the APl or CL command of concern.

Pthread APIs | APIs by category

Pthread APIs cause asynchronous signals
Initialization

When ajob isrunning in OS/400, by default it is not enabled for POSIX signals. The system never delivers
aPosix signal to ajob that is not enabled for signals.

Thejobisinitialized for signals with the default POSIX signals environment when any thread in the job
callsany API defined to implicitly enable signals. The main categories of APIsthat enable signals are the
signals APIs themselves and some process-related APIsrelated to signals. For example, some of the APIs
that enable signals are QpOsEnableSignals(), kill(), sigaction(), sigprocmask(), getpid(), and spawn().
After theinitialization for signals occurs within ajob, the system can deliver signalsto that job if they are
generated by another job or by the system.

When a program in ajob uses Pthreads, that job is automatically enabled for signals when the Pthreads
service program is loaded (either dynamically or statically). Loading the service program that contains the
Pthread APIs causes the job to beinitialized for signals, regardless of whether the application actually calls
the pthread APIs. All pthread programs can implicitly receive signalsif another job or the system generates
asignal for the threaded job.

If the application calls QpOsDisableSignals() to disable signals for the job, the Pthreads APIs do not
function correctly. Do not use QpOsDisableSignals() in athreaded job.

For more information about signals and the APIs mentioned in this section, see Signal APIsand
Process-Related APIs.

Pthread APIs | APIs by category

Not all jobs can create threads;
pthread create() fails with EBUSY

Because many parts of the operating system are not yet thread safe, not every job is alowed to start threads.
The pthread_create() API failswith the EBUSY error when the processis not allowed to create threads.
See Running threaded programs for information about how to start a job that can create threads.

For details about how to determine whether thread creation is currently allowed for your process, you can
see the pthread_getpthreadoption_np() API, option PTHREAD_OPTION_THREAD_CAPABLE_NP.

See Multithreaded applications for an introduction to threads and general APl information about i Series
threads.

Pthread APIs | APIs by category

Read/write locks are recursive

The OS/400 implementation of read/write locks provides a recursive behavior not only for shared read
locks (as the thread standard specifies), but for exclusive write locks as well. The following statements
apply to read/write locks on OS/400:

« A thread can acquire any number of shared read locks on aread/write lock. Each successful shared
read lock that is acquired must be released by acall to pthread_rwlock _unlock().

« A thread can acquire any number of exclusive write locks on aread/write lock. Each successful
exclusive write lock that is acquired must be released by acall to pthread_rwlock _unlock().

Pthread APIs | APIs by category

Shared read/write locks are released at thread
termination

If athread is the owner of one or more shared read locks acquired by pthread_rwlock_unlock(),
pthread_rwlock_tryrdlock(), or pthread_rwlock_timedrdlock_np(), when that thread terminates, the shared
read locks are automatically released by the system. If athread holds a shared read lock, it does not modify the
resources associated with that lock. It is then safe for the runtime support to unlock the read lock without
indicating an error condition or causing the process to wait. For performance reasons, your application should
unlock all held locks before the thread ends.

If athread is the owner of one or more exclusive write locks acquired by pthread_rwlock_wrlock(),
pthread_rwlock_trywrlock(), or pthread_rwlock_timedwrlock np(), when that thread terminates, the
exclusive write locks are not automatically released by the system. Thisisan error in the application and
indicates that the data associated with the lock isin an inconsistent state. |f another thread attemptsto get a
shared read or exclusive write lock on the lock, that thread blocks forever.

Read/write locks can be upgraded/downgraded

The OS/400 implementation of read/write locks allows a thread to effectively change aread lock to awrite lock,
or change awrite lock to aread lock, without an intervening unlocked and unprotected section of code. The
following items describe read/write lock behavior that allows these changes. This behavior is outside of the
definition of the Single UNIX Specification. An application written to be portable to the Single UNIX
Specification should not attempt to acquire a shared read lock and a shared write lock on the same read/write lock
at the same time.

« If athread currently holds a shared read lock, an attempt by the same thread to acquire an exclusive write
lock succeeds if no other threads hold a shared read lock. The thread then holds both an exclusive write
lock and a shared read lock.

« If athread currently holds an exclusive write lock, an attempt by the thread to acquire a shared read lock
succeeds. The thread then holds both an exclusive write lock and a shared read lock.

« |f athread holds one or more shared read locks and one or more exclusive write locks on the same
read/write lock object at the same time, a call to pthread_rwlock _unlock() always unlocks the exclusive
write lock FIRST.

« When multiple exclusive write locks and multiple exclusive read locks are held by the same thread on the
same read/write lock object, the behavior of pthread_rwlock _unlock() is asfollows:

o A cal to the pthread_rwlock_unlock() function always unlocks the most recent exclusive write
lock first.

o Subsequent callsto pthread_rwlock_unlock() first reduce the count of any outstanding
exclusive write locks held by the thread until all exclusive write locks are unlocked.

o After al outstanding exclusive write locks are unlocked and the thread holds only shared read
locks on the read/write lock object, a call to pthread_rwlock_unlock() function then unlocks the
most recent shared read lock.

o Subsequent callsto pthread rwlock _unlock() reduce the count of any outstanding shared read
locks held by the thread until all shared read locks are unlocked.

For athread to change a shared read lock to an exclusive write lock, the thread should perform the following
actions:

{
pthread rw ock t rw ock = PTHREAD RW.OCK | NI Tl ALI ZER,;
pt hread rw ock_rdl ock(& w ock);

/* Thread holding a read | ock decides it needs to upgrade to a wite |ock */
/* Now Upgrade to wite [ock */
pt hread_rw ock_wr | ock(& w ock);

)’.*.write Il ock (and read | ock) are held here.*/
/* W have effectively upgraded to a wite lock */

);.‘Downgrade‘ back to a only the read | ock */
pt hread rw ock_unl ock(& w ock);

);flunl ock the read | ock */
pt hread rw ock_unl ock(& w ock) ;

}

For athread to change an exclusive write lock to a shared read lock, the thread should perform the following
actions:

{
pthread rw ock t rw ock = PTHREAD RW.OCK | NI Tl ALI ZER,
pt hread rw ock_wrl ock(& w ock);

);‘ Thread holding the wite | ock decides it needs to downgrade to a read
[ock */

/* Get the read | ock, so we are holding BOTH read and wite | ocks */

pt hread rw ock _rdl ock(& w ock);

);‘.An unl ock al ways unl ocks the wite lock first */
pt hread_wr | ock_unl ock(& W ock);

)’.*.At this point, we are only holding the read | ock. */
/* We have effectively downgraded the wite lock to a read | ock */

)’.*.Use unl ock to unl ock the |last read | ock. */
pt hread_wr | ock_unl ock(& W ock) ;

}

Top | Pthread APIs| APIs by category

Read/write locks do not favor writers

The OS/400 implementation of read/write locks does not favor writers. If your application has alarge
number of readers contending for the same lock, the writers may not be allowed to write.

The OS/400 implementation of pthread_rwlock_tryrdlock(), for example, does not completely honor the
Single UNIX Specification in its treatment of reader/writer contention.

The standard states the following: "The function pthread rwlock_tryrdlock() applies aread lock asin the
pthread rwlock_rdlock() function with the exception that the function fails if any thread holds awrite lock
on rwlock or there are writers blocked on rwlock."

In the OS/400 implementation, if pthread _rwlock _tryrdlock() is used on aread/write lock that has
multiple readers holding the lock and multiple waiting writers blocked on the lock, the
pthread_rwlock_tryrdlock() are allowed to complete successfully.

Pthread APIs | APIs by category

Spawn API provides more POSIX-like process
model

The i Series uses a call/return mechanism when your application calls programs. A new processis not
started when you call a program, instead the program runs and returnsto its caller. Y ou can use activation
groups to separate or partition the program resources from the caller.

For the more POSI X -like behavior of running each program in a separate process (and thus taking
advantage of thread safety, encapsulation, and protection that the new process may give you), use the
spawn() API to start the program.

Y ou also can use the capability provided in spawn() to allow the child processto start multiple threads. See
the spawn() APl documentation for a description of the SPAWN_SETTHREAD_NP flag in the

inheritance structure.

A CL command for using SPAWN is also available from the QUSRTOOL library. See SPAWN CL
command, QUSRTOOL example for more information about the SPAWN CL command.

Pthread APIs | APIs by category

C++ destructors and Pthread termination

Unlike some other implementations of threads, C++ destructors for automatic objects are allowed to runin a
well defined and consistent manner when athread is terminated.
The following list includes some of the causes of thread termination:

« A thread calls pthread_exit() or returns from the thread start routine.

« A thread isthetarget of pthread_cancel().

« A thread is ended due to an unhandled exception.

« A thread isin aprocessthat contains another thread that calls exit() or abort().

« A thread isin aprocessthat isterminated by the system administrator.

« A thread is being terminated by the system administrator.

When athread terminates, the following occurs:

1. If the thread was ended using pthread_exit(), pthread_cancel() or return from the thread start
routine, then cancellation cleanup handlers and data destructors are run.

2. Thethread isterminated. At the time that the thread is terminated, both C++ destructors for automatic
objects and OS/400 cancel handlers run.

If a Pthread is terminated using a non-Pthread method (an OS/400 exception, a different thread termination

primitive provided by the system, exit() or abort(), or other job termination method), Pthread cancellation
cleanup handlers and data destructors do not run.

Example

This example shows the relationship between C++ destructors and Pthread cleanup mechanisms.

See Code disclaimer information for information pertaining to code examples.

#define _MJULTI THREADED
#i ncl ude <stdi o. h>

#i ncl ude <gqp0z1170. h>
#i ncl ude <tine. h>

#i ncl ude <pt hread. h>

#i ncl ude "check. h"

#define bufferSize 100
#define threadRc 55

pt hread_key t tl skey;

voi d dat aDestructor(void *parm;
voi d cancel Handl er (void *parnj;
voi d *threadfunc(void *parnj;
void | evel 2(voi d);

void | evel 3(void);

class A {
public:
A(char *1abel);

~A()

private:

pt hread_i d_np_t tid;

char buffer[bufferSize];
b

voi d dataDestructor(void *parm {
printf("In data destructor\n");
pt hread_set specific(tl skey, NULL);

}

voi d cancel Handl er (void *parm {
printf("In cancellation cleanup handler\n");

void *threadfunc(void *parnm {
A object("start routine object");
l evel 2();
return NULL;

}

void | evel 2(void) {
A obj ect ("Second | evel object");
l evel 3();

}

void I evel 3(void) {
i nt rc,;
struct tinespec ts = {5, 0};
A object("Third | evel object");

pt hread_set specific(tlskey, &tlskey);
pt hread_cl eanup_push(cancel Handl er, NULL);
printf("Thread bl ocked\n");
rc = pthread_delay_np(&ts);
if (rc!'=20) {
printf("pthread_delay_np() - return code %\n", rc);
return;
}
printf("Calling pthread_exit()\n");
pthread_exit(__VO D(threadRc));
pt hr ead_cl eanup_pop(0);

}

int main(int argc, char **argv)
{
i nt rc=0;
i nt i
pt hread _t t hr eadi d;
voi d *st at us;
i nt fail =0;

printf("Enter Testcase - %\n", argv[O0]);
rc = pthread_key create(& | skey, dataDestructor);
checkResul t s("pthread_key create()\n", rc);

printf("----------- Start pthread _cancel () example --------

printf("Create a thread\n");
rc = pthread_create(&t hreadid, NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);

sl eep(2);
rc = pthread_cancel (threadid);
checkResul t s(" pt hread_cancel ()\n", rc);

rc = pthread_j oi n(threadid, &status);

checkResul ts("pthread_join()\n", rc);

if (status != PTHREAD CANCELED) ({
printf("Canceled thread did not return the expected results\n");
fail = 1;

}

printf("----------- Start pthread_exit() exanmple ------------- \n");
printf("Create a thread\n");

rc = pthread_create(&t hreadid, NULL, threadfunc, NULL);

checkResul ts("pthread_create()\n", rc);

rc = pthread_j oi n(threadid, &status);
checkResul ts("pthread_join()\n", rc);
if (__INT(status) != threadRc) {
printf("pthread_exit() thread did not return the expected results\n");

fail = 1;

}

pt hread_key_del ete(tl skey);

if (fail) {
printf("At |least one thread failed!'\n");
exit(l);

}
printf("Min conpleted\in");
return O;

}

A A(char *label) {
strncpy(buffer, |abel, bufferSize);
pt hread_t nme;
me = pthread_self();
pt hr ead_get uni que_np(&re, &tid);
printf(" %' instantiated in thread 0x% 8x % 8x\n",

buffer, tid);
}
A~A() | |
printf(" %' destroyed in thread 0x% 8x % 8x\n",
buffer, tid);
}
Output:

Enter Testcase - QPOWEST/ TPCPPO

----------- Start pthread cancel () example -------------

Create a thread

“start routine object' instantiated in thread 0x00000000 00000161
“Second | evel object' instantiated in thread 0x00000000 00000161
"Third level object' instantiated in thread 0x00000000 00000161
Thr ead bl ocked

In cancel |l ati on cl eanup handl er

In data destructor

"Third |l evel object' destroyed in thread 0x00000000 00000161
“Second | evel object' destroyed in thread 0x00000000 00000161
“start routine object' destroyed in thread 0x00000000 00000161
----------- Start pthread_exit() example -------------

Create a thread

“start routine object' instantiated in thread 0x00000000 00000162
“Second | evel object' instantiated in thread 0x00000000 00000162
"Third |l evel object' instantiated in thread 0x00000000 00000162
Thread bl ocked

Calling pthread_exit()

In cancel l ati on cl eanup handl er

In data destructor

“Third |l evel object' destroyed in thread 0x00000000 00000162
“Second | evel object' destroyed in thread 0x00000000 00000162
“start routine object' destroyed in thread 0x00000000 00000162
Mai n compl et ed

Top | Pthread APIs | APIs by category

Unhandled exceptions terminate the thread (not
the process)

On aUNIX system, when aninvalid or illegal software condition is encountered (such as dividing by zero or
using an invalid pointer), asignal is generated. If the signal is not handled, the process is terminated.

0OS/400 does not generate asignal for these events, but instead, generates an exception message. The exception
message moves up the call stack, allowing each stack frame (function on the stack or invocation entry) a chance
to handl e the exception. Each function invocation may choose to handle or not to handle the exception. If the
exception is not handled, the message continues to the next stack frame.

When the exception message reaches certain boundaries on the call stack (like amain() entry point, usually called
control boundaries) certain events take place. These eventsinclude changing the exception to a different type,
terminating the process, terminating the activation group, or terminating the thread. If an unhandled exception
condition happensin a secondary thread and moves all the way to the first invocation in the thread without being
handled, the resulting action will be to terminate the thread. During this percolation, if the exception hits a control
boundary and is not handled, it may terminate the process.

A signal is never automatically generated for an exception message. When an unhandled exception terminates the
thread, Pthread cancellation cleanup handlers and Pthread data destructors do not run and the thread is terminated
immediately with areturn status of PTHREAD_EXCEPTION_NP. PTHREAD _EXCEPTION_NP isamacro
similar to the PTHREAD_CANCEL ED macro, and isnot NULL or avalid pointer.

On aUNIX system, this same activity may terminate the process due to the signal that is generated.

In order to have your application terminate the process, when the exception occurs, you must handle it and
explicitly terminate the process. The following example handles all hardware exceptions using the ANSI C signal
model and uses the Pthread signal SIGABRT to terminate the process.

Y ou can aso turn the exception message into a Posix signal and it may be handled. See Exceptions vs.
Asynchronous signals vs. ANSI C signals for more information.

Example

See Code disclaimer information for information pertaining to code examples.

#defi ne _MJULTI _THREADED
#i ncl ude <stdi o. h>

#i ncl ude <qp0z1170. h>
#i ncl ude <tine. h>

#i ncl ude <signal . h>

#i ncl ude <pthread. h>

#i ncl ude "check. h"

voi d abort ThePr ocessWienAnExcepti onCccurs(int sigNunber);
void *threadfuncl(void *parnm;

voi d *threadfuncl(void *parm
{
char *p=NULL;
printf("Threadl: Unhandl ed exception (pointer fault) about to happen\n");
*p = 1 :
printf("Threadl: After exception\n");
return NULL;

voi d abort ThePr ocessWienAnExcepti onCccurs(int sigNunber) {

/[* In a multithreaded environment this is a little difficult. W have to
*/

/* re-enable the ANSI C handl er i medi ately, because that is the way it
*/

/* is defined. (A better alternative nay be direct nonitor exception
*/

/* handlers that are always valid in the function which they are
*/

/* registered, and with direct nonitors, we can catch the hardware
*/

/* exception before it is converted to an ANSI C signal
*/

signal (SI GALL, abort TheProcessWhenAnExcepti onCccurs);

/* Since ANSI C signals and hardware exceptions are only handled in
*/

/* the sane thread that caused them we send the Posix signal to
*/

/* the calling thread (The signal is delivered before returning from
*/

/[* pthread kill().
*/

printf("Mpping ANSI signal % to posix signal S| GABRT.

"Aborting the process\n", sigNunber);

/* 1f we want to do sone debug processing, we can put it here.
*/

pthread kill (pthread_self(), SlIGABRT);

return;

}

int main(int argc, char **argv)

{
i nt rc=0;
pt hread_t t hr eadi d;
voi d *st at us;

printf("----------- Setup Signal Mapping/Handling ------------- \n");
printf("- Register ANSI C signal handler to map ALL\n"
" ANSI C signals & hardware exceptions to Posix signals\n");

/* 1If we want to do debug, or deternm ne what when wong a little nore
easily,
*/

/* we could use the abort TheProcessWhenAnExcepti onCccurs function to del ay
the thread, or */

[* dunp failure data of sone sort.
*/

si gnal (SI GALL, abort TheProcessWhenAnExcepti onCccurs);

printf("----------- Start menory fault thread ------------- \n");
printf("Create a thread\n");

rc = pthread_create(& hreadid, NULL, threadfuncl, NULL);
checkResul ts("pthread_create()\n", rc);

rc = pthread_joi n(threadid, &status);
checkResul ts("pthread_join()\n", rc);

printf("Min conpleted\n”);
return O;

----------- Setup Signal Mapping/Handling -------------
- Register ANSI C signal handler to map ALL
ANSI C signals & hardware exceptions to Posix signals
----------- Start nmenory fault thread -------------
Create a thread
Threadl: Unhandl ed exception (pointer fault) about to happen
Mappi ng ANSI signal 5 to posix signal SIGABRT. Aborting the process

Top | Pthread APIs | APIs by category

Exceptions vs. Asynchronous signhals vs. ANSI C
signals

i Series distinguishes between hardware exceptions, POSIX signals (sometimes called asynchronous signals), and
ANSI C signals. POSIX signals use the APIskill(), sigaction(), pthread kill(), alarm(), pause(), and others for
signal interaction. ANSI C signals use the APIsraisg(), signal(), and abort() for signal interaction.

Many other systems, by default, generate a POSIX signal whenever a software or hardware exception occurs
(such as using a pointer that is not valid, or an error caused by dividing by zero), and on those systems, a POSI X
signal may be equivalent and indistinguishable from an ANSI C signal. If the signal is not handled, thisresultsin
the termination of the process.

0OS/400 does not generate asignal for these hardware or software problems, but instead, generates an exception
message. The exception message moves up the call stack, allowing each stack frame (function on the stack or
invocation entry) a chance to handle the exception. Each function invocation may choose whether or not to
handle the exception. If the exception is not handled, the message continues to the next stack frame.

When the exception message reaches certain boundaries on the call stack (such asamain() entry point, usually
called control boundaries), certain events take place. These eventsinclude changing the exception to a different
type, terminating the process, terminating the activation group, or terminating the thread. If an exception that is
not handled occurs in a secondary thread and moves all the way to the first invocation in the thread without being
handled, the resulting action is to terminate the thread. During this movement, if the exception hits a control
boundary and is not handled, it may terminate the process.

The integrated language environment (ILE) C was present on the system before the POSIX signals
implementation. Therefore, the ILE C uses the robust i Series exception model to implement ANSI C signals
(raise(), signal(), abort()). The ILE C aso provides the generation of an ANSI C signal when it detects a hardware
exception. Thus, using the signal() API, you can monitor and handle hardware exceptions.

A signd is never automatically generated for an exception message. i Series hardware and software exceptions
cannot be detected using asynchronous signal mechanisms. In other words, if you use sigaction() for the
SIGSEGYV signal, you will not detect that signal when a pointer that is not valid is used. If you use signal(), you
will detect SIGSEGV when your code uses an invalid pointer.

If the preferred signal model is the asynchronous signal model, you can use i Series exception handlers or ANSI C
signal handlers to generate a asynchronous signal when those events occur.

The following example shows how an error caused by dividing by zero and the use of an invalid pointer might be
changed into an asynchronous signal. The following example uses ANSI C signal handlers to perform the signal

mapping.

Example

See Code disclaimer information for information pertaining to code examples.

#define _MJLTI _THREADED
#i ncl ude <stdi o. h>

#i ncl ude <qp0z1170. h>
#i ncl ude <tine. h>

#i ncl ude <signal . h>

#i ncl ude <pthread. h>

#i ncl ude "check. h"

voi d nmyAnsi Si gnal Mapper Hdl r (i nt si gNunber) ;

voi d *threadfuncl(void *parm;
voi d *threadfunc2(void *parm;

voi d *threadfuncl(void *parm

{
char *p=NULL;
printf("Threadl: Unhandl ed exception (pointer fault) about to happen\n");
*p:‘!';
printf("Threadl: After exception\n");
return NULL,
}
void *threadfunc2(void *parm
{
int i1=0, i2=1, i3=0;
printf("Thread2: Unhandl ed exception (divide by zero) about to happen\n");
il1=i2/ i3
printf("Thread2: After exception\n");
return NULL;
}

voi d nyAnsi Si gnal Mapper Hdl r (i nt si gNunber) {
/* In a multithreaded environnment, this is slightly difficult. W have to

*/
/* re-enable the ANSI C handl er imedi ately, because that is the way it
*/
/* is defined. (A better alternative may be direct nonitor exception
*/
/* handl ers which are always valid in the function which they are
*/
/* registered, and with direct nonitors, we can catch the hardware
*/
/* exception before it is converted to an ANSI C signal
*/
si gnal (SI GALL, myAnsi Si gnal Mapper Hdl r);
/* Since ANSI C signals and hardware exceptions will only be handled in
*/
/* the sane thread that caused them we will send the POSI X signhal to
*/
/* the calling thread (The signal will be delivered before returning from
*/
[* pthread_kill ().
*/
printf("Mpping ANSI signal to POSI X signal %d\n", sigNunber);
pthread_kill (pthread_self(), sigNunber);
return;
}

void fpViolationH dr(int sigNunber) {
printf("Thread 0x% 8x % 8x "
"Handl ed floating point failure SIGFPE (signal %l)\n",
pt hread_get t hreadi d_np(), sigNunber);
[* By definition, returning froma POSI X signal handl er handl es the
si gnal */

}

voi d segFaul tHdl r (i nt sigNunber) {
printf("Thread 0x% 8x % 8x "
"Handl ed segnentation violation Sl GSEGV (signal %d)\n",

pt hread_getthreadi d_np(), sigNunber);
/[* By definition, returning froma POSI X signal handl er handl es the

si gnal */
}
int main(int argc, char **argv)
{
i nt r c=0;
pt hread_t t hr eadi d;
struct sigaction actions;
voi d *st at us;
printf("----------- Setup Signal Mapping/Handling ------------- \n");
printf("- Register ANSI C signal handler to map ALL\n"
" ANSI C signals & hardware exceptions to POSI X signal s\n");
si gnal (SI GALL, myAnsi Si gnal Mapper Hdl r);
printf("- Register normal POSI X signal handling nechani sns\n"
" for floating point violations, and segnentation faults\n"
"- Other signals take the default action for asynchronous
signal s\n");

nmenset (&actions, 0, sizeof(actions));
si genptyset (&acti ons. sa_nask) ;
actions.sa flags = 0;
actions.sa_handler = fpViolationH dr;

rc = sigaction(Sl GFPE, &ctions, NULL) ;
checkResul ts("sigaction for SIGFPE\n", rc);

actions.sa_handl er = segFaul t Hdl r;
rc = sigaction(SlI GSEGV, &acti ons, NULL) ;
checkResul ts("sigaction for SIGSEGAN", rc);

printf("----------- Start nenory fault thread ------------- \n");
printf("Create a thread\n");

rc = pthread create(& hreadid, NULL, threadfuncl, NULL);
checkResul ts("pthread _create()\n", rc);

rc = pthread join(threadid, &status);
checkResul ts("pthread_join()\n", rc);

printf("----------- Start divide by 0 thread ------------- \n");
printf("Create a thread\n");

rc = pthread create(& hreadid, NULL, threadfunc2, NULL);
checkResul ts("pthread _create()\n", rc);

rc = pthread join(threadid, &status);
checkResul ts("pthread_join()\n", rc);

printf("Min conpleted\n");
return O;

Example Output

----------- Setup Signal Mapping/Handling -------------
- Register ANSI C signal handler to map ALL
ANSI C signals & hardware exceptions to POSI X signals
- Register normal POSI X signal handling nechani sns
for floating point violations, and segnmentation faults
- Oher signals take the default action for asynchronous signals
----------- Start nmenory fault thread -------------
Create a thread
Threadl: Unhandl ed exception (pointer fault) about to happen
Mappi ng ANSI signal to POSI X signal 5
Thread 0x00000000 00000022 Handl ed segnentation violation SIGSEGV (signal 5)
Threadl: After exception
----------- Start divide by O thread -------------
Create a thread
Thread2: Unhandl ed exception (divide by zero) about to happen
Mappi ng ANSI signal to POSI X signal 2
Thread 0x00000000 00000023 Handl ed floating point failure SIGFPE (signal 2)
Thread2: After exception
Mai n conpl et ed

Example

The following example shows how a divide by zero error, and a dereference of a pointer that is not valid might be
mapped to generate a POSI X (asynchronous) signal. This example uses exception handlers to perform the signa

mapping.

See Code disclaimer information for information pertaining to code examples.

#define _MULTI _THREADED
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <qp0z1170. h>
#i nclude <tine. h>

#i ncl ude <signal . h>

#i ncl ude <except. h>

#i ncl ude <qusec. h> /* System APl error Code structure */
#i ncl ude <qgmh. h> /* Message Hanl der common defs */
#i ncl ude <gnmhchgem h> /* Change excepti on nessage */

#i ncl ude <pthread. h>
#i ncl ude "check. h"

voi d myHar dwar eExcept i onMapper (_| NTRPT _Hndl r _Parns_T *exception);
void *threadfuncl(void *parnm;
void *threadfunc2(void *parnm;

voi d *threadfuncl(void *parm
{

char *p=NULL;

/* Watch for all ESCAPE type exceptions. Qther types may be used for
*/

/* job | og nessages or C++ exceptions or other control flowin the
process*/

/* Adjust the nessage type as required by your application.

*/
#pragma excepti on_handl er (myHar dwar eExcepti onMapper, 0, _Cl_ALL,
_C2_IH_ESCAPE)
printf("Threadl: Unhandl ed exception (pointer fault) about to happen\n");
po=1"
printf("Threadl: After exception\n");
#pragma di sabl e_handl er
return NULL,

}
voi d *threadfunc2(void *parm
{
int i1=0, i2=1, i3=0;
[* Watch for all ESCAPE type exceptions. Qthers types may be used for
*/

/* job | og nmessages or C++ exceptions or other control flowin the
process*/
/* Adjust the nessage type as required by your application.
*/
#pragma excepti on_handl er (nyHardwar eExcepti onMapper, 0, _Cl1_ALL,
_C2_IH_ESCAPE)
printf("Thread2: Unhandl ed exception (divide by zero) about to happen\n");
il =1i2/1i3;
printf("Thread2: After exception\n");
#pragma di sabl e_handl er
return NULL;

}
voi d myHar dwar eExcepti onMapper (_I NTRPT_Hndl r _Parns_T *exl nfo) {
i nt si gNunber ;
Qus_EC t error Code = {0}; /* system APl error structure
*/
printf("Handling system exception\n");
/* The exception information is available inside the exlnfo structure
*/
[* for this exanple, we are going to handle all exceptions and then map
*/
/* themto an \Qappropriate' signal nunber. We are allowed to decide the
*/
/* signal mappi ng however is appropriate for our application
*/
if ('menmcnp(ex!nfo->Msg_Id, "MCH3601", 7)) {
si gNunber = S| GSEGV,
}
else if (!menmcnp(ex!nfo->Msg_Id, "MCH1211", 7)) {
si gNunber = S| GFPE
el se {
printf("Unexpected exception! Not Handling!\n");
abort();
/* Even if the exception is \Qexpected', we are going to handle it and try
*/
/* to deliver it as a PCSI X signal. Note that we SHOULD NOT HANDLE
*/
/* exceptions that are unexpected to us. Mst code cannot tolerate
*/

/* getting back into it once the exception occured, and we could get into

*/
/* a nice exception | oop

*/
/* See the system APl reference for a description of QVHCHGEM
*/
QVHCHGEM &exI nf o- >Target, 0, &exlnfo->Msg_Ref Key, QVH _MOD HANDLE
(char *)NULL, O, &errorCode);
if (errorCode.Bytes_Available '=0) {
printf("Failed to handl e exception. Error Code = %.7s\n",
error Code. Exception_Id);
return;
}
printf("Mpping Exception %.7s to POSI X signal %\ n",
exl nfo->Msg_Id , si gNumber);
/* At this point the exception is handled. If the POSI X signal handl er
*/
/* returns, then the signal will be handled, and all will be conplete
*/
pt hread_Kkill (pthread_sel f(), sigNunber);
return;
}

void fpViolationH dr(int sigNunber) {
printf("Thread 0x% 8x % 8x "
"Handl ed floating point failure SI GFPE (signal %l)\n",
pt hread_get t hreadi d_np(), sigNunber);
/* By definition, return froma POSI X signal handler handl es the signa
*/

voi d segFaul t Hdl r (i nt si gNunber) {
printf("Thread 0x% 8x % 8x "
"Handl ed segnentation violation Sl GSEGVY (signal %d)\n",
pt hread getthreadi d_np(), sigNumber);
/[* By definition, returning froma POSI X signal handl er handl es the

signal */
}
int main(int argc, char **argv)
{
i nt r c=0;
pt hread t t hr eadi d;
struct sigaction actions;
voi d *st at us;
printf("----------- Setup Signal Mapping/Handling ------------- \n");

printf("- The threads will register iSeries Exception handler to map\n"
" hardware exceptions to POSI X signal s\n");

printf("- Register normal PGCSI X signal handling nechani sms\n"
" for floating point violations, and segnentation faults\n"
- Other signals take the default action for asynchronous
gnal s\ n");
nmenset (&acti ons, 0, sizeof(actions));
si genptyset (&acti ons. sa_nask) ;
actions.sa flags = 0;
actions.sa_handler = fpViolationH dr;

S

rc = sigaction(SlI G-PE, &ctions, NULL) ;
checkResul ts("sigaction for SIGFPE\n", rc);

actions. sa_handl er = segFaul t Hdl r;
rc = sigaction(SI GSEGV, &ctions, NULL) ;
checkResul ts("sigaction for SIGSEGW\N", rc);

printf("----------- Start nmenory fault thread ------------- \n");
printf("Create a thread\n");

rc = pthread_create(& hreadid, NULL, threadfuncl, NULL);
checkResul ts("pthread_create()\n", rc);

rc = pthread_j oi n(threadid, &status);
checkResul ts("pthread_join()\n", rc);

printf("----------- Start divide by O thread ------------- \n");
printf("Create a thread\n");

rc = pthread_create(& hreadid, NULL, threadfunc2, NULL);
checkResul ts("pthread_create()\n", rc);

rc = pthread_join(threadid, &status);
checkResul ts("pthread_join()\n", rc);

printf("Min conpleted\n");
return O;

——————————— Setup Signal Mpping/Handling -------------
- The threads will register iSeries Exception handler to nmap
har dwar e exceptions to PCSI X signals
- Register nornmal POSI X signal handling mechani sns
for floating point violations, and segnentation faults
- Oher signals take the default action for asynchronous signals
——————————— Start nenory fault thread -------------
Create a thread
Threadl: Unhandl ed exception (pointer fault) about to happen

Handl i ng system exception

Mappi ng Excepti on MCH3601 to PCSI X signal 5

Thread 0x00000000 00000024 Handl ed segnentation violation SIGSEGV (signal 5)
Threadl: After exception

——————————— Start divide by O thread -------------

Create a thread

Thread2: Unhandl ed exception (divide by zero) about to happen

Handl i ng system exception

Mappi ng Exception MCH1211 to PCSI X signal 2

Thread 0x00000000 00000025 Handl ed fl oating point failure SIGFPE (signal 2)
Thread2: After exception

Mai n conpl et ed

Top | Pthread APIs | APIs by category

Mutexes can be named to aid in application
debug

The OS/400 threads support of mutexes allows the application to name mutexes. Named mutexes can be
used to aid in problem determination. The performance and behavioral characteristics of named mutexes
are identicle to normal mutexes.

When an application is using mutexes and has deadlocked, you may be able to determine which mutexes
are being used by the application more easily if the mutexes being used are named.

Y ou can use the DSPJOB CL command to help debug the application. From DSPJOB, choose option 19 -
Display mutexes, if active or option 20 - Display threads, if active to view the mutexes and threads being
used by the application.

See pthread mutexattr sethame np()--Set Name in Mutex Attributes Object and
pthread mutexattr_getname np()--Get Name from Mutex Attributes Object if you would like to use named
mutexes in your application.

Pthread APIs | APIs by category

Header files for Pthread functions

Programs that use the Pthread functions must include one or more header files that contain information that
the functions need. Header files include the following:

« Macro definitions

« Datatype definitions
« Structure definitions
« Function prototypes

The header files are provided in the QSY SINC library which can be installed as an option. Make sure
QSY SINC ison your system before compiling programs that use these header files.

Where to Find Header Files

Name of Header Name of Filein Name of
File QSYSINC Member

| pthread.h | H | PTHREAD
| sched.h | H | SCHED

Y ou can display a header filein QSY SINC by using one of the following methods:

« Useyour editor. For example, to display the pthread.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCVBR(PTHREAD) OPTI ON(5)

« Usethe Display Physical File Member command. For example, to display the sched.h header file,
enter the following command:

DSPPFM FI LE(QSYSI NG/ H) MBR(SCHED)

Y ou can print a header file in QSY SINC by using one of the following methods:

« Useyour editor. For example, to print the pthread.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(Q8YSI NG/ H) SRCVBR(PTHREAD) OPTI ON(6)

« Useyour Copy File command. For example, to print the sched.h header file, enter the following
command:

CPYF FROVFI LE(QSYSI NC/ H) TOFI LE(* PRI NT) FROWVBR(SCHED)

Top | Pthread APIs | APIs by category

Pthread glossary

A

attribute object

Any of the Pthreads data structures that are used to specify theinitial states when creating certain
resources (threads, mutexes, and condition variables). A thread attribute object can be used to
create athread. A mutex attributes object can be used to create amutex. A condition attributes
object can be used to create a condition. Functions that create attribute objects are
pthread_attr_init(), pthread_mutexattr_init(), and pthread_condattr_init().

cancel

A cancel isdelivered to athread when pthread_cancel() isissued and stops athread. A cancel can
be held pending if the target thread has cancellation DISABLED or DEFERRED. The cancel may
be acted upon when cancellation is set to ENABLED or ASYNCHRONOUS.

cancellation cleanup handler

A function registered to perform some cleanup action. Cancellation cleanup handlers are called if a
thread calls pthread_exit() or isthetarget of a pthread cancel(). Cancellation cleanup handlers are
stacked onto a cancellation cleanup stack and can be pushed and popped using the

pthread cleanup_push() and pthread cleanup _pop() functions.

cancedllation point

A function that causes a pending cancel to be delivered if the cancellation stateis ENABLED, and
the cancellation type is DEFERRED. pthread_testcancel () can be used to create a cancellation
point. For alist of other functions that are cancellation points, see pthread cancel().

cancellation state

Either of two values (ENABLED or DISABLED) that describe whether cancels in the current
thread are acted upon or held pending, If ENABLED, the cancellation is acted upon immediately
based on the current cancellation type. If DISABLED, the cancel is held pending until it is
ENABLED. Y ou can modify the cancellation state using the pthread_setcancel state() function.

cancellation type

Either of two values (DEFERRED or ASY NCHRONOUS) that describe how cancels are acted
upon in the current thread when the cancellation state is ENABLED. If DEFERRED, the cancel is
held pending, if ASY NCHRONOUS, the cancel is acted upon immediately, thus ending the thread
with a status of PTHREAD_ CANCELED. Y ou can modify the cancellation type using the

pthread setcanceltype() function.

condition variable
An abstraction that allows athread to wait for an event to occur. The condition variable is used

with a Boolean predicate that indicates the presence or absence of the event and a mutex that
protects both the predicate and the resources associated with the event. The condition variable has
no ownership associated with it. See pthread _cond_init(), and other functions whose names begin
with pthread _cond .

D

detach a thread

To mark athread so that the system reclaims the thread resources when the thread ends. If the
thread has already ended, the resources are freed immediately. After athread's resources are freed,
the exit statusis no longer available, and the thread cannot be detached or joined to. Use the
pthread attr_setdetachstate(), or pthread _detach() functions to detach athread, or the pthread_join()
function to wait for and then detach a thread.

E

exit status

Thereturn value from athread. A variable of type void *, which typically contains some pointer to
acontrol block pointer or return value, that shows under what conditions the thread ended. The
thread can be ended and the exit status can be set by returning from the thread start routine, by
calling pthread_exit(), or by canceling athread using pthread cancel().

G

global mutex

A single mutex that is stored globally to the process that is provided by the pthreads library to allow
easy serialization (a mechanism that allows only one thread to act at one time) to application
resources. See the functions pthread lock _global_np() or pthread_unlock_global_np().

initial thread

The thread that is started automatically by the system when ajob or processis started. Every job
has at least one thread. That thread is often referred to as the initial thread or the primary thread.
Threads other than the initial thread are referred to as secondary threads. If theinitial thread ends, it
causes all secondary threads and the job to end. See also “Secondary thread'.

J

jointoathread

To wait for athread to complete, detach the thread, and optionally return its exit status. Use
pthread_join() to wait for athread to complete.

M

main thread
Seeinitia thread.

multithread capable
Thisterm is specific to i Series. See thread capable.

multithr eaded

A process that has multiple active threads. In the i Series documentation, the term multithreaded is
sometimes used as a synomym for multithread capable.

mutex

An abstraction that allows two or more threads to cooperate in aMUTual EXclusion protocol that
allows safe access to shared resources. See pthread mutex_init() or other functions whose names
begin with pthread mutex_. Also see recursive mutex, named mutex, global mutex.

N

named mutex

A mutex with an associated text name used for identification and debugging. The nameisusedin
some system dumps and debug or thread-management user interfaces. The name does not affect the
behavior of the mutex, only the ability to debug the use of that mutex. The Pthread run-time names
all mutexes by default. See the functions pthread mutexattr_setname_np() or

pthread _mutexattr_getname_np().

O

or phaned mutex

A mutex that was held by athread when that thread ended. Any application data or resources
associated with the mutex are most likely in an inconsistent state if a mutex is orphaned. An
orphaned mutex is not available to be locked by another thread and causes alocking thread to block
indefinitely or to get the EBUSY error when attempting to trylock the mutex.

P

POSI X thread handle

The pthread t data type that is returned to a creator of a POSIX thread. The pthread t represents an
opague handle to the POSIX thread. It should not be modified except through the use of the pthread
functions. The pthread_create() or pthread self() function returns the POSI X thread handle. The
pthread _equal () function can be used to confirm whether two handles refer to the same thread. The
POSIX thread handle is sometimes referred to as the thread ID.

primary thread
Seeinitia thread.

Pthread

Shorthand for POSIX or Single UNIX Specification Thread, asin 'the interfaces described in this
document are based on the POSIX standard (ANSI/IEEE Standard 1003.1, 1996 Edition OR
ISO/IEC 9945-1: 1996) and the Single UNIX Specification, Version 2, 1997

R

r ecur sive mutex

A mutex that can be acquired again by the owning thread. A recursive mutex does not become
unlocked until the number of unlock requests equals the number of successful lock requests. A
non-recursive (normal) mutex causes an EDEADLK error if an attempt is made by the owning
thread to lock it a second time. See the functions pthread_mutexattr_setkind_np() or
pthread_mutexattr_getkind_np().

S

scheduling parameters

Information describing the scheduling characteristics of athread. The sched _param structure
contains scheduling parameters. On the i Series, the scheduling parameters allow you to only
specify the priority of the thread. Scheduling Policy is restricted to the proprietary iSeries
scheduling policy. Use the pthread_attr_setschedparam(), pthread_attr_getschedparam(),
pthread_setschedparam(), or pthread_getschedparam() functions to manipulate scheduling
parameters.

scheduling policy

Information describing which algorithm is used to schedul e threads within the process or system.
Some scheduling policies are Round Robin or FIFO. iSeries uses the SCHED OTHER constant to
indicate the delay cost scheduling that the system uses. The scheduling parameter functions support
only the SCHED_OTHER policy, and the pthread_attr _getschedpolicy() and
pthread_attr_setschedpolicy() functions are not supported.

scope
Information describing whether the scheduling policy indicates that threads compete directly with

other threads within the process or the system. i Series schedules threads within the system, and the
pthread_attr_setscope() and pthread_attr_getscope() functions are not supported.

secondary thread

signal

Any thread started by or on behalf of the application that is not the initial thread. Secondary threads
are started by calling pthread_create() or another library service that creates threads. Secondary
threads have no parent/child relationship.

An asynchronous mechanism for interrupting the processing of athread. The system delivers a
signal to athread when the application programmer takes explicit or implicit action to cause the
signal to be delivered. The signal can be sent to athread or process, but is always delivered to a
specific thread.

signal handler

A function registered by the application programmer that the system executes when asignal is
delivered to athread. The function runsimmediately in the thread, interrupting any application
processing that isin progress.

signal safe

A function, macro or operating system service that can be called safely from asignal handler. The
function always acts in awell-defined manner. It does not rely on any external state or locks that
might be in an inconsistent state at the time the signal handler function is called by the system.

signal unsafe

thread

A function, macro or operating system service that cannot be called safely from within asignal
handler. A signal unsafe function may acquire locks or otherwise change the state of aresource.
When the signal is delivered to the thread, the signal handler runs. The state of the resource or the
lock managed by the signal unsafe function is unknown because it was interrupted by the signal
before it completed. If the signal unsafe function is called again, the results are non-deterministic.

An independent sequence of execution of program code and processing context inside a process. A
unigue unit of work or flow of control within aprocess. A thread runs a procedure asynchronously
with other threads running the same or different procedures within the process. All threads within a
process equally share activation group and process resources (heap storage, static storage, open
files, socket descriptors, other communications ports, environment variables, and so on). A thread
has few resources (mutexes, locks, automatic storage, thread specific storage) that are not shared.
On amultiprocessor system, multiple threads in a process can run concurrently.

thread capablejob

The only job that can create threads. Certain system behavior and the architecture of the process
changes dightly to support OS/400 threads. If ajob is not thread capable, attemptsto create a
thread result in the EBUSY error. Y ou can create a thread capable process by using the spawn()
interface or by using other iSeries job-creation commands that allow you to specify that the new job
should be thread capable.

thread 1D

The unique integral number can be used to identify the thread. Thisintegral number is available for
retrieval using the pthread _getunique_np() interface. Although no Pthread interfaces use the
integral thread 1D to identify athread for manipulation, thread ID is sometimes used to describe the
pthread_t data type that represents the abstraction to athread. See POSIX thread handle.

thread local storage (TLS)
See thread specific storage.

threadsafe

A function, macro or operating system service that can be called from multiple threads in a process
at the same time. The function always acts in awell-defined manner. The end results are asiif the
function was called by each thread in turn, even though all of the threads were running the function
at the same time. Some APIs have restrictions about how they can be called in order for them to be
thread safe. See the API documentation for all APIsor system services that you usein a
multithreaded job.

thread specific storage

Storage that is not shared between threads, but that can be accessed by all functions within that
thread. Usually, thread specific storage isindexed by akey. The key isaglobal value visibleto all
threads, and it is used to retrieve the thread-specific value of the storage associated with that key.
Also called thread private storage, thread local storage or TLS. See the pthread _getspecific(),
pthread_setspecific(), pthread key create(), and pthread_key_delete() functions.

thread unsafe

A function, macro, or operating system service that cannot be called from multiple threads is called
thread unsafe. If thisfunction is used in multiple threads or in a process that has multiple threads
active, the results are undefined. A thread unsafe function can corrupt or negatively interact with
datain another function (thread safe or otherwise) that appears to be unrelated to the first function.
Do NOT use thread unsafe functions in your multithreaded application. Do NOT call programs or
service programs that use thread-unsafe functions. See the APl documentation for all APIs or
system services that you use in a multithreaded job.

Top | Pthread APIs | APIs by category

Other Sources of Pthread Information

The following standards are the base reference documents from which the APIsin this section originated:
« ANSI/IEEE 1003.1 1996 (A.K.A. ISO/IEC 9945-1 1996)

« The Single UNIX Specification, Version 2, 1997

The following sources also provide information about Pthreads:
» "Programming with POSIX Threads' by David R. Butenhof, ISBN#: 0201633922

« "Threads Primer: A Guide to Solaris Multithreaded Programming" by Bil Lewis and Daniel J.
Berg, Prentice Hall, ISBN#: 0134436989

« Thelnternet newsgroup comp.programming.threads

Pthread APIs | APIs by category

Writing and compiling threaded programs

When writing and compiling code that use threads or that run in athreaded job, make sure to do the
following:

« Ensurethat al of the APIs or system services that you use are threadsafe. See M ultithreaded
applications for an introduction to threads and general information about OS/400 threads.

« Insert the following lines into any module that uses the thread data types or definitions.
#define _MULTI _THREADED

#i ncl ude <pt hread. h>
The preprocessor definition MULTI_THREADED must come before the pthread.h.

See Header files for Pthread functions for more information on header files.

SeeUsingthe MULTI THREADED preprocessor definition for more information on the
_MULTI_THREADED preprocessor definition.
« Compile the program normally; use the CRTCM OD followed by the CRTPGM or

CRTSRVPGM commands. Y ou can aso use the CRTBNDC CL command to create your
threaded program.

