
iSeries

Distributed Database Programming
Version 5

ERserver
���

iSeries

Distributed Database Programming
Version 5

ERserver
���

© Copyright International Business Machines Corporation 1998, 2001, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About Distributed Database
Programming vii
Who should read this information. vii
What’s new in V5R2 in the Distributed Database
Programming book. vii
Code disclaimer information vii

Chapter 1. Distributed Relational
Database and the iSeries server 1
Distributed relational database processing 1

Remote unit of work. 4
Distributed unit of work 5
Other distributed relational database terms and
concepts 6

Distributed Relational Database Architecture Support 7
DRDA and CDRA support. 8

Character conversion with CDRA 8
Application requester driver programs. 9
Distributed relational database on the iSeries server 10
Managing an iSeries Distributed Relational Database 11
Example: Spiffy Corporation distributed relational
database 12

Spiffy Organization and system profile 12
Business processes of the Spiffy Corporation
Automobile Service 14
Distributed Relational Database administration
for the Spiffy Corporation 14

Chapter 2. Planning and Design for
Distributed Relational Database 17
Identifying your needs and expectations for a
distributed relational database 17

Data needs for distributed relational databases 17
Distributed relational database capabilities . . . 18
Goals and directions for a distributed relational
database 18

Designing the application, network, and data for a
distributed relational database 20

Tips: Designing distributed relational database
applications 20
Network considerations for a distributed
relational database 21
Data considerations for a distributed relational
database 22

Developing a management strategy for a distributed
relational database 22

General operations for a distributed relational
database 22
Security considerations for a distributed
relational database 24
Accounting for a distributed relational database 25
Problem analysis for a distributed relational
database 25

Backup and recovery for a distributed relational
database 26

Chapter 3. Communications for an
iSeries Distributed Relational Database. 27
Communications tools for DRDA implementation 27

APPC/APPN for a distributed relational
database 28
Using DDM and distributed relational database 28
Alert support for a distributed relational
database 29

Distributed relational database communications
network considerations 30
Configuring communications for a distributed
relational database 30

Configuring a communications network for
APPC 31
Example: APPN configuration for a distributed
relational database 33
Configuring alert support for a distributed
relational database 40
Example: Configuration for alert support for a
distributed relational database 42
Configuring a communications network for
TCP/IP. 43
Configuring communications over OptiConnect 44

Chapter 4. Security for an iSeries
Distributed Relational Database 45
Elements of distributed relational database security 46

Elements of DRDA Security in an APPC network 47
DRDA application server (AS) security in an
APPC network 50
Elements of DDM/DRDA Security using TCP/IP 52
DRDA server access control exit programs . . . 61
Object-related security for DRDA 65
Authority to distributed relational database
objects 66
Programs that run under adopted authority for a
distributed relational database 67

Protection strategies in a Distributed Relational
Database 68

Chapter 5. Setting Up an iSeries
Distributed Relational Database 71
Work Management on the iSeries server 72

Setting up your work management environment
for DRDA 72
Considerations for setting up subsystems for
APPC 73

DRDA considerations with user relational databases 75
Using the relational database directory 76

Working with the relational database directory 77
Relational database directory setup example . . 82

© Copyright IBM Corp. 1998, 2001, 2002 iii

|
||

||

|
||
||
||
|
||
||
||
||
|
||
|
||
|
||

||

Setting up DRDA security 84
Setting up the TCP/IP Server for DRDA. 85
Setting up SQL Packages for Interactive SQL (ISQL) 85
Setting up DDM files 86
Loading data into tables in a distributed relational
database 87

Loading new data into the tables of a distributed
relational database 87
Moving data from one iSeries server to another 88
Moving a database to an iSeries server from a
non-iSeries server 94

Chapter 6. Distributed Relational
Database Administration and Operation
Tasks 97
Monitoring relational database activity 97

Working with jobs in a distributed relational
database 98
Working with user jobs in a distributed relational
database 98
Working with active jobs in a distributed
relational database. 100
Working with commitment definitions in a
distributed relational database. 101
Tracking request information with the job log of
a distributed relational database 102
Locating distributed relational database jobs . . 102

Operating remote iSeries servers 104
Controlling DDM conversations 106

Reclaiming DDM resources 107
Displaying objects used by programs 108

Example: Display Program Reference 109
Dropping a collection from a distributed relational
database 110
Job accounting in a distributed relational database 111
Managing the TCP/IP server 112

DRDA TCP/IP server terminology 113
TCP/IP communication support concepts for
DDM 113
DRDA/DDM server jobs 116
Configure the DDM server job subsystem . . . 119
Identifying server jobs 120

Auditing the relational database directory 122

Chapter 7. Data Availability and
Protection for a Distributed Relational
Database 125
Recovery support for a distributed relational
database 125

Data recovery after disk failures for distributed
relational databases 126
Journal management for distributed relational
databases. 127
Transaction recovery through commitment
control 130
Save and restore processing for a distributed
relational database. 134

Network redundancy issues for a distributed
relational database. 138

Data redundancy in your distributed relational
database network 140

Chapter 8. Distributed Relational
Database Performance 143
Improving distributed relational database
performance through the network 143
Improving distributed relational database
performance through the server 144
Improving distributed relational database
performance through the database 145

Deciding DRDA data location 145
Factors that Affect Blocking for DRDA 145
Factors that affect the size of DRDA query
blocks 148

Chapter 9. Handling Distributed
Relational Database Problems 149
iSeries Problem Handling Overview 149
Isolating Distributed Relational Database Problems 150

DRDA incorrect output problems. 150
Application does not complete in the expected
time problems 151

Working with distributed relational database users 154
Copy screen 155
Messages 156
Handling program start request failures for
APPC 162
Handling connection request failures for
TCP/IP 162

Application problems. 164
Listings 164
SQLCODEs and SQLSTATEs 167

System and communications problems 173
iSeries problem log 173
Alerts 175

Getting data to report a failure 177
Printing a job log 177
Finding job logs from TCP/IP server prestart
jobs 177
Printing the product activity log 178
Trace job 179
Communications trace 179

Finding First-Failure Data Capture (FFDC) data 182
Starting a service job to diagnose application server
problems 183

Service jobs for APPC servers 183
Creating your own TPN and Setting
QCNTSRVC 184
Service jobs for TCP/IP servers 185
QRWOPTIONS Data Area Usage 186

Chapter 10. Writing Distributed
Relational Database Applications . . . 189
Programming considerations for a Distributed
Relational Database application 190

Naming distributed relational database objects 190
Connecting to a Distributed Relational Database 191
SQL Specific to distributed relational database
and SQL CALL 200

iv OS/400 Distributed Database Programming V5R2

||

Ending DRDA units of work 203
Coded Character Set Identifier (CCSID) . . . 204
Other DRDA data conversion 207
DDM files and SQL 207

Preparing distributed relational database programs 208
Precompiling programs with SQL statements 209
Compiling an application program 211
Binding an application 211
Testing and debugging 212

Working with SQL packages 214
Using the Create SQL Package (CRTSQLPKG)
command 215
SQL package management 219
Delete SQL Package (DLTSQLPKG) command 219
SQL DROP PACKAGE statement 220

Appendix A. Application Programming
Examples 223
Example: Creating a collection and tables 224
Example: Inserting data into the tables 225
Example: RPG Program 230
Example: COBOL Program 239
Example: C Program 246
Example: Program Output 252

Appendix B. Cross-Platform Access
Using DRDA 253
CCSID considerations 253

iSeries server value QCCSID 254
CCSID conversion considerations for DB2 UDB
for z/OS and DB2 UDB server for VM Database
Managers. 255

Interactive SQL and Query Management setup on
unlike application servers 255
FAQs from users of DB2 Connect. 256

Do iSeries files have to be journaled? 257
When will query data be blocked for better
performance? 257
Is the DB2 UDB Query Manager and SQL
Development Kit product needed for collection
and table creation? 258

How do you interpret an SQLCODE and the
associated tokens reported in a DBM SQL0969N
error message? 258
How can host variable type in WHERE clauses
affect performance? 259
Can I use a library list for resolving unqualified
table and view names? 259
Can a user of DB2 Connect specify that the
NLSS sort sequence table of the DRDA job on
the iSeries server be used instead of the usual
EBCDIC sequence? 260

Other tips for interoperating with workstations
using DB2 Connect and DB2 UDB 261

Appendix C. Interpreting Trace Job
and FFDC Data. 265
Interpreting data entries for the RW component of
trace job 265

Example: Analyzing the RW trace data 266
Description of RW trace points 267

First-Failure Data Capture (FFDC) 270
An FFDC Dump 271
FFDC Dump Output Description 274
DDM Error Codes 279

Appendix D. Glossary 283

Bibliography. 291
iSeries server Information 291
Distributed Relational Database Library 292
Other IBM Distributed Relational Database
Platform Libraries 293
Architecture Books 294
Redbooks. 294

Index 295

Contents v

|
||
|
||
|
|
|
||

vi OS/400 Distributed Database Programming V5R2

About Distributed Database Programming

Distributed Database Programming describes the distributed relational database
management portion of the Operating System/400 (OS/400) licensed program.
Distributed relational database management provides applications with access to
data that is external to the application and typically located across a network of
computers.

For more information about this guide, see the following topics:
v Who should read this information
v What’s new in V5R2 in the Distributed Database Programming book
v Code disclaimer information

Then, to get started, see Distributed Relational Database and the iSeries server for
information on processing, supporting, programming, and managing an iSeries
Distributed Relational Database.

Who should read this information
This information is intended primarily for application programmers responsible for
the development, administration, and support of a distributed relational database
on one or more iSeries servers. Application programmers who are not familiar with
the iSeries database can also get a view of the total range of database support
provided by the OS/400 operating system. Application programmers may use this
information to see the server context in which distributed relational database
applications run.

Before using this information, you should be familiar with general programming
concepts and terminology, and have a general understanding of the iSeries server
and the OS/400 operating system.

What’s new in V5R2 in the Distributed Database Programming book
This release of the information includes the following updates:
v “Kerberos Source Configuration” on page 56
v “Connection security protocols for DDM/DRDA” on page 53
v “DRDA Connect Authorization Failure” on page 162
v “QRWOPTIONS Data Area Usage” on page 186
v “Elements of DDM/DRDA Security using TCP/IP” on page 52
v “SQL CALL statement (Stored Procedures)” on page 201
v “Distributed unit of work” on page 5

Code disclaimer information
This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code
examples from which you can generate similar function tailored to your own
specific needs

© Copyright IBM Corp. 1998, 2001, 2002 vii

|

|

|

|

|

All sample code is provided by IBM for illustrative purposes only. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties
of any kind. The implied warranties of non-infringement, merchantability and
fitness for a particular purpose are expressly disclaimed.

viii OS/400 Distributed Database Programming V5R2

Chapter 1. Distributed Relational Database and the iSeries
server

Distributed relational database support on the iSeries server consists of an
implementation of IBM* Distributed Relational Database Architecture* (DRDA*)
and integration of other SQL clients by use of Application Requester Driver (ARD)
programs. The Operating System/400 (OS/400) and the DB2 UDB for iSeries
Query Manager and SQL Development Kit combine to provide this support.

This chapter describes distributed relational database and how it is used on the
iSeries server. It defines some general concepts of distributed relational database
that are explained in the following topics:
v Distributed relational database processing
v Distributed Relational Database Architecture Support
v DRDA and CDRA support
v Application requester driver programs
v Distributed relational database on the iSeries server
v Managing an iSeries Distributed Relational Database

In addition to these topics, an Example: Spiffy Corporation distributed relational
database is described. This fictional company uses the iSeries server in a
distributed relational database application program. This sample of the Spiffy
Corporation forms the background for all examples used in this manual.

Distributed relational database processing
A relational database is a set of data stored in one or more tables in a computer. A
table is a two-dimensional arrangement of data consisting of horizontal rows and
vertical columns as shown in Table 1. Each row contains a sequence of values, one
for each column of the table. A column has a name and contains a particular data
type (for example, character, decimal, or integer).

Table 1. A Typical Relational Table

Item Name Supplier Quantity

78476 Baseball ACME 650

78477 Football Imperial 228

78478 Basketball ACME 105

78479 Soccer ball ACME 307

Tables can be defined and accessed in several ways on the server. One way to
describe and access tables on the server is to use a language like Structured Query
Language (SQL). SQL is the standard IBM database language and provides the
necessary consistency to enable distributed data processing across different servers.

Another way to describe and access tables on the server is to describe physical and
logical files using data description specifications (DDS) and access tables using file
interfaces (for example, read and write high-level language statements).

© Copyright IBM Corp. 1998, 2001, 2002 1

SQL uses different terminology from that used on the iSeries server. For most SQL
objects there is a corresponding server object on the iSeries server. Table 2 shows
the relationship between SQL relational database terms and iSeries server terms.

Table 2. Relationship of SQL Terms to System Terms

SQL Term System Term

Relational Database. A database that
can be perceived as a set of tables and
can be manipulated in accordance with
the relational model of data. There are
three types of relational databases a
user can access from an iSeries server,
as listed under the system term
column. For more information, see the
Relational Database topic in the iSeries
Information Center.

System Relational Database, or System
Database. All the database objects that exist on
disk attached to the iSeries server that are not
stored on independent auxiliary storage pools.

User Relational Database, or User Database. All
the database objects that exist in a single
independent auxiliary storage pool group along
with those database objects that are not stored on
independent auxiliary storage pools . Note: As of
V5R2, an iSeries server can be host to multiple
relational databases if independent auxiliary
storage pools are configured on the server. There
will always be one system relational database,
and there can be one or more user relational
databases. Each user database includes all the
objects in the system database. Note: The user
should be aware, however, that from a
commitment control point of view, the system
database is treated as a separate database, even
when from an SQL point of view, it is viewed as
being included within a user database. For more
information, see the Transactions and
commitment control topic in the iSeries
Information Center.

Remote Relational Database, or Remote
Database. A database that resides on an iSeries or
another server that can be accessed remotely.

Schema. Consists of a library, a journal,
a journal receiver, an SQL catalog, and
an optional data dictionary. A schema
groups related objects and allows you
to find the objects by name. Note: A
schema is also commonly referred to as
a collection.

Library. Groups related objects and allows you to
find the objects by name.

Table. A set of columns and rows. Physical file. A set of records.
Row. The horizontal part of a table
containing a serial set of columns.

Record. A set of fields.

Column. The vertical part of a table of
one data type.

Field. One or more bytes of related information of
one data type.

View. A subset of columns and rows of
one or more tables.

Logical file. A subset of fields and/or records of
up to 32 physical files.

Index. A collection of data in the
columns of a table, logically arranged
in ascending or descending order.

A type of logical file

Package. An object that contains
control structures for SQL statements
to be used by an application server.

SQL Package. Has the same meaning as the SQL
term.

2 OS/400 Distributed Database Programming V5R2

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 2. Relationship of SQL Terms to System Terms (continued)

SQL Term System Term

Catalog. A set of tables and views that
contain information about tables,
packages, views, indexes, and
constraints. The catalog views in
QSYS2 contain information about all
tables, packages, views, indexes, and
constraints on the iSeries server.
Additionally, an SQL schema will
contain a set of these views that only
contains information about tables,
packages, views, indexes, and
constraints only in the schema.

No similar object. However, the Display File
Description (DSPFD) and Display File Field
Description (DSPFFD) commands provide some of
the same information that querying an SQL
catalog provides.

A distributed relational database exists when the application programs that use
the data and the data itself are located on different machines, or when the
programs use data that is located on multiple databases on the same server. In the
latter case the database is distributed in the sense that DRDA protocols are used to
access one or more of the databases within the single server. The connection to a
database in such an environment will be one of two types: local or DRDA. There
will be, at most, only one local database connection at one time. One simple form
of a distributed relational database is shown in Figure 1 where the application
program runs on one machine, and the data is located on a remote server.

When using a distributed relational database, the system on which the application
program is run is called the application requester (AR), and the system on which
the remote data resides is called the application server (AS). The term ’client’ is
often used interchangeably with AR, and ’server’ with AS.

A unit of work is one or more database requests and the associated processing that
make up a completed piece of work as shown in Figure 2 on page 4. A simple

Figure 1. A Distributed Relational Database

Chapter 1. Distributed Relational Database and the iSeries server 3

|
|
|
|
|
|
|
|
|

|
|
|
|

example is taking a part from stock in an inventory control application program.
An inventory program can tentatively remove an item from a shop inventory
account table and then add that item to a parts reorder table at the same location.
The term ’transaction’ is another expression used to describe the unit of work
concept.

In the above example, the unit of work is not complete until the part is both
removed from the shop inventory account table and added to a reorder table.
When the requests are complete, the application program can commit the unit of
work. This means that any database changes associated with the unit of work are
made permanent.

With unit of work support, the application program can also roll back changes to a
unit of work. If a unit of work is rolled back, the changes made since the last
commit or rollback operation are not applied. Thus, the application program treats
the set of requests to a database as a unit.

For more detailed information on units of work, see the following topics:
v Remote unit of work
v Distributed unit of work
v Other distributed relational database terms and concepts

Remote unit of work
Remote unit of work (RUW) is a form of distributed relational database processing
in which an application program can access data on a remote database within a
unit of work. A remote unit of work can include more than one relational database
request, but all requests must be made to the same remote database. All requests to
a relational database must be completed (either committed or rolled back) before
requests can be sent to another relational database. This is shown in Figure 3.

Figure 2. Unit of Work in a Local Relational Database

4 OS/400 Distributed Database Programming V5R2

Remote unit of work is application-directed distribution because the application
program must connect to the correct relational database system before issuing the
requests. However, the application program only needs to know the name of the
remote database to make the correct connection.

Remote unit of work support enables an application program to read or update
data at more than one location. However, all the data that the program accesses
within a unit of work must be managed by the same relational database
management system. For example, the shop inventory application program must
commit its inventory and accounts receivable unit of work before it can read or
update tables that are in another location.

In remote unit of work processing, each computer has an associated relational
database management system and an associated application requester program that
help process distributed relational data requests. This allows you or your
application program to request remote relational data in much the same way as
you request local relational data.

Distributed unit of work
Distributed unit of work (DUW) enables a user or application program to read or
update data at multiple locations within a unit of work, as shown in Figure 4.
Within one unit of work, an application running on one system can direct SQL
requests to multiple remote database management systems using the SQL
supported by those systems. For example, the shop inventory program can
perform updates to the inventory table on one system and the accounts receivable
table on another system within one unit of work.

Figure 3. Remote Unit of Work in a Distributed Relational Database

Chapter 1. Distributed Relational Database and the iSeries server 5

The target of the requests is controlled by the user or application with SQL
statements such as CONNECT TO and SET CONNECTION. Each SQL statement
must refer to data at a single location.

When the application is ready to commit the work, it initiates the commit;
commitment coordination is performed by a synchronization-point manager.

Distributed unit of work allows:
v Update access to multiple database management systems in one unit of work, or
v Update access to one or more database management systems with read access to

other database management systems in one unit of work.

Whether an application can update a given database management system in a unit
of work is dependent on the level of DRDA (if DRDA is used to access the remote
relational database) and the order in which the connections and updates are made.

Other distributed relational database terms and concepts
The following discussion provides an overview of additional distributed relational
database concepts. On IBM systems, some distributed relational database support
is provided by the DB2 Relational Connect product and the DataPropagator
Relational products. In addition, you can use some of these concepts when writing
iSeries application programs.

DB2 UDB for iSeries supports both the remote unit of work and distributed unit of
work with APPC and TCP/IP communications, starting in OS/400 V5R1. A degree
of processing sophistication beyond the distributed unit of work is a distributed
request. This type of distributed relational database access enables a user or
application program to issue a single SQL statement that can read or update data
at multiple locations.

Tables in a distributed relational database do not have to differ from one another.
Some tables can be exact or partial copies of one another. Extracts, snapshots, and
replication are terms that describe types of copies using distributed processing.

Figure 4. Distributed Unit of Work in a Distributed Relational Database

6 OS/400 Distributed Database Programming V5R2

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

Extracts are user-requested copies of tables. The copies are extracted from one
database and loaded into another specified by the user. The unloading and loading
process may be repeated periodically to obtain updated data. Extracts are most
useful for one-time or infrequent occurrences, such as read-only copies of data that
rarely changes.

Snapshots are read-only copies of tables that are automatically made by a server.
The server refreshes these copies from the source table on a periodic basis specified
by the user—perhaps daily, weekly, or monthly. Snapshots are most useful for
locations that seek an automatic process for receiving updated information on a
periodic basis.

Data replication means the server automatically updates copies of a table. It is
similar to snapshots because copies of a table are stored at multiple locations. Data
replication is most effective for situations that require high reliability and quick
data retrieval with few updates.

Tables can also be split across computer servers in the network. Such a table is
called a distributed table. Distributed tables are split either horizontally by rows
or vertically by columns to provide easier local reference and storage. The columns
of a vertically distributed table reside at various locations, as do the rows of a
horizontally distributed table. At any location, the user still sees the table as if it
were kept in a single location. Distributing tables is most effective when the
request to access and update certain portions of the table come from the same
location as those portions of the table.

For additional terms, see the Glossary.

Distributed Relational Database Architecture Support
DRDA support for distributed relational database processing is used by IBM
relational database products. DRDA support defines protocols for communication
between an application program and a remote relational database.

DRDA support provides distributed relational database management in both IBM
and non-IBM environments. In IBM environments, relational data is managed with
the following programs:
v DB2 Universal Database for z/OS
v DB2 Universal Database for VSE & VM
v DB2 Connect Personal Edition
v DB2 Connect Enterprise Edition
v DB2 Universal Database Workgroup Edition
v DB2 Universal Database Enterprise Edition
v DB2 Universal Database Enterprise—Extended Edition

DRDA support provides the structure for access to database information for
relational database managers operating in like and unlike environments. For
example, access to relational data between two or more iSeries servers is
distribution in a like environment, and access to relational data between an iSeries
server and servers using the DB2 UDB for iSeries database manager is distribution
in an unlike environment.

SQL is the standard IBM database language. It provides the necessary consistency
to enable distributed data processing across like and unlike operating

Chapter 1. Distributed Relational Database and the iSeries server 7

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

environments. Within DRDA support, SQL allows users to define, retrieve, and
manipulate data across environments that support a DRDA implementation.

DRDA and CDRA support
One of the interesting possibilities in a distributed relational database is that the
database may not only span different types of computers, but those computers
may be in different countries or regions. The same servers, such as iSeries server,
can encode data differently depending on the language used on the server.
Different types of servers encode data differently. For instance, a System/390*, an
iSeries server, and a PS/2* system encode numeric data in their own unique
formats. In addition, a System/390 and an iSeries server use the EBCDIC encoding
scheme to encode character data, while a PS/2 system uses an ASCII encoding
scheme.

For numeric data, these differences do not matter. Unlike systems that provide
DRDA support automatically convert any differences between the way a number is
represented in one computer system to the way it is represented in another. For
example, if an iSeries application program reads numeric data from a DB2 UDB for
iSeries database, DB2 UDB for iSeries sends the numeric data in System/390
format and the OS/400 database management system converts it to iSeries numeric
format.

However, the handling of character data is more complex, but this too can be
handled within a distributed relational database. See Character conversion with
CDRA for more information about handling character data.

Character conversion with CDRA
Not only can there be differences in encoding schemes (such as Extended Binary
Coded Decimal Interchange Code (EBCDIC) versus American Standard Code for
Information Interchange (ASCII)), but there can also be differences related to
language. For instance, systems configured for different languages can assign
different characters to the same code, or different codes to the same character. For
example, a system configured for U.S. English can assign the same code to the
character } that a system configured for the Danish language assigns to å. But
those two systems can assign different codes to the same character such as $.

If data is to be shared across different servers, character data needs to be seen by
users and applications the same way. In other words, a PS/2 user in New York and
an iSeries server user in Copenhagen both need to see a $ as a $, even though $
may be encoded differently in each server. Furthermore, the user in Copenhagen
needs to see a }, if that is the character that was stored at New York, even though
the code may be the same as a Danish å. In order for this to happen, the $ must be
converted to the proper character encoding for a PS/2 system (that is, U.S. English
character set, ASCII), and converted back to Danish encoding when it goes from
New York to Copenhagen (that is, Danish character set, EBCDIC). This sort of
character conversion is provided for by iSeries server as well as the other IBM
distributed relational database managers. This conversion is done in a coherent
way in accordance with the Character Data Representation Architecture (CDRA).

CDRA specifies the way to identify the attributes of character data so that the data
can be understood across servers, even if the servers use different character sets
and encoding schemes. For conversion to happen across servers, each server must
understand the attributes of the character data it is receiving from the other server.
CDRA specifies that these attributes be identified through a coded character set

8 OS/400 Distributed Database Programming V5R2

identifier (CCSID). All character data in DB2 UDB for z/OS, DB2 UDB for VM,
and the OS/400 database management systems have a CCSID, which indicates a
specific combination of encoding scheme, character set, and code page. All
character data in an Extended Services environment has a code page only (but the
other database managers treat that code page identification as a CCSID). A code
page is a specific set of assignments between characters and internal codes.

For example, CCSID 37 means encoding scheme 4352 (EBCDIC), character set 697
(Latin, single-byte characters), and code page 37 (USA/Canada country extended
code page). CCSID 5026 means encoding scheme 4865 (extended EBCDIC),
character set 1172 with code page 290 (single-byte character set for Katakana/
Kanji), and character set 370 with code page 300 (double-byte character set for
Katakana/Kanji).

DB2 UDB for z/OS, DB2 UDB for VM, the OS/400 system, and DB2 Connect
include mechanisms to convert character data between a wide range of
CCSID-to-CCSID pairs and CCSID-to-code page pairs. Character conversion for
many CCSIDs and code pages is already built into these products. For more
information on CCSIDs supported by iSeries, see the OS/400 globalization topic in
the iSeries Information Center. For a description of the use of CCSIDs on the
iSeries server, see “Coded Character Set Identifier (CCSID)” on page 204.

Application requester driver programs
An application requester driver (ARD) program is a type of exit program that
enables SQL applications to access data managed by a database management
system other than DB2 UDB for iSeries. An iSeries client calls the ARD program
during the following operations:
v The package creation step of SQL precompiling, performed using the Create

Structured Query Language Package (CRTSQLPKG) command or CRTSQLxxx
commands, when the relational database (RDB) parameter matches the RDB
name corresponding to the ARD program.

v Processing of SQL statements when the current connection is to an RDB name
corresponding to the ARD program.

These calls allow the ARD program to pass the SQL statements and information
about the statements to a remote relational database and return results back to the
the application requester (AR). The AR then returns the results to the application
or the user. Access to relational databases accessed by ARD programs appear like
access to DRDA application servers in the unlike environment.

The ARD program is registered in the system by use of the Add Relational
Database Directory Entry (ADDRDBDIRE) command. One of the parameters that is
specified is the library in which the program is located. For a system configured
with independent auxiliary storage pools, the ARD program must reside in a
library in the system database (a library that is part of the system ASP or a
configured basic ASP).

For more information about application requester driver programs, see the
Application programming interfaces (APIs) topic in the iSeries Information Center.

Chapter 1. Distributed Relational Database and the iSeries server 9

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

Distributed relational database on the iSeries server
DB2 UDB for iSeries provides all the database management functions for the
iSeries system relational database and any configured user databases. Distributed
relational database support on the system is an integral part of the OS/400
program, just as is support for communications, work management, security
functions and other functions.

The iSeries system can be part of a distributed relational database network with
other servers that support a DRDA implementation. The iSeries system can be an
application requester (AR) or an application server (AS) in either like or unlike
environments. Distributed relational database implementation on the iSeries system
supports remote unit of work (RUW) and distributed unit of work (DUW). RUW
allows you to submit multiple requests to a single database within a single unit of
work, and DUW allows requests to multiple databases to be included within a
single unit of work.

For example, using DUW support you can decrement the inventory count of a part
on one server and increment the inventory count of a part on another `server
within a unit of work, and then commit changes to these remote databases at the
conclusion of a single unit of work using a two-phase commit process. DB2 UDB
for iSeries does not support distributed requests, so you can only access one
database with each SQL statement. The level of support provided in an application
program depends on the level of support available on the application server (AS)
and the order in which connections and updates are made. See “Connecting to a
Distributed Relational Database” on page 191 for more information.

In addition to DRDA access, ARD programs can be used to access databases that
do not support DRDA. Connections to relational databases accessed through ARD
programs are treated like connections to unlike servers. Such connections can
coexist with connections to DRDA application servers, connections to the local
relational database, and connections which access other ARD programs.

On the iSeries server, the distribution functions of snapshots and replication,
introduced in “Other distributed relational database terms and concepts” on
page 6, are not automatically performed by the server. You can install and
configure the DataPropagator Relational Capture and Apply product on iSeries
servers to perform these functions. Also, you can use these functions in
user-written application programs. More information about how you can organize
these functions in a distributed relational database is discussed in Chapter 7, “Data
Availability and Protection for a Distributed Relational Database”.

On the iSeries server, the distributed request function that is discussed in “Other
distributed relational database terms and concepts” on page 6 is not directly
supported. However, the DataJoiner product can perform distributed queries,
joining tables from a variety of data sources. DataJoiner works synergistically with
DataGuide, a comprehensive information catalog in the IBM Information
Warehouse family of products. DataGuide provides a graphical user interface to
complete information listings about a company’s data resources.

The OS/400 program includes run-time support for SQL. You do not need the DB2
UDB for iSeries Query Manager and SQL Development Kit licensed program
installed on a DB2 UDB for iSeries application requester (AR) or application server
(AS) to process distributed relational database requests or to create an SQL
collection on an iSeries server. However, you do need the DB2 UDB for iSeries

10 OS/400 Distributed Database Programming V5R2

|
|
|
|
|

Query Manager and SQL Development Kit program to precompile programs with
SQL statements, run interactive SQL, or run DB2 UDB for iSeries Query Manager.

Managing an iSeries Distributed Relational Database
Managing a distributed relational database on the iSeries server requires broad
knowledge of the resources and tools within the OS/400 licensed program. This
book provides an overview of the various functions available with the operating
system that can help you administer a distributed relational database on the iSeries
server. This guide explains distributed relational database functions and tasks in a
network of iSeries servers (a like environment). Differences between iSeries
distributed relational database functions in a like and unlike environment are
presented only in a general discussion in this guide.

A properly implemented distributed relational database makes it easy to access a
database on a remote server, process a database file without knowing where it
resides, and move parts of a database to another server without requiring changes
to the application programs.

To effectively implement your distributed relational database, you should be
familiar with the requirements in the following key areas:
v Planning and design for distributed relational databases discusses some

important things to consider when planning for and designing a distributed
database.

v Communications for an iSeries distributed relational database describes which
communications functions to use when you are setting up a network or
changing an existing network to work with a distributed relational database.

v Security for an iSeries Distributed Relational Database provides information on
the security considerations for an iSeries distributed relational database,
including communications and DRDA access to remote relational databases.

v Setting Up an iSeries Distributed Relational Database provides information on
ways to enter data into a distributed database, along with a discussion of
subsystems and relational database directories on the iSeries server.

v Distributed Relational Database Administration and Operation Tasks discusses
ways that you can administer the distributed relational database work being
done across a network.

v Data Availability and Protection for a Distributed Relational Database discusses
tools and techniques to protect programs and data on an iSeries server and
reduce recovery time in the event of a problem. It also provides information
about alternatives that ensure your network users have access to the relational
databases and tables across the network when it is needed.

v Distributed Relational Database Performance discusses ways to improve on the
design of your network, the system, and your database.

v Handling Distributed Relational Database Problems discusses some of the the
potential problems with a distributed relational database and how to
troubleshoot those problems.

v Writing Distributed Relational Database Applications provides an overview of
programming issues for a distributed relational database.

Considerations for different distributed relational database platforms working with
iSeries distributed relational database are discussed in Appendix B, “Cross-Platform
Access Using DRDA” on page 253.

Chapter 1. Distributed Relational Database and the iSeries server 11

If you want more information about another IBM system that supports DRDA, see
the information provided with that system or the books listed in Distributed
Relational Database Library and Other IBM Distributed Relational Database
Platform Libraries in the Bibliography.

Example: Spiffy Corporation distributed relational database
The Spiffy Corporation is used in several IBM manuals to describe distributed
relational database support. In this manual, this fictional company has been
changed somewhat to illustrate iSeries server support for DRDA in an iSeries
server network. Examples used throughout this manual illustrate particular
functions, connections, and processes. These may not correspond exactly to the
examples used in other distributed relational database publications but an attempt
has been made to make them look familiar.

Though the Spiffy Corporation is a fictional enterprise, the business practices
described here are modeled after those in use in several companies of similar
construction. However, this example does not attempt to describe all that can be
done using a distributed relational database, even by this example company.

The following topics contain information about the Spiffy organization and the use
of distributed relational database support:
v Spiffy Organization and system profile
v Business processes of the Spiffy Corporation Automobile Service
v Distributed Relational Database administration for the Spiffy Corporation

Spiffy Organization and system profile
Spiffy Corporation is a national product distributor that sells and services
automobiles, among other products, to retail customers through a network of
regional offices and local dealerships. Given the high competitiveness of today’s
automobile industry, the success of an operation like the Spiffy Corporation
depends on high-quality servicing and timely delivery of spare parts to the
customer. To meet this competition, Spiffy has established a vast service network
incorporated within its dealership organization.

The dealership organization is headed by a central vehicle distributor that is
located in Chicago, Illinois. There are several regional distribution centers across
North America. Two of these are located in Minneapolis, Minnesota and Kansas
City, Missouri. These centers minimize the distribution costs of vehicles and spare
parts by setting up regional inventories. The Minneapolis regional center serves
approximately 15 dealerships while the Kansas City center serves as many as 30
dealerships.

Figure 5 on page 13 illustrates a system organization chart for Spiffy Corporation.

12 OS/400 Distributed Database Programming V5R2

Spiffy is in the process of building up a nationwide integrated telecommunications
network. For the automobile division they are setting up a network of iSeries
servers for the regional distributions centers and the dealerships. These are
connected to a System/390 at the central vehicle distributor. This network is
considered a vital business asset for maintaining the competitive edge.

The central distributor runs DB2 UDB for z/OS on its System/390 with relevant
decision support software. This system is used because of the large amounts of
data that must be handled at any one time in a variety of application programs.
The central vehicle distributor system is not dedicated to automobile division data
processing. It must handle work and processes for the corporation that do not yet
operate in a distributed database environment. The regional centers are running
iSeries systems. They use APPC/APPN with SNADS and 5250 Display Station
Pass-through using an SDLC protocol.

All of the dealerships use iSeries servers that vary in size. These systems are
connected to the regional office using SDLC protocol. The largest dealerships have
a part time programmer and a system operator to tend to the data processing
functioning of the enterprise. Most of the installations do not employ anyone with

Figure 5. The Spiffy Corporation System Organization

Chapter 1. Distributed Relational Database and the iSeries server 13

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

programming expertise and some of the smaller locations do not employ anyone
with more than a very general knowledge of computers.

Business processes of the Spiffy Corporation Automobile
Service

The Spiffy Corporation automobile division has business practices that are
automated in this distributed relational database environment. To keep the
examples from becoming more complicated than necessary, consider just those
functions in the company that pertain to vehicle servicing.

Dealerships can have a list of from 2000 to 20,000 customers. This translates to 5
service orders per day for a small dealership and up to 50 per day for a large
dealership. These service orders include scheduled maintenance, warranty repairs,
regular repairs, and parts ordering.

The dealers stock only frequently needed spare parts and maintain their own
inventory databases. Both regional centers provide parts when requested. Dealer
inventories are also stocked on a periodic basis by a forecast-model-controlled
batch process.

Distributed Relational Database administration for the Spiffy
Corporation

Each dealership manages its data processing resources and procedures as a
stand-alone enterprise. Spiffy Corporation requires that each dealership have one
or more iSeries servers and that those servers must be available to the network at
certain times. However, the size of the server and the number of business
processes that are automated on it are determined by each dealership’s needs and
the resources available to it.

The Spiffy Corporation requires all dealerships to be active in the inventory
distributed relational database. Since the corporation operates its own dealerships,
it has a full complement of dealership software that may or may not access the
distributed relational database environment. The Spiffy dealerships use the full set
of software tools. Most of the private franchises use them also since they are
tailored specifically to the Spiffy Corporation way of doing business.

The regional distribution centers manage the inventory for their region. They also
function as the database administrator for all distributed database resources used
in the region. The responsibilities involved vary depending on the level of data
processing competency at each dealership. The regional center is always the first
contact for help for any dealership in the region.

The Minneapolis regional distribution center has a staff of iSeries programmers
with a wide range of experience and knowledge about the servers and the
network. The dealership load is about one half that of other regional centers to
allow this center to focus on network-wide iSeries support functions. These
functions include application program development, program maintenance, and
problem handling.

The following are the database responsibilities for each level of activity in the
network:

Dealerships:

v Perform basic operation and administration of the server

14 OS/400 Distributed Database Programming V5R2

|
|

v Enroll local users

Regional distribution centers:

v Set up data processing for new dealerships
v Disperse database resources for discontinued dealerships
v Enroll network users in region
v Maintain inventory for region
v Develop service plans for dealerships
v Operate help desk for dealerships

In addition to the regional distribution center activities above, the Minneapolis
iSeries server competency center does the following activities:

v Develop applications for iSeries servers
v Operate help desk for regional centers
v Tune database performance
v Alert focal point
v Resolve database problems

Examples used throughout this manual are associated with one or more of these
activities. Many examples show the process of obtaining a part from inventory in
order to schedule customer service or repairs. Others show distributed relational
database administration tasks used to set up, secure, monitor, and resolve
problems for servers in the Spiffy Corporation distributed relational database
network.

