
Registration Facility APIs (V5R2)

Table of Contents

Registration Facility APIs●

Using Registration Facility APIs and Registration Facility Preprocessing Exit Programs●

APIs

Add Exit Program (QUSADDEP, QusAddExitProgram)❍

Deregister Exit Point (QUSDRGPT, QusDeregisterExitPoint)❍

Register Exit Point (QUSRGPT, QusRegisterExitPoint)❍

Remove Exit Program (QUSRMVEP, QusRemoveExitProgram)❍

Retrieve Exit Information (QUSRTVEI, QusRetrieveExitInformation)❍

●

Exit Programs

Preprocessing Exit Program for Add❍

Preprocessing Exit Program for Remove❍

Preprocessing Exit Program for Retrieve❍

●

Registration Facility APIs
The registration facility APIs provide the capability to:

Register and deregister exit points with the registration facility.●

Add and remove exit programs to and from the registration facility repository.●

Retrieve exit point and exit program information from the repository.●

Designate the order in which exit programs are called.●

Before using the registration facility APIs and registration facility preprocessing exit program, read Using
Registration Facility APIs and Registration Facility Preprocessing Exit Programs.

The registration facility APIs are:

Add Exit Program (QUSADDEP, QusAddExitProgram) adds an exit program entry to a specific exit
point or replaces an existing exit program.

●

Deregister Exit Point (QUSDRGPT, QusDeregisterExitPoint) removes an exit point and all associated
exit programs from the registration facility.

●

Register Exit Point (QUSRGPT, QusRegisterExitPoint) registers an exit point with the registration
facility or updates an exit point.

●

Remove Exit Program (QUSRMVEP, QusRemoveExitProgram) removes an exit program entry from a
specific exit point.

●

Retrieve Exit Information (QUSRTVEI, QusRetrieveExitInformation) retrieves information about one
or more exit points and exit programs.

●

The registration facility preprocessing exit programs are:

Preprocessing Exit Program for Add allows for processing to take place before an exit program is added
to an exit point.

●

Preprocessing Exit Program for Remove allows for processing to take place before an exit program is
removed from an exit point.

●

Preprocessing Exit Program for Retrieve allows for the exit point provider to store the exit program
information.

●

APIs by category

Using Registration Facility APIs and Registration
Facility Preprocessing Exit Programs
The registration facility is a service that provides storage and retrieval operations for OS/400 and non-OS/400
exit points and exit programs. An exit point is a specific point in a system function or program where control
may be passed to one or more specified exit programs. An exit program is a program to which control is passed
from an exit point. This exit program can then supplement standard system functions in areas such as additional
authorization checks, data transformations, auditing, and so on. Examples of exit programs often can be found
with the exit point documentation. This registration facility repository allows multiple programs to associate
with a given system function or application function.

An exit point can call one program, a fixed number of programs, or all programs associated with an exit point.
The exit program number associated with each exit program should be used to determine the sequence in which
the exit programs are run.

An exit point can be registered multiple times with the same exit point name; however, the combination of the
exit point name and the exit point format name must be unique. Each exit program will be associated with a
specific exit point and exit point format. The exit point format name can be used to indicate that a change
occurred to the interface of the exit point. For example, this unique name (exit point and format) could be the
result of a parameter change, version change, exit program data definition, and so forth. This unique name will
facilitate having different exit programs run from different versions of a product for the same exit point name.

The exit point provider is responsible for the following:

Defining the exit point information●

Defining the details of the exit program, such as the number of exit programs to call and what the
parameters (if any) will be

●

Calling the exit programs●

If you intend to provide an exit point, you should become familiar with all the APIs and the preprocessing exit
programs in the registration facility part before using them. The APIs and preprocessing exit programs are
interdependent.

If you intend to provide an exit program, you should become familiar with the Add Exit Program (QUSADDEP,
QusAddExitProgram) and Remove Exit Program (QUSRMVEP, QusRemoveExitProgram) APIs. When
developing the exit program, the exit program provider is responsible for reclaiming all resources allocated by
the exit program.

The registration facility gives the exit point provider the option to perform preprocessing when an operation is
requested against an exit point. The exit point provider is responsible for providing the preprocessing exit
program. The preprocessing exit program is called by the registration facility before the requested function is
performed on the exit point. (The requested function might be an add, remove, or retrieve operation.) The
preprocessing exit program notifies the registration facility if the requested function should be completed. The
following restrictions apply:

The preprocessing exit program must exist when the exit point is registered.●

The Preprocessing Exit Program for Add and the Preprocessing Exit Program for Remove are required
when a Preprocessing Exit Program for Retrieve is supplied.

●

Top | Registration Facility APIs | APIs by category

Add Exit Program (QUSADDEP,
QusAddExitProgram) API

 Required Parameter Group:

1 Exit point name Input Char(20)
2 Exit point format name Input Char(8)
3 Exit program number Input Binary(4)
4 Qualified exit program name Input Char(20)
5 Exit program data Input Char(*)
6 Length of exit program data Input Binary(4)
7 Exit program attributes Input Char(*)
8 Error code I/O Char(*)

 Service Program Name: QUSRGFA1

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Add Exit Program (OPM, QUSADDEP; ILE, QusAddExitProgram) API adds an exit program entry to a
specific exit point or replaces an existing exit program. Each exit point can have a single entry, or multiple
entries. The exit program number indicates the sequence in which the exit programs should be run. The exit
point provider determines the maximum number of exit programs that are allowed for the exit point. The API
does not verify that the exit program exists.

If the exit point to which the exit program is being added does not exist, the registration facility creates the exit
point and adds the exit program. This exit point will be considered unregistered until it is explicitly registered
with the Register Exit Point API. The Add Exit Program, Remove Exit Program, Retrieve Exit Information, and
Deregister Exit Point APIs can be performed against an unregistered exit point. This capability allows exit
programs to be added to an exit point that will be supported in the future but is not currently registered with the
registration facility.

This API provides support similar to the Add Exit Program (ADDEXITPGM) command.

Authorities and Locks

API Public Authority

*EXCLUDE

Exit Registration Lock

*EXCL

Required Parameter Group

Exit point name

INPUT; CHAR(20)

The exit point name to which the exit program is being added.

Exit point format name

INPUT; CHAR(8)

The format name of the exit point to which the exit program is being added.

Exit program number

INPUT; BINARY(4)

The sequence in which the exit programs are to be run when multiple exit point entries for a specific
exit point are retrieved. The valid range is 1 through 2 147 483 647 where the processing sequence is
from the lowest number to the highest number. Exit program numbers do not need to be consecutive.
The following special values are allowed:

-1 The API assigns the next lowest available number for that specific exit point.