« Since Pthread APIs can operate on functions and data which could exist in different compilation
units (modules), the same storage model and data model must be used throughout al compilation
units within a program or service program that uses Pthread APIs. Otherwise, unpredictable
behavior and failures will occur. Refer to the information on teraspace and single-level storein the

ILE Concggts@ book for more information on storage model and data model.

Pthread APIs | APIs by category

Using the MULTI_THREADED preprocessor
definition

The MULTI_THREADED preprocessor value is used to indicate that your application uses the kernel
threads model. The preprocessor value can also be used by other parts of the system to create threadsafe
macros. For example, the fputc() macro of ILE C canusethe. MULTI_THREADED preprocessor value.
Y ou should always definethe_ MULTI_THREADED preprocessor value in source files that run in kernel
threaded jobs.

Pthread APIs | APIs by category

Running threaded programs

When you run athreaded program, the job that runs a threaded program must be specially initialized by the
system to support threads. Currently, several mechanisms allow you to start ajob that is capable of creating
multiple kernel threads:

o Usethe OS/400 QShell Interpreter. In the QShell Interpreter, a program gets descriptors 0, 1, and 2
as the standard files; the parent and child 1/0O is directed to the console. The QShell interpreter
allows you to run multithreaded programs as if they were interactive. See Qshell for adescription
of the QIBM_MULTI_THREADED shell variable, which, when set to 'Y", allows you to run
multithreaded programs the same way you run any other program. The QShell Interpreter is option
30 of Base OS/400.

o Usethe spawn() API. The spawn() API has aflag in the spawn inheritance structure that allows
you to turn on the multithread capability for the child job. The QUSRTOOL library aso provides
source code and an example CL command to allow you to create and use a SPAWN CL command
in away that is similar to the SBMJOB CL command. See the SPAWN CL command,

QUSRTOOL example for more information.

o Usethe SBMJOB CL command. Setting the 'Allow multiple threads' parameter (keyword
ALWMLTTHD) on the CL command allows you to turn on the multithread capability of the
submitted job.

» Usethe CRTJOBD CL command to create a special job description; then create your job using a
mechanism that will use the job description. Setting the 'Allow multiple threads' parameter
(keyword ALWMLTTHD) on the job description allows you to turn on the multithread capability
of the jobs that are created using that job description.

Pthread APIs | APIs by category

SPAWN CL command, QUSRTOOL example

When you test your threaded application, you may want to quickly spawn new processes and debug the
programs started in those processes. An example tool that creates a SPAWN CL command has been placed
into the QUSRTOOL library for your use on the system. (See Creating the SPAWN command below.)

You caninstall the QUSRTOOL library (Option 7) of the base operating system when using the
RSTLICPGM CL command. On the GO LICPGM menu, it appears as the Example Tools Library.

The spawn example shows how you might write a CL command and a command processing program to
alow you to spawn jobs from the command line. The call to spawn() starts a new process that allows you
to inherit the current environment (file descriptors, socket descriptors, and environment variables) from the
current process. By default, it allows you to create threads in the child process and allows you to
automatically issue the commands required to debug the spawned child. If you want more functionality
from the command, you can easily edit it.

Creating the SPAWN command

To use the example tool to create the SPAWN command, see the QATTINFO filein the QUSRTOOL
library. The members AAAAREADME and AAAMAP in that file contain information and instructions for
unpacking various QUSRTOOL examples and utilities. Read these members and follow the instructions
for using the package and unpackage utilities on the SPAWN sourcefiles.

The member that contains the SPAWN example information is TPOZINFO inthe QATTINFO file. The
TPOZINFO member contains a table that lists the source files that must be unpacked to create the SPAWN
example. The TPOZINFO member aso contains instructions for creating the example CL command and
lists which source members are used for SPAWN in case you want to modify the SPAWN CL command to
suit your own specific needs.

Pthread APIs | APIs by category

Troubleshooting Pthread errors

The following are common errors users encounter when programming with Pthreads. Follow the
appropriate link to find instructions for correcting these errors:

Cannot find header files pthread.h or gpOztype.h or qpOzptha.h
Thread creation (pthread create()) fails with EBUSY or 3029
Mixing thread models or APl sets

Reserved fields must be binary zero

Powerful OS/400 cleanup mechanisms allow application deadlock (cancel handler and C++
automatic destructors)

Thread creation using C++ methods as target does not work
MCH3402 from pointer returned by pthread join()

Pthread APIs | APIs by category

Cannot find header files pthread.h or gpOztype.h or
gpOzptha.h

Y ou may find that your compilation fails because the system header files required to compile a threaded program or
to use the threaded interfaces cannot be found. This problem has one of several causes:

« If you get failure messages similar to the following:

KULACK/ QCSRC/ MYPGM | ine 5: Unable to find #include file *LIBL/ H PTHREAD) .

you might have one of two problems:

o Either your system does not have the C header files for openness (the QSY SINC library) installed,
you are on aVersion 4 Release 2 system and you do not have the PTF installed (PTF number
5769SS1-J664741) that provides the Pthread header files.

o Your compile command is not searching the correct locations for system header files.

In order to correct these problems, do one of the following:

o Install the Openness includes (System Openness Includes, 5769-SS1 Option 3) and the QSY SINC
library, install the PTF support (PTF number 5769SS1-J664741) for kernel threads header files.

o Correct your search paths or library list.

« If you get failure messages similar to the following:

QSYSI NO H PTHREAD |ine 48: Unable to find #include file QCPA/ H PTHREAD) .
QSYSI NO H PTHREAD | i ne 60: #error "#ifndef _MILTI_THREADED'
@SYSI NGO H PTHREAD | i ne 61: #error "#ifndef QPOZ_CPA THREADS PRESENT"

you have forgotten to definethe_ MULTI_THREADED preprocessor symbol. Use the C preprocessor
statement “#define_ MULTI_THREADED' in your application, or define_ MULTI_THREADED on the
CRTCMOD or other compile command that you use to compile your modules. Because the CPA toolkit
supported threads before kernel threads being introduced on the server, if you do not define
_MULTI_THREADED when compiling your C modules, the system attempts to compile your application
using the CPA header files. The recommended threads model is kernel threads. Y ou must define
_MULTI_THREADED when you compile your application.

« If you get failure messages similar to the following:

QCPA/ H PTHREAD | i ne 171: Unable to find #include file *LIBL/H(QPOZTYPE).
QCPA/ H PTHREAD | i ne 183: Unable to find #include file *LIBL/H(QPOZPTHA) .

you have forgotten to definethe_MULTI_THREADED preprocessor symbol. Use the C preprocessor
statement #define_ MULTI_THREADED in your application, or define_ MULTI_THREADED on the
CRTCMOD or other compile command that you use to compile your modules. Because the CPA toolkit
supported threads prior to kernel threads being introduced on the serverQ, if you do not define
_MULTI_THREADED when compiling your C modules, the system attempts to compile your application
using the CPA header files. The recommended threads model is kernel threads. Y ou must define
_MULTI_THREADED when you compile your application.

Top | Pthread APIs | APIs by category

Thread creation (pthread_create()) fails with
EBUSY or 3029

Because many parts of the operating system are not yet thread safe, not every job can start threads. The
pthread_create() API failswith the EBUSY error when the process is not allowed to create threads. See
Running threaded programs for information about how to start ajob that can create threads.

Pthread APIs | APIs by category

Mixing thread models or API sets

If you mix Pthread APIswith other threads management APIs that might be provided on the system, your
application can enter an unknown state. For example, you should not use Java or the IBM open class
libraries threads implementations to manipulate a thread that was created using the Pthread APIs. Similarly,
if you use a Pthread API like pthread_cancel() on athread created and managed by the VM, you can get
unexpected results.

The following example demonstrates this problem. A Java application creates several Javathreads. One
Javathread runs normally and eventually calls a native method. The native method uses the pthread_self()
API to store the POSIX thread handle for the thread. The native method then returns to Java and continues
to run normal Java code in the Java virtual machine (JVM). Eventually, another Javathread in the
application calls a native method. The new native method uses the stored POSIX thread handlein acall to
pthread_cancel(). This causes cause the Javathread to be terminated with Pthread semantics. The Java
thread cleanup requirements or the tendency of Javato end the thread with a Java exception may not be
honored. The application may not get the results that you expect. Do not manipulate threads from one
thread model with APIs from another.

The following example also demonstrates this problem. The priorities of a Pthread may sometimes be
manipulated using both Pthread and i Series proprietary interfaces. If they are manipulated, the priorities are
always set correctly; however the priority returned from the Pthread interface pthread_getschedparam() is
only correct if the priority was always set using either the pthread_setschedparam() interface or another
interface, but not both. If multiple interfaces have been used to set the priority of the thread,
pthread_getschedparam() always returns the priority set by the last pthread_setschedparam().

Pthread APIs | APIs by category

Reserved fields must be binary zero

The OS/400 implementation of many APIs requiresthat reserved fieldsin certain parameters or data
structures be set to binary zero before using a structure as input to an API or system service. Y ou should
initialize the structure using memset() or an initialization API provided by the system, such as
pthread_condattr_init(). Using structures with reserved fields that are non-zero causes the EINVAL error.

Pthread APIs | APIs by category

Powerful OS/400 cleanup mechanisms allow
application deadlock (cancel handler and C++
automatic destructors)

0S/400 provides a set of powerful cleanup mechanisms. In OS/400, an application has the ability to register
acancel handler. Y our application can enable a cancel handler by using the #pragma cancel _handler
preprocessor statement if it iswritten in C or C++ or by using the CEERTX() API.

A cancel handler is similar to a Pthread cancellation cleanup handler. However, a cancel handler runs
whenever the stack frame or function for which it was registered ends in any way other than anormal
return. Pthread cancellation cleanup handlers run only when the thread is terminated with pthread_exit() or
pthread_cancel() or when the thread returns from the threads start routine.

The cancel handler is guaranteed to run for all conditions that cause the stack frame to end (other than
return), such as thread termination, job termination, calls to exit(), abort(), exceptions that percolate up the
stack, and cancel stack frames. Similarly, C++ destructors for automatic C++ objects are guaranteed to run
when the stack frame (function) or scope in which it was registered ends.

These mechanisms ensure that your application can always clean up its resources. With the added power of
these mechanisms, an application can easily cause a deadlock.

The following is an example of such a problem:

An application has a function foo() that registers a cancel handler called cleanup(). The function foo()
is called by multiple threads in the application. The application is ended abnormally with acall to
abort() or by system operator intervention (with the ENDJOB *IMMED CL command). When this
jobisended, every thread isimmediately terminated. When the system terminates a thread by
terminating each call stack entry in the thread, it eventually reaches the function foo() in that thread.
When function foo() is reached, the system recognizes that it must not remove that function from the
call stack without running the function cleanup(), and so the system runs cleanup(). Because your
application is multithreaded, all of the job ending and cleanup processing proceedsin paralel in each
thread. Also, because abort() or ENDJOB *IM M ED was used, the current state and location of each
thread in your application is cannot be determined. When the cleanup() function runs, it is very
difficult for the application to correctly assume that any specific cleanup can be done. Any resources
that the cleanup() function attempts to acquire may be held by other threads in the process, other jobs
in the system, or possibly by the same thread running the cleanup() function. The state of application
variables or resources that your application manipulates may be in an inconsistent state because the call
to abort() or ENDJOB *I MM ED asynchronously interrupted every thread in the process at the same
time. The application can easily reach a deadlock when running the cancel handlers or C++ destructors.

Do not attempt to acquire locks or resources in cancel handlers or C++ automatic object destructors
without preparing for the possibility that the resources cannot be acquired.

Important

Neither acancel handler nor adestructor for a C++ object can prevent the call stack entry from being
terminated, but the termination of the call stack entry (and therefore the job or thread) is delayed until the
cancel handler or destructor completes.

If the cancel handler or destructor does not complete, the system does not continue terminating the call
stack entry (and possibly the job or thread). The only aternative at this point isto use the WRKJOB CL
command (option 20) to end the thread, or the ENDJOB *IMMED CL command. If the ENDJOB

*IMM ED command causes a cancel handler to run in the first place, the only option left isthe
ENDJOBABN CL command because any remaining cancel handlers are till guaranteed to run.

The ENDJOBABN CL command is not recommended. The ENDJOBABN command causes the job to be
terminated with no further cleanup allowed (application or operating system). If the application is
suspended while trying to access certain operating system resources, those resources may be damaged. If
operating system resources are damaged, you may need to take various reclaim, deletion, or recovery steps
and, in extreme conditions, restart the system.

Recommendations

If you want to cleanup your job or application, you can use one of the following mechanisms:

« If you want to do process level or activation group cleanup for normal termination, use the C
atexit() function to register your cleanup function. The atexit() function provides a mechanism to
run cleanup after the activation group and possibly the threads, are terminated. This action
significantly reduces the complexity.

« If you always want a chance to do processlevel or activation group cleanup in all cases (hormal
and abnormal), you could use the Register Activation Group Exit (CEE4RAGE()) system API.
The CEE4RAGE() function provides a mechanism to run cleanup after the activation group (and
possibly the threads) are terminated. This action significantly reduces the complexity.

« You can safely use cancel handlers. Simplify your cancel handlers so that they only unlock or
rel ease resources and do not attempt to acquire any new resources or locks.

« You can remove your cancel handlers and create a CL command, program, or tool that terminates
your application in a more controlled fashion:

o Onepossibility isatool that uses asignal to terminate the application. When the signal
comesin, your application can get control in asingle location (preferably by using the
sigwait() APl to safely and synchronously get the signal), and then perform some level of
cleanup. Then it can use exit() or abort() to end the application from within. Often this
action is sufficient to remove the complexity.

o A second possihility isto usethe ENDJOB *CNTRLD CL command and have your
application dedicate a thread to watching for the controlled end condition. The application
thread can use the QUSRJOBI (Get Job Information) or the QW CRTVCA (Retrieve
Current Attributes) APIsto look at the End Status information associated with your job.
The End Status indicates that the job is ending in a controlled fashion, and your
application can take safe and synchronous steps to clean up and exit.

o A third possibility is to use the asynchronous signal s support and set up a handler for the
SIGTERM asynchronous signal. Support has been added to the system so that, if an
ENDJOB *CNTRLD is done and the target job has a handler registered for the SIGTERM
signal, that signal gets delivered to the target job. Y ou should dedicate a thread for
handling signals by using the sigwait() API in the dedicated thread. When the signal
handling thread detects a SIGTERM signal using the sigwait() AP, it can safely clean up
and terminate the application. The system support for the delivery of the SIGTERM signal
when ENDJOB *CNTRLD isissued was added in the base OS/400 in Version 4 Release 3
Modification 0 and is also available in Version 4 Release 2 Madification 0 through
program temporary fixes (PTFs) 5769SS1-SF47161 and 5769SS1-SF47175. For more

information about ending your job, see the Work Management topic.

o A fourth possibility includes other interprocess communications (IPC) mechanisms that can
also be used to indicate that your application should terminate in a safe and controlled

fashion.

« If you want to do thread-level cleanup, use the pthread APIs, such as pthread_cleanup_push(),
pthread_cleanup_pop(), and pthread_key_create() to create cancellation cleanup functions that
run when the thread terminates under normal conditions. Often your cleanup functions do not need
to run when the job ends. The most common use for these functionsis to free heap storage or
unlock resources. Unlocking resourcesis safe in a cancel handler, and you do not need to use freg()

on heap storage when the entire job is ending anyway.

Top | Pthread APIs| APIs by category

Thread creation using C++ methods as target
does not work

Often, as a C++ programmer, you may want to abstract the concept of athread into a C++ class. To do this,
you must realize that the Pthread APIs are C language APIs. The Pthread APIs use functions that have C
linkage and calling conventions. For your application to successfully use the pthread functions, you must
provide helper functions of the appropriate type and linkage for the Pthread APIs that take function pointers as
parameters.

When sharing objects between threads, always be aware of which thread is manipulating the object, which
thread is responsible for freeing the object, and what thread safety issues are created by sharing objects
between threads.

The following example shows how to successfully create a program that abstracts athread into a C++ class. It

can be easily extended to provide a mechanism by which the thread creation and manipulation itself is also
encapsulated into the class.

Example

See Code disclaimer information for information pertaining to code examples.

[* This C++ exanple must be conpiled with Visual Age C++ for OGS/ 400 */
#define _MJULTI _THREADED

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <stddef. h>

#i ncl ude <pthread. h>

cl ass Threadd ass {
public:
Threadd ass(char *s) {
datal = 42; data2 = strlen(s);
strncpy(str, s, sizeof(str)-1);

str[49] =0;
void *run(void);
private:
i nt dat al;
i nt dat a2;
char str[50];
b

extern "C' void *ThreadStartup(void *);

int main(int argc, char **argv)

{
Threadd ass *t =NULL;
pt hread _t t hr ead;
i nt rc;

[l Use printf instead of cout.

[l At the tinme this test was witten, the C++ standard class library
/1 was not thread safe.

printf("Entered test %\n", argv[O0]);

printf("Create a ThreadCd ass object\n");
t = new Threadd ass("Testing C++ object/thread creation\n");

printf("Start a real thread to process the ThreadC ass object\n");
/1 #define COVPI LE_ERROR
#i f def COWPI LE_ERROR
[l This is an ERROR You cannot create a thread by using a pointer
/1 to a nmenber function. Thread creation requires a C linkage function.
/1 If you renove the coments fromthe Iine "~#define COWI LE_ ERROR
/[l the conpiler will give a nessage simlar to this:
/1 "ATESTCPPO. C', line 46.53: 1540-055: (S) "void*(Threadd ass::*)()"
/1 cannot be converted to "extern "C' void*(*)(void*)".
rc = pthread_create(& hread, NULL, Threadd ass::run, NULL);
#el se
/[l Instead, this is the correct way to start a thread on a C++ object
rc = pthread_create(& hread, NULL, ThreadStartup, t);
#endi f
if (rc) {
printf("Failed to create a thread\n");
exit (EXI T_FAI LURE)

}

printf("Waiting for thread to conplete\n");

rc = pthread_j oi n(thread, NULL);

if (rc)
printf("Failed to join to the thread, rc=%l\n");
exi t (EXI T_FAI LURE)

printf("Testcase conplete\n");
exi t (EXI T_SUCCESS)
}

/1 This function is a helper function. It has normal C linkage, and is
/1l as the base for newy created ThreadC ass objects. It runs the
/1 run nethod on the ThreadCd ass object passed to it (as a void *).
[l After the Threadd ass nmethod conpletes nornally (i.e returns),
/1 we delete the object.
void *ThreadStartup(void *_tgtQbject) {

Threadd ass *tgt Object = (Threadd ass *) _tgt Obj ect;

printf("Running thread object in a new thread\n");

void *threadResult = tgtbject->run();

printf("Del eting object\n");

del ete tgt oj ect;

return threadResul t;

}

voi d *Threadd ass: :run(void)

{
printf("Entered the thread for object % 8x % 8x % 8x % 8x\n", this);
printf("Object identity: 9%, %: %\n", datal, data2, str);
return NULL,

}

Output

Entered test QPOWEST/ ACPPOBJ

Create a Threadd ass obj ect

Start a real thread to process the ThreadCd ass obj ect

Waiting for thread to conplete

Runni ng thread object in a new thread

Entered the thread for object 80000000 00000000 dO17dad2 57001f 60
hject identity: 42, 35: Testing C++ object/thread creation

Del eti ng obj ect

Test case conpl ete

Top | Pthread APIs | APIs by category

MCH3402 from pointer returned by pthread join()

Be sure that no threads return pointers to items that can be destroyed when a thread terminates. For example, the
threads stack istransitory. It needs to exist only for the life of the thread, and it may be destroyed when the thread
terminates. If you return the address of an automatic variable or use the address of an automatic variable as an
argument to pthread_exit(), you may experience MCH3402 errors when you use the address.

Example

The following example contains code that brings up the MCH3402 error.

See Code disclaimer information for information pertaining to code examples.

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

voi d *t hreadfunc(void *parm

b
I nt rc = 2;
printf("Inside secondary thread, return address of |ocal variable.\n");
return &c; /* THHS IS AN ERRORl */
/[* AT TH'S PO NT, THE STACK FOR TH S THREAD MAY BE DESTROYED */
}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt rc=1;
voi d *st at us;

printf("Enter Testcase - %\n", argv[0]);

printf("Create thread that returns status incorrectly\n");
rc = pthread create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread _create()\n", rc);

printf("Join to thread\n");
rc = pthread_join(thread, &status);
checkResul ts("pthread_join()\n", rc);
printf("Checking results fromthread. Expect MCH3402\n");
/* Monitor for the MCH3402 exception in this range */
#pragma exception_handl er(TestCk, 0, 0, C2 ALL, CTLA HANDLE NO MsG
" MCH3402")
rc = *(int *)status;
#pragma di sabl e_handl er
Test Fai | ed:
printf("Did not get secondary thread results (exception) as expected!\n");
got o Test Conpl et e;

Test Ck: /* Control goes here for an MCH3402 exception */
printf("Got an MCH3402 as expected\n");

Test Conpl et e:

printf("Min conpleted\n");
return rc;

}
Output

Enter Testcase - QPOWEST/ TPJO N7

Create thread that returns status incorrectly

Join to thread

I nsi de secondary thread, return address of |ocal variable.
Checking results fromthread. Expect MCH3402

Got an MCH3402 as expected

Mai n conpl et ed

Top | Pthread APIs | APIs by category

Information on the Pthread APl examples

The API documentation includes example programs for each API. The header file shown below is used for
all of the examples. It should be named check.h (member CHECK infileH inalibrary inthelibrary list).

In most cases, error checking that is contained in the examples causes the program to exit() if any failureis
detected. In some cases, error checking is left out of the examples for brevity. In general, the error checking
that is provided should not be considered compl ete enough for all applications. All return codes from any
system functions should be validated and appropriate action should be taken when failures occur.

The examples are provided "as-is" for demonstration and education purposes only. They do not necessarily
provide or implement an appropriate level of error checking to be used for production code and should not
be used directly for that purpose.

Be sure to see Writing and compiling threaded programs and Running threaded programs for more
information about compiling and running the example programs.

To create the examples, make sure the member CHECK is created in afileH in your library list. Use
CRTCMOD on the name that you download the member to, then use CRTPGM to link the module into a
program object. Alternatively, you can use CRTBNDC to compile and link the program in one step.

When you run the example programs, you must be aware of a reguirement:
The job that runs a threaded program must be specially initialized by the system to support threads.
Currently, several mechanisms allow you to start ajob that is capable of creating multiple kernel threads.
o Usethe OS/400 QShell Interpreter
» Usethe spawn() API.
o Usethe SMJOB CL command.
« Usethe CRTJOBD CL command to create a special job description, then create your job using a
mechanism that will use the job description.

See Running threaded programs for detailed information on these methods.

See Code disclaimer information for information pertaining to code examples.

File check.h used by API examples programs
This example header file must bein the library list when you compile the example programs.

#i f ndef _CHECK H

#define CHECK H

/[* headers used by a majority of the exanple program */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <errno. h>

[* Sinple function to check the return code and exit the program
if the function call failed
*/

static void checkResults(char *string, int rc) {

if (rc) {
printf("Error on : %, rc=%l",
string, rc);
exit (EXIT_FAI LURE);

}

return;

}
#endi f

Top | Pthread APIs | APIs by category

Thread management APIs

Thread management APIs alow a program to manipulate threads. The APIs actually create, destroy and
otherwise manage the active or ended threads within the application. The APIs allow the manipulation of
some of the thread attributes of an active thread.

A program can a so setup or change the characteristics of athread attributes object. The thread attributes
object isused at thread creation time. The new thread is created with the attributes that are specified in the
attributes object. After the thread has been created, the attributes object is no longer required.

Thetable below listsimportant thread attributes, their default values, and all supported values.

| Attribute | Default value | Supported values

detachstate PTHREAD_CREATE_JOINABLE |PTHREAD_CREATE_JOINABLE

PTHREAD_CREATE_DETACHED

schedparam SCHED_OTHER with priority SCHED_OTHER with priority <=

equal to PRIORITY_DEFAULT (0) [PTHREAD_PRIO_MAX and priority
>= PTHREAD_PRIO_MIN

|contentionscope| PTHREAD_SCOPE_SY STEM |PTHREAD_SCOPE_SY STEM

inheritsched PTHREAD_EXPLICIT_SCHED, |[PTHREAD_EXPLICIT_SCHED or

priority equal PTHREAD_INHERIT_SCHED
PRIORITY_DEFAULT (0)

schedpolicy [SCHED_OTHER [SCHED_OTHER

For information about the examples included with the APIs, see the information on the API examples.

The thread management APIs are:

pthread attr_destroy() (Destroy Thread Attributes Object) destroys a thread attributes object and
alows the system to reclaim any resources associated with that thread attributes object.

pthread attr _getdetachstate() (Get Thread Attributes Object Detachstate) returns the detach state
attribute from the thread attributes object specified.

pthread attr getinheritsched() (Get Thread Attribute Object Inherit Scheduling Attributes) returns
the inheritsched attribute from the thread attributes object specified.

pthread attr getschedparam() (Get Thread Attributes Object Scheduling Parameters) returns the
scheduling parameters attribute from the thread attributes object.

pthread attr init() (Initialize Thread Attributes Object) initializes a thread attributes object to the
default thread attributes.

pthread attr setdetachstate() (Set Thread Attributes Object Detachstate) sets the detach state of the
thread attributes object.

pthread attr_setinheritsched() (Set Thread Attribute Inherit Scheduling Attributes) sets the
inheritsched attribute in the thread attributes object specified.

pthread attr setschedparam() (Set Thread Attributes Object Scheduling Parameters) sets the
scheduling parametersin the thread attributes object.

pthread clear exit np() (Clear Exit Status of Thread) clears the exit status of the thread.

pthread create() (Create Thread) creates a thread with the specified attributes and runsthe C
function start_routine in the thread with the single pointer argument specified.

pthread delay np() (Delay Thread for Requested Interval) causes the calling thread to delay for the

deltatime specified.
pthread detach() (Detach Thread) indicates that system resources for the specified thread should be
reclaimed when the thread ends.

pthread equal() (Compare Two Threads) compares two Pthread handles for equality.

pthread _exit() (Terminate Calling Thread) terminates the calling thread, making its exit status
available to any waiting threads.

pthread extendedjoin_np() (Wait for Thread with Extended Options) waits for a thread to
terminate, optionally detaches the thread, then returns the threads exit status.

pthread getconcurrency() (Get Process Concurrency Level) retrieves the current concurrency level
for the process.

pthread getpthreadoption_np() (Get Pthread Run-Time Option Data) gets option data from the
pthread run-time for the process.

pthread getschedparam() (Get Thread Scheduling Parameters) retrieves the scheduling parameters
of the thread.

pthread getthreadid np() (Retrieve Unique ID for Calling Thread) retrieves the unique integral

identifier that can be used to identify the calling thread in some context for application debugging
or tracing support.

pthread getunique np() (Retrieve aUnique ID for Target Thread) retrieves the unique integral

identifier that can be used to identify the thread in some context for application debugging or
tracing support.

pthread is initialthread np() (Check if Running in the Initial Thread) returns true or false,
indicating if the current thread is theinitial thread of the process.

pthread is multithreaded np() (Check the Current Number of Threads) returnstrue or false,
indicating whether the current process has more than one thread.

pthread join() (Wait for and Detach Thread) waits for athread to terminate, detaches the thread,
then returns the threads exit status.

pthread join np() (Wait for Thread to End) waits for athread to terminate, then returns the threads

exit status, while leaving the data structures of the thread available for alater cal to pthread_join(),
pthread_join_np(), pthread_detach(), or pthread_extendedjoin_np()

pthread once() (Perform One-Time Initialization) performs one time initialization based on a
specific once_control variable.

pthread_self() (Get Pthread Handle) returns the Pthread handle of the calling thread.

pthread setconcurrency() (Set Process Concurrency Level) sets the current concurrency level for
the process.

pthread setpthreadoption np() (Set Pthread Run-Time Option Data) sets option datain the pthread
run-time for the process.

pthread setschedparam() (Set Target Thread Scheduling Parameters) sets the scheduling
parameters of the target thread.

pthread trace init_np() (Initialize or Reinitialize Pthread Tracing) initializes or refreshes both the
Pthreads library trace level and the application trace level.

PTHREAD TRACE NP() (Execute Code Based on Trace Level (Macro)) is used to execute
optional code based on the current application trace level.

sched vyield() (Yield Processor to Another Thread) yields the processor from the currently
executing thread to another ready-to-run, active thread of equal or higher priority.

Top | Pthread APIs | APIs by category

Thread specific storage APIs

Thread specific storage is used by your threaded application when you need global storage that is “private'
to athread. The storageis allocated and stored by the thread, and can be associated with a destructor
function. When the thread ends using one of the pthread mechanisms, the destructor function runs and
cleans up the thread local storage. The thread specific storage can replace global storage, because any
function in athread that requests the thread specific storage will get the same value. Functions in another
thread that request the thread specific storage will get the thread specific storage owned by the thread that
they are called in.

For information about the examples included with the APIs, see the information on the APl examples.

The thread specific storage APIs are:

« pthread getspecific() (Get Thread Local Storage Value by Key) retrieves the thread local storage
value associated with the key. pthread_getspecific() may be called from a data destructor.

« pthread key create() (Create Thread Local Storage Key) creates athread local storage key for the
process and associ ates the destructor function with that key.

« pthread key delete() (Delete Thread Local Storage Key) deletes a process-wide thread local
storage key.

« pthread setspecific() (Set Thread Local Storage by Key) setsthe thread local storage value
associated with akey.

Pthread APIs | APIs by category

Thread cancellation APIs

Y ou can use thread cancellation APIsto cause athread to end prematurely, or to aid in cleanup when a
thread is ended (either prematurely or normally). The thread cancellation APIswork together to provide a
mechanism for thread cleanup and protecting threaded resources from cancellation. The thread cancellation
APIsonly provide clean up and protection in relationship to other pthread APIs. Y ou cannot protect from or
clean up when athread ends as aresult of your process ending (normally or abnormally), or when the
thread ends by some mechanism outside of the pthread API set. Some examples of mechanisms that can
terminate athread that are outside o the pthread API set are the ENDJOB *IMMED CL command, a thread
ending from an unhandled exception, or the operator terminating a thread using the work with threads
screen (Option 20 from the WRKJOB display).

The table below lists the thread cancel ability states, the cancellation types, and the cancellation action.
Cancelahility consists of three separate states (disabled, deferred, asynchronous) that can be represented by
two boolean values. The default cancelability state is deferred.

|Cancelability | Cancelability State | Cancelability Type

|disab|ed |PTH READ_CANCEL_DISABLE |PTH READ_CANCEL_DEFERRED
|disab|ed |PTH READ_CANCEL_DISABLE |PTH READ_CANCEL_ASYNCHRONOUS
|deferred |PTHREAD_CANCEL_ENABLE |PTHREAD_CANCEL_DEFERRED
|asynchronous |PTH READ_CANCEL_ENABLE |PTH READ_CANCEL_ASYNCHRONOUS

For information about the examples included with the APIs, see the information on the API examples.

The thread cancellation APIs are:
« pthread cancel() (Cancel Thread) requests cancellation of the target thread.
« pthread cleanup peek np() (Copy Cleanup Handler from Cancellation Cleanup Stack) returns a
copy of the cleanup handler entry that the next call to pthread cleanup_pop() would pop.

o pthread cleanup pop() (Pop Cleanup Handler off of Cancellation Cleanup Stack) pops the last
cleanup handler from the cancellation cleanup stack.

« pthread cleanup push() (Push Cleanup Handler onto Cancellation Cleanup Stack) pushes a
cancellation cleanup routine onto the calling threads cancellation cleanup stack.

« pthread getcancelstate np() (Get Cancel State) gets the current cancel state of the thread.

« pthread setcancelstate() (Set Cancel State) sets the cancel state to one of
PTHREAD_CANCEL_ENABLE or PTHREAD CANCEL_DISABLE and returns the old cancel
state into the location specified by oldstate (if oldstate isnon-NULL).

« pthread setcanceltype() (Set Cancel Type) sets the cancel type to one of
PTHREAD_CANCEL_DEFERRED or PTHREAD CANCEL_ASYNCHRONOUS and returns
the old cancel type into the location specified by oldtype (if oldtypeis non-NULL)

« pthread testcancel() (Create Cancellation Point) creates a cancellation point in the calling thread.

o pthread test exit np() (Test Thread Exit Status) returns the current state of the thread along with
its exit status.

Top | Pthread APIs| APIs by category

Mutex synchronization APIs

Thread synchronization is required whenever two threads share a resource or need to be aware of what the other
threads in a process are doing. Mutexes are the most simple and primitive object used for the co-operative
mutual exclusion required to share and protect resources. One thread owns a mutex by locking it successfully,
when another thread tries to lock the mutex, that thread will not be allowed to successfully lock the mutex until
the owner unlocks it. The mutex support provides different types and behaviors for mutexes that can be tuned to
your application requirements.

The table below listsimportant mutex attributes, their default values, and all supported values.

|Attribute| Default value | Supported values

pshared [PTHREAD_PROCESS PRIVATE PTHREAD_PROCESS PRIVATE or
PTHREAD_PROCESS SHARED

kind (non [P THREAD_MUTEX_NONRECURSIVE_NP [PTHREAD_MUTEX_NONRECURSIVE_NP

portable) or PTHREAD_MUTEX_RECURSIVE_NP

name PTHREAD_DEFAULT_MUTEX_NAME_NP [Any namethat is 15 characters or less. If not

(non "QPOWMTX UNNAMED" terminated by a null character, nameis truncated

portable) to 15 characters.

type PTHREAD MUTEX DEFAULT PTHREAD MUTEX DEFAULT or
(PTHREAD_MUTEX_NORMAL) PTHREAD_MUTEX_NORMAL or

PTHREAD_MUTEX_RECURSIVE or
PTHREAD_MUTEX_ERRORCHECK or
PTHREAD_MUTEX_OWNERTERM_NP

The
PTHREAD_MUTEX_OWNERTERM_NP
attribute value is non portable.

For information about the examples included with the APIs, see the information on the APl examples.

The Mutex synchronization APIs are:

« pthread lock global np() (Lock Global Mutex) locks a global mutex provided by the pthreads
run-time.

« pthread mutexattr destroy() (Destroy Mutex Attributes Object) destroys a mutex attributes object and
alows the system to reclaim any resources associated with that mutex attributes object.

» pthread mutexattr getkind np() (Get Mutex Kind Attribute) retrieves the kind attribute from the mutex
attributes object specified by attr.

« pthread mutexattr_getname np() (Get Name from Mutex Attributes Object) retrieves the name
attribute associated with the mutex attribute specified by attr.

« pthread mutexattr getpshared() (Get Process Shared Attribute from Mutex Attributes Object) retrieves
the current setting of the process shared attribute from the mutex attributes object.

« pthread mutexattr gettype() (Get Mutex Type Attribute) retrieves the type attribute from the mutex
attributes object specified by attr.

« pthread mutexattr_init() (Initialize Mutex Attributes Object) initializes the mutex attributes object
referenced by attr to the default attributes.

« pthread mutexattr setkind np() (Get Mutex Kind Attribute) sets the kind attribute in the mutex
attributes object specified by attr.

« pthread mutexattr setname np() (Set Name in Mutex Attributes Object) changes the name attribute
associated with the mutex attribute specified by attr.

pthread mutexattr setpshared() (Set Process Shared Attribute in Mutex Attributes Object) setsthe
current pshared attribute for the mutex attributes object.

pthread mutexattr _settype() (Set Mutex Type Attribute) sets the type attribute in the mutex attributes
object specified by attr.
pthread mutex_destroy() (Destroy Mutex) destroys the named mutex.

pthread mutex_init() (Initialize Mutex) initializes a mutex with the specified attributes for use.

pthread mutex lock() (Lock Mutex) acquires ownership of the mutex specified.

pthread mutex timedlock np() (Lock Mutex with Time-Out) acquires ownership of the mutex
specified.

pthread mutex_trylock() (Lock Mutex with No Wait) attempts to acquire ownership of the mutex
specified without blocking the calling thread.

pthread _mutex_unlock() (Unlock Mutex) unlocks the mutex specified.

pthread set mutexattr default np() (Set Default Mutex Attributes Object Kind Attribute) sets the kind
attribute in the default mutex attribute object.

pthread unlock globa np() (Unlock Global Mutex) unlocks a global mutex provided by the pthreads
run-time.

Top | Pthread APIs | APIs by category

Condition variable synchronization APIs

Condition variables are synchronization objects that allow threads to wait for certain events (conditions) to
occur. Condition variables are slightly more complex than mutexes, and the correct use of condition
variables requires the thread to co-operatively use a specific protocol in order to ensure safe and consi stent
serialization. The protocol for using condition variables includes a mutex, a boolean predicate (true/false
expression) and the condition variable itself. The threads that are cooperating using condition variables can
wait for a condition to occur, or can wake up other threads that are waiting for a condition.

The table below listsimportant conditional variables attributes, their default values, and al supported
values.

|Attribute| Default value | Supported values

pshared |PTHREAD_PROCESS PRIVATE [PTHREAD_PROCESS PRIVATE
or
PTHREAD_PROCESS SHARED

For information about the examples included with the APIs, see the information on the API examples.

The Condition variable synchronization APIs are:

« pthread condattr destroy() (Destroy Condition Variable Attributes Object) destroys the condition

variable attributes object specified by attr, and indicates that any storage that the system has
associated with the object be de-allocated.

« pthread condattr getpshared() (Get Process Shared Attribute from Condition Attributes Object)
retrieves the current setting of the process shared attribute from the condition attributes object.

« pthread condattr_init() (Initialize Condition Variable Attributes Object) initializes the condition
variable attributes object specified by attr to the default attributes.

« pthread condattr setpshared() (Set Process Shared Attribute in Condition Attributes Object) sets
the current pshared attribute for the condition attributes object.

« pthread cond broadcast() (Broadcast Condition to All Waiting Threads) wakes up all threads that
are currently waiting on the condition variable specified by cond.

« pthread cond destroy() (Destroy Condition Variable) destroys the condition variable specified by
cond.

« pthread cond init() (Initialize Condition Variable) initializes a condition variable object with the
specified attributes for use.

« pthread cond signal() (Signal Condition to One Waiting Thread) wakes up at least one thread that
is currently waiting on the condition variable specified by cond.

« pthread cond timedwait() (Timed Wait for Condition) blocks the calling thread, waiting for the
condition specified by cond to be signaled or broadcast to.

« pthread cond wait() (Wait for Condition) blocks the calling thread, waiting for the condition
specified by cond to be signaled or broadcast to.

» pthread get expiration np() (Get Condition Expiration Time from Relative Time) computes an
absolute time by adding the specified relative time (delta) to the current system time.

Top | Pthread APIs| APIs by category

Read/write lock synchronization APIs

Read/write locks help you build more complex applications without using mutexes and condition variables
to provide your own read/write locking primitive object. Read/Write locks provide a synchronization
mechanism that alow threads in an application to more accurately reflect the type of access to a shared
resource that they require.

Many threads can acquire the same read/write lock if they acquire a shared read lock on the read/write lock
object. Only one thread can acquire an exclusive write lock on aread/write lock object. When an exclusive
writelock is held, no other threads are allowed to hold any lock.

Thetable below listsimportant read/write lock attributes, their default values, and all supported values.

|Attribute| Default value | Supported values

pshared |PTHREAD_PROCESS PRIVATE [PTHREAD_PROCESS PRIVATE
or
PTHREAD_PROCESS SHARED

For information about the examples included with the APIs, see the information on the APl examples.

The Read/write lock synchronization APIs are:

« pthread rwlockattr destroy() (Destroy Read/Write Lock Attribute) destroys a read/write lock

attributes object and allows the systems to reclaim any resources associated with that read/write
lock attributes object.

« pthread rwlockattr getpshared() (Get Pshared Read/Write Lock Attribute) retrieves the current
setting of the process shared attribute from the read/write lock attributes object.

« pthread rwlockattr init() (Initialize Read/Write Lock Attribute) initializes the read/write lock
attributes object referred to by attr to the default attributes.

o pthread rwlockattr setpshared() (Set Pshared Read/Write Lock Attribute) sets the current pshared
attribute for the read/write attributes object.
« pthread rwlock destroy() (Destroy Read/Write Lock) destroys the named read/write lock.

» pthread rwlock_init() (Initialize Read/Write Lock) initializes a new read/write lock with the
specified attributes for use.

« pthread rwlock rdlock() (Get Shared Read Lock) attempts to acquire a shared read lock on the
read/write lock specified by rwlock.

« pthread rwlock timedrdiock np() (Get Shared Read Lock with Time-Out) attempts to acquire a
shared read lock on the read/write lock specified by rwlock.

« pthread rwlock timedwrlock np() (Get Exclusive Write Lock with Time-Out) attempts to acquire
an exclusive write lock on the read/write lock specified by rwlock.

o pthread rwlock tryrdiock() (Get Shared Read Lock with No Wait) attempts to acquire a shared
read lock on the read/write lock specified by rwlock.

« pthread rwlock trywrlock() (Get Exclusive Write Lock with No Wait) attempts to acquire an
exclusive write lock on the read/write lock specified by rwlock.

» pthread rwlock_unlock() (Unlock Exclusive Write or Shared Read L ock) unlocks a shared read or
exclusive write lock held by the calling thread.

« pthread rwlock wrlock() (Get Exclusive Write Lock) attempts to acquire an exclusive write lock
on the read/write lock specified by rwlock.

Top | Pthread APIs | APIs by category

Signals APIs

Signal APIs can be used to manipulate signalsin athreaded process. Signals can be sent to individual
threads, the signal mask of athread can be changed. When a signal is sent to athread, the actions associated
with the signal (such as stopping, continuing or terminating) never affect only the thread, all signal actions
are defined to affect the process. When a signal handler is called, it is called in the thread that the signal
was delivered to.

Using signals correctly in a multithreaded process can be difficult. The recommended way to handle signals
in amultithreaded processis to mask off all signasin all threads, then use the signals sigwait() APl in a
single thread to wait for any signal to be delivered to the process.

For information about the examples included with the APIs, see the information on the API examples.

The Signals APIs are:

« pthread kill() (Send Signal to Thread) requests that the signal sig be delivered to the specified
thread.

o pthread sigmask() (Set or Get Signal Mask) examines or modifies the signal blocking mask for the
current thread.

« pthread signal to _cancel np() (Convert Signalsto Cancel Requests) causes a pthread cancel() to
be delivered to the target thread when the first signal specified in set arrives.

Pthread APIs | APIs by category

pthread attr _destroy()--Destroy Thread
Attributes Object

Syntax:

#i ncl ude <pt hread. h>

int pthread attr_destroy(pthread attr_t *attr);
Thr eadsafe: Yes

Si gnal Safe: Yes

The pthread_attr_destroy() function destroys a thread attributes object and allows the system to reclaim
any resources associated with that thread attributes object. This does not have an effect on any threads
created using this thread attributes object.

Authorities and Locks

None.

Parameters

attr
(Input) The address of the thread attributes object to be destroyed

Return Value

0
pthread_attr_destroy() was successful.
value
pthread_attr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
Invalid Argument Specified

Related Information

o The <pthread.h> header file. See Header files for Pthread functions.
« pthread attr init()--Initialize Thread Attributes Object

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

void *threadfunc(void *parm

{
printf("Thread created using an default attributes\n");
return NULL;

}

int main(int argc, char **argv)

{
pt hread t t hr ead,;
i nt rc=0;
pthread attr t pt a;
printf("Enter Testcase - %\n", argv[O0]);
printf("Create a thread attributes object\n");
rc = pthread attr _init(&pta);
checkResul ts("pthread_attr_init()\n", rc);
printf("Create a thread using the attributes object\n");
rc = pthread create(& hread, &pta, threadfunc, NULL);
checkResul ts("pthread _create()\n", rc);
printf("Create a thread using the default attributes\n");
rc = pthread create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread _create()\n", rc);
printf("Destroy thread attri butes object\n");
rc = pthread attr_destroy(&pta);
checkResul ts("pthread_attr_destroy()\n", rc);
/* sleep() is not a very robust way to wait for the thread */
sl eep(5);
printf("Main conmpleted\in");
return O;

}

Output:

Enter Testcase - QPOWEST/ TAINI O
Create a thread attributes object
Create a thread using the attributes object

Create a thread using the default attributes
Destroy thread attributes object

Thread created using an default attributes
Thread created using an default attributes
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread attr getdetachstate()--Get Thread
Attributes Object Detachstate

Syntax:

#i ncl ude <pt hread. h>
int pthread attr_getdetachstate(const pthread attr_t *attr,
int *detachstate);

Threadsafe: Yes
Signal Safe: Yes

The pthread_attr_getdetachstate() function returns the detach state attribute from the thread attributes
object specified. The detach state of athread indicates whether the system is allowed to free thread
resources when a thread terminates.

The detach state specifies one of PTHREAD _CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. The default detach state (DEFAULT_DETACHSTATE) is
PTHREAD_CREATE_JOINABLE.

Authorities and Locks

None.

Parameters

attr
(Input) The address of the thread attributes object
detachstate
(Output) The address of the variable to contain the returned detach state

Return Value

0
pthread_attr_getdetachstate() was successful.
value
pthread_attr_getdetachstate() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getdetachstate() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

» pthread attr setdetachstate()--Set Thread Attributes Object Detachstate
« pthread detach()--Detach Thread

« pthread join()--Wait for and Detach Thread

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

int main(int argc, char **argv)

{
pt hread_t t hr ead;
i nt r c=0;
pthread_attr _t pt a;
i nt st at e;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a thread attri butes object\n");
rc = pthread_attr_init(&pta);
checkResul ts("pthread_attr_init()\n", rc);

printf("Get detach state\n");
rc = pthread_attr_getdetachstate(&pta, &state);
checkResul ts("pthread_attr_getdetachstate()\n", rc);

printf("The thread attributes object indicates: ");
switch (state) {
case PTHREAD_ CREATE_ DETACHED:
printf("DETACHED\ n");
br eak;
case PTHREAD CREATE _JO NABLE:
printf("JO NABLE\n");
br eak;

}

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResul ts("pthread attr_destroy()\n", rc);

printf("Miin conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TAGDSO

Create a thread attributes object

Get detach state

The thread attributes object indicates: JO NABLE
Destroy thread attributes object

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread_attr _getinheritsched()--Get Thread
Attribute Object Inherit Scheduling Attributes

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread attr_getinheritsched(pthread_attr_t *attr,
int *inheritsched);

Threadsafe: Yes
Signal Safe: Yes

The pthread_attr_getinheritsched() function returns the inheritsched attribute from the thread attributes
object specified. The inheritsched attribute isone of PTHREAD_EXPLICIT_SCHED or
PTHREAD_INHERIT_SCHED. The default inheritsched attributeis PTHREAD_EXPLICIT_SCHED,
with adefault priority of zero.