Chapter 1. Distributed Relational Database and the iSeries server 15

16 OS/400 Distributed Database Programming V5R2

Chapter 2. Planning and Design for Distributed Relational
Database

The first requirement for the successful operation of a distributed relational
database is thorough planning. The needs and goals of your enterprise must be
considered when making the decision to use a distributed relational database. How
you code an application program, where it resides in relation to the data, and the
network design that connects application programs to data are all important design
considerations.

Database design in a distributed relational database is more critical than when
dealing with just one iSeries relational database. With more than one iSeries server
to consider, you must develop a consistent management strategy across the
network. Operations that require particular attention when forming your strategy
are the following:
v General operations
v Networking protocol
v System security
v Accounting
v Problem analysis
v Backup and recovery processes

To prepare for a distributed relational database, you must understand both the
needs of the business and relational database technology.

Because the planning and design of a distributed relational database are closely
linked to each other, this chapter combines these topics when discussing the
following related tasks:
v Identifying your needs and expectations
v Designing the application, network, and data
v Developing a management strategy

Identifying your needs and expectations for a distributed relational
database

When analyzing your needs and expectations of a distributed relational database,
consider the following:
v Data needs for distributed relational databases. What data is pertinent to your

plans, who will need it, for what reason, and how often?
v Distributed relational database capabilities. Do the requirements lend themselves

to a distributed relational database solution?
v Goals and directions for a distributed relational database. If a distributed

relational database appears to be a viable solution, what short-term and
long-term goals can be met?

Data needs for distributed relational databases
The first step in your analysis is to determine which factors affect your data and
how they affect it. Ask yourself the following questions:

© Copyright IBM Corp. 1998, 2001, 2002 17

v What locations are involved?
v What kind of transactions do you envision?
v What data is needed for each transaction?
v What dependencies do items of data have on each other, especially referential

limitations? For example, will information in one table need to be checked
against the information in another table? (If so, both tables must be kept at the
same location.)

v Does the data currently exist? If so, where is it located? Who ″owns″ it (that is,
who is responsible for maintaining the accuracy of the data)?

v What priority do you place on the availability of the needed data? Integrity of
the data across locations? Protection of the data from unauthorized access?

v What access patterns do you envision for the data? For instance, will the data be
read, updated, or both? How frequently? Will a typical access return a lot of
data or a little data?

v What level of performance do you expect from each transaction? What response
time is acceptable?

Distributed relational database capabilities
The second step in your analysis is to decide whether or not your data needs lend
themselves to a distributed relational database solution.

Applications where most database processing is done locally and access to remote
data is needed only occasionally are typically good candidates for a distributed
relational database.

Applications with the following requirements are usually poor candidates for a
distributed relational database:
v The data is kept at a central site and most of the work that a remote user needs

to do is at the central site.
v Consistently high performance, especially consistently fast response time, is

needed. It takes longer to move data across a network.
v Consistently high availability, especially twenty-four hour, seven-day-a-week

availability, is needed. Networks involve more systems and more in-between
components, such as communications lines and communications controllers,
which increases the chance of breakdowns.

v A distributed relational database function that you need is not currently
available or announced.

Goals and directions for a distributed relational database
The third step in your analysis is to assess your short-term and long-term goals.

SQL is the standard IBM database language. If your goals and directions include
portability or remote data access on unlike systems, you should use distributed
relational database on the iSeries server.

The distributed database function of distributed unit of work, as well as the
additional data copying function provided by DataPropagator Relational Capture
and Apply, broaden the range of activities you can perform on the iSeries server.
However, if your distributed database application requires a function that is not
currently available on the iSeries server, other options are available until the
function is made available on the operating system. For example, you may do one
of the following:

18 OS/400 Distributed Database Programming V5R2

v Provide the needed function yourself
v Stage your plans for distributed relational database to allow for the new

function to become available
v Reassess your goals and requirements to see if you can satisfy them with a

currently available or announced function. Some alternative solutions are listed
in Table 3. These alternatives can be used to supplement or replace available
function.

Table 3. Alternative Solutions to Distributed Relational Database

Solution Description Advantages Disadvantages

Distributed Data
Management (DDM)

A function of the operating
system that allows an application
program or user on one system
to use database files stored on a
remote system. The system must
be connected by a
communications network, and
the remote system must also use
DDM.

– For simple read and update
accesses, the performance is
better than for SQL.

– Existing applications do not
need to be rewritten.

– Can be used to access S/38,
S/36, and CICS*

– SQL is more efficient
for complex functions

– May not be able to
access other
distributed relational
database platforms

– Does not perform
CCSID and numeric
data conversions

Intersystem
Communications
Function/Common
Programming
Interface (ICF/CPI
Communications)

ICF is a function of the operating
system that allows a program to
communicate interactively with
another program or system. CPI
Communications is a call-level
interface that provides a
consistent application interface
for applications that use
program-to-program
communications. These interfaces
make use of SNA’s logical unit
(LU) 6.2 architecture to establish
a conversation with a program
on a remote system, to send and
receive data, to exchange control
information, to end a
conversation, and to notify a
partner program of errors.

– Allows you to customize
your application to meet
your needs.

– Can provide better
performance.

Compared to distributed
relational database and
DDM, a more
complicated program is
needed to support
communications and
data conversion
requirements.

Display station
pass-through

A communications function that
allows a user to sign on to one
iSeries server from another
iSeries server and use that
server’s programs and data.

– Applications and data on
remote systems are
accessible from local
systems.

– Allows for quick access
when data is volatile and a
large amount of data on one
server is needed by users on
several servers.

Response time on screen
updates is slower than
locally attached devices.

A distributed relational database usually evolves from simple to complex as
business needs change and new products are made available. Remember to
consider this when analyzing your needs and expectations.

Chapter 2. Planning and Design for Distributed Relational Database 19

Designing the application, network, and data for a distributed
relational database

Designing a distributed relational database involves making choices about the
following:
v Applications
v Network considerations
v Data considerations

Tips: Designing distributed relational database applications
Distributed relational database applications have different requirements from
applications developed solely for use on a local database. To properly plan for
these differences, design your applications with the following in mind:
v Take advantage of the distributed unit of work (DUW) function where

appropriate.
Note: Prior to Version 5 Release 1 of OS/400, two-phase commit support was
not available with TCP/IP on the iSeries server.

v Code programs using common interfaces.
v Consider dividing a complex application into smaller parts and placing each

piece of the application in the location best suited to process it. One good way
to distribute processing in an application is to make use of the SQL CALL
statement to run a stored procedure at a remote location where the data to be
processed resides. The stored procedure is not limited to SQL operations when it
runs on a DB2 Universal Database for iSeries application server; it can use
integrated database input/output or perform other types of processing.

v Investigate how the initial database applications will be prepared, tested, and
used.

v Take advantage, when possible, of SQL set-processing capabilities. This will
minimize communication with the application servers. For example, update
multiple rows with one SQL statement whenever you can.

v Be aware that database updates within a unit of work must be done at a single
site if the RUW connection method is used when the programs are prepared, or
if the other nodes in the distributed application do not support DUW.

v Keep in mind that the DUW connection method restricts you from directing a
single statement to more than one relational database.

v Performance is affected by the choice of connection management methods. Use
of the RUW connection management method might be preferable if you do not
have the need to switch back and forth among different remote relational
databases. This is because more overhead is associated with the two-phase
commit protocols used with DUW connection management.
However, if you have to switch frequently among multiple remote database
management systems, use DUW connection management. When running with
DUW connection management, communication conversations to one database
management system do not have to be ended when you switch the connection
to another database management system. In the like environment, this is not as
big a factor as in the unlike environment, since conversations in the like
environment can be kept active by use of the default DDMCNV(*KEEP) job
definition attribute. Even in the like environment, however, a performance
advantage can be gained by using DUW to avoid the cost of closing cursors and
sending the communication flow to establish a new connection.

20 OS/400 Distributed Database Programming V5R2

|
|

v The connection management method determines the semantics of the
CONNECT statement. With the RUW connection management method, the
CONNECT statement ends any existing connections prior to establishing a new
connection to the relational database. With the DUW connection management
method, the CONNECT statement does not end existing connections.

Network considerations for a distributed relational database
The design of a network directly affects the performance of a distributed relational
database. To properly design a distributed relational database that works well with
a particular network, do the following:
v Because the line speed can be very important to application performance,

provide sufficient capacity at the appropriate places in the network to achieve
efficient performance to the main distributed relational database applications.

See the Communications Management book for more information.
v Evaluate the available communication hardware and software and, if necessary,

your ability to upgrade.
v For APPC connections, consider the session limits and conversation limits

specified when the network is defined.
v Identify the hardware, software, and communication equipment needed (for

both test and production environments), and the best configuration of the
equipment for a distributed relational database network.

v Consider the skills that are necessary to support TCP/IP as opposed to those
that are necessary to support APPC.

v Take into consideration the initial service level agreements with end user groups
(such as what response time to expect for a given distributed relational database
application), and strategies for monitoring and tuning the actual service
provided.

v Understand that you cannot use an APPC protected DUW conversation to
connect to a database from an AR which has been set to an auxiliary storage
pool (ASP) group for the current thread.

v Develop a naming strategy for database objects in the distributed relational
database and for each location in the distributed relational database. A location
is a specific relational database management system in an interconnected
network of relational database management systems that participate in
distributed relational database. A ’location’ in this sense can also be a user
database in a system configured with independent ASP groups. Consider the
following when developing this strategy:
– The fully qualified name of an object in a distributed database has three

(rather than two) parts, and the highest-level qualifier identifies the location
of the object.

– Each location in a distributed relational database should be given a unique
identification; each object in the database should also have a unique
identification. Duplicate identifications can cause serious problems. For
example, duplicate locations and object names may cause an application to
connect to an unintended remote database, and once connected, access an
unintended object. Pay particular attention to naming when networks are
coupled.

– Each location in a user database should also be given a unique identification.
If a user database on two different servers were to be named ’PAYROLL’,
there would be a naming conflict if an application needed to access them both
from the same server. Note that when an independent ASP device is
configured, the user has an option to specify an RDB name for that device

Chapter 2. Planning and Design for Distributed Relational Database 21

|
|
|

|
|
|
|
|

that is different from the name of the ASP device itself. It is the RDB name
associated with the primary device in an ASP group by which that user
database is known.

Data considerations for a distributed relational database
The placement of data in respect to the applications that need it is an important
consideration when designing a distributed relational database. When making such
placement decisions, consider the following:
v The level of performance needed from the applications
v Requirements for the security, currency, consistency, and availability of the data

across locations
v The amount of data needed and the predicted patterns of data access
v If the distributed relational database functions needed are available
v The skills needed to support the server and the skills that are actually available
v Who ″owns″ the data (that is, who is responsible for maintaining the accuracy of

the data)
v Management strategy for cross-system security, accounting, monitoring and

tuning, problem handling, data backup and recovery, and change control
v Distributed database design decisions, such as where to locate data in the

network and whether to maintain single or multiple copies of the data

Developing a management strategy for a distributed relational
database

This section discusses the following strategies for managing a distributed relational
database:
v General operations for a distributed relational database
v Security considerations for a distributed relational database
v Accounting for a distributed relational database
v Problem analysis for a distributed relational database
v Backup and recovery for a distributed relational database

General operations for a distributed relational database
To plan for the general operation of a distributed relational database, consider both
performance and availability.

The following design considerations can help you improve both the performance
and availability of a distributed relational database
v If an application involves transactions that run frequently or that send or receive

a lot of data, you should try to keep it in the same location as the data.
v For data that needs to be shared by applications in different locations, put the

data in the location with the most activity.
v If the applications in one location need the data as much as the applications in

another location, consider keeping copies of the data at both locations. When
keeping copies at multiple locations, ask yourself the following questions about
your management strategy:
– Will users be allowed to make updates to the copies?
– How and when will the copies be refreshed with current data?
– Will all copies have to be backed up or will backing up one copy be

sufficient?

22 OS/400 Distributed Database Programming V5R2

|
|
|

– How will general administration activities be performed consistently for all
copies?

– When is it permissible to delete one of the copies?
v Consider whether the distributed databases will be administered from a central

location or from each database location.

Performance may also be improved by doing the following:
v If data and applications must be kept at different locations, do the following to

keep the performance within acceptable limits:
– Keep data traffic across the network as low as possible by only retrieving the

data columns that will be used by the application; that is, avoid using * in
place of a list of column names as part of a SELECT statement.

– Discourage programmers from coding statements that send large amounts of
data to or receive large amounts of data from a remote location; that is,
encourage the use of the WHERE clause of the SELECT statement to limit the
number of rows of data.

– Use referential integrity, triggers, and stored procedures (an SQL CALL
statement after a CONNECT to a remote relational database management
system); this improves performance by distributing processing to the
application server (AS), which can substantially reduce line traffic.

– Use read-only queries where appropriate by specifying the FOR FETCH
ONLY clause.

– Be aware of rules for blocking of queries. For example, in iSeries-to-iSeries
queries, blocking of read-only data is done only for COMMIT(*NONE), or for
COMMIT(*CHG) and COMMIT(*CS) when ALWBLK(*ALLREAD) is
specified.

– Keep the number of accesses to remote data low by using local data in place
of remote data whenever possible.

– Use SQL set operations to process multiple rows at the application requester
with a single SQL request.

– Try to avoid dropping of connections by using DDMCNV(*KEEP) when
running with RUW connection management, or by running with DUW
connection management.

v Provide sufficient network capacity by doing the following:
– Increase the capacity of the network by installing high-speed, high-bandwidth

lines or by adding lines at appropriate points in the network.
– Reduce the contention or improve the contention balance on certain

processors. For example, move existing applications from a host server to a
departmental server or group some distributed relational database work into
batch.

v Encourage good table design. At the distributed relational database locations,
encourage appropriate use of primary keys, table indexes, and normalization
techniques.

v Ensure data types of host variables used in WHERE clauses are consistent with
the data types of the associated key column data types. For example, a
floating-point host variable has been known to disqualify the use of an index
built over a column of a different data type.

Availability may also be improved by doing the following:
v In general, try to limit the amount of data traffic across the network.

Chapter 2. Planning and Design for Distributed Relational Database 23

v If data and applications must be kept at different locations, do the following to
keep the availability within acceptable limits:
– Establish alternate network routes.
– Consider the effect of time zone differences on availability:

- Will qualified people be available to bring up the server?
- Will off-hours batch work interfere with processing?

– Ensure good backup and recovery features.
– Ensure people are skilled in backup and recovery.

Security considerations for a distributed relational database
Part of planning for a distributed relational database involves the decisions you
must make about securing distributed data. These decisions include:
v What systems should be made accessible to users in other locations and which

users in other locations should have access to those systems.
v How tightly controlled access to those systems should be. For example, should a

user password be required when a conversation is started by a remote user?
v Is it required that passwords flow over the wire in encrypted form?
v Is it required that a user profile under which a client job runs be mapped to a

different user identification or password based on the name of the relational
database to which you are connecting?

v What data should be made accessible to users in other locations and which users
in other locations should have access to that data.

v What actions those users should be allowed to take on the data.
v Whether authorization to data should be centrally controlled or locally

controlled.
v If special precautions should be taken because multiple systems are being linked.

For example, should name translation be used?

When making the previous decisions, consider the following when choosing
locations:
v Physical protection. For example, a location may offer a room with restricted

access.
v Level of system security. The level of system security often differs between

locations. The security level of the distributed database is no greater than the
lowest level of security used in the network.
All servers connected by APPC can do the following:
– If both servers are iSeries servers, communicate passwords in encrypted form.
– Verify that when one server receives a request to communicate with another

server in the network, the requesting server is actually ″who it says it is″ and
that it is authorized to communicate with the receiving server.

All servers can do the following:
– Pass a user’s identification and password from the local server to the remote

server for verification before any remote data access is allowed.
– Grant and revoke privileges to access and manipulate SQL objects such as

tables and views.

24 OS/400 Distributed Database Programming V5R2

The iSeries server includes security audit functions that allow you to track
unauthorized attempts to access data, as well track other events pertinent to
security. The server also provides a function that can prevent all distributed
database access from remote servers.
– Security-related costs. When considering the cost of security, consider both the

cost of buying security-related products and the price of your information
staff’s time to perform the following activities:
- Maintain server identification of remote-data-accessing users at both local

and remote servers.
- Coordinate auditing functions between sites.

For more information on security, see Security for an iSeries Distributed Relational
Database.

Accounting for a distributed relational database
You need to be able to account and charge for the use of distributed data. Consider
the following:
v Accounting for the use of distributed data involves the use of resources in one

or more remote servers, the use of resources on the local server, and the use of
network resources that connect the servers.

v Accounting information is accumulated by each server independently. Network
accounting information is accumulated independent of the data accumulated by
the servers.

v The time zones of various servers may have to be taken into account when
trying to correlate accounting information. Each server clock may not be
synchronized with the remote server clock.

v Differences may exist between each server’s permitted accounting codes
(numbers). For example, the iSeries server restricts accounting codes to a
maximum of 15 characters.

The following functions are available to account for the use of distributed data:
v iSeries server job accounting journal. The iSeries server writes job accounting

information into the job accounting journal for each distributed relational
database application. The Display Journal (DSPJRN) command can be used to
write the accumulated journal entries into a database file. Then, either a
user-written program or query functions can be used to analyze the accounting
data. For more information, see “Job accounting in a distributed relational
database” on page 111.

v NetView* accounting data. The NetView licensed program can be used to record
accounting data about the use of network resources.

Problem analysis for a distributed relational database
Problem analysis needs to be managed in a distributed database environment.
Problem analysis involves both identifying and resolving problems for applications
that are processed across a network of servers. Consider the following:
v Distributed database processing problems manifest themselves in various ways.

For example, an error return code may be passed to a distributed database
application by the server that detects the problem. In addition, responses may be
slow, wrong, or nonexistent.

v Tools are available to diagnose distributed database processing problems. For
example, each distributed relational database product provides trace functions
that can assist in diagnosing distributed data processing problems.

Chapter 2. Planning and Design for Distributed Relational Database 25

v When server failures are detected by an iSeries server, the server does the
following:
– Logs information about program status immediately after the failure is

detected.
– Produces an alert message. All the alerts can be directed to a single control

point in the network. This can be either the NetView licensed program or an
iSeries server.
Note: Alerts flow only over APPC; they do not flow over TCP/IP.

– If a correction to an IBM program is required and if you have a System/390*
with Network Distribution Manager (NDM) installed in the network, you can
use the NDM and the Distributed System Node Executive products to receive
and transmit updates and replacements to appropriate servers in the network.

Backup and recovery for a distributed relational database
In a single-server environment, backup and recovery takes place locally. But in a
distributed database, backup and recovery also affects remote locations.

The iSeries server allows individual tables, collections, or groups of collections to
be backed up and recovered. Although backup and recovery can only be done
locally, you may want to plan to have less critical data on a server that does not
have adequate backup support. Backup and recovery procedures must be
consistent with data that may exist on more than one application server. Because
you have more than one server in the network, you may want to save such data to
a second server so that it is always available to the network in some form.
Strategies such as these need to be planned and laid out specifically before a
database is distributed across the network.

26 OS/400 Distributed Database Programming V5R2

Chapter 3. Communications for an iSeries Distributed
Relational Database

This chapter discusses the following distributed relational database supported
communication topics:
v Communications tools for DRDA implementation discusses the various

communication tools used to support distributed relational database, including
communications types and lines, and iSeries functions, such as alert support for
problem notification.

v Distributed relational database communications network considerations
discusses some things you should consider for your communications network
when you depend on distributed relational database for your database
processing.

v Configuring communications for a distributed relational database provides steps
for configuring a network and configuring alerts with an accompanying
example.

This guide does not contain all the information you need. It is intended to help
you ask the right questions and determine your own answers, which ensures
maximum use of your resources based on the needs of your business.

Communications tools for DRDA implementation
Communications support for the DRDA implementation on the iSeries was initially
provided only under the IBM Systems Network Architecture (SNA) through the
Advanced Program-to-Program Communications (APPC) protocol, with or without
Advanced Peer-to-Peer Networking (APPN).

System TCP/IP support for DRDA with one-phase commit has been available since
V4R2. In V5R1, full DUW support with two-phase commit was made available.

Systems network architecture for a distributed relational database: SNA is an
architecture made up of several logical unit (LU) types. These logical units are
architectural definitions of how to communicate with servers, controllers, and
terminals that also support the same LU types. All of the SNA support necessary
for distributed relational database on the iSeries server is part of the OS/400
licensed program.

For detailed information other communications tools, see the following topics:
v APPC/APPN for a distributed relational database
v Using DDM and distributed relational database
v Alert support for a distributed relational database

The examples and specifications in this chapter are specific to SNA configurations
and native TCP/IP only. For more information on APPC over TCP/IP, refer to the

Communications Configuration book. For more information on setting up system
TCP/IP support, see the TCP/IP setup topic in the iSeries Information Center.

© Copyright IBM Corp. 1998, 2001, 2002 27

|
|

APPC/APPN for a distributed relational database
APPC is the iSeries server implementation of SNA LU 6.2 and physical unit (PU)
T2.1 architectures. It allows applications that reside on different processors to
communicate and exchange data in a peer relationship with one another.

APPN support is an enhancement to the PU T2.1 architecture that provides
networking functions such as:
v Dynamically locating LUs in the network by searching distributed directories
v Dynamically selecting routes to LUs based on selection characteristics when an

application requests a session
v Intermediate routing of LU 6.2 session traffic through the node for sessions

between other LU 6.2 partners
v Routing session data based on transmission priorities
v Dynamically creating and starting remote location partner definitions
v High-Performance Routing (HPR), which is an addition to the APPN architecture

that enhances APPN routing performance and reliability, especially when using
high-speed links.

APPC and APPN also support these IBM-supplied functions:
v SNA distribution services (SNADS)
v Display station pass-through to the iSeries server
v Alert support to help you manage problems from a central location

iSeries APPN and HPR are documented in the APPC, APPN, and HPR topic.

Using DDM and distributed relational database
The DRDA implementation on the iSeries server uses Distributed Data
Management (DDM) architecture commands to communicate with other servers.
However, distributed relational database and DDM file access support handle some
functions differently.

Using distributed relational database processing, the application connects to a
remote using a relational database directory on the local system. The relational
database directory provides the necessary links between a relational database name
and the communications path to that database. An application running under
distributed relational database only has to identify the database name and run the
SQL statements needed for processing.

Using DDM support, the remote file is identified and the communications path is
provided by means of a DDM file on the local system. As of V5R2, a DDM file can
also be created with a reference to a RDB directory entry.

You can use DDM to support distributed relational database processing for
administrative tasks such as submitting remote commands, copying files, and
moving data from one to another. To use DDM support, a DDM file must be
created. This is discussed in “Setting up DDM files” on page 86.

Using a DDM file with the iSeries server copy file commands is discussed in
“Moving data between iSeries servers using Copy File Commands” on page 91.

If you have an IP network, there are other similar functions available for some of
the DDM-related operations that are discussed in this section. For example, you
can use FTP and the Run Remote Command (RUNRMTCMD) command.

28 OS/400 Distributed Database Programming V5R2

|
|
|
|

|
|
|

|
|
|

Alert support for a distributed relational database
Alert support on the iSeries server allows you to manage problems from a central
location. Alert support is useful for managing servers that do not have an operator,
managing servers where the operator is not skilled in problem management, and
maintaining control of server resources and expenses.

Note: Alert support is available only in the SNA environment.

On the server, “Alerts” on page 175 are created based on messages that are sent to
the local server operator. These messages are used to inform the operator of
problems with hardware resources, such as local devices or controllers,
communication lines, or remote controllers or devices. These messages can also
report software errors detected by the server or application programs.

Any message with the alert option field (located in the message description) set to
a value other than *NO can generate an alert. Alerts are generated from several
types of messages:
v OS/400 messages defined as alerts. OS/400 support sends alerts for problems

related to distributed relational database functions.
v IBM-supplied messages where the value in the alert option field is specified as

*YES by the Change Message Description (CHGMSGD) command. In this way,
you can select the messages for which you want alerts sent to the distributed
relational database administrator.

v Messages that you create and define as alerts, or that you create with the
QALGENA application program interface (API).

In a distributed relational database, a server is part of a communications network,
and local server messages cause alerts to be created and sent through the network
to a central problem management site called a focal point. An alert focal point is a
server in a network that receives and processes (logs, displays, and optionally
sends) alerts. This allows you to centralize management of the network at the focal
point.

A focal point’servers sphere of control is a collection of network node control
points or systems within an APPN network from which the focal point server
receives alerts. The focal point maintains connectivity with other network nodes in
the sphere of control, accepts alerts received from systems in the sphere of control,
and forwards alerts to a higher level focal point, if one exists.

An iSeries server can be defined to be a primary focal point or a default focal
point. As a primary focal point, the server receives alerts from all systems
explicitly defined in its sphere of control. As a default focal point, the server
receives alerts from all systems that do not already have a primary focal point.

The iSeries server also provides the capability to nest focal points. You can define a
high level focal point, which accepts all of the alerts collected by lower level focal
points.

See “Configuring alert support for a distributed relational database” on page 40 for
an example configuration for alert handling.

Chapter 3. Communications for an iSeries Distributed Relational Database 29

|

Distributed relational database communications network
considerations

Communications usage increases in a distributed relational database and there are
some things you should consider for your communications network when you
depend on it for database processing.

Because of the increased usage that comes with distributed relational database
processing, you may want to increase the maximum number of sessions parameter
(MAXSSN) and the maximum number of conversations parameter (MAXCNV) for
the MODE description created for both the local and remote location.

In addition to increasing capacity through the MODE descriptions, you may want
to consider increasing the line speed for various lines within the network or
selecting a better quality line to improve performance of the network for your
distributed relational database processing.

Another consideration for your distributed relational database network is the
question of data accessibility and availability. The more critical a certain database is
to daily or special enterprise operations, the more you need to consider how users
can access that database. This means examining paths and alternative paths
through the network to provide availability of the data as it is needed. More about
this topic is discussed in Chapter 7, “Data Availability and Protection for a
Distributed Relational Database”.

Line speed and how you configure your communications line can significantly
affect network performance. However, it is important to ask a few questions about
the nature of the information being transferred in relation to both line speed and
type of use. For example:
v How much information must be moved?
v What is a typical transaction and unit of work for batch applications?
v How many application programs or users will be using the line at the same

time?
v What is a typical transaction and unit of work for an interactive application and

how much data is sent and received for each transaction?

Configuring communications for a distributed relational database
The communications support for the DRDA implementation on the iSeries server is
based on the Distributed Data Management (DDM) Architecture. This support
includes both native TCP/IP connectivity as well as the IBM Systems Network
Architecture (SNA) through advanced program-to-program communications
(APPC), with or without Advanced Peer-to-Peer Networking* (APPN*), and
High-Performance Routing (HPR). In addition, OS/400 provides for APPC, and
therefore DDM and distributed relational database access, over TCP/IP using
AnyNet* support. AnyNet is not required for DRDA remote unit of work support
over TCP/IP, but might be useful for distributed unit of work function over
TCP/IP.

See the following topics for more information about these functions. These topics
also provide basic configuration examples to illustrate the steps needed to
configure systems in a network and handle alerts at a central location.
v Configuring a communications network for APPC
v Configuring alert support for a distributed relational database

30 OS/400 Distributed Database Programming V5R2

v Configuring a communications network for TCP/IP
v Configuring communications over OptiConnect

Note: There are no restrictions on what communications application requester
driver exit programs can use to access a relational database. See the topic
Application requester driver programs for more information.

Configuring a communications network for APPC
Configuring communications for a distributed relational database requires that the
local and remote systems are defined in the network. Once the systems in the
network are defined, you can use Distributed Data Management (DDM) functions
or SNA distribution services (SNADS) to distribute information throughout the
network, establish your alert handling systems, use display station pass-through to
connect to a Application server (AS) from a workstation on a local server, and
setup a relational database directory for servers in the distributed relational
database network. A relational database directory associates communications
configuration values with the names of relational databases in the distributed
relational database network. See Chapter 5, “Setting Up an iSeries Distributed
Relational Database” for information about setting up the relational database
directory.

Each iSeries server in the network must be defined so that each server can identify
itself and the remote servers in the network. To define a server in the network you
must:
1. Define the network attributes.
2. Create network interfaces and network server descriptions, if necessary.
3. Create the appropriate line descriptions.
4. Create a controller description.
5. Create a class-of-service description for APPC connections.
6. Create a mode description for APPC connections.
7. Create device descriptions automatically or manually.

Defining network attributes for a distributed relational database
To define the network attributes, use the Change Network Attributes (CHGNETA)
command. The network attributes contain the local server name, the default local
location name, the default control point name, the local network identifier, and the
network node type. If the machine is an end-node, the attributes also contain the
names of the network servers used by this iSeries server. Network attributes also
determine whether or not the server will use High-Performance Routing (HPR).
For more information on planning and configuring your HPR network, see the
APPC, APPN, and HPR topic in the iSeries Information Center.

Defining a network interface description for a distributed
relational database
Create a network interface description. Use the following commands to create
network interfaces:
v Create Network Interface (ATM Network) (CRTNWIATM)
v Create Network Interface (Frame-Relay Network) (CRTNWIFR)
v Create Network Interface for ISDN (CRTNWIISDN)

Chapter 3. Communications for an iSeries Distributed Relational Database 31

Defining a line description for a distributed relational database
Create a line description to describe the physical line connection and the data link
protocol to be used between the iSeries server and the network. Use the following
commands to create line descriptions:
v Create Line Description (Ethernet) (CRTLINETH)
v Create Line Description (DDI Network) (CRTLINDDI)
v Create Line Description (Frame-Relay Network) (CRTLINFR)
v Create Line Description (IDLC) (CRTLINIDLC)
v Create Line Description (SDLC) (CRTLINSDLC)
v Create Line Description (Token-ring Network) (CRTLINTRN)
v Create Line Description (Wireless) (CRTLINWLS)
v Create Line Description (X.25) (CRTLINX25)

Defining a controller description for a distributed relational
database
A controller description describes the adjacent servers in the network. The use of
APPN support is indicated by specifying APPN(*YES) when creating the controller
description. Use the following commands to create controller descriptions:
v Create Controller Description (APPC) (CRTCTLAPPC)
v Create Controller Description (SNA HOST) (CRTCTLHOST)

If the AUTOCRTCTL parameter on a token-ring, Ethernet, wireless, or DDI line
description is set to *YES, then a controller description is automatically created
when the server receives a session start request over the line.

To specify AnyNet support, you specify *ANYNW on the LINKTYPE parameter of
the Create Controller Description (APPC) (CRTCTLAPPC) command.

Other configuration considerations for a distributed relational
database
If additional local locations or special characteristics of remote locations for APPN
are required, APPN location lists must be created. One local location name is the
control point name specified in the network attributes. If additional locations are
needed for the iSeries server, an APPN local location list is required. Special
characteristics of remote locations include whether the remote location is in a
different network from the local location and security requirements. If special
characteristics of remote locations exist, an APPN remote location list is required.
APPN location lists can be created using the Create Configuration List (CRTCFGL)
command. See Elements of DRDA Security in an APPC network for more
information about APPN configuration lists and security requirements.

The communication descriptions can be varied on (activated) by using the Vary
Configuration (VRYCFG) command or the Work with Configuration Status
(WRKCFGSTS) command. If the nonswitched line descriptions are varied on, the
appropriate controllers and devices attached to that line are also varied on. The
WRKCFGSTS command also gives the status of each connection. For more
information about working with communication configuration status, see
Chapter 6, “Distributed Relational Database Administration and Operation Tasks”.

To help illustrate a basic configuration example, consider the Spiffy Corporation
network as illustrated in the Example: APPN configuration for a distributed
relational database.

32 OS/400 Distributed Database Programming V5R2

Notes:

1. The controller description is equivalent to the IBM Network Control Program
and Virtual Telecommunications Access Method (NCP/VTAM*) PU macros.
The information in a controller description is found in the Extended Services
Communication Manager Partner LU profile.

2. The device description is equivalent to the NCP/VTAM logical unit (LU)
macro. The information in a device description is found in Extended Services
Communications Manager Partner LU and LU profiles.

3. The mode description is equivalent to the NCP/VTAM mode tables. The
information in a mode description is found in Extended Services
Communications Manager Transmission Service Mode profile and Initial
Session Limits profile.

The Communications Configuration book and the APPC, APPN, and HPR topic
in the iSeries Information Center contains more information about configuring for
networking support and working with location lists.

Example: APPN configuration for a distributed relational
database

To help illustrate a basic configuration example, consider the Spiffy Corporation
network as illustrated in the following example.

In this network organization, two of Spiffy Corporation’s regional offices are the
network nodes servers named MP000 and KC000. The MP000 server in

Figure 6. The Spiffy Corporation Network Organization

Chapter 3. Communications for an iSeries Distributed Relational Database 33

Minneapolis and the KC000 server in Kansas City communicate with each other
over an SDLC nonswitched line with an SDLC switched line as a backup line. The
MP000 iSeries server serves as a development and problem handling center for the
KC000 server and the other regional network nodes.

The following example programs and explanations describe how to configure the
Minneapolis and Kansas City iSeries servers as network nodes in the network, and
also shows how Minneapolis configures its network to one of its area dealerships.
This example is intended to describe only a portion of the tasks needed to
configure the network shown in Figure 6 on page 33, and is not a complete
configuration for that network.

Configuring Network Node MP000
The following example program shows the control language (CL) commands used
to define the configuration for the server identified as MP000 (network node 1).
The example shows the commands as used within a CL program; the configuration
can also be performed using the configuration menus.
/***/
/* */
/* MODULE: MP000 LIBRARY: PUBSCFGS */
/* */
/* LANGUAGE: CL */
/* */
/* FUNCTION: CONFIGURES APPN NETWORK: */
/* */
/* THIS IS: MP000 TO KC000 (nonswitched) */
/* MP000 TO KC000 (switched) */
/* MP000 TO MP101 - MP299 (nonswitched) */
/* */
/* */
/* */
/***/
PGM
/* Change network attributes for MP000 */ �1�
CHGNETA LCLNETID(APPN) LCLCPNAME(MP000) +
LCLLOCNAME(MP000) NODETYPE(*NETNODE)
/***/
/* MP000 to KC000 (nonswitched) */
/***/
/* Create nonswitched line description for MP000 to KC000*/
CRTLINSDLC LIND(KC000L) RSRCNAME(LIN021) �2�
/* Create controller description for MP000 to KC000 */
CRTCTLAPPC CTLD(KC000L) LINKTYPE(*SDLC) + �3�
LINE(KC000L) RMTNETID(APPN) +
RMTCPNAME(KC000) STNADR(01) +
NODETYPE(*NETNODE)
/***/
/* MP000 TO KC000 (switched) */
/***/
/* Create switched line description for MP000 to KC000 */
CRTLINSDLC LIND(KC000S) RSRCNAME(LIN022) + �4�
CNN(*SWTPP) AUTOANS(*NO) STNADR(01)
/* Create controller description for MP000 to KC000 */
CRTCTLAPPC CTLD(KC000S) LINKTYPE(*SDLC) + �5�
SWITCHED(*YES) SWTLINLST(KC000S) +
RMTNETID(APPN) RMTCPNAME(KC000) +
INLCNN(*DIAL) CNNNBR(8165551111 +
STNADR(01) TMSGRPNBR(3) NODETYPE(*NETNODE)

/***/

/***/
/* MP000 to MP101 (nonswitched) */
/***/

34 OS/400 Distributed Database Programming V5R2

/* Create nonswitched line description for MP000 to KC000*/
CRTLINSDLC LIND(MP101L) RSRCNAME(LIN031) �6�
/* Create controller description for MP000 to MP101 */
CRTCTLAPPC CTLD(MP101L) LINKTYPE(*SDLC) +
LINE(MP101L) RMTNETID(APPN) +
RMTCPNAME(MP101) STNADR(01) +
NODETYPE(*ENDNODE)
/***/
ENDPGM

�1� Changing the Network Attributes (MP000)

The Change Network Attributes (CHGNETA) command is used to set the
attributes for the server within the network. The following attributes are
defined for the MP000 regional server, and these attributes apply to all
connections in the network for this network node.

LCLNETID(APPN)
The name of the local network is APPN. The remote server (KC000 in
the example program) must specify this name as the remote network
identifier (RMTNETID) on the Create Controller Description (APPC)
(CRTCTLAPPC) command. In this example, it defaults to the network
attribute.

LCLCPNAME(MP000)
The name assigned to the Minneapolis regional server local control
point is MP000. The remote servers specify this name as the remote
control point name (RMTCPNAME) on the Create Controller
Description (APPC) (CRTCTLAPPC) command.

LCLLOCNAME(MP000)
The default local location name is MP000. This name will be used for
the device description that is created by the APPN support.

NODETYPE(*NETNODE)
The local server (MP000) is an APPN network node.

�2� Creating the Line Description (MP000 to KC000, Nonswitched)

The line used in this example is an SDLC nonswitched line. The command
used to create the line is the Create Line Description (SDLC)
(CRTLINSDLC) command. The parameters specified are:

LIND(KC000L)
The name assigned to the line description is KC000L.

RSRCNAME(LIN021)
The physical communications port named LIN021 is defined.

�3� Creating the Controller Description (MP000 to KC000, Nonswitched)

Because this is an APPN environment (iSeries server to iSeries server), the
controller is an APPC controller, and the Create Controller Description
(APPC) (CRTCTLAPPC) command is used to define the attributes of the
controller. The following attributes are defined by the example command:

CTLD(KC000L)
The name assigned to the controller description is KC000L.

LINKTYPE(*SDLC)
Because this controller is attached through an SDLC communications
line, the value specified is *SDLC. This value must correspond to the
type of line defined by a Create Line Description command
(CRTLINxxx).