-2 The API assigns the highest available number for that specific exit point.

Qualified exit program name

INPUT; CHAR(20)

The exit program name and library that is being added. The first 10 characters contain the exit program
name, and the second 10 characters contain the library name in which the exit program resides. The exit
program does not need to exist when it is added to the exit point. A specific library name must be
specified. The special values *LIBL and *CURLIB are not supported.

Exit program data

INPUT; CHAR(*)

The exit point provider describes what needs to be supplied for this parameter. It is not an error to
supply more information than the exit point calls for. Pointer data will not be preserved, and the API
does not perform any validation of this parameter.

Length of exit program data

INPUT; BINARY(4)

The length of the exit program data. The valid length is 0 through 2048.

Exit program attributes

INPUT; CHAR(*)

The specified information for the exit program. Refer to Exit Program Attribute Keys for more
information. Any key not specified will be given the default value. The information must be in the
following format:

Number of variable length records

BINARY(4)

Total number of all of the variable length records.

Variable length records

The exit program attributes and their values. Refer to Format for Variable Length Record for
the format of this field.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Variable Length Record

The following table shows the format for the variable length record. For a detailed description of each field, see
Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of variable length record

4 4 BINARY(4) Exit program attribute key

8 8 BINARY(4) Length of data

12 C CHAR(*) Data

If the length of the data is longer than the key field's data length, the data is truncated at the right. No message is
issued.

If the length of the data is shorter than the key field's data length and the key contains binary data, an error
message is issued. If the key does not contain binary data, the field is padded with blanks.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value for that
key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The value to which a specific exit program attribute is to be set.

Exit program attribute key. The exit program attribute to be set. Refer to Exit Program Attribute Keys for
more information.

Length of data. The length of the exit program attribute value.

Length of variable length record. The length of the record.

Exit Program Attribute Keys

The following table shows the valid exit program attribute keys for the key field area of the variable length
record. For a detailed description of each field, see Field Descriptions.

Key Type Field

1 CHAR(27) Qualified message file name and message identifier for
exit program description

2 CHAR(50) Exit program text description

3 BINARY(4) Exit program data CCSID

4 CHAR(1) Replace

5 CHAR(1) Threadsafe

6 CHAR(1) Multithreaded job action

Field Descriptions

Exit program data CCSID. The coded character set identifier (CCSID) used for working with the exit program
data. The default value is 0.

0 Use the current job default CCSID.

CCSID A valid CCSID number. The valid CCSID range is 1 through 65 535 but not 65 534. The CCSID
will be validated by the API.

Exit program text description. The text for the exit program description. When this key is specified, the
qualified message file name and message identifier for exit program description field must not be specified. The
default value is blanks.

Multithreaded job action. The action to take in a multithreaded job. This key has no direct relationship with
the threadsafe key; however, the value for the threadsafe key can be used to determine the multithreaded job
action. The default value is 0. Valid values for this key are:

0 Use the QMLTTHDACN system value to determine the action to take.

1 Run the exit program in a multithreaded job.

2 Run the exit program in a multithreaded job, but send an informational message. CPI3C80 can be used as
the informational message.

3 Do not run the exit program in a multithreaded job. Depending on the exit point, do one of the following:

Send an escape message and do not call the exit program. CPF3C80 can be used as the escape
message.

1.

Send an informational message and do not call the exit program. CPF3C80 can be used as the
informational message.

2.

Call the exit program in a non-multithreaded job.3.

If you use the threadsafe value to determine the value for the multithreaded job action, consider the following
recommendations:

If the threadsafe value is 0, the multithreaded job action should be set to 3.1.

If the threadsafe value is 1, the multithreaded job action should be set to 0.2.

If the threadsafe value is 2, the multithreaded job action should be set to 1.3.

Qualified message file name and message identifier for exit program description. A message file and
message identifier that contains the exit program description. When this key is specified, the exit program text
description key must not be specified. The message file and message identifier do not have to exist at the time
the exit program is added. The default value is blanks. Refer to Qualified Message File Format for more
information.

Replace. Whether to replace an existing exit program entry. The combination of the exit program name and exit
program number define an exit program entry. The default value is 0. Valid values for this key are:

0 Do not replace an existing exit program entry.

0 Replace an existing exit program entry.

Threadsafe. Whether the exit program entry is threadsafe. This key has no direct relationship with the
multithreaded job action key. It is intended for documentation purposes only. The default value is 1. Valid
values for this key are:

0 The exit program entry is not threadsafe.

1 The threadsafe status of the exit program entry is not known.

2 The exit program entry is threadsafe.

Qualified Message File Format

The following table shows the layout of the qualified message file name and message identifier for exit program
description field. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Message file name

10 10 CHAR(10) Message file library name

20 14 CHAR(7) Message identifie

Field Descriptions

Message file library name. The library name in which the message file resides. The special value *CURLIB is
not supported. The possible values are:

*LIBL Search the library list for the message file. This value uses the first message file in the library
list that contains the message identifier.

library name The name of the message library the message file resides in.

Message file name. The name of the message file that contains the exit program text description.

Message identifier. The message identifier for the description.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C85 E Value for key &1 not allowed with value for key &2.

CPF3C90 E Literal value cannot be changed.

CPF3CD2 E Exit point name &1 not valid.

CPF3CD3 E Exit point format name &1 not valid.

CPF3CD4 E Maximum number of exit programs reached for exit point &1 with format &2.

CPF3CD6 E Length of exit program data &1 not valid.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CDE E Exit program name &1 library &2 not valid.

CPF3CDF E Exit program number &1 already assigned for exit point &2 with format &3.

CPF3CE1 E Exit program number &1 not valid.

CPF3CE5 E Exit point &1 with format &2 will not allow exit program &3 library &4 to be added.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

Top | Registration Facility APIs | APIs by category

Deregister Exit Point (QUSDRGPT,
QusDeregisterExitPoint) API

 Required Parameter Group:

1 Exit point name Input Char(20)
2 Exit point format name Input Char(8
3 Error code I/O Char(*)

 Service Program Name: QUSRGFA1

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Deregister Exit Point (OPM, QUSDRGPT; ILE, QusDeregisterExitPoint) API removes an exit point and all
associated exit programs from the registration facility. However, to deregister the exit point, the allow
deregistration exit point control must be set to indicate that the exit point is eligible for deregistration.