Use the inheritsched parameter to inherit or explicitly specify the scheduling attributes when creating new
threads.

Authorities and Locks

None.

Parameters

attr
(Input) Address of thread creation attributes
inheritsched
(Output) Address of the variable to receive the inheritsched attribute

Return Value

0
pthread_attr_getinheritsched() was successful.
value
pthread_attr_getinheritsched() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getinheritsched() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread attr setinheritsched()--Set Thread Attribute I nherit Scheduling Attributes

Example

#define _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude <except. h>

#i ncl ude "check. h"

voi d show nheritSched(pthread_attr_t *attr) {
int rc;
int inheritsched;
rc = pthread_attr_getinheritsched(attr, & nheritsched);
checkResul ts("pthread_attr_getinheritsched()\n", rc);

swi tch(inheritsched) {

case PTHREAD EXPLI Cl T_SCHED:
printf("Inherit Sched - PTHREAD EXPLI CI T_SCHED\n");
br eak;

case PTHREAD | NHERI T_SCHED:
printf("Inherit Sched - PTHREAD_| NHERI T_SCHED\ n");

br eak;
defaul t:
printf("Invalid inheritsched attribute!\n");
exit(1);
}
return;
}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt r c=0;
pthread_attr _t attr;
char c;
voi d *st at us;

printf("Enter Testcase - %\n", argv[O0]);

rc = pthread_attr_init(&ttr);
checkResul ts("pthread attr_init()\n", rc);

showl nherit Sched(&attr);

rc = pthread_attr_setinheritsched(&attr, PTHREAD | NHERI T_SCHED) ;
checkResul ts("pthread attr_setinheritsched()\n", rc);

showl nherit Sched(&attr);

rc = pthread_attr_destroy(&attr);
checkResul ts("pthread attr_destroy()\n", rc);

printf("Min conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPA SO

I nherit Sched - PTHREAD EXPLI CI T_SCHED
I nherit Sched - PTHREAD | NHERI T _SCHED
Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread attr _getschedparam()--Get Thread
Attributes Object Scheduling Parameters

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread attr_getschedparan{const pthread attr_t *attr,
struct sched_param *param ;

Threadsafe: Yes
Signal Safe: Yes

The pthread_attr_getschedparam() function returns the scheduling parameters attribute from the thread
attributes object. The default 0S/400 scheduling policy is SCHED OTHER and cannot be changed to
another scheduling policy.

The sched_policy field of the param parameter is always returned as SCHED_OTHER. The sched_priority
field of the param structure is set to the priority of the target thread at the time of the call.

Note: Do not use pthread_setschedparam() to set the priority of athread if you also use another
mechanism (outside of the pthread APIs) to set the priority of athread. If you do,
pthread_getschedparam() returns only the information that was set by the pthread interfaces.
(pthread_setschedparam() or modification of the thread attribute using pthread_attr_setschedparam()).

Authorities and Locks

None.

Parameters

attr
(Input) The address of the thread attributes object
param
(Output) The address of the variable to contain the returned scheduling parameters

Return Value

0
pthread_attr_getschedparam() was successful.
value
pthread_attr _getschedparam() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getschedparam() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.
[EINVAL]

The value specified for the argument is not correct.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
« The <sched.h> header file. See Header files for Pthread functions.

o pthread attr setschedparam()--Set Thread Attributes Object Scheduling Parameters.

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

int main(int argc, char **argv)

{

pt hread_t t hr ead,;
i nt r c=0;
pthread attr t pt a;
struct sched_param param

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a thread attributes object\n");
rc = pthread attr_init(&pta);
checkResul ts("pthread_attr_init()\n", rc);

printf("Get scheduling paranmeters\n");
rc = pthread _attr_get schedparam(&pta, ¶m;
checkResul ts("pthread_attr_getschedparan()\n", rc);

printf("The thread attributes object indicates: ");
printf("priority %\ n", param sched_priority);

printf("Destroy thread attri butes object\n");
rc = pthread attr_destroy(&pta);
checkResul ts("pthread_attr_destroy()\n", rc);

printf("Min conpleted\n");
return O;

}
Output:

Enter Testcase - QPOWEST/ TAGSPO

Create a thread attributes object

Get schedul i ng paraneters

The thread attributes object indicates: priority O
Destroy thread attributes object

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread_attr_init()--Initialize Thread Attributes
Object

Syntax:

#i ncl ude <pt hread. h>
int pthread attr_init(pthread attr_t *attr);

Threadsafe: Yes
Signal Safe: Yes

The pthread_attr_init() function initializes a thread attributes object to the default thread attributes. The
thread attributes object can be used in a call to pthread_create() to specify attributes of the new thread.

Authorities and Locks

None.

Parameters

attr
(Input/Output) The address of the thread attributes object to be initialized

Return Value

0
pthread_attr_init() was successful.
value
pthread_attr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

o The <pthread.h> header file. See Header files for Pthread functions.
o pthread attr destroy()--Destroy Thread Attributes Object
o pthread create()--Create Thread

Example

#define MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

void *threadfunc(void *parn

printf("Thread created using an default attributes\n");
return NULL;

}

int main(int argc, char **argv)

{
pt hread_t t hr ead;
i nt r c=0;
pthread_attr _t pt a;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a thread attri butes object\n");
rc = pthread_attr_init(&pta);
checkResul ts("pthread_attr_init()\n", rc);

printf("Create a thread using the attributes object\n");
rc = pthread_create(& hread, &pta, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);

printf("Create a thread using the default attributes\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResul ts("pthread_attr_destroy()\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(5);

printf("Min conmpleted\n");
return O;

}

Output:
Enter Testcase - QPOWEST/ TAINI O

Create a thread attributes object

Create a thread using the attributes object
Create a thread using the default attributes
Destroy thread attributes object

Thread created using an default attributes
Thread created using an default attributes
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread attr setdetachstate()--Set Thread
Attributes Object Detachstate

Syntax:

#i ncl ude <pt hread. h>
int pthread attr_setdetachstate(pthread attr t *attr, int detachstate);

Threadsafe: Yes
Signal Safe: Yes

The pthread_attr_setdetachstate() function sets the detach state of the thread attributes object. The detach
state of athread indicates whether the system is allowed to free thread resources (including but not limited
to thread exit status) when the thread terminates. Some resources (like automatic storage) are always freed
when athread ends.

The detach state specifies one of PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. The default detach state (DEFAULT_DETACHSTATE) is
PTHREAD_CREATE_JOINABLE.

Authorities and Locks

None.

Parameters

attr
(Input) The address of the thread attributes object.
detachstate

(Output) The detach state, one of PTHREAD_CREATE_JOINABLE or
PTHREAD_CREATE_DETACHED.

Return Value

0
pthread_attr_setdetachstate() was successful.
value
pthread_attr_setdetachstate() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_attr_setdetachstate() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.

o pthread attr getdetachstate()--Get Thread Attributes Object Detachstate

o pthread detach()--Detach Thread
o pthread join()--Wait for and Detach Thread

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdi o. h>

#i ncl ude "check. h"

voi d showDet achState(pthread attr_t *a)

{

}

i nt r c=0;
i nt st at e=0;

printf("Get detach state\n");
rc = pthread_attr_getdetachstate(a, &state);
checkResul ts("pthread_attr_getdetachstate()\n",

printf("The thread attributes object indicates:
switch (state) {
case PTHREAD CREATE_DETACHED:
printf("DETACHED\ n");
br eak;
case PTHREAD CREATE_JO NABLE:
printf("JO NABLE\n");
br eak;

}

return;

int main(int argc, char **argv)

pt hread _t t hr ead;
i nt r c=0;
pthread attr _t pt a;

rc);

")

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a default thread attributes object\n");
rc = pthread_attr_init(&pta);

checkResul ts("pthread_attr_init()\n", rc);
showDet achSt at e(&pt a) ;

printf("Set the detach state\n");
rc = pthread _attr_setdetachstate(&pta, PTHREAD CREATE DETACHED) ;
checkResul ts("pthread_attr_setdetachstate()\n", rc);

showDet achSt at e(&pt a) ;

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResul ts("pthread_attr _destroy()\n", rc);

printf("Min conpleted\in");
return O;

}

Output:

Enter Testcase - QPOWEST/ TASDSO

Create a default thread attributes object

Get detach state

The thread attributes object indicates: JO NABLE
Set the detach state

Get detach state

The thread attributes object indicates: DETACHED
Destroy thread attributes object

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread_attr_setinheritsched()--Set Thread
Attribute Inherit Scheduling Attributes

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread attr_setinheritsched(pthread_attr_t *attr,
int *inheritsched);

Threadsafe: Yes
Signal Safe: Yes

The pthread_attr_setinheritsched() function sets the inheritsched attribute in the thread attributes object
specified. The inheritsched attribute should be one of PTHREAD_EXPLICIT_SCHED or
PTHREAD_INHERIT_SCHED. The default inheritsched attributeis PTHREAD_EXPLICIT_SCHED,
with adefault priority of zero.

Use the inheritsched attribute to inherit or explicitly specify the scheduling attributes when creating new
threads.

Authorities and Locks

None.

Parameters

attr
(Input) Address of thread creation attributes
inheritsched
(Output) Address of the variable to receive the inheritsched attribute

Return Value

0
pthread_attr_setinheritsched() was successful
value
pthread_attr_setinheritsched() was not successful. valueis set to indicate the error condition

Error Conditions

If pthread_attr_setinheritsched() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
« pthread attr getinheritsched()--Get Thread Attribute Object Inherit Scheduling Attributes
« pthread attr getschedparam()--Get Thread Attributes Object Scheduling Parameters

Example

#define _MULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdio. h>

#i ncl ude <except. h>

#i ncl ude "check. h"

voi d show nheritSched(pthread_attr_t *attr) {
int rc;
i nt inheritsched;
rc = pthread_attr_getinheritsched(attr, & nheritsched);
checkResul ts("pthread_attr_getinheritsched()\n", rc);

swi tch(inheritsched) {

case PTHREAD _EXPLI CI T_SCHED:
printf("Inherit Sched - PTHREAD_EXPLI Cl T_SCHED\ n");
br eak;

case PTHREAD_ | NHERI T_SCHED:
printf("Inherit Sched - PTHREAD_I NHERI T_SCHED\ n");

br eak;
defaul t:
printf("Invalid inheritsched attribute!\n");
exit(l);
return;
}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt rc=0;
pthread_attr _t attr;
char C;

voi d *stat us;

printf("Enter Testcase - %\n", argv[O0]);

rc = pthread_attr_init(&ttr);
checkResul ts("pthread attr_init()\n", rc);

showl nherit Sched(&attr);

rc = pthread_attr_setinheritsched(&attr, PTHREAD | NHERI T_SCHED) ;
checkResul ts("pthread attr_setinheritsched()\n", rc);

showl nherit Sched(&attr);

rc = pthread_attr_destroy(&attr);
checkResul ts("pthread attr_destroy()\n", rc);

printf("Miin conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPSI SO

I nherit Sched - PTHREAD EXPLI CI T_SCHED
I nherit Sched - PTHREAD | NHERI T _SCHED
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread attr setschedparam()--Set Thread
Attributes Object Scheduling Parameters

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>
int pthread attr_setschedparan(pthread _attr_t *attr,
const struct sched_param *param;

Threadsafe: Yes
Signal Safe: Yes

The pthread_attr_setschedparam() function sets the scheduling parameters in the thread attributes object.
The supported OS/400 scheduling policy is SCHED OTHER. Attempting to set the sched_policy field of
the param parameter other than SCHED _OTHER causesthe EINVAL error. The sched_priority field of
the param parameter must range from PRIORITY_MIN to PRIORITY_MAX or the ENOTSUP error
occurs.

All reserved fields in the scheduling parameters structure must be binary zero or the EINVAL error occurs.

Note: Do not use pthread_setschedparam() to set the priority of athread if you also use another
mechanism (outside of the pthread APIs) to set the priority of athread. If you do,
pthread_getschedparam() returns only that information that was set by the pthread interfaces
(pthread_setschedparam() or modification of the thread attribute using pthread_attr_setschedparam()).

Authorities and Locks

None.

Parameters

attr
(Input/Output) The address of the thread attributes object
param
(Input) Address of the variable containing the scheduling parameters

Return Value

0
pthread_attr_setschedparam() was successful.
value
pthread_attr _setschedparam() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_setschedparam() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[ENOTSUP]

The vaue specified for the priority argument is not supported.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.
« The<sched.h> header file. See Header files for Pthread functions.
o pthread attr getschedparam()--Get Thread Attributes Object Scheduling Parameters

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

#define BUWP_PRIO 1
static int thePriority = 0;

voi d showSchedPar an(pthread _attr_t *a)
{

i nt rc=0;

struct sched_param param

printf("Get scheduling paraneters\n");
rc = pthread_attr_getschedparama, ¶n;
checkResul ts("pthread_attr_getschedparam()\n", rc);

printf("The thread attributes object indicates priority: %\ n",
param sched_priority);

thePriority = param sched priority;

return;

}

int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt r c=0;

pthread attr t pt a;
struct sched_param par am

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a thread attri butes object\n");
rc = pthread_attr_init(&pta);
checkResul ts("pthread attr_init()\n", rc);

showSchedPar an(&pt a) ;

menset (¶m 0, sizeof (paran));

if (thePriority + BUW_PRI O <= PRI ORI TY_VMAX_NP) {
param sched priority = thePriority + BUVWP_PRI O

}

printf("Setting scheduling paraneters\n");
rc = pthread_attr_setschedparam &pta, ¶m;
checkResul ts("pthread attr_setschedparam()\n", rc);

showSchedPar an(&pt a) ;

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResul ts("pthread attr_destroy()\n", rc);

printf("Min conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TASSPO

Create a thread attributes object

Get schedul i ng paraneters

The thread attributes object indicates priority: 0O
Setting scheduling paraneters

Get schedul i ng paraneters

The thread attributes object indicates priority: O
Destroy thread attributes object

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread _cancel()--Cancel Thread

Syntax:

#i ncl ude <pt hread. h>
int pthread cancel (pthread t thread);

Threadsafe: Yes
Signal Safe: No

The pthread_cancel() function requests cancellation of the target thread. The target thread is cancelled,
based on its ability to be cancelled.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes the
cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the
thread changes the cancelability, calls afunction that is a cancellation point, or cals pthread_testcancel(),
thus creating a cancellation point. When cancelability is asynchronous, all cancels are acted upon
immediately, interrupting the thread with its processing.

Note: Y ou should not use asynchronous thread cancellation through the
PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype() in your application. See
the common user errors section of this document for more information.
The following functions are cancellation points:

« pthread _cond_timedwait()

« pthread_cond_wait()

o pthread join()

« pthread join_np()

« pthread extendedjoin_np()

« pthread testcancel()

After action is taken for the target thread to be cancelled, the following events occur in that thread.

1. Thethread calls cancellation cleanup handlers with cancellation disabled until the last cancellation
cleanup handler returns. The handlersare called in Last In, First Out (LIFO) order.

2. Datadestructors are called for any thread-specific data entries that have anon NULL value for both
the value and the destructor.

3. When the last cancellation cleanup handler returns, the thread is terminated and a status of
PTHREAD_CANCELED is made available to any threads joining the target.

4. Any mutexesthat are held by athread that terminates, are abandoned and are no longer valid.
Subsequent calls by other threads that attempt to acquire the abandoned mutex
(pthread_mutex_lock() or pthread_mutex_trylock()) fail withan EOWNERTERM error.

5. Application visible process resources are not released. Thisincludes but is not limited to mutexes,
file descriptors, or any process level cleanup actions.

A cancellation cleanup handler should not exit by longjmp() or siglongjmp().

In the OS/400 implementation of threads, the initial thread is special. Termination of theinitial thread by
pthread_exit(), pthread_cancel() or any other thread termination mechanism terminates the entire process.

Authorities and Locks

None.

Parameters

thread
(Input) Pthread handle to the target thread

Return Value

0
pthread_cancel() was successful.
value
pthread_cancel () was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cancel () was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.
[ESRCH]
No thread could be found that matched the thread ID specified.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
o pthread cleanup pop()--Pop Cleanup Handler off of Cancellation Cleanup Stack

» pthread cleanup push()--Push Cleanup Handler onto Cancellation Cleanup Stack
» pthread exit()--Terminate Calling Thread
» pthread setcancelstate()--Set Cancel State
» pthread setcanceltype()--Set Cancel Type

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdi o. h>
#i ncl ude "check. h"

void *threadfunc(void *parm

{

printf("Entered secondary thread\n");
while (1) {

printf("Secondary thread is | ooping\n");
pt hread_t estcancel ();

sl eep(1);
return NULL;
}
int main(int argc, char **argv)
{ pt hread_t t hr ead,;

i nt rc=0;
printf("Entering testcase\n");

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");
rc = pthread create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread_create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(2);

printf("Cancel the thread\n");
rc = pthread _cancel (t hread);
checkResul t s(" pt hread_cancel ()\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(3);

printf("Main conmpleted\in");

return O;

}
Output:

Entering testcase

Create thread using the NULL attributes
Ent ered secondary thread

Secondary thread is |ooping

Secondary thread is | ooping

Cancel the thread

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread cleanup_peek _np()--Copy Cleanup
Handler from Cancellation Cleanup Stack

Syntax:

#i ncl ude <pt hread. h>
voi d pthread cl eanup_peek _np(pthread _cleanup _entry np_t *entry);

Threadsafe: Yes
Signal Safe: Yes

The pthread_cleanup_peek _np() function returns a copy of the cleanup handler entry that the next call to
pthread cleanup_pop() would pop. The handler remains on the cancellation cleanup stack after the call to
pthread cleanup_peek_np().

During this thread cancellation cleanup, the thread calls cancellation cleanup handlers with cancellation
disabled until the last cancellation cleanup handler returns. The handlers are called in Last In, First Out
(LIFO) order. Automatic storage for the invocation stack frame of the function that registered the handler is
still present when the cancellation cleanup handler is executed.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should be in the same lexical
scope (that is, same level of brackets{}).

The pthread_cleanup_peek_np() function has no scoping rules.

Note: Thisfunction is not portable.

Authorities and Locks

None.

Parameters

None.

Return Value

0
pthread_cleanup_peek_np() was successful.
value
pthread_cleanup_peek_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cleanup_peek_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[ENOENT]

The cancellation cleanup stack is empty.

Related Information

The <pthread.h> header file. See Header files for Pthread functions.
o pthread cleanup pop()--Pop Cleanup Handler off of Cancellation Cleanup Stack

pthread cleanup push()--Push Cleanup Handler onto Cancellation Cleanup Stack
pthread exit()--Terminate Calling Thread

Example

#define MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

voi d cl eanupHandl er1(void *arg) { printf("In Handler 1\n"); return; }
voi d cl eanupHandl er2(void *arg) { printf("In Handler 2\n"); return; }
voi d cl eanupHandl er3(void *arg) { printf("In Handler 3\n"); return; }
i nt args[3] = {0,0,0};
int main(int argc, char **argv)
{

i nt r c=0;

pt hread_cl eanup_entry_np_t entry;

printf("Enter Testcase - %\n", argv[O0]);

printf("Check for absence of cleanup handl ers\n");

rc = pthread_cl eanup_peek_np(&entry);

if (rc !'= ENOENT) {
printf("pthread_cl eanup_peek_np(), expected ENOENT\n");
exit(1);

}

printf("Push some cancellation cleanup handl ers\n");
pt hr ead_cl eanup_push(cl eanupHandl er1, &args[0]);
pt hread_cl eanup_push(cl eanupHandl er 2, &args[1]);

printf("Check for cleanupHandl er2\n");
rc = pthread_cl eanup_peek _np(&entry);
checkResul t s(" pt hread_cl eanup_peek _np(2)\n", rc);
if (entry.handler != cleanupHandl er2 ||
entry.arg !'= &args[1]) {
printf("Did not get expected handler(2) information!\n");
exit(1);
}

pt hread_cl eanup_push(cl eanupHandl er 3, &args[2]);

printf("Check for cleanupHandl er3\n");
rc = pthread_cl eanup_peek _np(&entry);
checkResul t s(" pt hread_cl eanup_peek _np(3)\n", rc);
if (entry.handler != cleanupHandl er3 ||
entry.arg !'= &args[2]) {
printf("Did not get expected handler(3) information!\n");
exit(1);
}

pt hr ead_cl eanup_pop(0);
pt hr ead_cl eanup_pop(0);
pt hr ead_cl eanup_pop(0);

printf("Miin conpleted\n");
return O;

}
Output:

Enter Testcase - QPOWEST/ TPCLPPO

Check for absence of cleanup handl ers
Push some cancel |l ati on cl eanup handl ers
Check for cl eanupHandl er2

Check for cleanupHandl er3

Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread cleanup_pop()--Pop Cleanup Handler off
of Cancellation Cleanup Stack

Syntax:

#i ncl ude <pt hread. h>
voi d pt hread_cl eanup_pop(int execute);

Threadsafe: Yes

Signal Safe: No

The pthread_cleanup_pop() function pops the last cleanup handler from the cancellation cleanup stack. If the
execute parameter is nonzero, the handler is called with the argument specified by the pthread_cleanup_push()
call with which the handler was registered.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should be in the same lexical
scope (that is, same level of brackets{}).

When the thread calls pthread_exit() or is cancelled by pthread cancel(), the cancellation cleanup handlers
are called with the argument specified by the pthread_cleanup_push() call that the handler was registered
with.

During this thread cancellation cleanup, the thread calls cancellation cleanup handlers with cancellation
disabled until the last cancellation cleanup handler returns. The handlersare called in Last In, First Out (LIFO)
order. Automatic storage for the invocation stack frame of the function that registered the handler is still present
when the cancellation cleanup handler is executed.

When a cancellation cleanup handler is called because of acall to pthread_cleanup_pop(1), the cancellation
cleanup handler does not necessarily run with cancellation disabled. The cancellation state and cancellation type
are not changed by acall to pthread_cleanup_pop(1).

A cancellation cleanup handler should not exit using longjmp() or siglongjmp(). If acleanup handler takes an

exception, the exception condition is handled and ignored and processing continues. Y ou can look in the job log
of the job to see exception messages generated by cancellation cleanup handlers.

Authorities and Locks

None.

Parameters

execute
(Input) Boolean value indicating whether the cancellation cleanup handler should be executed

Return Value

None.

Related Information

» The<pthread.h> header file. See Header files for Pthread functions.

« pthread cancel()--Cancel Thread

» pthread cleanup push()--Push Cleanup Handler onto Cancellation Cleanup Stack
o pthread exit()--Terminate Calling Thread

Example

#defi ne _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

voi d cl eanupHandl er (void *argQ)

printf("lIn the cleanup handl er\n");

void *threadfunc(void *parm
{
printf("Entered secondary thread, you should see the cleanup handler\n");
pt hr ead_cl eanup_push(cl eanupHandl er, NULL);
sleep(l); /* Sinulate nore code here */
pt hread_cl eanup_pop(1);
return NULL;

}

int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt rc=0;

printf("Enter Testcase - 9%\n", argv[0]);

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");

rc = pthread create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread_create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(5);

printf("Min conpleted\n");

return O;

Output:

Enter Testcase - QPOWEST/ TPCLPQOO

Create thread using the NULL attri butes

Ent ered secondary thread, you should see the cleanup handl er
In the cl eanup handl er

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread cleanup_push()--Push Cleanup
Handler onto Cancellation Cleanup Stack

Syntax:

#i ncl ude <pt hread. h>
voi d pthread _cl eanup_push(void (*routine)(void *), void *arg);

Threadsafe: Yes
Signal Safe: No

The pthread_cleanup_push() function pushes a cancellation cleanup routine onto the calling threads
cancellation cleanup stack. When the thread calls pthread_exit() or is cancelled by pthread_cancel(), the
cancellation cleanup handlers are called with the argument arg.

The cancellation cleanup handlers are also called when they are removed from the cancellation cleanup
stack by acall to pthread_cleanup_pop() and a hon-zero execute argument is specified.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should bein the same lexical
scope (that is, same level of brackets{}).

When the thread calls pthread_exit() or is cancelled by pthread_cancel(), the cancellation cleanup
handlers are called with the argument specified by the pthread_cleanup_push() call that the handler was
registered with.

During this thread cancellation cleanup processing, the thread calls cancellation cleanup handlers with
cancellation disabled until the last cancellation cleanup handler returns. The handlersare called in Last In,
First Out (LIFO) order. Automatic storage for the invocation stack frame of the function that registered the
handler are still present when the cancellation cleanup handler is executed.

When a cancellation cleanup handler is called because of acall to pthread_cleanup_pop(1), the
cancellation cleanup handler does not necessarily run with cancellation disabled. The cancellation state and
cancellation type are not changed by a call to pthread_cleanup_pop(1).

A cancellation cleanup handler should not exit using longjmp() or siglongjmp(). If a cleanup handler takes

an exception, the exception condition is handled and ignored and processing continues. Y ou can look in the
job log of the job to see exception messages generated by cancellation cleanup handlers.

Authorities and Locks

None.

Parameters

routine
(Input) The cancellation cleanup routine

arg
(Input) Argument that is passed to the start routineif it is called

Return Value

None.

Related Information

The <pthread.h> header file. See Header files for Pthread functions.

pthread cancel()--Cancel Thread

pthread cleanup _pop()--Pop Cleanup Handler off of Cancellation Cleanup Stack
pthread exit()--Terminate Calling Thread

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

voi d cl eanupHandl er (voi d *arg)

printf("In the cleanup handler\n");

}

void *threadfunc(void *parm
{
printf("Entered secondary thread\n");
pt hread_cl eanup_push(cl eanupHandl er, NULL);
while (1) {
pt hread_t estcancel ();
sl eep(1);

}
pt hr ead_cl eanup_pop(0);
return NULL;

}

int main(int argc, char **argv)

{
pt hread_t t hr ead,;

i nt r c=0;
printf("Enter Testcase - %\n", argv[O0]);

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");

}

rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(2);

printf("Cancel the thread\n");
rc = pthread_cancel (thread);
checkResul t s("pthread _cancel ()\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(3);

printf("Miin conpleted\n");

return O;

Output:

Enter Testcase - QPOWEST/ TPCLPUO
Create thread using the NULL attributes
Ent ered secondary thread

Cancel the thread

In the cleanup handl er

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread clear_exit_np()--Clear Exit Status of
Thread

Syntax:

#i ncl ude <pthread. h
int pthread clear_exit_np(void);

Threadsafe: Yes

Signal Safe: Yes

The pthread_clear_exit_np() function clears the exit status of the thread. If the thread is currently exiting
duetoacall to pthread_exit() or isthe target of apthread_cancel(), then pthread_clear _exit_np() can be
used in conjunction with setjmp(), longjmp(), and pthread_setcancelstate() to prevent athread from
terminating, and "handl€' the exit condition.

The only supported way to prevent thread exit during the condition in which pthread_exit() was called, or
action is being taken for the target of a pthread_cancel() is shown in the example. It consists of using
longjmp() from a cancellation cleanup handler back into some thread routine that is still on the invocation
stack. From that routine, the functions pthread_clear _exit_np(), and pthread_setcancelstate() are used to
restore the state of the thread before the condition that was causing the thread exit.

Note: Thisfunction is not portable.

Authorities and Locks

None.

Parameters

None.

Return Value

0
pthread clear exit_np() was successful.
value
pthread_clear_exit_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_clear_exit_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
Thethread is not currently exiting

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread exit()--Terminate Calling Thread
« pthread cancel()--Cancel Thread

Example

#define _MULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdi o. h>

#i ncl ude <except. h>

#i ncl ude <setjnp. h>

#i ncl ude "check. h"

i nt t hr eadSt at us=1;

voi d cl eanupHandl er (voi d *p)

{
j mp_buf *j = (i mp_buf *)p;

/* Warning, it is quite possible that using conbinations of */

/* setjnp(), longjnp(), pthread_clear_exit_np(), and */

/* pthread_setcancel state() to handle thread exits or */

/* cancellation could result in |ooping or non-cancel abl e */

/* threads if done incorrectly. */
printf("In cancellation cleanup handler. Handling the thread exit\n");
l'ongj np(*j, 1);

printf("The exit/cancellation was not stopped!\n");

return,

}

voi d *t hreadfunc(void *parm
{

j mp_buf i

i nt rc, old;

pri ntf('_'l ns! de secondary thread\n");

if (setjmp(j)) { | | |
/* Returned fromlongjnp after stopping the thread exit */
/* Since longjnmp was called fromw thin the cancellation */

}

}
pt

/* cleanup handler, we nust clear the exit state of the */
/* thread and reset the cancelability state to what it was */

/* before the cancellation cleanup handl ers were call ed */
/* (Cancellation cleanup handlers are called with */
/* thread cancel |l ation di sabl ed) */

printf("Stopped the thread exit, now clean up the states\n");

printf("Clear exit state\n");
rc = pthread_clear_exit_np();
checkResul ts("pthread clear_exit_np()\n", rc);

printf("Restore cancel state\n");

rc = pthread_set cancel st at e(PTHREAD CANCEL_ ENABLE, &ol d);
checkResul t s("pthread_setcancel state()\n", rc);

/* This exanpl e was successf ul */
t hreadSt atus = 0;

se {

printf("Pushing cleanup handler that will stop the exit\n");
pt hread cl eanup_push(cl eanupHandl er, &);

/* This exit will be stopped by cleanupHandl er2 and the */
/* pthread clear _exit_np() that is done above */

pthread exit(__ VA D(threadStatus));
printf("Did not expect to get here! Left status as 1.\n");
pt hread _cl eanup_pop(0);

hread _exit(__ VA D(threadStatus));

int main(int argc, char **argv)

{

}

pt

hread t t hr ead;

i nt rc=0;
char (o
voi d *st at us;

pr

pr
rc
ch

rc
ch
i f

}
pr
re

intf("Enter Testcase - %\n", argv[O0]);

intf("Create thread that will denonstrate handling an exit\n");
= pthread _create(& hread, NULL, threadfunc, NULL);
eckResul ts("pthread create()\n", rc);

= pthread_join(thread, &status);

eckResul ts("pthread join()\n", rc);

(__INT(status) !'=0) {

printf("Got an unexpected return status fromthe thread!'\n");
exit(1);

intf("Min conpleted\n");
turn O;

Output:

Enter Testcase - QPOWEST/ TPCEXI TO
Create thread that will denonstrate handling an exit
I nsi de secondary thread

Pushi ng cl eanup handler that will stop the exit

In cancellation cleanup handler. Handling the thread exit
St opped the thread exit, now clean up the states

Clear exit state

Restore cancel state

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread cond_broadcast()--Broadcast Condition
to All Waiting Threads

Syntax:

#i ncl ude <pt hread. h>
i nt pthread_cond_broadcast (pt hread_cond_t *cond);

Threadsafe: Yes
Signal Safe: No

The pthread_cond_broadcast() function wakes up all threads that are currently waiting on the condition
variable specified by cond. If no threads are currently blocked on the condition variable, this call has no effect.

When the threads that were the target of the broadcast wake up, they contend for the mutex that they have
associated with the condition variable on the call to pthread_cond_timedwait() or pthread_cond_wait ().

The signal and broadcast functions can be called by athread whether or not it currently owns the mutex
associated with the condition variable. If predictable scheduling behavior is required from the applications
viewpoint however, the mutex should be locked by the thread calling pthread _cond_signal() or
pthread_cond_broadcast().

Note: For dependable use of condition variables, and to ensure that you do not |ose wake up operations on
condition variables, your application should always use a boolean predicate and a mutex with the condition
variable.

Authorities and Locks

None.

Parameters

cond
(Input) Pointer to the condition variable that is to be broadcast to

Return Value

0
pthread_cond_broadcast() was successful.
value
pthread_cond_broadcast() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_broadcast() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.
» pthread cond init()--Initialize Condition Variable

» pthread cond signal()--Signal Condition to One Waiting Thread

» pthread cond_timedwait()--Timed Wait for Condition

» pthread cond wait()--Wait for Condition

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

/* For safe condition variabl e usage, must use a bool ean predicate and */

/* a mutex with the condition. */
i nt condi ti onMet = O;

pt hread_cond_t cond = PTHREAD COND_I NI Tl ALl ZER;

pt hread_nut ex_t nmut ex = PTHREAD MUTEX_| NI Tl ALI ZER;

#def i ne NTHREADS 5

voi d *t hreadfunc(void *parn)

{

i nt rc;

rc = pthread_mut ex | ock(&t ex) ;
checkResul ts("pthread_rmutex_| ock()\n", rc);

while (!conditionMet) {
printf("Thread bl ocked\n");
rc = pthread_cond_wait (&cond, &mutex);
checkResul ts("pthread cond wait()\n", rc);

}

rc = pthread_nut ex_unl ock(&mut ex) ;
checkResul t s("pthread_mutex_| ock()\n", rc);
return NULL;

}

int main(int argc, char **argv)

{

i nt rc=0;

i nt i;
pt hread_t t hr eadi d[NTHREADS] ;

printf("Enter Testcase - %\n", argv[0]);

printf("Create % threads\n", NTHREADS);
for(i=0; i<NTHREADS; ++i) {

rc = pthread_create(& hreadid[i], NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);

}

sleep(5); /* Sleep is not a very robust way to serialize threads */
rc = pthread_nut ex_| ock(&t ex) ;
checkResul t s(" pt hread_nut ex_I ock()\n", rc);

/* The condition has occured. Set the flag and wake up any waiting threads
*/

condi ti onMet = 1;

printf("Wake up all waiting threads...\n");

rc = pthread_cond_broadcast (&cond);

checkResul t s("pthread_cond_broadcast ()\n", rc);

rc = pthread_mut ex_unl ock(&rut ex) ;
checkResul t s(" pt hread_nut ex_unl ock()\n", rc);

printf("Wait for threads and cl eanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread_join(threadid[i], NULL);
checkResul ts("pthread_join()\n", rc);

pt hr ead_cond_destroy(&cond) ;
pt hr ead_mut ex_dest r oy (&mut ex) ;

printf("Min conpleted\n");
return O;

}

Output:

Entering testcase

Create 5 threads

Thread bl ocked

Thread bl ocked

Thread bl ocked

Thread bl ocked

Thread bl ocked

Wake up all waiting threads...
Wait for threads and cl eanup
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread cond_destroy()--Destroy Condition
Variable

Syntax:

#i ncl ude <pt hread. h>
int pthread _cond _destroy(pthread cond_ t *cond);

Threadsafe; Yes

Signal Safe: Yes

The pthread _cond_destroy() function destroys the condition variable specified by cond. If threads are
currently blocked on the condition variable, the pthread_cond_destroy() fails with the EBUSY error.

Authorities and Locks

None.

Parameters

cond
(Input) Address of the condition variable to destroy

Return Value

0
pthread_cond_destroy() was successful.
value
pthread_cond_destroy() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_cond_destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]

The value specified for the argument is not correct.
[EBUSY]

The condition variable was in use.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

» pthread cond broadcast()--Broadcast Condition to All Waiting Threads
» pthread cond_init()--Initialize Condition Variable

» pthread cond signal()--Signal Condition to One Waiting Thread

» pthread cond_timedwait()--Timed Wait for Condition

« pthread cond wait()--Wait for Condition

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdi o. h>
#i ncl ude "check. h"

pt hread_cond_t cond;
int main(int argc, char **argv)
t

I nt rc=0;

pt hread_nutexattr _t attr;

printf("Entering testcase\n");

printf("Create the condition using the condition attributes object\n");

rc = pthread _cond_init(&ond, NULL);
checkResul ts("pthread_cond_init()\n", rc);

printf("- At this point, the condition with its default attributes\n");

printf("- Can be used fromany threads that want to use it\n");

printf("Destroy condition\n");
rc = pthread_cond_destroy(&cond);
checkResul t s("pthread_cond_destroy()\n", rc);

printf("Main conpleted\n");
return O;

}

Output:

Entering testcase

Create the condition using the condition attributes object
- At this point, the condition with its default attributes
- Can be used fromany threads that want to use it

Destroy condition

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread cond _init()--Initialize Condition
Variable

Syntax:

#i ncl ude <pt hread. h>
int pthread_cond_init(pthread _cond_ t *cond,
const pthread_condattr_t *attr);

pt hread_cond_t cond = PTHREAD COND | NI Tl ALI ZER,;
Threadsafe: Yes

Signal Safe: Yes

The pthread_cond_init() function initializes a condition variable object with the specified attributes for use.
The new condition may be used immediately for serializing threads. If attr is specified asNULL, all
attributes are set to the default condition attributes for the newly created condition.

With these declarations and initialization:

pt hr ead_cond_t cond2;
pt hread_cond_t cond3;
pt hread_condattr _t attr;

pt hread _condattr_init(&ttr);

The following four condition variable initialization mechanisms have equivalent function:

pt hr ead_cond_t condl = PTHREAD MUTEX | NI Tl ALl ZER;
pt hread_cond_init(&ond2, NULL);
pt hread_cond_init (&ond3, &attr);

All four condition variables are created with the default condition attributes.
Every condition variable must eventually be destroyed with pthread_cond_destroy().

Once acondition variableis created, it cannot be validly copied or moved to anew location. If the condition
variable is copied or moved to a new location, the new object is not valid and cannot be used. Attemptsto
use the new object cause the EINVAL error.

Static initialization using the PTHREAD_COND_INITIALIZER does not immediately initialize the
mutex. Instead, on first use, the functions pthread_cond_wait(), pthread_cond_timedwait(),
pthread_cond_signal(), and pthread_cond_broadcast() branch into aslow path and cause the initialization
of the condition. Due to this delayed initialization, the results of calling pthread cond_destroy() on a
condition variable that was initialized using static initialization and not used yet cause

pthread _cond_destroy() to fail with teh EINVAL error.

Authorities and Locks

None.

Parameters

cond
(Output) The address of the condition variableto initialize
attr
(Input) The address of the condition attributes object to use for initialization

Return Value

0
pthread_cond_init() was successful.
value
pthread_cond_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

» pthread cond_broadcast()--Broadcast Condition to All Waiting Threads
» pthread cond destroy()--Destroy Condition Variable

» pthread cond signal()--Signal Condition to One Waiting Thread

» pthread cond_timedwait()--Timed Wait for Condition

» pthread cond wait()--Wait for Condition

Example

#define _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_cond_t condl = PTHREAD COND I NI TI ALI ZER
pt hr ead_cond_t condz;
pt hread_cond_t cond3;
int main(int argc, char **argv)
{
i nt rc=0;
pt hread_condattr _t attr;
printf("Enter Testcase - %\n", argv[O0]);
printf("Create the default cond attributes object\n");
rc = pthread_condattr_init(&ttr);
checkResul ts("pthread_condattr_init()\n", rc);
printf("Create the all of the default conditions in different ways\n");
rc = pthread_cond_init(&ond2, NULL);
checkResul ts("pthread _cond init()\n", rc);
rc = pthread _cond_init(&ond3, &attr);
checkResul ts("pthread_cond_init()\n", rc);
printf("- At this point, the conditions with default attributes\n");
printf("- Can be used fromany threads that want to use themn");
printf("d eanup\n");
pt hread_condattr_destroy(&attr);
pt hread_cond_destroy(&condl) ;
pt hr ead_cond_destroy(&cond2) ;
pt hr ead_cond_destroy(&ond3);
printf("Miin conpleted\n");
return O;
}
Output:

Enter Testcase - QPOWEST/ TPCA 0

Create the default cond attri butes object

Create the all of the default conditions in different ways
- At this point, the conditions with default attributes

- Can be used from any threads that want to use them

d eanup

Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread cond_signal()--Signal Condition to One
Waiting Thread

Syntax:

#i ncl ude <pt hread. h>
i nt pthread_cond_signal (pthread_cond_t *cond);

Threadsafe: Yes
Signal Safe: No

The pthread_cond_signal() function wakes up at least one thread that is currently waiting on the condition
variable specified by cond. If no threads are currently blocked on the condition variable, this call has no effect.

When the thread that was the target of the signal wakes up, it contends for the mutex that it has associated with
the condition variable on the call to pthread_cond_timedwait() or pthread_cond_wait().

The signal and broadcast functions can be called by athread whether or not it currently owns the mutex
associated with the condition variable. If predictable scheduling behavior is required from the applications
viewpoint, however, the mutex should be locked by the thread that calls pthread_cond_signal() or
pthread_cond_broadcast().

Note: For dependable use of condition variables, and to ensure that you do not lose wake-up operations on
condition variables, your application should always use a Boolean predicate and a mutex with the condition
variable.

Authorities and Locks

None.

Parameters

cond
(Input) Address of the condition variable to be signaled

Return Value

0
pthread_cond_signal() was successful.
value
pthread_cond_signal() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_cond_signal() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The condition specified is not valid.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

» pthread cond broadcast()--Broadcast Condition to All Waiting Threads
» pthread cond init()--Initialize Condition Variable

» pthread cond timedwait()--Timed Wait for Condition

» pthread cond wait()--Wait for Condition

Example

#define _MJULTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdi o. h>

#i ncl ude "check. h"

/* For safe condition variable usage, nmust use a bool ean predicate and
/* a mutex with the condition.

i nt wor kToDo = O;

pt hread cond_t cond PTHREAD COND | NI Tl ALI ZER,;

pt hread nutex t nut ex PTHREAD MUTEX | NI Tl ALI ZER;
#def i ne NTHREADS 2
voi d *threadfunc(void *parnm
{ i nt rc;
while (1) {
/* Usually worker threads will | oop on these operations */

rc = pthread_nutex | ock(&t ex);
checkResul ts("pthread mutex | ock()\n", rc);

while (!workToDo) {
printf("Thread bl ocked\n");
rc = pthread_cond wait (&cond, &mutex);
checkResul ts("pthread cond wait()\n", rc);

printf("Thread awake, finish work!\n");
/* Under protection of the | ock, conplete or renove the work */

[* from what ever worker queue we have. Here it is sinply a flag */
wor kToDo = O;

*/
*/

rc = pthread_nut ex_unl ock(&rut ex) ;
checkResul ts("pthread mutex | ock()\n", rc);

}
return NULL;

}
int main(int argc, char **argv)
{
i nt rc=0;
i nt s
pt hr ead_t t hr eadi d[NTHREADS]
printf("Enter Testcase - %\n", argv[O0]);
printf("Create %l threads\n", NTHREADS)
for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(& hreadid[i], NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);
}
sl eep(5); [/* Sleep is not a very robust way to serialize threads */
for(i=0; i<5; ++i) {
printf("Wake up a worker, work to do...\n");
rc = pthread_nutex_| ock(&mrut ex);
checkResul t s("pthread_nutex_l ock()\n", rc);
/[* In the real world, all the threads m ght be busy, and */
/* we would add work to a queue instead of sinply using a flag */
/[* In that case the bool ean predicate m ght be sone bool ean */
[* statenent like: if (the-queue-contains-work) */
if (workToDo) ({
printf("Wrk already present, likely threads are busy\n");
}
wor kToDo = 1,
rc = pthread_cond_si gnal (&ond);
checkResul t s(" pt hread_cond_broadcast ()\n", rc);
rc = pthread_nut ex_unl ock(&rut ex);
checkResul t s(" pt hread_nut ex_unl ock()\n", rc);
sl eep(5); [/* Sleep is not a very robust way to serialize threads */
}
printf("Min conpleted\in");
exit(0);
return O;
}
Output:

Enter Testcase - QPOWEST/ TPCOSO
Create 2 threads

Thread bl ocked

Thread bl ocked

Wake up a worker, work to do..
Thread awake, finish work!
Thread bl ocked

Wake up a worker, work to do..
Thread awake, finish work!
Thread bl ocked

Wake up a worker, work to do..
Thread awake, finish work!
Thread bl ocked

Wake up a worker, work to do..
Thread awake, finish work!
Thread bl ocked

Wake up a worker, work to do..
Thread awake, finish work!
Thread bl ocked

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread cond_timedwait()--Timed Wait for
Condition

Syntax:

#i ncl ude <pt hread. h>
int pthread_cond_tinedwait(pthread_cond_t *cond,
pt hread_nutex_t *nut ex,
const struct tinmespec *abstine);

Threadsafe: Yes
Signal Safe: No

The pthread_cond_timedwait() function blocks the calling thread, waiting for the condition specified by cond to
be signaled or broadcast to.

When pthread _cond_timedwait() is called, the calling thread must have mutex locked. The
pthread_cond_timedwait() function atomically unlocks the mutex and performs the wait for the condition. In
this case, atomically means with respect to the mutex and the condition variable and other access by threads to
those obj ects through the pthread condition variable interfaces.

If the wait is satisfied or times out, or if the thread is canceled, before the thread is allowed to continue, the mutex
isautomatically acquired by the calling thread. If mutex is not currently locked, an ENOTLOCKED error
results. Y ou should always associate only one mutex with a condition at atime. Using two different mutexes with
the same condition at the same time could lead to unpredictable serialization in your application.

Thetimeto wait is specified by the abstime parameter as an absolute system time at which the wait expires. If the
current system clock time passes the absolute time specified before the condition is signaled, an ETIMEDOUT
error results. After the wait begins, the wait time is not affected by changes to the software clock.

Although timeis specified in seconds and nanoseconds, the system has approximately millisecond granularity.
Dueto scheduling and priorities, the amount of time you actually wait might be slightly more or less than the
amount of time specified.

The current absolute system time can be retrieved as atimeval structure using the software clock interface
gettimeofday(). The timeval structure can easily have a delta value added to it and be converted to atimespec
structure. The MI time interfaces can be used to retrieve the current system time. The M1 time also needs to be
converted to atimespec structure before use by pthread_cond_timedwait() using the QpOzConvertTime()
interface.

Thisfunction is a cancellation point.
Note: For dependable use of condition variables, and to ensure that you do not lose wake-up operations on

condition variables, your application should always use a Boolean predicate and a mutex with the condition
variable.

Authorities and Locks

For successful completion, the mutex lock associated with the condition variable must be locked before you call
pthread_cond_timedwait().