Chapter 3. Communications for an iSeries Distributed Relational Database 35

LINE(KC000L)
The name of the line description to which this controller is attached is
KC000L. This value must match a name specified by the LIND
parameter in a line description.

RMTNETID(APPN)
The name of the network in which the remote control point resides is
APPN.

RMTCPNAME(KC000)
The remote control-point name is KC000. The name specified here
must match the name specified at the remote server for the local
control-point name. In the example, the name is specified at the remote
server (KC000) by the LCLCPNAME parameter on the Change
Network Attributes (CHGNETA) command.

STNADR(01)
The address assigned to the remote controller is hex 01.

NODETYPE(*NETNODE)
The remote server (KC000) is an APPN network node.

�4� Creating the Line Description (MP000 to KC000, Switched)

The line used in this example is an SDLC switched line. The command
used to create the line is Create Line Description (SDLC) (CRTLINSDLC)
command. The parameters specified are:

LIND(KC000S)
The name assigned to the line description is KC000S.

RSRCNAME(LIN022)
The physical communications port named LIN022 is defined.

CNN(*SWTPP)
This is a switched line connection.

AUTOANS(*NO)
This server will not automatically answer an incoming call.

STNADR(01)
The address assigned to the local server is hex 01.

�5� Creating the Controller Description (MP000 to KC000, Switched)

Because this is an APPN environment (iSeries server to iSeries server), the
controller is an APPC controller, and the Create Controller Description
(APPC) (CRTCTLAPPC) command is used to define the attributes of the
controller. The following attributes are defined by the example command:

CTLD(KC000S)
The name assigned to the controller description is KC000S.

LINKTYPE(*SDLC)
Because this controller is attached through an SDLC communications
line, the value specified is *SDLC. This value must correspond to the
type of line defined by a Create Line Description command
(CRTLINxxx).

SWITCHED(*YES)
This controller is attached to a switched SDLC line.

SWTLINLST(KC000S)
The name of the line description (for switched lines) to which this

36 OS/400 Distributed Database Programming V5R2

controller can be attached is KC000S. In the example, there is only one
line (KC000S). This value must match a name specified by the LIND
parameter in a line description.

RMTNETID(APPN)
The name of the network in which the remote control point resides is
APPN.

RMTCPNAME(KC000)
The remote control-point name is KC000. The name specified here
must match the name specified at the remote server for the local
control-point name. In the example, the name is specified at the remote
server by the LCLCPNAME parameter on the Change Network
Attributes (CHGNETA) command.

INLCNN(*DIAL)
The initial connection is made by the iSeries server either answering an
incoming call or placing a call.

CNNNBR(8165551111)
The connection (telephone) number for the remote Kansas City
controller is 8165551111.

STNADR(01)
The address assigned to the remote Kansas City controller is hex 01.

TMSGRPNBR(3)
The value (3) is to be used by the APPN support for transmission
group negotiation with the remote server.

The remote server must specify the same value for the transmission
group.

NODETYPE(*NETNODE)
The remote server (KC000) is an APPN network node.

�6� Creating a Line and Controller for MP101

This portion of the example shows a line and controller configuration for
MP000 to MP101, a dealership end node. A similar configuration must be
made from MP000 to each of its dealership end nodes. Also, to complete
the configuration for Minneapolis, each of the dealerships must use
configuration commands or a program similar to this one to create lines
and controllers for each server that they will communicate with.

Likewise, to complete the network configuration shown in Figure 6 on
page 33, the KC000 server must configure to each of its dealership end
nodes, and each end node must configure a line and controller to
communicate with the KC000 server.

These connections are not shown in the example.

Configuring Network Node KC000
The following example program shows the CL commands used to define the
configuration for the regional server identified as KC000. The example shows these
commands as used within a CL program; the configuration can also be performed
using the configuration menus.
/***/
/* */
/* MODULE: KC000 LIBRARY: PUBSCFGS */
/* */
/* LANGUAGE: CL */
/* */

Chapter 3. Communications for an iSeries Distributed Relational Database 37

/* FUNCTION: CONFIGURES APPN NETWORK: */
/* */
/* THIS IS: KC000 TO MP000 (nonswitched) */
/* KC000 TO MP000 (switched) */
/* */
/* */
/***/
PGM
/* Change network attributes for KC000 */
CHGNETA LCLNETID(APPN) LCLCPNAME(KC000) + �7�
LCLLOCNAME(KC000) NODETYPE(*NETNODE)
/***/
/* KC000 TO MP000 (nonswitched) */
/***/
/* Create line description for KC000 to MP000 */
CRTLINSDLC LIND(MP000L) RSRCNAME(LIN022) �8�
/* Create controller description for KC000 to MP000 */
CRTCTLAPPC CTLD(MP000) LINKTYPE(*SDLC) + �9�
LINE(MP000L) RMTNETID(APPN) +
RMTCPNAME(MP000) STNADR(01) +
NODETYPE(*NETNODE)
/***/
/* KC000 TO MP000 (switched) */
/***/
/* Create switched line description for KC000 to MP000S */
CRTLINSDLC LIND(MP000S) RSRCNAME(LIN031) + �10�
CNN(*SWTPP) AUTOANS(*NO) STNADR(01)
/* Create controller description for KC000 to MP000 */
CRTCTLAPPC CTLD(MP000S) LINKTYPE(*SDLC) + �11�
SWITCHED(*YES) SWTLINLST(MP000S) +
RMTNETID(APPN) RMTCPNAME(MP000) +
INLCNN(*ANS) CNNNBR(6125551111) +
STNADR(01) TMSGRPNBR(3) NODETYPE(*NETNODE)
ENDPGM

�7� Changing the Network Attributes (KC000)

The Change Network Attributes (CHGNETA) command is used to set the
attributes for the server within the network. The following attributes are
defined for the regional server named KC000, and these attributes apply to
all connections in the network for this network node:

LCLNETID(APPN)
The name of the local network is APPN. The remote servers (the
Minneapolis network node in this example) must specify this name as
the remote network identifier (RMTNETID) on the Create Controller
Description (APPC) (CRTCTLAPPC) command.

LCLCPNAME(KC000)
The name assigned to the local control point is KC000. The remote
server specifies this name as the remote control point name
(RMTCPNAME) on the Create Controller Description (APPC)
(CRTCTLAPPC) command.

LCLLOCNAME(KC000)
The default local location name is KC000. This name will be used for
the device description that is created by the APPN support.

NODETYPE(*NETNODE)
The local server (KC000) is an APPN network node.

�8� Creating the Line Description (KC000 to MP000, Nonswitched)

The line used in this example is an SDLC nonswitched line. The command
used to create the line is the Create Line Description (SDLC)
(CRTLINSDLC) command. The parameters specified are:

38 OS/400 Distributed Database Programming V5R2

LIND(MP000L)
The name assigned to the line description is MP000L.

RSRCNAME(LIN022)
The physical communications port named LIN022 is defined.

�9� Creating the Controller Description (KC000 to MP000, Nonswitched)

Because this is an APPN environment (iSeries server to iSeries server), the
controller is an APPC controller, and the Create Controller Description
(APPC) (CRTCTLAPPC) command is used to define the attributes of the
controller. The following attributes are defined by the example command:

CTLD(MP000L)
The name assigned to the controller description is MP000L.

LINKTYPE(*SDLC)
Because this controller is attached through an SDLC communications
line, the value specified is *SDLC. This value must correspond to the
type of line defined by a Create Line Description command
(CRTLINxxx).

LINE(MP000L)
The name of the line description to which this controller is attached is
MP000L. This value must match a name specified by the LIND
parameter in a line description.

RMTNETID(APPN)
The name of the network in which the remote server resides is APPN.

RMTCPNAME(MP000)
The remote control-point name is MP000. The name specified here
must match the name specified at the remote server for the local
control-point name. In the example, the name is specified at the
Minneapolis region remote server (MP000) by the LCLCPNAME
parameter on the Change Network Attributes (CHGNETA) command.

STNADR(01)
The address assigned to the remote controller is hex 01.

NODETYPE(*NETNODE)
The remote server (MP000) is an APPN network node.

�10� Creating the Line Description (KC000 to MP000, Switched)

The line used in this example is an SDLC switched line. The command
used to create the line is the Create Line Description (SDLC)
(CRTLINSDLC) command. The parameters specified are:

LIND(MP000S)
The name assigned to the line description is MP000S.

RSRCNAME(LIN031)
The physical communications port named LIN031 is defined.

CNN(*SWTPP)
This is a switched line connection.

AUTOANS(*NO)
This server will not automatically answer an incoming call.

STNADR(01)
The address assigned to the local server is hex 01.

�11� Creating the Controller Description (KC000 to MP000, Switched)

Chapter 3. Communications for an iSeries Distributed Relational Database 39

Because this is an APPN environment (iSeries server to iSeries server), the
controller is an APPC controller, and the Create Controller Description
(APPC) (CRTCTLAPPC) command is used to define the attributes of the
controller. The following attributes are defined by the example command:

CTLD(MP000S)
The name assigned to the controller description is MP000S.

LINKTYPE(*SDLC)
Because this controller is attached through an SDLC communications
line, the value specified is *SDLC. This value must correspond to the
type of line defined by a Create Line Description command
(CRTLINxxx).

SWITCHED(*YES)
This controller is attached to a switched SDLC line.

SWTLINLST(MP000S)
The name of the line description (for switched lines) to which this
controller can be attached is MP000S. In the example, there is only one
line (MP000). This value must match a name specified by the LIND
parameter in a line description.

RMTNETID(APPN)
The name of the network in which the remote control point resides is
APPN.

RMTCPNAME(MP000)
The remote control-point name is MP000. The name specified here
must match the name specified at the remote regional server for the
local control-point name. In the example, the name is specified at the
remote Minneapolis regional server (MP000) by the LCLCPNAME
parameter on the Change Network Attributes (CHGNETA) command.

INLCNN(*ANS)
The initial connection is made by the iSeries server answering an
incoming call.

CNNNBR(6125551111)
The connection (telephone) number for the remote Minneapolis
controller is 6125551111.

STNADR(01)
The address assigned to the remote Minneapolis controller is hex 01.

TMSGRPNBR(3)
The value (3) to be used by the APPN support for transmission group
negotiation with the remote server. The remote server must specify the
same value for the transmission group.

NODETYPE(*NETNODE)
The remote server (MP000) is an APPN network node.

Configuring alert support for a distributed relational database
Depending on what role your server assumes in the network, several actions help
establish alert support for your server.

In an APPN network, an end node sends its alerts either to its serving network
node or to another server as specified by the alerts controller name (ALRCTLD)
parameter of the Change Network Attributes (CHGNETA) command. When your

40 OS/400 Distributed Database Programming V5R2

server is an end node in the network and you turn on the alert status (ALRSTS)
parameter of the CHGNETA command, alerts are forwarded to a serving network
node.

You can define your server as a default focal point using the alert default focal
point (ALRDFTFP) parameter of the Change Network Attributes (CHGNETA)
command. When your server is defined to be a default focal point, the iSeries
server automatically adds network node control points to the sphere of control
using the APPN network topology database. When the iSeries server detects that a
network node server has entered the network, the server sends management
services capabilities to the new control point so that the control point sends alerts
to your server (if no other focal point is specified for the new network node
server). The alert status (ALRSTS) parameter of the CHGNETA command should
be turned off so your server does not forward alerts because it is the default focal
point.

You can define your server as a primary focal point using the alert primary focal
point (ALRPRIFP) parameter of the CHGNETA command. When your server is
defined to be a primary focal point, you must explicitly define the control points
that are to be in your sphere of control. This set of control points is defined using
the Work with Sphere of Control (WRKSOC) command.

The WRKSOC command allows you to add network node control point servers to
the sphere of control and to delete existing control points.

Work with Sphere of Control (SOC)
System: MP000
Position to ________ Control Point
Network ID ________

Type options, press Enter.
1=Add 4=Remove

Control
Opt Point Network ID Current Status
__ ________ *NETATR
__ CH000 APPN Delete pending
__ KC000 APPN Active - in sphere of control
__ SL000 APPN Add pending - in sphere of control
__ NY000 APPN Active - in sphere of control

Select option 1 (Add) on the Work with Sphere of Control (SOC) display, or use the
Add Sphere of Control Entry (ADDSOCE) command to add a server to your
sphere of control. To add a server to the sphere of control, type the control point
name and network ID of the new server.

Select option 4 (Remove) from the Work with Sphere of Control (SOC) display, or
use the Remove Sphere of Control Entry (RMVSOCE) command to delete servers
from the alert sphere of control. The servers are specified by network ID and
control point name.

Unless a default focal point is established for your network, a control point in the
sphere of control should not be removed from the sphere of control until another
focal point has started focal point services to that server.

The Display Sphere of Control Status (DSPSOCSTS) command shows the current
status of all servers in your sphere of control. This includes both servers that you
have defined using the Work with Sphere of Control (WRKSOC) command, if your

Chapter 3. Communications for an iSeries Distributed Relational Database 41

server is defined to be a primary focal point, and servers that the iSeries server has
added for you, if your server is defined to be a default focal point.

See Example: Configuration for alert support for a distributed relational database
for more information about establishing alert support for two network nodes and
their associated end nodes.

Example: Configuration for alert support for a distributed
relational database

You can establish alert support for the two network nodes MP000 and KC000 and
their associated end nodes as shown in the following figure:
This example configuration shows how to:

v Begin creating alerts at a network node
v Set up a network node to forward alerts to a primary focal point
v Begin creating alerts at an end node

The CL command examples that follow are used to establish the server named
MP000 as a primary focal point for alerts handling. While this server may serve as
the primary focal point for several servers, this example only illustrates how one
other network node (KC000) is configured to forward alerts to the MP000 server
and how MP000 is set up to be the primary focal point that does not pass the
alerts on to another server. To configure alerts for this example, the database
administrator would:
1. Create alerts at a network node.
2. Define a network node as the primary focal point.
3. Add network nodes to the primary focal point’s sphere of control.
4. Create alerts at end node servers.

Figure 7. Spiffy Corporation Example Network Configuration

42 OS/400 Distributed Database Programming V5R2

Create alerts at a network node
The server configured as KC000 begins to create alerts and forward them to a
primary focal point when the database administrator turns on the local alerts
parameter (ALRSTS) on the Change Network Attributes (CHGNETA) command as
shown in the example below. This server is also set up to log alerts it creates
locally.
CHGNETA ALRSTS(*ON) ALRLOGSTS(*LOCAL)

Because a primary focal point is not active and has not included KC000 in its
sphere of control, any alerts created at the KC000 server are logged at the KC000
server and not forwarded to another server yet.

Define A primary focal point
To define a network node as a primary focal point, the database administrator
needs to specify *YES for the alert primary focal point (ALRPRIFP) parameter on
the Change Network Attributes (CHGNETA) command for the selected server.

This server creates alerts locally by specifying *ON for the alert status (ALRSTS)
parameter. Also, this server logs alerts created locally and alerts received from
other servers when *ALL is specified for the alert logging (ALRLOGSTS) parameter
on the CHGNETA command.

An example is shown below.
CHGNETA ALRPRIFP(*YES) ALRSTS(*ON) ALRLOGSTS(*ALL)

Update the primary focal point’s sphere of control
The server named MP000 does not receive alerts from other servers until the
database administrator adds the names of servers that should forward alerts to the
MP000 server’s sphere of control.

The Work with Sphere of Control (WRKSOC) command identifies the network
nodes from which MP000 receives alerts. In the example below, the KC000 server is
included in the MP000 server’s sphere of control using the Add Sphere of Control
Entry (ADDSOCE) command. The network identifier is specified as *NETATR, and
the control point name for KC000 is specified for the entry.
ADDSOCE ENTRY((*NETATR KC000))

Create alerts for end nodes
End nodes may participate in an APPN network by using the services of an
attached network node (the serving network node). In the above figure, KC000 is
the serving network node for KC105.

The end node must begin creating alerts by specifying ALRSTS(*ON) for the
Change Network Attributes (CHGNETA) command. However, after its network
node is set up to forward alerts, the alerts sent by KC105 are forwarded by KC000
to the focal point at MP000 without a database administrator having to specify
how KC105 server alerts are handled.

Configuring a communications network for TCP/IP
You can use iSeries Navigator to quickly and easily set up your TCP/IP network.
Or, you can use the following steps, which provide a high-level overview of the
steps you take to set up a TCP/IP network. For details, see the Configuring
TCP/IP topic in the iSeries Information Center.
1. Identify your iSeries server to the local network (the network that your iSeries

server is directly connected to).

Chapter 3. Communications for an iSeries Distributed Relational Database 43

a. Determine if a line description already exists.
b. If a line description does not already exist, create one.
c. Define a TCP/IP interface to give your iSeries server an IP address.

2. Define a TCP/IP route. This allows your iSeries server to communicate with
servers on remote TCP/IP networks (networks that your iSeries server is not
directly connected to).

3. Define a local domain name and host name. This assigns a name to your
server.

4. Identify the names of the servers in your network.
a. Build a local host table.
b. Identify a remote name server.

5. Start TCP/IP.
6. Verify that TCP/IP works.

Configuring communications over OptiConnect
You can use DRDA over opticonnect by any one of these three methods:
v Specify QYCTSOC as the device in the RDB directory entry. Distributed units of

work are not supported with this method.
v Setup OptiConnect controllers and devices and configure them in the RDB

directory entry. This has the disadvantage of requiring you to vary off the
controllers before ending opticonnec

v Configure IP over opticonnect and set up the RDB directory entries to run over
IP. There are no controllers to create and vary on/off. The IP interfaces can be
set to autostart and will go active when opticonnect is started. You can also
setup point to point interfaces that specify a lan adapter’s IP address as an
associated local address. This will automatically direct traffic over opticonnect
when opticonnect is up and direct it over the lan when opticonnect is down. For
more information on setting up OptiConnect, see the OptiConnect for OS/400

book.

44 OS/400 Distributed Database Programming V5R2

|

|

|
|

|
|
|

|
|
|
|
|
|
|

|

Chapter 4. Security for an iSeries Distributed Relational
Database

The iSeries server has security elements built into the operating system to limit
access to the data resources of an application server. Security options range from
simple physical security to full password security coupled with authorization to
commands and data objects. Users must be properly authorized to have access to
the database whether it is local or remote. They must also have proper
authorization to collections, tables, and other relational database objects necessary
to run their application programs. This typically means that distributed database
users must have valid user profiles for the databases they use throughout the
network. Security planning must consider user and application program needs
across the network.

For more information about security elements, see Elements of distributed
relational database security.

A distributed relational database administrator is faced with two security issues to
resolve:
v System to system protection
v Identification of users at remote sites

When two or more systems are set up to access each other’s databases, it may be
important to make sure that the other side of the communications line is the
intended location and not an intruder. For DRDA access to a remote relational
database, the iSeries server use of advanced program-to-program communications
(APPC) and Advanced Peer-to-Peer Networking (APPN) communications
configuration capabilities provides options for you to do this network level
security.

The second concern for the distributed relational database administrator is that
data security is maintained by the system that stores the data. In a distributed
relational database, the user has to be properly authorized to have access to the
database (according to the security level of the system) whether the database is
local or remote. Distributed relational database network users must be properly
identified with a user ID on the application server (AS) for any jobs they run on
the AS. DRDA support using both APPC/APPN and TCP/IP communications
protocols provides for the sending of user IDs and passwords along with
connection requests.

This chapter discusses security topics that are related to communications and
DRDA access to remote relational databases. It discusses the significant differences
between conversation-level security in an APPC network connection and the
corresponding level of security for a TCP/IP connection initiated by a DRDA
application. In remaining security discussions, the term user also includes remote
users starting communications jobs.

See Protection strategies in a Distributed Relational Database for suggested
strategies of security that would be appropriate for your needs.

For a description of general iSeries security concepts, see the Basic System Security
topic in the iSeries Information Center.

© Copyright IBM Corp. 1998, 2001, 2002 45

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

Elements of distributed relational database security
A distributed relational database administrator needs to protect the resources of the
application servers in the network without unnecessarily restricting access to data
by application requester (AR)s in the network.

An AR secures its objects and relational database to ensure only authorized users
have access to distributed relational database programs. This is done using normal
iSeries server object authorization to identify users and specify what each user (or
group of users) is allowed to do with an object. Alternatively, authority to tables,
views, and SQL packages can be granted or revoked using the SQL GRANT and
REVOKE statements. Providing levels of authority to SQL objects on the AR helps
ensure that only authorized users have access to an SQL application that accesses
data on another system.

The level of system security in effect on the application server (AS) determines
whether a request from an AR is accepted and whether the remote user is
authorized to objects on the AS.

Some aspects of security planning for iSeries server in a distributed relational
database network include:
v Object-related security to control user access to particular resources such as

confidential tables, programs, and packages
v Location security that verifies the identity of other systems in the network
v User-related security to verify the identity and rights of users on the local

system and remote systems
v Object-related security to control user access to particular resources such as

confidential tables, programs, and packages
v Physical security such as locked doors or secured buildings that surround the

systems, modems, communication lines and terminals that can be configured in
the line description and used in the route selection process

Location, user-related, and object-related security are only possible if the system
security level is set at level 20 or above.

For APPC conversations, when the system is using level 10 security, an iSeries
server connects to the network as a nonsecure system. The server does not validate
the identity of a remote system during session establishment and does not require
conversation security on incoming program start requests. For level 10, security
information configured for the APPC remote location is ignored and is not used
during session or conversation establishment. If a user profile does not exist on the
server, one is created.

When the system is using security level 20 or above, an iSeries server connects to
the network as a secure system. The iSeries system can then provide
conversation-level security functions and, in the case of APPC, session level
security as well.

Having system security set at the same level across the systems in your network
makes the task of security administration easier. An AS controls whether the
session and conversation can be established by specifying what is expected from
the AR to establish a session. For example, if the security level on the AR is set at
10 and the security level on the AS is above 10, the appropriate information may
not be sent and the session might not be established without changing security
elements on one of the systems.

46 OS/400 Distributed Database Programming V5R2

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

Passwords for DRDA access

The most common method of authorizing a remote user for database access is by
flowing a user ID and password at connection-time. One method an application
programmer can use to do this is to code the USER/USING clause on an
embedded SQL CONNECT statement. For example:
EXEC SQL CONNECT TO :locn USER :userid USING :pw

For DRDA access to remote relational databases, once a conversation is established,
you do not need to enter a password again. If you end a connection with either a
RELEASE, DISCONNECT, or CONNECT statements when running with the RUW
connection management method, your conversation with the first application
server (AS) may or may not be dropped, depending on the kind of AS you are
connected to and your application requester (AR) job attributes (for the specific
rules, see Controlling DDM conversations). If the conversation to the first AS is not
dropped, it remains unused while you are connected to the second AS. If you
connect again to the first AS and the conversation is unused, the conversation
becomes active again without you needing to enter your user ID and password.
On this second use of the conversation, your password is also not validated again.

See the following topics for more detailed information about specific security
systems:
v Elements of DRDA Security in an APPC network
v DRDA application server (AS) security in an APPC network
v Elements of DDM/DRDA Security using TCP/IP
v DRDA server access control exit programs
v Object-related security for DRDA
v Authority to distributed relational database objects
v Programs that run under adopted authority for a distributed relational database

For more information on security levels, see the Security and APPC, APPN, and
HPR security consideration topics in the iSeries Information Center.

Elements of DRDA Security in an APPC network
When DRDA is used, the data resources of each server in the DRDA environment
should be protected. This is done using three groups of security elements that are
controlled by the following parameters:
v For system-related security or session, the LOCPWD parameter is used on each

iSeries server to indicate the system validation password to be exchanged
between the source and target systems when an APPC communications session
is first established between them. Both systems must exchange the same
password before the session is started. (On System/36, this password is called
the location password.) In an APPC network, the LOCPWD parameter on the
Create Device Description (APPC) (CRTDEVAPPC) command specifies this
password. Devices are created automatically using APPN, and the
location-password on the remote location list specifies a password that is used
by the two locations to verify identities. Use the Create Configuration List
(CRTCFGL) command to create a remote location list of type (*APPNRMT).

v For user-related or location security, the SECURELOC parameter is used on
each iSeries server to indicate whether it (as a target server) accepts incoming
access requests that have their security already verified by the source server or
whether it requires a user ID and encrypted password. In an APPC network, the
SECURELOC parameter on the Create Device Description (APPC)

Chapter 4. Security for an iSeries Distributed Relational Database 47

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

(CRTDEVAPPC) command specifies whether the local server allows the remote
server to verify security. Devices are created automatically using APPN, and the
secure-location on an APPN remote Configuration List is used to determine if
the local server allows the remote server to verify user security information. The
SECURELOC value can be specified differently for each remote location.
The SECURELOC parameter is used with the following security elements:
– The user ID sent by the source server, if allowed by this parameter
– The user ID and encrypted password, if allowed by this parameter
– The target server user profiles, including default user profiles

For more information, see the DDM source system security in an APPC network
topic.

v For object-related security, the DDMACC parameter is used on the Change
Network Attributes (CHGNETA) command to indicate whether the files on the
iSeries server can be accessed at all by another server and, if so, at which level
of security the incoming requests are to be checked. More information about this
object-related parameter is provided in the topic DDM Network Attribute
(DDMACC Parameter) in the iSeries Information Center.
– If *REJECT is specified on the DDMACC parameter, all DRDA requests

received by the target iSeries server are rejected.
– If *OBJAUT is specified on the DDMACC parameter, normal object-level

security is used on the target server.
– If the name of an optional, user-supplied user exit program (or access control

program) is specified on the DDMACC parameter, an additional level of
security is used. The user exit program can be used to control whether a
given user of a specific source server can use a specific command to access (in
some manner) a specific file on the target server. (See the topic DDM server
access control exit program for additional security for details.)

– When a file is created on the target server using DRDA, the library name
specified contains the file. If no library name is specified on the DRDA
request, the current library (*CURLIB) is used. The file authority defaults to
allow only the user who created the file or the target server’s security officer
to access the file.

Most of the security controls for limiting remote file access are handled by the
target server. Except for the user ID provided by the source server, all of these
elements are specified and used on the target server. The source server, however,
also limits access to target server files by controlling access to the DRDA file on the
source server and by sending the user ID, when needed, to the target server.

APPN configuration lists
In an APPC network, location passwords are specified for those pairs of locations
that are going to have end-to-end sessions between them. Location passwords need
not be specified for those locations that are intermediate nodes.

The remote location list is created with the Create Configuration List (CRTCFGL)
command, and it contains a list of all remote locations, their location password,
and whether the remote location is secure. There is one system-wide remote
location configuration list on an iSeries server. A central site iSeries server can
create location lists for remote iSeries servers by sending them a control language
(CL) program.

Changes can be made to a remote configuration list using the Change
Configuration List (CHGCFGL) command, however, they do not take effect until
all devices for that location are all in a varied off state.

48 OS/400 Distributed Database Programming V5R2

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

When the Display Configuration List (DSPCFGL) command is used, there is no
indication that a password exists. The Change Configuration List (CHGCFGL)
command indicates a password exists by placing *PASSWORD in the field if a
password has been entered. There is no way to display the password. If you have
problems setting up location security you may have to enter the password again
on both systems to be sure the passwords match.

For more information on configuration lists, see the APPC, APPN, and HPR topic
in the Information Center.

Conversation level security
Systems Network Architecture (SNA) logical unit (LU) 6.2 architecture identifies
three conversation security designations that various types of systems in an SNA
network can use to provide consistent conversation security across a network of
unlike systems. The SNA security levels are:

SECURITY(NONE)
No user ID or password is sent to establish communications.

SECURITY(SAME)
Sign the user on to the remote server with the same user ID as the local
server.

SECURITY(PGM)
Both a user ID and a password are sent for communications.

SECURITY(PROGRAM_STRONG)
Both a user ID and a password are sent for communications only if the
password will not be sent in the clear, otherwise an error is reported. This
is not supported by DRDA on OS/400.

While the iSeries server supports all four SNA levels of conversation security,
DRDA uses only the first three. The target controls the SNA conversation levels
used for the conversation.

For the SECURITY(NONE) level, the target does not expect a user ID or password.
The conversation is allowed using a default user profile on the target. Whether a
default user profile can be used for the conversation depends on the value
specified on the DFTUSR parameter of the Add Communications Entry
(ADDCMNE) command or the Change Communications Entry (CHGCMNE)
command for a given subsystem. A value of *NONE for the DFTUSR parameter
means the application server (AS) does not allow a conversation using a default
user profile on the target. SECURITY (NONE) is sent when no password or user
ID is supplied and the target has SECURELOC(*NO) specified.

For the SECURITY(SAME) level, the remote server’s SECURELOC value controls
what security information is sent, assuming the remote server is an iSeries. If the
SECURELOC value is *NONE, no user ID or password is sent, as if
SECURITY(NONE) had been requested; see the previous paragraph for how
SECURITY(NONE) is handled. If the SECURELOC value is *YES, the name of the
user profile is extracted and sent along with an indication that the password has
already been verified by the local server. If the SECURELOC value is
*VFYENCPWD, the user profile and its associated password is sent to the remote
server after the password has been encrypted to keep its value secret, so the user
must have the same user profile name and password on both servers to use
DRDA.

Chapter 4. Security for an iSeries Distributed Relational Database 49

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Note: SECURELOC(*VFYENCPWD) is the most secure of these three options since
the most information is verified by the remote server; however, it requires
that users maintain the same passwords on multiple servers, which can be a
problem if users change one server but do not update their other servers at
the same time.

For the SECURITY(PGM) level, the target expects both a user ID and password
from the source for the conversation. The password is validated when the
conversation is established and is ignored for any following uses of that
conversation.

DRDA application server (AS) security in an APPC network
When the target server is an iSeries server, several elements used together,
determine whether a request to access a remote file is allowed or not:

User-related security elements: The SECURELOC parameter on the target server,
the user ID sent by the source server (if allowed), the password for the user ID
sent by the source server, and a user profile or default user profile on the target
server.

Object-related security elements: The DDMACC parameter and, optionally, a user
exit program supplied by the user to supplement normal object authority controls.

User-related elements of target security
A valid user profile must exist on the application server (AS) to process
distributed relational database work. You can specify a default user profile for a
subsystem that handles communications jobs on an iSeries server. The name of the
default user profile is specified on the DFTUSR parameter of the Add
Communications Entry (ADDCMNE) command on the AS. The ADDCMNE
command adds a communications entry to a subsystem description used for
communications jobs.

If a default user profile is specified in a communications subsystem, whether the
AS is a secure location or not determines if the default user profile is used for this
request. The SECURELOC parameter on the Create Device Description (APPC)
(CRTDEVAPPC) command, or the secure location designation on an APPN remote
location list, specifies whether the AS is a secure location.
v If *YES is specified for SECURELOC or secure location on the AS, the AS

considers the application requester (AR) a secure location. A user ID and an
Already Verified indicator is expected from the AR with its request. If a user
profile exists on the AS that matches the user ID sent by the requester, the
request is allowed. If not, the request is rejected.

v If *NO is specified for the SECURELOC parameter on the AS, the AS does not
consider the AR a secure location. Although the AR still sends a user ID, the AS
does not use this for the request. Instead, a default user profile on the AS is used
for the request, if one is available. If no default user profile exists on the AS, the
request is rejected.

v If *VFYENCPWD is specified for SECURELOC on the AS, the AS considers the
AR a secure location, but requires that the user ID and its password be sent (in
encrypted form) to verify the identity of the current user. If the user profile
exists on the AS that matches the user ID sent by the requester, and that
requester has the same password on both systems, the request is allowed.
Otherwise, the request is rejected.

50 OS/400 Distributed Database Programming V5R2

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

Table 4 shows all of the possible combinations of the elements that control SNA
SECURITY(PGM) on the iSeries server. A “Y” in any of the columns indicates that
the element is present or the condition is met. An “M” in the PWD column
indicates that the security manager retrieves the user’s password and sends a
protected (encrypted) password if password protection is active. If a protected
password is not sent, no password is sent. A protected password is a character string
that APPC substitutes for a user password when it starts a conversation. Protected
passwords can be used only when the systems of both partners support password
protection and when the password is created on a system that runs OS/400
Version 2 Release 2 or later.

Table 4. Remote Access to a Distributed Relational Database

Row UID PWD1 AVI SEC(Y) DFT Valid Access

1 Y Y Y Y Y Use UID

2 Y Y Y Y Reject

3 Y Y Y Y Use UID

4 Y Y Y Reject

5 Y Y Y Y Use UID

6 Y Y Y Reject

7 Y Y Y Use UID

8 Y Y Reject

9 Y Y Y Y Y Use UID

10 Y Y Y Y Reject

11 Y Y Y Y Use UID

12 Y Y Y Reject

13 Y M3 Y Y Use DFT or UID2

14 Y M3 Y Use DFT or UID2

15 Y M3 Y Reject or UID2

16 Y M3 Reject or UID2

17 Y Y Used DFT

18 Y Reject

19 Y Use DFT

20 Reject

Chapter 4. Security for an iSeries Distributed Relational Database 51

|
|
|
|
|
|
|
|
|
|

||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

||||||||

Table 4. Remote Access to a Distributed Relational Database (continued)

Row UID PWD1 AVI SEC(Y) DFT Valid Access

Key:

UID User ID sent

PWD Password sent

AVI Already Verified Indicator set

SEC(Y) SECURELOC(YES) specified

DFT Default user ID specified in communication subsystem

Valid User ID and password are valid

Use UID
Connection made with supplied user ID

Use DFT
Connection made with default user ID

Reject Connection not made
Notes:

1. If password protection is active, a protected password is sent.

2. Use UID when password protection is active.

3. If password protection is active, the password for the user is retrieved by the security
manager, and a protected password is sent; otherwise, no password is sent.

To avoid having to use default user profiles, create a user profile on the AS for
every AR user that needs access to the distributed relational database objects. If
you decide to use a default user profile, however, make sure that users are not
allowed on the system without proper authorization. For example, the following
command specifies the default user parameter as DFTUSER(QUSER); this allows
the system to accept job start requests without a user ID or password from a
communications request. The communications job is signed on using the QUSER
user profile.
ADDCMNE SBSD(SAMPLE) DEV(*ALL) DFTUSER(QUSER)

Elements of DDM/DRDA Security using TCP/IP
DDM/DRDA over native TCP/IP does not use OS/400 communications security
services and concepts such as communications devices, modes, secure location
attributes, and conversation security levels which are associated with APPC
communications. Therefore, security setup for TCP/IP is quite different.

The types of security possible with the TCP/IP server are:
v Connection security protocols for DDM/DRDA
v Secure Sockets Layer (SSL) for DDM/DRDA
v Internet Protocol Security Protocol (IPSec) for DDM/DRDA

With the advent of new choices for security of distributed data management
(DDM) communications, the iSeries server administrator can restrict certain
communications modes by blocking the ports they use. Ports and port restrictions
for DDM discusses some of these considerations.

For detailed information about DDM security, see
v Application requester (AR) security in a TCP/IP network

52 OS/400 Distributed Database Programming V5R2

|

||||||||

|

||

||

||

||

||

||

|
|

|
|

||
|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|

|

|

|

|

|
|
|
|

|

|

v Application server (AS) security in a TCP/IP network

Connection security protocols for DDM/DRDA
Several connection security protocols are supported by the current DB2 UDB for
iSeries implementation of DDM/DRDA over TCP/IP:
v User ID only
v User ID with clear-text password
v User ID with encrypted password
v Kerberos

With encrypted datastream support, the traditional communications trace support
has little value. The Trace TCP/IP Application (TRCTCPAPP) command records
outbound datastreams at a point prior to encryption, and inbound datastreams
after decryption. See the Communications trace topic for basic information on how
to use the command.

Secure Sockets Layer (SSL) for DDM/DRDA
DB2 UDB for iSeries DRDA clients at Version 4 Release 5 do not support SSL.
However, similar function is available with Internet Protocol Security Protocol
(IPSec).

The DDM TCP/IP server supports the Secure Sockets Layer (SSL) data encryption
protocol. You can use this protocol to interoperate with clients such as iSeries
Toolbox for Java and iSeries Access OLE DB Provider that support SSL for record
level access, and with any DDM file I/O clients provided by independent software
vendors that might support SSL.

To use SSL with the iSeries DDM TCP/IP server, you must configure the client to
connect to the well-known SSL port 448 on the server.

If you specify PWDRQD(*ENCRYPTED) on the Change DDM TCP/IP Attributes
(CHGDDMTCPA) command on the server, you can use any valid password along
with Secure Sockets Layer (SSL). This is possible since the server recognizes that
the whole datastream, including the password, is encrypted.

For more information about SSL, see Securing applications with SSL in the
Networking topic of the iSeries Information Center.

Required programs: See iSeries Access for Windows for complete documentation
on setting up and installing SSL support on the PC and iSeries server.

iSeries server requirements: For an iSeries server to communicate over SSL, it
must be running OS/400 V4R4 or later, and have the following installed:
v TCP/IP Connectivity Utilities for iSeries, 5769-TC1 (Base TCP/IP support)
v Cryptographic Access Provider, 5769-ACx
v IBM HTTP Server for iSeries, 5769-DG1 (for access to Digital Certificate

Manager)
v Digital Certificate Manager, 5769-SS1 - Boss Option 34
v Client Encryption, 5769-CEx -- You must install this product on an iSeries, and

any PC clients in your network must retrieve the necessary SSL client code. This
product is not required for the server to conduct SSL communications, only the
clients (see Note).

Chapter 4. Security for an iSeries Distributed Relational Database 53

|

|
|
|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|

|

|
|

|

|
|
|
|

PC requirements (for PCs using iSeries Access and DRDA: For the client PCs in
your network to communicate over SSL, they must have one of the following
products installed:
v 40-bit Client Encryption, 5769-CE1
v 56-bit Client Encryption, 5769-CE2
v 128-bit Client Encryption, 5769-CE3

Note: Service for SSL Client Encryption products (5769-CEx) is handled through
service packs independent of the iSeries Access service packs. See
Informational APAR II10598 on the iSeries Access home page for details.