Authorities and Locks

API Public Authority

*EXCLUDE

Exit Registration Lock

*EXCL

Required Parameter Group

Exit point name

INPUT; CHAR(20)

The exit point name for the exit point being removed. The following can be specified for the exit point
name:

generic* All exit point names that have names beginning with the generic string.

exit point name Specific exit point name.

Exit point format name

INPUT; CHAR(8)

The format name for the exit point being removed. The following can be specified for the exit point

format name:

generic* All exit point format names that have names beginning with the generic
string.

exit point format name Specific exit point format name.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CD2 E Exit point name &1 not valid.

CPF3CD3 E Exit point format name &1 not valid.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CDB E Exit point &1 with format &2 does not exist.

CPF3CDC E &1 exit points deregistered. &2 exit points not deregistered.

CPD3CD1 E Exit point &1 with format &2 not deregistered.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

Top | Registration Facility APIs | APIs by category

Register Exit Point (QUSRGPT,
QusRegisterExitPoint) API

 Required Parameter Group:

1 Exit point name Input Char(20)
2 Exit point format name Input Char(8)
3 Exit point controls Input Char(*)
4 Error code I/O Char(*)

 Service Program Name: QUSRGFA1

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Register Exit Point (OPM, QUSRGPT; ILE, QusRegisterExitPoint) API registers an exit point with the
registration facility. Each exit point can have a single exit program or multiple exit programs associated with it.
Each exit point can be registered multiple times with a unique format name. The format name is defined by the
exit point provider. The format name can be used to define the structural layout of the exit program data, the
number and type of parameters to be passed, and so on. The exit point controls provide information to help
manage and control the use of the exit point. The user profile calling the Register Exit Point API does not need
to be authorized to the preprocessing exit programs.

Updating of an exit point is performed by reregistering the exit point with new values for the exit point control
keys. The registration facility will update the control keys and maintain the current list of exit programs that are
associated with the exit point. The following conditions apply to updating the exit point control keys:

Allow deregister: This control key is set the first time the exit point is registered and cannot be changed.●

Allow change of exit point controls: When this control key is set to 0 (cannot be changed), none of the
control keys are eligible to be updated.

●

Maximum number of exit programs: Updating this control key to a value less than the number of exit
programs currently under the exit point results in an error. The update is not performed.

●

Preprocessing exit program information for add function: If the new preprocessing exit program value is
not *NONE and the Preprocessing Exit Program for Retrieve is *NONE, the Preprocessing Exit
Program for Add is called for each exit program associated with the exit point. If the preprocessing exit
program returns to the API the return code to not add an exit program, an error occurs. No update is
performed.

If updating the preprocessing exit program to *NONE and the preprocessing exit program information
for retrieve function field is also *NONE, the API updates the control key. If the preprocessing exit
program information for retrieve function field is not *NONE, an error is returned and no update is
performed.

●

Preprocessing exit program information for remove function: If updating the preprocessing exit
program to *NONE and the preprocessing exit program information for retrieve function field is also
*NONE, the API updates the control key. If the preprocessing exit program for retrieve is not set to

●

*NONE, an error is returned and no update is performed.

Preprocessing exit program information for retrieve function: When the new value for the preprocessing
exit program is not *NONE, preprocessing exit programs for add and remove must be either currently
specified for the exit point or must be specified on the registration call. The registration facility calls the
Preprocessing Exit Program for Add for each of the exit programs associated with the exit point. The
facility then removes these exit programs (without calling the Preprocessing Exit Program for Remove)
from the registration facility repository and updates the exit point. If the preprocessing exit program
returns to the API the return code to not add an exit program, an error occurs and no update is
performed.

When the new value for the preprocessing exit program is *NONE, the API will change the value. Exit
point providers are responsible for moving the exit program information that they stored to the
registration facility by using the Add Exit Program API.

●

Qualified message file and message identifier for exit point description: The registration facility updates
this control key with the new value. When this control key is specified for an update, the text for exit
point description control key must not be specified.

●

Exit point text description: The registration facility updates this control key with the new value. When
this control key is specified for an update, the qualified message file and message identifier for exit
point description control key must not be specified.

●

Unregistered Exit Points

The registration facility creates an exit point when an exit program is requested to be added to an exit point that
does not exist. The facility uses the default values for the exit point control keys. This exit point is considered
unregistered until it is explicitly registered with this API.

An unregistered exit point that was created by the Add Exit Program API can be registered using the Register
Exit Point API. Unregistered exit points and related information can be displayed using the Work with
Registration Information (WRKREGINF) command or retrieved using the Retrieve Exit Information API.

The Add Exit Program, Remove Exit Program, Retrieve Exit Information, and Deregister Exit Point APIs can
be run against an unregistered exit point. The ability to deregister an unregistered exit point enables the removal
of exit points created by the Add Exit Program API in error. For example, if the exit point name specified on the
call to the Add Exit Program API were misspelled, the exit point can be deregistered.

When registering an unregistered exit point, the exit point control keys are reset to what is specified on the call
to the Register Exit Point API. The following conditions prevent the registration of an unregistered exit point:

A preprocessing exit program is specified for add. The registration facility calls the Preprocessing Exit
Program for Add for each exit program that was added to the unregistered exit point. If an exit program
currently listed under the unregistered exit point cannot be added, the preprocessing exit program then
notifies the registration facility. When this occurs, the exit point provider must remove the exit program
from the unregistered exit point (using the Remove Exit Program API) and must register the exit point
again.

●

The current number of exit programs associated with the unregistered exit point exceeds the maximum
number of exit programs specified when the exit point is registered. When this occurs, the exit point
provider should do either of the following:

Remove the appropriate number of exit programs from the unregistered exit point (using the
Remove Exit Program API)

❍

●

Change the maximum number of exit programs field to a higher value❍

Authorities and Locks

API Public Authority

*EXCLUDE

Exit Registration Lock

*EXCL

Required Parameter Group

Exit point name

INPUT; CHAR(20)

The exit point name to register. IBM iSeries exit points are named QIBM_Qccc_name, where ccc is the
component identifier. All other IBM exit points are named QIBM_wccc_name, where w is a character A
through I and ccc is the component identifier. User-supplied exit point names should not preface their
exit point names with QIBM. User-supplied exit point names should start with the company name to
eliminate most problems involving name uniqueness. An exit point name must be a valid *NAME
(basic name) and all uppercase. See ELEM (Element) Statement in the Control Language (CL) topic for
more about *NAME.

Exit point format name

INPUT; CHAR(8)

The format defined by the exit point provider. The format specifies the layout of the exit program data
or the parameters to be passed, or both. The exit point format name must be a valid *NAME (basic
name) and all uppercase characters.