Parameters

cond

(Input) Address of the condition variable to wait for
mutex

(Input) Address of the locked mutex associated with the condition variable
abstime

(Input) Address of the absolute system time at which the wait expires

Return Value

0
pthread_cond_timedwait() was successful.
value
pthread_cond_timedwait() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_timedwait() was not successful, the error condition returned usualy indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.
[ENOTLOCKED]

The mutex specified is not locked by the caller.
[ETIMEDOUT]

The wait timed out without being satisfied.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

» pthread cond broadcast()--Broadcast Condition to All Waiting Threads
» pthread cond init()--Initialize Condition Variable

» pthread cond signal()--Signal Condition to One Waiting Threads

» pthread cond wait()--Wait for Condition

Example

#define _MULTI _THREADED
#i ncl ude <stdio. h>

#i ncl ude <qp0z1170. h>

#i ncl ude <tine. h>

#i ncl ude <pt hread. h>
#i ncl ude "check. h"

/* For safe condition variable usage, nmust use a bool ean predicate and */

/[* a mutex with the condition. */
i nt wor kToDo = O;
pt hread_cond_t cond = PTHREAD COND | NI Tl ALI ZER
pt hread_nut ex_t mut ex = PTHREAD MUTEX | NI Tl ALl ZER
#defi ne NTHREADS 3
#defi ne WAI T_TI ME_SECONDS 15
voi d *threadfunc(void *parn
{
i nt rc;
struct tinmespec ts;
struct tineval tp
rc = pthread_mut ex_I| ock(&mrut ex) ;
checkResul t s("pthread_nutex_| ock()\n", rc);
/* Usually worker threads will |oop on these operations */
while (1) {
rc = gettineofday(& p, NULL);
checkResul t s("gettineofday()\n", rc);
/* Convert fromtinmeval to tinmespec */
ts.tv_sec = tp.tv_sec
ts.tv_nsec = tp.tv_usec * 1000;
ts.tv_sec += WAI T_TI ME_SECONDS
while (!workToDo) {
printf("Thread bl ocked\n");
rc = pthread _cond_tinedwait(&cond, &mutex, &ts);
/[* If the wait timed out, in this exanple, the work is conplete, and
*/
/* the thread will end.
*/
/* Inreality, a timeout nust be acconpani ed by sone sort of checking
*/
/* to see if the work is REALLY all conplete. In the sinple exanple
*/
/* we will just go belly up when we tine out.
*/

if (rc == ETIMEDQUT) {
printf("Wait tinmed out!\n");
rc = pthread_mut ex_unl ock(&mut ex) ;
checkResul t s("pthread _mutex_ |l ock()\n", rc);
pt hread_exi t (NULL) ;

checkResul ts("pthread cond tinedwait()\n", rc);

}

printf("Thread consunmes work here\n");
wor kToDo = O0;
}

rc = pthread_nut ex_unl ock(&mut ex) ;
checkResul t s("pthread_rmutex_| ock()\n", rc);

}

return NULL;

int main(int argc, char **argv)

{

}

i nt rc=0;
i nt i;
pt hread_t t hr eadi d[NTHREADS] ;

printf("Enter Testcase - %\n", argv[0]);

printf("Create % threads\n", NTHREADS);
for(i=0; i<NTHREADS; ++i) {

rc = pthread_create(& hreadid[i], NULL, threadfunc,
checkResul ts("pthread_create()\n", rc);

}

rc = pthread_mut ex_| ock(&mrut ex) ;
checkResul t s("pthread_nutex_| ock()\n", rc);

printf("One work itemto give to a thread\n");
wor kToDo = 1;

rc = pthread_cond_si gnal (&cond);

checkResul t s("pthread_cond_signal ()\n", rc);

rc = pthread_mut ex_unl ock(&rut ex) ;
checkResul t s(" pt hread_nut ex_unl ock()\n", rc);

printf("Wait for threads and cl eanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread_join(threadid[i], NULL);
checkResul ts("pthread_join()\n", rc);
}

pt hread cond_destroy(&cond);
pt hread _nut ex_dest r oy(&mut ex) ;
printf("Min conpleted\n");
return O;

Output:

Enter Testcase - QPOWEST/ TPCOTO
Create 3 threads

Thread bl ocked

One work itemto give to a thread
Wait for threads and cl eanup
Thread consunmes work here

Thread bl ocked

Thread bl ocked

Thread bl ocked

Wait tinmed out!

Wait tinmed out!

Wait tinmed out!

Mai n conpl et ed

NULL) ;

Top | Pthread APIs| APIs by category

pthread cond_wait()--Wait for Condition

Syntax:

#i ncl ude <pt hread. h>
int pthread_cond_wait(pthread_cond_t *cond,
pt hread_nutex_t *nutex);

Threadsafe: Yes
Signal Safe: No

The pthread_cond_wait() function blocks the calling thread, waiting for the condition specified by cond to be
signaled or broadcast to.

When pthread_cond_wait() is called, the calling thread must have mutex locked. The pthread cond_wait()
function atomically unlocks mutex and performs the wait for the condition. In this case, atomically means with
respect to the mutex and the condition variable and another threads access to those objects through the pthread
condition variable interfaces.

If the wait is satisfied, or if the thread is canceled, before the thread is allowed to continue, the mutex is
automatically acquired by the calling thread. If mutex is not currently locked, an ENOTL OCKED error results.
Y ou should always associate only one mutex with a condition at atime. Using two different mutexes with the
same condition at the same time could lead to unpredictable seriaization issues in your application.

Thisfunction is a cancellation point.
Note: For dependable use of condition variables, and to ensure that you do not lose wake up operations on

condition variables, your application should always use a boolean predicate and a mutex with the condition
variable.

Authorities and Locks

For successful completion, the mutex lock associated with the condition variable is must be locked prior to
caling pthread_cond_wait().

Parameters

cond
(Input) Address of the condition variable to wait on
mutex
(Input) Address of the mutex associated with the condition variable

Return Value

0
pthread_cond_wait() was successful.
value

pthread_cond_wait() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_wait() was not successful, the error condition returned usually indicates one of the following

errors. Under some conditions, the value returned could indicate an error other than those listed here.
[EINVAL]

The value specified for the argument is not correct.
[ENOTLOCKED]

The mutex associated with the condition variable is not locked.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.

» pthread cond broadcast()--Broadcast Condition to All Waiting Threads
» pthread cond init()--Initialize Condition Variable

» pthread cond signal()--Signal Condition to One Waiting Thread

» pthread cond_timedwait()--Timed Wait for Condition

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>
#i ncl ude "check. h"

/* For safe condition variable usage, nmust use a bool ean predicate and
/* a mutex with the condition.

i nt conditi onMet = O;
pt hread cond_t cond = PTHREAD COND | NI TI ALI ZER,;
pt hread nutex t nmut ex = PTHREAD MUTEX | NI TI ALI ZER,;

#def i ne NTHREADS 5

voi d *threadfunc(void *parn)

{

i nt rc;

rc = pthread_mnut ex | ock(&t ex) ;
checkResul ts("pthread_rmutex_ | ock()\n", rc);

while (!conditionMet) {
printf("Thread bl ocked\n");
rc = pthread_cond_wait (&cond, &mutex);
checkResul ts("pthread cond wait()\n", rc);

}

*/
*/

rc = pthread_nut ex_unl ock(&mut ex) ;
checkResul t s(" pt hread_nutex_I ock()\n", rc);
return NULL,

}

int main(int argc, char **argv)
{
i nt r c=0;
i nt i;
pt hread_t t hr eadi d[NTHREADS] ;

printf("Enter Testcase - %\n", argv[0]);

printf("Create % threads\n", NTHREADS);
for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(&t hreadid[i
checkResul t s("pthread_create()\

}

sleep(5); /* Sleep is not a very robust way to serialize threads */
rc = pthread_nut ex_| ock(&mrut ex) ;
checkResul t s("pthread_nutex_| ock()\n", rc);

NULL, threadfunc, NULL);

1,
n", rc);

/* The condition has occured. Set the flag and wake up any waiting threads
*/

condi ti onMet = 1;

printf("Wake up all waiting threads...\n");

rc = pthread_cond_broadcast (&cond);

checkResul t s("pthread_cond_broadcast ()\n", rc);

rc = pthread_mut ex_unl ock(&t ex) ;
checkResul t s("pthread_rmut ex_unl ock()\n", rc);

printf("Wait for threads and cl eanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread_join(threadid[i], NULL);
checkResul ts("pthread join()\n", rc);

pt hread _cond_destroy(&ond);
pt hread _nut ex_dest r oy(&mut ex) ;

printf("Min conpleted\n");
return O;

}

Output:

Entering testcase

Create 5 threads

Thread bl ocked

Thread bl ocked

Thread bl ocked

Thread bl ocked

Thread bl ocked

Wake up all waiting threads...
Wait for threads and cl eanup
Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread condattr_destroy()--Destroy Condition
Variable Attributes Object

Syntax:

#i ncl ude <pt hread. h>
int pthread condattr_destroy(pthread condattr t *attr);

Threadsafe; Yes

Signal Safe: Yes

The pthread_condattr_destroy() function destroys the condition variabl e attributes object specified by attr,
and indicates that any storage that the system has associated with the object be de-allocated. Destroying a
condition variable abject in no way affects any of the condition variables that were created with that object.

Authorities and Locks

None.

Parameters

attr
(Input) The address of the condition variable attributes object to be destroyed

Return Value

0
pthread _condattr_destroy() was successful.
value
pthread_condattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr _destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread condattr init()--Initialize Condition Variable Attributes Object
o pthread cond init()--Initialize Condition Variable

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

pt hread_cond_t cond;

int main(int argc, char **argv)

}

i nt rc=0;
pt hread_condattr_t attr;

printf("Entering testcase\n");

printf("Create a default condition attribute\n");
rc = pthread_condattr_init(&ttr);
checkResul ts("pthread_condattr_init\n", rc);

printf("Create the condition using the condition attributes object\n");
rc = pthread_cond_init(&cond, &attr);
checkResul ts("pthread _cond init()\n", rc);

printf("- At this point, the condition with its default attributes\n");
printf("- Can be used fromany threads that want to use it\n");

printf("Destroy cond attribute\n");
rc = pthread condattr_destroy(&attr);
checkResul t s(" pt hread_condattr_destroy()\n", rc);

printf("Destroy condition\n");
rc = pthread_cond_destroy(&cond);
checkResul t s("pthread_cond_destroy()\n", rc);

printf("Main conpleted\n");
return O;

Output:

Entering testcase
Create a default condition attribute
Create the condition using the condition attributes object

At this point, the condition with its default attributes
Can be used fromany threads that want to use it

Destroy cond attribute
Destroy condition
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread condattr_init()--Initialize Condition
Variable Attributes Object

Syntax:

#i ncl ude <pt hread. h>
int pthread condattr _init(pthread condattr_t *attr);

Threadsafe; Yes

Signal Safe: Yes

The pthread_condattr_init() function initializes the condition variable attributes object specified by attr to
the default attributes. The condition variable attributes object is used to create condition variables with the
pthread_cond_init() function.

Authorities and Locks

None.

Parameters

attr
(Output) The address of the variable to contain the condition variable attributes object

Return Value

0
pthread _condattr_init() was successful.
value
pthread_condattr_init() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_condattr_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread condattr destroy()--Destroy Condition V ariable Attributes Object
o pthread cond init()--Initialize Condition Variable

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

pt hread_cond_t cond;

int main(int argc, char **argv)

}

i nt rc=0;
pt hread_condattr_t attr;

printf("Entering testcase\n");

printf("Create a default condition attribute\n");
rc = pthread_condattr_init(&ttr);
checkResul ts("pthread_condattr_init\n", rc);

printf("Create the condition using the condition attributes object\n");
rc = pthread_cond_init(&cond, &attr);
checkResul ts("pthread _cond init()\n", rc);

printf("- At this point, the condition with its default attributes\n");
printf("- Can be used fromany threads that want to use it\n");

printf("Destroy cond attribute\n");
rc = pthread condattr_destroy(&attr);
checkResul t s(" pt hread_condattr_destroy()\n", rc);

printf("Destroy condition\n");
rc = pthread_cond_destroy(&cond);
checkResul t s("pthread_cond_destroy()\n", rc);

printf("Main conpleted\n");
return O;

Output:

Entering testcase
Create a default condition attribute
Create the condition using the condition attributes object

At this point, the condition with its default attributes
Can be used fromany threads that want to use it

Destroy cond attribute
Destroy condition
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread condattr_getpshared()--Get Process
Shared Attribute from Condition Attributes
Object

Syntax:

#i ncl ude <pthread. h>
int pthread_condattr_get pshared(const pthread condattr_t *attr, int
*pshar ed) ;

Threadsafe: Yes

Signal Safe: Yes

The pthread_condattr_getpshared() function retrieves the current setting of the process shared attribute
from the condition attributes object. The process shared attribute indicates whether the condition that is
created using the condition attributes object can be shared between threads in separate processes
(PTHREAD_PROCESS SHARED) or shared only between threads within the same process
(PTHREAD_PROCESS PRIVATE).

Even if the condition in storage is accessible from two separate processes, it cannot be used from both
processes unless the process shared attributeis PTHREAD_PROCESS SHARED.

The default pshared attribute for condition attributes objectsis PTHREAD _PROCESS PRIVATE.

Authorities and Locks

None.

Parameters

attr

(Input) Address of the variable that contains the condition attributes object
pshared

(Output) Address of the variable to contain the pshared attribute result

Return Value

0
pthread_condattr_getpshared() was successful.
value
pthread condattr_getpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_getpshared() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

The <pthread.h> header file. See Header files for Pthread functions.

pthread condattr_init()--Initialize Condition Variable Attributes Object

pthread condattr_setpshared()--Set Process Shared Attribute in Condition Attributes Object
« pthread cond init()--Initialize Condition Variable

Example

See the example for pthread _condattr_setpshared().

Top | Pthread APIs | APIs by category

pthread condattr_setpshared()--Set Process
Shared Attribute in Condition Attributes Object

Syntax:

#i ncl ude <pthread. h>
int pthread_condattr_setpshared(pthread_condattr_t *attr,
i nt pshared);

Threadsafe: Yes

Signal Safe: Yes

The pthread_condattr_setpshared() function sets the current pshared attribute for the condition attributes
object. The process shared attribute indicates whether the condition that is created using the condition attributes
object can be shared between threads in separate processes (P THREAD _PROCESS SHARED) or shared
between threads within the same process (PTHREAD_PROCESS_PRIVATE).

Even if the condition isin storage that is accessible from two separate processes, it cannot be used from both
processes unless the process shared attribute is PTHREAD _PROCESS SHARED.

The default pshared attribute for condition attributes objectsis PTHREAD_PROCESS PRIVATE.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the variable containing the condition attributes object
pshared
(Output) One of PTHREAD_PROCESS SHARED or PTHREAD_PROCESS PRIVATE

Return Value

0
pthread_condattr_setpshared() was successful.
value
pthread_condattr_setpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_setpshared() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.

» pthread condattr getpshared()--Get Process Shared Attribute from Condition Attributes Object
» pthread condattr_init()--Initialize Condition Variable Attributes Object

» pthread cond init()--Initialize Condition Variable

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdi o. h>

#i ncl ude <spawn. h>

#i ncl ude <sys/wait.h>
#i ncl ude <uni std. h>

#i ncl ude <sys/shm h>

#i ncl ude "check. h"

t ypedef struct {

i nt event Cccur ed;
i nt nunber Wai ti ng;
i nt wokeup;
i nt reserved[1] ;
pt hread cond_t cond;
pt hr ead_nut ex_t mut ex; /* Protects this shared data and

condi tion

*/

} shared data t;

extern char **envi ron;

shared data t *shar edMem=NULL;

pi d_t chi | dPi d=0;

i nt chi | dSt at us=- 99;

i nt shm d=0;

/* Change this path to be the path to where you create this exanpl e program
*/

#defi ne MYPATH "/ QSYS. LI B/ QPOWIEST. LI B/ TPCOSPO. PGV
#defi ne NTHREADSTH SJOB 2
#defi ne NTHREADSTOTAL 4

voi d parent Set up(void);
voi d chil dSetup(void);

Voi
Voi

voi

{

Voi

d parent C eanup(void);
d chil dd eanup(voi d);

d *parent ThreadFunc(voi d *parn
i nt rc;

rc = pthread_mut ex | ock(&har edMem >nut ex) ;
checkResul t s("pthread _mutex_ | ock()\n", rc);

/* Under protection of the |lock, increment the count */
++shar edMem >nunber Wi t i ng;

whil e (!sharedMem >event Cccured) {
printf("PARENT - Thread bl ocked\n");
rc = pthread_cond_wait (&haredMem >cond, &sharedMem >nut ex) ;
checkResul ts("pthread cond wait()\n", rc);

}
printf("PARENT - Thread awake!\n");

/* Under protection of the |ock, decrenment the count */
- -shar edMem >nunber Wai t i ng;

/* After incrementing the wokeup flage and unl ocki ng the mutex */
/* we no | onger use the shared nenory, the parent could destroy */
/* it. We indicate we are finished with it using the wokeup flag */
++shar edMem >wokeup

rc = pthread_mut ex_unl ock(&har edMem >nut ex) ;
checkResul t s("pthread_mutex_Il ock()\n", rc);

return NULL

d *chil dThreadFunc(voi d *parm
i nt rc;

rc = pthread_mut ex | ock(&har edMem >nut ex) ;
checkResul t s("pthread_mutex_Il ock()\n", rc);

/* Under protection of the Iock, increnment the count */
++shar edMem >nunber Wi t i ng;

whil e (!sharedMem >event Cccured) {
printf("CH LD - Thread bl ocked\n");
rc = pthread_cond_wait (&haredMem >cond, &sharedMem >nut ex) ;
checkResul ts("pthread_cond_wait()\n", rc);

}
printf("CH LD - Thread awake!\n");

/* Under protection of the |ock, decrenent the count */
- -shar edMem >nunber Wi t i ng;

/* After incrementing the wokeup flage and unl ocking the mutex */
/* we no | onger use the shared menory, the parent could destroy */
/[* it. We indicate we are finished with it using the wokeup flag*/
++shar edMem >wokeup

rc = pthread_mut ex_unl ock(&har edMem >nut ex) ;
checkResul t s("pthread_mutex_l ock()\n", rc);

return NULL;

int main(int argc, char **argv)

t

i nt rc=0;

i nt i;

pt hread_t t hr eadi d[NTHREADSTHI SJOB] ;

i nt par ent Job=0;

/[* If we run this fromthe QSHELL interpreter on the system we want
*/

/* it to be line buffered even if we run it in batch so the output
bet ween */
/* parent and child is interm xed
*/
set vbuf (st dout, NULL, _| OLBF, 4096) ;
/* Determine if we are running in the parent or child
*/
if (argc '=1 & argc !'= 2) {
printf("Incorrect usage\n");
printf("Pass no paraneters to run as the parent testcase\n");
printf("Pass one parameter "ASCHI LD to run as the child testcase\n");
exit(1l);

if (argc == 1) {
parentJob =1

el se {
if (strcnp(argv[1], "ASCH LD')) {
printf("Incorrect usage\n");
printf("Pass no paraneters to run as the parent testcase\n");
printf("Pass one parameter “ASCH LD to run as the child
testcase\n");

exit(l);
parentJob = O;
}
[* PARENT

***l

i f (parentJob) {
printf("PARENT - Enter Testcase - %\n", argv[O0]);
par ent Set up() ;

printf("PARENT - Create %l threads\n", NTHREADSTH SJOB)

for (i=0; i<NTHREADSTHI SJOB; ++i) {
rc = pthread _create(& hreadid[i], NULL, parentThreadFunc, NULL);
checkResul ts("pthread create()\n", rc);

}

rc = pthread_mut ex_ | ock(&har edMem >nut ex) ;
checkResul t s("pthread_nutex_| ock()\n", rc);
whi | e (sharedMem >nunber WAi ti ng ! = NTHREADSTOTAL) {
printf("PARENT - Waiting for % threads to wait,
"currently %l waiting\n",
NTHREADSTOTAL, shar edMem >nunber Wi ti ng);

rc = pthread_mnut ex_unl ock(&har edMem >nut ex) ;
checkResul t s(" pt hread_nmut ex_unl ock()\n", rc);
sl eep(1);

}
/*

*kkkk*k

{

}

rc = pthread_mut ex_| ock(&har edMem >nut ex) ;
checkResul t s("pthread_nutex_l ock()\n", rc);

}

printf("PARENT - wake up all of the waiting threads...\n");
shar edMem >event Cccured = 1,

rc = pthread_cond_broadcast (&sharedMem >cond) ;

checkResul t s(" pthread_cond_signal ()\n", rc);

printf("PARENT - VWit for waking threads and cl eanup\n");
whi |l e (sharedMem >wokeup ! = NTHREADSTOTAL) ({
printf("PARENT - Waiting for % threads to wake, "
"currently % wokeup\n",
NTHREADSTOTAL, shar edMem >wokeup) ;

rc = pthread_mnut ex_unl ock(&har edMem >nut ex) ;
checkResul t s("pt hread_nut ex_unl ock()\n", rc);
sl eep(1);

rc = pthread_nut ex_| ock(&har edMem >nut ex) ;
checkResul t s("pthread_nmutex_| ock()\n", rc);

}
par ent Cl eanup();

printf("PARENT - Main conpleted\n");
exit(0);

CHI LD

***/

voi d *status=NULL;

printf("CH LD - Enter Testcase - %\n", argv[0]);
chi | dSet up() ;

printf("CH LD - Create % threads\n", NTHREADSTH SJOB)
for (i=0; i <NTHREADSTH SJOB; ++i) {

rc = pthread create(& hreadid[i], NULL, childThreadFunc, NULL);

checkResul ts("pthread create()\n", rc);

/* The parent will wake up all of these threads using the */
/* pshared condition variable. W will just join to them.. */
printf("CH LD - Joining to all threads\n");

for (i=0; i<NTHREADSTHI SJOB; ++i) {
rc = pthread join(threadid[i], &status);
checkResul ts("pthread _join()\n", rc);
if (status !'= NULL) {
printf("CH LD - Got a bad status froma thread,
"0 8x % 8x % 8x % 8x\n", status);
exit(1);

[* After all the threads are awake, the parent will destroy */
/* the condition and mutex. Do not use it anynore */
chi | dd eanup();

printf("CH LD - Main conpleted\n");

return O;

/***/

/* This function initializes the shared nenory for the job, */
/* sets up the environnment variable indicating where the shared*/
/* menmory is, and spawns the child job. */
[* */
/* It creates and initializes the shared nenory segnent, and */
/* 1t initializes the follow ng global variables in this */
/* job. */
[* shar edMem */
/* chi | dPi d */
/* shm d */
/* */
[* If any of this setup/initialization fails, it will exit(1) */
/* and terminate the test. */
/* */

/***/

voi d parent Set up(voi d)
{

int rc;

/***/

/* Create shared nmenory for shared_data_t above */
/* attach the shared nenory */
/* set the static/global sharedMem pointer to it */

/***/

printf("PARENT - Create the shared nenory segnment\n");

rc = shnget (1 PC_PRI VATE, sizeof(shared_data_t), 0666);

if (rc ==-1) {
printf("PARENT - Failed to create a shared nenory segnent\n");
exit(l);

shmd = rc;

printf("PARENT - Attach the shared nenory\n");
sharedMem = shmat (shm d, NULL, 0);
i f (sharedMem == NULL) {
shnct!| (shnmid, 1PC_RM D, NULL);
printf("PARENT - Failed to attach shared nmenory\n");
exit(l);

/***/

/* Initialize the nmutex/condition and ot her shared nenory data */

/***/

pt hread nutexattr _t mattr;
pt hread condattr _t cattr;

printf("PARENT - Init shared menory nutex/cond\n");
menset (sharedMem 0, sizeof(shared data t));

/* Process Shared Miutex */
rc = pthread _nmutexattr _init(&mttr);
checkResul ts("pthread_nutexattr_init()\n", rc);

rc = pthread_nmutexattr_setpshared(&mattr, PTHREAD PROCESS SHARED) ;
checkResul t s("pthread nmutexattr_setpshared()\n", rc);

rc = pthread_mutex_init(&haredMem >nutex, &mattr);
checkResul ts("pthread_mutex_init()\n", rc);

/* Process Shared Condition */
rc = pthread_condattr_init(&cattr);
checkResul t s("pthread_condattr_init()\n", rc);

rc = pthread_condattr_set pshared(&cattr, PTHREAD PROCESS SHARED) ;
checkResul t s(" pt hread_condattr_setpshared()\n", rc);

rc = pthread_cond_init(&sharedMem >cond, &cattr);
checkResul ts("pthread_cond_init()\n", rc);

/**/

/* Set and environnent variable so that the child can inherit */

/* it and know t he shared nenory |D */
/**/
char shm dEnvVar [128] ;

sprintf(shm dEnvVar, "TPCOSPO_SHM D=%\n", shnid);
rc = putenv(shm dEnvVar);
if (rc) {
printf("PARENT - Failed to store env var %, errno=%l\n",
shm dEnvVar, errno);
exit(1l);

printf("PARENT - Stored shared nmenory id of %\ n", shm d)

/**/

/* Spawn the child job */
/**/
. .

i nheritance_ t in;

char *av[3] = {NULL, NULL, NULL};

/* Allow thread creation in the spawned child */

nmenmset (& n, 0, sizeof(in));
in.flags = SPAWN_SETTHREAD_ NP

/* Set up the argunents to pass to spawn based on the */
/* argunents passed in */
av[0] MYPATH,;

av[1] = "ASCHI LD';

av[2] NULL;

/[* Spawn the child that was specified, inheriting all */
/* of the environnment vari abl es. */
childPid = spawn(MYPATH, 0, NULL, & n, av, environ);
if (childPid == -1) {
/[* spawn failure */
printf("PARENT - spawn() failed, errno=%l\n", errno);
exit(1);
}

printf("PARENT - spawn() success, [PID=%]\n", childPid);

return;

}

/***/

/* This function attaches the shared nmenory for the child job, */
/* 1t uses the environnment variable indicating where the shared*/

/* menory is. */
[* */
[* If any of this setup/initialization fails, it will exit(1) */
/* and term nate the test. */
/* */
/[* 1t initializes the follow ng gl obal variables: */
/* shar edMem */
/* shm d */

/***/

voi d chil dSet up(void)
{

int rc;

printf("CHLD - Child setup\n");

/**/

/* Set and environnment variable so that the child can inherit
/* it and know the shared menmory |ID

*/
*/

/**/

{
char *shnl dEnvVar ;

shm dEnvVar = getenv("TPCOSPO_SHM D');
if (shm dEnvVar == NULL) {
printf("CHILD - Failed to get env var \"TPCOSPO_SHM D\ ",
errno=%\n",
errno);
exit(l);

shm d = atoi (shm dEnvVar) ;
printf("CH LD - CGot shared nenory id of %l\n", shnid);

/***/

/* Create shared nenory for shared data t above
/* attach the shared nenory
/* set the static/global sharedMem pointer to it

/***/

printf("CH LD - Attach the shared nenory\n");
sharedMem = shmat (shm d, NULL, 0);
i f (sharedMem == NULL) {

shret ! (shmid, |PC_RM D, NULL);

printf("CH LD - Failed to attach shared nmenory\n");

exit(1);
return;

}

/***/
/* wait for child to conplete and get return code. */
/* Destroy nutex and condition in shared nenory */
/* detach and renpve shared nenory */
/* set the child's return code in global storage */
/* */
/* If this function fails, it will call exit(1) */

/* */

/* This function sets the foll owi ng gl obal variables: */

[* shar edMem * [
[* chi | dSt at us * [
/* shm d */

/***/

voi d parent C eanup(voi d)

{
i nt st at us=0;
i nt rc;
i nt wai t edPi d=0;
/* Even though there is no thread left in the child using the */
/* contents of the shared nenory, before we destroy the nutex */
/* and condition in that shared nenory, we will wait for the */
/* child job to conplete, we know for 100% certainty that no */
/* threads in the child are using it then. */
printf("PARENT - Parent cleanup\n");
/* Wait for the child to conplete */
wai t edPid = wai tpid(childPid, &t atus, 0);
if (rc == -1) {
printf("PARENT - waitpid failed, errno=%\n", errno);
exit(1l);
chil dStatus = status;
/* O eanup resources */
rc = pthread_nut ex_destroy(&shar edMem >mnut ex) ;
checkResul t s("pthread_mutex_destroy()\n", rc);
rc = pthread_cond_destroy(&sharedMem >cond);
checkResul t s("pthread_cond_destroy()\n", rc);
/* Detach/ Remove shared nmenory */
rc = shndt (sharedMen)
if (rc) {
printf("PARENT - Failed to detach shared nenory, errno=%il\n", errno);
exit(l);
}
rc = shnectl (shmid, PC_RM D, NULL);
if (rc) {
printf("PARENT - Failed to renove shared nmenory id=%, errno=%\n",
shm d, errno);
exit(l);
}
shm d = 0;
return;
}
/***/
/* Detach the shared nenory */
/[* At this point, there is no serialization, so the contents */
/* of the shared nenory shoul d not be used. */
/* */
/[* If this function fails, it will call exit(1) */
/* */
/* This function sets the foll owi ng gl obal variables: */
/* shar edMem */

/***/

voi d chil dd eanup(voi d)

i nt

rc;

printf("CH LD - Child cl eanup\n");

rc =

shrdt (shar edMen) ;

sharedMem = NULL;
if (rc) {

printf("CH LD - Failed to detach shared nenory, errno=%l\n", errno);

exit(1);
}
return;
}
Output:

This example was run under the OS/400 QShell Interpreter. In the QShell Interpreter, a program gets descriptors
0, 1, and 2 as the standard files; the parent and child I/O is directed to the console. When run in the QShell
Interpreter, the output shows the intermixed output from both parent and child processes and gives afeeling for
the time sequence of operations occurring in each job.

The QShell interpreter allows you to run multithreaded programs as if they were interactive. See the QShell
documentation for a description of the QIBM_MULTI_THREADED shell variable, which allows you to start
multithreaded programs.

The QShell Interpreter is option 30 of Base OS/400.

PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
CH LD -
CHI LD -
CHI LD -
CHI LD
CHI LD
CHI LD
CHI LD
CHI LD -
PARENT
PARENT
PARENT
PARENT
CHI LD -
PARENT
CHI LD -
CHI LD -
CHI LD -
PARENT

Enter Testcase - QPOWEST/ TPCOSPO
Create the shared nmenory segnent
Attach the shared nmenory
Init shared nenory mutex/cond
Stored shared nenory id of 862
spawn() success, [Pl D=2651]
Create 2 threads
Thread bl ocked
Waiting for 4 threads to wait, currently 1 waiting
Thread bl ocked
Enter Testcase - QPOWEST/ TPCOSPO
Child setup
Got shared nenory id of 862
Attach the shared nenory
Create 2 threads
Thread bl ocked
Joining to all threads
Thread bl ocked
wake up all of the waiting threads...
Wait for waking threads and cl eanup
Waiting for 4 threads to wake, currently 0O wokeup
Thr ead awake!
Thread awake!
Thr ead awake!
Thread awake!
Child cl eanup
Mai n conpl et ed
Par ent cl eanup

PARENT - Main conpl et ed

Top | Pthread APIs | APIs by category

pthread create()--Create Thread

Syntax:

#i ncl ude <pt hread. h>
int pthread create(pthread t *thread, const pthread _attr t *attr,
void *(*start_routine)(void *), void *arg);

Threadsafe: Yes
Signal Safe: Yes

The pthread_create() function creates athread with the specified attributes and runs the C function
start_routine in the thread with the single pointer argument specified. The new thread may, but does not
always, begin running before pthread_create() returns. If pthread_create() completes successfully, the
Pthread handle is stored in the contents of the location referred to by thread.

If the start_routine returns normally, it is asif there was an implicit call to pthread_exit() using the return

value of start_routine as the status. The function passed as start_routine should correspond to the following
C function prototype:

void *threadStart Routi nNanme(void *);

If the thread attributes object represented by attr is modified later, the newly created thread is not affected.
If attr isNUL L, the default thread attributes are used.

With the following declarations and initialization,

pthread_t t;

void *foo(void *);
pthread_attr_t attr;
pthread_attr_init(&pta);

the following two thread creation mechanisms are functionally equivalent:

rc pt hread create(&, NULL, foo, NULL);

rc pthread create(&, &attr, foo, NULL);

The cancellation state of the new thread isPTHREAD_CANCEL_ENABLE. The cancellation type of the
new thread isPTHREAD_CANCEL_DEFERRED.

The signal information maintained in the new thread is as follows:
» Thesignal mask isinherited from the creating thread.
« Theset of signals pending for the new thread is empty.

If you attempt to create athread in ajob that is not capable of starting threads, pthread_create() fails with
the EBUSY error. If you attempt to create athread from alocation in which thread creation is not allowed,
pthread_create() failswith the EBUSY error. See the pthread_getpthreadoption_np() function, option
PTHREAD_OPTION_THREAD_CAPABLE_NP, for details about how to determine whether thread
creation is currently allowed in your process.

In the OS/400 implementation, the initial thread is special. Termination of the initial thread by
pthread_exit() or any other thread termination mechanism terminates the entire process.

The OS/400 implementation does not set a hard limit on the number of threads that can be created. The
PTHREAD_THREADS MAX macro isimplemented as afunction call, and returns different values
depending on the administrative setting of the maximum number of threads for the process. The default is
NO MAX and has the numeric value of 2147483647 (Ox7FFFFFFF). Redlistically, the number of threadsis
limited by the amount of storage available to the job.

Currently, thread creation is not allowed after process termination has been started. For example, after a call
to exit(), destructors for C++ static objects, functions registered with atexit() or CEE4RAGE() are allowed
to run. If these functions attempt to create athread, pthread_create() fails with the EBUSY error. Similar
failures occur if other mechanisms are used to call pthread_create() after process termination has started.

Usage Notes

1. If you attempt to create athread in ajob that is not capable of starting threads or for some other
reason, thread creation is not alowed, and pthread_create() fails with the EBUSY error.

2. For the best performance during thread creation, you should always use pthread_join() or
pthread_detach(). Thisallows resources to be reclaimed or reused when the thread terminates.

3. The OS/400 implementation of threads allows the user 1D to be changed on a per-thread basis. If, at
the time the application creates the first thread, the application has not associated a process user
identity with the job, the system uses the identity of the current user to set the process user identity
for the job. The process user identity is used by some operating system support when operations
that require authorization checks are done against a multithreaded job from outside that job. The
application can set the process user identity using the Set Job User Identify (QWTSJIUID) or

QwitSetJuid() Set Job User Identity APIs. See the Security APIs for more details.

Authorities and Locks

None.

Parameters

thread
(Output) Pthread handle to the created thread
attr

(Input) The thread attributes object containing the attributes to be associated with the newly created
thread. If NULL, the default thread attributes are used.

start_routine

(Input) The function to be run as the new threads start routine
arg

(Input) An address for the argument for the threads start routine

Return Value

0
pthread_create() was successful.
value
pthread_create() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_create() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.
[EAGAIN]

The system did not have enough resources to create another thread or the maximum number of
threads for this job has been reached

[EBUSY]
The system cannot allow thread creation in this process at thistime.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.
« pthread exit()--Terminate Calling Thread

» pthread cancel()--Cancel Thread

» pthread detach()--Detach Thread

« pthread join()--Wait for and Detach Thread

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

typedef struct {
i nt val ue;
char string[128];
} thread parmt;
void *threadfunc(void *parm

thread parmt *p = (thread parmt *)parm

printf("%, parm= %l\n", p->string, p->value);
free(p);
return NULL;

}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt rc=0;
pthread attr t pt a;
thread parm:t *par meENULL;
printf("Enter Testcase - %\n", argv[O0]);
printf("Create a thread attri butes object\n");
rc = pthread_attr_init(&pta);
checkResul ts("pthread attr_init()\n", rc);
/* Create 2 threads using default attributes in different ways */
printf("Create thread using the NULL attributes\n");
/* Set up multiple paraneters to pass to the thread */
parm = mal | oc(si zeof (thread_parmt));
parm >val ue = 5;
strcpy(parm>string, "Inside secondary thread");
rc = pthread_create(& hread, NULL, threadfunc, (void *)parm;
checkResul ts("pthread create(NULL)\n", rc);
printf("Create thread using the default attributes\n");
/* Set up multiple paraneters to pass to the thread */
parm = mal | oc(si zeof (thread_parmt));
parm >val ue = 77;
strcpy(parm>string, "Inside secondary thread");
rc = pthread_create(& hread, &pta, threadfunc, (void *)parm;
checkResul ts("pthread create(&pta)\n", rc);
printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResul ts("pthread attr_destroy()\n", rc);
/* sleep() is not a very robust way to wait for the thread */
sl eep(5);
printf("Min conpleted\n");
return O;
}
Output:

Enter Testcase - QPOWEST/ TPCRTO

Create a thread attributes object

Create thread using the NULL attributes
Create thread using the default attributes
Destroy thread attributes object

I nsi de secondary thread, parm
I nsi de secondary thread, parm
Mai n conpl et ed

77
5

Top | Pthread APIs | APIs by category

pthread delay np()--Delay Thread for
Requested Interval

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>
int pthread _delay np(const struct tinespec *deltatine);

Threadsafe: Yes
Signal Safe: Yes

The pthread_delay np() function causes the calling thread to delay for the deltatime specified.

Although time is specified in seconds and nanoseconds, the system has approximately millisecond
granularity. Due to scheduling and priorities, the amount of time you actually wait might be sightly more
or less than the amount of time specified.

During the time that the thread is blocked in pthread_delay _np(), any asynchronous signals that are
delivered to the thread have their actions taken. After the signal action (such as running a signal handler),
the wait resumes if the specified interval has not yet elapsed.

The pthread_delay _np() function is a cancellation point.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

interval
(Input) Address of the timespec structure containing the interval to wait

Return Value

0
pthread_delay np() was successful.
value
pthread_delay np() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_delay np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

Example

#define _MILTI THREADED
#i ncl ude <stdio. h>

#i ncl ude <qp0z1170. h>
#i ncl ude <tine. h>

#i ncl ude <pt hread. h>

#i ncl ude "check. h"

#def i ne NTHREADS 5
void *threadfunc(void *parm
{
i nt rc;
struct tinespec ts = {0, 0};
/[* 5 and 1/2 seconds */
ts.tv_sec = 5;
ts.tv_nsec = 500000000;
printf("Thread bl ocked\n");
rc = pthread _delay np(&ts);
if (rc!'=20) {
printf("pthread delay np() - return code %\n", rc);
return (void*)é&rc;
}
printf("Wait timed out!\n");
return NULL;
}
int main(int argc, char **argv)
{
i nt r c=0;
i nt i
pt hread_t t hr eadi d[NTHREADS] ;
voi d *st at us;

i nt fail =0;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create %l threads\n", NTHREADS);

for(i=0; i<NTHREADS; ++i) {
rc = pthread _create(& hreadid[i], NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);

}

printf("Wait for threads and cl eanup\n");
for (i=0; i<NTHREADS;, ++i) {
rc = pthread_join(threadid[i], &status);
checkResul ts("pthread join()\n", rc);
if (status !'= NULL) {

fail = 1;
}
}
if (fail) {
printf("At |least one thread failed!'\n");
exit(1);
}
printf("Miin conpleted\n");
return O;
}
Output:

Enter Testcase - QPOWEST/ TPDLYO
Create 5 threads

Thread bl ocked

Thread bl ocked

Thread bl ocked

Thread bl ocked

Wait for threads and cl eanup
Thread bl ocked

Wait tined out!

Wait tined out!

Wait tined out!

Wait tined out!

Wait tined out!

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread detach()--Detach Thread

Syntax:

#i ncl ude <pt hread. h>
int pthread detach(pthread t thread);

Threadsafe: Yes
Signal Safe: No

The pthread_detach() function indicates that system resources for the specified thread should be
reclaimed when the thread ends. If the thread is already ended, resources are reclaimed immediately. This
routine does not cause the thread to end. After pthread_detach() has been issued, itisnot valid to try to
pthread_join() with the target thread.

Eventually, you should call pthread_join() or pthread_detach() for every thread that is created joinable
(with adetach state of PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources
associated with the thread. Failure to join to or detach threads that can be joined causes memory and other
resource leaks until the process ends.

If thread does not represent a valid undetached thread, pthread_detach() will return ESRCH.

Authorities and Locks

None.

Parameters

thread
(Input) Pthread handle to the target thread

Return Value

0
pthread_detach() was successful.
value
pthread_detach() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_detach() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.
[ESRCH]

No item could be found that matches the specified value

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
« pthread exit()--Terminate Calling Thread

» pthread create()--Create Thread

« pthread join()--Wait for and Detach Thread

Example

#define MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i ncl ude <errno. h>

#i ncl ude "check. h"

voi d *threadfunc(void *parn

printf("Inside secondary thread\n");
return NULL;

}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt r c=0;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create thread using attributes that allow join or detach\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);

sl eep(5);
printf("Detach the thread after it term nates\n");

rc = pthread_detach(thread);
checkResul t s(" pt hread_detach()\n", rc);

printf("Detach the thread again (expect ESRCH)\n");
rc = pthread_detach(thread);
if (rc !'= ESRCH) {
printf("Got an unexpected result! rc=%l\n",
re);
exit(1);

printf("Second detach fails correctly\n");

/* sleep() is not a very robust way to wait for the thread */
sl eep(5);

printf("Miin conpleted\n");

return O;

}

Output:

Enter Testcase - QPOWEST/ TPDETO

Create thread using attributes that allow join or detach
I nsi de secondary thread

Detach the thread after it term nates

Det ach the thread again (expect ESRCH)

Second detach fails correctly

Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread equal()--Compare Two Threads

Syntax:

#i ncl ude <pt hread. h>
int pthread equal (pthread_t tl1, pthread t t2);

Threadsafe: Yes
Signal Safe: Yes

The pthread_equal() function compares two Pthread handles for equality.

Authorities and Locks

None.

Parameters

tl

(Input) Pthread handle for thread 1
t2

(Input) Pthread handle for thread 2

Return Value

0
The Pthread handles do not refer to the same thread.

The Pthread handles refer to the same thread.

Error Conditions

None.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.
» pthread self()--Get Pthread Handle

o pthread create()--Create Thread

Example

#defi ne _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_t t heThr ead;

void *threadfunc(void *parn)

{
printf("Inside secondary thread\n");
theThread = pthread_sel f();
return NULL;
}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
int rc=0;
printf("Enter Testcase - %\n", argv[O0]);
printf("Create thread using default attributes\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);
/* sleep() is not a very robust way to wait for the thread */
sl eep(5);
printf("Check if global vs |ocal pthread_t are equal\n");
if (!pthread_equal (thread, theThread)) {
printf("Unexpected results on pthread_equal ()!'\n");
exit(1);
printf("pthread _equal returns true\n");
printf("Min conpleted\n");
return O;
}
Output:

Enter Testcase - QPOWEST/ TPEQUO

Create thread using default attributes

I nsi de secondary thread

Check if global vs local pthread_t are equa
pt hread_equal returns true

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread_exit()--Terminate Calling Thread

Syntax:

#i ncl ude <pthread. h>
void pthread_exit(void *status);

Threadsafe: Yes
Signal Safe: No

The pthread_exit() function terminates the calling thread, making its exit status available to any waiting threads.
Normally, athread terminates by returning from the start routine that was specified in the pthread_create() call
which started it. An implicit call to pthread_exit() occurs when any thread returns from its start routine. (With
the exception of the initial thread, at which time an implicit call to exit() occurs). The pthread_exit() function
provides an interface similar to exit() but on a per-thread basis.

Note that in the OS/400 implementation of threads, the initial thread is special. Termination of theinitia thread
by pthread_exit() or any thread termination mechanism terminates the entire process.

The following activities occur in this order when athread terminates by areturn from its start routine or
pthread_exit() or thread cancellation:

1. Any cancellation cleanup handlers that have been pushed and not popped will be executed in reverse
order with cancellation disabled.

2. Datadestructors are called for any thread specific data entries that have anon NULL value for both the
value and the destructor.

3. Thethread terminates.

4. Thread termination may possibly cause the system to run OS/400 cancel handlers (registered with the
#pragma cancel_handler directive), or C++ destructors for automatic objects.

5. If thread termination is occurring in the initial thread, it will cause the system to terminate all other
threads, then run C++ static object destructors, activation group cleanup routines and atexit() functions.

6. Any mutexesthat are held by athread that terminates, become "abandoned' and are no longer valid.
Subsequent calls by other threads that attempt to acquire the abandoned mutex though
pthread_mutex_lock() will deadlock. Subsequent calls by other threads that attempt to acquire the
abandoned mutex through pthread_mutex_trylock() will return EBUSY .

7. No release of any application visible process resources occur. This includes but is not limited to mutexes,
file descriptors, or any process level cleanup actions.

Do not call pthread_exit() from a cancellation cleanup handler or destructor function that was called as a result
of either an implicit or explicit call to pthread_exit(). If pthread_exit() is called from a cancellation cleanup
handler, the new invocation of pthread_exit() will continue cancellation cleanup processing using the next
cancellation cleanup handler that was pushed. If pthread_exit() is called from a data destructor, the new
invocation of pthread_exit() will skip all subsequent callsto any data destructors (regardless of the number of
destructor iterations that have completed), and terminate the thread.

Cleanup handlers and data destructors are not called when the application calls exit() or abort() or otherwise
terminates the process. Cleanup handlers and data destructors are not called when a thread terminates by any
proprietary OS/400 mechanism other than the Pthread interfaces.

The meaning of the status parameter is determined by the application except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD _CANCELED
will be made available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator intervention
or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP will be made
available.

No address error checking is done on the status parameter. Do not call pthread_exit() with, or return the address
of, avariable in athreads automatic storage. This storage will be unavailable after the thread terminates.

Note: If pthread_exit() is called by application code after step 3 in the above list, pthread_exit() will fail with
the CPF1F81 exception. Thisindicates that the thread is already considered terminated by the system, and
pthread_exit() cannot continue. If your code does not handle this exception, it will appear asif the call to
pthread_exit() was successful.

Authorities and Locks

None.

Parameters

status
(Input) exit status of the thread

Return Value

pthread_exit() does not return.

Error Conditions

None.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
» pthread cancel()--Cancel Thread

» pthread create()--Create Thread

» pthread join()--Wait for and Detach Thread

Example

#define _MJLTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

int theStatus=5;

void *threadfunc(void *parm
{
printf("Inside secondary thread\n");
pthread_exit(__VA D(theStatus));
return __ VO D(theStatus); /* Not needed, but this nmakes the conpiler smle
*/
}

int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt rc=0;
voi d *st at us;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create thread using attributes that allow join\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);

printf("Wait for the thread to exit\n");

rc = pthread_join(thread, &status);

checkResul ts("pthread_join()\n", rc);

if (__INT(status) != theStatus) {
printf("Secondary thread failed\n");
exit(1);

}

printf("CGot secondary thread status as expected\n");
printf("Min conpleted\n");
return O;

}
Output:

Enter Testcase - QPOWEST/ TPEXI TO

Create thread using attributes that allow join
Wait for the thread to exit

I nsi de secondary thread

CGot secondary thread status as expected

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread extendedjoin_np()--Wait for Thread with
Extended Options

Syntax:

#i ncl ude <pt hread. h>
i nt pthread_extendedjoi n_np(pthread_t thread, void **status,
pt hread_j oi nopti on_np_t *options);

Threadsafe: Yes
Signal Safe: No

The pthread_extendedjoin_np() function waits for a thread to terminate, optionally detaches the thread, then
returns the threads exit status.