Internet Protocol Security Protocol (IPSec) for DDM/DRDA
Internet Protocol Security Protocol (IPSec) is a security protocol in the network
layer that provides cryptographic security services. These services support
confidential delivery of data over the internet or intranets.

On iSeries, IPSec, a component of the Virtual Private Networking (VPN) support,
allows all data between two IP address or port combinations to be encrypted,
regardless of application (such as DRDA or DDM). You can configure the addresses
and ports that are used for IPSec. IBM recommends using port 447 for IPSec for
either DRDA access or DDM access. For more information on setting up VPN
support, see Virtual Private Networking in the Networking topic of the iSeries
Information Center.

Use of any valid password along with IPSec will not in general satisfy the
requirement imposed by specifying PWDRQD(*ENCRYPTED) on the Change DDM
TCP/IP Attributes (CHGDDMTCPA) command at the server, since the application
(DRDA or DDM) will not be able to determine if IPSec is being used. Therefore,
you should avoid using PWDRQD(*ENCRYPTED) with IPSec.

Ports and port restrictions for DDM/DRDA
The DDM/DRDA TCP/IP server listens on port 447 (the well-known DDM port)
and 446 (the well-known DRDA port) as well as 448 (the well-known SSL port).
The DB2 UDB for iSeries implementation of DDM does not distinguish between
the two ports 446 and 447, however, so both DDM and DRDA access can be done
on either port.

Using the convention recommended for IPSec, the port usage for the DDM TCP/IP
server follows:
v 446 for clear text datastreams
v 447 for IPSec encrypted datastreams (suggested)
v 448 for SSL encrypted datastreams (required)

You can block usage of one or more ports at the server by using the Configure
TCP/IP (CFGTCP) command. To do this, choose the ’Work with TCP/IP port
restrictions’ option of that command. You can add a restriction so that only a
specific user profile other than the one that QRWTLSTN runs under (normally
QUSER) can use a certain port, such as 446. That effectively blocks 446. If 447 were
configured for use only with IPSec, then blocking 446 would allow only encrypted
datastreams to be used for DDM and DRDA access over native TCP/IP. You could
block both 447 and 448 to restrict usage only to SSL. It may be impractical to
follow these examples for performance or other reasons (such as current limited
availability of SSL-capable clients), but they are given to show the possible
configurations.

54 OS/400 Distributed Database Programming V5R2

|
|
|

|

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|

Authentication Method Negotiation
Different connectivity scenarios call for using different levels of authentication.
Therefore, an administrator may set the lowest security authentication method
required by the application requester (AR) when connecting to an application
server (AS) by setting the preferred authentication method field in each RDB
directory entry. The administrator may also allow the decision about authentication
method to be negotiated with the server, by choosing to allow a lower security
authentication method. In this case the preferred authentication method is still
attempted, but if the AS cannot accept the preferred method, a lower method may
be used, depending upon the server security setting and other factors such as the
availability of cryptographic support. For example, if two systems are in a
physically unprotected environment, the administrator might choose to require
Kerberos authentication without allowing lower security authentication methods.

On the application requester (client) side, you can use one of two methods to send
a password along with the user ID on DRDA TCP/IP connect requests. If you do
not use either of these methods, the CONNECT command can send only a user ID.

The first way to send a password is to use the USER/USING form of the SQL
CONNECT statement, as in the following example from the interactive SQL
environment:
CONNECT TO rdbname USER userid USING ’password’

In a program using embedded SQL, the values of the user ID and of the password
can be contained in host variables in the USER/USING database.

In a program using CLI, the following is an example of how the user ID and
password are presented in host variables to the DRDA application requester (AR):
SQLConnect(hdbc,sysname,SQL_NTS, /*do the connect to the application server */

uid,SQL_NTS,pwd,SQL_NTS);

The second way to provide a password is to send a connect request over TCP/IP
using a server authorization entry. A server authorization list is associated with
every user profile on the system. By default, the list is empty; however, you can
add entries by using the Add Server Authentication Entry (ADDSVRAUTE)
command. When you attempt a DRDA connection over TCP/IP, the DB2 UDB for
iSeries client (AR) checks the server authorization list for the user profile under
which the client job is running. If it finds a match between the RDB name on the
CONNECT statement and the SERVER name in an authorization entry (which
must be in upper case), the associated USRID parameter in the entry is used for
the connection user ID. If a PASSWORD parameter is stored in the entry, that
password is also sent on the connect request.

A server authorization entry may also be used to send a password over TCP/IP for
a DDM file I/O operation. When you attempt a DDM connection over TCP/IP,
DB2 UDB for iSeries checks the server authorization list for the user profile under
which the client job is running. If it finds a match between either the RDB name (if
RDB directory entries are used) or ’QDDMSERVER’ and the SERVER name in an
authorization entry, the associated USRID parameter in the entry is used for the
connection user ID. If a PASSWORD parameter is stored in the entry, that
password is also sent on the connect request.

To store a password using the Add Server Authentication Entry (ADDSVRAUTE)
command, you must set the QRETSVRSEC system value to ’1’. By default, the
value is ’0’. Type the following command to change this value:

Chapter 4. Security for an iSeries Distributed Relational Database 55

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

CHGSYSVAL QRETSVRSEC VALUE(’1’)

The following example shows the syntax of the Add Server Authentication Entry
(ADDSVRAUTE) command when using an RDB directory entry:

ADDSVRAUTE USRPRF(user-profile) SERVER(rdbname) USRID(userid)
PASSWORD(password)

The USRPRF parameter specifies the user profile under which the application
requester job runs. What you put into the SERVER parameter is normally the name
of the RDB to which you want to connect. The exception is if you are using DDM
files which were not created to use the RDB directory. In that case, you should
specify QDDMSERVER in the SERVER parameter. When you specify an RDB
name, it must be in upper case. The USRID parameter specifies the user profile
under which the server job will run. The PASSWORD parameter specifies the
password for the user profile.

If you omit the USRPRF parameter, it will default to the user profile under which
the Add Server Authentication Entry (ADDSVRAUTE) command runs. If you omit
the USRID parameter, it will default to the value of the USRPRF parameter. If you
omit the PASSWORD parameter, or if you have the QRETSVRSEC value set to 0,
no password will be stored in the entry and when a connect attempt is made using
the entry, the security mechanism attempted will be user ID only.

You can remove a server authorization entry by using the Remove Server
Authentication Entry (RMVSVRAUTE) command. You can change a server
authorization entry by using the Change Server Authentication Entry
(CHGSVRAUTE) command. See the Control Language (CL) topic in the
Information Center for a complete description of these commands.

If a server authorization entry exists for a relational database (RDB), and the
USER/USING form of the CONNECT statement is also used, the latter takes
precedence.

Kerberos Source Configuration
DRDA and DDM can take advantage of Kerberos authentication if both systems
are configured for Kerberos. See the Network authentication service topic in the
iSeries Information Center for information about Kerberos configuration. If a job’s
user profile has a valid ticket-granting ticket (TGT), the DRDA application
requester (AR) uses this TGT to generate a service ticket and authenticate the user
to the remote server. Having a valid TGT available makes the need for a server
authentication entry unnecessary, since no password is directly needed in that case.
However, if the job’s user profile does not have a valid TGT, the user ID and
password may be retrieved from the server authentication entry to generate the
necessary TGT and service ticket.

When using Kerberos, the remote location (RMTLOCNAME) in the RDB directory
entry must be entered as the remote host name. IP addresses will not work for
Kerberos authentication.

In cases where the Kerberos realm name differs from the DNS suffix name, it must
be mapped to the correct realm. To do that, there must be an entry in the Kerberos
configuration file (krb5.conf) to map each remote host name to its correct realm
name. This host name entered must exactly match the remote location name
(RMTLOCNAME). The remote location parameter displayed by the DSPRDBDIRE

56 OS/400 Distributed Database Programming V5R2

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

or DSPDDMF command must match the domain name in the krb5.conf file. The
following graphic shows an example of the DSPRDBDIRE screen:

Display Relational Database Detail

Relational database : RCHASXXX

Remote location:
Remote location : rchasxxx.rchland.ibm.com
Type : *IP
Port number or service name . . . : *DRDA
Remote authentication method . . :
Preferred method : *KERBEROS
Allow lower authentication . . . : *NOALWLOWER

Text :

Relational database type : *REMOTE

Press Enter to continue.
F3=Exit F12=Cancel

The following is a portion of the corresponding krb5.conf file contents showing the
domain name matching the remote location name (Note: The Display File (DSPF)
command is used to display the configuration file contents):
DSPF STMF(’/QIBM/UserData/OS400/NetworkAuthentication/krb5.conf’)

[domain_realm]
; Convert host names to realm names. Individual host names may be
; specified. Domain suffixes may be specified with a leading period
; and will apply to all host names ending in that suffix.
rchasxxx.rchland.ibm.com = REALM.RCHLAND.IBM.COM

Jobs using Kerberos must be restarted when configuration changes occur to the
krb5.conf file.

Define Kerberos DRDA service names for non-iSeries remote
servers
To use Kerberos authentication to connect to non-iSeries servers, the non-iSeries
service names need to be defined under Enterprise Identity Mapping (EIM). See
the Enterprise Identity Mapping (EIM) topic in the iSeries Information Center for
more information. To define DRDA service names, perform the following steps:
1. Start iSeries Navigator.
2. Expand Network.
3. Expand Enterprise Identity Mapping.
4. Expand Domain Management.
5. Expand your EIM domain name.
6. Right-click Identifiers, and select New Identifier.

Chapter 4. Security for an iSeries Distributed Relational Database 57

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|

|

7. Enter the local RDB name as the identifier and, if necessary, a description.

8. Click OK.
The identifier you created is shown on the right pane of iSeries Navigator.

58 OS/400 Distributed Database Programming V5R2

|

|

|

|

|

|

|

9. Right-click the identifier you created, and select Properties.
10. Click on the Associations tab.

11. Click Add to add a new association.
12. Enter the remote location name (RMTLOCNAME) in the User field, and select

Source in the Association type field.

Chapter 4. Security for an iSeries Distributed Relational Database 59

|

|

|

|

|

|

|

|
|

13. Click OK. You are brought back to the identifier’s Properties dialog.
14. Click Add to enter a second association.
15. Enter the Kerberos registry in the Registry field. Enter the Kerberos service

name of the remote server in the User field. Select Target in the Association
type field.

16. Click OK.

Application server (AS) security in a TCP/IP network
The TCP/IP server has a default security of user ID with clear-text password. This
means that, as the server is installed, inbound TCP/IP connect requests must have
at least a clear-text password accompanying the user ID under which the server job
is to run. The security may either be changed with the Change DDM TCP/IP
Attributes (CHGDDMTCPA) command or under the Network->Servers->TCP/IP-
>DDM server properties in iSeries Navigator. You must have *IOSYSCFG special
authority to change this setting.

There are two settings that can be used for lower server security:
v PWDRQD (*NO)

password not required
v PWDRQD(*VLDONLY)

password not required, but must be valid if sent

The difference between *NO and *VLDONLY is that if a password is sent from a
client system, it is ignored in the *NO option. In the *VLDONLY option, however,
if a password is sent, the password is validated for the accompanying user ID, and
access is denied if incorrect.

60 OS/400 Distributed Database Programming V5R2

|

|

|

|

|
|
|

|

|

|

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|

Encrypted password required or PWDRQD(*ENCRYPTED) and Kerberos or
PWDRQD(*KERBEROS) may be used for higher security levels. If Kerberos is used,
user profiles must to be mapped to Kerberos principles using Enterprise Identity
Mapping (EIM). Refer to the Enterprise Identity Mapping (EIM) topic in the iSeries
Information Center for more information.

The following is an example of the use of the Change DDM TCP/IP Attributes
(CHGDDMTCPA) command to specify that an encrypted password must
accompany the user ID. To set this option, enter:

CHGDDMTCPA PWDRQD(*ENCRYPTED)

Note: The DDM/DRDA TCP/IP server was enhanced in V4R4 to support a form
of password encryption called password substitution. In V4R5, a more
widely-used password encryption technique, referred to as the
Diffie-Hellman public key algorithm was implemented. This is the DRDA
standard algorithm and is used by the most recently released IBM DRDA
application requestors. The older password substitute algorithm is used
primarily for DDM file access from PC clients. In V5R1 a ’strong’ password
substitute algorithm was also supported. The client and server negotiate the
security mechanism that will be used, and any of the three encryption
methods will satisfy the requirement of PWDRQD(*ENCRYPTED), as does
the use of Secure Sockets Layer (SSL) datastreams.

DRDA server access control exit programs
A security feature of the DRDA server, for use with both APPC and TCP/IP,
extends the use of the DDMACC parameter of the Change Network Attributes
(CHGNETA) command to DRDA. The parameter previously applied only to DDM
file I/O access. The DRDA usage of the function is limited to connection requests,
however, and not to requests for data after the connection is made.

If you do not choose to take advantage of this security function, you normally do
not need to do anything. The only exception is if you are currently using a DDM
exit program that is coded to reject operations if an unknown function code is
received, and you are also using DRDA to access data on that system. In this case,
you must change your exit program so that a ’1’ is returned to allow DRDA access
if the function code is ’SQLCNN ’.

To use the exit program for blocking or filtering DRDA connections, you need to
create a new DRDA exit program, or change an existing one.

Note: If your system is configured with multiple databases (ASP groups), the exit
program must reside in a library in the system database (on an auxiliary
storage pool in the range 1-32).

You can find general instructions for creating a DRDA exit program in the
Distributed Database Management topic in the iSeries Information Center.

This security feature adds a DRDA function code to the list of request functions
that can be input to the program in the input parameter structure. The function
code, named ’SQLCNN ’ (SQL connect request), indicates that a DRDA connection
request is being processed (see the FUNC parameter in Figure 8 on page 64). The
APP (application) input parameter is set to ’*DRDA ’ instead of ’*DDM ’
for DRDA connect request calls.

Chapter 4. Security for an iSeries Distributed Relational Database 61

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

As you code exit programs for DRDA, the following fields in the parameter
structure may be useful:
v The USER field allows the program to allow or deny DRDA access based on the

user profile ID.
v The RDBNAME field contains the name of the RDB to which the user wants to

connect. This can be the system database or a user database (ASP group). This
field can be useful if you want to deny access to one or more databases in an
environment where multiple databases are configured.

v The SRVNAME parameter in Figure 8 on page 64 may or may not be set by the
caller of the exit program. If it is set, it indicates the name of the client system. If
it is not set, it has the value *N. It will always be set when the DRDA
Application Requester is an iSeries server.

v The TYPDEFN parameter gives additional information about the type of client
that is connecting. For an IBM mainframe, TYPEDEFN will be QTDSQL370. For
an iSeries server, it will be QTDSQL400. For an Intel PC, it will be QTDSQLX86.
For an RS/6000 client, it will be QTDSQLASC.

v The PRDID (product ID) parameter identifies the product that is attempting to
connect, along with the product’s release level. The following is a partial list of
the first three characters of these codes (You should verify the non-IBM codes
before you use them in an exit program):

QSQ IBM DB2 UDB for iSeries

DSN IBM DB2 UDB for z/OS

SQL IBM DB2 Connect (formerly called DDCS)

ARI IBM DB2 UDB for VSE & VM

GTW Oracle Corporation products

GVW Grandview DB/DC Systems products

XDB XDB Systems products

IFX Informix Software products

RUM Wall Data Rumba for Database Access

SIG StarQuest products

STH FileTek products

The rest of the field is structured as vvrrm, where vv is version, rr is release, and
m is modification level.

If the exit program returns a RTNCODE value of ’0’, and the connection request
came from an iSeries client, then the message indicating the connection failure to
the user will be SQ30060, ’User is not authorized to relational database’. In
general, the response to a denial of access by the exit program is the DRDA
RDBATHRM reply message, which indicates that the user is not authorized to the
relational database. Note that different client platforms may report the error
differently to the user.

Restrictions:

v If a function check occurs in the user exit program, the program returns the
same reply message, and the connection attempt will fail. The exit program must
not do any commitable updates to DB2 UDB for iSeries, or unpredictable results
may occur

62 OS/400 Distributed Database Programming V5R2

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

|
|

|
|
|
|
|
|
|

|

|
|
|
|

v You should not use exit programs to attempt to access a file that was opened in
a prior call of the prestart server job.

v Prior to V5R2, a further restriction resulted when the prestart jobs used with the
TCP/IP server were recycled for subsequent use. Some cleanup is done to
prepare the job for its next use. Part of this processing involves using the
Reclaim Activation Group (RCLACTGRP) command with the ACTGRP
parameter with value of *ELIGIBLE.. As a result, attempts to use any residual
linkages in the prestart server job to activation groups destroyed by the
RCLACTGRP can result in MCH3402 exceptions (where the program tried to
refer to all or part of an object that no longer exists). One circumvention to this
restriction is to set the MAXUSE value for the QRWTSRVR prestart jobs to 1 as
follows: CHGPJE SBSD(QSYSWRK) PGM(QRWTSRVR) MAXUSE(1).

Example: DRDA server access control exit program
Figure 8 on page 64 shows an example of a PL/I user exit program that allows all
DRDA operations, and all DRDA connections except for when the user ID is
’ALIEN’.

Chapter 4. Security for an iSeries Distributed Relational Database 63

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

/**/
/* */
/* PROGRAM NAME: UEPALIEN */
/* */
/* FUNCTION: USER EXIT PROGRAM THAT IS DESIGNED TO */
/* RETURN AN UNSUCCESSFUL RETURN CODE WHEN */
/* USERID ’ALIEN’ ATTEMPTS A DRDA CONNECTION. */
/* IT ALLOWS ALL TYPES OF DDM OPERATIONS. */
/* */
/* EXECUTION: CALLED WHEN ESTABLISHED AS THE USER EXIT */
/* PROGRAM. */
/* */
/* ALL PARAMETER VARIABLES ARE PASSED IN EXCEPT: */
/* */
/* RTNCODE - USER EXIT RETURN CODE ON WHETHER FUNCTION IS */
/* ALLOWED: ’1’ INDICATES SUCCESS; ’0’ FAILURE. */
/* */
/**/

UEPALIEN: PROCEDURE (RTNCODE,CHARFLD);

DECLARE RTNCODE CHAR(1); /* DECLARATION OF THE EXIT */
/* PROGRAM RETURN CODE. IT */
/* INFORMS REQUEST HANDLER */
/* WHETHER REQUEST IS ALLOWED. */

DECLARE /* DECLARATION OF THE CHAR */
1 CHARFLD, /* FIELD PASSED IN ON THE CALL. */

2 USER CHAR(10), /* USER PROFILE OF DDM/DRDA USER */
2 APP CHAR(10), /* APPLICATION NAME */
2 FUNC CHAR(10), /* REQUESTED FUNCTION */
2 OBJECT CHAR(10), /* FILE NAME */
2 DIRECT CHAR(10), /* LIBRARY NAME */
2 MEMBER CHAR(10), /* MEMBER NAME */
2 RESERVED CHAR(10), /* RESERVED FIELD */
2 LNGTH PIC ’99999’, /* LENGTH OF USED SPACE IN REST */
2 REST, /* REST OF SPACE = CHAR(2000) */

3 LUNAME CHAR(10), /* REMOTE LU NAME (IF SNA) */
3 SRVNAME CHAR(10), /* REMOTE SERVER NAME */
3 TYPDEFN CHAR(9), /* TYPE DEF NAME OF DRDA AR */
3 PRDID, /* PRODUCT ID OF DRDA AR */

5 PRODUCT CHAR(3), /* PRODUCT CODE */
5 VERSION CHAR(2), /* VERSION ID */
5 RELEASE CHAR(2), /* RELEASE ID */
5 MOD CHAR(1), /* MODIFICATION LEVEL */
5 RDBNAME CHAR(18), /* RDB NAME */
5 REMAING CHAR(1965), /* REMAINING VARIABLE SPACE */

START:
IF (USER = ’ALIEN’ & /* IF USER IS ’ALIEN’ AND */

FUNC = ’SQLCNN’) THEN /* FUNCTION IS DRDA CONNECT */
RTNCODE = ’0’; /* SET RETURN CODE TO UNSUCCESSFUL */

ELSE /* IF ANY OTHER USER, OR DDM */
RTNCODE = ’1’; /* SET RETURN CODE TO SUCCESSFUL */

END UEPALIEN;

Figure 8. Example PL/I User Exit Program

64 OS/400 Distributed Database Programming V5R2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Object-related security for DRDA
If the iSeries server is an application server (AS), there are two object-related
levels at which security can be enforced to control access to its relational database
tables.

The DDMACC parameter is used on the Change Network Attributes (CHGNETA)
command to indicate whether the tables on this server can be accessed at all by
another system and, if so, at which level of security the incoming DRDA requests
are to be checked.
v If *REJECT is specified on the DDMACC parameter, all distributed relational

database requests received by the AS are rejected. However, this system (as an
application requester (AR)) can still use SQL requests to access tables on other
systems that allow it. No remote system can access a database on any iSeries
server that specifies *REJECT.
If *REJECT is specified while an SQL request is already in use, all new jobs from
any system requesting access to this system’s database are rejected and an error
message is returned to those jobs; existing jobs are not affected.

v If *OBJAUT is specified on the DDMACC parameter, normal object-level security
is used on the AS.
The DDMACC parameter is initially set to *OBJAUT. A value of *OBJAUT
allows all remote requests, but they are controlled by the object authorizations
on this AS. If the DDMACC value is *OBJAUT, the user profile used for the job
must have appropriate object authorizations through private, public, group, or
adopted authorities, or the profile must be on an authorization list for objects
needed by the AR job. For each SQL object on the system, all users, no users, or
only specific users (by user ID) can be authorized to access the object.
The user ID that must be authorized to objects is the user ID of the AS job. See
the Elements of DDM Security in an APPC network topic for information about
what user profile the AS job runs under.
In the case of a TCP/IP connection, the server job initially starts running under
QUSER. After the user ID is validated, an exchange occurs so that the job then
runs under the user profile specified on the connect request. The job inherits the
attributes (for example, the library list) of that user profile.
When the value *OBJAUT is specified, it indicates that no further verification
(beyond iSeries object level security) is needed.

v For DDM jobs, if the name of an optional, user-supplied user exit program (or
access control program) is specified on the DDMACC parameter, an additional
level of security is used. The user exit program can be used to control whether a
user of a DDM client can use a specific command to access a specific file on the
iSeries server.
For DRDA jobs, if the name of an optional, user-supplied user exit program
(access control program) is specified on the DDMACC parameter, the system
treats the entry as though *OBJAUT is specified, with one exception. The only
effect that a user-written exit program can have on a DRDA job is to reject a
connection request. See the DRDA server access control exit programs topic for
details.

The DDMACC parameter, initially set to *OBJAUT, can be changed to one of the
previously described values by using the Change Network Attributes (CHGNETA)
command, and its current value can be displayed by the Display Network
Attributes (DSPNETA) command. You can also get the value in a CL program by
using the Retrieve Network Attributes (RTVNETA) command.

Chapter 4. Security for an iSeries Distributed Relational Database 65

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

If the DDMACC parameter value is changed, although it takes effect immediately,
it affects only new distributed relational database jobs started on this system (as the
AS). Jobs running on this AS before the change was made continue to use the old
value.

For a description of the DDMACC parameter, see the description of the Change
Network Attributes (CHGNETA) command in the Communications Management

book.

Authority to distributed relational database objects
You can use either the SQL GRANT and REVOKE statements or the control
language (CL) Grant Object Authority (GRTOBJAUT) and Revoke Object Authority
(RVKOBJAUT) commands to grant and revoke a user’s authority to relational
database objects. The SQL GRANT and REVOKE statements only operate on
packages, tables, and views. In some cases, it is necessary to use GRTOBJAUT and
RVKOBJAUT to authorize users to other objects, such as commands and programs.

The authority checked for SQL statements depends on whether the statement is
static, dynamic, or being run interactively.

For details on the meaning of the values you can specify in the USRPRF parameter
of the CRTSQLxxx commands, and how it differs for static and dynamic SQL
statements, see the Security section of the SQL Programming Concepts book.

For interactive SQL statements, authority is checked against the authority of the
person processing the statement. Adopted authority is not used for interactive SQL
statements.

Users running a distributed relational database application need authority to run
the SQL package on the application server (AS). The GRANT EXECUTE ON
PACKAGE statement allows the owner of an SQL package, or any user with
administrative privileges to it, to grant specified users the privilege to run the
statements in an SQL package. You can use this statement to give all users
authorized to the AS, or a list of one or more user profiles on the AS, the privilege
to run statements in an SQL package.

Normally, users have processing privileges on a package if they are authorized to
the distributed application program created using the CRTSQLxxx command. If the
package is created using the Create Structured Query Language Package
(CRTSQLPKG) command you may have to grant processing privileges on the
package to users. You can issue this statement in an SQL program or using
interactive SQL. The following shows a sample statement:
GRANT EXECUTE
ON PACKAGE SPIFFY.PARTS1
TO PUBLIC

The REVOKE EXECUTE ON PACKAGE statement allows the owner of an SQL
package, or any user with administrative privileges to it, to remove the privilege to
run statements in an SQL package from specified users. You can remove the
EXECUTE privilege to all users authorized to the AS or to a list of one or more
user profiles on the AS.

If you granted the same privilege to the same user more than once, revoking that
privilege from that user nullifies all those grants. If you revoke an EXECUTE
privilege on an SQL package you previously granted to a user, it nullifies any

66 OS/400 Distributed Database Programming V5R2

|
|
|
|

|
|

|

|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

grant of the EXECUTE privilege on that SQL package, regardless of who granted
it. The following shows a sample statement:
REVOKE EXECUTE
ON PACKAGE SPIFFY.PARTS1
FROM PUBLIC

You can also grant authority to an SQL package using the Grant Object Authority
(GRTOBJAUT) command or revoke authority to an SQL package using the Revoke
Object Authority (RVKOBJAUT) command.

Programs that run under adopted authority for a distributed
relational database

A distributed relational database program can run under adopted authority, which
means the user adopts the program owner’s authority to objects used by the
program while running the program. When a program is created using the *SQL
precompiler option for naming, the program runs under the program owner’s user
profile.

An SQL package from an unlike system always adopts the package owner’s
authority for all static SQL statements in the package. An SQL package created on
an iSeries server using the CRTSQLxxx command with OPTION(*SQL) specified,
also adopts the package owner’s authority for all static SQL statements in the
package.

A distributed relational database administrator can check security exposure on
application servers by using the Display Programs that Adopt (DSPPGMADP)
command. The DSPPGMADP command displays the programs and SQL packages
that use a specified user profile, as shown below. You may also send the results of
the command to a printer or to an output file.

Display Programs That Adopt

User profile : MPSUP

Object Library Type Attribute Text
INVENT SPIFFY *PGM Adopting program
CLIENT1 SPIFFY *PGM Adopting program
TESTINV TEST *PGM CLP Test inventory pgm
INVENT1 SPIFFY *SQLPKG SQL package
CLIENT1 SPIFFY *SQLPKG SQL package
TESTINV SPIFFY *SQLPKG SQL package

Bottom
Press Enter to continue

F3=Exit F12=Cancel F17=Top F18=Bottom
(C) COPYRIGHT IBM CORP. 1980, 1991.

Chapter 4. Security for an iSeries Distributed Relational Database 67

|
|

|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

Protection strategies in a Distributed Relational Database
Network security in an iSeries distributed relational database must be planned to
protect critical data on any application server (AS) from unauthorized access. But
because of the distributed nature of the relational database, security planning must
ensure that availability of data in the network is not unnecessarily restricted.

One of the decisions that a distributed relational database administrator needs to
make is the system security level in place for each system in the network. A system
security level of 10 provides no security for application servers other than physical
security at the system site. A system security level of 20 provides some protection
to application servers because network security checking is done to ensure the
local and remote system are correctly identified. However, this level does not
provide the object authorization necessary to protect critical database elements
from unauthorized access. An iSeries server security level of 30 and above is the
recommended choice for systems in a network that want to protect specific system
objects.

The distributed relational database administrator must also consider how
communications are established between application requester (AR)s on the
network and the application servers. Some questions that need to be resolved
might include:
v Should a default user profile exist on an AS?

Maintaining many user profiles throughout a network can be difficult. However,
creating a default user profile in a communications subsystem entry opens the
AS to incoming communications requests if the AS is not a secure location. In
some cases this might be an acceptable situation, in other cases a default user
profile might reduce the system protection capabilities too far to satisfy security
requirements.
For example, systems that serve many ARs need a high level of security. If their
databases were lost or damaged, the entire network could be affected. Since it is
possible to create user profiles or group profiles on an AS that identifies all
potential users needing access, it is unnecessary for the database administrator
to consider creating a default user profile for the communications subsystem or
subsystems managing distributed relational database work.
In contrast, an iSeries server that rarely acts as an AS to other systems in the
network and does not contain sensitive or critical data might use a default user
profile for the communications subsystem managing distributed relational
database work. This might prove particularly effective if the same application is
used by all the other systems in the network to process work on this database.
Strictly speaking, the concept of a default user applies only to the use of APPC.
However, a similar technique can be used with systems that are using TCP/IP. A
single user ID could be established under which the server jobs could run. The
Add Server Authentication Entry (ADDSVRAUTE) command could be used on
all ARs to specify that that user ID should be used for all users to connect with.
The server authorization entries could have a password specified on them, or
they could specify *NONE for the password, depending on the setting of the
PWDRQD parameter on the Change DDM TCP/IP Attributes (CHGDDMTCPA)
command at the AS. The default value of this attribute is that passwords are
required.

v How should access to database objects be handled?
Authority to objects can be granted through private authority, group authority,
public authority, adopted authority, and authorization lists. While a user profile

68 OS/400 Distributed Database Programming V5R2

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|

(or default profile) has to exist on the AS for the communications request to be
accepted, how the user is authorized to objects can affect performance.
Whenever possible, use group authority or authorization lists to grant access to
a distributed relational database object. It takes less time and system resources to
check these than to review all private authorities.
For TCP/IP connections, you do not need a private user ID for each user that
can connect to an AS, because you can map user IDs.

Chapter 4. Security for an iSeries Distributed Relational Database 69

|
|

|
|
|

|
|

70 OS/400 Distributed Database Programming V5R2

Chapter 5. Setting Up an iSeries Distributed Relational
Database

The run-time support for an iSeries distributed relational database is provided by
the OS/400 program. Therefore, when the operating system is installed, distributed
relational database support is installed. However, some setup work may be
required to make the application requesters and application servers ready to send
and receive work, particularly in the APPC environment. One or more subsystems
can be used to control interactive, batch, spooled, and communications jobs. All the
application requesters (AR)s in the network must have their relational database
directory set up with connection information. Finally, you may wish to put data
into the tables of the application servers throughout the network.

The relational database directory contains database names and values that are
translated into communications network parameters. An AR must have an entry
for each database in the network, including the local database and any local user
databases that may be configured. These local entries may be added automatically
by the system, or manually. Each directory entry consists of a unique relational
database name and corresponding communications path information. As of V5R2,
information about the preferred password security for outbound connections can
be specified. For access provided by ARD programs, the ARD program name must
be added to the relational database directory entry.

There are a number of ways to enter data into a database. You can use an SQL
application program, some other high-level language application program, or one
of these methods:
v Interactive SQL
v OS/400 query management
v Data file utility (DFU)
v Copy File (CPYF) command

To set up an iSeries distributed relational database, you need some knowledge of
the following topics:
v Work Management on the iSeries server
v DRDA considerations with user relational databases
v Using the relational database directory
v Setting up DRDA security
v Setting up the TCP/IP Server for DRDA or APPC setup
v Setting up SQL Packages for Interactive SQL
v Setting up DDM files
v Loading data into tables in a distributed relational database

This chapter introduces these topics and helps you to set up iSeries server for
distributed relational database work.

Connection and set up information for a distributed relational database network of
unlike servers can be found in the Distributed Relational Database Cross-Platform
Connectivity book (SG24-4311-02).

© Copyright IBM Corp. 1998, 2001, 2002 71

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Work Management on the iSeries server
All of the work done on the iSeries server is submitted through the work
management function. On an iSeries server, you can design specialized operating
environments to handle different types of work to satisfy the requirements of your
server. However, when the operating system is installed, it includes a work
management environment that supports interactive and batch processing,
communications, and spool processing.

On the server, all user jobs operate in an environment called a subsystem, defined
by a subsystem description, where the server coordinates processing and resources.
Users can control a group of jobs with common characteristics independently of
other jobs if the jobs are placed in the same subsystem. You can easily start and
end subsystems as needed to support the work being done and to maintain the
performance characteristics you desire.

The basic types of jobs that run on the server are interactive, communications,
batch, spooled, autostart, and prestart.

An interactive job starts when you sign on a work station and ends when you sign
off. An APPC communications batch job is a job started from a program start
request from another system. A non-communications batch job is started from a job
queue. Job queues are not used when starting a communications batch job.
Spooling functions are available for both input and output. Autostart jobs perform
repetitive work or one-time initialization work. Autostart jobs are associated with a
particular subsystem, and each time the subsystem is started, the autostart jobs
associated with it are started. Prestart jobs are jobs that start running before the
remote program sends a program start request.

See the following topics for more detailed information on subsystems:
v Setting up your work management environment for DRDA
v Considerations for setting up subsystems for APPC

Note: As of V5R2, by default, the DDM TCP/IP server prestart jobs used for
DRDA TCP/IP connections run in the QUSRWRK subsystem. Prior to V5R2,
they ran in QSYSWRK. QUSRWRK is the user work subsystem. It contains
jobs that are started by servers to do work on behalf of a user. The DRDA
’listener’ job that dispatches work to the prestart jobs runs in QSYSWRK.
See “Managing the TCP/IP server” on page 112 for details on setting up and
administering the TCP/IP server.

Setting up your work management environment for DRDA
One subsystem, called a controlling subsystem, starts automatically when you
load the server. Two controlling subsystem configurations are supplied by IBM,
and you can use them without change. The first configuration includes the
following subsystems:
v QBASE, the controlling subsystem, supports interactive, batch, and

communications jobs.
v QSPL supports processing of spooling readers and writers.
v QSYSWRK supports various server functions such as TCP/IP.
v QUSRWRK is the user work subsystem. It contains jobs that are started by

servers to do work on behalf of a user.

72 OS/400 Distributed Database Programming V5R2

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

QBASE automatically starts when the server is started. An automatically started
job in QBASE starts QSPL.

The second controlling subsystem configuration supplied is more complex. This
configuration includes the following subsystems:
v QCTL, the controlling subsystem, supports interactive jobs started at the console.
v QINTER supports interactive jobs started at other work stations.
v QCMN supports communications jobs.
v QBATCH supports batch jobs.
v QSPL supports processing of spooling readers and writers.
v QSYSWRK supports various server functions such as TCP/IP.
v QUSRWRK is the user work subsystem. It contains jobs that are started by

servers to do work on behalf of a user.

If you change your configuration to use the QCTL controlling subsystem, it starts
automatically when the system is started. An automatically started job in QCTL
starts the other subsystems.

You can change your subsystem configuration from QBASE to QCTL by changing
the system value QCTLSBSD (controlling subsystem) to QCTL on the Change
System Value (CHGSYSVAL) command and starting the system again.

You can change the IBM-supplied subsystem descriptions or any user-created
subsystem descriptions by using the Change Subsystem Description (CHGSBSD)
command. You can use this command to change the storage pool size, storage pool
activity level, and the maximum number of jobs for the subsystem description of
an active subsystem.

For more information about work management, subsystems, and jobs on the iSeries
server, see the Work Management topic in the iSeries Information Center. For more
information about work management for communications and communications

subsystems, see the Communications Management book.

Considerations for setting up subsystems for APPC
In a distributed relational database using an SNA network, communications jobs
and interactive jobs are the main types of work an administrator must plan to
manage on each server. Servers in the network start communications jobs to handle
requests from an application requester (AR); an AR’s communications requests to
other servers normally originate from interactive or batch jobs on the local system.
Setting up an efficient work management environment for the distributed relational
database network servers can enhance your overall network performance by
allocating system resources to the specific needs of each application server (AS)
and AR in the network.

When the OS/400 licensed program is first installed, QBASE is the default
controlling subsystem. As the controlling subsystem, QBASE allocates system
resources between the two subsystems QBASE and QSPL. Interactive jobs,
communications jobs, batch jobs, and so on, allocate resources within the QBASE
subsystem. Only spooled jobs are managed under a different subsystem, QSPL.
This means you have less control of system resources for handling communications
jobs versus interactive jobs than you would using the QCTL controlling subsystem.

Chapter 5. Setting Up an iSeries Distributed Relational Database 73

|
|

|
|
|
|
|
|
|
|
|

Using the QCTL subsystem configuration, you have control of four additional
subsystems for which the system has allocated storage pools and other system
resources. Changing the QCTL subsystems, or creating your own subsystems gives
you even more flexibility and control of your processing resources.

Different system requirements for some of the systems in the Spiffy Corporation
distributed relational database network may require different work management
environments for best network efficiency. The following discussions show how the
distributed relational database administrator can plan a work management
subsystem to meet the needs of each iSeries server in the Spiffy distributed
relational database network.

In the Spiffy Corporation system organization, a small dealership may be satisfied
with a QBASE level of control for the various jobs its users have on the server. For
example, requests to a small dealership’s relational database from the regional AR
(to update dealer inventory levels for a shipment) are handled as communications
jobs. Requests from a dealership user to the regional AS, to request a part not
currently in stock locally, is handled as an interactive job on the dealership server.
Both activities are relatively small jobs because the dealership is smaller and
handles fewer service orders, parts sales and so on. The coordination of resources
in the QBASE subsystem provides the level of control this enterprise requires for
their interactive and communications needs.