Exit point controls

INPUT; CHAR(*)

The exit point control fields for managing the exit point. Any field not specified will be given the
default value. Refer to Exit Point Control Keys for more information. The information must be in the
following format:

Number of variable length records

BINARY(4)

The total number of all of the variable length records.

Variable length records

The fields of the exit point controls to set. Refer to Format for Variable Length Record for more
information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Variable Length Record

The following table shows the layout of the variable length record. For a detailed description of each field, see
Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of variable length record

4 4 BINARY(4) Exit point control key

8 8 BINARY(4) Length of data

12 C CHAR(*) Data

If the length of the data is longer than the key field's data length, the data is truncated at the right. No message is
issued.

If the length of the data is shorter than the key field's data length and the key contains binary data, an error
message is issued. If the key does not contain binary data, the field is padded with blanks.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value for that
key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The value to which a specific exit point control is to be set.

Exit point control key. The exit point control to be set. Refer to Exit Point Control Keys for more information.

Length of data. The length of the exit point control value.

Length of variable length record. The length of the record including this field.

Exit Point Control Keys

The following table shows the valid exit point control keys for the key field area of the variable length record.
For a detailed description of each field, see Field Descriptions.

Key Type Field

1 CHAR(1) Allow deregistration

2 CHAR(1) Allow change of exit point controls

3 BINARY(4) Maximum number of exit programs

4 CHAR(28) Preprocessing exit program information for add
function

5 CHAR(28) Preprocessing exit program information for remove
function

6 CHAR(28) Preprocessing exit program information for retrieve
function

7 CHAR(27) Qualified message file name and message identifier for
exit point description

8 CHAR(50) Exit point text description

Field Descriptions

Allow change of exit point controls. Whether the exit point controls can be changed. When 0 (no change) is
specified, the only means of changing the exit point controls is to:

Deregister the exit point (if allow deregister is set to 1)●

Reregister the exit point●

Add the exit programs again●

The default value is 1.

0 The exit point controls cannot be changed.

1 The exit point controls can be changed.

Allow deregistration. Whether the exit point can be deregistered (removed from the registration facility
repository). When 0 is specified, the exit point can never be removed from the registration facility repository.
This control is set when the exit point is registered and cannot be changed. The default value is 1.

0 The exit point cannot be deregistered.

1 The exit point can be deregistered.

Exit point text description. The text for the exit point description. When this key is specified, the qualified
message file name and message identifier for exit point description key must not be specified. The default value
is blanks.

Maximum number of exit programs. The number of exit programs that this exit point can have. The minimum
number of exit programs is 1. The default value is -1.

-1 No maximum.

>0 The maximum number of exit programs.

Preprocessing exit program information for add function. The format and the exit program that the
registration facility calls when the Add Exit Program API is called for the exit point. This program performs any
function that is needed by the exit point when an exit program is added to it. The exit program must exist when
the exit point is registered. Refer to Preprocessing Exit Program Format for the format of this field.

Preprocessing exit program information for remove function. The format and the exit program that the

registration facility calls when the Remove Exit Program API is called for the exit point. This program performs
any function that is needed by the exit point when an exit program is removed from it. The exit program must
exist when the exit point is registered. Refer to Preprocessing Exit Program Format for the format of this field.

Preprocessing exit program information for retrieve function. The format and the exit program that the
registration facility calls when the Retrieve Exit Information API is called for the exit point. This exit program
cannot be specified without specifying preprocessing exit programs for add and remove. When this exit program
is specified, the exit point provider will store all the exit program information instead of the registration facility.
The exit program must exist when the exit point is registered. Refer to Preprocessing Exit Program Format for
the format of this field.

Qualified message file name and message identifier for exit point description. A message file and message
identifier that contains the exit point description. When this key is specified, the exit point text description
control key must not be specified. The message file and message identifier do not have to exist at the time of
registration. The default value is blanks. Refer to Qualified Message File Format for the format of this field.

Qualified Message File Format

The following table shows the layout of the qualified message file name and message identifier for exit point
description field. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Message file name

10 A CHAR(10) Message file library name

20 14 CHAR(7) Message identifier

Field Descriptions

Message file library name. The library name in which the message file resides. The special value *CURLIB is
not supported. The possible values are:

*LIBL Search the library list for the message file. This value uses the first message file in the library
list that contains the message identifier.

library name The name of the message library the message file resides in.

Message file name. The name of the message file that contains the exit point description.

Message identifier. The message identifier for the description.

Preprocessing Exit Program Format

The following table shows the layout of the preprocessing exit program information fields. For a detailed
description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Preprocessing exit program name

10 A CHAR(10) Preprocessing exit program library name

20 14 CHAR(8) Preprocessing exit program format name

Field Descriptions

Preprocessing exit program format name. The format name for the preprocessing exit program. If *NONE is
specified for the preprocessing exit program name, this field must be blank. The possible values for the format
names follow:

ADDP0100 The required parameter group for the Preprocessing Exit Program for Add.

RMVP0100 The required parameter group for the Preprocessing Exit Program for Remove.

RTVI0100 The required parameter group for the Preprocessing Exit Program for Retrieve.

Refer to Registration Facility Preprocessing Exit Programs for information about the required parameter group
of each preprocessing exit program.

Preprocessing exit program library name. The library name in which the preprocessing exit program resides.
If *NONE is specified for the preprocessing exit program name, this field must be blank. The special values
*LIBL and *CURLIB are not supported.

Preprocessing exit program name. The name of the preprocessing exit program that is called by the
registration facility when the corresponding function is requested for the exit point. The default value is
*NONE. The possible values are:

*NONE No exit program is supplied.

exit program name The exit program name.

If *NONE is specified for the preprocessing exit program name, the library name and format name must be
blank.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C84 E Key &1 required with value specified for key &2.

CPF3C85 E Value for key &1 not allowed with value for key &2.

CPF3C90 E Literal value cannot be changed.

CPF3CD1 E Exit point &1 with format &2 already registered.

CPF3CD2 E Exit point name &1 not valid.

CPF3CD3 E Exit point format name &1 not valid.

CPF3CD4 E Maximum number of exit programs reached for exit point &1 with format &2.

CPF3CD5 E Exit point control &1 cannot be changed.

CPF3CD7 E Preprocessing exit program &1 library &2 with format &3 not valid.