If the options parameter is specified as NUL L or the contents of the pthread joinoption_np t structure
represented by options parameter is binary 0, then the behavior of pthread_extendedjoin_np() is equivalent to
pthread_join().

The deltatime field of the options parameter can be used to specify the amount of elapsed time to wait before the
wait times out. If the wait times out, the ETIMEDOUT error is returned and the thread is not detached. For an
infinite wait, specify a seconds value of 0, and a nanoseconds value of 0.

The leaveThreadAllocated field of the options parameter can be used to specify that the
pthread_extendedjoin_np() function should NOT implicitly detach the thread when the join completes
successfully. If the leaveThreadAllocated option is used, the thread should later be detached using
pthread_join(), pthread_detach(), or pthread_extendedjoin_np() without specifying the
leaveThreadAllocated option.

The reserved fields of the options parameter are for use by possible future extensions to
pthread_extendedjoin_np(). If any reserved fields of the options parameter are not zero, the EINVAL error is
returned.

If the status parameter isNUL L, the threads exit status is not returned.

The meaning of the threads exit status (value returned to the status memory location) is determined by the
application except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED
is made available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator
intervention, or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP
is made available.

Eventually, you should call pthread_join(), pthread_detach() or pthread_extendedjoin_np() without
specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of
PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the thread.
Failureto join to or detach joinable threads causes memory and other resource leaks until the process ends.

Authorities and Locks

None.

Parameters

thread
(Input) Pthread handle to the target thread
status
(Input/Output) Address of the variable to receive the thread's exit status
options
(Input) Address of the join options structure specifying optional behavior of this API.

Return Value

0
pthread_extendedjoin_np() was successful.
value
pthread_extendedjoin_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_extendedjoin_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.
[ESRCH]

The thread specified could not be found.
[ETIMEDOUT]

The time specified in the deltatime field of the options parameter elapsed without the target thread
terminating.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
» pthread detach()--Detach Thread

» pthread exit()--Terminate Calling Thread

» pthread join()--Wait for and Detach Thread

» pthread join np()--Wait for Thread to End

Example

#define MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <uni std. h>

#i ncl ude <string. h>

#i ncl ude <errno. h>

#i ncl ude <stdi o. h>

#i ncl ude "check. h"

static void *thread(void *parm

{
printf("Entered thread\n");
sl eep(10);
printf("Ending thread\n");
return __ VO D(42);
}
int main (int argc, char *argv[])
{
pt hread_j oi nopti on_np_t j oi noption
voi d *st at us;
i nt rc;
pt hr ead_t t;

printf("Entering testcase %\n", argv[0]);

printf("Create thread using attributes that allow join\n");
rc = pthread_create(&, NULL, thread, NULL);
checkResul ts("pthread_create()\n", rc);

menset (& oi noption, 0, sizeof(pthread joinoption np t));
joinoption.deltatine.tv_sec = 3;
j oi noption.|eaveThreadAl | ocated = 1;

printf("Join to the thread, tinmeout in 3 seconds, no inplicit detach\n");
rc = pthread_extendedjoin_np(t, &status, & oinoption);
if (rc !'= ETIMEDOUT) {

printf("Join did not tineout as expected! rc=%l\n", rc);

exit(1);
}
/* Call pthread_extendedjoin_np the same as a nor nal */
/* pthread_join() call. */
[* i.e. Inmplicit Detach is done, and Infinite wait */

printf("Normal join to the thread\n");
rc = pthread_extendedjoin_np(t, &status, NULL);
checkResul t s(" pt hread_ext endedj oi n_np(no-options)\n", rc);

if (__INT(status) != 42) {
printf("Got the incorrect thread status!\n");
exit(1l);

}

printf("Main conpleted\in");

return(0);

Output

Entering testcase QPOWEST/ TPJO NEO

Create thread using attributes that allow join

Join to the thread, tineout in 3 seconds, no inplicit detach
Entered thread

Norrmal join to the thread

Endi ng t hread

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread get _expiration_np()--Get Condition
Expiration Time from Relative Time

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread_get_expiration_np(const struct tinespec *delta,
struct tinespec *abstine);

Threadsafe: Yes

Signal Safe: Yes

The pthread_get_expiration_np() function computes an absolute time by adding the specified relative time
(delta) to the current system time. The resulting absol ute time output in the abstime parameter can be used as the
expiration timein acall to pthread_cond_timedwait().

The current system time is retrieved from the systems software clock.

Note: Thisfunction is not portable.

Authorities and Locks

None.

Parameters

delta
(Input) Elapsed time to add to the current system time
abstime
(Output) Address of the returned value representing the expiration time

Return Value

0
pthread_get_expiration_np() was successful.
value
pthread_get _expiration_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_get_expiration_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.
» pthread cond_timedwait()--Timed Wait for Condition

Example

#define _MJILTI THREADED
#i ncl ude <stdio. h>

#i ncl ude <qp0z1170. h>
#i ncl ude <tine. h>

#i ncl ude <pt hread. h>

#i ncl ude "check. h"

/* For safe condition variabl e usage, must use a bool ean predicate and */
/* a mutex with the condition.

*/

i nt wor kToDo = O;

pt hread_cond_t cond = PTHREAD COND_I NI Tl ALl ZER;
pt hread_nut ex_t nmut ex = PTHREAD MUTEX_| NI Tl ALI ZER;
i nt fail Status=99;

#defi ne NTHREADS 2

#defi ne WAI T_TI ME_SECONDS 3

voi d *t hreadfunc(void *parn)

t
i nt rc;
struct tinespec del t a;
struct tinespec absti me;
i nt retries = 2;
pthread id np_t tid;

tid = pthread_getthreadi d_np();

rc = pthread_mut ex | ock(&t ex) ;
checkResul ts("pthread_rmutex_ | ock()\n", rc);

{
delta.tv_sec WAI T_TI ME_SECONDS;
delta.tv_nsec 0;
rc = pthread_get _expiration_np(&delta, &abstine);
checkResul ts("pthread _get _expiration_np()\n", rc);

while (retries--)

while (!workToDo) {
printf("Thread 0x% 8x % 8x bl ocked\n", tid);

rc = pthread_cond_tinmedwait (&cond, &nmutex, &abstine);
if (rc !'= ETI MEDOUT) {
printf("pthread_cond_tinedwait() - expect timeout %\n", rc);
rc = pthread_mut ex_unl ock(&t ex) ;
checkResul t s("pthread_nutex_l ock()\n", rc);
return __ VO D(fail Status);
}
/* Since there is no code in this exanple to wake up any */
/* thread on the condition variable, we know we are done */
/* because we have tinmed out. */
br eak;

}

printf("VWait timed out! tid=0x% 8x % 8x\n", tid);
}
rc = pthread_mut ex_unl ock(&t ex) ;

checkResul t s("pthread_nutex_| ock()\n", rc);
return __ VO D0);

}
int main(int argc, char **argv)
{
i nt r c=0;
i nt i
pt hread_t t hr eadi d[NTHREADS] ;
voi d *st at us;
i nt resul t s=0;
printf("Enter Testcase - %\n", argv[O0]);
printf("Create % threads\n", NTHREADS);
for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(& hreadid[i], NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);
}
printf("Wait for threads and cl eanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread_join(threadid[i], &status);
checkResul ts("pthread join()\n", rc);
if (__INT(status) == fail Status) {
printf("A thread failed!\n");
resul t s++;
}
}
pt hr ead_cond_destroy(&cond) ;
pt hread _nut ex_dest r oy(&mut ex) ;
printf("Min conpleted\n");
return results;
}
Output:

Enter Testcase - QPOWEST/ TPGETEXO
Create 2 threads

Wait for threads and cl eanup

Thread 0x00000000 000002ab bl ocked
Thread 0x00000000 000002ac bl ocked

VWait tinmed out! tid=0x00000000 000002ab

Thread 0x00000000 000002ab bl ocked

VWit tinmed out! tid=0x00000000 000002ac
Thread 0x00000000 000002ac bl ocked

VWit tinmed out! tid=0x00000000 000002ab
VWit tinmed out! tid=0x00000000 000002ac
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread getcancelstate_np()--Get Cancel State

Syntax:

#i ncl ude <pt hread. h>
int pthread _getcancel state np(int *cancel State);

Threadsafe: Yes
Signal Safe: Yes

The pthread_getcancelstate np() function gets the current cancel state of the thread. Cancel state is either
PTHREAD_CANCEL_ENABLE or PTHREAD CANCEL_DISABLE. For more information on
cancelability, see Thread cancellation APIs.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes the
cancelahility. When cancelability is deferred, all cancels are held pending in the target thread until the
thread changes the cancelability, calls afunction that is a cancellation point, or calls pthread_testcancel(),
thus creating a cancellation point. When cancelability is asynchronous, all cancels are acted upon
immediately, interrupting the thread with its processing.

Notes:

1. Your application should not use asynchronous thread cancellation through the
PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). Seethe
common user errors section of this document for more information.

2. Thisfunction is not portable.

Authorities and Locks

None.

Parameters

cancelstate
(Output) Address of the variable to receive the cancel state.

Return Value

0
pthread getcancelstate np() was successful.
value
pthread_getcancelstate np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getcancelstate np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

o The<pthread.h> header file. See Header files for Pthread functions.
» pthread cancel()--Cancel Thread

« pthread exit()--Terminate Calling Thread

» pthread setcancelstate()--Set Cancel State

» pthread setcanceltype()--Set Cancel Type

« pthread testcancel()--Create Cancellation Point

Example

#def i ne _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude <except. h>

#i ncl ude <setjnp. h>

#i ncl ude "check. h"

voi d showCancel St at e(voi d);
i nt t hr eadSt at us=42;

voi d showCancel St at e(voi d)
{

i nt state, rc;
rc = pthread _getcancel state _np(&state);

checkResul t s(" pt hread_get cancel state_np()\n", rc);
printf("current cancel state is %\n", state);

voi d cl eanupHandl er2(void *p)

{
printf("In cancellation cleanup handl er\n");
showCancel State();
return;

}

void *threadfunc(void *parm

i nt rc, old;

printf("Inside secondary thread\n");
showCancel State();

pt hread_cl eanup_push(cl eanupHandl er 2, NULL);

t hreadSt atus = 0;

printf("Calling pthread exit() will allow cancellation
"cl eanup handlers to run\n");

pthread exit(__ VA D(threadStatus));

pt hread _cl eanup_pop(0);

return VO D-1);

}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt rc=0;
char (o
voi d *st at us;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create thread that will denonstrate

pt hread _get cancel state_np()\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);

rc = pthread_joi n(thread, &status);
checkResul ts("pthread join()\n", rc);

if (__INT(status) != threadStatus) {
printf("Got an unexpected return status fromthe thread!'\n");
exit(1);

}
printf("Miin conpleted\n");
return O;

}
Output:

Enter Testcase - QPOWEST/ TPGETCANSO

Create thread that will denonstrate pthread_getcancel state_np()

I nsi de secondary thread

current cancel state is O

Calling pthread_exit() will allow cancellation cleanup handlers to run
In cancel | ati on cl eanup handl er

current cancel state is 1

Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread getconcurrency()--Get Process
Concurrency Level

Syntax:

#i ncl ude <pt hread. h>
i nt pthread_getconcurrency();

Threadsafe: Yes
Signal Safe: No

The pthread_getconcurrency() function retrieves the current concurrency level for the process. A value of
0 indicates that the threads implementation chooses the concurrency level that best suits the application. A
concurrency level greater than zero indicates that the application wishes to inform the system of its desired
concurrency level.

The concurrency level is not used by the OS/400 threads implementation. Each user thread is always bound
to akernel thread.

Authorities and Locks

None.

Parameters

None.

Return Value

value
pthread_getconcurrency() returns the current concurrency level.

Error Conditions

None.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

o pthread setconcurrency()--Set Process Concurrency Level

Top | Pthread APIs | APIs by category

pthread getpthreadoption_np()--Get Pthread
Run-Time Option Data

Syntax:

#i ncl ude <pt hread. h>
voi d pt hread_get pt hreadopti on_np(pthread option_np_t *optionData);

Threadsafe: Yes
Signal Safe: Yes

The pthread_getpthreadoption_np() function gets option data from the pthread run-time for the process.

Input and output datais specified and returned uniquely based on the specified optionData. See the table
below for details about input and output. The option field in the optionData parameter is always required.
Other fields may be input, output, or ignored, based on the specific option used.

For al options, every reserved field in the structure represented by optionData must be binary zero or the
EINVAL error isreturned. Unless otherwise noted for an option, the target field in the option parameter is
always ignored.

The currently supported options, the data they represent, and the valid operations are as follows:

| option field of the option parameter | Description

PTHREAD_OPTION_POOL_NP When athread terminates and
it is detached or joined to,
certain data structures from
the pthreads run-time are
maintained in a pool for
possible reuse by future
threads. Thisimproves
performance for creating
threads. Typically, an
application should not be
concerned with this storage
pool. Use this option to
determine what the current
maximum size of the allowed
storage pool is. The
optionValue field of the
optionData parameter is set to
the current maximum number
of thread structures, whichis
maintained in the storage
pool. By default, the
maximum size of the storage
reuse pool contains enough
room for 512 thread
structures.

PTHREAD_OPTION_POOL_CURRENT_NP

When athread terminates and
it is detached or joined to,
certain data structures from
the pthreads run-time are
maintained in a pool for
possible reuse by future
threads. Thisimproves
performance for creating
threads. Typically, an
application should not be
concerned with this storage
pool. Use this option to
determine how many thread
structures are currently in the
storage pool. The optionValue
field of the optionData
parameter is set to the current
number of thread structures,
which are contained in the
storage pool. By default, the
storage pool contains no
thread structures. When a
thread terminates and is
detached or joined to and the
current size of the pool isless
than the maximum size, the
thread structure is added to
the pool.

PTHREAD_OPTION_THREAD_CAPABLE_NP

Not al OS/400 jobs can start
threads at all times. Use this
option to determine whether
thread creation is currently
alowed for your process. The
optionValue field of the
optionData parameter is set to
indicate whether thread
creation is currently allowed.
Thefield is set to O to indicate
that thread creation is not
alowed, the field will be set
to 1 to indicate thread creation
isalowed. If thread creation
is not allowed,

pthread create() fails with the
EBUSY error. See

pthread create() for more
details.

Authorities and Locks

None.

Parameters

option

(Input/Output) Address of the variable containing option information and to contain output option
information.

Return Value

0
pthread_getpthreadoption_np() was successful.
value
pthread_getpthreadoption_np() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_getpthreadoption_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread setpthreadoption np()--Set Pthread Run-Time Option Data

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

void *threadfunc(void *parm

printf("Inside the thread\n");
return NULL;

}

voi d showCurrent Si zeOf Pool (voi d)

{

}

i nt rc;
pt hread option_np_t opt;

menset (&opt, 0, sizeof (opt));

opt.option = PTHREAD_OPTI ON_POOL_CURRENT_NP;

rc = pthread_getpthreadoption_np(&opt);

checkResul t s(" pt hread_get pt hreadopti on_np()\n", rc);

printf("Current nunber of thread structures in pool is %\ n",
opt . opti onVal ue);
return;

int main(int argc, char **argv)

{

}

pt hread t t hr ead;
i nt rc=0;
pt hread option_np_t opt;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create thread using the NULL attributes\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create(NULL)\n", rc);

menset (&opt, 0, sizeof (opt));

opt.option = PTHREAD OPTI ON_POOL_NP

rc = pthread_getpthreadoption_np(&opt);

checkResul t s(" pt hread_get pt hreadopti on_np()\n", rc);

printf("Current maximum pool size is %l thread structures\n"
opt. optionVal ue);

showCurrent Si zeOf Pool () ;

printf("Joining to the thread may it to the storage pool\n");
rc = pthread_joi n(thread, NULL);
checkResul ts("pthread join()\n", rc);

showCurrent Si zeOf Pool () ;
printf("Min conpleted\n");
return O;

Output:

Enter Testcase - QPOWEST/ TPGETOPT

Create thread using the NULL attributes

Current maxi mum pool size is 512 thread structures
Current nunber of thread structures in pool is O
Joining to the thread nay it to the storage poo

| nsi de the thread

Current nunmber of thread structures in pool is 1

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread getschedparam()--Get Thread
Scheduling Parameters

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

i nt pthread _getschedparam pthread t thread, int *policy,
struct sched_param *paranj;

Threadsafe: Yes
Signal Safe: No

The pthread_getschedparam() function retrieves the scheduling parameters of the thread. The default
0S/400 scheduling policy is SCHED OTHER and cannot be changed to another scheduling policy.

The sched_policy field of the param parameter is always returned as SCHED_OTHER. The sched_priority
field of the param structure is set to the priority of the target thread at the time of the call.

Note: Do not use pthread_setschedparam() to set the priority of athread if you also use another
mechanism (other than the pthread APIs) to set the priority of athread. If you do,
pthread_getschedparam() returns only that information that was set by the pthread interfaces such as
pthread_setschedparam() or amodification of the thread attribute using pthread_attr_setschedparam().

Authorities and Locks

None.

Parameters

thread

(Input) Pthread handle representing the target thread
policy

(Output) Address of the variable to contain the scheduling policy
param

(Output) Address of the variable to contain the scheduling parameters

Return Value

0
pthread_getschedparam() was successful.
value

pthread_getschedparam was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getschedpar am() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.
o pthread setschedparam()--Set Target Thread Scheduling Parameters

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

voi d *threadfunc(void *parn
printf("Inside secondary thread\n");

sleep(5); [/* Sleep is not a very robust way to serialize threads */
return NULL;

}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt r c=0;
struct sched_param par am
i nt policy;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create thread using default attributes\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);

printf("Get scheduling paraneters\n");
rc = pthread_get schedparan(thread, &policy, ¶m;
checkResul t s(" pt hread_get schedparam()\n", rc);

printf("The thread scheduling paraneters indicate:\n"

"policy = %\ n", policy);
printf("priority = %\ n",
param sched priority);

printf("Miin conpleted\n");
return O;

}
Output:

Enter Testcase - QPOWEST/ TPGSPO

Create thread using default attributes
Get schedul i ng paraneters

The thread schedul i ng paraneters indicate:
policy =0

priority =0

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread getspecific()--Get Thread Local
Storage Value by Key

Syntax:

#i ncl ude <pt hread. h>
voi d *pthread_getspecific(pthread key t key);

Threadsafe: Yes
Signal Safe: Yes

The pthread_getspecific() function retrieves the thread local storage value associated with the key.
pthread_getspecific() may be called from a data destructor.

Thethread local storage value isavariable of type void * that islocal to athread, but global to al of the
functions called within that thread. It is accessed by the key.

Authorities and Locks

None.

Parameters

key
(Input) The thread local storage key returned from pthread_key create()

Return Value

value

pthread_getspecific() was successful. value is set to indicate the current thread specific data
pointer stored at the key location.

NULL

pthread_getspecific() returned the null thread specific data value stored at the key location or the
key was out of range.

Error Conditions

None.

Related Information

o The <pthread.h> header file. See Header files for Pthread functions.
« pthread key create()--Create Thread Local Storage Key
« pthread key delete()--Delete Thread Local Storage Key
« pthread setspecific()--Set Thread L ocal Storage by Key

Example

#define _MULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

#defi ne NUMIHREADS 3
pt hread_key_t tl skey = 0;

voi d gl obal Destructor(void *val ue)
printf("In the gl obal Destructor\n");

free(val ue);
pt hread_set specific(tl sKey, NULL);

}
voi d showd obal (voi d)
{
voi d *gl obal ;
pthread_id_np_t tid;
gl obal = pthread_getspecific(tlsKey);
pt hread_get uni que_np((pthread_t *)global, &tid);
printf("showd obal: gl obal data stored for thread 0x% 8x% 8x\n",
tid);
}
voi d *t hreadfunc(void *parm
{
i nt rc,;
i nt *myThr eadDat aSt r uct ur e;
pt hread_t me = pthread_sel f();

printf("Inside secondary thread\n");

myThr eadDat aStructure = mal | oc(si zeof (pthread_t) + sizeof(int) * 10);
mencpy(nyThreadDat aStructure, &nme, sizeof (pthread_t));

pt hread_set speci fic(tlsKey, myThreadDataStructure);

showd obal ();

pt hr ead_exi t (NULL) ;

int main(int argc, char **argv)

{
pt hread_t t hr ead[NUMITHREADS] ;
i nt rc=0;
i nt i =0;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a thread | ocal storage key\n");

rc = pthread_key create(&|sKey, global Destructor);
checkResul ts("pthread key create()\n", rc);

/* The key can now be used fromall threads */

printf("Create %l threads using joinable attributes\n",
NUMIHREADS) ;
for (i=0; i<NUMIHREADS;, ++i) {
rc = pthread_create(& hread[i], NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);

}

printf("Join to threads\n");
for (i=0; i<NUMIHREADS;, ++i) {
rc = pthread_join(thread[i], NULL);
checkResul ts("pthread join()\n", rc);
}

printf("Delete a thread | ocal storage key\n");

rc = pthread_key del et e(tl sKey);

checkResul ts("pthread key delete()\n", rc);

/* The key and any remai ning val ues are now gone. */
printf("Min conpleted\n");

return O;

}
Output:

Enter Testcase - QPOWEST/ TPGETSO

Create a thread | ocal storage key

Create 3 threads using joinable attributes

Join to threads

I nsi de secondary thread

showd obal : gl obal data stored for thread 0x000000000000000b
In the gl obal Destructor

I nsi de secondary thread

showd obal : gl obal data stored for thread 0x000000000000000d
In the gl obal Destructor

I nsi de secondary thread

showd obal : gl obal data stored for thread 0x000000000000000c
In the gl obal Destructor

Del ete a thread | ocal storage key

Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread getthreadid np()--Retrieve Unique ID
for Calling Thread

Syntax:

#i ncl ude <pt hread. h>
pthread id np_t pthread_getthreadi d np(void);

Threadsafe: Yes

Signal Safe: Yes

The pthread_getthreadid_np() function retrieves the unique integral identifier that can be used to identify
the calling thread in some context for application debugging or tracing support.

In some implementations, the thread ID is equivalent to the pthread _t type. In the OS/400 implementation,
the pthread_t is an opague Pthread handle. For the ability to identify athread using athread ID (unique
number), the pthread_getunique_np() and pthread_getthreadid_np() interfaces are provided.

The OS/400 machine implementation of threads provides a 64-bit thread ID. The thread ID isreturned as a
structure containing the high and low order 4 bytes of the 64-bit ID. This allows applications created by
compilersthat do not yet support 64-bit integral values to effectively use the 64-bit thread ID.

If your code requires the unique integer identifier for the calling thread often, or in aloop, the
pthread_getthreadid_np() function can significantly improve performance over the combination of
pthread_self() and pthread_getunique_np() callsthat provide equivalent behavior.

For example:

pt hread_id_np_t tid;
tid = pthread_getthreadi d_np();

is significantly faster than these calls, but provides the same behavior.

pthread id np_t tid;

pt hread t sel f;

self = pthread_sel f();

pt hread _get uni que_np(&sel f, &tid);

Asaways, if you are calling any function too often, you can improve performance by storing the resultsin
avariable or passing to other functions that require the results.

Note: Thisfunction is not portable.

Authorities and Locks

None.

Parameters

None.

Return Value

The pthread id np_t structure identifying the thread

Error Conditions

None.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread self()--Get Pthread Handle
« pthread getunique np()--Retrieve Unique ID for Target Thread

Example

#define MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

#defi ne NUMIHREADS 3
voi d *threadfunc(void *parn

printf("Thread 0x% 8x % 8x started\n", pthread_getthreadid _np());
return NULL;

}

int main(int argc, char **argv)
pt hread_t t hr ead][NUMIHREADS] ;
i nt r c=0;

pt hread_i d_np_t tid;

}

i nt i =0;
printf("Enter Testcase - %\n", argv[O0]);
printf("Main Thread 0x% 8x % 8x\n", pthread getthreadid np());

printf("Create %l threads using joinable attributes\n",

NUMIHREADS) ;
for (i=0; i<NUMIHREADS;, ++i) {
rc = pthread_create(& hread[i], NULL, threadfunc, NULL);

checkResul ts("pthread create()\n", rc);
pt hread _get uni que_np(& hread[i], &tid);
printf("Created thread 0x% 8x % 8x\n", tid);

printf("Join to threads\n");
for (i=0; i<NUMIHREADS;, ++i) {
rc = pthread_join(thread[i], NULL);
checkResul ts("pthread join()\n", rc);
}

printf("Min conpleted\n");
return O;

Output:

Enter Testcase - QPOWEST/ TPGETTO
Mai n Thread 0x00000000 0000006¢c
Create 3 threads using joinable attributes
Created thread 0x00000000 0000006d
Thread 0x00000000 0000006d started
Created thread 0x00000000 0000006e
Created thread 0x00000000 0000006f
Join to threads

Thread 0x00000000 0000006f started
Thread 0x00000000 0000006e started
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread getunique_np()--Retrieve Unique ID for
Target Thread

Syntax:

#i ncl ude <pt hread. h>
i nt pthread _getuni que_np(pthread_t thread, pthread id np t *id);

Threadsafe: Yes

Signal Safe: Yes

The pthread_getunique_np() function retrieves the unique integral identifier that can be used to identify
the thread in some context for application debugging or tracing support.

In some implementations, the thread ID is equivalent to the pthread _t type. In the OS/400 implementation,
the pthread_t is an opague Pthread handle. For the ability to identify athread using athread ID (unique
number), the pthread_getunique_np() and pthread_getthreadid_np() interfaces are provided.

The OS/400 machine implementation of threads provides a 64-bit thread ID. The thread ID isreturned as a
structure containing the high and low order 4 bytes of the 64-bit ID. This allows applications created by
compilersthat do not yet support 64-bit integral values to effectively use the 64-bit thread ID.

If your code requires the unique integer identifier for the calling thread often, or in aloop, the
pthread_getthreadid_np() function can significantly improve performance over the combination of
pthread_self() and pthread_getunique_np() callsthat provide equivalent behavior.

For example:

pt hread_id_np_t tid;
tid = pthread_getthreadi d_np();

is significantly faster than these calls, but provides the same behavior.

pthread id np_t tid;

pt hread t sel f;

self = pthread_sel f();

pt hread _get uni que_np(&sel f, &tid);

Asaways, if you are calling any function too often, you can improve performance by storing the resultsin
avariable or passing to other functions that require the results.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

thread
(Input) Thread to retrieve the unique integer 1D for
id
(Output) Address of the thread 1D structure to contain the 64-bit thread ID.

Return Value

0
pthread_getunique_np() was successful.
value
pthread_getunique_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getunique _np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions
o pthread self()--Get Pthread Handle
« pthread getthreadid np()--Retrieve Unique ID for Calling Thread

Example

#define _MULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

#def i ne NUMIHREADS 3
voi d *t hreadfunc(void *parm

pthread_id np_t tid;
pt hread_t me = pthread_self();

pt hread _get uni que_np(&re, &tid);
printf("Thread 0x% 8x % 8x started\n", tid);
return NULL;

}
int main(int argc, char **argv)
{
pt hread_t t hr ead[NUMITHREADS] ;
i nt rc=0;
pthread id np_t tid;
i nt i =0;
pt hread_t me = pthread_sel f();
printf("Enter Testcase - %\n", argv[O0]);
pt hread _get uni que_np(&re, &tid);
printf("Main Thread 0x% 8x % 8x\n", tid);
printf("Create %l threads using joinable attributes\n",
NUMTIHREADS) ;
for (i=0; i<NUMIHREADS;, ++i) {
rc = pthread_create(& hread[i], NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);
pt hread _get uni que_np(& hread[i], &tid);
printf("Created thread 0x% 8x % 8x\n", tid);
printf("Join to threads\n");
for (i=0; i<NUMIHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResul ts("pthread join()\n", rc);
}
printf("Min conmpleted\n");
return O;
}
Output:

Enter Testcase - QPOWEST/ TPGETUO
Mai n Thread 0x00000000 0000006¢c
Create 3 threads using joinable attributes
Created thread 0x00000000 0000006d
Thread 0x00000000 0000006d started
Created thread 0x00000000 0000006e
Created thread 0x00000000 0000006f
Join to threads

Thread 0x00000000 0000006f started
Thread 0x00000000 0000006e started
Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread is_initialthread np()--Check if Running
In the Initial Thread

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>
int pthread is_ initialthread np(void);

Threadsafe: Yes
Signal Safe: Yes

The pthread _is initialthread_np() function returnstrue or false, indicating if the current thread is the
initial thread of the process. A return value true (non 0) indicates that the calling thread is theinitial thread.
A return value of false (0) indicates that the calling thread is running in a secondary thread.

Note: Thisfunction isnot portable.

Authorities and Locks

None.

Parameters

None.

Return Value

0

The calling thread is a secondary thread.
value

The caling thread isthe initia thread.

Error Conditions

None.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread is multithreaded np()--Check the Current Number of Threads

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

#defi ne NUMIHREADS 1
void *function(void *parm
{
printf("Inside the function\n");
if (pthread_is_ initialthread np()) {
printf("In the initial thread\n");
el se {
printf("In a secondary thread\n");
return NULL;
}
int main(int argc, char **argv)
{
pt hread_t t hr ead[NUMI'HREADS] ;
i nt r c=0;
i nt i =0;

printf("Enter Testcase - %\n", argv[O0]);
printf("Create %l threads\n", NUMIHREADS)

for (i=0; i<NUMIHREADS; ++i) {
rc = pthread create(& hread[i], NULL, function, NULL);
checkResul ts("pthread _create()\n", rc);
printf("Main: Currently % threads\n",
pthread is initialthread np() + 1);
}

printf("Join to threads\n");
for (i=0; i<NUMIHREADS; ++i) {
rc = pthread join(thread[i], NULL);
checkResul ts("pthread join()\n", rc);
}

function(NULL) ;
printf("Main conmpleted\in");
return O;

Output:

Enter Testcase - QPOWEST/ TPI SI NO

Create 1 threads
Join to threads

I nside the function
In a secondary thread
I nside the function
In the initial thread
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread is_multithreaded _np()--Check Current
Number of Threads

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>
int pthread is _multithreaded np(void);

Threadsafe: Yes
Signal Safe: Yes

Thepthread_is multithreaded_np() function returnstrue or false, indicating whether the current process
has more than one thread. A return value of zero indicates that the calling thread is the only thread in the
process. A value not equal to zero, indicates that there were multiple other threads in the process at the time
of the call to pthread_is multithreaded_np().

Thetotal number of threads currently in the process can be determined by adding 1 to the return value of
pthread_is multithreaded_np().

Note: Thisfunction is not portable.

Authorities and Locks

None.

Parameters

None.

Return Value

0
No other threads exist in the process.
value
There are currently valuet 1 total threads in the process.

Error Conditions

None.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
o pthread is initidthread np()--Check if Running in the Initial Thread

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

#defi ne NUMIHREADS 3

voi d *threadfunc(void *parn

{
i nt myHi | d;
i nt nmyl d;
pt hread_t me = pthread_self();
printf("Inside the New Thread\n");
sleep(2); /* Sleep is not a very robust way to serialize threads */
return NULL;

}

int main(int argc, char **argv)

{
pt hread_t t hr ead][NUMIHREADS] ;
i nt r c=0;
i nt t heHi 1 d=0;
i nt t hel d=0;
i nt i =0;

printf("Enter Testcase - %\n", argv[O0]);
printf("Create %l threads\n", NUMIHREADS);

for (i=0; i<NUMIHREADS; ++i) {
rc = pthread_create(& hread[i], NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);
printf("Main: Currently % threads\n",
pthread is_multithreaded np() + 1);
}

printf("Join to threads\n");
for (i=0; i<NUMIHREADS; ++i)
rc = pthread_join(thread[i], NULL);

checkResul ts("pthread join()\n", rc);

}
if (rc = pthread_is _multithreaded _np()) {
printf("Error: %l Threads still exist!\n",
exit(l);
}
printf("Miin conpleted\n");
return O;
}
Output:

Enter Testcase - QPOWEST/ TPl SMIo
Create 3 threads

Main: Currently 2 threads

Main: Currently 3 threads

Main: Currently 4 threads

Join to threads

I nside the New Thread

I nside the New Thread

I nside the New Thread

Mai n conpl et ed

rc+l);

Top | Pthread APIs | APIs by category

pthread join()--Wait for and Detach Thread

Syntax:

#i ncl ude <pt hread. h>
int pthread join(pthread t thread, void **status);

Threadsafe: Yes
Signal Safe: No

The pthread_join() function waits for athread to terminate, detaches the thread, then returns the threads
exit status.

If the status parameter isNUL L, the threads exit status is not returned.
The meaning of the threads exit status (val ue returned to the status memory location) is determined by the

application, except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of
PTHREAD_CANCELED ismade available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator
intervention or other proprietary OS/400 mechanism, the exit status of
PTHREAD_EXCEPTION_NP is made available.

Eventually, you should call pthread_join(), pthread_detach() or pthread_extendedjoin_np() without
specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of
PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the
thread. Failure to join to or detach joinable threads causes memory and other resource leaks until the
process ends.

Authorities and Locks

None.

Parameters

thread
(Input) Pthread handle to the target thread
status
(Output) Address of the variable to receive the thread's exit status

Return Value

0

pthread_join() was successful.
value

pthread_join() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_join() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.
[ESRCH]

The thread specified could not be found.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
» pthread detach()--Detach Thread

» pthread exit()--Terminate Calling Thread

» pthread extendedjoin _np()--Wait for Thread with Extended Options
o pthread join _np()--Wait for Thread to End

Example

#define _MULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

int okStatus = 34;
voi d *t hreadfunc(void *parm
{
printf("Inside secondary thread\n");
return __ VO D(okSt at us);
}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt r c=0;

voi d *stat us;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create thread using attributes that allow join\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);

printf("Wait for the thread to exit\n");

rc = pthread_joi n(thread, &status);

checkResul ts("pthread join()\n", rc);

if (__INT(status) != okStatus) {
printf("Secondary thread failed\n");
exit(1);

}

printf("Got secondary thread status as expected\n");
printf("Min conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPJO NO

Create thread using attributes that allow join
Wait for the thread to exit

I nsi de secondary thread

Cot secondary thread status as expected

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread join_np()--Wait for Thread to End

Syntax:

#i ncl ude <pt hread. h>
int pthread join_np(pthread_t thread, void **status);

Threadsafe: Yes
Signal Safe: No

The pthread_join_np() function waits for athread to terminate, then returns the threads exit status, while
leaving the data structures of the thread available for alater call to pthread_join(), pthread_join_np(),
pthread_detach(), or pthread_extendedjoin_np()

If the status parameter isNUL L, the thread's exit status is not returned.
The meaning of the threads exit status (value returned to the status memory location) is determined by the

application except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of
PTHREAD_CANCELED ismade available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator
intervention, or other proprietary OS/400 mechanism, the exit status of
PTHREAD_EXCEPTION_NP is made available.

Eventually, you should call pthread_join(), pthread_detach(), or pthread_extendedjoin_np() without
specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of
PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the thread.
Failureto join to or detach joinable threads causes memory and other resource leaks until the process ends.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

thread
(Input) Pthread handle to the target thread
status
(Output) Address of the variable to receive the thread's exit status

Return Value

0
pthread join_np() was successful.
value
pthread_join_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_join_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]

The value specified for the argument is not correct.
[ESRCH]

The thread specified could not be found.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
» pthread detach()--Detach Thread

» pthread exit()--Terminate Calling Thread

« pthread extendedjoin _np()--Wait for Thread with Extended Options
pthread join()--Wait for and Detach Thread

Example

#define _MULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

int okStatus = 12;
voi d *t hreadfunc(void *parm

printf("Inside secondary thread\n");
return __ VO D(okSt at us);

}
int main(int argc, char **argv)

pt hread_t t hr ead;
i nt r c=0;

}

voi d *st at us;
printf("Enter Testcase - %\n", argv[O0]);

printf("Create thread using attributes that allow join\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);

printf("Wait for the thread to exit\n");

rc = pthread_join_np(thread, &status);

checkResul ts("pthread join_np()\n", rc);

if (__INT(status) != okStatus) {
printf("Secondary thread failed\n");
exit(1);

}

printf("Wth pthread join_np(), we can join repeatedl y\n");
rc = pthread_join_np(thread, &status);
checkResul ts("pthread join_np()\n", rc);
if (__INT(status) != okStatus) {
printf("Secondary thread failed\n");
exit(1);
}

printf("Got secondary thread status as expected\n");

/* Eventually, we should use pthread_join() or pthread detach() */

rc = pthread_detach(thread);
checkResul t s("pthread _detach()\n", rc);

printf("Miin conpleted\n");
return O;

Output:

Enter Testcase - QPOWEST/ TPJO NNO

Create thread using attributes that allow join
Wait for the thread to exit

I nsi de secondary thread

Wth pthread_join_np(), we can join repeatedly
CGCot secondary thread status as expected

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread key create()--Create Thread Local
Storage Key

Syntax:

#i ncl ude <pt hread. h>
int pthread key create(pthread key t *key, void (*destructor)(void *));

Threadsafe: Yes
Signal Safe: No

The pthread_key create() function creates athread local storage key for the process and associates the
destructor function with that key. After akey is created, that key can be used to set and get per-thread data
pointer. When pthread_key create() completes, the value associated with the newly created key isNULL.

When athread terminates, if both the value and the destructor associated with athread local storage key are
not NUL L, the destructor function is called. The stored pointer associated with the key is set to NULL
before the call to the destructor funciton. The parameter passed to the destructor function when it iscalled is
the value of the pointer before it was set to NULL that is associated with that key in the thread that is
terminating.

After calling the destructors, if there are still non NUL L values in the thread associated with the keys, the
processis repeated. After PTHREAD _DESTRUCTOR_ITERATIONS attempts to destroy the thread
local storage, no further attempts are made for that thread local storage value/key combination.

Do not call pthread_exit() from a destructor function.

A destructor function is not called as aresult of the application calling pthread_key delete().

Authorities and Locks

None.

Parameters

key
(Output) The address of the variable to contain the thread local storage key
destructor
(Input) The address of the function to act as a destructor for this thread local storage key

Return Value

0
pthread_key create() was successful.
value
pthread_key create() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_key create() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.
[EAGAIN]

The system did not have enough resources, or the maximum of PTHREAD _KEYS MAX would
have been exceeded.

[ENOMEM]
Not enough memory to create the key.

Related Information

The <pthread.h> header file. See Header files for Pthread functions.
pthread getspecific()--Get Thread L ocal Storage Vaue by Key
pthread key delete()--Delete Thread Loca Storage Key

» pthread setspecific()--Set Thread Local Storage by Key

Example

#define _MULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <sched. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_key _t tl skey = 0;

voi d gl obal Destructor(void *val ue)

{
printf("In the data destructor\n");
free(val ue);
pt hread_setspecific(tlsKey, NULL);

}

int main(int argc, char **argv)

i nt rc=0;
i nt i =0;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a thread | ocal storage key\n");

rc = pthread_key_create(& | sKey, global Destructor);
checkResul ts("pthread_key create()\n", rc);

/* The key can now be used fromall threads */

printf("- The key can now be used fromall threads\n");
printf("- in the process to storage thread | ocal\n");
printf("- (but global to all functions in that thread)\n");
printf("- storage\n");

printf("Delete a thread | ocal storage key\n");

rc = pthread_key_del ete(tl sKey);
checkResul t s("pthread_key delete()\n", rc);

/* The key and any remai ni ng val ues are now gone. */
printf("Min conpleted\n");

return O;

}

Output:

Enter Testcase - QPOWEST/ TPKEYCO

Create a thread | ocal storage key

- The key can now be used fromall threads

- in the process to storage thread | ocal

- (but global to all functions in that thread)
- storage

Delete a thread | ocal storage key

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread key delete()--Delete Thread Local
Storage Key

Syntax:

#i ncl ude <pt hread. h>
int pthread key del ete(pthread key t key);

Threadsafe: Yes
Signal Safe: No

Thepthread_key delete() function deletes a process-wide thread local storage key. The
pthread key delete() function does not run any destructors for the values associated with key in any
threads. After akey isdeleted, it may be returned by a subsequent call to pthread key create().

An attempt to delete akey that is out of range or not valid failswith EINVAL. An attempt to delete avalid
key that has already been deleted or has not been returned from pthread _key create() failswith ENOENT.

Authorities and Locks

None.

Parameters

key
(Input) The thread local storage key returned from pthread_key create()

Return Value

0
pthread key delete() was successful.
value
pthread_key delete() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_key delete() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

A destructor function is not called as aresult of the application calling pthread _key delete().

[EINVAL]

The value specified for the argument is not correct.
[ENOENT]

An entry for the key is not currently allocated.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
« pthread getspecific()--Get Thread Local Storage Value by Key

« pthread key create()--Create Thread Local Storage Key

» pthread setspecific()--Set Thread L ocal Storage by Key

Example

#define MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_key _t tl skey = 0;
voi d gl obal Destructor(void *val ue)
printf("In global data destructor\n");

free(val ue);
pt hread_set speci fic(tl sKey, NULL);

}
int main(int argc, char **argv)
{

i nt r c=0;

i nt i =0;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a thread | ocal storage key\n");

rc = pthread_key_create(&t|sKey, global Destructor);
checkResul t s("pthread_key_create()\n", rc);

/* The key can now be used fromall threads */

printf("Delete a thread | ocal storage key\n");
rc = pthread_key_del ete(tl sKey);
checkResul t s("pthread_key_delete()\n", rc);

printf("- The key should not be used fromany thread\n");
printf("- after destruction.\n");

/* The key and any remnai ni ng val ues are now gone. */
printf("Min conmpleted\n");

return O;

}

Output:

Enter Testcase - QPOWEST/ TPKEYDO

Create a thread | ocal storage key

Delete a thread | ocal storage key

- The key should not be used from any thread
- after destruction.

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread_kill()--Send Signal to Thread

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sys/signal . h>
int pthread kill(pthread t thread, int sig);

Threadsafe: Yes

Signal Safe: No

The pthread_kill() function requests that the signal sig be delivered to the specified thread. The signal to
be sent is specified by sig and is either zero or one of the signals from the list of defined signalsin the
<syg/signal.h> header file. If sigis zero, error checking is performed, but no signal is sent to the target
thread.

A thread can use pthread_kill() to send asignal to itself. If the signal is not blocked or ignored, at |east one
pending unblocked signal is delivered to the sender before pthread_kill() returns. If there are no other
pending unblocked signals, the delivered signal is sig.

The pthread_Kkill() APl in no way changes the effect or scope of asignal. Even though asignal can be sent
to a specific thread using the pthread_Kill() API, the behavior that occurs when the signal is delivered is
unchanged.

For example, sending aSIGKILL signa to athread using pthread_kill() ends the entire process, not

simply the target thread. SIGKILL isdefined to end the entire process, regardless of the thread it is
delivered to, or how it is sent.

Authorities and Locks

None.

Parameters

thread
(Input) Pthread handle of the target thread
sig
(Input) The signal number to be delivered or zero to validate the pthread t

Return Value

0
pthread_kill() was successful.
value

pthread_Kkill() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_kill() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[ESRCH]

No thread could be found that matched the thread ID specified.
[EINVAL]

The value specified for the argument is not correct.
[ENOTSIGINIT]

The processis not enabled for signals.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread sigmask()--Set or Get Signal Mask
« pthread signa to cancel np()--Convert Signals to Cancel Requests

Example

#def i ne _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude <sys/signal. h>
#i ncl ude "check. h"

#def i ne NUMIHREADS 3
voi d si ghand(int signo);

void *threadfunc(void *parm

{
pt hread_t self = pthread_sel f();
pthread id np_t tid;
i nt rc;

pt hread_get uni que_np(&sel f, &id);
printf("Thread 0x% 8x % 8x entered\n", tid);
errno = O;
rc = sleep(30);
if (rc !'=0 & errno == EINTR) {
printf("Thread 0x% 8x % 8x got a signal delivered to it\n",
tid);
return NULL;

}
printf("Thread 0x% 8x % 8x did not get expected results! rc=%l,

errno=%\ n",
tid, rc, errno);
return NULL;

}
int main(int argc, char **argv)
{
i nt rc;
i nt [
struct sigaction actions;
pt hread t t hr eads[NUMIHREADS] ;
printf("Enter Testcase - %\n", argv[O0]);
printf("Set up the alarm handl er for the process\n");
menset (&actions, 0, sizeof(actions));
si genptyset (&acti ons. sa_mask) ;
actions.sa _flags = 0;
actions. sa_handl er = si ghand;
rc = sigaction(SI GALRM &acti ons, NULL) ;
checkResul ts("sigaction\n", rc);
for(i=0; i<NUMIHREADS; ++i) {
rc = pthread _create(& hreads[i], NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);
}
sl eep(3);
for(i=0; i<NUMIHREADS; ++i) {
rc = pthread kill (threads[i], SIGALRM;
checkResul ts("pthread kill()\n", rc);
}
for(i=0; i<NUMIHREADS; ++i) {
rc = pthread_join(threads[i], NULL);
checkResul ts("pthread join()\n", rc);
}
printf("Min conpleted\n");
return O;
}
voi d sighand(int signo)
pt hread t self = pthread_sel f();
pthread id np_t tid;

pt hread _get uni que_np(&sel f, &tid);

printf("Thread 0x% 8x % 8x in signal handler\n",
tid);

return;

}

Output:

Enter Testcase - QPOWEST/ TPKI LLO
Set up the alarm handler for the process

Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

Mai n conpl et ed

0000000c
0000000d
0000000e
0000000c
0000000c
0000000d
0000000d
0000000e
0000000e

ent ered

ent ered

ent ered

in signal handl er

got a signal delivered to it
in signal handl er

got a signal delivered to it
in signal handl er

got a signal delivered to it

Top | Pthread APIs| APIs by category

pthread lock global np()--Lock Global Mutex

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>
i nt pthread_| ock_gl obal _np(void);

Threadsafe: Yes

Signal Safe: Yes

The pthread_lock_global_np() function locks a global mutex provided by the pthreads run-time. The global
mutex is arecursive mutex with a name of "QPOW_GLOBAL_MTX". The global mutex is not currently used
by the pthreads run-time to serialize access to any system resources, and is provided for application use only.

The maximum number of recursive locks by the owning thread is 32,767. After which, attempts to lock the
mutex will return the ERECURSE error.