A large dealership, on the other hand, probably manages its work through the
QCTL subsystem, because of the different work loads associated with the different
types of jobs.

The number of service orders booked each day can be high, requiring a query to
the local relational database for parts or to the regional center AS for parts not in
stock at the dealership. This type of activity starts interactive jobs on their system.
The dealership also starts a number of interactive jobs that are not distributed
relational database related jobs, such as enterprise personnel record keeping,
marketing and sales planning and reporting, and so on. Requests to this dealership
from the regional center for performance information or to update inventory or
work plans are communications jobs that the dealership wants to manage in a
separate environment. The large dealership can also receive a request from another
dealership for a part that is out of stock at the regional center.

For a large dealership, the QCTL configuration with separate subsystem
management for QINTER and QCMN provides more flexibility and control for
managing its server work environment. In this example, interactive and
communications jobs at the dealership server can be allocated more of the server
resources than other types of jobs. Additionally, if communications jobs are
typically fewer than interactive jobs for this system, resources can be targeted
toward interactive jobs, by changing the subsystem descriptions for both QINTER
and QCMN.

A work management environment tailored to a Spiffy Corporation regional center
perspective is also important. In the Spiffy network, the regional center is an AR to
each dealership when it updates the dealership inventory table with periodic parts
shipment data, or updates the service plan table with new or updated service
plans for specific repair jobs. Some of these jobs can be run as interactive jobs (on
the regional system) in early morning or late afternoon when system usage is
typically less, or run as batch jobs (on the regional server) after regular business
hours. The administrator can tailor the QINTER and QBATCH subsystems to
accommodate specific processing times and resource needs.

74 OS/400 Distributed Database Programming V5R2

|
|
|
|

The regional center is also an AS for each dealership when a dealership needs to
query the regional relational database for a part not in stock at the dealership, a
service plan for a specific service job (such as rebuilding a steering rack), or for
technical bulletins or recall notifications since the last update to the dealership
relational database. These communications jobs can all be managed in QCMN.

However, a closer examination of some specific aspects of distributed relational
database network use by the KC000 (Kansas City) regional center and the
dealerships it serves suggests other alternatives to the distributed relational
database administrator at Kansas City.

The KC000 server serves several very large dealerships that handle hundreds of
service orders daily, and a few small dealerships that handle fewer than 20 service
orders each day. The remaining medium-sized dealerships each handle about 100
service orders daily. One problem that presents itself to the distributed relational
database administrator is how to fairly handle all the communications requests to
the KC000 server from other systems. A large dealership could control QCMN
resources with its requests so that response times and costs to other systems in the
network are unsatisfactory.

The distributed relational database administrator can create additional
communications subsystems so each class of dealerships (small, medium, or large)
can request support from the AS and generally receive better response. By tailoring
the subsystem attributes, prestart job entries, communications work entries, and
routing entries for each subsystem description, the administrator controls how
many jobs can be active on a subsystem and how jobs are processed in the
subsystem.

The administrator can add a routing entry to change the class (and therefore the
priority) of a DRDA/DDM job by specifying the class that controls the priority of
the job and by specifying QCNTEDDM on the CMPVAL parameter, as in the
following example:
ADDRTGE SBSD(QCMN) SEQNBR(280) CLS(QINTER) CMPVAL(’QCNTEDDM’ 37)

The administrator can also add a prestarted job for DRDA/DDM job by specifying
QCNTEDDM as the prestarted job, as in the following example:
ADDPJE SBSD(QCMN) PGM(QCNTEDDM)

For more information on work management topics for the iSeries server, see the
Work Management topic in the iSeries Information Center. For more information
about changing attributes, work entries and routing entries for communications,

see the Communications Management book.

DRDA considerations with user relational databases
The user may create additional relational databases on an iSeries server by
configuring independent auxiliary storage pools on the server. Each independent
auxiliary storage pool group is a relational database. It is called a ’user database’ in
this book. It consists of all the database objects that exist on the independent
auxiliary storage pool group disks. Additionally, all database objects in the system
relational database (called ’system database’ in this book) of the iSeries server to
which the independent auxiliary storage pool is varied on are logically included in
a user relational database. However, from a commitment control perspective the
system database is treated differently. For more information, see the Transactions
and Commitment Control topic in the iSeries Information Center.

Chapter 5. Setting Up an iSeries Distributed Relational Database 75

|

|
|
|
|
|
|
|
|
|
|

There are a number of rules associated with the creation and use of user databases,
besides those imposed by the commitment control considerations just mentioned.
One example is that you cannot use an APPC protected DUW conversation to
connect to a database from an AR which has been set to a user database (an
auxiliary storage pool (ASP) group) for the current thread. Another example is that
the name of any schema created in a user database must not already exist in that
user database or in the associated system database. For more information on such
restrictions, see the SQL Reference topic in the iSeries Information Center.

There are certain DRDA-related objects that cannot be contained in user databases.
DDM user exit programs must reside in libraries in the system database, as must
any Application Requester Driver programs.

You should be aware that the process of varying on a user database causes the
RDB directory to be unavailable for a period of time, which can cause attempts by
a DRDA application requester (AR) or application server (AS) to make use of the
directory to be delayed or to timeout. The exposure to having directory operations
timeout due to unavailability caused by varying on a database is much greater if
multiple databases are varied on at the same time. As noted below, the first time a
user database is varied on, an attempt is made by the server to add a directory
entry for that database. If the directory is unavailable due to a concurrent vary on
operation, the addition will fail, in which case the entry will have to be manually
added.

Other considerations in the use of user databases concern configuration of entries
in the RDB directory. One of the rules for naming user databases is that user RDB
names cannot match the system name specified in the network attributes (as
displayed by the Display Network Attributes (DSPNETA) command).

Local user database entries in the RDB directory are added automatically the first
time that the associated databases are varied on. They are created using the *IP
protocol type and with the remote location designated as LOOPBACK.
LOOPBACK indicates that the database is on the same server as the directory. It is
highly recommended that user databases that are intended to be switched among
servers be configured to have a dedicated IP address associated with them. If the
switchable database does not have a dedicated IP address, then whenever it is
switched, manual updating of its directory entry on all the servers that reference
that database must be done. For an explanation on how dedicated IP address
configuration is done, see the Manage application CRG IP addresses topic in the
iSeries Information Center. For more information on RDB directory entries for user
databases, see Using the Relational Database Directory.

Using the relational database directory
The OS/400 program uses the relational database directory to define the relational
database names that can be accessed by applications running on an iSeries server,
to specify if the connection uses SNA or IP, and to associate these relational
database names with their corresponding network parameters. The relational
database directory allows an application requester (AR) to accept a relational
database name from the application and translate this name into the appropriate
Internet Protocol (IP) address or host name and port, or the appropriate Systems
Network Architecture (SNA) network identifier and logical unit (LU) name values
for communications processing. As of V5R2, the RDB directory also is used to
specify the user’s preferred outbound connection security mechanism. The
relational database directory also allows associating an ARD program with a
relational database name.

76 OS/400 Distributed Database Programming V5R2

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

Each iSeries system in the distributed relational database network must have a
relational database directory configured. There is only one relational database
directory on a system. Each AR in the distributed relational database network must
have an entry in its relational database directory for its local relational database
and one for each remote and local user relational database the AR accesses. Any
system in the distributed relational database network that acts only as an
application server (AS) does not need to include the relational database names of
other remote relational databases in its directory.

The relational database name assigned to the local relational database must be
unique. That is, it should be different from any other relational database in the
network. Names assigned to other relational databases in the directory identify
remote relational databases, or local user databases. The names of remote RDBs
must match the name an AS uses to identify its local system database or one of its
user databases, if configured. If the local system RDB name entry at an AS does
not exist when it is needed, one will be created automatically in the directory. The
name used will be the current system name displayed by the Display Network
Attributes (DSPNETA) command.

See the following topics for more information:
v Working with the relational database directory
v Relational database directory setup example

Working with the relational database directory
The following commands let you work with the relational database directory:

ADDRDBDIRE
Add Relational Database Directory Entry (ADDRDBDIRE) command

CHGRDBDIRE
Change Relational Database Directory Entry (CHGRDBDIRE) command

DSPRDBDIRE
Display Relational Database Directory Entry (DSPRDBDIRE) command

RMVRDBDIRE
Remove Relational Database Directory Entry (RMVRDBDIRE) command

WRKRDBDIRE
Work with Relational Database Directory Entries (WRKRDBDIRE)
command

Adding an entry for SNA usage

The Add RDB Directory Entry (ADDRDBDIRE) display is shown below. You can
use the prompts in this display or the Add Relational Database Directory Entry
(ADDRDBDIRE) command to add an entry to the relational database directory.

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Relational database MP311 Name
Remote location:

Name or address MP311 Name, *LOCAL, *ARDPGM
Type *SNA *SNA, *IP

Text ’Oak Street Dealership’

Chapter 5. Setting Up an iSeries Distributed Relational Database 77

|
|
|
|
|
|
|
|
|

In this example, an entry is made to add a relational database named MP311 for a
server with a remote location name of MP311 to the relational database directory
on the local server. The remote location name does not have to be defined before a
relational database directory entry using it is created. However, the remote location
name must be defined before the relational database directory entry is used in an
application. The relational database name (RDB) parameter and the remote location
name (RMTLOCNAME) parameter are required for the Add Relational Database
Directory Entry (ADDRDBDIRE) command. The second element of the
RMTLOCNAME parameter defaults to *SNA. The descriptive text (TEXT)
parameter is optional. As shown in this example, it is a good idea to make the
relational database name the same as the server name or location name specified
for this server in your network configuration. This can help you identify a
database name and correlate it to a particular server in your distributed relational
database network, especially if your network is complex.

To see the other optional parameters on this command, press F10 on the Add RDB
Directory Entry (ADDRDBDIRE) display. These optional parameters are shown
below.

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Relational database MP311
Remote location

Name or address MP311
Type *SNA *SNA, *IP

Text ’Oak Street Dealership’

Device:
APPC device description . . . *LOC Name, *LOC

Local location *LOC Name, *LOC, *NETATR
Remote network identifier . . . *LOC Name, *LOC, *NETATR, *NONE
Mode *NETATR Name, *NETATR
Transaction program *DRDA Character value, *DRDA

The server provides default *SNA values for the additional Add Relational
Database Directory Entry (ADDRDBDIRE) command parameters:
v Device (DEV)
v Local location (LCLLOCNAME)
v Remote network identifier (RMTNETID)
v Mode (MODE)
v Transaction program (TNSPGM)

Notes:

v The transaction program name parameter in the iSeries server is TNSPGM. In
SNA, it is TPN.

v If you use the defaults with advanced program-to-program communications
(APPC), the server determines the device, the local location, and the remote
network identifier that will be used. The mode name defined in the network
attributes is used and the transaction program name for Distributed Relational
Database Architecture (DRDA) support is used.

v If you use the defaults with Advanced Peer-to-Peer Networking (APPN), the
server ignores the device (DEV) parameter, and uses the local location name,
remote network identifier, and mode name defined in the network attributes.

78 OS/400 Distributed Database Programming V5R2

|
|

|

|

|

|

|

|
|

You can change any of these default values on the Add Relational Database
Directory Entry (ADDRDBDIRE) command. For example, you may have to change
the TNSPGM parameter to communicate with an DB2 UDB for VM server. By
default for DB2 UDB for VM support, the TNSPGM is the name of the DB2 UDB
for VM database to which you want to connect. The default TNSPGM parameter
value for DRDA (*DRDA) is X'07F6C4C2'. For more information on transaction
program name, see:
v “Setting QCNTSRVC as a TPN on a DB2 UDB for iSeries Application Requester”

on page 184.
v “Setting QCNTSRVC as a TPN on a DB2 UDB for VM Application Requester” on

page 184.
v “Setting QCNTSRVC as a TPN on a DB2 UDB for z/OS Application Requester”

on page 184.
v “Setting QCNTSRVC as a TPN on a DB2 Connect Application Requester” on

page 185.

Adding an entry for TCP/IP usage

The Add RDB Directory Entry (ADDRDBDIRE) display shown below demonstrates
how the panel changes if you enter *IP as the second element of the
RMTLOCNAME parameter, and what typical entries would look like for an RDB
that uses TCP/IP.

Add RDB Directory Entry (ADDRDBDIRE)

Type choices, press Enter.

Relational database > MP311
Remote location:

Name or address > MP311.spiffy.com

Type > *IP *SNA, *IP
Text > ’Oak Street Dealership’

Port number or service program *DRDA
Remote authentication method:
Preferred method > *ENCRYPTED *USRID, *USRIDPWD...
Allow lower authentication . . > *ALWLOWER *ALWLOWER, *NOALWLOWER

Note that instead of specifying MP311.spiffy.com for the RMTLOCNAME, you
could have specified the IP address (for example, ’9.5.25.176’). For IP connections
to another iSeries server, leave the PORT parameter value set at the default,
*DRDA, unless you need to use port 447. For example, you might have port 447
configured for transmission using IP Security (IPSec). For connections to an IBM
Universal Database (UDB) server on some other platform, for example, you might
need to set the port to a number such as 50000. Refer to the product
documentation for the server you are using. If you have a valid service name
defined for a DRDA port at some location, you can also use that instead of a
number. However, on iSeries, *DRDA is preferred to the use of the ’drda’ service
name.

Adding an entry for an application requester driver (ARD)

To specify communication information and an ARD program on the Add
Relational Database Directory Entry (ADDRDBDIRE) command prompt, press F9
and page down. When the ARD program will not use the communication

Chapter 5. Setting Up an iSeries Distributed Relational Database 79

|
|
|
|
|
|
|
|
|
|
|

|
|
|

information specified on the ADDRDBDIRE command (which is normally the
case), use the special value *ARDPGM on the RMTLOCNAME parameter. The
ARD program must reside in a library in the system database (ASP numbers 1-32).

Using the (WRKRDBDIRE) command

The Work with RDB Directory Entries display provides options that allow you to
add, change, display, or remove a relational database directory entry.

Work with RDB Directory Entries

Position to

Type options, press Enter.
1=Add 2=Change 4=Remove 5=Display details 6=Print details

Relational Remote
Option Database Location Text
__ KC000 KC000 Kansas City region database
__ MP000 *LOCAL Minneapolis region database
__ MP101 MP101 Dealer database MP101
__ MP102 MP102 Dealer database MP102
__ MP211 MP211 Dealer database MP211
__ MP215 MP215 Dealer database MP215
4_ MP311 MP311 Dealer database MP311

As shown on the display, option 4 can be used to remove an entry from the
relational database directory on the local server. If you remove an entry, you
receive another display that allows you to confirm the remove request for the
specified entry or select a different relational database directory entry. If you use
the Remove Relational Database Directory Entry (RMVRDBDIRE) command, you
have the option of specifying a specific relational database name, generic names,
all directory entries, or just the remote entries.

You have the option on the Work with RDB Directory Entries display to display
the details of an entry. Output from the Work with RDB Entries display is to a
display. However, if you use the Display Relational Database Directory Entry
(DSPRDBDIRE) command, you can send the output to a printer or an output file.
The relational database directory is not an iSeries object, so using an output file
provides a means of backup for the relational database directory. For more
information about using the (DSPRDBDIRE) command with an output file for
backing up the relational database directory, see “Saving and restoring relational
database directories” on page 135.

You have the option on the Work with RDB Directory Entries display to change an
entry in the relational database directory. You can also use the Change Relational
Database Directory Entry (CHGRDBDIRE) command to make changes to an entry
in the directory. You can change any of the optional command parameters and the
remote location name of the server. You cannot change a relational database name
for a directory entry. To change the name of a relational database in the directory,
remove the entry for the relational database and add an entry for the new database
name.

Note: If the remote location was changed in the relational database directory entry,
then the remote journal has to be removed using the Remove Remote
Journal (RMVRMTJRN) command or the QjoRemoveRemoteJournal API and
readded using the Add Remote Journal (ADDRMTJRN) command or the
QjoAddRemoteJournal API. If the remote location type, or authentication, or
something else was changed, then remote journaling just needs to be ended

80 OS/400 Distributed Database Programming V5R2

|
|
|

|
|
|
|
|
|

using the Change Remote Journal (CHGRMTJRN) command or the
QjoChangeJournalState API and restarted by also using the Change Remote
Journal (CHGRMTJRN) command or the qjoChangeJournalState API. To get
your change used for distributed files, you need to delete and recreate your
node group, and then recreate the file.

The *LOCAL directory entry

The directory entry containing *LOCAL is unique in that there is only one such
entry in the directory and it specifies the name of the local system database. The
associated RDB name can be used in an SQL CONNECT statement to connect to
the local database1. The effect of this is similar to using the CONNECT RESET SQL
statement, although is not normally necessary to use in this way.

However, if you must change the name of the local RDB entry, the procedure
includes doing the remove and add as explained in the previous paragraph. But
there are special considerations involved with removing the local entry, because
that entry contains some system-wide DRDA attribute information. If you try to
remove the entry, you will get message CPA3E01 (Removing or changing *LOCAL
directory entry may cause loss of configuration data (C G)), and you will be given
the opportunity to cancel the operation or continue. The message text goes on to
tell you that the entry is used to store configuration data entered with the Change
DDM TCP/IP Attributes (CHGDDMTCPA) command. If the *LOCAL entry is
removed, configuration data may be destroyed, and the default configuration
values will be in effect. If the default values are not satisfactory, configuration data
will have to be re-entered with the CHGDDMTCPA command. Before removing
the entry, you may want to record the values specified in the CHGDDMTCPA
command so that they can be restored after the *LOCAL entry is deleted and
added with the correct local RDB name.

Directory entries for local user databases

For a server with only one database (i.e., without independent auxiliary storage
pools configured), the *LOCAL entry refers to the single local database. For servers
with multiple databases (one system database and one or more user databases), the
*LOCAL entry refers to the system database. The local user databases are
represented by entries similar to remote *IP entries. The main difference is the
Remote Location field. In cases where the database cannot be switched to a
different server, this field will normally contain the word LOOPBACK.
LOOPBACK represents the IP address of the host server. If the database can be
switched, it is recommended that the user configure the server in such a way that
a specific IP address is associated with the database regardless of the server to
which it is attached. For an explanation on how dedicated IP address configuration
is done, see the Manage application CRG IP addresses topic in the iSeries
Information Center. In that case the IP address would be used in the Remote
Location field.

If LOOPBACK is used for a switchable database, then whenever it is switched
from the local server, the user will have to manually change the directory entry to

1. If you want to make a DRDA connection to the local server database, such as for program testing, there are two special RDB
names that can be used for that purpose: ME and MYSELF. An example usage would be a programmer adding a directory entry
with an RDB name of ME, with type of *IP, and with Remote Location name of LOOPBACK. He could then, in a program, do an
SQL CONNECT TO ME and establish a sockets DRDA connection to the local system. However, general use of these RDB names
is discouraged and they are documented only to warn that unexpected behavior can result from their use in some situations.

Chapter 5. Setting Up an iSeries Distributed Relational Database 81

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

replace LOOPBACK with the IP address of the new server to which it is attached,
and then change it back to LOOPBACK when the database is switched back.

Relational database directory setup example
The Spiffy Corporation network provides an example to illustrate how the
relational database directory is used on servers in a distributed relational database
network and show how each is set up. The example assumes the use of APPC for
communications, as opposed to TCP/IP, which would be simpler to set up.
However, some elements of the example are protocol-independent. The RDB
directory entries needed for APPC use would be needed in a TCP/IP network also,
but the parameters would differ. Host names or IP addresses and port
identifications would replace LU names, device descriptions, modes, TPNs, and so
forth.

A simple relationship to consider is the one between two regional offices as shown
below:

The relational database directory for each regional office must contain an entry for
the local relational database and an entry for the remote relational database
because each server is both an application requester (AR) and an application
server (AS). The commands to create the relational database directory for the
MP000 server are:
ADDRDBDIRE RDB(MP000) RMTLOCNAME(*LOCAL) TEXT(’Minneapolis region database’)

ADDRDBDIRE RDB(KC000) RMTLOCNAME(KC000) TEXT(’Kansas City region database’)

In the above example, the MP000 server identifies itself as the local relational
database by specifying *LOCAL for the RMTLOCNAME parameter. There is only
one relational database on an iSeries server. You can simplify identification of your
network relational databases if you make the relational database names in the
directory the same as the server name and the local location name for the local
server, and the same as the remote location name for the remote server.

Note: The server name is specified on the SYSNAME parameter of the Change
Network Attributes (CHGNETA) command. The local server is identified on
the LCLLOCNAME parameter of the CHGNETA command during
communications configuration. Remote locations using SNA (APPC) are
identified with the RMTCPNAME parameter on the Create Controller
Description (APPC) (CRTCTLAPPC) during communications configuration.
For an example on how these commands are used, see Example: APPN
configuration for a distributed relational database. Using the same names for

Figure 9. Relational Database Directory Setup for Two servers

82 OS/400 Distributed Database Programming V5R2

|

|
|
|

|
|

server names, network locations, and database names can help avoid
confusion, particularly in complex networks.

The corresponding entries for the KC000 server relational database directory are:
ADDRDBDIRE RDB(KC000) RMTLOCNAME(*LOCAL) TEXT(’Kansas City region database’)

ADDRDBDIRE RDB(MP000) RMTLOCNAME(MP000) TEXT(’Minneapolis region database’)

A more complex example to consider is that of a regional office to its dealerships.
For example, to access relational databases in the network shown below, the
relational database directory for MP000 server must be expanded to include an
entry for each of its dealerships.

A sample of the commands used to complete the MP000 relational database
directory to include all its dealer databases is as follows:
PGM
ADDRDBDIRE RDB(MP000) RMTLOCNAME(*LOCAL) +
TEXT(’Minneapolis region database’)
ADDRDBDIRE RDB(KC000) RMTLOCNAME(KC000)
TEXT(’Kansas City region database’)
ADDRDBDIRE RDB(MP101) RMTLOCNAME(MP101)
TEXT(’Dealer database MP101’)
ADDRDBDIRE RDB(MP002) RMTLOCNAME(MP110)
TEXT(’Dealer database MP110’)

Figure 10. Relational Database Directory Setup for Multiple servers

Chapter 5. Setting Up an iSeries Distributed Relational Database 83

.

.

.
ADDRDBDIRE RDB(MP215) RMTLOCNAME(MP201)
TEXT(’Dealer database MP201’)
ENDPGM

In the above example, each of the region dealerships is included in the
Minneapolis relational database directory as a remote relational database.

Since each dealership can serve as an AR to MP000 and to other dealership
application servers, each dealership must have a relational database directory that
has an entry for itself as the local relational database and the regional office and all
other dealers as remote relational databases. The database administrator has
several options to create a relational database directory at each dealership server.

The method that uses the most time and is most prone to error is to create a
relational database directory at each server by using the Add Relational Database
Directory Entry (ADDRDBDIRE) command to create each directory entry on all
servers that are part of the MP000 distributed relational database network.

A better alternative is to create a control language (CL) program like the one
shown in the above example for the MP000. The distributed relational database
administrator can copy this CL program for each of the dealership servers. To
customize this program for each dealership, the database administrator changes the
remote location name of the MP000 server to MP000, and changes the remote
location name of the local dealership to *LOCAL. The distributed relational
database administrator can distribute the customized CL program to each
dealership to be run on that server to build its unique relational database directory.

A third method is to write a program that reads the relational database directory
information sent to an output file as a result of using the Display Relational
Database Directory Entry (DSPRDBDIRE) command. This program can be
distributed to the dealerships, along with the output file containing the relational
database directory entries for the MP000 server. Each server could read the MP000
output file to create a local relational database directory. The Change Relational
Database Directory Entry (CHGRDBDIRE) command can then be used to
customize the MP000 server directory for the local server. For more information
about using an output file to create relational database directory entries, see
“Saving and restoring relational database directories” on page 135.

Setting up DRDA security
Distributed Relational Database Architecture (DRDA) security is covered in
Chapter 4, “Security for an iSeries Distributed Relational Database” on page 45, but
for the sake of completeness, it is mentioned here as a consideration before using
DRDA, or in converting your network from the use of advanced
program-to-program communications (APPC) to Transmission Control
Protocol/Internet Protocol (TCP/IP).

Security set up for TCP/IP is quite different from what is required for APPC. One
thing to be aware of is the lack of the ’secure location’ concept that APPC has.
Because a TCP/IP server cannot fully trust that a client server is who it says it is,
the use of passwords on connect requests is more important. To make it easier to
send passwords on connect requests, the use of server authorization lists associated
with specific user profiles has been introduced with TCP/IP support. Entries in
server authorization lists can be maintained by use of the xxxSVRAUTHE

84 OS/400 Distributed Database Programming V5R2

commands (where xxx represents ADD, CHG, and RMV) described in Chapter 4,
“Security for an iSeries Distributed Relational Database” on page 45 and in the
Control Language (CL) topic in the iSeries Information Center. An alternative to
the use of server authorization entries is to use the USER/USING form of the SQL
CONNECT statement to send passwords on connect requests.

In V5R2, Kerberos support was added, which provides another security option, if
you are using TCP/IP. For information about how to configure for Kerberos, see
the Network authentication service topic in the iSeries Information Center.

Setup at the server side includes deciding and specifying what level of security is
required for inbound connect requests. For example, should unencrypted
passwords be accepted? The default setting is that they are. That can be changed
by use of the Change DDM TCP/IP Attributes (CHGDDMTCPA) command.

Setting up the TCP/IP Server for DRDA
If you own a DRDA application server (AS) that will be using the TCP/IP
protocol, you will need to set up the DDM TCP/IP server. This can be as simple as
insuring that it is started when it is needed, which can be done by running the
following command if you want it to remain active at all times:

CHGDDMTCPA AUTOSTART(*YES)

But there are other parameters that you may want to adjust to tune the server for
your environment. These include the initial number of prestart jobs to start, the
maximum number of jobs, threshold when to start more, and so forth. See
“Managing the TCP/IP server” on page 112 for more information on this subject.

You may want to set up a common user profile for all clients to use when
connecting, or a set of different user profiles with different levels of security for
different classes of remote users. You can then use the Add Server Authentication
Entry (ADDSVRAUTE) command at the application requester (AR) to map each
user’s profile name at the AR to what user profile they will run under at the AS.
See the Authentication Method Negotiation topic for more information.

Setting up SQL Packages for Interactive SQL (ISQL)
This section applies only to non-iSeries Application Servers.

If either of the following are true, then you need to ensure that SQL packages are
created at the servers:
v If you have the DB2 UDB Query Manager and SQL Development Kit and plan

to use the Interactive SQL (STRSQL) function of that product
v If you plan to connect to non-iSeries DRDA servers that use TCP/IP from a

pre-V5R1 iSeries client, or to ones that do not have two-phase commit capability

STRSQL does not require SQL packages for iSeries servers. Normally, SQL
packages are created automatically at a non-iSeries application server (AS) for
users of STRSQL. However, a problem can occur because the initial connection for
STRSQL is to the local server, and that connection is protected by two-phase
commit protocols. If a subsequent connection is made to a server that is only
one-phase commit capable, or if TCP/IP is used from a pre-V5R1 iSeries client,
then that connection is read-only. When an attempt is made to automatically create
a package over such a connection, it fails because the creation of a package is
considered an update, and cannot be done over a read-only connection.

Chapter 5. Setting Up an iSeries Distributed Relational Database 85

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

The solution to this is to get rid of the connection to the local database before
connecting to the remote AS. This can be done by doing a RELEASE ALL
command followed by a COMMIT. Then the connection to the remote server can
be made and since it is the first connection, updates can be made over it.

When you start interactive SQL, you must specify a commitment control level of
something other than *NONE. Also, the user ID that you use to connect with must
have the proper authority to create an SQL package on the application server. If
you receive an SQLSTATE of 42501 on the connect attempt, you might not have
package creation authority.

For more information, see “Interactive SQL and Query Management setup on
unlike application servers” on page 255.

Setting up DDM files
The implementation of DRDA support on the iSeries server uses Distributed Data
Management (DDM) conversations for communications. Because of this, you can
use DDM in conjunction with distributed relational database processing. You can
use DDM to submit remote commands to a applicaton server (AS), copy tables
from one iSeries server to another, and process nondistributed relational database
work on another server.

With distributed relational database, information the application requester (AR)
needs to connect to a database is provided in the relational database directory.
When you use DDM, you must create a separate DDM file for each file you want
to work with on the applicaton server (AS). The DDM file is used by the
application on the application requester (AR) to identify a remote file on the
applicaton server (AS) and the communications path to the applicaton server (AS).

As of V5R2, you can also create DDM files with a reference to an RDB directory
entry. Some database administration tasks discussed in Chapter 6, “Distributed
Relational Database Administration and Operation Tasks” use DDM to access
remote files. A DDM file is created using the Create Distributed Data Management
File (CRTDDMF) command. You can create a DDM file before the file and
communication path named in the file have been created. However, the file named
in the DDM file and the communications information must be created before the
DDM file is used by an application.

The following example shows one way a DDM file can be created:
CRTDDMF FILE (TEST/KC105TST) RMTLOCNAME(KC105)

RMTFILE(SPIFFY/INVENT)

If the DDM file access in the example is to be over TCP/IP, you must specify *IP in
the second element of the RMTLOCNAME parameter.

This command creates a DDM file named KC105TST and stores it in the TEST
library on the application requester (AR). This DDM file uses the remote location
KC105 to access a remote file named INVENT stored in the SPIFFY library on the
target iSeries server.

You can use options on the Work with DDM Files display to change, delete,
display or create DDM files.

For more information about using DDM files, see the Distributed Data
Management topic in the iSeries Information Center.

86 OS/400 Distributed Database Programming V5R2

|
|
|
|
|
|
|
|

Loading data into tables in a distributed relational database
Applications in the distributed relational database environment operate on data
stored in tables. In general, applications are used to query a table for information,
to insert, update, or delete rows of a table or tables, or to create a new table. Other
situations occur where data on one server must be moved to another server.

This section discusses many of the methods available to the following tasks:
v Loading new data into the tables of a distributed relational database
v Moving data from one iSeries server to another
v Moving a database to an iSeries server from a non-iSeries server

Loading new data into the tables of a distributed relational
database

You load data into a table by entering each data item into the table. On the iSeries
server, you can use SQL, the DB2 UDB for iSeries Query Management function, or
the data file utility portion of iSeries Application Development Tools to create
applications that insert data into a table.

Loading data into a table using SQL
A simple method of loading data into a table is to use an SQL application and the
SQL INSERT operation.

Consider a situation in which a Spiffy regional center needs to add inventory items
to a dealership’s inventory table on a periodic basis as regular inventory shipments
are made from the regional center to the dealership.
INSERT INTO SPIFFY.INVENT

(PART, DESC, QTY, PRICE)
VALUES
(’1234567’, ’LUG NUT’, 25, 1.15)

The statement above inserts one row of data into a table called INVENT in an SQL
collection named SPIFFY.

For each item on the regular shipment, an SQL INSERT statement places a row in
the inventory table for the dealership. In the above example, if 15 different items
were shipped to the dealership, the application at the regional office could include
15 SQL INSERT statements or a single SQL INSERT statement using host variables.

In this example, the regional center is using an SQL application to load data in to a
table at an application server (AS). Run-time support for SQL is provided in the
OS/400 licensed program, so the AS does not need the DB2 Query Manager and
SQL Development Kit for iSeries licensed program. However, the DB2 Query
Manager and SQL Development Kit for iSeries licensed program is required to
write the application. For more information on the SQL programming language,
see the SQL Programming Concepts and the SQL Reference topics in the iSeries
Information Center.

Manipulating data in tables and files using the iSeries Query
Management function
The OS/400 licensed program provides a DB2 UDB for iSeries Query Management
function that allows you to manipulate data in tables and files. A query is created
using an SQL query statement. You can run the query through CL commands or
through a query callable interface in your application program. Using the query

Chapter 5. Setting Up an iSeries Distributed Relational Database 87

management function, you can insert a row of data into a table for the inventory
updates described in the previous section as follows.

Create a source member INVLOAD in the source physical file INVLOAD and the
SQL statement:
INSERT INTO SPIFFY/INVENT

(PART, DESC, QTY, PRICE)
VALUES

(&PARTVALUE, &DESCVALUE, &QTYVALUE, &PRICEVALUE)

Use a CL command to create a query management query object:
CRTQMQRY QMQRY(INVLOAD) SRCFILE(INVLOAD) SRCMBR(INVLOAD)

The following CL command places the INSERT SQL statement results into the
INVENT table in the SPIFFY collection. Use of variables in the query
(&PARTVALUE, &DESCVALUE, and so on) allows you to enter the desired values
as part of the STRQMQRY call, rather than requiring that you create the query
management query again for each row.
STRQMQRY QMQRY(INVLOAD) RDB(KC000)

SETVAR((PARTVALUE ’1134567’’) (DESCVALUE ’’’Lug Nut’’’)
(QTYVALUE 25) (PRICEVALUE 1.15))

The query management function is dynamic, which means its access paths are built
at run time instead of when a program is compiled. For this reason the DB2 UDB
for iSeries Query Management function is not as efficient for loading data into a
table as an SQL application. However, you need the DB2 Query Manager and SQL
Development Kit for iSeries product to write an application; run-time support for
SQL and query management is part of the OS/400 licensed program.

For more information on the query management function, see the Query
Management Programming book.

Entering data, updating tables, and making inquiries using Data
File Utility
The data file utility (DFU), which is part of the iSeries Applications Development
Tools package available from IBM, is a program builder that helps you create
programs to enter data, update tables, and make inquiries. You do not need a
programming language to use DFU. Your data entry, maintenance, or inquiry
program is created when you respond to a series of displays. An advantage in
using DFU is that its generic nature allows you to create a database update
program to load data to a table faster than you could by using programming
languages such as SQL. You can work with data on a remote server using DFU
with DDM files, or by using display station pass-through to run DFU at the
application source (AS).

For more information on the DFU program generator, see the ADTS/400: Data File

Utility book.

Moving data from one iSeries server to another
A number of situations occur in enterprise operations that could require moving
data from one iSeries server to another. For example, a new dealership might open
in a region, and some clients from one or two other dealerships might be
transferred to the new dealership as determined by client address. Perhaps a
dealership closed or no longer represents Spiffy Corporation sales and service. That
dealer’s inventories and required service information must be allocated to either

88 OS/400 Distributed Database Programming V5R2

the regional office or other area dealerships. Perhaps a dealership has grown to the
extent that it needs to upgrade its server, and the entire database must be moved
to the new server.

Some alternatives for moving data from one iSeries server to another are:
v User-written application programs
v Interactive SQL (ISQL)
v DB2 UDB for iSeries Query Management functions
v Copy to and from tape or diskette devices
v Copy file commands with DDM
v The network file commands
v iSeries server save and restore commands

Creating a User-Written Application Program
A program compiled with DUW connection management can connect to a remote
database and a local database and FETCH from one to INSERT into the other to
move the data. By using multi-row FETCH and multi-row INSERT, blocks of
records can be processed at one time. Commitment control can be used to allow
checkpoints to be performed at points during the movement of the data to avoid
having to start the copy over in case of a failure.

Querying a database using Interactive SQL
Using the SQL SELECT statement and interactive SQL, you can query a database
on another iSeries server for data you need to create or update a table on the local
server. The SELECT statement allows you to specify the table name and columns
containing the desired data, and selection criteria or filters that determine which
rows of data are retrieved. If the SELECT statement is successful, the result is one
or more rows of the specified table.

In addition to getting data from one table, SQL allows you to get information from
columns contained in two or more tables in the same database by using a join
operation. If the SELECT statement is successful, the result is one or more rows of
the specified tables. The data values in the columns of the rows returned represent
a composite of the data values contained in specified tables.

Using an interactive SQL query, the results of a query can be placed in a database
file on the local server. If a commitment control level is specified for the interactive
SQL process, it applies to the application server (AS); the database file on the local
server is under a commitment control level of *NONE.

Interactive SQL allows you to do the following:
v Create a new file for the results of a select.
v Replace and existing file.
v Create a new member in a file.
v Replace a member.
v Append the results to an existing member.

Consider the situation in which the KC105 dealership is transferring its entire stock
of part number ‘1234567’ to KC110. KC110 queries the KC105 database for the part
they acquire from KC105. The result of this inventory query is returned to a
database file that already exists on the KC110 server. This is the process you can
use to complete this task:

Chapter 5. Setting Up an iSeries Distributed Relational Database 89

Use the Start SQL (STRSQL) command to get the interactive SQL display. Before
you enter any SQL statement (other than a CONNECT) for the new database,
specify that the results of this operation are sent to a database file on the local
server by doing the following steps:
1. Select the Services option from the Enter SQL Statements display.
2. Select the Change Session Attributes option from the Services display.
3. Enter the Select Output Device option from the Session Attributes Display.
4. Type a 3 for a database file in the Output device field and press Enter. The

following display is shown:

Change File

Type choices, press Enter.

File QSQLSELECT Name
Library QGPL Name
Member *FILE Name, *FILE, *FIRST

Option 1 1=Create new file
2=Replace file
3=Create new member
4=Replace member
5=Add to member

For a new file:
Authority *LIBCRTAUT *LIBCRTAUT, *CHANGE, *ALL
*EXCLUDE, *USE
authorization list name

Text

F3=Exit F5=Refresh F12=Cancel

5. Specify the name of the database file that is to receive the results.

When the database name is specified, you can begin your interactive SQL
processing as shown in the example below.

Enter SQL Statements

Type SQL statement, press Enter.
Current connection is to relational database KC000.
CONNECT TO KC105__
Current connection is to relational database KC105.
====> SELECT * FROM INVENTORY___
WHERE PART = ’1234567’___
__
__
__
__
__
__
__
__
__
__
__
__
Bottom
F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line
F12=Cancel F13=Services F24=More keys

For more information on the SQL programming language and interactive SQL, see
the SQL Programming Concepts and the SQL Reference topics in the iSeries
Information Center.