CPF3CD8 E Registration of exit point &1 with format &2 not performed.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3

API introduced: V3R1

Top | Registration Facility APIs | APIs by category

Remove Exit Program (QUSRMVEP,
QusRemoveExitProgram) API

 Required Parameter Group:

1 Exit point name Input Char(20)
2 Exit point format name Input Char(8)
3 Exit program number Input Binary(4)
4 Error code I/O Char(*)

 Service Program Name: QUSRGFA1

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Remove Exit Program (OPM, QUSRMVEP; ILE, QusRemoveExitProgram) API removes an exit program
entry from a specific exit point that is registered or unregistered. An unregistered exit point is an exit point that
the registration facility creates at the time an exit program is added if the exit point does not exist.

This API provides support similar to the Remove Exit Program (RMVEXITPGM) command.

Authorizations and Locks

API Public Authority

*EXCLUDE

Exit Registration Lock

*EXCL

Required Parameter Group

Exit point name

INPUT; CHAR(20)

The exit point name from which the exit program is being removed.

Exit point format name

INPUT; CHAR(8)

The exit point format name from which the exit program is being removed.

Exit program number

INPUT; BINARY(4)

The exit program number of the exit program to be removed. The following values are allowed:

-1 All exit programs are removed for the exit point and format name specified.

exit program number The specific exit program number to remove.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CDB E Exit point &1 with format &2 does not exist.

CPF3CDD E Exit program number &1 does not exist.

CPF3CE1 E Exit program number &1 not valid.

CPF3CEA E Exit point &1 with format &2 will not allow exit program &3 library &4 to be removed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPI3C03 I &1 exit programs removed. &2 exit programs not removed.

API introduced: V3R1

Top | Registration Facility APIs | APIs by category

Retrieve Exit Information (QUSRTVEI,
QusRetrieveExitInformation) API

 Required Parameter Group:

1 Continuation handle Input Char(16)
2 Receiver variable Output Char(*)
3 Length of receiver variable Input Binary(4)
4 Format name Input Char(8)
5 Exit point name Input Char(20)
6 Exit point format name Input Char(8)
7 Exit program number Input Binary(4)
8 Exit program selection criteria Input Char(*)
9 Error code I/O Char(*)

 Service Program Name: QUSRGFA2

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Exit Information (OPM, QUSRTVEI; ILE, QusRetrieveExitInformation) API retrieves
information about one or more exit points and their associated exit programs. This API returns information
similar to the Work with Registration Information (WRKREGINF) command.

Authorities and Locks

API Public Authority

*USE

Exit Registration Lock

*SHRNUP

Required Parameter Group

Continuation handle

INPUT; CHAR(16)

The value returned to the user in the receiver variable when only partial exit information is returned.
This parameter must be set to blanks on the first call to this API. This parameter is used when more
information is available to return than what could fit in the receiver variable. When you specify a
continuation handle for this parameter, all other parameters must have the same values as the call to the
API that generated the continuation handle. Failure to do so may result in incomplete or inaccurate
information.

Entries are only returned in their entirety; the API never returns anything less. If there is not enough
space for the entire entry, the continuation handle is set to something other than blanks.

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the exit information requested.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The format of the exit information to be returned. You must use one of the following format names:

EXTI0100 Exit point information

EXTI0200 Basic exit program information

EXTI0300 Complete exit program information

Refer to EXTI0100 Format, EXTI0200 Format, and EXTI0300 Format for more information.

Exit point name

INPUT; CHAR(20)

The name of the exit point for which information is being retrieved. You must use one of the following
values.

Note: The specified values in these value descriptions pertain to the exit point format name, exit
program number, and exit program selection criteria fields.

*ALL All registered and unregistered exit point names that meet the specified values
will be returned.

*REGISTERED All registered exit point names that meet the specified values will be returned.

*UNREGISTERED All unregistered exit point names that meet the specified values will be
returned.

generic* All registered and unregistered exit point names that have names beginning
with the generic string and meet the specified values will be returned.

exit point name The registered or unregistered exit point name that was specified that meets the
specified values will be returned.

Exit point format name

INPUT; CHAR(8)

The exit point format name associated with an exit point. You must use one of the following values.

Note: The specified values in these value descriptions pertain to the exit point name, exit program

number, and exit program selection criteria fields.

*ALL All exit point format names that meet the specified values will be returned.

generic* All exit point format names that have names beginning with the generic
string and meet the specified values will be returned.

exit point format name The exit point format name that was specified that meets the specified
values will be returned.

Exit program number

INPUT; BINARY(4)

The number of the exit program. If you specify format EXTI0100, this parameter is ignored. You must
use one of the following values.

Note: The specified values in these value descriptions pertain to the exit point name, exit point format
name, and exit program selection criteria fields.

-1 All exit programs that meet the specified values will be returned.

exit program number The exit program number to be returned. The entry must meet the specified
values to be returned. The valid range is 1 through 2 147 483 647.

Exit program selection criteria

INPUT; CHAR(*)

The selection criteria to be used when selecting which exit programs associated with the exit point are
returned. The comparison data is compared against the exit program data. The comparison data and the
exit program data to compare it to must be from 1 through 256 characters, and no CCSID normalization
is performed. Using characters from the invariant character set for the comparison data is
recommended.

For format EXTI0100, this parameter is ignored.

The information must be in the following format:

Number of selection criteria

BINARY(4)

The total number of selection criteria. Specify 0 if no selection criteria are specified. The
maximum value for this field is 1.

Selection criteria array

CHAR(*)

The selection criteria. Refer to Format for Exit Program Selection Criteria for more
information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

EXTI0100 Format

The following information is returned for the EXTI0100 format. This format provides information on an exit
point. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(16) Continuation handle

24 18 BINARY(4) Offset to first exit point entry

28 1C BINARY(4) Number of exit point entries returned

32 20 BINARY(4) Length of exit point entry

36 24 CHAR(*) Reserved

Note: Exit point entry information. These fields are repeated for each exit point entry
returned.