Note: Thisfunction is not portable

Authorities and Locks

None.

Parameters

None.

Return Value

0
pthread_lock_global _np() was successful.
value
pthread lock global np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_lock_global_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.
[ERECURSE]

The recursive mutex cannot be recursively locked again.

Related Information

» The<pthread.h> header file. See Header files for Pthread functions.
» pthread unlock global np()--Unlock Global Mutex

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdi o. h>
#i ncl ude "check. h"
/*
Thi s exanpl e shows the corruption that can result if no
serialization is done and al so shows the use of
pt hread_| ock_global _np(). Call this test with no paraneters
to use pthread | ock gloabl _np() to protect the critical data,
bet ween nore than one (possibly unrelated) functions.
Use 1 or nore paraneters to skip | ocking and
show data corruption that occurs w thout | ocking.
*/

#defi ne LOOPCONSTANT 50000
#defi ne THREADS 10

i nt Lkl

i nt usel ock=1;

voi d secondFuncti on(voi d)

.
int rc;
i f (uselock) {
rc = pthread_l ock_gl obal _np();
checkResul t s("pthread | ock_gl obal _np()\n", rc);
}
LT R L
i f (uselock) {
rc = pthread_unl ock_gl obal _np();
checkResul t s(" pt hread_unl ock_gl obal _np()\n", rc);
}
}
void *threadfunc(void *parm
{
i nt | oop = 0;
i nt rc;

for (1oop=0; | o0op<LOOPCONSTANT; ++loop) {
i f (uselock) {
rc = pthread | ock_gl obal _np();
checkResul t s("pthread_I ock_gl obal _np()\n", rc);
}

+Hi 4 k)
secondFunction();
+Hi 4 K

if (uselock) {

rc = pthread_unl ock_gl obal _np();
checkResul t s(" pt hread_unl ock_gl obal _np()\n", rc);

}
}
return NULL;

}
int main(int argc, char **argv)
{
pt hread_t t hr eadi d[THREADS] ;
i nt r c=0;
i nt | oop=0;
printf("Enter Testcase - %\n", argv[0]);
printf("G ve any nunber of parameters to show data corruption\n");
if (argc 1= 1) {
printf("A paraneter was specified, no serialization is being done!'\n");
usel ock = 0;
}
i f (uselock) {
rc = pthread_| ock_gl obal _np();
checkResul t s(" pt hread_I ock_gl obal _np() (rmain)\n", rc);
}
printf("Creating % threads\n", THREADS)
for (1oop=0; |o00p<THREADS; ++l oop) {
rc = pthread_create(& hreadid[| oop], NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);
}
sl eep(5);
if (uselock) {
rc = pthread_unl ock_gl obal _np();
checkResul t s(" pt hread_unl ock_gl obal _np() (main)\n", rc);
}
printf("Wait for results\n");
for (l1oop=0; | o00p<THREADS; ++l oop) {
rc = pthread_join(threadid[loop], NULL);
checkResul ts("pthread_join()\n", rc);
}
printf("\nUsing % threads and LOOPCONSTANT = %\ n",
THREADS, LOOPCONSTANT) ;
printf("Values are: (should be %)\n", THREADS * LOOPCONSTANT) ;
printf(" ==>%l, %, %, %\n", i, j, k, |);
printf("Min conpleted\n");
return O;
}
Output:

Enter Testcase - QPOWEST/ TPMIXGLBO

G ve any nunber of paraneters to show data corruption
Creating 10 threads

Wait for results

Using 10 threads and LOOPCONSTANT = 50000

Val ues are: (should be 500000)
==>500000, 500000, 500000, 500000
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutex_destroy()--Destroy Mutex

Syntax:

#i ncl ude <pt hread. h>
int pthread nutex_destroy(pthread mutex_ t *nutex);

Threadsafe: Yes
Signal Safe: Yes

The pthread_mutex_destroy() function destroys the named mutex. The destroyed mutex can no longer be
used.

If pthread_mutex_destroy() is called on amutex that is locked by another thread, the request fails with an
EBUSY error. If the calling thread has the mutex locked, any other threads waiting for the mutex using a
call to pthread_mutex_lock() at the time of the call to pthread_mutex_destroy() fails with the
EDESTROYED error.

Mutex initialization using the PTHREAD_MUTEX _INITIALIZER does not immediately initialize the
mutex. Instead, on first use, pthread_mutex_lock() or pthread_mutex_trylock() branchesinto a slow
path and causes the initialization of the mutex. Because a mutex is not just a simple memory object and
requires that some resources be allocated by the system, an attempt to call pthread_mutex_destroy() or
pthread_mutex_unlock() on amutex that has statically initialized using
PTHREAD_MUTEX_INITIALER and was not yet locked causes an EINVAL error.

Every mutex must eventually be destroyed with pthread_mutex_destroy(). The machine eventually
detects the error if amutex is not destroyed, but the storage is deallocated or corrupted. The machine then
creates LIC log synchronization entries that indicate the failure to help debug the problem. Large numbers
of these entries can affect system performance and hinder debug capabilities for other system problems.
Always use pthread_mutex_destroy() before freeing mutex storage to prevent these debug L1C log
entries.

Note: Once amutex is created, it cannot be validly copied or moved to a new location.

Authorities and Locks

None.

Parameters

mutex
(Input) Address of the mutex to be destroyed

Return Value

0
pthread_mutex_destroy() was successful.
value
pthread _mutex_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EBUSY]

The mutex is currently owned by another thread.
[EINVAL]

The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
» pthread mutex_init()--Initialize Mutex

» pthread mutex lock()--Lock Mutex

« pthread mutex_trylock()--L ock Mutex with No Wait

o pthread mutex unlock()--Unlock Mutex

Example

#i ncl ude <pthread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

pt hread_nut ex_t mut ex;

int main(int argc, char **argv)
{
i nt rc=0;
pt hread_nutexattr _t n a;

printf("Entering testcase\n");
printf("Create the mutex using the NULL attributes (default)\n");

rc = pthread_mutex_init(&mutex, NULL);
checkResul ts("pthread_nutex_init(NULL)\n", rc);

printf("Destroy all mutexes\n");

pt hread _nut ex_dest r oy(&ut ex) ;
checkResul t s("pthread nutex_destroy()\n", rc);

printf("Miin conpleted\n");
return O;

}
Output:

Entering testcase

Create the nutex using the NULL attributes (default)
Destroy all nutexes

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutex_init()--Initialize Mutex

Syntax:

#i ncl ude <pt hread. h>
int pthread nutex_init(pthread nutex_t *nutex,
const pthread nutexattr t *attr);

pthread nmutex t nutex = PTHREAD MUTEX | NI Tl ALI ZER;
Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_init() function initializes a mutex with the specified attributes for use. The new mutex
may be used immediately for serializing critical resources. If attr is specified asNULL, all attributes are set
to the default mutex attributes for the newly created mutex.

With these declarations and initialization:

pt hread nutex t nmut ex2;
pt hread nutex t mut ex3;
pt hread nutexattr t n a;

pt hread nutexattr_init(&ma);

The following three mutex initialization mechanisms have equivalent function.

pt hread_nut ex_t mut exl = PTHREAD MUTEX | NI Tl ALI ZER;
pt hread_nutex_init(&mutex2, NULL);
pt hread_nutex_init(&mutex3, &nta);

All three mutexes are created with the default mutex attributes.

Every mutex must eventually be destroyed with pthread_mutex_destroy(). The machine eventually
detectsthe error if amutex is not destroyed. Large numbers of these entries can affect system performance.
Always use pthread_mutex_destroy() before freeing or reusing mutex storage.

Once amutex is created, it cannot be validly copied or moved to a new location. If the mutex is copied or
moved to a new location, the new object is not valid and cannot be used. Attempts to use the new object
result in the EINVAL error.

Note: Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize
the mutex. Instead, on first use, the pthread_mutex_lock() or pthread_mutex_trylock() functions branch
into aslow path and cause the initialization of the mutex. Because a mutex is not just a simple memory
object and requires that some resources be allocated by the system, an attempt to call
pthread_mutex_destroy() or pthread_mutex_unlock() on amutex that was statically initialized using
PTHREAD_MUTEX_INITIALER and was not yet locked causes an EINVAL error.

Authorities and Locks

None.

Parameters

mutex
(Input) The address of the variable to contain a mutex object.
attr
(Input) The address of the variable containing the mutex attributes object.

Return Value

0
pthread_mutex_init() was successful.
value
pthread _mutex_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.
[ENOMEM]
The system cannot allocate the resources required to create the mutex.

Related Information

o The<pthread.h> header file. See Header files for Pthread functions.
« pthread mutex_destroy()--Destroy Mutex

» pthread mutex lock()--Lock Mutex

» pthread mutex trylock()--Lock Mutex with No Wait

pthread mutex unlock()--Unlock M utex

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread _nut ex_t mut ex = PTHREAD MUTEX | NI Tl ALI ZER;
pt hread _nut ex_t mut ex2;
pt hread nut ex_t nmut ex3;

int main(int argc, char **argv)

{

}

i nt r c=0;
pt hread nutexattr t n a;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a default mutex attribute\n");
rc = pthread nutexattr _init(&ma);
checkResul ts("pthread _nmutexattr_init\n", rc);

printf("Create the nutexes using the default mutex attributes\n");
printf("First mutex created via static PTHREAD MJUTEX I NI TI ALI ZER\n");

printf("Create the mutex using the NULL attributes (default)\n");
rc = pthread nutex_init(&utex3, NULL);
checkResul ts("pthread nutex_init(NULL)\n", rc);

printf("Create the nutex using a nutex attributes object\n");
rc = pthread nutex_init(&mutex2, &ma);
checkResul ts("pthread mutex_init(na)\n", rc);

printf("- At this point, all nutexes can be used with their\n");
printf("- default attributes fromany threads that want to\n");
printf("- use themn");

printf("Destroy all mutexes\n");
pt hr ead_nut ex_dest r oy(&rut ex) ;
pt hread_nut ex_dest r oy(&rut ex2) ;
pt hread_nut ex_dest r oy(&rut ex3) ;

printf("Main conmpleted\in");
return O;

Output:

Enter Testcase - QPOWEST/ TPMIXI NI O

Create a default nutex attribute

Create the nmutexes using the default nmutex attributes
First nutex created via static PTHREAD MJTEX | NI Tl ALI ZER
Create the nmutex using the NULL attributes (default)
Create the nmutex using a nutex attributes object

- At this point, all mutexes can be used with their
- default attributes fromany threads that want to
- use them

Destroy all nutexes

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutex_lock()--Lock Mutex

Syntax:

#i ncl ude <pthread. h>
i nt pthread_nutex_| ock(pthread_mutex_t *mutex);

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_lock() function acquires ownership of the mutex specified. If the mutex currently is
locked by another thread, the call to pthread_mutex_lock() blocks until that thread relinquishes ownership by a
call to pthread_mutex_unlock().

If asignal is delivered to athread while that thread is waiting for a mutex, when the signal handler returns, the
wait resumes. pthread_mutex_lock() does not return EINTR like some other blocking function calls.

Use the CL command WRKJOB, option 20, to help you debug mutex deadlocks.

Destroying a held mutex is acommon way to serialize destruction of objects that are protected by that mutex.
Thisactionisalowed. The call to pthread_mutex_lock() may fail with the EDESTROY ED error if the mutex
is destroyed by the thread that was currently holding it.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the
mutex. Instead, on first use, pthread_mutex_timedlock_np() or pthread_mutex_lock() or
pthread_mutex_trylock() branchesinto a slow path and causes the initialization of the mutex. Because a
mutex is not just a simple memory object and requires that some resources be allocated by the system, an
attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically
initialized using PTHREAD_MUTEX_INITIALER and was not yet locked causes an EINVAL error.

A pthread mutex is a structure of type pthread_mutex_t that implement a behavior based on the Pthread
mutexes. An M1 mutex is a structure built into the machine that implement asimilar sort of serialization
construct.

The maximum number of recursive locks by the owning thread is 32,767. When this number is exceeded,
attemptsto lock the mutex return the ERECURSE error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by athread to relock an already held
mutex, or to lock a mutex that was held by another thread when that thread terminated, result in a deadlock
condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when athread relocks an aready held mutex. If
athread attempts to relock a mutex that it already holds, the lock request fails with the EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks for
deadlock conditions that occur when athread relocks an already held mutex. If athread attemptsto relock a

mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm mutex also checks
for deadlock conditions that occur when athread attempts to lock a mutex that was held by another thread when
that thread terminated (an orphaned mutex). If athread attempts to lock an orphaned mutex, the lock request
failswith the EOWNERTERM error.

When athread terminates the holding of a mutex lock on a normal or errorcheck mutex, other threads that wait
for that mutex will block forever. The pthreads run-time simulates the deadlock that has occurred in your
application. When you are attempting to debug these deadlock scenarios, the CL command WRKJOB, option
20 shows the thread as in a condition wait. Displaying the call stack shows that the function
deadlockedOnOrphanedM utex isin the call stack.

When athread attempts to acquire a normal mutex that it already holds, the thread will block forever. The
pthreads run-time simulates the deadlock that has occurred in your application. When you are attempting to
debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread as in a condition wait.
Displaying the call stack will show that the function deadlockedOnAlreadyL ockedM utex isin the call stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

None.

Parameters

mutex
(Input) The address of the mutex to lock

Return Value

0
pthread_mutex_lock() was successful.
value
pthread_mutex_lock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_lock() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.
[EDESTROYED]

While waiting for the mutex lock to be satisfied, the mutex was destroyed.
[EOWNERTERM]

A thread terminated the holding of the mutex, and the mutex is an ownerterm mutex type.
[EDEADLK]

A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.

[ERECURSE]

The recursive mutex cannot be recursively locked again.

Related Information

» The<pthread.h> header file. See Header files for Pthread functions.
» pthread mutex_destroy()--Destroy Mutex

o pthread mutex init()--Initialize Mutex
o pthread mutex trylock()--Lock Mutex with No Wait

o pthread mutex unlock()--Unlock Mutex

Example

#i

ncl ude <pthread. h>

#i ncl ude <stdi o. h>

#i ncl ude "check. h"

/*
Thi s exanpl e shows the corruption that can result if no
serialization is done and al so shows the use of
pthread_nmutex lock(). Call it with no paraneters
to use pthread _nmutex lock() to protect the critical section,
or 1 or nore paraneters to show data corruption that occurs
wi t hout | ocki ng.
*/

#def i ne L OOPCONSTANT 100000

#def i ne THREADS 10

pt hr ead_nut ex_t nmut ex = PTHREAD MUTEX | NI Tl ALI ZER;

i nt i,k 1;

i nt usel ock=1;

void *threadfunc(void *parm

{

i nt | oop = O;
i nt rc;

for (1oop=0; | o0op<LOOPCONSTANT; ++loop) {
i f (uselock) {
rc = pthread nut ex | ock(&mut ex) ;
checkResul t s("pthread_nutex_l ock()\n", rc);

i—+i; ++j; ++k; +H
if (uselock) {

rc = pthread_mut ex_unl ock(&t ex) ;

checkResul t s(" pt hread_nut ex_unl ock()\n", rc);

}
}
return NULL;

int main(int argc, char **argv)

{

pt hread_t t hr eadi d[THREADS] ;
i nt rc=0;

i nt | oop=0;
pthread_attr _t pt a;

printf("Entering testcase\n");

printf("G ve any nunber of parameters to show data corruption\n");

if (argc !'=1) {
printf("A paraneter was specified, no serialization is being done!\n");
usel ock = 0;

}

pthread_attr_init(&pta);
pthread_attr_setdetachstate(&pta, PTHREAD CREATE JO NABLE);

printf("Creating % threads\n", THREADS);

for (1oop=0; | o00p<THREADS; ++l oop) {
rc = pthread_create(& hreadid[| oop], &pta, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);

}

printf("Wait for results\n");

for (1oop=0; |o00p<THREADS; ++l oop) {
rc = pthread_join(threadid[loop], NULL);
checkResul ts("pthread join()\n", rc);

}

printf("d eanup and show results\n");
pt hread_attr_destroy(&pta);
pt hr ead_mut ex_dest r oy(&mut ex) ;

printf("\nUsing % threads and LOOPCONSTANT = %\ n",
THREADS, LOOPCONSTANT) ;
printf("Values are: (should be %)\n", THREADS * LOOPCONSTANT) ;

printf(" ==>%, %, %, %\n", i, j, k, |);
printf("Min conpleted\n");
return O;

}

Output:

Entering testcase

G ve any nunber of paraneters to show data corruption
Creating 10 threads

Wait for results

Cl eanup and show results

Using 10 threads and LOOPCONSTANT = 100000
Val ues are: (should be 1000000)

==>1000000, 1000000, 1000000, 1000000

Mai n conpl et ed

Output:

(data corruption without locking example)

Entering testcase

G ve any nunber of paraneters to show data corruption

A paraneter was specified, no serialization is being done!
Creating 10 threads

Wait for results

Cl eanup and show results

Using 10 threads and LOOPCONSTANT = 100000
Val ues are: (should be 1000000)

==>883380, 834630, 725131, 931883
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread _mutex_timedlock np()--Lock Mutex
with Time-Out

Syntax:

#i ncl ude <pt hread. h>
int pthread nutex_tinmedl ock_np(pthread_nmutex_t *mutex,
const struct tinmespec *deltatine);

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_timedlock_np() function acquires ownership of the mutex specified. If the mutex is
currently locked by another thread, the call to pthread _mutex_timedlock _np() will block until the
specified deltatime has elapsed or the holding thread relinquishes ownership by acall to

pthread _mutex_unlock().

Performing apthread_mutex_timedlock _np() wait for amutex has different semantics related to signa
handling than the pthread_mutex_lock() function. If asignal is delivered to athread while that thread is
performing atimed wait for amutex, the signal is held pending until either the mutex is acquired or the
time-out occurs. At that time the signal handler will run, when the signal handler returns,
pthread_mutex_timedlock() will return the results of the timed mutex wait.

Use the CL command WRKJOB, option 20 for a screen that will aid in debugging mutex deadlocks.

Destroying a held mutex is acommon way to serialize destruction of objects that are protected by that
mutex, and is allowed. The call to pthread_mutex_timedlock_np() may fail with the EDESTROYED
error if the mutex is destroyed by the thread that was currently holding it.

Note that mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately
initialize the mutex. Instead, on first use, pthread_mutex_timedlock_np(), pthread_mutex_lock() or
pthread_mutex_trylock() branchesinto a slow path and causes the initialization of the mutex. Because a
mutex is not just a ssimple memory abject, and requires that some resources be allocated by the system, an
attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that has was stetically
initialized using PTHREAD _MUTEX_INITIALER and was not yet locked will result in an EINVAL
error.

A pthread mutex is a structure of type pthread_mutex_t that implement a behavior based on the Pthread
mutexes. An M| mutex is a structure built into the machine that implement a similar sort of serialization
construct.

The maximum number of recursive locks by the owning thread is 32,767. After which, attemptsto lock the
mutex will return the ERECURSE error.

Note: Thisfunction isnot portable

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by athread to relock an already held
mutex, or to lock a mutex that was held by another thread when that thread terminated result in a deadlock
condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when athread re-locks an already held
mutex. If athread attemptsto relock a mutex that it already holds, the lock request fails with the
EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks for
deadlock conditions that occur when athread re-locks an already held mutex. If athread attempts to relock
amutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm mutex also
checks for deadlock conditions that occur when athread attempts to lock a mutex that was held by another
thread when that thread terminated (an orphaned mutex). If athread attemptsto lock an orphaned mutex,
the lock request fails with the EOWNERTERM error.

When a thread terminates holding a mutex lock on anormal or errorcheck mutex, other threads that wait for
that mutex will block forever. The pthreads run-time simulates the deadlock that has occurred in your
application. When attempting to debug these deadlock scenarios, the CL command WRKJOB, option 20
will show the thread asin a condition wait. Displaying the call stack will show that the function
deadlockedOnOrphanedM utex isin the call stack.

When athread attempts to acquire anormal mutex that it already holds, the thread will block forever. The
pthreads run-time simul ates the deadlock that has occurred in your application. When attempting to debug
these deadlock scenarios, the CL command WRKJOB, option 20 will show the thread as in a condition
wait. Displaying the call stack will show that the function deadlockedOnAlreadyL ockedMutex isin the
call stack.

In order to change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

None.

Parameters

mutex
(Input) The address of the mutex to lock

Return Value

0
pthread_mutex_timedlock np() was successful.
value

pthread_mutex_timedlock _np() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_mutex_timedlock_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[EDESTROYED]

While waiting for the mutex lock to be satisfied, the mutex was destroyed.
[EBUSY]

The attempt to lock the mutex timed out because the mutex was already locked.
[EOWNERTERM]

A thread terminated holding the mutex, and the mutex is an ownerterm mutex type.
[EDEADLK]

A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.
[ERECURSE]

The recursive mutex cannot be recursively locked again.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
» pthread mutex_destroy()--Destroy Mutex

« pthread mutex init()--Initialize Mutex

« pthread mutex lock()--L ock Mutex

o pthread mutex trylock()--Lock Mutex with No Wait

o pthread mutex unlock()--Unlock Mutex

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_nut ex_t nmut ex = PTHREAD MUTEX | NI Tl ALI ZER;
void *threadFunc(void *parn

{

i nt rc;

i nt i
struct tinespec deltatine;

deltatine.tv_sec = 5;
deltatine.tv_nsec = O;

printf("Timed | ock the nutex froma secondary thread\n");
rc = pthread_nutex_tinmedl ock_np(&mutex, &deltatine);
if (rc !'= EBUSY) {

printf("Got an incorrect return code from

pt hread _nutex_ti nmedl ock_np\n");

}

printf("Thread mutex tineout\n");
return O;

int main(int argc, char **argv)

{

}

i nt rc=0;
pt hread t t hr ead;

printf("Enter Testcase - %\n", argv[O0]);

printf("Acquire the nmutex in the initial thread\n");
rc = pthread_mnut ex_ | ock(&t ex);
checkResul ts("pthread nutex | ock()\n", rc),

printf("Create a thread\n");
rc = pthread_create(& hread, NULL, threadFunc, NULL);
checkResul ts("pthread create()\n", rc);

printf("Join to the thread\n");
rc = pthread_joi n(thread, NULL);
checkResul ts("pthread join()\n", rc);

printf("Destroy nutex\n");
pt hread _nut ex_dest r oy(&t ex) ;

printf("Min conpleted\n");
return O;

Output:

Enter Testcase - QPOWEST/ TPMIXTI MD

Acquire the nmutex in the initial thread
Create a thread

Join to the thread

Timed lock the mutex froma secondary thread
Thread nutex tineout

Destroy mut ex

Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread _mutex_trylock()--Lock Mutex with No
Wait

Syntax:

#i ncl ude <pt hread. h>
int pthread nutex_ trylock(pthread mutex_t *nutex);

Threadsafe: Yes
Signal Safe: Yes

The pthread_mutex_trylock() function attempts to acquire ownership of the mutex specified without
blocking the calling thread. If the mutex is currently locked by another thread, the call to
pthread _mutex_trylock() returns an error of EBUSY .

A failure of EDEADLK indicates that the mutex is already held by the calling thread.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the
mutex. Instead, on first use, pthread_mutex_timedlock_np() or pthread_mutex_lock() or
pthread_mutex_trylock() branchesinto aslow path and causes the initialization of the mutex. Because a
mutex is not just a simple memory object and requires that some resources be allocated by the system, an
attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on amutex that was statically
initialized using PTHREAD_MUTEX_INITIALER and was not yet locked causes an EINVAL error.

The maximum number of recursive locks by the owning thread is 32,767. When this number is exceeded,
attempts to lock the mutex return the ERECURSE error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by athread to relock an already held
mutex, or to lock a mutex that was held by ancther thread when that thread terminated, cause a deadlock
condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when athread rel ocks an already held
mutex. If athread attemptsto relock a mutex that it already holds, the lock request fails with the
EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks for
deadlock conditions that occur when athread relocks an already held mutex. If athread attempts to relock a
mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm mutex also
checks for deadlock conditions that occur when athread attempts to lock a mutex that was held by another
thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an orphaned mutex,
the lock request fails with the EOWNERTERM error.

When athread terminates the holding of a mutex lock on anormal or errorcheck mutex, other threads that
wait for that mutex will block forever. The pthreads run-time simul ates the deadlock that has occurred in

your application. When you are attempting to debug these deadlock scenarios, the CL command WRKJOB,
option 20, shows the thread asin a condition wait. Displaying the call stack shows that the function
deadlockedOnOrphanedM utex isin the call stack.

When athread attempts to acquire a normal mutex that it already holds, the thread will block forever. The
pthreads run-time simul ates the deadlock that has occurred in your application. When you are attempting to
debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread asin a condition
wait. Displaying the call stack shows that the function deadlockedOnAlreadyL ockedM utex isin the call
stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

None.

Parameters

mutex
(Input) Address of the mutex to lock

Return Value

0
pthread_mutex_trylock() was successful.
value
pthread_mutex_trylock() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_mutex_trylock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

[EBUSY]
The mutex is currently locked by another thread.
A thread terminated the holding of the mutex, and the mutex is an ownerterm mutex type.

A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.
[ERECURSE]
The recursive mutex cannot be recursively locked again.

Related Information

o The <pthread.h> header file. See Header files for Pthread functions.
» pthread mutex destroy()--Destroy Mutex

o pthread mutex init()--Initialize Mutex
o pthread mutex lock()--Lock Mutex
« pthread mutex timedlock np()--Lock Mutex with Time-Out

o pthread mutex unlock()--Unlock Mutex

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude "check. h"

/-k
Thi s exanpl e sinulates a nunber of threads working on a parall el
probl em The threads use pthread nutex trylock() so that
they do not spend tine blocking on a nutex and instead spend nore
of the time naking progress towards the final solution. Wen
trylock fails, the processing is done locally, eventually to
be merged with the final parallel solution.

Thi s exanpl e should conplete faster than the exanple for
pt hread _nutex | ock() in which threads solve the sane parallel
probl em but spend nore tine waiting in resource contention.
*/

#defi ne LOOPCONSTANT 100000

#def i ne THREADS 10

pt hread_nut ex_t nut ex = PTHREAD MUTEX | NI Tl ALI ZER;
i nt T o B

voi d *t hreadfunc(void *parm

{
i nt | oop = 0;
i nt | ocal Processi ngConpl eted = O;
i nt nunber O Local Processi ngBursts = 0;
i nt processi ngConpl et edThi sBurst = 0;
i nt rc;

for (1oop=0; | oop<LOOPCONSTANT; ++l oop) {
rc = pthread_mutex_tryl ock(&mutex);
if (rc == EBUSY) {
/* Process continue processing the part of the problem */
/* that we can without the | ock. W do not want to waste */
/* time blocking. Instead, we'll count |ocally. */

}

++| ocal Processi ngConpl et ed;

++nunber O Local Processi ngBur st s;

conti nue;
}
/* We acquired the lock, so this part of the can be gl obal */
checkResul ts("pthread nutex_trylock()\n", rc);
/* Processing conpleted consist of last |ocal processing */
/* plus the 1 unit of processing this tine through */
processi ngConpl et edThi sBurst = 1 + | ocal Processi hgConpl et ed;
| ocal Processi ngConpl eted = O;
i +=pr ocessi ngConpl et edThi sBurst; | +=processi hgConpl et edThi sBur st ;
k+=pr ocessi ngConpl et edThi sBurst; | +=processi nhgConpl et edThi sBur st ;

rc = pthread_nut ex_unl ock(&t ex) ;
checkResul t s("pt hread _nutex_unl ock()\n", rc);

/* 1If any local processing remains, nerge it with the gl obal */
/* problemso our part of the solution is accounted for */
if (local Processi ngConpl eted) {

rc = pthread_mnut ex_ | ock(&t ex);

checkResul ts("final pthread mutex_ |l ock()\n", rc);

i +=l ocal Processi ngConpl et ed; | +=l ocal Processi ngConpl et ed;
k+=l ocal Processi ngConpl et ed; | +=I ocal Processi ngConpl et ed;

rc = pthread_nut ex_unl ock(&t ex) ;
checkResul ts("final pthread_mutex_unl ock()\n", rc);

}

printf("Thread processed about %% % of the problem|ocally\n",
(number O Local Processi ngBursts * 100) / LOOPCONSTANT) ;

return NULL;

int main(int argc, char **argv)

{

pt hread t t hr eadi d[THREADS] ;
i nt rc=0;

i nt | oop=0;

pthread attr t pt a;

printf("Entering testcase\n");

pthread attr_init(&pta);
pthread attr_setdetachstate(&ta, PTHREAD CREATE JO NABLE)

printf("Creating %l threads\n", THREADS)

for (loop=0; | o00p<THREADS; ++l oop) {
rc = pthread_create(& hreadid[loop], &pta, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);

}

printf("Wait for results\n");

for (1oop=0; |o00p<THREADS; ++l oop) {
rc = pthread_joi n(threadid[loop], NULL);
checkResul ts("pthread join()\n", rc);

}

printf("d eanup and show results\n");
pthread attr_destroy(&pta);
pt hread _nut ex_dest r oy(&t ex) ;

printf("\nUsing %d threads and LOOPCONSTANT = %\ n",
THREADS, LOOPCONSTANT) ;
printf("Values are: (should be %d)\n", THREADS * LOOPCONSTANT);

printf(" =>%, %, %, %\n", i, j, k, 1);
printf("Miin conpleted\n");
return O;

}

Output:

Entering testcase

Creating 10 threads

Wait for results

Thread processed about 100% of the problem | ocally
Thread processed about 90% of the problemlocally
Thread processed about 88% of the problemlocally
Thread processed about 94% of the problemlocally
Thread processed about 93% of the problemlocally
Thread processed about 96% of the problemlocally
Thread processed about 90% of the problemlocally
Thread processed about 91% of the problemlocally
Thread processed about 81% of the problemlocally
Thread processed about 76% of the problemlocally
Cl eanup and show results

Using 10 threads and LOOPCONSTANT
Val ues are: (should be 1000000)

==>1000000, 1000000, 1000000, 1000000
Mai n conpl et ed

100000

Top | Pthread APIs | APIs by category

pthread _mutex_unlock()--Unlock Mutex

Syntax:

#i ncl ude <pt hread. h>
i nt pthread nmutex_unl ock(pthread nutex_t *nutex);

Threadsafe: Yes
Signal Safe: Yes

The pthread_mutex_unlock() function unlocks the mutex specified. If the calling thread does not currently
hold the mutex (viaaprevious call to pthread _mutex_lock() or pthread_mutex_trylock()) the unlock
request fails with the EPERM error.

Mutex initialization using the PTHREAD_ _MUTEX _INITIALIZER does not immediately initialize the
mutex. Instead, on first use, pthread_mutex_lock() or pthread_mutex_trylock() branchesinto aslow
path and causes the initialization of the mutex. Because a mutex is not just a simple memory object and
requires that some resources be allocated by the system, an attempt to call pthread_mutex_destroy() or
pthread _mutex_unlock() on amutex that was statically initialized using

PTHREAD _MUTEX_INITIALER and was not yet locked causes an EINVAL error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by athread to relock an already held
mutex, or to lock a mutex that was held by another thread when that thread terminated, cause a deadlock
condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when athread rel ocks an already held
mutex. If athread attemptsto relock a mutex that it already holds, the lock request fails with the
EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks for
deadlock conditions that occur when athread rel ocks an already held mutex. If athread attempts to relock a
mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm mutex also
checks for deadlock conditions that occur when athread attempts to lock a mutex that was held by another
thread when that thread terminated (an orphaned mutex). If athread attemptsto lock an orphaned mutex,
the lock request fails with the EOWNERTERM error.

When athread terminates the holding of a mutex lock on anormal or errorcheck mutex, other threads that
wait for that mutex will block forever. The pthreads run-time simulates the deadlock that has occurred in
your application. When you are attempting to debug these deadlock scenarios, the CL command WRKJOB,
option 20, shows the thread asin a condition wait. Displaying the call stack shows that the function
deadlockedOnOrphanedM utex isin the call stack.

When athread attempts to acquire a normal mutex that it already holds, the thread will block forever. The
pthreads run-time simul ates the deadlock that has occurred in your application. When you are attempting to
debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread asin a condition

wait. Displaying the call stack shows that the function deadlockedOnAlreadyL ockedM utex isin the call
stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

For successful completion, the mutex lock must be held before you call pthread_mutex_unlock().

Parameters

mutex
(Input) Address of the mutex to unlock

Return Value

0
pthread_mutex_unlock() was successful.
value
pthread_mutex_unlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_unlock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]

The value specified for the argument is not correct.
[EPERM]

The mutex is not currently held by the caller

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
» pthread mutex_destroy()--Destroy Mutex

« pthread mutex init()--Initialize Mutex

» pthread mutex lock()--L ock Mutex

o pthread mutex trylock()--Lock Mutex with No Wait

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

pt hr ead_nut ex_t mut ex = PTHREAD _MJUTEX_| NI Tl ALI ZER;

int main(int argc, char **argv)

{

i nt

rc=0;

printf("Entering testcase\n");

printf("Lock the mutex\n");
rc = pthread_nut ex_| ock(&t ex) ;
checkResul t s("pthread_nutex_l ock()\n", rc);

/* Al other threads will be blocked fromthe resource here */

printf("Unlock the nutex\n");
rc = pthread_nut ex_unl ock(&rut ex) ;
checkResul t s(" pt hread_nut ex_unl ock()\n", rc);

printf("Destroy the mutex\n");
rc = pthread_mut ex_destroy(&mutex);
checkResul t s(" pt hread_nutex_destroy()\n", rc);

printf("Min conmpleted\n");

return O;

}

Output:

Entering testcase
Lock the mutex
Unl ock the mutex
Destroy the mutex
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_destroy()--Destroy Mutex
Attributes Object

Syntax:

#i ncl ude <pt hread. h>
int pthread nutexattr_destroy(pthread nutexattr_t *attr);

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_destroy() function destroys a mutex attributes object and allows the system to
reclaim any resources associated with that mutex attributes object. This does not have an effect on any
mutexes created using this mutex attributes object.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the mutex attributes object to be destroyed

Return Value

0
pthread_mutexattr_destroy() was successful.
value
pthread_mutexattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_destroy() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

o The <pthread.h> header file. See Header files for Pthread functions.
o pthread mutexattr_init()--Initialize Mutex Attributes Object

o pthread mutex init()--Initialize Mutex

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdi o. h>
#i ncl ude "check. h"

pt hread_nut ex_t mut ex;

int main(int argc, char **argv)
b
i nt rc=0;
pt hread_nutexattr _t n a;

printf("Entering testcase\n");

printf("Create a default nutex attribute\n");
rc = pthread_mutexattr_init(&nta);
checkResul t s("pthread_nutexattr_init\n", rc);

printf("Create the mutex using a nutex attributes object\n");
rc = pthread_mutex_init(&mutex, &nta);
checkResul ts("pthread_nutex_init(nta)\n", rc);

printf("- At this point, the nutex with its default attributes\n");
printf("- Can be used fromany threads that want to use it\n");

printf("Destroy nutex attribute\n");
rc = pthread_mutexattr_destroy(&nma);
checkResul t s("pthread_nutexattr_destroy()\n", rc);

printf("Destroy nutex\n");
rc = pthread_mut ex_destroy(&t ex);
checkResul t s(" pt hread_nut ex_destroy()\n", rc);

printf("Min conmpleted\n");
return O;

}

Output:

Entering testcase

Create a default nutex attribute

Create the nmutex using a nutex attributes object

- At this point, the nmutex with its default attributes
- Can be used fromany threads that want to use it
Destroy nutex attribute

Destroy mut ex
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_getkind _np()--Get Mutex
Kind Attribute

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>
int pthread nutexattr_getki nd_np(const pthread nmutexattr t *attr,
int *kind);
Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_getkind_np() function retrieves the kind attribute from the mutex attributes
object specified by attr. The mutex kind attribute is used to create mutexes with different behaviors.

Thekind returned is one of PTHREAD_MUTEX_NONRECURSIVE_NP or
PTHREAD_MUTEX_RECURSIVE_NP.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutes.

Note: Thisfunction is not portable.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the mutex attributes object
kind
(Output) Address of the variable to receive the kind attribute

Return Value

0
pthread _mutexattr_getkind_np() was successful.
value
pthread _mutexattr_getkind_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread _mutexattr_getkind _np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

o pthread mutexattr init()--Initialize Mutex Attributes Object
« pthread mutexattr setkind np()--Set Mutex Kind Attribute
o pthread mutex init()--Initialize Mutex

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

voi d showKi nd(pt hread_nutexattr_t *nta) {

}

i nt rc;
i nt ki nd;

printf("Check kind attribute\n");
rc = pthread_mutexattr_getkind_np(nta, &kind);

checkResul t s(" pt hread_nutexattr_get pshared()\n",

printf("The pshared attributed is: ");
switch (kind) {
case PTHREAD MUTEX_NONRECURSI VE_NP:
printf (" PTHREAD MJTEX NONRECURSI VE_NP\ n");
br eak;
case PTHREAD MUTEX_ RECURSI VE_NP:
printf (" PTHREAD MUTEX RECURSI VE_NP\ n");
br eak;
default :
printf("! kind Error kind=% '\n", kind);
exit(1l);

return;

int main(int argc, char **argv)

{

i nt r c=0;
pt hread_nutexattr _t n a;
i nt pshar ed=0;

rc);

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a default nutex attribute\n");
rc = pthread_nutexattr_init(&nta);

checkResul ts("pthread nutexattr_init()\n", rc);
showKi nd(&nt a) ;

printf("Change nmutex kind attribute\n");

rc = pthread_mutexattr_setkind np(&ma, PTHREAD MUTEX RECURSI VE NP);
checkResul ts("pthread nmutexattr_setkind()\n", rc);

showKi nd(&nt a) ;

printf("Destroy nutex attribute\n");
rc = pthread_nutexattr_destroy(&na);
checkResul ts("pthread nutexattr_destroy()\n", rc);

printf("Min conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPMIXAKNO
Create a default mutex attribute
Check kind attribute

The pshared attributed is:
PTHREAD MUTEX_NONRECURSI VE_NP
Change nutex kind attribute
Check kind attribute

The pshared attributed is:
PTHREAD MUTEX_RECURSI VE_NP
Destroy nutex attribute

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_getname_np()--Get Name
from Mutex Attributes Object

Syntax:

#i ncl ude <pt hread. h>
i nt pthread_nutexattr_getnane_np(const pthread_mutexattr_t *attr, char
*nane) ;

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_getname_np() function retrieves the name attribute associated with the mutex
attribute specified by attr. The buffer specified by name must be at least 16 charactersin length. If the length
of the mutex name is less than or equal to 15 characters, it is null terminated in the output buffer.

By default, each pthread mutex_t has the name "QPOWMTX UNNAMED" associated with it. The name
attribute is used by various OS/400 system utilities to aid in debugging and service. One exampleisthe
WRKJOB command, which has a “work with mutexes menu choice to show which mutexes are currently
locked and which mutexes are being waited for.

If you should give unique names to all mutexes created to aid in debugging deadlock or performance
problems. Use the CL command WRK JOB, option 20, to help debug mutex deadl ocks.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the mutex attributes object
name
(Output) Address of a 16-byte character buffer to receive the name

Return Value

0
pthread_mutexattr_getname_np() was successful.
value
pthread_mutexattr_getname_np() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_mutexattr_getname_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.
[EINVAL]

The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
« pthread mutexattr init()--Initialize Mutex Attributes Object

o pthread mutexattr setname np()--Set Name in Mutex Attributes Object

o pthread mutex init()--Initialize Mutex

Example

#i ncl ude <pthread. h>
#i ncl ude <stdi o. h>
#i ncl ude "check. h"

int main(int argc, char **argv)

{

i nt

rc=0;

pt hread_nutexattr _t nt a;

char

mut exname[16] ;

printf("Entering testcase\n");

printf("Create a default nutex attribute\n");
rc = pthread_nutexattr_init(&ma);

checkResul

ts("pthread_mutexattr_init\n", rc);

nmenset (mut exnanme, 0, sizeof (nmutexnane));

printf("Fi

nd out what the default name of the nmutex is\n");

rc = pthread_nut exattr_get name_np(&nrta, nutexnane);

checkResul

ts("pthread_mutexattr_getnanme_np()\n", rc);

printf("The default nutex name will be: % 15s\n", nutexnane);

printf("-
printf("-
screens\n");
printf("-
printf("-
printf("-

At this point, nmutexes created with this attribute\n");
will show up by nane on many OS/ 400 debug and service

The default attribute contains a special automatically\n");
i ncrementing name that changes for each nutex created in \n");
the process\n");

printf("Destroy nmutex attribute\n");
rc = pthread_nutexattr_destroy(&nta);

checkResul

ts("pthread_nutexattr_destroy()\n", rc);

printf("Min conpleted\in");
return O;

}

Output:

Entering testcase

Create a default nutex attribute

Find out what the default name of the nutex is

The default nutex nanme is: QPOWMIX UNNAMED

- At this point, nmutexes created with this attribute

- will show up by nane on many OGS/ 400 debug and service screens
The default attribute contains a special automatically

i ncrementing nane that changes for each nmutex created in
- the process

Destroy nutex attribute

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_getpshared()--Get Process
Shared Attribute from Mutex Attributes Object

Syntax:

#i ncl ude <pt hread. h>
int pthread nutexattr_getpshared(const pthread nutexattr t *attr, int
*pshar ed) ;

Threadsafe: Yes
Signal Safe: Yes

The pthread_mutexattr_getpshared() function retrieves the current setting of the process shared attribute
from the mutex attributes object. The process shared attribute indicates whether the mutex that is created
using the mutex attributes object can be shared between threads in separate processes
(PTHREAD_PROCESS SHARED) or shared between threads within the same process
(PTHREAD_PROCESS PRIVATE).

Even if the mutex in storage is accessible from two separate processes, it cannot be used from both
processes unless the process shared attributeis PTHREAD_PROCESS SHARED.

The default pshared attribute for mutex attributes objectsis PTHREAD_PROCESS PRIVATE.

Authorities and Locks

None.

Parameters

attr

(Input) Address of the variable that contains the mutex attributes object
pshared

(Output) Address of the variable to contain the pshared attribute result

Return Value

0
pthread _mutexattr_getpshared() was successful.
value
pthread_mutexattr _getpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_getpshared() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread mutexattr init()--Initialize Mutex Attributes Object
« pthread mutexattr setpshared()--Set Process Shared Attribute in Mutex Attributes Object

o pthread mutex init()--Initialize Mutex

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

voi d showPshared(int pshared) {
printf("The pshared attribute is: ");
switch (pshared) {
case PTHREAD PROCESS PRI VATE:
print f (" PTHREAD PROCESS PRI VATE\n");
br eak;
case PTHREAD PROCESS SHARED:
print f (" PTHREAD PROCESS SHARED\ n");

br eak;
def aul t
printf("! pshared Error !'\n");
exit(1l);
return;
}
int main(int argc, char **argv)
{
i nt r c=0;
pt hread_nutexattr t n a;
i nt pshar ed=0;

printf("Entering testcase\n");

printf("Create a default nutex attribute\n");
rc = pthread_mnmutexattr_init(&nta);
checkResul ts("pthread_nutexattr_init()\n", rc);

printf("Check pshared attribute\n");

rc = pthread_mnutexattr_getpshared(&ma, &pshared);
checkResul t s("pthread nutexattr_getpshared()\n", rc);
showPshar ed(pshar ed) ;

printf("Destroy nutex attribute\n");
rc = pthread_nutexattr_destroy(&na);
checkResul ts("pthread nutexattr_destroy()\n", rc);

printf("Miin conpleted\n");
return O;

}

Output:

Entering testcase

Create a default mutex attribute

Check pshared attribute

The pshared attribute is: PTHREAD PROCESS PRI VATE
Destroy nutex attribute

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_gettype()--Get Mutex Type
Attribute

Syntax:

#i ncl ude <pt hread. h>
int pthread nutexatttr _gettype(const pthread nmutexattr t *attr,
int *type);

Threadsafe: Yes
Signal Safe: Yes

The pthread_mutexattr_gettype() function retrieves the type attribute from the mutex attributes object
specified by attr. The mutex type attribute is used to create mutexes with different behaviors.

The type returned is one of PTHREAD_MUTEX_DEFAULT, PTHREAD_MUTEX_NORMAL,
PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK, or
PTHREAD_MUTEX_OWNERTERM _NP.