90 OS/400 Distributed Database Programming V5R2

Querying remote servers using DB2 UDB for iSeries Query
Management function
The DB2 UDB for iSeries Query Management function provides almost the same
support as interactive SQL for querying a remote server and returning the results
in an output file to the local server.

Both interactive SQL and the query management function can perform data
manipulation operations (INSERT, DELETE, SELECT, and so on) for files or tables
without the requirement that the table (or file) already exist in a collection (it can
exist in a library). Also, query management uses SQL CREATE TABLE statements
to provide data definition when a new table is created on the server as a result of
the query. Tables created from a query management function follow the same
guidelines and restrictions that apply to a table created using SQL.

However, the query management function does not allow you to specify a member
when you want to add the results to a file or table. The results of a query function
are placed in the first file member unless you use the Override with Database File
(OVRDBF) command to specify a different member before starting the query
management function.

For more information on the query management function, see the Query
Management Programming book.

Copying files to and from tape or diskette
You can copy a table or file to tape or diskette using the Copy to Tape
(CPYTOTAP) and Copy to Diskette (CPYTODKT) commands on the iSeries server.

Data on tape or diskette can be loaded on another server using the Copy from
Tape (CPYFRMTAP) and Copy from Diskette (CPYFRMDKT) commands. For more
information about using these commands, see the Tape and Diskette Device

Programming book.

You can also use the Copy File (CPYF) command to load data on tape into DB2
UDB for iSeries. This is especially useful when loading data that was unloaded
from DB2 UDB for z/OS, or DB2 UDB Server for VM (SQL/DS). Nullable data can
be unloaded from these servers in such a way that a single-byte flag can be
associated with each nullable field. CPYF with the *NULLFLAGS option specified
for the FMTOPT parameter can recognize the null flags and ignore the data in the
adjacent field on the tape and make the field null in DB2 UDB for iSeries. Another
useful FMTOPT parameter value for importing data from IBM mainframes is the
*CVTFLOAT value. It allows floating point data stored on tape in System/390
format to be converted to the IEEE format used by DB2 UDB for iSeries.

Moving data between iSeries servers using Copy File Commands
Another way to move data from one iSeries server to another is to copy the data
using the copy file commands with DDM. You can use the Copy File (CPYF), Copy
Source File (CPYSRCF), and Copy From Query File (CPYFRMQRYF) commands to
copy data between files on source and application source (AS)s. You can copy local
relational database or device files from (or to) remote database files, and remote
files can also be copied to remote files.

For example, if a dealership closes, the distributed relational database
administrator can copy the client and inventory tables from the remote server to
the local regional server. The administrator needs a properly authorized user
profile on the application source (AS) to access and copy the tables and must
create a DDM file on the application requester (AR) for each table or file that is

Chapter 5. Setting Up an iSeries Distributed Relational Database 91

copied. The following example shows the command the database administrator
would use to copy a table called INVENT in a collection called SPIFFY from a
server with a remote location name of KC105 to a regional center server called
KC000. A DDM file called INCOPY in a library called TEST on the application
requester (AR) KC000 is used for the file access. These commands are run on the
KC000 server:
CRTDDMF FILE(TEST/INCOPY) RMTFILE(SPIFFY/INVENT)

RMTLOCNAME(KC105)
CPYF FROMFILE(TEST/INCOPY) TOFILE(TEST/INVENTDDM)

MBROPT(*ADD)

In this example, the administrator runs the commands on the KC000 server. If the
administrator is not on the KC000 server, then pass-through must be used to run
these commands on the KC000 server. The Submit Remote Command
(SBMRMTCMD) command cannot be used to run the above commands because
the iSeries server cannot be a application requester (AR) and a application source
(AS) for the same job.

Consider the following items when using this command with DDM:
v A DDM file can be specified on the FROMFILE and the TOFILE parameters for

the Copy File (CPYF) command and Copy Source File (CPYSRCF) commands.

Note: For the Copy From Query File (CPYFRMQRYF), Copy from Diskette
(CPYFRMDKT), and Copy from Tape (CPYFRMTAP) commands, a DDM
file name can be specified only on the TOFILE parameter; for the Copy to
Diskette (CPYTODKT) and Copy to Tape (CPYTOTAP) commands, a
DDM file name can be specified only on the FROMFILE parameter.

v When a delete-capable file is copied to a non-delete capable file, you must
specify COMPRESS(*YES), or an error message is sent and the job ends.

v If the remote file name on a DDM file specifies a member name, the member
name specified for that file on the Copy File (CPYF) command must be the same
as the member name on the remote file name on the DDM file. In addition, the
Override with Database File (OVRDBF) command cannot specify a member
name that is different from the member name on the remote file name on the
DDM file.

v If a DDM file does not specify a member name and if the Override with
Database File (OVRDBF) command specifies a member name for the file, the
Copy File (CPYF) command uses the member name specified on the OVRDBF
command.

v If the TOFILE parameter is a DDM file that refers to a file that does not exist,
CPYF creates the file. Following are special considerations for remote files
created with the Copy File (CPYF) command:
– The user profile for the target DDM job must be authorized to the Create

Physical File (CRTPF) command on the application source (AS).
– For an iSeries target, the TOFILE parameter has all the attributes of the

FROMFILE parameter except those described in the File Management topic in
the iSeries Information Center.

v When using TCP/IP, the second element of the RMTLOCNAME parameter of
the Create Distributed Data Management File (CRTDDMF) command must be
*IP.

For more information about using the Copy File commands to copy between
servers, see the Distributed Data Management topic in the iSeries Information
Center.

92 OS/400 Distributed Database Programming V5R2

Transferring data over networks using Network File Commands
Data can be transferred over networks protocols that support SNA distribution
services (SNADS). In addition to APPC and APPN protocols used with distributed
relational database processing, SNADS can be used with binary synchronous
equivalence link (BSCEL) and SNA Upline Facility (SNUF) protocols. An iSeries
server supported by SNADS can send data to another server with the Send
Network File (SNDNETF) command and receive a network file from another
server with the Receive Network File (RCVNETF) and Work with Network Files
(WRKNETF) commands.

Moving a table using server save and restore commands
You can move a table from another iSeries server using the Save Object (SAVOBJ)
and Restore Object (RSTOBJ) commands. The save commands save database files
on tape, diskette, or a save file. The save file can be distributed to another server
through communications.

The save and restore commands used to save and restore tables or files include:
v Save Library (SAVLIB) command saves one or more collections or libraries
v Save Object (SAVOBJ) command saves one or more objects (including database

tables and views)
v Save Changed Object (SAVCHGOBJ) command saves any objects that have

changed since either the last time the collection or library was saved or from a
specified date

v Restore Library (RSTLIB) command restores a collection or library
v Restore Object (RSTOBJ) command restores one or more objects (including

database tables and views)

For example, if two dealerships were merging, the save and restore commands
could be used to save collections and tables for one relational database, which are
then restored on the remaining server’s relational database. To accomplish this an
administrator would:
1. Use the Save Library (SAVLIB) command on server A to save a collection or

use the Save Object (SAVOBJ) command on server A to save a table.
2. Specify whether the data is saved to a save file, which can be distributed using

SNADS, or saved on tape or diskette.
3. Distribute the save file to server B or send the tape or diskette to server B.
4. Use the Restore Library (RSTLIB) command on server B to restore a collection

or use the Restore Object (RSTOBJ) command on server B to restore a table.

A consideration when using the save and restore commands is the ownership and
authorizations to the restored object. A valid user profile for the current object
owner should exist on the server where the object is restored. If the current
owner’s profile does not exist on this server, the object is restored under the
QDFTOWN default user profile. User authorizations to the object are limited by
the default user profile parameters. A user with QSECOFR authority must either
create the original owner’s profile on this server and make changes to the restored
object ownership, or specify new authorizations to this object for both local and
remote users.

For more information about the save and restore commands, see the Backup and
Recovery topic in the iSeries Information Center.

Chapter 5. Setting Up an iSeries Distributed Relational Database 93

Moving a database to an iSeries server from a non-iSeries
server

You may need to move a file from another IBM server to an iSeries server or from
a non-IBM server to the iSeries server. This section lists alternatives for moving
data to an iSeries server from a non-iSeries server. However, you must refer to
manuals supplied with the other server or identified for the application for specific
instructions on its use.

Moving data from another IBM server
There are a number of methods you can use to move data from another IBM server
to an iSeries server. These methods include the following:
v A high-level language program can be written to extract data from another

server. A corresponding program for the server can be used to load data to the
server.

v For servers supporting other DRDA implementations, you can use SQL functions
to move data. For example, with distributed unit of work, you can open a query
against the source of the data and, in the same unit of work, insert the data into
a table on the server. For best performance, blocking should be used in the
query and a multirow insert should be done at the server. For additional
information, see “Tips: Designing distributed relational database applications” on
page 20.

v Data can be extracted from tables and files on the other server and sent to the
iSeries server on tape or diskette or over communications lines.
– From a DB2 UDB for z/OS database, a sample program called DSNTIAUL,

supplied with the database manager, can be used to extract data from file or
tables.

– From an DB2 UDB Server for VM (SQL/DS) database, the Database Services
Utility portion of the database manager can be used to extract data.

– From both DB2 UDB for z/OS or DB2 UDB Server for VM databases, Data
Extract (DXT*) can be used to extract data. However, DXT handling of null
data is not compatible with the Copy File handling of null data described
below. Therefore, DXT is not recommended for use in unloading relational
data for migration to an iSeries server.

– From IMS/DB hierarchical databases, DXT can be used to extract data.
v You can use standard tape management techniques to copy data to tape or

diskette from DB2 UDB for z/OS or DB2 UDB Server for VM databases. The
iSeries server uses the Copy from Tape (CPYFRMTAP) command to load data
from tape. The Copy File (CPYF) command, however, provides special support
for migrating data from IBM mainframe computers. CPYF can be used with tape
data by the use of the Override with Tape File (OVRTAPF) command. The
OVRTAPF command lets you specify special tape-specific parameters which may
be necessary when you import data from a server other than the iSeries server.
The special CPYF support lets you import nullable data and floating point data.
Nullable data can be unloaded from mainframes in such a way that a single-byte
flag can be associated with each nullable field. With the *NULLFLAGS option
specified for the FMTOPT parameter, the Copy File (CPYF) command can
recognize the null flags and ignore the data in the adjacent field on the tape and
make the field null in DB2 UDB for iSeries. The other useful FMTOPT parameter
value for importing data from IBM mainframes is the *CVTFLOAT value. It
allows floating point data stored on tape in System/390 format to be converted
to the IEEE format used by DB2 UDB for iSeries.

94 OS/400 Distributed Database Programming V5R2

|
|
|

For more information on using tape devices and diskette devices with the iSeries

server, see the Tape and Diskette Device Programming book. For more
information about using the Copy File commands to copy between servers, see
the Distributed Data Management book and the Control Language (CL) topic in
the iSeries Information Center.

v Data sent over communications lines can be handled through SNADS support
on the iSeries server. SNADS support transfers network files for BSCEL and
SNUF protocols in addition to the APPC or APPN protocols used for distributed
relational database processing.
– From an MVS system, data can be sent to the iSeries server using TSO XMIT

functions. The server uses the Work with Network Files (WRKNETF) or
Receive Network File (RCVNETF) commands to receive a network file.

– From a VM system, data can be sent to the server using SENDFILE functions.
The server uses the Work with Network Files (WRKNETF) or Receive
Network File (RCVNETF) commands to receive a network file.

v From Microsoft Windows, client data can be sent to the iSeries server using
iSeries Access, a separately ordered IBM product.

v From a variety of workstation clients, you can use the DB2 Connect IMPORT
and EXPORT utilities to copy data to and from an iSeries server.

v Data can also be sent over communications lines that do not support SNADS,
such as asynchronous communications. File transfer support (FTS), a utility that
is part of the OS/400 licensed program, can be used to send and receive data.
For more information about working with communications and communications

files see the ICF Programming book.

Moving data from a non-IBM server
You can copy files or tables to tape or diskette from the other server and load these
files on an iSeries server. Use the Copy From Import File (CPYFRMIMPF)
command to do this.

Vendor independent communications functions are also supported through two
separately licensed iSeries programs.

Peer-to-peer connectivity functions for both local and wide area networks is
provided by the Transmission Control Protocol/Internet Protocol (TCP/IP). The
File Transfer Protocol (FTP) function of the iSeries TCP/IP Connectivity
Utilities/400 licensed program allows you to receive many types of files,
depending on the capabilities of the remote server. For more information, see the
TCP/IP setup topic in the iSeries Information Center.

The OSI File Services/400 licensed program (OSIFS/400) provides file management
and transfer services for open servers interconnection (OSI) networks. OSIFS/400,
with the prerequisite licensed program OSI Communications Subsystem/400,
connects the iSeries server to remote IBM or non-IBM servers that conform to OSI
file transfer, access, and management (FTAM) standards.

OSIFS/400 provides either an interactive interface or an application programming
interface (API) to copy or move files from a remote server to a local iSeries server.
For more information, see the OSI Communications Subsystem Programming and
Concepts Guide.

Chapter 5. Setting Up an iSeries Distributed Relational Database 95

|
|

|
|

96 OS/400 Distributed Database Programming V5R2

Chapter 6. Distributed Relational Database Administration and
Operation Tasks

As an administrator for a distributed relational database, you are responsible for
work being done on several servers. Work that originates on your local system as
an application requester (AR) can be monitored in the same way that any other
work is monitored on an iSeries server. When you are tracking units of work being
done on the local system as an application server (AS), you use the same tools but
look for different kinds of information.

This chapter discusses ways that you can administer the distributed relational
database work being done across a network. Most of the commands, processes,
and other resources discussed here do not exist just for distributed relational
database use, they are tools provided for the operation of any iSeries server. All
administration commands, processes and resources discussed here are included
with the OS/400 program, along with all of the DB2 UDB for iSeries functions.

Work management functions on the iSeries server provide effective ways to track
work on several servers by allowing you to do the following:
v Monitoring relational database activity
v Operating remote iSeries servers
v Controlling DDM conversations
v Displaying objects used by programs
v Dropping a collection from a distributed relational database
v Job accounting in a distributed relational database
v Managing the TCP/IP Server
v Auditing the relational database directory

Monitoring relational database activity
You can rely on control language (CL) commands, all of which provide similar
information, but in different ways, to give you a view of work on an iSeries server.
See the following topics form more information about the commands:
v Working with jobs in a distributed relational database.

The Work with Job (WRKJOB) command gives you information specific to a job
if you know the job name or the job from which you enter the WRKJOB comma

v Working with user jobs in a distributed relational database.
The Work with User Jobs (WRKUSRJOB) command provides you with more
detailed information on a job if you know the user profile under which the job is
running. (In the TCP/IP environment, use WRKUSRJOB QUSER *ACTIVE.)

v Working with active jobs in a distributed relational database.
The Work with Active Jobs (WRKACTJOB) command provides the most general
look at work being done on the server. It shows all jobs that are currently
running on the server and some statistics about each one.

v Working with commitment definitions in a distributed relational database.

© Copyright IBM Corp. 1998, 2001, 2002 97

|
|
|

The Work with Commitment Definitions (WRKCMTDFN) command displays
commitment definitions, which are used to store information about commitment
control when commitment control is started by the Start Commitment Control
(STRCMTCTL) command.

In addition to using these commands to view the work on a server, you might also
want to track the information or locate a specific job. See the following topics for
detailed information:
v Tracking request information with the job log of a distributed relational database
v Locating distributed relational database jobs

Working with jobs in a distributed relational database
The Work with Job (WRKJOB) command presents the Work with Job menu. This
menu allows you to select options to work with or to change information related
to a specified job. Enter the command without any parameters to get information
about the job you are currently using. Specify a job to get the same information
pertaining to it by entering its name in the command like this:
WRKJOB JOB(job-number/user-ID/job-name)

You can get the information provided by the options on the menu whether the job
is on a job queue, output queue, or active. However, a job is not considered to be
in the server until all of its input has been completely read in. Only then is an
entry placed on the job queue. The options for the job information are:
v Job status attributes
v Job definition attributes
v Spooled file information

Information about the following options can be shown only when the job is active:
v Job run attributes
v Job log information
v Program stack information
v Job lock information
v Library list information
v Open file information
v File override information
v Commitment control status
v Communications status
v Activation groups
v Mutexes

Option 10 (Display job log) gives you information about an active job or a job on a
job queue. For jobs that have ended you can usually find the same information by
using option 4 (Work with spooled files). This presents the Work with Spooled
Files display, where you can use option 5 to display the file named QPJOBLOG if
it is on the list.

Working with user jobs in a distributed relational database
If you know the user profile (user name) being used by a job, you can use the
Work with User Jobs (WRKUSRJOB) command to display or change job
information. Enter the command without any parameters to get a list of the jobs in

98 OS/400 Distributed Database Programming V5R2

the server with your user profile. You can specify any user and the job status to
shorten the list of jobs by entering its name in the command like this:
WRKUSRJOB USER(KCDBA)

The Work with User Jobs display appears with names and status information of
user jobs running in the server (*ACTIVE), on job queues (*JOBQ), or on an output
queue (*OUTQ). The following display shows the active and ended jobs for the
user named KCDBA:

Work with User Jobs KC105
03/29/92 16:15:33
Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect

Opt Job User Type -----Status------ Function
__ KC000 KCDBA CMNEVK OUTQ
__ KC000 KCDBA CMNEVK OUTQ
__ KC000 KCDBA CMNEVK OUTQ
__ KC000 KCDBA CMNEVK OUTQ
__ KC000 KCDBA CMNEVK ACTIVE
__ KC0001 KCDBA CMNEVK ACTIVE * -PASSTHRU
__ KC0001 KCDBA INTER ACTIVE CMD-WRKUSRJOB

Bottom
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display schedule data
F12=Cancel F21=Select assistance level

This display lists all the jobs in the server for the user, shows the status specified
(*ALL in this case), and shows the type of job. It also provides you with eight
options (2 through 8 and 13) to enter commands for a selected job. Option 5
presents the Work with Job display described above.

The Work with User Jobs (WRKUSRJOB) command is useful when you want to
look at the status of the DDM TCP/IP server jobs if your server is using TCP/IP.
Run the following command:

WRKUSRJOB QUSER *ACTIVE

Page down until you see the jobs starting with the characters QRWT. If the server is
active, you should see one job named QRWTLSTN, and one or more named QRWTSRVR
(unless prestart DRDA jobs are not run on the server). The QRWTSRVR jobs are
prestart jobs. If you do not see the QRWTLSTN job, run the following command to
start it:

STRTCPSVR *DDM

If you see the QRWTLSTN job and not the QRWTSRVR jobs, and the use of DRDA
prestart jobs has not been disabled, run the following command to start the
prestart jobs:

STRPJ subsystem QRWTSRVR

Prior to V5R2, the subsystem that QRWTSRVR normally ran in was QSYSWRK.
After V5R1, QRWTSRVR runs in QUSRWRK.

Chapter 6. Distributed Relational Database Administration and Operation Tasks 99

|
|

Working with active jobs in a distributed relational database
Use the Work with Active Jobs (WRKACTJOB) command if you want to monitor
the jobs running for several users or if you are looking for a job and you do not
know the job name or the user ID. When you enter this command, the Work with
Active Jobs display appears. It shows the performance and status information for
jobs that are currently active on the server. All information is gathered on a job
basis and grouped by subsystem.

The display below shows the Work with Active Jobs display on a typical day at the
KC105 system:

Work with Active Jobs KC105
03/29/92 16:17:45
CPU %: 41.7 Elapsed time: 04:37:55 Active jobs: 42

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
__ QBATCH QSYS SBS .0 DEQW
__ QCMN QSYS SBS .0 DEQW
__ QINTER QSYS SBS .0 DEQW
__ DSP01 CLERK1 INT .0 CMD-STRSQL DSPW
__ DSP02 CLERK2 INT .0 * -CMDENT DSPW

More...
Parameters or command
===>
F3=Exit F5=Refresh F10=Restart statistics F11=Display elapsed data
F12=Cancel F23=More options F24=More keys

When you press F11 (Display elapsed data), the following display is provided to
give you detailed status information.

Work with Active Jobs KC105
03/29/92 16:17:45
CPU %: 41.7 Elapsed time: 04:37:55 Active jobs: 42

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...
--------Elapsed---------
Opt Subsystem/Job Type Pool Pty CPU Int Rsp AuxIO CPU %
__ QBATCH SBS 2 0 4.4 108 .0
__ QCMN SBS 2 0 20.7 668 .0
__ KC000 EVK 2 50 .1 9 .0
__ KC0001 EVK 2 50 .1 9 .0
__ MP000 EVK 2 50 .1 14 .0
__ QINTER SBS 2 0 7.3 4 .0
__ DSP01 INT 2 20 .1 0 .0
__ DSP02 INT 2 20 .1 0 .0

More...
Parameters or command
===>
F3=Exit F5=Refresh F10=Restart statistics F11=Display status
F12=Cancel F23=More options F24=More keys

The Work with Active Jobs display gives you information about job priority and
server usage as well as the user and type information you get from the Work with

100 OS/400 Distributed Database Programming V5R2

User Jobs display. You also can use any of 11 options on a job (2 through 11 and
13), including option 5, which presents you with the Work with Job display for the
selected job.

Another method to view information about job priority and server usage is to use
the iSeries Navigator. To do this, follow these steps:
1. Select databases in the iSeries Navigator interface.
2. Select a remote database you want to view information about.
3. Right click and select properties. This will open a properties window with the

information displayed.

Working with commitment definitions in a distributed
relational database

Use the Work with Commitment Definitions (WRKCMTDFN) command if you
want to work with the commitment definitions on the server. A commitment
definition is used to store information about commitment control when commitment
control is started by the Start Commitment Control (STRCMTCTL) command.
These commitment definitions may or may not be associated with an active job.
Those not associated with an active job have been ended, but one or more of its
logical units of work has not yet been completed.

The Work with Commitment Definitions (WRKCMTDFN) command can be used to
work with commitment definitions based on the job name, status, or logical unit of
work identifier of the commitment definition.

On the STATUS parameter, you can specify all jobs or only those that have a status
value of *RESYNC or *UNDECIDED. *RESYNC shows only the jobs that are
involved with resynchronizing their resources in an effort to reestablish a
synchronization point; a synchronization point is the point where all resources are in
consistent state.

*UNDECIDED shows only those jobs for which the decision to commit or roll back
resources is unknown.

On the LUWID parameter, you can display commitment definitions that are
working with a commitment definition on another server. Jobs containing these
commitment definitions are communicating using an APPC protected conversation.
An LUWID can be found by displaying the commitment definition on one server
and then using it as input to the Work with Commitment Definitions
(WRKCMTDFN) command to find the corresponding commitment definition.

You can use the Work with Commitment Definitions (WRKCMTDFN) command to
free local resources in jobs that are undecided, but only if the commitment
definitions are in a Pafter v5

repared (PRP) or Last Agent Pending (LAP) state. You can force the commitment
definition to either commit or roll back, and thus free up held resources; control
does not return to the program that issued the original commit until the initiator
learns of the action taken on the commitment definition.

You can also use the Work with Commitment Definitions (WRKCMTDFN)
command to end resynchronization in cases where it is determined that
resynchronization will not ever complete with another server.

Chapter 6. Distributed Relational Database Administration and Operation Tasks 101

|
|

|

|

|
|

For more information on commitment control and resynchronization, see the
Troubleshoot Transactions and Commitment Control topic in the iSeries
Information Center.

Tracking request information with the job log of a distributed
relational database

Every job on the iSeries server has a job log that contains information related to
requests entered for a job. The information in a job log includes:
v Commands that were used by a job
v Messages that were sent and not removed from the program message queues
v Commands in a CL program if the program was created with

LOGCLPGM(*JOB) and the job specifies LOGCLPGM(*YES) or the CL program
was created with LOGCLPGM(*YES)

At the end of the job, the job log can be written to a spooled file named
QPJOBLOG and the original job log is deleted. You can control what information is
written in the job log by specifying the LOG parameter of a job description.

The way to display a job log depends on the status of the job. If the job has ended
and the job log is not yet printed, find the job using the Work with User Jobs
(WRKUSRJOB) command, then select option 8 (Display spooled file). Find the
spooled file named QPJOBLOG and select option 5 (Display job log). You can also
display a job log by using the Work with Job (WRKJOB) command and other
options on the Work with Job display.

If the batch or interactive job is still active, or is on a job queue and has not yet
started, use the WRKUSRJOB command to find the job. The Work with Active Jobs
(WRKACTJOB) command is used to display the job log of active jobs and does not
show jobs on job queues. Select option 5 (Work with job) and then select option 10
(Display job log).

To display the job log of your own interactive job, do one of the following:
v Enter the Display Job Log (DSPJOBLOG) command.
v Enter the Work with Job (WRKJOB) command and select option 10 (Display job

log) from the Work with Job display.
v Press F10 (Display detailed messages) from the Command Entry display to

display messages that are shown in the job log.

When you use the Display Job Log (DSPJOBLOG) command, you see the Job Log
display. This display shows program names with special symbols, as follows:

>> The running command or the next command to be run. For example, if a
CL or high-level language program was called, the call to the program is
shown.

> The command has completed processing.

. . The command has not yet been processed.

? Reply message. This symbol marks both those messages needing a reply
and those that have been answered.

Locating distributed relational database jobs
When you are looking for information about a distributed relational database job
on an application requester (AR) and you know the user profile that is used, you
can find that job by using the Work with User Jobs (WRKUSRJOB) command. You

102 OS/400 Distributed Database Programming V5R2

can also use this command on the application server (AS), but be aware that the
user profile on the AS may be different from that used by the AR. For TCP/IP
servers, the user profile that qualifies the job name will always be QUSER, and the
job name will always be QRWTSRVR. The Display Log (DSPLOG) command can
be used to help find the complete server job name. The message will be in the
following form:

DDM job 031233/QUSER/QRWTSRVR servicing user XY on 10/02/97 at 22:06

If there are several jobs listed for the specified user profile and the relational
database is accessed using DRDA, enter option 5 (Work with job) to get the Work
with Job display. From this display, enter option 10 (Display job log) to see the job
log. The job log shows you whether this is a distributed relational database job
and, if it is, to which remote server the job is connected. Page through the job log
looking for one of the following messages (depending on whether the connection is
using APPC or TCP/IP):

CPI9150
DDM job started.

CPI9160
Database connection started over TCP/IP or a local socket.

The second level text for message CPI9150 and CPI9160 contains the job name for
the AS job.

If you are on the AS and you do not know the job name,2 but you know the user
name, use the Work with User Jobs (WRKUSRJOB) command. If you do not
specify a user, the command returns a list of the jobs under the user profile3 you
are using. On the Work with User Jobs display, use these columns to help you
identify the AS jobs that are servicing APPC connections.

�1� The job type column shows jobs with the type that is listed as CMNEVK
for APPC communications jobs.

�2� The status column shows if the job is active or completed. Depending on
how the server is set up to log jobs, you may see only active jobs.

�3� The job column provides the job name. The job name on the AS is the
same as the device being used.

Work with User Jobs KC105
03/29/92 16:15:33
Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect

Opt Job User Type -----Status------ Function
__ KC000 KCDBA CMNEVK OUTQ
__ MP000 KCDBA CMNEVK OUTQ
__ MP000 KCDBA CMNEVK OUTQ
__ KC000 KCDBA CMNEVK OUTQ
__ KC000 KCDBA CMNEVK ACTIVE
__ KC0001 KCDBA INTER ACTIVE CMD-WRKUSRJOB

�3� �1� �2�

2. If you are using the DDM TCP/IP server, you can find the job name with the Display Log (DSPLOG) command as explained
above.

3. For TCP/IP, the user profile in the job name will always be QUSER.

Chapter 6. Distributed Relational Database Administration and Operation Tasks 103

If you are looking for an active AS job and do not know the user name, the Work
with Active Jobs (WRKACTJOB) command gives you a list of those jobs for the
subsystems active on the server. The following example shows you some items to
look for:

Work with Active Jobs KC105
03/29/92 16:17:45
CPU %: 41.7 Elapsed time: 04:37:55 Active jobs: 102

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect

Opt Subsystem/Job User Type CPU % Function Status
__ QBATCH QSYS SBS .0 DEQW
�4� QCMN QSYS SBS .0 WDEQ
__ KC0001 KCCLERK EVK .0 * EVTW

�5� �6�

�4� Search the subsystem4 that is set up to handle the AS jobs. In this example,
the subsystem for AS jobs is QCMN.

�5� For APPC AS jobs, the job name is the device name of the device that is
created for AS use.

�6� The job type5 listed is normally EVK, started by a program start request.

When you have located a job that looks like a candidate, enter option 5 to work
with that job. Then select option 10 from the Work with Job Menu to display the
job log. Distributed database job logs for jobs that are accessing the AS from a DB2
Universal Database for iSeries application requester contain a statement near the
top that reads:

CPI3E01
Local relational database accessed by (system name).

After you locate a job working on the AS, you can also trace it back to the AR if
the AR is an iSeries server. One of the following messages will appear in your job
log; place the cursor on the message you received:

CPI9152
Target DDM job started by application requester (AR).

CPI9162
Target job assigned to handle DDM connection started by application
requester (AR) over TCP/IP.

When you press the help key, the detailed message for the statement appears. The
application requester (AR) job named is the job on the AR that caused this job.

Operating remote iSeries servers
As an administrator in a distributed relational database you may sometimes have
to operate a remote iSeries server.

For example, you may have to start or stop a remote server. The iSeries server
provides options that help you ensure that a remote server is operating when it
needs to be. Of course, the simplest way to ensure that a remote server is

4. The subsystem for TCP/IP server jobs is QSYSWRK prior to V5R2, and QUSRWRK after V5R1.

5. For TCP/IP AS jobs, the job type is PJ (unless DRDA prestart jobs are not active on the server, in which case the job type is BCI).

104 OS/400 Distributed Database Programming V5R2

operating is to allow the remote location to power on their server to meet the
distributed relational database requirements. But, this is not always possible. You
can set up an automatic power-on and power-off schedule or enable a remote
power on to a remote server. See the Setting up an automatic power on and off
schedule topic for more information on power- on and power-off schedules. See
the System values that control IPL topic for more information on server values that
control IPL and remote IPLs.

The server provides several ways to do this either in real time or at previously
scheduled times. More often, you may need to perform certain tasks on a remote
server as it is operating. The three primary ways that you can do this is by using
display station pass-through, the Submit Remote Command (SBMRMTCMD)
command, or stored procedures.

The Submit Remote Command (SBMRMTCMD) command submits a CL command
using Distributed Data Management (DDM) support to run on the application
server (AS). You first need to create a DDM file. The remote location information
of the DDM file is used to determine the communications line to be used. Thus, it
identifies the application server (AS) that is to receive the submitted command.
The remote file associated with the DDM file is not involved when the DDM file is
used for submitting commands to run on the application server (AS). See “Setting
up DDM files” on page 86 for information on creating DDM files.

The Submit Remote Command (SBMRMTCMD) command can submit any CL
command that can run in both the batch environment and through the QCAEXEC
system program; that is, the command has values of *BPGM and *EXEC specified
for the ALLOW attribute. You can display the ALLOW attributes by using the
Display Command (DSPCMD) command.

The primary purpose of the Submit Remote Command (SBMRMTCMD) command
is to allow a application requester (AR) user or program to perform file
management operations and file authorization activities on objects located on a
application server (AS). A secondary purpose of this command is to allow a user to
perform nonfile operations (such as creating a message queue) or to submit
user-written commands to run on the application server (AS). The CMD parameter
allows you to specify a character string of up to 2000 characters that represents a
command to be run on the application server (AS).

You must have the proper authority on the application server (AS) for the CL
command being submitted and for the objects that the command is to operate on.
If the application requester (AR) user has the correct authority to do so (as
determined in a application server (AS) user profile), the following actions are
examples of what can be performed on remote files using the Submit Remote
Command (SBMRMTCMD) command:
v Grant or revoke object authority to remote tables
v Verify tables or other objects
v Save or restore tables or other objects

Although the command can be used to do many things with tables or other objects
on the remote server, using this command for some tasks is not as efficient as other
methods on the iSeries server. For example, you could use this command to
display the file descriptions or field attributes of remote files, or to dump files or
other objects, but the output remains at the application server (AS). To display
remote file descriptions and field attributes at the application requester (AR), a
better method is to use the Display File Description (DSPFD) and Display File

Chapter 6. Distributed Relational Database Administration and Operation Tasks 105

Field Description (DSPFFD) commands with SYSTEM(*RMT) specified, and specify
the names of the DDM files associated with the remote files.

See the Distributed Data Management book for lists of CL commands you can
submit and restrictions for the use of this command. In addition, see “Controlling
DDM conversations” for information about how DDM shares conversations.

Controlling DDM conversations

Note: The term conversation has a specific, technical meaning in SNA APPC
terminology. It does not extend to TCP/IP terminology in a formal sense.
However, there is a similar concept in TCP/IP (a ’network connection’ in
other books on the subject). In this book, the word is used with the
understanding that it applies to TCP/IP network connections as well. In
other sections of this book, the term retains its specific APPC meaning, but it
is expected that the reader can discern that meaning from the context.

The term connection in this section of this book refers to the concept of an
SQL connection. An SQL connection lasts from the time an explicit or
implicit SQL CONNECT is done until the logical SQL connection is
terminated by such means as an SQL DISCONNECT, or a RELEASE
followed by a COMMIT. Multiple SQL connections can occur serially over a
single network connection or conversation. In other words, when a
connection is ended, the conversation that carried it is not necessarily ended.

When an application requester (AR) uses DRDA to connect to an application
server (AS), it uses a DDM conversation. The conversation is established with the
SQL CONNECT statement from the AR, but only if:
v A conversation using the same remote location values does not already exist for

the AR job.
v A conversation uses the same activation group.
v If started from DDM, a conversation has the file scoped to the activation group.
v A conversation has the same conversation type (protected or unprotected).

DDM conversations can be in one of three states: active, unused, or dropped. A
DDM conversation used by distributed relational database is active while the AR is
connected to the AS.

The SQL DISCONNECT and RELEASE statements are used to end connections.
Connections can also be ended implicitly by the server. In addition, when running
with RUW connection management, previous connections are ended when a
CONNECT is performed. See “Explicit CONNECT” on page 198 for more
information on when connections are ended. After a connection ends, the DDM
conversations then either become unused or are dropped. If a DDM conversation is
unused, the conversation to the remote database management system is
maintained by the DDM communications manager and marked as unused. If a
DDM conversation is dropped, the DDM communications manager ends the
conversation. The DDMCNV job attribute determines whether DDM conversations
for connections that are no longer active become unused or dropped. If the job
attribute value is *KEEP and the connection is to another iSeries server, the
conversation becomes unused. If the job attribute value is *DROP or the connection
is not to another iSeries server, the conversation is dropped.

106 OS/400 Distributed Database Programming V5R2

Using a DDMCNV job attribute of *KEEP is desirable when connections to remote
relational databases are frequently changed.

A value of *DROP is desirable in the following situations:
v When the cost of maintaining the conversation is high and the conversation will

not be used relatively soon.
v When running with a mixture of programs compiled with RUW connection

management and programs compiled with DUW connection management.
Attempts to run programs compiled with RUW connection management to
remote locations will fail when protected conversations exist.

v When running with protected conversations either with DDM or DRDA.
Additional overhead is incurred on commits and rollbacks for unused protected
conversations.

If a DDM conversation is also being used to operate on remote files through DDM,
the conversation will remain active until the following conditions are met:
v All the files used in the conversation are closed and unlocked
v No other DDM-related functions are being performed
v No DDM-related function has been interrupted (by a break program, for

example)
v For protected conversations, a commit or rollback was performed after ending

all SQL programs and after all DDM-related functions were completed.
v An AR job is no longer connected to the AS

Regardless of the value of the DDMCNV job attribute, conversations are dropped
at the end of a job routing step, at the end of the job, or when the job initiates a
Reroute Job (RRTJOB) command. Unused conversations within an active job can
also be dropped by the Reclaim DDM Conversations (RCLDDMCNV) or Reclaim
Resources (RCLRSC) command. See Reclaiming DDM resources for more
information. Errors, such as communications line failures, can also cause
conversations to drop.

The DDMCNV parameter is changed by the Change Job (CHGJOB) command and
is displayed by Display Job (DSPJOB) command with OPTION(*DFNA). Also, you
can use the Retrieve Job Attributes (RTVJOBA) command to get the value of this
parameter and use it within a CL program.

Reclaiming DDM resources
The Reclaim Distributed Data Management Conversations (RCLDDMCNV)
command reclaims all application conversations that are not currently being used
by a source job, even if the DDMCNV attribute value for the job is *KEEP. The
command allows you to reclaim unused DDM conversations without closing all
open files or doing any of the other functions performed by the Reclaim Resources
(RCLRSC) command.

The Reclaim Distributed Data Management Conversations (RCLDDMCNV)
command applies to the DDM conversations for the job on the application
requester (AR) in which the command is entered. There is an associated AS job for
the DDM conversation used by the AR job. The AS job ends6 automatically when
the associated DDM conversation ends.

6. For TCP/IP conversations that end, the application server (AS) job is normally a prestart job and is usually recycled rather than
ended.

Chapter 6. Distributed Relational Database Administration and Operation Tasks 107

Although this command applies to all DDM conversations used by a job, using it
does not mean that all of them will be reclaimed. A conversation is reclaimed only
if it is not being actively used. If commitment control is used, a COMMIT or
ROLLBACK operation may have to be done before a DDM conversation can be
reclaimed.