CHAR(20) Exit point name

CHAR(8) Exit point format name

BINARY(4) Maximum number of exit programs

BINARY(4) Current number of exit programs

CHAR(1) Allow deregistration

CHAR(1) Allow change of exit point controls

CHAR(1) Registered exit point

CHAR(10) Preprocessing exit program name for adding an
exit program

CHAR(10) Preprocessing exit program library name for
adding an exit program

CHAR(8) Preprocessing exit program format name for
adding an exit program

CHAR(10) Preprocessing exit program name for removing an
exit program

CHAR(10) Preprocessing exit program library name for
removing an exit program

CHAR(8) Preprocessing exit program format name for
removing an exit program

CHAR(10) Preprocessing exit program name for retrieving
exit information

CHAR(10) Preprocessing exit program library name for
retrieving exit information

CHAR(8) Preprocessing exit program format name for
retrieving exit information

CHAR(1) Exit point description indicator

CHAR(10) Exit point description message file name

CHAR(10) Exit point description message file library name

CHAR(7) Exit point description message ID

CHAR(50) Exit point text description

CHAR(*) Reserved

EXTI0200 Format

The following information is returned for the EXTI0200 format. This format provides basic information on an
exit program. The exit programs will be in ascending sequence based on the exit point name, exit point format
name, and exit program number. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(16) Continuation handle

24 18 BINARY(4) Offset to first exit program entry

28 1C BINARY(4) Number of exit program entries returned

32 20 BINARY(4) Length of exit program entry

36 24 CHAR(*) Reserved

Note: Exit program entry information. These fields are repeated for each exit program
entry returned.

BINARY(4) Offset to next exit program entry

CHAR(20) Exit point name

CHAR(8) Exit point format name

CHAR(1) Registered exit point

CHAR(1) Complete entry

CHAR(2) Reserved

BINARY(4) Exit program number

CHAR(10) Exit program name

CHAR(10) Exit program library name

BINARY(4) Exit program data CCSID

BINARY(4) Offset to exit program data

BINARY(4) Length of exit program data

CHAR(1) Threadsafe

CHAR(1) Multithreaded job action

CHAR(1) QMLTTHDACN system value

CHAR(1) Reserved

CHAR(*) Reserved

Note: Exit program data

CHAR(*) Exit program data

EXTI0300 Format

The following information is returned for the EXTI0300 format. This format provides complete information on
an exit program. The exit programs will be in ascending sequence based on the exit point name, exit point
format name, and exit program number. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(16) Continuation handle

24 18 BINARY(4) Offset to first exit program entry

28 1C BINARY(4) Number of exit program entries returned

32 20 BINARY(4) Length of exit program entry

36 24 CHAR(*) Reserved

Note: Exit program entry information. These fields are repeated for each exit program
entry returned.

BINARY(4) Offset to next exit program entry

CHAR(20) Exit point name

CHAR(8) Exit point format name

CHAR(1) Registered exit point

CHAR(1) Complete entry

CHAR(2) Reserved

BINARY(4) Exit program number

CHAR(10) Exit program name

CHAR(10) Exit program library name

CHAR(1) Exit program description indicator

CHAR(10) Exit program description message file name

CHAR(10) Exit program description message file library
name

CHAR(7) Exit program description message ID

CHAR(50) Exit program text description

CHAR(2) Reserved

BINARY(4) Exit program data CCSID

BINARY(4) Offset to exit program data

BINARY(4) Length of exit program data

CHAR(1) Threadsafe

CHAR(1) Multithreaded job action

CHAR(1) QMLTTHDACN system value

CHAR(1) Reserved

CHAR(*) Reserved

Note: Exit program data

CHAR(*) Exit program data

Field Descriptions

Allow change of exit point controls. Whether the exit point controls can be changed. The possible values
follow:

0 The exit point controls cannot be changed.

1 The exit point controls can be changed.

Allow deregistration. Whether the exit point can be deregistered. The possible values follow:

0 The exit point cannot be deregistered.

1 The exit point can be deregistered.

Bytes available. The number of bytes of data available to be returned. All available data is returned if enough
space is provided.

If the continuation handle is set to a value other than blanks, this field contains an approximation of the total
bytes available. At a minimum, this field contains the actual number of bytes available.

Bytes returned. The number of bytes of data returned.

Complete entry. Whether the information returned for the exit point is complete and accurate. Incomplete
information may occur when an exit point's provider is storing the exit program information instead of having
the registration facility store it. The exit point notifies the API that the information it returned to the API is
incomplete or inaccurate.

All information for the exit program entry up to this field is complete and accurate. All information for the exit
program entry following this field should be ignored.

The possible values follow:

0 The exit point entry information is not complete or accurate.

1 The exit point entry information is complete and accurate.

Continuation handle. The handle that is returned when more data is available to return, but the receiver
variable is not large enough. The handle indicates the point in the repository that the retrieval stopped. If the
handle is used on the next call to the API, the API returns more data starting at the point that the handle
indicates. This field is set to blanks when all information is returned.

Current number of exit programs. The current number of exit programs associated with the exit point.

Exit point description indicator. Whether the exit point description is contained in a message file or text. The
possible values follow:

0 The exit point description is contained in a message file.

1 The exit point description is text.

Exit point description message file name. The name of the message file that contains the exit point
description. This field will contain blanks when a text description is provided for the exit point description.

Exit point description message file library name. The name of the library in which the exit point description
message file resides. This field will contain blanks when a text description is provided for the exit point
description.

Exit point description message ID. The message identifier for the exit point description. This field will contain
blanks when a text description is provided for the exit point description.

Exit point format name. The exit point format name associated with the exit point.

Exit point name. The exit point name.

Exit point text description. The text for the exit point description. This field will contain blanks when a
message file and message identifier are provided for the exit point description.

Exit program data. The data that is associated with the exit program.

Exit program data CCSID. The coded character set identifier (CCSID) that is used in working with the exit
program data.

Exit program description indicator. Whether the exit program description is contained in a message file or
text. The possible values follow:

0 The exit program description is contained in a message file.

1 The exit program description is text.

Exit program description message file name. The name of the message file that contains the exit program
description. This field will contain blanks when a text description is provided for the exit program description.

Exit program description message file library name. The name of the library in which the exit program
description message file resides. This field will contain blanks when a text description is provided for the exit
program description.

Exit program description message ID. The message identifier for the exit program description. This field will
contain blanks when a text description is provided for the exit program description.

Exit program library name. The library in which the exit program resides.

Exit program name. The name of the exit program.

Exit program number. The exit program number associated with the exit program. This number determines
the processing sequence of the exit programs associated with the exit point, where the lowest number should be
processed first.

Exit program text description. The text for the exit program description. This field will contain blanks when a
message file and message identifier are provided for the exit program description.

Length of exit point entry. The length of an exit point entry that is returned. This value should be used in
determining the offset to the next exit point entry.

Length of exit program data. The length of the exit program data that is returned.

Length of exit program entry. The length of an exit program entry, not including the exit program data, that is
returned.

Maximum number of exit programs. The maximum number of exit programs that the exit point allows.

Multithreaded job action. The action to take when calling an exit program in a multithreaded job. The possible
values follow:

1 Run the exit program in the current multithreaded job.

2 Run the exit program in the current multithreaded job, but send an informational message. CPI3C80 can
be used as the informational message.