The default mutex type (or PTHREAD _MUTEX_DEFAULT) isPTHREAD MUTEX_NORMAL.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by athread to relock an already held
mutex, or to lock a mutex that was held by another thread when that thread terminated, cause a deadl ock
condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when athread rel ocks an already held
mutex. If athread attemptsto relock a mutex that it already holds, the lock request fails with the
EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks for
deadlock conditions that occur when athread relocks an already held mutex. If athread attemptsto relock a
mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm mutex also
checks for deadlock conditions that occur when athread attempts to lock a mutex that was held by another
thread when that thread terminated (an orphaned mutex). If athread attemptsto lock an orphaned mutex,
the lock request fails with the EOWNERTERM error.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the mutex attributes object

type
(Output) Address of the variable to receive the type attribute

Return Value

0
pthread_mutexattr_gettype() was successful.
value
pthread _mutexattr_gettype() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread _mutexatttr_gettype() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
o pthread mutexattr init()--Initialize Mutex Attributes Object
« pthread mutexattr settype()--Set Mutex Type Attribute

o pthread mutex init()--Initialize Mutex

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

i nt showType(pthread_nutexattr_t *nta) {
i nt rc;
i nt type;

printf("Check type attribute\n");
rc = pthread_nutexattr_gettype(nta, &ype);

checkResul ts("pthread nutexattr_gettype()\n", rc);

printf("The type attributed is: ");
switch (type) {
case PTHREAD MUTEX_ NORMAL:
printf (" PTHREAD MUTEX_NORMVAL (DEFAULT)\n");
br eak;
case PTHREAD MUTEX RECURSI VE:
printf (" PTHREAD MUTEX_RECURSI VE\ n") ;
br eak;
case PTHREAD MUTEX_ ERRORCHECK
printf (" PTHREAD MUTEX_ ERRORCHECK\ n");
br eak;
case PTHREAD MUTEX_ OWNERTERM NP
printf (" PTHREAD MUTEX OWANERTERM NP\ n");

br eak;
defaul t :
printf("! type Error type=% !\n", type);
exit(1);
return type;
}
int main(int argc, char **argv)
{
i nt rc=0;
pt hread nutexattr t na
i nt t ype=0;
pt hread nutex t nmut ex;
struct tinmespec ts;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a default nutex attribute\n");
rc = pthread_nutexattr_init(&nta);
checkResul ts("pthread nutexattr_init()\n", rc);

printf("Change nmutex type attribute to recursive\n");

rc = pthread_nmutexattr_settype(&nrta, PTHREAD MJUTEX RECURSI VE)
checkResul ts("pthread nutexattr_settype()\n", rc);
showType(&nt a) ;

rc = pthread_nutexattr_setname_np(&nma, "RECURSIVE ONE");
checkResul ts("pthread nutexattr_setnanme_np()\n", rc);

printf("Create the naned, recursive nutex\n");
rc = pthread_nmutex_init(&utex, &nta);
checkResul ts("pthread nutex _init()\n", rc);

printf("Lock the named, recursive nutex\n");
rc = pthread_mnut ex_ | ock(&t ex);
checkResul ts("pthread nutex | ock() 1\n", rc);

printf("ReLock the nanmed, recursive nutex\n");
rc = pthread_mnut ex_ | ock(&t ex);
checkResul ts("pthread nutex |l ock() 2\n", rc);

printf("Trylock the named, recursive mutex\n");
rc = pthread_nutex_tryl ock(&mutex);
checkResul ts("pthread nutex_trylock()\n", rc);

printf("Ti medl ock the named, recursive mutex\n");
ts.tv_sec = 5;

ts.tv_nsec = 0O;

rc = pthread_nmutex_timedl ock_np(&mutex, &ts);
checkResul t s("pthread nmutex_timedl ock_np()\n", rc);

printf("Sleeping for a short tinme holding the recurive nutex\n");
printf("Use DSPJOB, option 19 to see the held nutex\n");
sl eep(30);

printf("Unlock the mutex 4 tines\n");
rc = pthread_mnut ex_unl ock(&t ex) ;
checkResul t s("pthread _nutex_unl ock() 1\n", rc);

rc = pthread_mnut ex_unl ock(&t ex) ;
checkResul t s("pthread nutex_unl ock() 2\n", rc);

rc = pthread_nut ex_unl ock(&t ex) ;
checkResul t s("pthread nutex_unl ock() 3\n", rc);

rc = pthread_mnut ex_unl ock(&t ex) ;
checkResul t s("pthread _nutex_unl ock() 4\n", rc);

printf("dC eanup\n");
rc = pthread_nut ex_destroy(&mutex);
checkResul t s("pthread nutex_destroy()\n", rc);

rc = pthread_nutexattr_destroy(&na);
checkResul ts("pthread nutexattr_destroy()\n", rc);

printf("Miin conpleted\n");
return O;

}

Output

Enter Testcase - QPOWEST/ TPMIXTYPO

Create a default mutex attribute

Change nmutex type attribute to recursive

Check type attribute

The type attributed is: PTHREAD MJUTEX RECURSI VE
Create the named, recursive mutex

Lock the named, recursive mnutex

ReLock the named, recursive mnutex

Tryl ock the named, recursive nmutex

Ti medl ock the named, recursive mnutex

Sl eeping for a short tinme holding the recurive nutex
Use DSPJOB, option 19 to see the held nutex

Unl ock the nutex 4 tines

Cl eanup

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread _mutexattr_init()--Initialize Mutex
Attributes Object

Syntax:

#i ncl ude <pt hread. h>
int pthread nutexattr_init(pthread _nutexattr_t *attr);

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_init() function initializes the mutex attributes object referenced by attr to the
default attributes. The mutex attributes object can be used in acall to pthread_mutex_init() to create a
mutex.

Authorities and Locks

None.

Parameters

attr
(Input/Output) Address of the variable to contain the mutex attributes object

Return Value

0
pthread_mutexattr _init() was successful.
value
pthread_mutexattr_init() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_mutexattr_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

The <pthread.h> header file. See Header files for Pthread functions.
« pthread mutexattr destroy()--Destroy Mutex Attributes Object
pthread mutex_destroy()--Destroy Mutex

pthread mutex_init()--Initialize Mutex

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

pt hread_nut ex_t mut ex;

int main(int argc, char **argv)
{
i nt rc=0;
pt hread_nutexattr _t n a;

printf("Entering testcase\n");

printf("Create a default nutex attribute\n");
rc = pthread_mutexattr_init(&nta);
checkResul t s("pthread_nutexattr_init\n", rc);

printf("Create the mutex using a nutex attributes object\n");
rc = pthread_mutex_init(&utex, &nta);
checkResul ts("pthread_nutex_init(nta)\n", rc);

printf("- At this point, the nutex with its default attributes\n");
printf("- Can be used fromany threads that want to use it\n");

printf("Destroy nutex attribute\n");
rc = pthread_mutexattr_destroy(&nma);
checkResul t s("pthread_nutexattr_destroy()\n", rc);

printf("Destroy nmutex\n");
rc = pthread_mut ex_destroy(&mutex);
checkResul t s("pthread_nutex_destroy()\n", rc);

printf("Min conpleted\n");
return O;

}

Output:

Entering testcase

Create a default mutex attribute

Create the nutex using a mutex attributes object

- At this point, the mutex with its default attributes
- Can be used fromany threads that want to use it

Destroy nutex attribute
Destroy mut ex
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_setkind_np()--Set Mutex
Kind Attribute

Syntax:

#i ncl ude <pt hread. h>

#i ncl ude <sched. h>

int pthread nutexattr_setkind _np(pthread nutexattr_t *attr,
i nt kind);

Threadsafe: Yes
Signal Safe: Yes

The pthread_mutexattr_setkind_np() function sets the kind attribute in the mutex attributes object
specified by attr. The mutex kind attribute is used to create mutexes with different behaviors.

The kind set may be one of PTHREAD_MUTEX_NONRECURSIVE_NP or
PTHREAD_MUTEX_RECURSIVE_NP.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutes. The maximum number of recursive locks by the owning thread is 32,767.

Note: Thisfunction is not portable

Authorities and Locks

None.

Parameters

attr

(Input) Address of the mutex attributes object
kind

(Input) Variable containing the kind attribute.

Return Value

0
pthread _mutexattr_setkind_np() was successful.
value
pthread mutexattr_setkind_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_setkind_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

o pthread mutexattr getkind np()--Get Mutex Kind Attribute

o pthread mutex init()--Initialize Mutex

Example

#i ncl ude <pthread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

voi d showKi nd(pt hread_nutexattr_t *nta) {

}

i nt rc;
i nt ki nd;

printf("Check kind attribute\n");
rc = pthread_mutexattr_getkind_np(nta, &kind);

checkResul t s("pt hread_nut exattr_get pshared()\n",

printf("The pshared attributed is: ");

switch (kind) {

case PTHREAD MUTEX_NONRECURSI VE_NP:
printf (" PTHREAD MJUTEX_ NONRECURSI VE_NP\ n");
br eak;

case PTHREAD MUTEX RECURSI VE_ NP:
printf (" PTHREAD MUTEX_ RECURSI VE_NP\ n");
br eak;

default :
printf("! kind Error kind=% !'\n", kind);
exit(l);

}

return;

int main(int argc, char **argv)

{

i nt r c=0;
pt hread_nutexattr _t n a;
i nt pshar ed=0;

rc);

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a default nutex attribute\n");
rc = pthread_nutexattr_init(&nta);

checkResul ts("pthread nutexattr_init()\n", rc);
showKi nd(&nt a) ;

printf("Change nmutex kind attribute\n");

rc = pthread_mutexattr_setkind np(&ma, PTHREAD MUTEX RECURSI VE NP);
checkResul ts("pthread nmutexattr_setkind()\n", rc);

showKi nd(&nt a) ;

printf("Destroy nutex attribute\n");
rc = pthread_nutexattr_destroy(&na);
checkResul ts("pthread nutexattr_destroy()\n", rc);

printf("Min conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPMIXAKNO
Create a default mutex attribute
Check kind attribute

The pshared attributed is:
PTHREAD MUTEX_NONRECURSI VE_NP
Change nutex kind attribute
Check kind attribute

The pshared attributed is:
PTHREAD MUTEX_RECURSI VE_NP
Destroy nutex attribute

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_setname_np()--Set Name in
Mutex Attributes Object

Syntax:

#i ncl ude <pt hread. h>
int pthread_nutexattr_setnane_np(pthread_nutexattr_t *attr, const char
*nane) ;

Threadsafe: Yes
Signal Safe: Yes

The pthread_mutexattr_sethame_np() function changes the name attribute associated with the mutex
attribute specified by attr. The buffer specified by name must contain anull terminated string of 15 characters
or lessin length (not including the NULL). If the length of name is greater than 15 characters, the excess
characters are ignored. If nameis null, the mutex name attribute is reset to the defauilt.

By default, each pthread mutex_t has the name "QPOWMTX UNNAMED" associated with it. The name
attribute is used by various OS/400 system utilities to aid in debug and service. One exampleis the WRKJOB
command, which has a “work with mutexes' menu choice to show which mutexes are currently locked and
which mutexes are being waited for.

If you should give unique names to all mutexes created to aid in debugging deadlock or performance
problems. Use the CL command WRK JOB, option 20, to help debug mutex deadl ocks.

Note: Thisfunction isnot portable.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the mutex attributes object
name
(Input) Address of anull terminated character buffer containing the name

Return Value

0
pthread_mutexattr_sethame_np() was successful.
value
pthread_mutexattr_setname_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_setname_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

o The <pthread.h> header file. See Header files for Pthread functions.
« pthread mutexattr getname np()--Get Name from Mutex Attributes Object

o pthread mutex init()--Initialize Mutex

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdi o. h>
#i ncl ude "check. h"

int main(int argc, char **argv)

{
i nt rc=0;
pt hread nutexattr t nt a;
char nmut exnane|[16] ;

printf("Entering testcase\n");

printf("Create a default nmutex attribute\n");
rc = pthread nutexattr _init(&mrma);
checkResul ts("pthread nutexattr_init\n", rc);

nenset (mut exnanme, 0, sizeof (nutexnane));

printf("Find out what the default nane of the nmutex is\n");
rc = pthread _nutexattr_getnanme_np(&nrta, nutexnane);
checkResul ts("pthread nmutexattr_getnane_np()\n", rc);

printf("The default nutex name will be: % 15s\n", mutexnane);

printf("- At this point, nmutexes created with this attribute\n");

printf("- will show up by name on many OS/ 400 debug and service
screens\n");

printf("- The default attribute contains a special automatically\n");

printf("- incrementing name that changes for each nutex created in \n");

printf("- the process\n");

printf("Destroy nmutex attribute\n");
rc = pthread nutexattr_destroy(&nta);
checkResul ts("pthread nutexattr_destroy()\n", rc);

printf("Min conpleted\in");
return O;

}

Output:

Entering testcase

Create a default mutex attribute

Find out what the default name of the nutex is
The default nutex nanme will be: QPOWMIX UNNANMED
The new mutex nane will be: <My Mitex>

Destroy nutex attribute

Mai n compl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_setpshared()--Set Process
Shared Attribute in Mutex Attributes Object

Syntax:

#i ncl ude <pt hread. h>
int pthread nutexattr_setpshared(pthread nmutexattr_t *attr,
i nt pshared);

Threadsafe: Yes
Signal Safe: Yes

The pthread_mutexattr_setpshared() function sets the current pshared attribute for the mutex attributes
object. The process shared attribute indicates whether the mutex that is created using the mutex attributes
object can be shared between threads in separate processes (PTHREAD_ PROCESS SHARED) or shared
between threads within the same process (PTHREAD_PROCESS PRIVATE).

Even if the mutex in storage is accessible from two separate processes, it cannot be used from both
processes unless the process shared attributeis PTHREAD_PROCESS SHARED.

The default pshared attribute for mutex attributes objectsis PTHREAD_PROCESS PRIVATE.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the variable containing the mutex attributes object
pshared
(Input) One of PTHREAD_PROCESS SHARED or PTHREAD_PROCESS PRIVATE

Return Value

0
pthread_mutexattr_setpshared() was successful.
value
pthread_mutexattr_setpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_setpshared() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
« pthread mutexattr getpshared()--Get Process Shared Attribute from Mutex Attributes Object

o pthread mutex init()--Initialize Mutex

Example

#i ncl ude <pthread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

voi d showPshared(pthread_nutexattr_t *ma) {
i nt rc;
i nt pshar ed;

printf("Check pshared attribute\n");
rc = pthread_mutexattr_get pshared(nta, &pshared);
checkResul t s(" pthread_nutexattr_get pshared()\n", rc);

printf("The pshared attributed is: ");

switch (pshared) {

case PTHREAD PROCESS PRI VATE:
printf (" PTHREAD PROCESS PRI VATE\n");
br eak;

case PTHREAD PROCESS_SHARED:
printf (" PTHREAD PROCESS SHARED\ n");
br eak;

default :
printf("! pshared Error !'\n");
exit(l);

}

return;

}

int main(int argc, char **argv)
{
i nt rc=0;
pt hread_nutexattr _t n a;
i nt pshar ed=0;

printf("Entering testcase\n");

printf("Create a default nutex attribute\n");
rc = pthread_nutexattr_init(&nta);

checkResul ts("pthread nutexattr_init()\n", rc);
showPshar ed(&nt a) ;

printf("Change pshared attribute\n");

rc = pthread_nutexattr_setpshared(&mna, PTHREAD PROCESS SHARED) ;
checkResul ts("pthread nutexattr_setpshared()\n", rc);

showPshar ed(&nt a) ;

printf("Destroy nmutex attribute\n");
rc = pthread_nutexattr_destroy(&na);
checkResul ts("pthread nutexattr_destroy()\n", rc);

printf("Miin conpleted\n");
return O;

}

Output:

Enteri ng testcase

Create a default nutex attribute

Check pshared attribute

The pshared attribute is: PTHREAD PROCESS PRI VATE
Change pshared attribute

The pshared attribute is: PTHREAD PROCESS SHARED
Destroy nutex attribute

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread mutexattr_settype()--Set Mutex Type
Attribute

Syntax:

#i ncl ude <pt hread. h>
int pthread nutexatttr_settype(pthread nutexattr_t *attr,

int type);
Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_settype() function sets the type attribute in the mutex attributes object specified
by attr. The mutex type attribute is used to create mutexes with different behaviors.

The type will be one of PTHREAD_MUTEX_DEFAULT, PTHREAD_MUTEX_NORMAL,
PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK, or
PTHREAD _MUTEX_OWNERTERM _NP or the EINVAL error will be returned.

The default mutex type (or PTHREAD _MUTEX_DEFAULT) isPTHREAD MUTEX_NORMAL.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by athread to relock an already held
mutex, or to lock a mutex that was held by another thread when that thread terminated result in a deadlock
condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when athread re-locks an aready held
mutex. If athread attemptsto relock a mutex that it already holds, the lock request fails with the
EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks for
deadlock conditions that occur when athread re-locks an already held mutex. If athread attemptsto relock
amutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm mutex aso
checks for deadlock conditions that occur when athread attempts to lock a mutex that was held by another
thread when that thread terminated (an orphaned mutex). If athread attemptsto lock an orphaned mutex,
the lock request fails with the EOWNERTERM error.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the mutex attributes object

type
(Input) Address of the type attribute to be set.

Return Value

0
pthread_mutexattr_settype() was successful.
value
pthread _mutexattr_settype() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread mutexatttr_settype() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
« pthread mutexattr gettype()--Get Mutex Type Attribute
o pthread mutex init()--Initialize Mutex

Example

See pthread mutexattr gettype() for an example.

Top | Pthread APIs | APIs by category

pthread once()--Perform One-Time Initialization

Syntax:

#i ncl ude <pthread. h>
int pthread _once(pthread _once_t *once control, void (*init_routine)(void));

Threadsafe: Yes

Signa Safe: No

The pthread_once() function performs one time initialization based on a specific once_control variable. The
init_routineis called only one time when multiple callsto pthread_once() use the same once_control.

The once_control variableis not set until theinit_routine returns. If the init_routineis a cancellation point and the
thread calling the init_routine by pthread_once() is cancelled, the once_control variable will not be set and a
subsequent call to pthread_once() using that once_control variable will result in another call to the init_routine.

Y ou must initialize the once_control variable to PTHREAD_ONCE_INIT prior to calling pthread_once() with
it.

The function passed as init_routine must correspond to the following C function prototype:

voi d initRoutine(void);

Authorities and Locks

None.

Parameters

once_control
(Input) The control variable associated with this initialization.
init_routine
(Input) A function pointer to aroutine that takes no parameters and returns no value.

Return Value

0
pthread_once() was successful.
value
pthread_once() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_once() was not successful, the error condition returned usually indicates one of the following errors.
Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

» The<pthread.h> header file. See Header files for Pthread functions.

Example

#define _MULTI THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdi o. h>

#i ncl ude "check. h"

#defi ne NUMIHREADS 3
i nt nunber = 0;
i nt okSt at us = 777;

pt hread _once_t onceControl PTHREAD ONCE I NI'T;

voi d initRoutine(void)

printf("In the initRoutine\n");
numnber ++;

}

void *threadfunc(void *parm

printf("Inside secondary thread\n");
pt hread_once(&nceControl, initRoutine);
return _ VO D(okSt at us);

}
int main(int argc, char **argv)
pt hread t t hr ead[NUMTHREADS] ;
i nt rc=0;
i nt i =NUMTHREADS;
voi d *st at us;

printf("Enter Testcase - %\n", argv[O0]);

for (i=0; i < NUMIHREADS; ++i) {
printf("Create thread %\ n",
i),
rc = pthread create(& hread[i], NULL, threadfunc, NULL);
checkResul ts("pthread_create()\n", rc);

}

for (i=0; i < NUMIHREADS; ++i) {
printf("Wait for thread %@\n", i);
rc = pthread_join(thread[i], &status);
checkResul ts("pthread_join()\n", rc);

if (__INT(status) != okStatus) {
printf("Secondary thread failed\n");
exit(l);

}

}

if (nunber '=1) {
printf("An incorrect nunber of 1 one-tinme init routine was called!\n");
exit(1);

printf("One-tine init routine called exactly once\n");
printf("Min conpleted\n");
return O;

}
Output:

Enter Testcase - QPOWEST/ TPONCEO
Create thread 0

Create thread 1

Create thread 2

Wait for thread 0

I nsi de secondary thread

In the initRoutine

I nsi de secondary thread

Wait for thread 1

Wait for thread 2

I nsi de secondary thread

One-tinme init routine called exactly once
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread rwlock_destroy()--Destroy Read/Write
Lock

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock _destroy(pthread rw ock t *rw ock);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlock_destroy() function destroys the named read/write lock. The destroyed read/write lock
can no longer be used.

If pthread_rwlock_destroy() is called on aread/write lock on a mutex that is locked by ancther thread for
either reading or writing, the request fails with an EBUSY error.

If pthread_rwlock_destroy() is used by athread when it owns the read/write lock, and other threads are
waiting for the read/write lock to become available (with callsto pthread_rwlock_rdlock(),
pthread_rwlock_wrlock(), pthread_rwlock _timedrdlock_np() or pthread_rwlock_timedwrlock_np()
APIs), the read/write lock is destroyed safely, and the waiting threads wake up with the EDESTROY ED
error. Threads calling pthread_rwlock_tryrdlock() or pthread_rwlock_trywrlock() return with either the
EBUSY or EINVAL error, depending on when they called those functions.

Once aread/write lock is created, it cannot be validly copied or moved to a new location.

Authorities and Locks

None.

Parameters

rwlock
(Input) Address of the read/write lock to be destroyed

Return Value

0
pthread_rwlock_destroy() was successful.
value
pthread_rwlock_destroy() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_rwlock_destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread rwlock init()--Initialize Read/Write Lock

Example

See the pthread rwlock init() example.

Top | Pthread APIs | APIs by category

pthread_rwlock_init()--Initialize Read/Write
Lock

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock _init(pthread_rw ock t *rw ock,
const pthread rw ockattr_t *attr);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlock_init() function initializes a new read/write lock with the specified attributes for use.
The new read/write lock may be used immediately for serializing critical resources. If attr is specified as
NULL, all attributes are set to the default read/write lock attributes for the newly created read/write lock.

With these declarations and initializations;

pt hread_rw ock_t rw ock2;
pt hread _rw ock_t rw ock3;
pt hread rw ockattr _t attr;

pthread rw ockattr_init(&attr);

The following three read/write lock initialization mechanisms have equivalent function.

pt hread_rw ock_t rw ockl = PTHREAD RW.OCK | NI Tl ALI ZER;
pt hread_rw ock_i nit (& w ock2, NULL);

pt hread_rw ock_init(& w ock, &attr);

All three read/write locks are created with the default read/write lock attributes.

Every read/write lock must eventually be destroyed with pthread_rwlock _destroy(). Always use
pthread _rwlock_destroy() before freeing or reusing read/write lock storage.

Authorities and Locks

None.

Parameters

rwlock
(Output) The address of the variable to contain a read/write lock
attr
(Input) The address of the variable containing the read/write lock attributes object

Return Value

0
pthread_rwlock _init() was successful.
value
pthread_rwlock_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock _init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
« pthread rwlockattr init()--Initialize Read/Write Lock Attribute
« pthread rwlock destroy()--Destroy Read/Write Lock

Example

#define _MULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_rw ock_t rwl ock;

void *rdl ockThread(void *arg)
{

int rc;

printf("Entered thread, getting read |ock\n");
rc = pthread_rw ock_rdl ock(& w ock);
checkResul t s("pthread_rw ock_rdl ock()\n", rc);
printf("got the rw ock read | ock\n");

sl eep(5);

printf("unlock the read | ock\n");

rc = pthread_rw ock_unl ock(& w ock) ;
checkResul t s("pthread_rw ock_unl ock()\n", rc);
printf("Secondary thread unl ocked\n");

return NULL;

}

void *wl ockThread(void *arg)

{

int rc;

printf("Entered thread, getting wite [ock\n");
rc = pthread_rw ock_wrl ock(& w ock);
checkResul ts("pthread rw ock_wrlock()\n", rc);

printf("Got the rwock wite | ock, now unlock\n");
rc = pthread_rw ock_unl ock(& w ock);

checkResul t s("pthread rw ock _unlock()\n", rc);
printf("Secondary thread unl ocked\n");

return NULL;

}

int main(int argc, char **argv)
{
i nt rc=0;
pt hread_t thread, threadl;

printf("Enter Testcase - %\n", argv[O0]);

printf("Main, initialize the read wite [ock\n");
rc = pthread_rw ock_init(&w ock, NULL);
checkResul ts("pthread rw ock _init()\n", rc);

printf("Main, grab a read | ock\n");
rc = pthread_rw ock_rdl ock(& w ock);
checkResul ts("pthread rw ock rdl ock()\n",rc);

printf("Main, grab the sane read | ock again\n");
rc = pthread_rw ock_rdl ock(& w ock);
checkResul ts("pthread rw ock rdl ock() second\n", rc);

printf("Main, create the read | ock thread\n");
rc = pthread_create(& hread, NULL, rdlockThread, NULL);
checkResul ts("pthread create\n", rc);

printf("Main - unlock the first read | ock\n");
rc = pthread_rw ock_unl ock(& w ock);
checkResul t s("pthread rw ock_unl ock()\n", rc);

printf("Main, create the wite lock thread\n");
rc = pthread_create(& hreadl, NULL, wrlockThread, NULL);
checkResul ts("pthread create\n", rc);

sl eep(5);

printf("Main - unlock the second read | ock\n");
rc = pthread_rw ock_unl ock(& w ock);

checkResul t s("pthread rw ock_unl ock()\n", rc);

printf("Main, wait for the threads\n");
rc = pthread_joi n(thread, NULL);
checkResul ts("pthread join\n", rc);

rc = pthread_joi n(threadl, NULL);
checkResul ts("pthread join\n", rc);

rc = pthread_rw ock_destroy(& w ock);
checkResul ts("pthread rw ock _destroy()\n", rc);

printf("Min conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPRW.I NI O
Main, initialize the read wite |ock
Mai n, grab a read | ock

Main, grab the sane read | ock again
Mai n, create the read | ock thread
Mai n - unlock the first read | ock
Main, create the wite |ock thread
Entered thread, getting read |ock
got the rw ock read | ock

Entered thread, getting wite |ock
Mai n - unl ock the second read | ock
Main, wait for the threads

unl ock the read | ock

Secondary thread unl ocked

Got the rwock wite | ock, now unl ock
Secondary thread unl ocked

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread rwlock _rdlock()--Get Shared Read
Lock

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock rdl ock(pthread rw ock t *rw ock);

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_rdlock() function attempts to acquire a shared read lock on the read/write lock
specified by rwlock.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread holds
an exclusive write lock on aread/write lock object, no other threads are allowed to hold a shared read or
exclusive write lock.

If no threads are holding an exclusive write lock on the read/write lock, the calling thread successfully
acquires the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be
successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by a
thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock() a
matching number of times.

With alarge number of readers and relatively few writers, there is the possibility of writer starvation. If
threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently
hold a shared read lock, the shared read lock request is granted.

If the read/write lock is destroyed while pthread_rwlock _rdlock() iswaiting for the shared read lock, the
EDESTROYED error is returned.

If asignal isdelivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and the
thread resumes waiting.

Read/Write Lock Deadlocks

If athread ends while holding awrite lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not be successful. In this case, the attempt to acquire the lock will deadlock. If a
thread ends while holding aread lock, the system automatically releases the read lock.

For the pthread_rwlock_rdlock() function, the pthreads run-time simulates the deadlock that has occurred
in your application. When you are attempting to debug these deadlock scenarios, the CL command
WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows that the
function deadlockOnOrphanedRWL ock isin the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read
lock request is granted. After the shared read lock request is granted, the calling thread holds both the
shared read and the exclusive write lock for the specified read/write lock object. If the thread calls
pthread rwlock _unlock() while holding one or more shared read locks and one or more exclusive write
locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was
held by the thread, a matching number of successful callsto pthread rwlock _unlock() must be done
before all write locks are unlocked. At that time, subsequent callsto pthread_rwlock _unlock() unlock the
shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another. See
Read/write locks can be upgraded/downgraded.

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0
pthread_rwlock_rdlock() was successful.
value
pthread rwlock_rdlock() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_rwlock_rdlock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]

The value specified for the argument is not correct.
[EDESTROYED]

The lock was destroyed while waiting.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

« pthread rwlock init()--Initialize Read/Write L ock

« pthread rwlock timedrdiock np()--Get Shared Read L ock with Time-out

« pthread rwlock timedwrlock np()--Get Exclusive Write L ock with Time-out
o pthread rwlock tryrdliock()--Get Shared Read Lock with No Wait

» pthread rwlock trywrlock()--Get Exclusive Write Lock with No Wait

» pthread rwlock unlock()--Unlock Exclusive Write or Shared Read L ock

« pthread rwlock wrlock()--Get Exclusive Write Lock

Example

Seethe pthread rwlock init() example.

Top | Pthread APIs | APIs by category

pthread rwlock_timedrdlock np()--Get Shared
Read Lock with Time-Out

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock tinedrdl ock _np(pthread rw ock t *rw ock,
const struct tinmespec *deltatine);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlock_timedrdlock_np() function attempts to acquire a shared read lock on the read/write
lock specified by rwlock. If the shared read lock cannot be acquired in the deltatime specific,
pthread rwlock_timedrdlock_np() returnsthe EBUSY error.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread holds
an exclusive write lock on aread/write lock object, no other threads are allowed to hold a shared read or
exclusive write lock.

If no threads are holding an exclusive write lock on the read/write lock, the calling thread successfully
acquires the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be
successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by a
thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock() a
matching number of times.

With alarge number of readers and relatively few writers, there is the possibility of writer starvation. If
threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently
hold a shared read lock, the shared read lock request is granted.

If the read/write lock is destroyed while pthread_rwlock_timedrdlock _np() iswaiting for the shared read
lock, the EDESTROYED error is returned.

If asignal isdelivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and the
thread resumes waiting. For atimed wait, when the thread resumes waiting after the signal handler runs, the
wait timeisreset. For example, suppose athread specifiesthat it should wait for alock for 5 seconds, and a
signal handler runsin that thread after 2.5 seconds. After returning from the signal handler, the thread will
resume its wait for another 5 seconds. The resulting wait islonger than the specified 5 seconds.

Read/Write Lock Deadlocks

If athread ends while holding awrite lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not succeed. In this case, the attempt to acquire the lock will return the EBUSY
error after the specified time elapses for the lock operation. If athread ends while holding aread lock, the
system automatically releases the read lock.

For the pthread_rwlock_timedrdlock_np() function, the pthreads run-time simulates the deadlock that
has occurred in your application. When you are attempting to debug these deadlock scenarios, the CL

command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows
that the function timedDeadlockOnOr phanedRWL ock isin the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read
lock request is granted. After the shared read lock request is granted, the calling thread holds both the
shared read and the exclusive write lock for the specified read/write lock object. If the thread calls
pthread_rwlock_unlock() while holding one or more shared read locks and one or more exclusive write
locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was
held by the thread, a matching number of successful callsto pthread_rwlock _unlock() must be done
before all write locks are unlocked. At that time, subsequent callsto pthread_rwlock_unlock() will unlock
the shared read locks.

Y ou can use this behavior to alow your application to upgrade or downgrade one lock type to another. See
Read/write |ocks can be upgraded/downgraded.

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock
deltatime
(Input) The number of seconds and nanoseconds to wait for the lock before returning an error

Return Value

0
pthread_rwlock_timedrdlock_np() was successful.
value
pthread rwlock_timedrdlock_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_timedrdlock_np() was not successful, the error condition returned usually indicates
one of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]
The value specified for the argument is not correct.

[EBUSY]

The lock could not be acquired in the time specified.
[EDESTROYED)]

The lock was destroyed while waiting.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

« pthread rwlock init()--Initialize Read/Write L ock

« pthread rwlock rdlock()--Get Shared Read Lock

« pthread rwlock timedwrlock np()--Get Exclusive Write Lock with Time-Out
o pthread rwlock tryrdliock()--Get Shared Read Lock with No Wait

» pthread rwlock trywrlock()--Get Exclusive Write Lock with No Wait

» pthread rwlock unlock()--Unlock Exclusive Write or Shared Read L ock

« pthread rwlock wrlock()--Get Exclusive Write Lock

Example

#define _MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread rw ock_t rw ock = PTHREAD RW.OCK | NI Tl ALI ZER,;
voi d *rdl ockThread(void *arQ)
{

i nt rc;

i nt count =0;

struct tinespec ts;

/* 1.5 seconds */
ts.tv_sec = 1,
ts.tv_nsec = 500000000;

printf("Entered thread, getting read |lock with tinmeout\n");
Retry:
rc = pthread rw ock_timedrdl ock_np(& w ock, &ts);
if (rc == EBUSY) {
if (count >= 10) {
printf("Retried too many tinmes, failure!\n");
exi t (EXI T_FAI LURE) ;
}
++count ;
printf("RETRY...\n");
goto Retry;

checkResul ts("pthread rw ock rdl ock() 1\n", rc);
sl eep(2);

printf("unlock the read | ock\n");

rc = pthread_rw ock_unl ock(& w ock);

checkResul t s("pthread rw ock _unl ock()\n", rc);

printf("Secondary thread conplete\n");
return NULL;

}

int main(int argc, char **argv)

{
i nt rc=0;
pt hread_t t hr ead;
printf("Enter Testcase - %\n", argv[O0]);
printf("Main, get the wite |lock\n");
rc = pthread_rw ock_wrl ock(& w ock);
checkResul ts("pthread rw ock_wrlock()\n", rc);
printf("Main, create the tined rd | ock thread\n");
rc = pthread_create(& hread, NULL, rdlockThread, NULL);
checkResul ts("pthread create\n", rc);
printf("Main, wait a bit holding the wite |lock\n");
sl eep(5);
printf("Miin, Now unlock the wite |lock\n");
rc = pthread_rw ock_unl ock(& w ock);
checkResul t s("pthread rw ock_unl ock()\n", rc);
printf("Main, wait for the thread to end\n");
rc = pthread_joi n(thread, NULL);
checkResul ts("pthread join\n", rc);
rc = pthread_rw ock_destroy(& w ock);
checkResul ts("pthread rw ock _destroy()\n", rc);
printf("Min conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPRW.RDO
Main, get the wite |ock

Main, create the tined rd | ock thread
Main, wait a bit

Entered thread, getting read | ock with tineout
RETRY. . .

RETRY. . .

RETRY. . .

Mai n, Now unl ock the wite | ock

Main, wait for the thread to end

unl ock the read | ock

Secondary thread conpl ete
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread_rwlock_timedwrlock np()--Get
Exclusive Write Lock with Time-Out

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock tinmedw !l ock np(pthread rw ock t *rw ock,
const struct tinmespec *deltatine);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlock_timedwrlock _np() function attempts to acquire an exclusive write lock on the
read/write lock specified by rwlock. If the exclusive write lock cannot be acquired in the deltatime specific,
pthread rwlock_timedwrlock np() returnsthe EBUSY error.

Only one thread can hold an exclusive write lock on aread/write lock object. If any thread holds an
exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared read or
exclusive write lock.

If no threads are holding an exclusive write lock or shared read lock on the read/write lock, the calling
thread successfully acquires the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can be
successfully acquired by the calling thread. If more than one exclusive write lock is successfully acquired
by athread on aread/write lock object, that thread is required to successfully call
pthread_rwlock_unlock() a matching number of times.

With alarge number of readers and relatively few writers, there is the possibility of writer starvation. If
threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently
hold a shared read lock, the subsequent attempts to acquire a shared read lock request are granted, while
attempts to acquire the exclusive write lock wait.

If the read/write lock is destroyed while pthread_rwlock _timedwrlock_np() iswaiting for the shared read
lock, the EDESTROYED error is returned.

If asignal isdelivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and the
thread resumes waiting. For atimed wait, when the thread resumes waiting after the signal handler runs, the
wait timeisreset. For example, suppose athread specifiesthat it should wait for alock for 5 seconds, and a
signal handler runsin that thread after 2.5 seconds. After returning from the signal handler, the thread
resumes its wait for another 5 seconds. The resulting wait islonger than the specified 5 seconds.

Read/Write Lock Deadlocks

If athread ends while holding awrite lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not succeed. In this case, the attempt to acquire the lock returns the EBUSY error
after the specified time elapses for the lock operation. If athread ends while holding aread lock, the system
automatically releases the read lock.

For the pthread_rwlock_timedwrlock_np() function, the pthreads run-time simul ates the deadlock that

has occurred in your application. When you are attempting to debug these deadlock scenarios, the CL
command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows
that the function timedDeadlockOnOr phanedRWL ock isin the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read/write lock object and no other threads are
holding a shared read lock, the exclusive write request is granted. After the exclusive write lock request is
granted, the calling thread holds both the shared read and the exclusive write lock for the specified
read/write lock object. If the thread calls pthread_rwlock_unlock() while holding one or more shared read
locks and one or more exclusive write locks, the exclusive write locks are unlocked first. If more than one
outstanding exclusive write lock was held by the thread, a matching number of successful callsto
pthread_rwlock_unlock() must be done before all write locks are unlocked. At that time, subsequent calls
to pthread_rwlock_unlock() unlock the shared read locks.

Y ou can use this behavior to alow your application to upgrade or downgrade one lock type to another. See
Read/write locks can be upgraded and downgraded.

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock
deltatime
(Input) The number of seconds and nanoseconds to wait for the lock before returning an error

Return Value

0
pthread _rwlock_timedwrlock_np() was successful.
value

pthread rwlock_timedwrlock np() was not successful. value is set to indicate the error
condition.

Error Conditions

If pthread_rwlock_timedwrlock_np() was not successful, the error condition returned usually indicates
one of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.
[EBUSY]

The lock could not be acquired in the time specified.
[EDESTROYED]

The lock was destroyed while waiting.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.

o pthread rwlock init()--Initialize Read/Write L ock

« pthread rwlock rdlock()--Get Shared Read L ock

» pthread rwlock timedrdlock np()--Get Shared Read L ock with Time-Out
« pthread rwlock tryrdlock()--Get Shared Read L ock with No Wait

« pthread rwlock trywrlock()--Get Exclusive Write L ock with No Wait

» pthread rwlock_unlock()--Unlock Exclusive Write or Shared Read L ock
o pthread rwlock wrlock()--Get Exclusive Write Lock

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_rw ock_t rw ock = PTHREAD RW.CCK | NI Tl ALI ZER;
voi d *wr | ockThread(void *arg)
{

i nt rc;

i nt count =0;

struct tinmespec ts;

/[* 1.5 seconds */
ts.tv_sec = 1;
ts.tv_nsec = 500000000;

printf("%8x %8x: Entered thread, getting wite lock with timeout\n",
pt hread_getthreadi d_np());
Retry:
rc = pthread_rw ock_timedw | ock_np(& w ock, &ts);
if (rc == EBUSY) {
if (count >= 10)
printf("%8x %8x: Retried too many tines, failure!\n",
pt hread_getthreadi d_np());
exi t (EXI T_FAI LURE) ;

}

++count ;
printf("%8x % 8x: RETRY...\n", pthread getthreadid np());
goto Retry;

}
checkResul ts("pthread rw ock_wrlock() 1\n", rc);
printf("%8x %8x: Got the wite lock\n", pthread getthreadid np());

sl eep(2);

printf("%8x % 8x: Unlock the wite | ock\n",
pt hread getthreadid _np());

rc = pthread_rw ock_unl ock(& w ock);

checkResul t s("pthread rw ock_unl ock()\n", rc);

printf("%8x % 8x: Secondary thread conpl ete\n",
pt hread getthreadid np());
return NULL;

}
int main(int argc, char **argv)
{
i nt rc=0;
pt hread t t hread, thread2;

printf("Enter Testcase - %\n", argv[O0]);

printf("Main, get the wite |lock\n");
rc = pthread_rw ock_wrl ock(& w ock);
checkResul ts("pthread rw ock_wrlock()\n", rc);

printf("Main, create the tined wite |lock threads\n");
rc = pthread_create(& hread, NULL, wlockThread, NULL);
checkResul ts("pthread create\n", rc);

rc = pthread_create(& hread2, NULL, wrlockThread, NULL);
checkResul ts("pthread create\n", rc);

printf("Main, wait a bit holding this wite |ock\n");
sl eep(3);

printf("Main, Now unlock the wite |lock\n");
rc = pthread_rw ock_unl ock(& w ock);
checkResul t s("pthread rw ock_unl ock()\n", rc);

printf("Main, wait for the threads to end\n");
rc = pthread_joi n(thread, NULL);
checkResul ts("pthread join\n", rc);

rc = pthread_joi n(thread2, NULL);
checkResul ts("pthread join\n", rc);

rc = pthread_rw ock_destroy(& w ock);
checkResul ts("pthread rw ock _destroy()\n", rc);
printf("Miin conpleted\n");

return O;

Output:

Ent er
Mai n,
Mai n,
Mai n,

Testcase -
get the wite |ock

create the tined wite | ock threads
wait a bit holding this wite | ock
00000000 00000017: Entered thread, getting wite lock with timeout
00000000 00000018: Entered thread, getting wite lock with timeout

QPOWTEST/ TPRW.VRO

00000000 00000017: RETRY..
00000000 00000018: RETRY..

Mai n,
Mai n,
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Mai n conpl et ed

Now unl ock the wite |ock

wait for the threads to end
00000017:
00000018:
00000018:
00000017:
00000017:
00000018:
00000018:
00000018:

Got the wite | ock
RETRY. . .

RETRY. . .

Unl ock the wite | ock
Secondary thread conpl ete
Got the wite | ock

Unl ock the wite | ock
Secondary thread conpl ete

Top | Pthread APIs | APIs by category

pthread rwlock_tryrdlock()--Get Shared Read
Lock with No Wait

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock _tryrdl ock(pthread rw ock t *rw ock);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlock_tryrdlock() function attempts to acquire a shared read lock on the read/write lock
specified by rwlock. If the shared read lock cannot be acquired immediately, pthread_rwlock_tryrdlock()
returns the EBUSY error.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread holds
an exclusive write lock on aread/write lock object, no other threads will be allowed to hold a shared read or
exclusive write lock.

If there are no threads holding an exclusive write lock on the read/write lock, the calling thread will
successfully acquire the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be
successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by a
thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock() a
matching number of times.

With alarge number of readers, and relatively few writers, there is the possibility of writer starvation. If
there are threads waiting for an exclusive write lock on the read/write lock and there are threads that
currently hold ashared read lock, the shared read lock request will be granted.

Read/Write Lock Deadlocks

If athread ends while holding awrite lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not be successful. In this case, the attempt to acquire the lock will return the
EBUSY error. If athread ends while holding aread lock, the system automatically rel eases the read |ock.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read
lock request will be granted. After the shared read lock request is granted, the calling thread holds both the
shared read, and the exclusive write lock for the specified read/write lock object. If the thread calls
pthread _rwlock_unlock() while holding one or more shared read locks and one or more exclusive write
locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was
held by the thread, a matching number of successful callsto pthread_rwlock _unlock() must be done
before all write locks are unlocked. At that time, subsequent callsto pthread_rwlock_unlock() will unlock
the shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another. See
Read/write |ocks can be upgraded/downgraded.

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0
pthread_rwlock_tryrdlock() was successful.
value
pthread rwlock_tryrdlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_tryrdlock() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[EBUSY]

The lock could not be immediately acquired.

Related Information

o The<pthread.h> header file. See Header files for Pthread functions.

« pthread rwlock init()--Initialize Read/Write L ock

« pthread rwlock rdlock()--Get Shared Read Lock

» pthread rwlock timedrdlock np()--Get Shared Read L ock with Time-Out

» pthread rwlock timedwrlock np()--Get Exclusive Write Lock with Time-Out
« pthread rwlock trywrlock()--Get Exclusive Write L ock with No Wait

« pthread rwlock unlock()--Unlock Exclusive Write or Shared Read L ock

« pthread rwlock wrlock()--Get Exclusive Write Lock

Example

#defi ne _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_rw ock_t rw ock = PTHREAD RW.OCK_| NI TI ALI ZER;
voi d *rdl ockThread(void *arg)
{
i nt rc;
i nt count =0;
printf("Entered thread, getting read lock with np wait\n");
Retry:
rc = pthread_rw ock_tryrdl ock(& w ock);
if (rc == EBUSY) {
if (count >= 10) {
printf("Retried too many tines, failure!\n");
exi t (EXI T_FAIl LURE)
}
++count ;
printf("Could not get |ock, do other work, then RETRY...\n");
sl eep(1);
goto Retry;
}
checkResul ts("pthread _rw ock_tryrdlock() 1\n", rc);
sl eep(2);
printf("unlock the read | ock\n");
rc = pthread_rw ock_unl ock(& w ock);
checkResul t s("pthread rw ock_unl ock()\n", rc);
printf("Secondary thread conplete\n");
return NULL;
}
int main(int argc, char **argv)
{
i nt rc=0;
pt hread_t t hr ead;

printf("Enter Testcase - %\n", argv[O0]);
printf("Main, get the wite |lock\n");

rc = pthread_rw ock_wrl ock(& w ock);
checkResul t s("pthread rw ock_wrlock()\n", rc);

printf("Main, create the try read | ock thread\n");

rc = pthread_create(& hread, NULL, rdlockThread, NULL);
checkResul ts("pthread create\n", rc);

printf("Main, wait a bit holding the wite |lock\n");
sl eep(5);

printf("Miin, Now unlock the wite |lock\n");
rc = pthread_rw ock_unl ock(& w ock);
checkResul t s("pthread rw ock _unl ock()\n", rc);

printf("Main, wait for the thread to end\n");
rc = pthread_joi n(thread, NULL);
checkResul ts("pthread join\n", rc);

rc = pthread_rw ock_destroy(& w ock);
checkResul ts("pthread rw ock_destroy()\n", rc);
printf("Min conpleted\n");

return O;

}

Output

Enter Testcase - QPOWEST/ TPRW.RD1
Main, get the wite |ock

Main, create the try read | ock thread
Main, wait a bit holding the wite |ock

Entered thread, getting read lock with nmp wait
Coul d not get |ock, do other work, then RETRY...
Coul d not get |ock, do other work, then RETRY...
Coul d not get |ock, do other work, then RETRY...
Coul d not get |ock, do other work, then RETRY...
Coul d not get |ock, do other work, then RETRY...
Mai n, Now unlock the wite |ock

Main, wait for the thread to end

unl ock the read | ock

Secondary thread conpl ete

Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread rwlock_trywrlock()--Get Exclusive
Write Lock with No Wait

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock _trywl ock(pthread rw ock t *rw ock);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlock_trywrlock() function attempts to acquire an exclusive write lock on the read/write
lock specified by rwlock. If the exclusive write lock cannot be immediately acquired,
pthread rwlock_timedwrlock np() returnsthe EBUSY error.

Only one thread can hold an exclusive write lock on aread/write lock object. If any thread holds an
exclusive write lock on aread/write lock object, no other threads will be allowed to hold a shared read or
exclusive write lock.

If there are no threads holding an exclusive write lock or shared read lock on the read/write lock, the calling
thread will successfully acquire the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can be
successfully acquired by the calling thread. If more than one exclusive write lock is successfully acquired
by athread on aread/write lock object, that thread is required to successfully call
pthread_rwlock_unlock() a matching number of times.

With alarge number of readers, and relatively few writers, there is the possibility of writer starvation. If
there are threads waiting for an exclusive write lock on the read/write lock and there are threads that
currently hold a shared read lock, the subsequent attempts to acquire a shared read lock request will be
granted, while attempts to acquire the exclusive write lock will return the EBUSY error.

Read/Write Lock Deadlocks

If athread ends while holding awrite lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not be successful. In this case, the attempt to acquire the lock will return the
EBUSY error. If athread ends while holding aread lock, the system automatically rel eases the read |ock.

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read/write lock object and there are no other
threads holding a shared read lock, the exclusive write request will be granted. After the exclusive write
lock request is granted, the calling thread holds both the shared read, and the exclusive write lock for the
specified read/write lock object. If the thread calls pthread_rwlock_unlock() while holding one or more
shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked first. If
more than one outstanding exclusive write lock was held by the thread, a matching number of successful
callsto pthread_rwlock_unlock() must be done before all write locks are unlocked. At that time,
subsequent callsto pthread_rwlock_unlock() will unlock the shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another. See
Read/write |ocks can be upgraded/downgraded.

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0
pthread_rwlock_trywrlock() was successful.
value
pthread_rwlock_trywrlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_trywrlock() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[EBUSY]

The lock could not be acquired in the timed specified.