Displaying objects used by programs
You can use the Display Program References (DSPPGMREF) command to
determine which tables, data areas, and other programs are used by a program or
SQL package. This information is available for SQL packages and compiled
programs only. The information can be displayed, printed, or written to a database
output file.

When a program or package is created, the information about certain objects used
in the program or package is stored. This information is then available for use with
the Display Program References (DSPPGMREF) command. Information retrieved
can include:
v The name of the program or package and its text description
v The name of the library or collection containing the program or package
v The number of objects referred to by the program package
v The qualified name of the server object
v The information retrieval dates
v The object type of the referenced object

For files and tables, the record contains the following additional fields:
v The name of the file or table in the program or package (possibly different from

the server object name if an override was in effect when the program or package
was created)
Note: Any overrides apply only on the application requester (AR)

v The program or package use of the file or table (input, output, update,
unspecified, or a combination of these four)

v The number of record formats referenced, if any
v The name of the record format used by the file or table and its record format

level identifier
v The number of fields referenced for each format

Before the objects can be shown in a program, the user must have *USE authority
for the program. Also, of the libraries specified by the library qualifier, only the
libraries for which the user has read authority are searched for the programs.

Table 5 shows the objects for which the high-level languages and utilities save
information.

Table 5. How High-level Languages Save Information About Objects
Language Files Programs Data Areas See Note
CL Yes Yes Yes 1
COBOL/400*
Language

Yes Yes No 2

PL/I Yes Yes N/A 2
RPG/400*
Language

Yes No Yes 3

DB2 UDB SQL Yes N/A N/A 4

108 OS/400 Distributed Database Programming V5R2

Table 5. How High-level Languages Save Information About Objects (continued)
Language Files Programs Data Areas See Note

Notes:
1. All server commands that refer to files, programs, or data areas specify in the command

definition that the information should be stored when the command is compiled in a CL
program. If a variable is used, the name of the variable is used as the object name (for
example, &FILE); If an expression is used, the name of the object is stored as *EXPR.
User-defined commands can also store the information for files, programs, or data areas
specified on the command. See the description of the FILE, PGM, and DTAARA
parameters on the PARM or ELEM command statements in the CL Programming topic
in the iSeries Information Center.

2. The program name is stored only when a literal is used for the program name (this is a
static call, for example, CALL ’PGM1’), not when a COBOL/400 identifier is used for the
program name (this is a dynamic call, for example, CALL PGM1).

3. The use of the local data area is not stored.
4. Information about SQL packages.

The stored file information contains an entry (a number) for the type of use. In the
database file output of the Display Program References (DSPPGMREF) command
(built when using the OUTFILE parameter), this entry is a representation of one or
more codes listed below. There can only be one entry per object, so combinations
are used. For example, a file coded as a 7 would be used for input, output, and
update.

Code Meaning

1 Input

2 Output

3 Input and Output

4 Update

8 Unspecified

For more information, see the Example: Display Program Reference.

Example: Display Program Reference
To see what objects are used by an application requester (AR) program, you can
enter a command such as the following:
DSPPGMREF PGM(SPIFFY/PARTS1) OBJTYPE(*PGM)

On the requester you can get a list of all the collections and tables used by a
program, but you are not able to see on which relational database they are located.
They may be located in multiple relational databases. The output from the
command can go to a database file or to a displayed spooled file. The output looks
like this:
File : QPDSPPGM Page/Line 1/1
Control Columns 1 - 78
Find

3/29/92 Display Program References
DSPPGMREF Command Input
Program : PARTS1
Library : SPIFFY
Output : *
Include SQL packages : *YES
Program : PARTS1
Library : SPIFFY

Chapter 6. Distributed Relational Database Administration and Operation Tasks 109

Text ’description’. : Check inventory for parts
Number of objects referenced : 3
Object : PARTS1
Library : SPIFFY
Object type : *PGM
Object : QSQROUTE
Library : *LIBL
Object type : *PGM
Object : INVENT
Library : SPIFFY
Object type : *FILE
File name in program :
File usage : Input

To see what objects are used by an application server (AS) SQL package, you can
enter a command such as the following:
DSPPGMREF PGM(SPIFFY/PARTS1) OBJTYPE(*SQLPKG)

The output from the command can go to a database file or to a displayed spooled
file. The output looks like this:
File : QPDSPPGM Page/Line 1/1
Control Columns 1 - 78
Find

3/29/92 Display Program References
DSPPGMREF Command Input
Program : PARTS1
Library : SPIFFY
Output : *
Include SQL packages : *YES
SQL package : PARTS1
Library : SPIFFY
Text ’description’. : Check inventory for parts
Number of objects referenced : 1
Object : INVENT
Library : SPIFFY
Object type : *FILE
File name in program :
File usage : Input

Dropping a collection from a distributed relational database
Attempting to delete a collection that contains journal receivers may cause an
inquiry message to be sent to the QSYSOPR message queue for the application
server (AS) job. The AS and application requester (AR) job wait until this inquiry
is answered.

The message that appears on the message queue is:

CPA7025
Receiver (name) in (library) never fully saved. (I C)

When the AR job is waiting, it may appear as if the application is hung. Consider
the following when your AR job has been waiting for a time longer than
anticipated:
v Be aware that an inquiry message is sent to QSYSOPR message queue and needs

an answer to proceed.
v Have the AS reply to the message using its server reply list.

Note: Once the application is in this apparent ’hung’ state, they are stuck. This is
because journal receivers cannot be moved to another library by using the Move

110 OS/400 Distributed Database Programming V5R2

Object (MOVOBJ) command. They also cannot be saved and restored to different
libraries. All you can do is create a new journal receiver in a different library, using
the Create Journal Receiver (CRTJRNRCV) command, and attach it to the journal,
using the Change Journal (CHGJRN) command. Any new journal receivers that are
created by the system, using the Change Journal (CHGJRN) command with the
JRNRCV(*GEN) parameter, will be created in the new library. If, when the journal
is saved, the attached receiver is in another libary, then when the saved version of
the journal is restored, the new journal receivers will also be created in the other
library. For detailed information on journaling, see the Journal management topic
in the iSeries Information Center.

Having the AS reply to the message using its server reply list can be accomplished
by changing the job that appears to be currently hung, or by changing the job
description for all AS jobs running on the server. However, you must first add an
entry to the application server (AS) reply list for message CPA7025 using the Add
Reply List Entry (ADDRPYLE) command:
ADDRPYLE SEQNBR(...) MSGID(CPA7025) RPY(I)

To change the job description for the job that is currently running on the AS, use
the Submit Remote Command (SBMRMTCMD) command. The following example
shows how the database administrator on one server in the Kansas City region
changes the job description on the KC105 system (the server addressed by the
TEST/KC105TST DDM file):
SBMRMTCMD CMD(’CHGJOB JOB(KC105ASJOB) INQMSGRPY(*SYSRPYL)’)

DDMFILE(TEST/KC105TST)

You can prevent this situation from happening on the AS more permanently by
using the Change Job Description (CHGJOBD) command so that any job that uses
that job description uses the server reply list. The following example shows how
this command is entered on the same AS:
CHGJOBD JOBD(KC105ASJOB) INQMSGRPY(*SYSRPYL)

This method should be used with caution. Adding CPA7025 to the server reply list
affects all jobs which use the server reply list. Also changing the job description
affects all jobs that use a particular job description. You may want to create a
separate job description for AS jobs. For additional information on creating job
descriptions, see the Work Management topic in the iSeries Information Center.

Job accounting in a distributed relational database
The job accounting function on the iSeries server gathers data so you can
determine who is using the server and what server resources they are using.
Typical job accounting details the jobs running on a server and resources used,
such as use of the processing unit, printer, display stations; and database and
communications functions.

Job accounting is optional and must be set up on the server. To set up resource
accounting on the server you must:
1. Create a journal receiver by using the Create Journal Receiver (CRTJRNRCV)

command.
2. Create the journal named QSYS/QACGJRN by using the Create Journal

(CRTJRN) command. You must use the name QSYS/QACGJRN and you must
have authority to add items to QSYS to create this journal. Specify the names of
the journal receiver you created in the previous step on this command.

Chapter 6. Distributed Relational Database Administration and Operation Tasks 111

3. Change the accounting level server value QACGLVL using the Work with
System Values (WRKSYSVAL) or Change System Value (CHGSYSVAL)
commands.
The VALUE parameter on the Change System Value (CHGSYSVAL) command
determines when job accounting journal entries are produced. A value of
*NONE means the server does not produce any entries in the job accounting
journal. A value of *JOB means the server produces a job (JB) journal entry. A
value of *PRINT produces a direct print (DP) or spooled print (SP) journal
entry for each file printed.

When a job is started, a job description is assigned to the job. The job description
object contains a value for the accounting code (ACGCDE) parameter, which may
be an accounting code or the default value *USRPRF. If *USRPRF is specified, the
accounting code in the job’s user profile is used.

You can add accounting codes to user profiles using the accounting code
parameter ACGCDE on the Create User Profile (CRTUSRPRF) command or the
Change User Profile (CHGUSRPRF) command. You can change accounting codes
for specific job descriptions by specifying the desired accounting code for the
ACGCDE parameter on the Create Job Description (CRTJOBD) command or the
Change Job Description (CHGJOBD) command.

When a job accounting journal is set up, job accounting entries are placed in the
journal receiver starting with the next job that enters the server after the Change
System Value (CHGSYSVAL) command takes effect.

You can use the OUTFILE parameter on the Display Journal (DSPJRN) command
to write the accounting entries to a database file that you can process.

For more information about job accounting, see the Work Management topic in the
iSeries Information Center.

Managing the TCP/IP server
This section describes how to manage the DRDA/DDM server jobs that
communicate using sockets over TCP. It describes the subsystem in which the
server runs, the objects that affect the server and how to manage those resources.

The DRDA/DDM TCP/IP server that is shipped with the OS/400 program does
not typically require any changes to your existing system configuration in order to
work correctly. It is set up and configured when you install OS/400. At some time,
you may want to change the way the system manages the server jobs to better
meet your needs, solve a problem, improve the server’s performance, or simply
look at the jobs on the server. To make such changes and meet your processing
requirements, you need to know which objects affect which pieces of the system
and how to change those objects.

This section describes, at a high level, some of the work management concepts that
need to be understood in order to work with the server jobs and how the concepts
and objects relate to the server. In order to fully understand how to manage your
iSeries server, it is recommended that you carefully review the Work Management
topic in the iSeries Information Center before you continue with this section. This
section then shows you how the TCP/IP server can be managed and how they fit
in with the rest of the system.

For more information, see the following topics:

112 OS/400 Distributed Database Programming V5R2

|
|
|
|
|
|
|

v DRDA TCP/IP server terminology
v TCP/IP communication support concepts for DDM
v DRDA/DDM server jobs
v Configure the DDM server job subsystem
v Identifying server jobs

DRDA TCP/IP server terminology
The same server software is used for both DDM and DRDA TCP/IP access to DB2
UDB for iSeries. For brevity, we will use the term DDM server rather than
DRDA/DDM server in the following discussion. Sometimes, however, it may be
referred to as the TCP/IP server, the DRDA server, or simply the server when the
context makes the use of a qualifier unnecessary.

The DDM server consists of two or more jobs, one of which is what is called the
DDM listener, because it listens for connection requests and dispatches work to the
other jobs. The other job or jobs, as initially configured, are prestart jobs which
service requests from the DRDA or DDM client after the initial connection is made.
The set of all associated jobs, the listener and the server jobs, are collectively
referred to as the DDM server.

The term client is used interchangeably with DRDA Application Requester (or AR) in
the DRDA application environment. The term client will be used interchangeably
with DDM source system in the DDM (distributed file management) application
environment.

The term server is used interchangeably with DRDA Application Server (or AS) in
the DRDA application environment. The term client will be used interchangeably
with DDM target system in the DDM (distributed file management) application
environment. (Note that in some contexts, the iSeries system (the hardware) is also
called a server, or the iSeries server.)

TCP/IP communication support concepts for DDM
There are several concepts that pertain specifically to the TCP/IP communications
support used by DRDA and DDM. These concepts are described here in detail.

Chapter 6. Distributed Relational Database Administration and Operation Tasks 113

|

Establish a DRDA or DDM connection over TCP/IP
To initiate a DDM server job that uses TCP/IP communications support, the DRDA

Application Requester or DDM source system will connect to the well-known port
number, 446 or 447. The DDM server also listens on port 448, but only for use with
secure sockets (SSL) connections, which are not supported by DB2 UDB for iSeries
application requesters or DDM clients. �1�. The DDM listener program must have
been started (by using the Start TCP/IP Server (STRTCPSVR SERVER(*DDM)) to
listen for and accept the client’s connection request. The DDM listener, upon
accepting this connection request, will issue an internal request to attach the
client’s connection to a DDM server job �2�. This server job may be a prestarted
job or, if the user has removed the QRWTSRVR prestart job entry from the
QUSRSYS or user-defined subsystem (in which case prestart jobs are not used), a
batch job that is submitted when the client connection request is processed. The
server job will handle any further communications with the client.

The initial data exchange that occurs includes a request that identifies the user
profile under which the server job is to run �3�. Once the user profile and
password (if it is sent with the user profile id) have been validated, the server job
will swap to this user profile as well as change the job to use the attributes, such
as CCSID, defined for the user profile �4�.

The functions of connecting to the listener program, attaching the client connection
to a server job and exchanging data and validating the user profile and password
are comparable to those performed when an APPC program start request is
processed.

DRDA/DDM listener program
The DDM listener program runs in a batch job. There is a one-to-many relationship
between it and the actual server jobs; there is one listener and potentially many
DDM server jobs. The server jobs are normally prestart jobs. The listener job runs
in the QSYSWRK subsystem.

The DDM listener allows client applications to establish TCP/IP connections with
an associated server job by handling and routing inbound connection requests.

Figure 11. DRDA/DDM TCP/IP Server

114 OS/400 Distributed Database Programming V5R2

Once the client has established communications with the server job, there is no
further association between the client and the listener for the duration of that
connection.

The DDM listener must be active in order for DRDA Application Requesters and
DDM source systems to establish connections with the DDM TCP/IP server. You
can request that the DRDA listener be started automatically by either using the
Change DDM TCP/IP Attributes (CHGDDMTCPA) command or through iSeries
Navigator. In iSeries Navigator, navigate to the DDM settings:
Network->Servers->TCP/IP. This will cause the listener to be started when
TCP/IP is started. When starting the DRDA listener, both the QSYSWRK
subsystem and TCP/IP must be active.

Start TCP/IP Server (STRTCPSVR) CL Command
The Start TCP/IP Server (STRTCPSVR) command, with a SERVER parameter value
of *DDM or *ALL, is used to start the listener.

DDM listener restriction: Only one DDM listener can be active at one time.
Requests to start the listener when it is already active will result in an
informational message to the command issuer.

Note: The DDM server will not start if the QUSER password has expired. It is
recommended that the password expiration interval be set to *NOMAX for
the QUSER profile. With this value the password will not expire.

Examples: Start TCP/IP Server (STRTCPSVR) CL Command: Example 1:
Starting all TCP/IP servers
STRTCPSVR SERVER(*ALL)

The command starts all of the TCP/IP servers, including the DDM server.

Example 2: Starting just the DDM TCP/IP server
STRTCPSVR *DDM

This command starts only the DDM TCP/IP server.

End TCP/IP Server (ENDTCPSVR) CL Command
The End TCP/IP Server (ENDTCPSVR) command ends the DDM server.

If the DDM listener is ended, and there are associated server jobs that have active
connections to client applications, the server jobs will remain active until
communication with the client application is ended. Subsequent connection
requests from the client application will fail, however, until the listener is started
again.

End TCP/IP server restrictions: If the End TCP/IP Server (ENDTCPSVR)
command is used to end the DDM listener when it is not active, a diagnostic
message will be issued. This same diagnostic message will not be sent if the
listener is not active when an (ENDTCPSVR) SERVER(*ALL) command is issued.

End TCP/IP server examples: Example 1: Ending all TCP/IP servers
ENDTCPSVR *ALL

The command ends all active TCP/IP servers.

Example 2: Ending just the DDM server

Chapter 6. Distributed Relational Database Administration and Operation Tasks 115

ENDTCPSVR SERVER(*DDM)

This command ends the DDM server.

Start DDM listener in iSeries Navigator
The DDM listener can also be administered using iSeries Navigator, which is part
of iSeries Access. This can be done by following this path: Network –>Servers
–>TCP/IP directory.

DRDA/DDM server jobs

Subsystem Descriptions and Prestart Job Entries with DDM
A subsystem description defines how, where, and how much work enters a
subsystem, and which resources the subsystem uses to perform the work. The
following paragraphs describe how the prestart job entries in the QUSRWRK (or
QSYSWRK prior to V5R2) subsystem description affect the DDM server.

A prestart job is a batch job that starts running before an application requester
(AR) initiates communications with the server. Prestart jobs use prestart job entries
in the subsystem description to determine which program, class, and storage pool
to use when the jobs are started. Within a prestart job entry, you must specify
attributes that the subsystem uses to create and manage a pool of prestart jobs.

Prestart jobs provide increased performance when initiating a connection to a
server. Prestart job entries are defined within a subsystem. Prestart jobs become
active when that subsystem is started, or they can be controlled with the Start
Prestart Jobs (STRPJ) and End Prestart Jobs (ENDPJ) commands.

DRDA/DDM prestart jobs
Server information that pertains to prestart jobs (such as the Display Active
Prestart Jobs (DSPACTPJ) command will use the term ’program start request’
exclusively to indicate requests made to start prestart jobs, even though the
information may pertain to a prestart job that was started as a result of a TCP/IP
connection request.

The following list contains the prestart job entry attributes with the initial
configured value for the DDM TCP/IP server. They can be changed with the
Change Prestart Job Entry (CHGPJE) command.
v Subsystem Description. The subsystem that contains the prestart job entries is

QUSRWRK in V5R2. In prior releases, it was QSYSWRK.
v Program library and name. The program that is called when the prestart job is

started is QSYS/QRWTSRVR.
v User profile. The user profile that the job runs under is QUSER. This is what the

job shows as the user profile. When a request to connect to the server is received
from a client, the prestart job function swaps to the user profile that is received
in that request.

v Job name. The name of the job when it is started is QRWTSRVR.
v Job description. The job description used for the prestart job is *USRPRF. Note

that the user profile is QUSER so this will be whatever QUSER’s job description
is. However, the attributes of the job are changed to correspond to the
requesting user’s job description after the userid and password (if present) are
verified.

v Start jobs. This indicates whether prestart jobs are to automatically start when
the subsystem is started. These prestart job entries are shipped with a start jobs
value of *YES. You can change these to *NO to prevent unnecessary jobs starting

116 OS/400 Distributed Database Programming V5R2

|
|
|
|

|
|
|
|
|

|
|
|

when a system IPL is performed. Note: If the DDM server jobs are not running
and the DDM listener job is batch immediate DDM server jobs will still be run
under the QSYSWRK subsystem.

v Initial number of jobs. As initially configured, the number of jobs that are started
when the subsystem is started is 1. This value can be adjusted to suit your
particular environment and needs.

v Threshold. The minimum number of available prestart jobs for a prestart job
entry is set to 1. When this threshold is reached, additional prestart jobs are
automatically started. This is used to maintain a certain number of jobs in the
pool.

v Additional number of jobs. The number of additional prestart jobs that are
started when the threshold is reached is initially configured at 2.

v Maximum number of jobs. The maximum number of prestart jobs that can be
active for this entry is *NOMAX.

v Maximum number of uses. The maximum number of uses of the job is set to
200. This value indicates that the prestart job will end after 200 requests to start
the server have been processed. In certain situations, you might need to set the
MAXUSE parameter to 1 in order for the TCP/IP server to function properly.
When the server runs certain ILE stored procedures, pointers to destroyed
objects might remain in the prestart job environment; subsequent uses of the
prestart job would cause MCH3402 exceptions. In V5R2, changes were made in
OS/400 to minimize this possibility.

v Wait for job. The *YES setting causes a client connection request to wait for an
available server job if the maximum number of jobs is reached.

v Pool identifier. The subsystem pool identifier in which this prestart job runs is
set to 1.

v Class. The name and library of the class the prestart jobs will run under is set to
QSYS/QSYSCLS20.

When the start jobs value for the prestart job entry has been set to *YES, and the
remaining values are as provided with their initial settings, the following happens
for each prestart job entry:
v When the subsystem is started, one prestart job is started.
v When the first client connection request is processed for the TCP/IP server, the

initial job is used and the threshold is exceeded.
v Additional jobs are started for the server based on the number defined in the

prestart job entry.
v The number of available jobs will not reach below 1.
v The subsystem periodically checks the number of prestart jobs in a pool that are

unused and ends excess jobs. It always leaves at least the number of prestart
jobs specified in the initial jobs parameter.

Monitoring Prestart Jobs: Prestart jobs can be monitored by using the Display
Active Prestart Jobs (DSPACTPJ) command.

The (DSPACTPJ) command provides the following information:
v Current number of prestart jobs
v Average number of prestart jobs
v Peak number of prestart jobs
v Current number of prestart jobs in use
v Average number of prestart jobs in use

Chapter 6. Distributed Relational Database Administration and Operation Tasks 117

|
|
|

|
|
|
|
|
|
|
|

v Peak number of prestart jobs in use
v Current number of waiting connect requests
v Average number of waiting connect requests
v Peak number of waiting connect requests
v Average wait time
v Number of connect requests accepted
v Number of connect requests rejected

Managing Prestart Jobs: The information presented for an active prestart job can
be refreshed by pressing the F5 key while on the Display Active Prestart Jobs
display. Of particular interest is the information about program start requests. This
information can indicate to you whether or not you need to change the available
number of prestart jobs. If you have information indicating that program start
requests are waiting for an available prestart job, you can change prestart jobs
using the Change Prestart Job Entry (CHGPJE) command.

If the program start requests were not being acted on fast enough, you could do
any combination of the following:
v Increase the threshold.
v Increase the Initial number of jobs (INLJOBS) parameter value.
v Increase the Additional number of jobs (ADLJOBS) parameter value.

The key is to ensure that there is an available prestart job for every request that is
sent that starts a server job.

Removing Prestart Job Entries: If you decide that you do not want the servers to
use the prestart job function, you must do the following:
1. End the prestarted jobs using the End Prestart Jobs (ENDPJ) command.

Prestarted jobs ended with the (ENDPJ) command will be started the next time
the subsystem is started if start jobs *YES is specified in the prestart job entry. If
you only end the prestart job and do not perform the next step, any requests to
start the particular server will fail.

2. Remove the prestart job entries in the subsystem description using the Remove
Prestart Job Entry (RMVPJE) command.
The prestart job entries removed with the (RMVPJE) command are permanently
removed from the subsystem description. Once the entry is removed, new
requests for the server will be successful, but will incur the performance
overhead of job initiation.

Routing Entries: When an OS/400 job is routed to a subsystem, this is done using
the routing entries in the subsystem description. The routing entry for the listener
job in the QSYSWRK subsystem is present after OS/400 is installed. This job is
started under the QUSER user profile, and the QSYSNOMAX job queue is used.

Prior to V5R2, the server jobs ran in the QSYSWRK subsystem. In V5R2, the server
jobs run by default in QUSRWRK. The characteristics of the server jobs are taken
from their prestart job entry which also comes automatically configured with
OS/400. If this entry is removed so that prestart jobs are not used for the servers,
then the server jobs are started using the characteristics of their corresponding
listener job.

The following provides the initial configuration in the QSYSWRK subsystem for
the listener job.

118 OS/400 Distributed Database Programming V5R2

Subsystem QSYSWRK

Job Queue QSYSNOMAX

User QUSER

Routing Data QRWTLSTN

Job Name QRWTLSTN

Class QSYSCLS20

Configure the DDM server job subsystem
By default, since V5R2, the DDM TCP/IP server jobs run in the QUSRWRK
subsystem. Using iSeries Navigator, you can configure DDM server jobs to run all
or certain server jobs in alternate subsystems based on the client’s IP address. To
set up the configuration:
1. Create a prestart job entry for each desired subsystem with the Add Prestart

Job Entry (ADDPJE) command. See “DRDA/DDM prestart jobs” on page 116
for more information on prestart job attributes.

2. Start the prestart job entry you created with the Start Prestart Jobs (STRPJ)
command.

3. In iSeries Navigator, expand Network.
4. Expand Servers.
5. Click TCP/IP.
6. Right-click DDM in the list of serves that are displayed in the right panel and

select Properties.
7. On the Subsystems tab, add the specific client and the name of the subsystems.

In the example below, the administrator could connect and run in the QADMIN
subsystem, while another server in the network could connect and run in

Chapter 6. Distributed Relational Database Administration and Operation Tasks 119

QUSRWRK. All other clients would be rejected.

Identifying server jobs
If you look at the server jobs started on the server, you may find it difficult to
relate a server job to a certain application requester job or to a particular PC client.
Being able to identify a particular job is a prerequisite to investigating problems
and gathering performance data. iSeries Navigator provides support for these tasks
that make the job much easier.

This section provides information on how to identify server jobs before starting
debug or performance investigation when you are not using iSeries Navigator.

iSeries Job Names
The job name used on the iSeries consists of three parts:
v The simple job name
v User ID
v Job number (ascending order)

The DDM server jobs follow the following conventions:
v Job name is QRWTSRVR.
v User ID

– Will always be QUSER, whether prestart jobs are used or not.
– The job log will show which user is currently using the job.

120 OS/400 Distributed Database Programming V5R2

v The job number is created by work management.

Displaying Server Jobs
There are three methods that can be used to aid in identifying server jobs. One
method is to use the Work with Active Jobs (WRKACTJOB) command. Another
method is to use the Work with User Jobs (WRKUSRJOB) command. A third
method is to display the history log to determine which job is being used by which
client user.

Displaying Active Jobs Using WRKACTJOB: The Work with Active Jobs
(WRKACTJOB) command shows all active jobs. All server jobs are displayed, as
well as the listener job.

The following figures show a sample status using the (WRKACTJOB) command.
Only jobs related to the server are shown in the figures. You must press F14 to see
the available prestart jobs.

The following types of jobs are shown in the figures.
v �1� - Listener job
v �2� - Prestarted server jobs

Work with Active Jobs AS400597
04/25/97 10:25:40

CPU %: 3.1 Elapsed time: 21:38:40 Active jobs: 77

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
.

___ QUSRWRK QSYS SBS .0 DEQW
.

___ �1�
QRWTLSTN QUSER BCH .0 SELW

.

.
___ �2�

QRWTSRVR QUSER PJ .0 TIMW
___ QRWTSRVR QUSER PJ .0 TIMW
___ QRWTSRVR QUSER PJ .0 TIMW
___ QRWTSRVR QUSER PJ .0 TIMW
___ QRWTSRVR QUSER PJ .0 TIMW

. More...

The following types of jobs are shown:

PJ The prestarted server jobs.

SBS The subsystem monitor jobs.

BCH The listener job.

Displaying Active User Jobs Using WRKUSRJOB: The command Work with
User Jobs (WRKUSRJOB) command USER(QUSER) STATUS(*ACTIVE) will display
all active server jobs running under QUSER. This includes the DDM listener and
all DDM server jobs. This command may be preferable, in that it will list fewer
jobs for you to look through to find the DDM-related ones.

Display the history log
Each time a client user establishes a successful connection with a server job, that
job is swapped to run under the profile of that client user. To determine which job

Chapter 6. Distributed Relational Database Administration and Operation Tasks 121

is associated with a particular client user, you can display the history log using the
Display Log (DSPLOG) command. An example of the information provided is
shown in the following figure.

Display History Log Contents
.
.

DDM job 036995/QUSER/QRWTSRVR servicing user MEL on 08/18/97 at 15:26:43.
.

DDM job 036995/QUSER/QRWTSRVR servicing user REBECCA on 08/18/97 at 15:45:08.
.

DDM job 036995/QUSER/QRWTSRVR servicing user NANCY on 08/18/97 at 15:56:21.
.

DDM job 036995/QUSER/QRWTSRVR servicing user ROD on 08/18/97 at 16:02:59.
.

DDM job 036995/QUSER/QRWTSRVR servicing user SMITH on 08/18/97 at 16:48:13.
.

DDM job 036995/QUSER/QRWTSRVR servicing user DAVID on 08/18/97 at 17:10:27.
.
.
.

Press Enter to continue.

F3=Exit F10=Display all F12=Cancel

Note: The following is an example of how you can filter out uninteresting entries
by using the Display Log (DSPLOG) command with the MSGID parameter:
DSPLOG MSGID(CPI3E34)

You may also prevent these records from being written to the history log by setting
the appropriate options in the QRWOPTIONS data area. See the QRWOPTIONS
Data Area Usage topic for more information.

Auditing the relational database directory
Accesses to the relational database directory are recorded in the security auditing
journal when either:
v The value of the system QAUDLVL is *SYSMGT.
v The value of the user AUDLVL is *SYSMGT.

With the *SYSMGT value, the server audits all accesses made with the following
commands:
v Add Relational Database Directory Entry (ADDRDBDIRE) command
v Change Relational Database Directory Entry (CHGRDBDIRE) command
v Display Relational Database Directory Entry (DSPRDBDIRE) command
v Remove Relational Database Directory Entry (RMVRDBDIRE) command
v Work with Relational Database Directory Entries (WRKRDBDIRE) command

The relational database directory is a database file (QSYS/QADBXRDBD) that can
be read directly without the directory entry commands.

Prior to V5R2, relational database (RDB) directory file QADBXRDBD in library
QSYS was built with operational authority granted to *PUBLIC. Beginning in
V5R2, that’s no longer the case. Therefore, existing programs that access the RDB
directory using this file may longer run correctly. Unless you have *ALLOBJ
special authority, you will have to access the logical file named QADBXRMTNM

122 OS/400 Distributed Database Programming V5R2

|
|

|
|
|

|
|

which is built over QADBXRDBD. To audit direct accesses to this file, set auditing
on with the Change Object Auditing (CHGOBJAUD) command.

Chapter 6. Distributed Relational Database Administration and Operation Tasks 123

124 OS/400 Distributed Database Programming V5R2

Chapter 7. Data Availability and Protection for a Distributed
Relational Database

In a distributed relational database environment, data availability not only involves
protecting data on an individual server in the network, but also ensuring that
users have access to the data across the network.

The iSeries server provides the following array of functions to ensure that data on
servers in a distributed relational database network is available for use:
v Save/restore
v Journal management and access path journaling
v Commitment control
v Auxiliary storage pools
v Checksum protection
v Mirrored protection and the uninterruptible power supply

While the system operator for each server is typically responsible for backup and
recovery of that server’s data, see Recovery support for a distributed relational
database, you should also consider aspects of network redundancy as well as data
redundancy when planning your strategy to ensure the optimum availability of
data across your network. The more critical certain data is to your enterprise, the
more ways you should have for accessing that data.

Recovery support for a distributed relational database
Failures that can occur on a computer server are a server failure (when the entire
server is not operating); a loss of the site due to fire, flood or similar catastrophe;
or the damage or loss of an object. For a distributed relational database, a failure
on one server in the network prevents users across the entire network from
accessing the relational database on that server. If the relational database is critical
to daily business activities at other locations, enterprise operations across the entire
network can be disrupted for the duration of one server’s recovery time. Clearly,
planning for data protection and recovery after a failure is particularly important
in a distributed relational database.

Each server in a distributed relational database is responsible for backing up and
recovering its own data. Each server in the network also handles recovery
procedures after an abnormal server end. However, backup and recovery
procedures can be done by the distributed relational database administrator using
display station pass-through for those servers with an inexperienced operator or no
operator at all.

The most common type of loss is the loss of an object or group of objects. An
object can be lost or damaged due to several factors, including power failure,
hardware failures, system program errors, application program errors, or operator
errors. The iSeries server provides several methods for protecting the server
programs, application programs, and data from being permanently lost. Depending
on the type of failure and the level of protection chosen, most of the programs and
data can be protected, and the recovery time can be significantly reduced.

These protection methods include the following:

© Copyright IBM Corp. 1998, 2001, 2002 125

v Data recovery after disk failures for distributed relational databases such as
auxiliary storage pools to control where objects are stored, checksum protection
for auxiliary storage pools, and mirrored protection for disk-related hardware
components

v Journal management for distributed relational databases for auxiliary records of
relational database changes and journaling indexes to data

v Transaction recovery through commitment control to ensure relational database
transactions can be applied or removed in a uniform manner

v Save and restore processing for a distributed relational database to ensure
Structured Query Language (SQL) objects such as tables, collections, packages
and relational database directories can be saved and restored

v Writing data to auxiliary storage

The Force-Write Ratio (FRCRATIO) parameter on the Create File command can
be used to force data to be written to auxiliary storage. A force-write ratio of one
causes every add, update, and delete request to be written to auxiliary storage
immediately for the table in question. However, choosing this option can reduce
server performance. Therefore, saving your tables and journaling tables should
be considered the primary methods for protecting the database.

v Physical protection

Making sure your system is protected from sudden power loss is an important
part of ensuring that your application server (AS) is available to an application
requester (AR). An uninterruptible power supply, that can be ordered separately,
protects the server from loss because of power failure, power interruptions, or
drops in voltage, by supplying power to the server devices until power can be
restored. Normally, an uninterruptible power supply does not provide power to
all work stations. With the iSeries server, the uninterruptible power supply
allows the server to:
– Continue operations during brief power interruptions or momentary drops in

voltage.
– End operations normally by closing files and maintaining object integrity.

Data recovery after disk failures for distributed relational
databases

Recovery is not possible for recently entered data if a disk failure occurs and all
objects are not saved on tape or disk immediately before the failure. After
previously saved objects are restored, the server is operational, but the database is
not current.

Auxiliary storage pools (ASPs), checksum protection, and mirrored protection are
OS/400 disk recovery functions that provide methods to recover recently entered
data after a disk related failure. These functions use additional server resources,
but provide a high level of protection for servers in a distributed relational
database. Since some servers may be more critical as application servers than
others, the distributed relational database administrator should review how these
disk data protection methods can best be used by individual servers within the
network.

For more information about auxiliary storage pools (ASPs), checksum protection,
and mirrored protection, see the Backup and Recovery topic in the iSeries
Information Center.

126 OS/400 Distributed Database Programming V5R2

Auxiliary storage pools
An ASP is one or more physical disk units assigned to the same storage area. ASPs
allow you to isolate certain types of objects on specified physical disk units.

The server ASP isolates server programs and the temporary objects that are created
as a result of processing by server programs. User ASPs can be used to isolate
some objects such as libraries, SQL objects, journals, journal receivers, applications,
and data. The iSeries server supports up to 32 basic user ASPs, and 223
independent user ASPs. Isolating libraries or objects in a user ASP protects them
from disk failures in other ASPs and reduces recovery time.

In addition to reduced recovery time and isolation of objects, placing objects in an
ASP can improve performance. If a journal receiver is isolated in a user ASP, the
disks associated with that ASP are dedicated to that receiver. In an environment
that requires many read and write operations to the database files, this can reduce
arm contention on the disks in that ASP, and can improve journaling performance.

Checksum protection in a distributed relational database
Checksum protection guards against losing the data on any disk in an ASP. The
checksum software maintains a coded copy of ASP data in special checksum data
areas within that ASP. Any changes made to permanent objects in a checksum
protected ASP are automatically maintained in the checksum data of the checksum
set. If any single disk unit in a checksum set is lost, the server reconstructs the
contents of the lost device using the checksum and the data on the remaining
functional units of the set. In this way, if any one of the units fails, its contents
may be recovered. This reconstructed data reflects the most up-to-date information
that was on the disk at the time of the failure. Checksum protection can affect
server performance significantly. In a distributed relational database this may be a
concern.

Mirrored protection for a distributed relational database
Mirrored protection increases the availability of a server by duplicating different
disk-related hardware components such as a disk controller, a disk I/O processor,
or a bus. The server can remain available after a failure, and service for the failed
hardware components can be scheduled at a convenient time.

Different levels of mirrored protection provide different levels of server availability.
For example, if only the disk units on a server are mirrored, all disk units have
disk unit-level protection, so the server is protected against the failure of a single
disk unit. In this situation, if a controller, I/O processor, or bus failure occurs, the
server cannot run until the failing part is repaired or replaced. All mirrored units
on the server must have identical disk unit-level protection and reside in the same
ASP. The units in an ASP are automatically paired by the server when mirrored
protection is started.

Journal management for distributed relational databases
Journal management can be used as a part of the backup and recovery strategy for
relational databases and indexes.

For detailed information on journaling, see the Journal management topic in the
iSeries Information Center.

iSeries journal support provides an audit trail and forward and backward recovery.
Forward recovery can be used to take an older version of a table and apply
changes logged in the journal to the table. Backward recovery can be used to
remove changes logged in the journal from the table.

Chapter 7. Data Availability and Protection for a Distributed Relational Database 127

When a collection is created, a journal and an object called a journal receiver are
created in the collection. Improved performance is gained when the journal
receiver is on a different ASP from the tables. Placing the collection on a user ASP
places the tables and journal and journal receivers all in the same user ASP. There
is no gain in performance there. Creating a new journal receiver in a different ASP
(used just for this journal’s journal receivers) and attaching it with the Change
Journal (CHGJRN) command will get the next server generated journal receivers
all in the other user ASP, and then the user will see improved performance.

When a table is created, it is automatically journaled to the journal SQL created in
the collection. After this point, you are responsible for using the journal functions
to manage the journal, journal receivers, and the journaling of tables to the journal.
For example, if a table is moved into a collection, no automatic change to the
journaling status occurs. If a table is restored, the normal journal rules apply. That
is, if a table is journaled when it is saved, it is journaled to the same journal when
it is restored on that server. If the table is not journaled at the time of the save, it is
not journaled at restore time. You can stop journaling on any table using the
journal functions, but doing so prevents SQL operations from running under
commitment control. SQL operations can still be performed if you have specified
COMMIT(*NONE), but this does not provide the same level of integrity that
journaling and commitment control provide.