3 Do not run the exit program in the current multithreaded job. Depending on the exit point, do one of the
following:

Send an escape message and do not call the exit program. CPF3C80 can be used as the escape
message.

1.

Send an informational message and do not call the exit program. CPF3C80 can be used as the
informational message.

2.

Call the exit program in a non-multithreaded job.3.

Number of exit point entries returned. The number of exit point entries returned. If the receiver variable is
not large enough to hold all of the information, this number contains only the number of exit point entries
actually returned.

Number of exit program entries returned. The number of exit program entries returned. If the receiver
variable is not large enough to hold all of the information, this number contains only the number of exit program
entries actually returned.

Offset to exit program data. The offset to the exit program data. The offset is from the beginning of the
structure.

Offset to first exit point entry. The offset to the first exit point entry returned. The offset is from the beginning
of the structure. If no entries are returned, the offset is set to zero.

Offset to first exit program entry. The offset to the first exit program entry returned. The offset is from the
beginning of the structure. If no entries are returned, the offset is set to zero.

Offset to next exit program entry. The offset to the next exit program entry returned. The offset is from the
beginning of the structure. If there are no more exit program entries, this value is zero.

Preprocessing exit program format name for adding an exit program. The format name for the
Preprocessing Exit Program for Add.

Preprocessing exit program format name for removing an exit program. The format name for the
Preprocessing Exit Program for Remove.

Preprocessing exit program format name for retrieving an exit program. The format name for the
Preprocessing Exit Program for Retrieve.

Preprocessing exit program library name for adding an exit program. The library in which the
Preprocessing Exit Program for Add resides.

Preprocessing exit program library name for removing an exit program. The library in which the
Preprocessing Exit Program for Remove resides.

Preprocessing exit program library name for retrieving an exit program. The library in which the
Preprocessing Exit Program for Retrieve resides.

Preprocessing exit program name for adding an exit program. The preprocessing exit program name that is
called by the registration facility when the Add Exit Program API is called for the exit point.

Preprocessing exit program name for removing an exit program. The preprocessing exit program name that
is called by the registration facility when the Remove Exit Program API is called for the exit point.

Preprocessing exit program name for retrieving exit information. The preprocessing exit program name that
is called by the registration facility when the Retrieve Exit Information API is called for the exit point.

QMLTTHDACN system value. A flag that indicates whether the QMLTTHDACN system value was used in
determining the multithreaded job action.

0 The QMLTTHDACN system value was not used to determine the multithreaded job action.

1 The QMLTTHDACN system value was used to determine the multithreaded job action.

Registered exit point. Whether the exit point is registered or unregistered. The possible values follow:

0 The exit point is unregistered.

1 The exit point is registered.

Reserved. An ignored field.

Threadsafe. The thread safety status of the exit program entry. The possible values follow:

0 The exit program entry is not threadsafe.

1 The threadsafe status of the exit program entry is not known.

2 The exit program entry is threadsafe.

Format for Exit Program Selection Criteria

This table shows the format for the exit program selection criteria parameter. For a detailed description of each
field, see Field Descriptions.

Type Field

BINARY(4) Size of criteria entry

BINARY(4) Comparison operator

BINARY(4) Start position in exit program data

BINARY(4) Length of comparison data

CHAR(*) Comparison data

Field Descriptions

Comparison data. The data to compare to the exit program data.

Comparison operator. The comparison value to be used when comparing the exit program data with the
comparison data. The following value can be specified:

1 The comparison data equals the exit program data.

Length of comparison data. The length of the data to compare to the exit program data. The length of the
comparison data must be between 1 and 256.

Size of criteria entry. The size of the selection criteria entry, including this field.

Start position in exit program data. The starting position of the exit program data against which the
comparison data is matched. The starting position is based on 0. Valid starting positions are from 0 through
2047.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CD2 E Exit point name &1 not valid.

CPF3CD3 E Exit point format name &1 not valid.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CDB E Exit point &1 with format &2 does not exist.

CPF3CE1 E Exit program number &1 not valid.

CPF3CE2 E Continuation handle not valid

CPF3CE3 E Continuation handle no longer valid.

CPF3CE4 E Comparison operator &1 not valid for exit program selection criteria.

CPF3CE6 E Search criteria start position and length exceed boundary.

CPF3CE7 E Number of selection criteria entries not valid.

CPF3CE8 E Start position not valid.

CPF3CE9 E Length of comparison data not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

Top | Registration Facility APIs | APIs by category

Preprocessing Exit Program for Add

 Required Parameter Group:

1 Exit point name Input Char(20)
2 Exit point format name Input Char(8)
3 Exit program number Input Binary(4)
4 Qualified exit program name Input Char(20)
5 Exit program data Input Char(*)
6 Length of exit program data Input Binary(4)
7 Exit program attributes Input Char(*)
8 Return code Output Binary(4)

The Preprocessing Exit Program for Add allows for processing to take place before an exit program is added to
an exit point. The preprocessing exit program will notify the registration facility through the return code
parameter whether or not to add the exit program to the exit point.

Required Parameter Group

Exit point name

INPUT; CHAR(20)

The name of the exit point to which the exit program is being added.

Exit point format name

INPUT; CHAR(8)

The format name of the exit point to which the exit program is being added.

Exit program number

INPUT; BINARY(4)

The order in which the exit programs are to be run when multiple exit programs are associated with the
exit point. The valid range is 1 through 2 147 483 647, where the processing sequence is from the
lowest number to the highest number. Exit program numbers do not need to be consecutive. The
following special values are allowed:

-1 The next lowest available number for that specific exit point will be assigned

-2 The highest available number for that specific exit point will be assigned

When the exit point provider stores the exit program information and one of the above special values is
specified, the exit point provider will assign the exit program number. Otherwise, the registration
facility will assign the exit program number.

Qualified exit program name

INPUT; CHAR(20)

The exit program that is to be added, and the library in which it is located. The first 10 characters
contain the exit program name, and the second 10 characters contain the name of the library in which
the exit program resides. A specific library name must be specified. The special values *LIBL and
*CURLIB are not supported.

Exit program data

INPUT; CHAR(*)

The exit program data supplied for the exit program that is requesting to be added to the exit point.
Pointer data will not be preserved in the exit program data parameter.

Length of exit program data

INPUT; BINARY(4)

The length of the exit program data. The valid length is 0 through 2048.

Exit program attributes

INPUT; CHAR(*)

The specified information for the exit program. Refer to Exit Program Attribute Keys for more
information. Any field not specified will be given the default value. The information is in the following
format:

Number of variable length records

BINARY(4)

The total number of all of the variable length records.