Related Information

The <pthread.h> header file. See Header files for Pthread functions.

pthread rwlock init()--Initialize Read/Write L ock

» pthread rwlock rdlock()--Get Shared Read L ock

« pthread rwlock timedrdiock np()--Get Shared Read L ock with Time-Out

« pthread rwlock timedwrlock np()--Get Exclusive Write Lock with Time-Out
« pthread rwlock tryrdliock()--Get Shared Read L ock with No Wait

o pthread rwlock unlock()--Unlock Exclusive Write or Shared Read L ock

« pthread rwlock wrlock()--Get Exclusive Write Lock

Example

#defi ne _MJULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_rw ock_t rw ock = PTHREAD RW.OCK | NI Tl ALI ZER;

void *wl ockThread(void *arg)
{

i nt rc;

i nt count =0;

printf("%8x % 8x: Entered thread, getting wite |lock with tineout\n",
pt hread _getthreadi d_np());
Retry:
rc = pthread_rw ock_trywl ock(& w ock);
if (rc == EBUSY) {
if (count >= 10) {
printf("%8x % 8x: Retried too many tines, failurel\n",
pt hread _getthreadi d_np());
exit (EXI T_FAI LURE) ;
}
++count ;
printf("%8x % 8x: Go off an do other work, then RETRY...\n",
pt hread _getthreadi d_np());
sl eep(1);
goto Retry;

}
checkResul ts("pthread rw ock_trywlock() 1\n", rc);
printf("%8x %8x: Got the wite lock\n", pthread getthreadid _np());

sl eep(2);

printf("%8x % 8x: Unlock the wite | ock\n",
pt hread _getthreadi d_np());

rc = pthread_rw ock_unl ock(& w ock);

checkResul t s("pthread rw ock_unl ock()\n", rc);

printf ("% 8x % 8x: Secondary thread conplete\n",
pt hread _getthreadi d_np());
return NULL;

}

int main(int argc, char **argv)

t
i nt rc=0;
pt hread_t t hread, thread2;

printf("Enter Testcase - %\n", argv[O0]);

printf("Main, get the wite |lock\n");

rc = pthread_rw ock_wrl ock(& w ock);
checkResul ts("pthread rw ock_wrlock()\n", rc);
printf("Main, create the tinmed wite lock threads\n");
rc = pthread_create(& hread, NULL, wlockThread, NULL);
checkResul ts("pthread create\n", rc);

rc = pthread_create(& hread2, NULL, wrlockThread, NULL);
checkResul ts("pthread create\n", rc);

printf("Main, wait a bit holding this wite |ock\n");
sl eep(1);

printf("Main, Now unlock the wite |lock\n");

rc = pthread_rw ock_unl ock(& w ock);

checkResul t s("pthread rw ock _unl ock()\n", rc);
printf("Main, wait for the threads to end\n");
rc = pthread_joi n(thread, NULL);

checkResul ts("pthread join\n", rc);

rc = pthread_joi n(thread2, NULL);
checkResul ts("pthread join\n", rc);

rc = pthread_rw ock_destroy(& w ock);
checkResul ts("pthread rw ock _destroy()\n",
printf("Min conpleted\n");

return O;

re);

}

Output:

Enter Testcase -
Main, get the wite |ock

Main, create the tined wite | ock threads
00000000 0000000d: Entered thread, getting wite
00000000 0000000d: Go off an do other work, then
Main, wait a bit holding this wite |ock
00000000 0000000e: Entered thread, getting wite
00000000 0000000e: Go off an do other work, then
00000000 0000000d: Go off an do other work, then
Mai n, Now unl ock the wite | ock

Main, wait for the threads to end

QPOWTEST/ TPRALVRL

| ock with tineout
RETRY. . .

| ock with tineout
RETRY. ..
RETRY. . .

00000000
00000000
00000000
00000000
00000000
00000000
00000000

0000000e:
0000000d:
0000000e:
0000000e:
0000000d:
0000000d:
0000000d:

Mai n conpl et ed

Got the wite | ock

CGo of f an do ot her work,
Unlock the wite | ock
Secondary thread conpl ete
Got the wite | ock

Unlock the wite |ock
Secondary thread conplete

t hen

RETRY. . .

Top | Pthread APIs| APIs by category

pthread rwlock _unlock()--Unlock Exclusive
Write or Shared Read Lock

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock _unl ock(pthread rw ock t *rw ock);

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_unlock() function unlocks a shared read or exclusive write lock held by the calling
thread.

A thread should call pthread_rwlock _unlock() once for each time that the thread successfully called
pthread rwlock_rdlock(), pthread_rwlock_tryrdlock(), pthread _rwlock_trywrlock(),
pthread_rwlock_timedrdlock_np(), or pthread_rwlock_timedwrlock _np() to acquire a shared read or
exclusive write lock. For example, if athread holds 4 shared read locks on a read/write lock object, the
thread must call pthread_rwlock _unlock() 4 times before the read/write lock becomes compl etely
unlocked.

If athread holds both shared read and exclusive write locks for the specified read/write lock object, the
exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was held by the
thread, a matching number of successful callsto pthread_rwlock _unlock() must be done before all write
locks are unlocked. When all write locks are unlocked, subsequent calls to pthread_rwlock_unlock()
unlock the shared read locks.

Authorities and Locks

For successful completion, either a shared read or exclusive write lock must be held on the read/write lock
before you call pthread_rwlock _unlock().

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0
pthread_rwlock _unlock() was successful.
value
pthread_rwlock _unlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_unlock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.
[EPERM]
A shared read or exclusive write lock was not held by the calling thread and could not be unlocked.

Related Information

o The<pthread.h> header file. See Header files for Pthread functions.

pthread rwlock _init()--Initialize Read/Write L ock

o pthread rwlock rdlock()--Get Shared Read Lock

» pthread rwlock timedrdlock np()--Get Shared Read L ock with Time-Out

» pthread rwlock timedwrlock np()--Get Exclusive Write Lock with Time-Out
« pthread rwlock tryrdlock()--Get Shared Read L ock with No Wait

« pthread rwlock trywrlock()--Get Exclusive Write L ock with No Wait

» pthread rwlock wrlock()--Get Exclusive Write L ock

Example

See any of the following examples:
« pthread rwlock tryrdlock()

« pthread rwlock trywrlock()

» pthread rwlock_timedrdlock np()

o pthread rwlock timedwrlock np()

Top | Pthread APIs | APIs by category

pthread rwlock _wrlock()--Get Exclusive Write
Lock

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ock_wrlock(pthread rw ock t *rw ock);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlock_wrlock() function attempts to acquire an exclusive write lock on the read/write lock
specified by rwlock.

Only one thread can hold an exclusive write lock on aread/write lock object. If any thread holds an
exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared read or
exclusive write lock.

If no threads are holding an exclusive write lock or shared read lock on the read/write lock, the calling
thread successfully acquires the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can be
successfully acquired by the calling thread. If more than one exclusive write lock is successfully acquired
by athread on aread/write lock object, that thread is required to successfully call
pthread_rwlock_unlock() a matching number of times.

With alarge number of readers and relatively few writers, there is the possibility of writer starvation. If
threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently
hold a shared read lock, the subsequent attempts to acquire a shared read lock request are granted, while
attempts to acquire the exclusive write lock wait.

If the read/write lock is destroyed while pthread_rwlock _wrlock() is waiting for the shared read lock, the
EDESTROYED error is returned.

If asignal isdelivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and the
thread resumes waiting.

Read/Write Lock Deadlocks

If athread ends while holding of awrite lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not succeed. In this case, the attempt to acquire the lock does not return and will
deadlock. If athread ends while holding aread lock, the system automatically releases the read lock.

For the pthread_rwlock_wrlock() function, the pthreads run-time simulates the deadlock that has occurred
in your application. When you are attempting to debug these deadlock scenarios, the CL command
WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows that the
function timedDeadlockOnOr phanedRWL ock isin the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read/write lock object and no other threads are
holding a shared read lock, the exclusive write request is granted. After the exclusive write lock request is
granted, the calling thread holds both the shared read, and the exclusive write lock for the specified
read/write lock object. If the thread calls pthread_rwlock _unlock() while holding one or more shared read
locks and one or more exclusive write locks, the exclusive write locks are unlocked first. If more than one
outstanding exclusive write lock was held by the thread, a matching number of successful callsto

pthread rwlock _unlock() must be done before all write locks are unlocked. At that time, subsequent calls
to pthread_rwlock_unlock() unlock the shared read locks.

Y ou can use this behavior to allow your application to upgrade or downgrade one lock type to another. See
Read/write locks can be upgraded/downgraded.

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0
pthread_rwlock_wrlock() was successful.
value
pthread rwlock _wrlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_wrlock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]

The value specified for the argument is not correct.
[EDESTROYED]

The lock was destroyed while waiting.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions

« pthread rwlock init()--Initialize a Read/Write L ock

« pthread rwlock rdlock()--Get a Shared Read L ock

» pthread rwlock_timedrdlock np()--Get a Shared Read L ock with Time-Out

« pthread rwlock timedwrlock np()--Get an Exclusive Write Lock with Time-Out
» pthread rwlock tryrdlock()--Get a Shared Read L ock with No Wait

« pthread rwlock trywrlock()--Get an Exclusive Write Lock with No Wait

« pthread rwlock unlock()--Unlock an Exclusive Write or Shared Read Lock

Example

Seethe pthread rwlock init() example.

Top | Pthread APIs | APIs by category

pthread rwlockattr_destroy()--Destroy
Read/Write Lock Attribute

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ockattr_destroy(pthread rw ockattr _t *attr);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlockattr_destroy() function destroys a read/write lock attributes object and allows the
systems to reclaim any resources associated with that read/write lock attributes object. This does not have
an effect on any read/write lock already created using this read/write lock attributes object.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the read/write lock attributes object to be destroyed

Return Value

0
pthread_rwlockattr _destroy() was successful.
value
pthread_rwlockattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_destroy() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

o The <pthread.h> header file. See Header files for Pthread functions.
o pthread rwlockattr init()--Initialize Read/Write Lock Attribute
o pthread rwlock init()--Initialize Read/Write Lock

Example

#define MILTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hread_rw ock_t rw ockl;
pt hread_rw ock_t rw ock2 = PTHREAD RW.OCK | NI Tl ALI ZER;

int main(int argc, char **argv)
t
i nt rc=0;
pt hread_rw ockattr_t attr;

printf("Enter Testcase - %\n", argv[O0]);

printf("Create a default rw ock attribute\n");
rc = pthread_rw ockattr_init(&attr);
checkResul ts("pthread_rw ockattr_init()\n", rc);

printf("Use the rwock attributes to created rw ocks here\n");
rc = pthread_rw ock_init(&w ockl, &attr);
checkResul ts("pthread_rw ock_init()\n", rc);

printf("The rw ockl is now ready for use.\n");
printf("The rw ock2 that was statically initialized was ready when\n"
"the main routine was entered\n");

printf("Destroy rwock attribute\n");
rc = pthread_rw ockattr_destroy(&attr);
checkResul ts("pthread_rw ockattr_destroy()\n", rc);

printf("Use the rw ocks\n");
rc = pthread_rw ock_rdl ock(& w ockl);
checkResul t s("pthread_rw ock_rdl ock()\n", rc);

rc = pthread_rw ock_wr | ock(& w ock?2);
checkResul t s("pthread_rw ock_wrlock()\n", rc);

rc = pthread_rw ock_unl ock(& w ockl);
checkResul t s(" pt hread_rw ock_unl ock(1)\n", rc);

rc = pthread_rw ock_unl ock(& w ock?2);
checkResul t s(" pt hread_rw ock_unl ock(2)\n", rc);

printf("Destroy the rw ocks\n");
rc = pthread_rw ock_destroy(& W ockl);
checkResul ts("pthread rw ock _destroy(1)\n", rc);

rc = pthread_rw ock_destroy(& W ock2);
esul ts("pthread rw ock_destroy(2)\n", rc);

printf("Miin conpleted\n");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPRW.AI O

Create a default rwi ock attribute

Use the rwock attributes to created rw ocks here

The rwl ock is now ready for use.

The rwl ock that was statically initialized was ready when
the main routine was entered

Destroy rw ock attribute

Use the rw ocks

Destroy the rw ocks

Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread rwlockattr_getpshared()--Get Pshared
Read/Write Lock Attribute

Syntax:

#i ncl ude <pthread. h>
int pthread_rw ockattr_getpshared(pthread_rw ockattr_t *attr, int
*pshar ed) ;

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlockattr_getpshared() function retrieves the current setting of the process shared attribute from
the read/write lock attributes object. The process shared attribute indicates whether the read/write lock that is
created using the read/write lock attributes object can be shared between threads in separate processes
(PTHREAD_PROCESS_SHARED) or shared only between threads within the same process
(PTHREAD_PROCESS PRIVATE).

Even if the read/write lock in storage is accessible from two separate processes, it cannot be used from both
processes unless the process shared attributeis PTHREAD _PROCESS SHARED.

The default pshared attribute for read/write lock attributes objectsis PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr

(Input) Address of the variable that contains the read/write lock attributes object
attr

(Output) Address of the variable to contain the pshared attribute result

Return Value

0
pthread_rwlockattr _getpshared() was successful.
value
pthread_rwlockattr _getpshared() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_getpshared() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.

» pthread rwlockattr init()--Initialize Read/Write L ock Attribute

» pthread rwlockattr setpshared()--Set Pshared Read/Write L ock Attribute
» pthread rwlock init()--Initialize Read/Write L ock

Example

#define _MULTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdi o. h>

#i ncl ude <spawn. h>

#i ncl ude <sys/wait.h>
#i ncl ude <uni std. h>

#i ncl ude <sys/shm h>

#i ncl ude "check. h"

typedef struct {
i nt pr ot ect edResour ce;
pt hread rw ock_t rw ock;

} shared data t;

extern char **envi ron;

shared data t *shar edMem=NULL;
pidt chi | dPi d=0;

i nt chi | dSt at us=-99;
i nt shm d=0;

/* Change this path to be the path to where you create this exanpl e program
*/

#defi ne MYPATH "/ QSYS. LI Bl QPOWIEST. LI B/ TPRALSHO. PGM'
#defi ne NTHREADSTH SJOB 2
#defi ne NTHREADSTOTAL 4

voi d parent Set up(void);
voi d chil dSetup(void);
voi d parent C eanup(void);
voi d chil dd eanup(voi d);

voi d *chi | dReader Thr eadFunc(voi d *parm
{

i nt rc;
i nt retries = 5;

while (retries--) {
rc = pthread_rw ock_rdl ock(&sharedMem >rw ock) ;
checkResul t s("pthread_rw ock_rdl ock()\n", rc);
/* Under protection of the shared read | ock, read the resource */
printf("CH LD READER - current protectedResource = %\ n",
shar edMem >pr ot ect edResour ce) ;
sl eep(1);

printf("CH LD READER - unl ock\n");

rc = pthread_rw ock_unl ock(&sharedMem >rw ock) ;
checkResul t s("pthread_rw ock _unl ock()\n", rc);

}
return NULL;

}
voi d *parent WiterThreadFunc(void *parm
{
i nt rc;
rc = pthread_rw ock_wrl ock(&haredMem >rw ock) ;
checkResul t s("pthread rw ock _rdl ock()\n", rc);
/* Under protection of the exclusive wite lock, wite the resource */
++shar edMem >pr ot ect edResour ce;
printf("PARENT WRI TER - current protectedResource = %\ n",
shar edMem >pr ot ect edResour ce) ;
sl eep(5);
printf("PARENT WRI TER - unl ock\n");
rc = pthread_rw ock_unl ock(&haredMem >rw ock) ;
checkResul t s("pthread_rw ock_unl ock()\n", rc);
return NULL;
}
int main(int argc, char **argv)
{
i nt r c=0;
i nt i;
pt hread_t t hr eadi d[NTHREADSTHI SJOB] ;
i nt par ent Job=0;
voi d *st at us=NULL;
/* If we run this fromthe QSHELL interpreter on the system we want
*/

/* it to be line buffered even if we run it in batch so the output
bet ween*/

/* parent and child is intern xed.
*/

set vbuf (st dout, NULL, _| OLBF, 4096) ;

/* Determine if we are running in the parent or child
*/

if (argc '=1 & argc !'= 2) {

printf("Incorrect usage\n");
printf("Pass no paraneters to run as the parent testcase\n");
printf("Pass one parameter "ASCHI LD to run as the child testcase\n");
exit(1);

}

if (argc == 1) {
parentJob =1
}

el se {
if (strcnp(argv[l], "ASCH LD")) {
printf("Incorrect usage\n");
printf("Pass no paraneters to run as the parent testcase\n");
printf("Pass one parameter "ASCH LD to run as the child
testcase\n");

exit(l);
parentJob = 0;
}
/* PARENT

***/

if (parentJob) {
printf("PARENT - Enter Testcase - %\n", argv[O0]);
par ent Set up();

printf("PARENT - Create %l threads\n", NTHREADSTH SJOB);
for (i=0; i<NTHREADSTHI SJOB; ++i) {
rc = pthread_create(& hreadid[i], NULL, parentWiterThreadFunc

NULL) ;
checkResul ts("pthread_create()\n", rc);
}
for (i=0; i<NTHREADSTH SJOB; ++i) {
rc = pthread_join(threadid[i], NULL);
checkResul ts("pthread create()\n", rc);
if (status !'= NULL) {
printf("PARENT - CGot a bad status froma thread, "
"% 8x % 8x % 8x % 8x\n", status);
exit(1);
}
par ent Cl eanup() ;
printf("PARENT - Main conpleted\n");
exit(0);
/* CH LD

***/

printf("CH LD - Enter Testcase - %\n", argv[0]);
chi | dSet up();

printf("CH LD - Create % threads\n", NTHREADSTH SJOB)
for (i=0; i<NTHREADSTHI SJOB; ++i) {
rc = pthread_create(& hreadid[i], NULL, chil dReader ThreadFunc,
NULL) ;
checkResul ts("pthread create()\n", rc);

}

/* The parent will wake up all of these threads using the */
/* pshared condition variable. W will just join to them.. */
printf("CH LD - Joining to all threads\n");

for (i=0; i<NTHREADSTH SJOB; ++i) {
rc = pthread_join(threadid[i], &status);
checkResul ts("pthread_join()\n", rc);
if (status !'= NULL) {
printf("CH LD - Got a bad status froma thread, "
"% 8x % 8x % 8x % 8x\n", status);

exit(1);
} }
/* After all the threads are awake, the parent will destroy */
/* the read/wite |ock. Do not use it anynore */

chi |l dd eanup();
printf("CH LD - Main conpleted\n");

}

return O;

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

This function initializes the shared nenory for the job, */
sets up the environment variable indicating where the shared*/
nenory is, and spawns the child job. */
*/

It creates and initializes the shared nmenory segnent, and */
It initializes the followi ng global variables in this */
j ob. */
shar edMem */
chi |l dPi d */
shm d */

*/

If any of this setup/initialization fails, it will exit(1) */
and terminate the test. */
*/

/***/

voi d parent Set up(voi d)

{

int rc;

/***/

/* Create shared nenory for shared data_t above */
/* attach the shared nenory */
/* set the static/global sharedMem pointer to it */

/***/

printf("PARENT - Create the shared nenory segnent\n");

rc = shnget (1 PC_PRI VATE, sizeof (shared _data t), 0666);

if (rc ==-1) {
printf("PARENT - Failed to create a shared nenory segnent\n");
exit(1l);

shmd = rc;
printf("PARENT - Attach the shared nmenory\n");

sharedMem = shmat (shm d, NULL, 0);
i f (sharedMem == NULL) {

shnct!l (shmd, |PC_RM D, NULL);
printf("PARENT - Failed to attach shared menory\n");
exit(1);

/***/

/* Initialize the read/wite | ock and ot her shared nenory data */

/***/

{
pt hread_rw ockattr _t rwattr;
printf("PARENT - Init shared nmenory and read/wite | ock\n");
menset (sharedMem 0, sizeof(shared_data_t));
/* Process Shared Read/Wite | ock */
rc = pthread_rw ockattr_init(&wattr);
checkResul ts("pthread_rw ockattr_init()\n", rc);
rc = pthread_rw ockattr_setpshared(& w attr, PTHREAD PROCESS SHARED) ;
checkResul ts("pthread_rw ockattr_set pshared()\n", rc);
rc = pthread_rw ock_init(&haredMem >rw ock, & w attr);
checkResul ts("pthread_rw ock_init()\n", rc);
}

/**/

/* Set and environnent variable so that the child can inherit */

/* it and know the shared mermory |ID */
/**l
char shm dEnvVar [128] ;

sprintf(shm dEnvVvar, "TPRW.SHO_SHM D=%l\n", shnid);
rc = putenv(shm dEnvVvar);
if (rc) {
printf("PARENT - Failed to store env var %, errno=%l\n",
shm dEnvVar, errno);
exit(l);

printf("PARENT - Stored shared nenory id of %d\n", shmd);

/**/

/* Spawn the child job */
/**/
. .

i nheritance t in;

char *av[3] = {NULL, NULL, NULL};

/* Allow thread creation in the spawned child */

menset (& n, 0, sizeof(in));
in.flags = SPAWN_SETTHREAD NP;

/* Set up the argunents to pass to spawn based on the */

/* argunents passed in */
av[0] = MYPATH;

av[1] = "ASCH LD';

av[2] = NULL;

/* Spawn the child that was specified, inheriting all */
/* of the environnment variabl es. */

childPid = spawn(MYPATH, 0, NULL, & n, av, environ);

}

if (childPid == -1) {
[* spawn failure */
printf("PARENT - spawn() failed, errno=%l\n", errno);

exit(1);
}
printf("PARENT - spawn() success, [PID=%]\n", childPid);
}
return;

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

This function attaches the shared nenory for the child job, */
It uses the environnent variable indicating where the shared*/

nenory is. */
*/

If any of this setup/initialization fails, it will exit(1) */
and terminate the test. */
*/

It initializes the follow ng global variables: */
shar edMem */
shm d */

/***/

voi d chil dSet up(voi d)

{

int rc;

printf("CH LD - Child setup\n");

/**/

/* Set and environnent variable so that the child can inherit */

/* it and know the shared nmenory ID */
/**/
char *shnl dEnvVar ;

shm dEnvVar = getenv(" TPRALSHO _SHM D');
if (shm dEnvVar == NULL) {
printf("CH LD - Failed to get env var \"TPRALSHO_SHM D\ ",

errno=%\n",

errno);
exit(l);

shm d = atoi (shm dEnvVar) ;
printf("CH LD - Got shared nenory id of %\n", shnid);

/***/

/* Create shared nenory for shared data_t above */
/* attach the shared nenory */
/* set the static/global sharedMem pointer to it */

/***/

printf("CH LD - Attach the shared nenory\n");
sharedMem = shmat (shm d, NULL, 0);
i f (sharedMem == NULL) {
shnct!| (shnid, 1PC_RM D, NULL);
printf("CH LD - Failed to attach shared nemory\n");
exit(1l);

return;

/***/

/* wait for child to conplete and get return code. */
/* Destroy read/wite lock in shared nenory */
/* detach and renpove shared nenory */
/* set the child' s return code in gl obal storage */
/* */
/[* If this function fails, it will call exit(1) */
/* */
/* This function sets the foll ow ng gl obal variables: */
[* shar edMem */
[* chi |l dSt at us */
/* shm d */

/***/

voi d parent C eanup(voi d)

*/

*/
*/
*/
*/

errno);

{
i nt st at us=0;
i nt rc;
i nt wai t edPi d=0;
/* Even though there is no thread left in the child using the
/* contents of the shared menory, before we destroy the
/* read/wite lock in that shared nenmory, we will wait for the
/* child job to conplete, we know for 100% certainty that no
/* threads in the child are using it then, because the child
/* is term nated
printf("PARENT - Parent cleanup\n");
/* Wait for the child to conplete */
wai tedPid = wai tpid(childPid, &t atus,0);
if (rc == -1) {
printf("PARENT - waitpid failed, errno=%\n", errno);
exit(l);
chil dStatus = status;
/* O eanup resources */
rc = pthread_rw ock_destroy(&sharedMem >rw ock) ;
checkResul ts("pthread rw ock _destroy()\n", rc);
/* Detach/ Remove shared nenory */
rc = shndt (sharedMen)
if (rc) {
printf("PARENT - Failed to detach shared nenory, errno=%\n"
exit(l);
}
rc = shnetl (shmid, IPCRMD, NULL);
if (rc) {
printf("PARENT - Failed to renove shared nmenory id=%, errno=%\n",
shm d, errno);
exit(1);
}
shm d = 0;
return;
}
/***/
/* Detach the shared nenory */

/[* At this point, there is no serialization, so the contents */
/* of the shared nenory shoul d not be used. */

/* */

/[* If this function fails, it will call exit(1) */
/* */
/* This function sets the foll owi ng gl obal variables: */
/* shar edMem */

/***/

voi d chil dd eanup(voi d)

t
int rc;
printf("CH LD - Child cl eanup\n");
rc = shndt (sharedMen);
sharedMem = NULL;
if (rc) {
printf("CH LD - Failed to detach shared nenory, errno=%l\n", errno);
exit(l);
return;
}
Output:

This example was run under the OS/400 QShell Interpreter. In the QShell Interpreter, a program gets descriptors
0, 1, 2 asthe standard files, the parent and child 1/O is directed to the console. When run in the QShell Interpreter,
the output shows the intermixed output from both parent and child processes, and gives afeeling for thetime
sequence of operations occurring in each job.

The QShell interpreter allows you to run multithreaded programs as if they were interactive. See the QShell
documentation for a description of the QIBM_MULTI_THREADED shell variable which allows you to start
multithreaded programs.

The QShell Interpreter is option 30 of Base OS/400.

PARENT - Enter Testcase - QPOWEST/ TPRALSHO
PARENT - Create the shared nenory segnent
PARENT - Attach the shared nenory

PARENT - Init shared nenory and read/wite | ock
PARENT - Stored shared menory id of 7

PARENT - spawn() success, [Pl D=584]

PARENT - Create 2 threads

PARENT WRI TER - current protectedResource = 1
CHI LD - Enter Testcase - QPOWEST/ TPRAW.SHO
CHI LD - Child setup

CH LD - Got shared nenory id of 7

CH LD - Attach the shared nenory

CH LD - Create 2 threads

CH LD - Joining to all threads

PARENT WRI TER - unl ock

PARENT WRI TER - current protectedResource = 2
PARENT WRI TER - unl ock

CH LD READER - current protectedResource = 2
CHI LD READER - current protectedResource = 2
PARENT - Parent cl eanup

CHI LD READER - unl ock

CH LD READER - current protectedResource = 2

CHI LD READER - unl ock
CHI LD READER - current protectedResource = 2
CHI LD READER - unl ock
CHI LD READER - current protectedResource = 2

CH LD READER - unl ock

CHI LD READER - current protectedResource = 2
CH LD READER - unl ock

CHI LD READER - current protectedResource = 2
CH LD READER - unl ock

CHI LD READER - current protectedResource = 2
CH LD READER - unl ock

CHI LD READER - current protectedResource = 2
CH LD READER - unl ock

CHI LD READER - current protectedResource = 2
CH LD READER - unl ock

CH LD READER - unl ock

CH LD - Child cl eanup

CH LD - Main conpleted

PARENT - Main conpl eted

Top | Pthread APIs | APIs by category

pthread rwlockattr_init()--Initialize Read/Write
Lock Attribute

Syntax:

#i ncl ude <pt hread. h>
int pthread rw ockattr _init(pthread rw ockattr_t *attr);

Threadsafe: Yes
Signal Safe: Yes

The pthread_rwlockattr_init() function initializes the read/write lock attributes object referred to by attr
to the default attributes. The read/write lock attributes object can be used in acall to
pthread rwlock _init() to create aread/write lock.

Authorities and Locks

None.

Parameters

attr
(Output) Address of the variable to contain the read/write lock attributes object

Return Value

0
pthread_rwlockattr _init() was successful.
value
pthread_rwlockattr_init() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
o pthread rwlockattr destroy()--Destroy Read/Write Lock Attribute
o pthread rwlock init()--Initialize Read/Write Lock

Example

Seethe pthread rwlockattr destroy() example.

Top | Pthread APIs | APIs by category

pthread rwlockattr_setpshared()--Set Pshared
Read/Write Lock Attribute

Syntax:

#i ncl ude <pthread. h>
int pthread rw ockattr_setpshared(pthread rw ockattr_t *attr, int pshared);

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlockattr_setpshared() function sets the current pshared attribute for the read/write attributes
object. The process shared attribute indicates whether the read/write lock that is created using the read/write lock
attributes object can be shared between threads in separate processes (PTHREAD_PROCESS SHARED) or
shared only between threads in the same process (PTHREAD_PROCESS PRIVATE).

Even if the read/write lock in storage is accessible from two separate processes, it cannot be used from both
processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

Authorities and Locks

None.

Parameters

attr
(Input) Address of the variable containing the read/write lock attributes object
pshared
(Input) One of PTHREAD_PROCESS SHARED or PTHREAD_PROCESS PRIVATE

Return Value

0
pthread_rwlockattr_setpshared() was successful.
value
pthread_rwlockattr _setpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_setpshared() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

o The <pthread.h> header file. See Header filesfor Pthread functions.

« pthread rwlockattr init()--Initialize Read/Write L ock Attribute

» pthread rwlockattr getpshared()--Get Pshared Read/Write Lock Attribute
« pthread rwlock init()--Initialize Read/Write L ock

Example

See the pthread_rwlockattr _getpshared() example.

Top | Pthread APIs| APIs by category

pthread_self()--Get Pthread Handle

Syntax:

#i ncl ude <pt hread. h>
pthread t pthread_sel f(void);

Threadsafe: Yes

Signal Safe: Yes

The pthread_self() function returns the Pthread handle of the calling thread. The pthread self() function
does NOT return the integral thread of the calling thread. Y ou must use pthread_getthreadid_np() to
return an integral identifier for the thread.

If your code requires the unique integer identifier for the calling thread often, or in aloop, the
pthread getthreadid_np() function can provide significant performance improvements over the
combination of pthread_self(), and pthread_getunique np() callsthat provide equivalent behavior.

For example:

pthread id np_t tid;
tid = pthread_getthreadi d np();

issignificantly faster than these calls, but provides the same behavior.

pthread_id_np_t tid;

pt hr ead_t sel f;

self = pthread_self();

pt hread_get uni que_np(&sel f, &tid);

Asaways, if you are calling any function too often, performance improvements can be gained by storing
theresultsin avariable and or passing to other functions which require the results.

Authorities and Locks

None.

Parameters

None.

Return Value

pthread_t
pthread_self() returns the Pthread handle of the calling thread.

Error Conditions

None.

Related Information

The <pthread.h> header file. See Header files for Pthread functions.
pthread equal ()--Compare Two Threads

pthread getthreadid np()--Retrieve Unique ID for Calling Thread

« pthread getunique np()--Retrieve Unique ID for Target Thread

Example

#i ncl ude <pt hread. h>
#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude "check. h"

pt hread_t t heThr ead;
void *threadfunc(void *parn)
printf("Inside secondary thread\n");

theThread = pthread _sel f();
return NULL;

}
int main(int argc, char **argv)
{
pt hread_t t hr ead;
i nt rc=0;

printf("Entering testcase\n");

printf("Create thread using default attributes\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create()\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(5);

printf("Check if the thread got its thread handl e\n");

if (!pthread_equal (thread, theThread)) {
printf("Unexpected results on pthread equal ()!'\n");
exit(1);

}

printf("pthread self() returned the thread handl e\n");
printf("Min conpleted\n");

return O;

Output:

Enteri ng testcase

Create thread using default attributes

I nsi de secondary thread

Check if the thread got its thread handl e
pt hread _sel f() returned the thread handl e
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread set _mutexattr_default _np()--Set
Default Mutex Attributes Object Kind Attribute

Syntax:

#i ncl ude <pt hread. h>
#i ncl ude <sched. h>
int pthread set nutexattr_default _np(int kind);

Threadsafe: Yes
Signal Safe: Yes

The pthread_set_ mutexattr_default_np() function sets the kind attribute in the default mutex attribute
object. The default mutex attributes object is used when pthread_mutex_init() is called to specify aNUL L
pointer for the mutex attributes object parameter.

The kind set may be one of PTHREAD_MUTEX_NONRECURSIVE_NP or
PTHREAD_MUTEX_RECURSIVE_NP.

The pthread_set_mutexattr_default_np() function does not affect any currently existing mutex attributes
objects, nor does it affect the subsequent behavior of pthread_mutexattr_init() or the

PTHREAD _MUTEX_INITIALIZER macro.

Callsto pthread_set_mutexattr_default_np() change how the run-time of the threads creates default
mutexes for all code running in the current process. Y ou can negatively affect other code in your process
that uses pthread mutexes by using this function.

Use of thisfunction is not recommended because it can affect the creation of mutexesthat your
application does not directly own.

Note: Thisfunction isnot portable.

Authorities and Locks

None.

Parameters

kind
(Input) Variable containing the kind attribute

Return Value

0
pthread set_ mutexattr_default() was successful.
value
pthread_set_ mutexattr_default() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_set mutexattr_default() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
o pthread mutexattr setkind np()--Set Mutex Kind Attribute
o pthread mutex init()--Initialize Mutex

Top | Pthread APIs | APIs by category

pthread_setcancelstate()--Set Cancel State

Syntax:

#i ncl ude <pt hread. h>
int pthread setcancel state(int state, int *oldstate);

Threadsafe: Yes
Signal Safe: Yes

The pthread_setcancelstate() function sets the cancel state to one of PTHREAD CANCEL _ENABLE
or PTHREAD_CANCEL_DISABLE and returns the old cancel state into the location specified by
oldstate (if oldstate is non-NULL).

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes the
cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the
thread changes the cancelability, calls afunction which is a cancellation point or calls
pthread_testcancel(), thus creating a cancellation point. When cancelability is asynchronous, all cancels
are acted upon immediately, interrupting the thread with its processing.

Note: It isrecommended that your application not use asynchronous thread cancellation through the
PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user
errors section of this document for more information.

Authorities and Locks

None.

Parameters

state

(Input) New cancel state (one of PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE)

oldstate
(Output) Address of variable to contain old cancel state. (NULL is allowed)

Return Value

0
pthread_setcancelstate() was successful.
value
pthread_setcancelstate() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setcancelstate() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

» The <pthread.h> header file. See Header files for Pthread functions.
» pthread cancel()--Cancel Thread

« pthread exit()--Terminate Calling Thread

» pthread setcanceltype()--Set Cancel Type

« pthread testcancel()--Create Cancellation Point

Example

#i ncl ude <pt hread. h>
#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude "check. h"

voi d *t hreadfunc(void *parm
{
i nt i = 0;
printf("Entered secondary thread\n");
pt hr ead_set cancel st at e(PTHREAD_CANCEL_DI SABLE, NULL);
while (1) {
printf("Secondary thread is | ooping\n");
pt hread_t est cancel () ;

sl eep(1);

if (++i == 5)
/* Since default cancel type is deferred, changing the state */
/* will allowthe next cancellation point to cancel the thread */

printf("Cancel state set to ENABLE\n");
pt hr ead_set cancel st at e(PTHREAD_CANCEL_ENABLE, NULL);
}
} /* infinite */
return NULL;
}

int main(int argc, char **argv)

{
pt hread_t t hr ead;

i nt rc=0;
printf("Entering testcase\n");

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");
rc = pthread_create(& hread, NULL, threadfunc, NULL);
checkResul ts("pthread create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(3);

printf("Cancel the thread\n");
rc = pthread_cancel (thread);
checkResul t s("pthread _cancel ()\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sl eep(3);

printf("Miin conpleted\n");

return O;

}
Output:

Enteri ng testcase

Create thread using the NULL attributes
Ent ered secondary thread
Secondary thread is | ooping
Secondary thread is | ooping
Secondary thread is | ooping
Cancel the thread

Secondary thread is | ooping
Secondary thread is | ooping
Cancel state set to ENABLE
Mai n conpl et ed

Top | Pthread APIs| APIs by category

pthread setcanceltype()--Set Cancel Type

Syntax:

#i ncl ude <pt hread. h>
i nt pthread_setcancel type(int type, int *ol dtype);

Threadsafe; Yes

Signal Safe: Yes

The pthread_setcanceltype() function sets the cancel type to one of PTHREAD_CANCEL_DEFERRED
or PTHREAD_CANCEL_ASYNCHRONOUS and returns the old cancel type into the location specified
by oldtype (if oldtypeisnon-NULL)

Cancelability consists of 3 separate states (disabled, deferred, asynchronous) that can be represented by 2
boolean values.

|Cancelability | Cancelability State | Cancelability Type

|disab|ed |PTHREAD_CANCEL_D|SABLE|PTHREAD_CANCEL_DEFERRED
|disab|ed |PTHREAD_CANCEL_DISABLE|PTHREAD_CANCEL_ASYNCHRONOUS
|deferred |PTHREAD_CANCEL_ENABLE |PTHREAD_CANCEL_DEFERRED
|asynchronous |PTHREAD_CANCEL_ENABLE |PTHREAD_CANCEL_ASYNCHRONOUS

The default cancelability state is deferred.

When cancelability is disabled, al cancels are held pending in the target thread until the thread changes the
cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the thread
changes the cancelability, calls afunction which is a cancellation point or calls pthread_testcancel(), thus
creating a cancellation point. When cancelability is asynchronous, al cancels are acted upon immediately,
interrupting the thread with its processing.

Note: It isrecommended that your application not use asynchronous thread cancellation through the
PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user
errors section of this document for more information.

Authorities and Locks

None.

Parameters

type
(Input) New cancel type (one of PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUYS)

oldtype
(Output) Address of variable to contain old cancel type. (NULL is allowed)

Return Value

0
pthread_setcanceltype() was successful.
value
pthread_setcanceltype() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_setcanceltype() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The <pthread.h> header file. See Header files for Pthread functions.
» pthread cancel()--Cancel Thread

» pthread exit()--Terminate Calling Thread

« pthread setcancelstate()--Set Cancel State

» pthread testcancel()--Create Cancellation Point

Example

#defi ne _MJLTI _THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdio. h>

#i ncl ude "check. h"

pt hr ead_rut ex_t mut ex = PTHREAD MUTEX | NI TI ALI ZER;

voi d cl eanupHandl er (void *parm

{
int rc;
printf("lnside cleanup handl er, unlock nutex\n");
rc = pthread_mutex_unl ock((pthread nutex_ t *)parmn;
checkResul t s(" pt hread_mut ex_unl ock\ n", rc);

}

voi d *t hreadfunc(void *parm

{

i nt rc;
i nt ol dt ype;

printf("Entered secondary thread,
rc = pthread_nutex_| ock(&t ex);
checkResul t s(" pt hread_mutex_| ock()\ n",

pt hr ead_cl eanup_push(cl eanupHandl er,
/* We must assune there is a good reason for async.
/* and al so, we nust assune that
/* appropriate to unlock the nutex.
/* because we will have left some data structures in a strange state
/* if we are async. interrupted while holding the nutex

rc = pthread_set cancel t ype(PTHREAD CANCEL_ASYNCHRONOUS, &ol dtype);

| ock nutex\n");

if we get

re);

&nmut ex) ;

checkResul t s(" pt hread_set cancel type()\n", rc);

printf("Secondary thread is now | oopi ng\n");

while (1) { sleep(1); }

printf("Unexpectedly got out of |oop!\n");
pt hr ead_cl eanup_pop(0);
return NULL;
}
int main(int argc, char **argv)
pt hread_t t hr ead,;
i nt rc=0;
voi d *st at us;
printf("Enter Testcase - %\n", argv[O0]);

/* Create a thread using default attributes */

printf("Create thread using the NULL attributes\n");
rc = pthread _create(& hread, NULL,
checkResul t s(" pt hread_creat e(NULL)\ n",

t hr eadf unc,

rc);

NULL) ;

cancel lability
i nterrupted,
More than likely it

it is
i's not

/* sleep() is not a very robust way to wait for the thread */

sleep(l);

printf("Cancel the thread\n");
rc = pthread_cancel (thread);
checkResul t s(" pt hread_cancel ()\ n",

re);

rc = pthread joi n(thread, &status);
if (status != PTHREAD _CANCELED) ({
printf("Unexpected thread status\n");

exit(1l);

}
printf("Main conpleted\n");

return O;

}
Output:

Ent er Testcase - QPOWEST/ TPSETCANTO

Create thread using the NULL attri butes

Ent ered secondary thread,

| ock mut ex

*/

*/
*/

Secondary thread is now | oopi ng
Cancel the thread

I nsi de cl eanup handl er, unl ock mutex
Mai n conpl et ed

Top | Pthread APIs | APIs by category

pthread setconcurrency()--Set Process
Concurrency Level

Syntax:

#i ncl ude <pt hread. h>
i nt pthread_setconcurrency(int concurrency);

Threadsafe: Yes
Signal Safe: No

The pthread_setconcurrency() function sets the current concurrency level for the process.

A concurrency vaue of zero indicates that the threads implementation chooses the concurrency level that
best suits the application. A concurrency level greater than zero indicates that the application wants to
inform the system of its desired concurrency level.

The concurrency level is not used by the OS/400 threads implementation, but is stored for subsequent calls
to pthread_getconcurrency(). Each user thread is always bound to a kernel thread.

Authorities and Locks

None.

Parameters

concurrency
(Input) The new concurrency level for the process

Return Value

0
pthread_setconcurrency() was successful.
value
pthread_setconcurrency() was not successful. valueis set to indicate the error condition.

Error Conditions

If pthread_setconcurrency() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

« The<pthread.h> header file. See Header files for Pthread functions.
« pthread getconcurrency()--Get Process Concurrency Level

Top | Pthread APIs | APIs by category

pthread setpthreadoption_np()--Set Pthread
Run-Time Option Data

Syntax:

#i ncl ude <pt hread. h>
voi d pt hread_set pt hreadopti on_np(pt hread_opti on_np_t *opti onData) ;

Threadsafe: Yes

Signal Safe: Yes

The pthread_setpthreadoption_np() function sets option data in the pthread run-time for the process.

Input datais specified uniquely based on the specified optionData. See the table below for details about input
and output. The option field in the optionData parameter is always required; other fields may be input, output,
or ignored, based on the specific option used.

For al options, every reserved field in the structure represented by optionData must be binary zero or the
EINVAL error isreturned. Unless otherwise noted for an option, the target field in the option parameter is
alwaysignored, and the contents of the optionData structure is not changed by the
pthread_setpthreadoption_np() function.

The currently supported options, the data they represent, and the valid operations are as follows:

| option field of the option parameter | Description
PTHREAD_OPTION_POOL_NP When athread terminates and
is detached or joined to,

certain data structures from
the pthreads run-time are
maintained in apool for
possible reuse by future
threads. Thisimproves
performance for creating
threads. Typicaly, an
application should not be
concerned with this storage
pool. Use this option to set the
current maximum size of the
allowed storage pool. The
optionValue field of the
optionData parameter is used
to set the current maximum
number of thread structures
that will be allowed in the
storage pool. By default, the
optionValue field must be a
valid integer greater than or
equal to zero, or the EINVAL
error isreturned. The default
maximum size of the storage
reuse pool contains enough
room for 512 thread
structures.

PTHREAD_OPTION_POOL_CURRENT_NP |If theoption field of the
optionData parameter is set to
this option, the EINVAL
error is returned.
PTHREAD_OPTION_THREAD_CAPABLE_NP |If the option field of the
optionData parameter is set to

this option, the EINVAL
error isreturned.

Authorities and Locks

None.

Parameters

option

(Input/Output) Address of the variable containing option information and to contain output option
information

Return Value

0
pthread_getpthreadoption_np() was successful.
value
pthread_getpthreadoption_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getpthreadoption_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those listed
here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

» The <pthread.h> header file. See Header filesfor Pthread functions.
« pthread getpthreadoption np()--Get Pthread Run-Time Option Data

Example

#define _MJULTI THREADED
#i ncl ude <pt hread. h>

#i ncl ude <stdi o. h>

#i ncl ude "check. h"

#defi ne NUMTHREADS 5

voi d *threadfunc(void *parn

}

printf("Inside the thread\n");
return NULL;

voi d showCurrent Si zeOf Pool (voi d) {

}

i nt rc;
pt hread option _np_t opt ;

nenset (&opt, 0, sizeof (opt));

opt.option = PTHREAD OPTI ON_POOL_CURRENT NP

rc = pthread_get pt hreadopti on_np(&opt);

checkResul t s(" pt hr ead_get pt hreadopti on_np()\n", rc);

printf("Current nunmber of thread structures in pool is %\ n",
opt . optionVal ue) ;
return;

int main(int argc, char **argv)

{

pt hread _t t hr ead[NUMIHREADS]
i nt rc=0;
i nt i =0;

pt hread option _np_t opt ;
printf("Enter Testcase - %\n", argv[O0]);

printf("Create threads and prime the storage pool\n");

for (i=0; i<NUMIHREADS; ++i) {
rc = pthread_create(& hread[i], NULL, threadfunc, NULL);
checkResul ts("pthread create(NULL)\n", rc);

}

printf("Joining all threads at once so thread n does not reuse\n"
"thread n-1's data structures\n");
for (i=0; i<NUMIHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResul ts("pthread join()\n", rc);
}

showCur rent Si zeOf Pool () ;

[* Set the maxi num size of the storage pool to 0. I.e. No reuse of
[* pthread structures

printf("Set the max size of the storage pool to 0\n");

menset (&opt, 0, sizeof (opt));

*/
*/

opt.option PTHREAD_OPTI ON_POOL_NP

opt . opti onVal ue 0;

rc = pthread_set pt hreadopti on_np(&opt);

checkResul t s(" pt hread_set pt hreadopti on_np()\n", rc);

printf("Create sone nore threads. Each thread structure will come\n"
"fromthe storage pool if it exists, but based on the nmax size of
0,\n"
"the thread structure will not be allowed to be reused\n");
for (i=0; i<NUMIHREADS; ++i) {
rc = pthread_create(& hread[i], NULL, threadfunc, NULL);
checkResul t s("pthread_create(NULL)\n", rc);

showCur rent Si zeOf Pool () ;

rc = pthread_join(thread[i], NULL);
checkResul ts("pthread_join()\n", rc);

printf("Min conpleted\in");
return O;

}

Output:

Enter Testcase - QPOWEST/ TPSETOPT

Create threads and prine the storage poo

Joining all threads at once so thread n does not reuse
thread n-1's data structures

I nsi de the thread

I nsi de the thread

I nsi de the thread

I nsi de the thread

I nsi de the thread

Current nunber of thread structures in pool is 5

Set the nax size of the storage pool to O

Create sonme nore threads. Each thread structure will cone
fromthe storage pool if it exists