Variable length records

The exit program attributes and their values. Refer to Format for Variable Length Record for
more information.

Return code

OUTPUT; BINARY(4)

Return code to notify success or failure. The following values are allowed:

0 The registration facility should not add the exit program to the exit point and should return an
error to the caller of the Add Exit Program API.

1 The registration facility should add the exit program to the exit point. If the exit point provider
has specified a Preprocessing Exit Program for Retrieve and returns this return code, an error will
be issued to the caller of the Add Exit Program API.

2 The registration facility will not store the exit program information. The exit point provider
stored the information. If the exit point provider has not specified a Preprocessing Exit Program
for Retrieve and returns this return code, an error will be issued to the caller of the Add Exit
Program API.

3 The registration facility will not replace the exit program. The exit point provider replaced the
exit program. If the exit point provider did not specify a Preprocessing Exit Program for Retrieve
and returns this return code, an error is issued to the caller of the Add Exit Program API.

Error Messages

Error notification is done through the return code parameter. No error messages will be accepted.

Exit program introduced: V3R1

Top | Registration Facility APIs | APIs by category

Preprocessing Exit Program for Remove

 Required Parameter Group:

1 Exit point name Input Char(20)
2 Exit point format name Input Char(8)
3 Exit program number Input Binary(4)
4 Return code Output Binary(4)

The Preprocessing Exit Program for Remove allows for processing to take place before an exit program is
removed from an exit point. The preprocessing exit program will notify the registration facility through the
return code parameter whether or not to remove the exit program from the exit point.

Required Parameter Group

Exit point name

INPUT; CHAR(20)

The exit point name from which the exit program is being removed.

Exit point format name

INPUT; CHAR(8)

The exit point format name from which the exit program is being removed.

Exit program number

INPUT; BINARY(4)

The exit program number of the exit program being removed. The following values are allowed:

-1 All exit programs associated with the specified exit point name and exit point
format name will be removed.

exit program number Only the exit program with the specified exit program number, exit point
name, and exit point format name will be removed.

Return code

OUTPUT; BINARY(4)

A return code to notify success or failure. The following values are allowed:

0 The registration facility should not remove the exit program from the exit point and should return
an error to the caller of the Remove Exit Program API.

1 The registration facility should remove the exit program from the exit point. If the exit point
provider has specified a Preprocessing Exit Program for Retrieve and returns this return code, an
error will be issued to the caller of the Remove Exit Program API.

2 The registration will not remove the exit program information. The exit point provider removed
the exit program information. If the exit point provider has not specified a Preprocessing Exit
Program for Retrieve and returns this return code, an error will be issued to the caller of the
Remove Exit Program API.

Error Messages

Error notification is done through the return code parameter. No error messages will be accepted.

Exit program introduced: V3R1

Top | Registration Facility APIs | APIs by category

Preprocessing Exit Program for Retrieve

 Required Parameter Group:

1 Continuation handle Input Char(16)
2 Receiver variable Output Char(*)
3 Length of receiver variable Input Binary(4)
4 Format name Input Char(8)
5 Exit point name Input Char(20)
6 Exit point format name Input Char(8)
7 Exit program number Input Binary(4)
8 Exit program selection criteria Input Char(*)
9 Return code Output Binary(4)

The Preprocessing Exit Program for Retrieve allows for the exit point provider to store the exit program
information. The registration facility will not store the exit program information, only exit point information.
The Preprocessing Exit Program for Add and the Preprocessing Exit Program for Remove are required when
this preprocessing exit program is supplied. The preprocessing exit program will notify the registration facility
through the return code parameter whether or not the exit information returned is complete and accurate.

Required Parameter Group

Continuation handle

INPUT; CHAR(16)

The value returned to the API in the receiver variable when partial information is returned. This
parameter is used when there is more information available to return than what could fit in the receiver
variable.

Receiver variable

OUTPUT; CHAR(*)

The variable in which the preprocessing exit program will return the exit information to the registration
facility. This information must be returned in the format specified in the format name parameter.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

Format name

INPUT; CHAR(8)

The format of the exit information to be returned. One of the following format names will be specified
by the Retrieve Exit Information API:

EXTI0100 Exit point information

EXTI0200 Basic exit program information

EXTI0300 Complete exit program information

Refer to EXTI0100 Format, EXTI0200 Format, and EXTI0300 Format for more information.

Exit point name

INPUT; CHAR(20)

The name of the exit point for which information is being retrieved.

Exit point format name

INPUT; CHAR(8)

The format name associated with the exit point.

Exit program number

INPUT; BINARY(4)

The number of the exit program. When format EXTI0100 is specified, this field should be ignored. The
following values are allowed:

-1 All exit programs for the exit point are returned.

exit program number The exit program with the specified exit program number is returned. The
valid range is 1 through 2 147 483 647.

Exit program selection criteria

INPUT; CHAR(*)

The selection criteria to be used when selecting which exit programs associated with the exit point are
to be returned. When format EXTI0100 is specified, this field should be ignored. The information is in
the following format:

Number of selection criteria

BINARY(4)

The total number of selection criteria. Zero is specified if no selection criteria are specified. The
maximum value for this field is 1.

Selection criteria array

CHAR(*)

The selection criteria. Refer to Format for Exit Program Selection Criteria for more
information.

Return Code

OUTPUT; BINARY(4)

The return code to notify success or failure. If there is no information to return, set the number of exit
programs returned field to 0 and specify success (1) for the return code. The following values are
allowed:

0 The information returned to the registration facility is incomplete or inaccurate.

1 The information returned to the registration facility is complete and accurate.

Error Messages

Error notification is done through the return code parameter. No error messages will be accepted.

API Introduced: V3R1

Top | Registration Facility APIs | APIs by category

	Registration Facility APIs (V5R2)
	Table of Contents
	Registration Facility APIs
	Using Registration Facility APIs and Registration Facility Preprocessing Exit Programs
	APIs
	Add Exit Program (QUSADDEP, QusAddExitProgram) API
	Deregister Exit Point (QUSDRGPT, QusDeregisterExitPoint) API
	Register Exit Point (QUSRGPT, QusRegisterExitPoint) API
	Remove Exit Program (QUSRMVEP, QusRemoveExitProgram) API
	Retrieve Exit Information (QUSRTVEI, QusRetrieveExitInformation) API

	Exit Programs
	Preprocessing Exit Program for Add
	Preprocessing Exit Program for Remove
	Preprocessing Exit Program for Retrieve