With journaling active, when changes are made to the database, the changes are
journaled in a journal receiver before the changes are made to the database. The
journal receiver always has the latest database information. All activity is journaled
for a database table regardless of how the change was made.

Journal receiver entries record activity for a specific row (added, changed, or
deleted), and for a table (opened, table or member saved, and so on). Each entry
includes additional control information identifying the source of the activity, the
user, job, program, time, and date.

The server journals some file-level changes, including moving a table and
renaming a table. The server also journals member-level changes, such as
initializing a physical file member, and server-level changes, such as initial
program load (IPL). You can add entries to a journal receiver to identify significant
events (such as the checkpoint at which information about the status of the job and
the server can be journaled so that the job step can be restarted later) or to help in
the recovery of applications.

For changes that affect a single row, row images are included following the control
information. The image of the row after a change is made is always included.
Optionally, the row image before the change is made can also be included. You
control whether to journal both before and after row images or just after row
images by specifying the IMAGES parameter on the Start Journal Physical File
(STRJRNPF) command.

All journaled database files are automatically synchronized with the journal when
the server is started (IPL time) or during the vary on of an independent ASP. If the
server ended abnormally, or the independent ASP varied off abnormally, some
database changes may be in the journal, but not yet reflected in the database itself.
If that is the case, the server automatically updates the database from the journal
to bring the tables up to date.

Journaling can make saving database tables easier and faster. For example, instead
of saving entire tables everyday, you can simply save the journal receivers that

128 OS/400 Distributed Database Programming V5R2

contain the changes to the tables. You might still save the entire tables on a regular
basis. This method can reduce the amount of time it takes to perform your daily
save operations.

The Display Journal (DSPJRN) command, can be used to convert journal receiver
entries to a database file. Such a file can be used for activity reports, audit trails,
security, and program debugging.

Index recovery
An index describes the order in which rows are read from a table. When indexes
are recorded in the journal, the server can recover the index to avoid spending a
significant amount of time rebuilding indexes during the IPL following an
abnormal server end or during the vary on of an independent ASP after an
abnormal vary off.

When you journal tables, images of changes to the rows in the table are written to
the journal. These row images are used to recover the table should the server, or
independent ASP, end abnormally. However, after an abnormal end, the server
may find that indexes built over the table are not synchronized with the data in
the table. If an access path and its data are not synchronized, the server must
rebuild the index to ensure that the two are synchronized and usable.

When indexes are journaled, the server records images of the index in the journal
to provide known synchronization points between the index and its data. By
having that information in the journal, the server can recover both the data and the
index, and ensure that the two are synchronized. In such cases, the lengthy time to
rebuild the indexes can be avoided.

The iSeries server provides several functions to assist with index recovery. All
indexes on the server have a maintenance option that specifies when the index is
maintained. SQL indexes are created with an attribute of *IMMED maintenance.

In the event of a power failure or abnormal server failure, indexes that are in the
process of change may need to be rebuilt to make sure they agree with the data.
All indexes on the server have a recovery option that specifies when the index
should be rebuilt if necessary. All SQL indexes with an attribute of UNIQUE are
created with a recovery attribute of *IPL, which means these indexes are rebuilt
before the OS/400 licensed program has been started. All other SQL indexes are
created with the *AFTIPL recovery attribute, which means they are rebuilt after the
operating system has been started or after the independent ASP has varied on.
During an IPL or vary on of an independent ASP, you can see a display showing
indexes needing to be rebuilt and their recovery option, and you may override
these recovery options.

SQL indexes are not journaled automatically. You can use the Start Journal Access
Path (STRJRNAP) command to journal any index created by SQL operations. The
server save and restore functions allow you to save indexes when a table is saved
by using ACCPTH(*YES) on the Save Object (SAVOBJ) or Save Library (SAVLIB)
commands. If you must restore a table, there is no need to rebuild the indexes.
Any indexes not previously saved and restored are automatically and
asynchronously rebuilt by the database.

Before journaling indexes, you must start journaling for the tables associated with
the index. In addition, you must use the same journal for the index and its
associated table.

Chapter 7. Data Availability and Protection for a Distributed Relational Database 129

Index journaling is designed to minimize additional output operations. For
example, the server writes the journal data for the changed row and the changed
index in the same output operation. However, you should seriously consider
isolating your journal receivers in user ASPs when you start journaling your
indexes. Placing journal receivers in their own user ASP provides the best journal
management performance, while helping to protect them from a disk failure.

Designing tables to reduce index rebuilding time
Table design can also help reduce index recovery time. For example, you can
divide a large master table into a history table and a transaction table. The
transaction table is then used for adding new data, the history table is used for
inquiry only. Each day, you can merge the transaction data into the history table,
then clear the transaction file for the next day’s data. With this design, the time to
rebuild indexes can be shortened, because if the server abnormally ends during the
day, the index to the smaller transaction table might need to be rebuilt. However,
because the index to the large history table, is read-only for most of the day, it
would probably not be out of synchronization with its data, and would not have to
be rebuilt.

Consider the trade-off between using table design to reduce index rebuilding time
and using server-supplied functions like access path journaling. The table design
described above may require a more complex application design. After evaluating
your situation, you may decide to use server-supplied functions like access path
journaling rather than design more complex applications.

System-managed access-path protection (SMAPP)
System-managed access-path protection (SMAPP) provides automatic protection for
access paths. Using the SMAPP support, you do not have to use the journaling
commands, such as the Start Journal Access Path (STRJRNAP) command, to get the
benefits of access path journaling. SMAPP support recovers access paths after an
abnormal server end rather than rebuilding them during IPL, or the vary on of an
independent ASP.

The SMAPP support is turned on with the shipped system.

The server determines which access paths to protect based on target access path
recovery times provided by the user or by using a server-provided default time.
The target access path recovery times can be specified as a server-wide value or on
an ASP basis. Access paths that are being journaled to a user-defined journal are
not eligible for SMAPP protection because they are already protected. See the
System-managed access-path protection (SMAPP) topic in the iSeries Information
Center for more information about SMAPP.

Transaction recovery through commitment control
Commitment control is an extension of the journal management function on the
iSeries server. The server can identify and process a group of relational database
changes as a single unit of work (transaction).

An SQL COMMIT statement guarantees that the group of operations is completed.
An SQL ROLLBACK statement guarantees that the group of operations is backed
out. The only SQL statements that cannot be committed or rolled back are:
v DROP COLLECTION
v GRANT or REVOKE if an authority holder exists for the specified object

130 OS/400 Distributed Database Programming V5R2

Under commitment control, tables and rows used during a transaction are locked
from other jobs. This ensures that other jobs do not use the data until the
transaction is complete. At the end of the transaction, the program issues an SQL
COMMIT or ROLLBACK statement, freeing the rows. If the server or job ends
abnormally before the commit operation is performed, all changes for that job since
the last time a commit or rollback operation occurred are rolled back. Any affected
rows that are still locked are then unlocked. The lock levels are as follows:

*NONE
Commitment control is not used. Uncommitted changes in other jobs can
be seen.

*CHG Objects referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements and the rows updated,
deleted, and inserted are locked until the unit of work (transaction) is
completed. Uncommitted changes in other jobs can be seen.

*CS Objects referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements and the rows updated,
deleted, and inserted are locked until the unit of work (transaction) is
completed. A row that is selected, but not updated, is locked until the next
row is selected. Uncommitted changes in other jobs cannot be seen.

*ALL Objects referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements and the rows read,
updated, deleted, and inserted are locked until the end of the unit of work
(transaction). Uncommitted changes in other jobs cannot be seen.

Table 6 on page 132 shows the record lock duration for each of these lock level
values.

If you request COMMIT (*CHG), COMMIT (*CS), or COMMIT (*ALL) when the
program is precompiled or when interactive SQL is started, then SQL sets up the
commitment control environment by implicitly calling the Start Commitment
Control (STRCMTCTL) command. The LCKLVL parameter specified when SQL
starts commitment control is the lock level specified on the COMMIT parameter on
the CRTSQLxxx commands. NFYOBJ(*NONE) is specified when SQL starts
commitment control. To specify a different NFYOBJ parameter, issue a
(STRCMTCTL) command before starting SQL.

Note: When running with commitment control, the tables referred to in the
application program by data manipulation language statements must be
journaled. The tables do not have to be journaled at precompile time, but
they must be journaled when you run the application.

If a remote relational database is accessing data on the server and requesting
commit level repeatable read (*RR), the tables will be locked until the query is
closed. If the cursor is read only, the table will be locked (*SHRNUP). If the cursor
is in update mode, the table will be locked (*EXCLRD).

The journal created in the SQL collection is normally the journal used for logging
all changes to SQL tables. You can, however, use the server journal functions to
journal SQL tables to a different journal.

Commitment control can handle up to 131 072 distinct row changes in a unit of
work. If COMMIT(*ALL) is specified, all rows read are also included in the 131 072
limit. (If a row is changed or read more than once in a unit of work, it is only
counted once toward the 131 072 limit.) Maintaining a large number of locks

Chapter 7. Data Availability and Protection for a Distributed Relational Database 131

adversely affects server performance and does not allow concurrent users to access
rows locked in the unit of work until the unit of work is completed. It is, therefore,
more efficient to keep the number of rows processed in a unit of work small.
Commitment control allows up to 512 tables either open under commitment
control or closed with pending changes in a unit of work.

The HOLD value on COMMIT and ROLLBACK statements allows you to keep the
cursor open and start another unit of work without issuing an OPEN again. The
HOLD value is not available when there are non-iSeries connections that are not
released for a program and SQL is still in the call stack. If ALWBLK(*ALLREAD)
and either COMMIT(*CHG) or COMMIT(*CS) are specified when the program is
precompiled, all read-only cursors will allow blocking of rows and a ROLLBACK
HOLD statement will not roll the cursor position back.

If there are locked rows (records) pending from running a SQL precompiled
program or an interactive SQL session, a COMMIT or ROLLBACK statement can
be issued from the server Command Entry display. Otherwise, an implicit
ROLLBACK operation occurs when the job is ended.

You can use the Work with Commitment Definitions (WRKCMTDFN) command to
monitor the status of commitment definitions and free up locks and held resources
involved with commitment control activities across servers. For more information,
see “Working with commitment definitions in a distributed relational database” on
page 101.

For more information on commitment control, see the Transactions and
commitment control topic in the iSeries Information Center.

Table 6. Record Lock Duration

SQL Statement COMMIT Parameter Duration of Record Locks Lock Type

SELECT INTO *NONE
*CHG
*CS
*ALL (See note 2)

No locks
No locks
Row locked when read and released
From read until ROLLBACK or COMMIT

READ
READ

FETCH (read-only
cursor)

*NONE
*CHG
*CS
*ALL (See note 2)

No locks
No locks
From read until the next FETCH
From read until ROLLBACK or COMMIT

READ
READ

FETCH (update or
delete capable
cursor) See note 1

*NONE

*CHG

*CS

*ALL

When record not updated or deleted
from read until next FETCH
When record is updated or deleted
from read until UPDATE or DELETE
When record not updated or deleted
from read until next FETCH
When record is updated or deleted
from read until UPDATE or DELETE
When record not updated or deleted
from read until next FETCH
When record is updated or deleted
from read until UPDATE or DELETE
From read until ROLLBACK or COMMIT

UPDATE

UPDATE

UPDATE

UPDATE3

INSERT (target table) *NONE
*CHG
*CS
*ALL

No locks
From insert until ROLLBACK or COMMIT
From insert until ROLLBACK or COMMIT
From insert until ROLLBACK or COMMIT

UPDATE
UPDATE
UPDATE4

132 OS/400 Distributed Database Programming V5R2

Table 6. Record Lock Duration (continued)

SQL Statement COMMIT Parameter Duration of Record Locks Lock Type

INSERT (tables in
subselect)

*NONE
*CHG
*CS
*ALL

No locks
No locks
Each record locked while being read
From read until ROLLBACK or COMMIT

READ
READ

UPDATE
(non-cursor)

*NONE
*CHG
*CS
*ALL

Each record locked while being updated
From read until ROLLBACK or COMMIT
From read until ROLLBACK or COMMIT
From read until ROLLBACK or COMMIT

UPDATE
UPDATE
UPDATE
UPDATE

DELETE (non-cursor) *NONE
*CHG
*CS
*ALL

Each record locked while being deleted
From read until ROLLBACK or COMMIT
From read until ROLLBACK or COMMIT
From read until ROLLBACK or COMMIT

UPDATE
UPDATE
UPDATE
UPDATE

UPDATE (with
cursor)

*NONE
*CHG
*CS
*ALL

Lock released when record updated
From read until ROLLBACK or COMMIT
From read until ROLLBACK or COMMIT
From read until ROLLBACK or COMMIT

UPDATE
UPDATE
UPDATE
UPDATE

DELETE (with
cursor)

*NONE
*CHG
*CS
*ALL

Lock released when record deleted
From read until ROLLBACK or COMMIT
From read until ROLLBACK or COMMIT
From read until ROLLBACK or COMMIT

UPDATE
UPDATE
UPDATE
UPDATE

Subqueries (update
or delete capable
cursor or UPDATE
or DELETE
non-cursor)

*NONE
*CHG
*CS
*ALL (see note 2)

From read until next FETCH
From read until next FETCH
From read until next FETCH
From read until ROLLBACK or COMMIT

READ
READ
READ
READ

Subqueries
(read-only cursor or
SELECT INTO)

*NONE
*CHG
*CS
*ALL

No locks
No locks
Each record locked while being read
From read until ROLLBACK or COMMIT

READ
READ

Notes:

1. A cursor is open with UPDATE or DELETE capabilities if the result table is not read-only (see description of
DECLARE CURSOR in the SQL Reference topic in the iSeries Information Center) and if one of the following is
true:

v The cursor is defined with a FOR UPDATE clause.

v The cursor is defined without a FOR UPDATE, FOR FETCH ONLY, or ORDER BY clause and the program
contains at least one of the following:

– Cursor UPDATE referring to the same cursor-name

– Cursor DELETE referring to the same cursor-name

– An EXECUTE or EXECUTE IMMEDIATE statement with ALWBLK(*READ) or ALWBLK(*NONE) specified
on the CRTSQLxxx command

2. A table or view can be locked exclusively in order to satisfy COMMIT(*ALL). If a subselect is processed that
includes a group by or union, or if the processing of the query requires the use of a temporary result, an
exclusive lock is acquired to protect you from seeing uncommitted changes.

3. If the row is not updated or deleted, the lock is reduced to *READ.

4. An UPDATE lock on rows of the target table and a READ lock on the rows of the subselect table.

5. A table or view can be locked exclusively in order to satisfy repeatable read. Row locking is still done under
repeatable read. The locks acquired and their duration are identical to *ALL.

Chapter 7. Data Availability and Protection for a Distributed Relational Database 133

Save and restore processing for a distributed relational
database

Saving and restoring data and programs allows recovery from a program or server
failure, exchange of information between servers, or storage of objects or data
off-line. A sound backup policy at each server in the distributed relational database
network ensures a server can be restored and made available to network users
quickly in the event of a problem.

Saving the server on external media such as tape, protects server programs and
data from disasters, such as fire or flood. However, information can also be saved
to a disk file called a save file. A save file is a disk-resident file used to store data
until it is used in input and output operations or for transmission to another
iSeries server over communication lines. Using a save file allows unattended save
operations because an operator does not need to load diskettes or tapes. In a
distributed relational database, save files can be sent to another server as a
protection method.

When information is restored, the information is written from diskette, tape, or a
save file into auxiliary storage, where it can be accessed by server users.

The iSeries server has a full set of commands to save and restore your database
tables and SQL objects:
v The Save Library (SAVLIB) command saves one or more collections
v The Save Object (SAVOBJ) command saves one or more objects such as SQL

tables, views and indexes
v The Save Changed Object (SAVCHGOBJ) command saves any objects that have

changed since either the last time the collection was saved or from a specified
date

v The Save Save File Data (SAVSAVFDTA) commandsaves the contents of a save
file

v The Save System (SAVSYS) command saves the operating system, security
information, device configurations, and server values

v The Restore Library (RSTLIB) command restores a collection
v The Restore Object (RSTOBJ) command restores one or more objects such as SQL

tables, views and indexes
v The Restore User Profiles (RSTUSRPRF), Restore Authority (RSTAUT) and

Restore Configuration (RSTCFG)commands restore user profiles, authorities, and
configurations saved by a Save System (SAVSYS) command.

See the Backup and Recovery topic in the iSeries Information Center for more
information about these functions and commands.

Saving and restoring indexes in the distributed relational
database environment
Restoring an SQL index can be faster than rebuilding it. Although times vary
depending on a number of factors, rebuilding a database index takes
approximately 1 minute for every 10,000 rows.

After restoring the index, the table may need to be brought up to date by applying
the latest journal changes (depending on whether journaling is active). Even with
this additional recovery time, you may find it faster to restore indexes rather than
to rebuild them.

134 OS/400 Distributed Database Programming V5R2

The server ensures the integrity of an index before you can use it. If the server
determines that the index is unusable, the server attempts to recover it. You can
control when an index will be recovered. If the server ends abnormally, during the
next IPL the server automatically lists those tables requiring index or view
recovery. You can decide whether to rebuild the index or to attempt to recover it at
one of the following times:
v During the IPL
v After the IPL
v When the table is first used

For more information about saving and restoring access paths, see the Backup and
Recovery topic in the iSeries Information Center.

Saving and restoring security information in the distributed
relational database environment
If you make frequent changes to your server security environment by updating
user profiles and updating authorities for users in the distributed relational
database network, you can save security information to media or a save file
without a complete Save System (SAVSYS) command, a long-running process that
uses a dedicated server. With the Save Security Data (SAVSECDTA) command you
can save security data in a shorter time without using a dedicated server. Data
saved using the (SAVSECDTA) command can be restored using the Restore User
Profiles (RSTUSRPRF) or Restore Authority (RSTAUT) commands.

Included in the security information that the Save Security Data (SAVSECDTA) and
Restore User Profiles (RSTUSRPRF) commands can save and restore are the server
authorization entries that the DRDA TCP/IP support uses to store and retrieve
remote server user ID and password information.

Saving and restoring SQL Packages in the distributed relational
database environment
When an application program that refers to a relational database on a remote
server is precompiled and bound, an SQL package is created on the application
server (AS) to contain the control structures necessary to process any SQL
statements in the application.

An SQL package is an iSeries object, so it can be saved to media or a save file
using the Save Object (SAVOBJ) command and restored using the Restore Object
(RSTOBJ) command.

An SQL package must be restored to a collection having the same name as the
collection from which it was saved, and it cannot be renamed.

Saving and restoring relational database directories
The relational database directory is not an iSeries object. The relational database
directory is made up of files that are opened by the server at IPL time, so the Save
Object (SAVOBJ) command cannot used to directly save these files. You can save
the relational database directory by creating an output file from the relational
database directory data. This output file can then be used to add entries to the
directory again if it is damaged.

When entries have been added and you want to save the relational database
directory, specify the OUTFILE parameter on the Display Relational Database
Directory Entry (DSPRDBDIRE) command to send the results of the command to
an output file. The output file can be saved to tape, diskette, or a save file and
restored to the server. If your relational database directory is damaged or your

Chapter 7. Data Availability and Protection for a Distributed Relational Database 135

server needs to be recovered, you can restore the output file containing relational
database entry data using a control language (CL) program. The CL program reads
data from the restored output file and creates the CL commands that add entries to
a new relational database directory.

For example, the relational database directory for the Spiffy Corporation MP000
server is sent to an output file named RDBDIRM as follows:
DSPRDBDIRE OUTPUT(*OUTFILE) OUTFILE(RDBDIRM)

The sample CL program that follows reads the contents of the output file
RDBDIRM and recreates the relational database directory using the Add Relational
Database Directory Entry (ADDRDBDIRE) command. Note that the old directory
entries are removed before the new entries are made.
/**/
/* - Restore RDB Entries from output file created with: - */
/* - DSPRDBDIRE OUTPUT(*OUTFILE) OUTFILE(RDBDIRM) - */
/* - FROM A V4R2 OR LATER LEVEL OF OS/400 - */
/**/
PGM PARM(&ACTIVATE)
DCL VAR(&ACTIVATE) TYPE(*CHAR) LEN(7)

/* Declare Entry Types Variables to Compare with &RWTYPE */
DCL &LOCAL *CHAR 1
DCL &SNA *CHAR 1
DCL &IP *CHAR 1
DCL &ARD *CHAR 1
DCL &ARDSNA *CHAR 1
DCL &ARDIP *CHAR 1
DCL &RWTYPE *CHAR 1
DCL &RWRDB *CHAR 18
DCL &RWRLOC *CHAR 8
DCL &RWTEXT *CHAR 50
DCL &RWDEV *CHAR 10
DCL &RWLLOC *CHAR 8
DCL &RWNTID *CHAR 8
DCL &RWMODE *CHAR 8
DCL &RWTPN *CHAR 8
DCL &RWSLOC *CHAR 254
DCL &RWPORT *CHAR 14
DCL &RWDPGM *CHAR 10
DCL &RWDLIB *CHAR 10

DCLF FILE(RDBSAV/RDBDIRM) /* SEE PROLOG CONCERNING THIS */
IF COND(&ACTIVATE = SAVE) THEN(GOTO CMBLBL(SAVE))
IF COND(&ACTIVATE = RESTORE) THEN(GOTO CMDLBL(RESTORE))
SAVE:
CRTLIB RDBSAV
DSPRDBDIRE OUTPUT(*OUTFILE) OUTFILE(RDBSAV/RDBDIRM)
GOTO CMDLBL(END)

RESTORE:
/* Initialize Entry Type Variables to Assigned Values */
CHGVAR &LOCAL ’0’ /* Local RDB (one per system) */
CHGVAR &SNA ’1’ /* APPC entry (no ARD pgm) */
CHGVAR &IP ’2’ /* TCP/IP entry (no ARD pgm) */
CHGVAR &ARD ’3’ /* ARD pgm w/o comm parms */
CHGVAR &ARDSNA ’4’ /* ARD pgm with APPC parms */
CHGVAR &ARDIP ’5’ /* ARD pgm with TCP/IP parms */

RMVRDBDIRE RDB(*ALL) /* Clear out directory */

NEXTENT: /* Start of processing loop */
RCVF /* Get a directory entry */
MONMSG MSGID(CPF0864) EXEC(DO) /* End of file processing */

136 OS/400 Distributed Database Programming V5R2

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

QSYS/RCVMSG PGMQ(*SAME (*)) MSGTYPE(*EXCP) RMV(*YES) MSGQ(*PGMQ)
GOTO CMDLBL(LASTENT)
ENDDO

/* Process entry based on type code */
IF (&RWTYPE = &LOCAL) THEN(+

QSYS/ADDRDBDIRE RDB(&RWRDB) RMTLOCNAME(&RWRLOC) TEXT(&RWTEXT))

ELSE IF (&RWTYPE = &SNA) THEN(+
QSYS/ADDRDBDIRE RDB(&RWRDB) RMTLOCNAME(&RWRLOC) TEXT(&RWTEXT) +

DEV(&RWDEV) LCLLOCNAME(&RWLLOC) +
RMTNETID(&RWNTID) MODE(&RWMODE) TNSPGM(&RWTPN))

ELSE IF (&RWTYPE = &IP) THEN(+
QSYS/ADDRDBDIRE RDB(&RWRDB) RMTLOCNAME(&RWSLOC *IP) +

TEXT(&RWTEXT) PORT(&RWPORT))

ELSE IF (&RWTYPE = &ARD) THEN(+
QSYS/ADDRDBDIRE RDB(&RWRDB) RMTLOCNAME(&RWRLOC) TEXT(&RWTEXT) +

ARDPGM(&RWDLIB/&RWDPGM))

ELSE IF (&RWTYPE = &ARDSNA) THEN(+
QSYS/ADDRDBDIRE RDB(&RWRDB) RMTLOCNAME(&RWRLOC) TEXT(&RWTEXT) +

DEV(&RWDEV) LCLLOCNAME(&RWLLOC) +
RMTNETID(&RWNTID) MODE(&RWMODE) TNSPGM(&RWTPN) +
ARDPGM(&RWDLIB/&RWDPGM))

ELSE IF (&RWTYPE = &ARDIP) THEN(+
QSYS/ADDRDBDIRE RDB(&RWRDB) RMTLOCNAME(&RWSLOC *IP) +

TEXT(&RWTEXT) PORT(&RWPORT) +
ARDPGM(&RWDLIB/&RWDPGM))

GOTO CMDLBL(NEXTENT)

LASTENT:
RETURN
DLTLIB RDBSAV
END

ENDPGM

The following is an alternate method of restoring the directory, for the case when
no outfile of the type described above is available. This method is to extract the
object from a saved server and restore it to some other library and then manually
enter the entries in it with the Add Relational Database Directory Entry
(ADDRDBDIRE) command.

The files that make up the relational database directory are saved when a Save
System (SAVSYS) command is run. The physical file that contains the relational
database directory can be restored from the save media to your library with the
following Restore Object (RSTOBJ) command:
RSTOBJ OBJ(QADBXRDBD) SAVLIB(QSYS)

DEV(TAP01) OBJTYPE(*FILE)
LABEL(Qpppppppvrmxx0003)
RSTLIB(your lib)

In this example, the relational database directory is restored from tape. The
characters ppppppp in the LABEL parameter represent the product code of
Operating System/400 (for example, 5769SS1 for Version 4 Release 2). The vrm in
the LABEL parameter is the version, release, and modification level of OS/400. The

Chapter 7. Data Availability and Protection for a Distributed Relational Database 137

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

xx in the LABEL parameter is the last two digits of the current server language
value. For example, 2924 is for the English language; therefore, the value of xx is
24.

After you restore this file to your library, you can use the information in the file to
manually re-create the relational database directory.

Network redundancy issues for a distributed relational database
Network redundancy provides different ways for users on the distributed
relational database network to access a relational database on the network. If there
is only one communications path from an application requester (AR) to an
application server (AS), when the communications line is down, users on the AR
do not have access to the AS relational database. For this reason network
redundancy issues are important to the distributed relational database
administrator for the Spiffy Corporation.

For example, consider service booking or customer parts purchasing issues for a
dealership. When a customer is waiting for service or to purchase a part, the
service clerk needs access to all authorized tables of enterprise information to
schedule work or sell parts.

If the local server is down, no work can be done. If the local server is running but
a request to a remote server is needed to process work and the remote server is
down, the request can not be handled. In the Spiffy Corporation example, this
might mean a dealership cannot request parts information from a regional
inventory center. Also, if an AS that handles many AR jobs is down, none of the
ARs can complete their requests. In the case of the Spiffy Corporation network, if a
regional center is down, none of the application servers it supports can order parts.

Providing the region’s dealerships with access to regional inventory data is
important to the Spiffy Corporation distributed relational database administrator.
Providing paths through the network to data can be addressed several ways. The
original network configuration for the Spiffy Corporation linked the end node
dealerships to their respective network node regional centers.

138 OS/400 Distributed Database Programming V5R2

An alternative for some dealerships might be a switched-line connection to a
different regional center. If the local regional center is unavailable to the network,
access to another AS allows the requesting dealership to obtain information needed
to do their work. In Figure 12, some ARs served by the MP000 server establish
links to the KC000 server, which can be used whenever the MP000 server is
unavailable. The Vary Configuration (VRYCFG) or Work with Configuration Status
(WRKCFGSTS) commands can be used by a server operator or distributed
relational database administrator to vary the line on when needed and vary the
line off when the primary AS is available.

Another alternative could be if one of the larger area dealerships also acted as an
AS for other dealerships. As shown in Figure 13 on page 140, an end node is only
an AS to other end nodes through its network node. In Figure 12, if the link to
Minneapolis is down, none of the dealerships could query another (end node) for
inventory. The configuration illustrated above could be changed so that one of the
dealerships is configured as an APPN network node, and lines to that dealership
from other area dealerships are set up.

Figure 12. Alternative Network Paths

Chapter 7. Data Availability and Protection for a Distributed Relational Database 139

Data redundancy in your distributed relational database network

Data redundancy in a distributed relational database also provides different ways
for users on the distributed relational database network to access a database on the
network. The issues a distributed relational database administrator examines to
create a data redundancy strategy are more complex than ensuring
communications paths are available to the data. Tables can be replicated across

Figure 13. Alternate Application Server

140 OS/400 Distributed Database Programming V5R2

servers in the network, or a snapshot of data can be used to provide data
availability. The DataPropagator Relational Capture and Apply/400 product can
provide this capability.

The figure below shows that a copy of the MP000 server distributed relational
database can be stored on the KC000 server, and a copy of the KC000 server
distributed relational database can be stored on the MP000 server. The application
requester (AR)s from one region can link to the other application server (AS) to
query or to update a replicated copy of their relational database.

The administrator must decide what is the most efficient, effective strategy to
allow distributed relational database processing. Alternative strategies might
include these scenarios.

One alternative may be that when MP000 is unavailable, its ARs connect to the
KC000 server to query a read-only snapshot of the MP000 distributed relational
database so service work can be scheduled.

DataPropagator Relational/400 can provide a read-only copy (or snapshot) of the
tables to a remote server on a regular basis. For the Spiffy Corporation, this might
be at the end or the beginning of each business day. In this example, the MP000
database snapshot provides a 24-hour-old, last-point-in-time picture for dealerships
to use for scheduling only. When the MP000 server is back on line, its ARs query
the MP000 distributed relational database to completely process inventory requests
or other work queried on the snapshot.

Another alternative may be that Spiffy Corporation wants dealership users to be
able to update a replicated table at another AS when their regional AS is
unavailable.

For example, an AR that normally connects to the MP000 database could connect
to a replicated MP000 database on the KC000 server to process work. When the

Figure 14. Data Redundancy Example

Chapter 7. Data Availability and Protection for a Distributed Relational Database 141

MP000 server is available again, the MP000 relational database can be updated by
applying journal entries from activity originating in its replicated tables at the
KCOOO location. When these journal entries have been applied to the original
MP000 tables, distributed relational database users can access the MP000 as an AS
again.

Journal management processes on each regional server update all relational
databases. The amount of journal management copy activity in this situation
should be examined because of potential adverse performance effects at these
servers.

142 OS/400 Distributed Database Programming V5R2

Chapter 8. Distributed Relational Database Performance

No matter what kind of application programs you are running on a server,
performance can always be a concern. For a distributed relational database,
network, server, and application performance are all crucial. Server performance
can be affected by the size and organization of main and auxiliary storage. There
can also be performance gains if you know the strengths and weaknesses of SQL
programs. See Chapter 9, “Handling Distributed Relational Database Problems” for
more information.

See the following topics for details on how to improve the design of your network,
the server, and your database:
v Improving distributed relational database performance through the network
v Improving distributed relational database performance through the server
v Improving distributed relational database performance through the database

Improving distributed relational database performance through the
network

You can improve the performance of your network in various ways. Among them
are the following:
v Line speed
v Pacing
v Frame size
v RU sizing
v Connection type (nonswitched versus switched)

Note: Unprotected conversations are used for DRDA connections when the
connection is performed from a program using RUW connection
management or if the program making the connection is not running
under commitment control, or if the database to which the connection is
made does not support two-phase commit for the protocol that is being
used. If the characteristics of the data are such that the transaction only
affects one database management system, establishing the connection from
a program using RUW connection management or from a program
running without commitment control can avoid the overhead associated
with two-phase commit flows.

Additionally, when conversations are kept active with DDMCNV(*KEEP)
and those conversations are protected conversations, two-phase commit
flows are sent regardless of whether the conversation was used for DRDA
or DDM processing during the unit of work. Therefore, when running
with DDMCNV(*KEEP), it is better to run with unprotected conversations
if possible. If running with protected conversations, you should run with
DDMCNV(*DROP) and use the RELEASE statement to end the connection
and the conversation at the next commit when the conversation will not
be used in future units of work.

© Copyright IBM Corp. 1998, 2001, 2002 143

For details, see the Communications Management book. See the APPC, APPN,
and HPR topic for information about RU sizing and pacing.

For a discussion of other communications-related performance considerations, see
the TCP/IP setup topic in the iSeries Information Center.

Improving distributed relational database performance through the
server

Achieving efficient server performance requires a proper balance among server
resources. Overusing any resource adversely affects performance.

This section describes the server commands that are available to help you observe
the performance of your server.

You can use the iSeries Performance Tools licensed program to help analyze your
performance. In addition, there are some system commands available to help you
observe the performance of your server:
v Work with System Status (WRKSYSSTS) command
v Work with Disk Status (WRKDSKSTS) command
v Work with Active Jobs (WRKACTJOB) command

In using them, you should observe server performance during typical levels of
activity. For example, statistics gathered when no jobs are running on the server
are of little value in assessing server performance. To observe the server
performance, complete the following steps:
1. Enter the (WRKSYSSTS), (WRKDSKSTS), or (WRKACTJOB) command.
2. Allow the server to collect data for a minimum of 5 minutes.
3. Press F5 (Refresh) to refresh the display and present the performance data.
4. Tune your server based on the new data.

Press F10 (Restart) to restart the elapsed time counter.

See the chapter on performance tuning in the Work Management topic for details
on how to work with server status and disk status.

One of the functions of the Work with Active Jobs (WRKACTJOB) command
discussed earlier is to measure server performance. The Work with Active Jobs
display is shown in “Working with active jobs in a distributed relational database”
on page 100.

Use both the Work with System Status (WRKSYSSTS) and the Work with Active
Jobs (WRKACTJOB)commands when observing the performance of your system.
With each observation period, you should examine and evaluate the measures of
server performance against the goals you have set.

Some of the typical measures include:
v Interactive throughput and response time, available from the (WRKACTJOB)

display.
v Batch throughput. Observe the AuxIO and CPU% values for active batch jobs.
v Spool throughput. Observe the AuxIO and CPU% values for active writers.

144 OS/400 Distributed Database Programming V5R2

Each time you make tuning adjustments, you should measure and compare all of
your main performance measures. Make and evaluate adjustments one at a time.

Improving distributed relational database performance through the
database

Distributed relational database performance is affected by the overall design of the
database as mentioned in Chapter 2, “Planning and Design for Distributed
Relational Database” on page 17. Where you locate distributed data, the level of
commitment control you use, and the design of your SQL indexes all affect
performance.

See the following topics for information on optimizing your database performance:
v Deciding DRDA data location
v Factors that Affect Blocking for DRDA
v Factors that affect the size of DRDA query blocks

Deciding DRDA data location
Because putting a network between an application and the data it needs will
probably slow performance, consider the following when deciding where to put
data:
v Transactions that use the data
v How often the transactions are performed
v How much data the transactions send or receive

If an application involves transactions that run frequently or that send or receive a
lot of data, you should try to keep it in the same location as the data. For example,
an application that runs many times a second or that receives hundreds of rows of
data at a time will have better performance if the application and data are on the
same server. Conversely, consider placing data in a different location than the
application that needs it if the application includes low-use transactions or
transactions that send or receive only moderate amounts of data at a time.

Factors that Affect Blocking for DRDA
A very important performance factor is whether blocking occurs when data is
transferred between the application requester (AR) and the application server
(AS). A group of rows transmitted as a block of data requires much less
communications overhead than the same data sent one row at a time. One way to
control blocking when connected to another iSeries server is to use the SQL
multiple-row INSERT and multiple-row FETCH statements in Version 2 Release 2
and later versions of the OS/400 operating system. The multiple-row FETCH forces
the blocking of the number of rows specified in the FOR n ROWS clause, unless a
hard error or end of data is encountered. The following discussion gives rules for
determining if blocking will occur for single-row FETCHs.

Conditions that inhibit the blocking of query data between the AR and the AS are
also listed in the following discussion. These conditions do not apply to the use of
the multiple-row FETCH statement. Any condition listed under each of the
following cases is sufficient to prevent blocking from occurring.

Case 1: DB2 UDB for iSeries to DB2 UDB for iSeries Blocking
Blocking will not occur if:
v The cursor is updatable (see Note 1).

Chapter 8. Distributed Relational Database Performance 145

v The cursor is potentially updatable (see Note 2).
v The ALWBLK(*NONE) precompile option was used.
v The commitment control level is *CS and the level of OS/400 is earlier than

Version 3 Release 1.
v The commitment control level is *ALL and the outer subselect does not contain

one of the following:
– The DISTINCT keyword
– The UNION operator
– An ORDER BY clause and the sum of the lengths of the fields in the clause

requires a sort
– A reference to a server database file (server database files are those in library

QSYS named QADBxxxx, and any views built over those files)
v The row size is greater than approximately 2K or, if the Submit Remote

Command (SBMRMTCMD) command or a stored procedure was used to extend
the size of the default AS database buffer, the row size is greater than
approximately half of the size of the database buffer resulting from specification
of the Override with Database File (OVRDBF) command SEQONLY
number-of-records parameter. (Note that for the (OVRDBF) command to work
remotely, OVRSCOPE(*JOB) must be specified.)

v The cursor is declared to be scrollable (DECLARE...SCROLL CURSOR...) and a
scroll option specified in a FETCH statement is one of the following: RELATIVE,
PRIOR, or CURRENT (unless a multiple-row FETCH was done, as mentioned
above.)

Case 2: DB2 UDB for iSeries to Non-DB2 UDB for iSeries
Blocking
Blocking will not occur if:
v The cursor is updatable (see Note 1).
v The cursor is potentially updatable (see Note 2).
v The ALWBLK(*NONE) precompile option is used.
v The row size is greater than approximately 16K.

Case 3: Non-DB2 UDB for iSeries to DB2 UDB for iSeries
Blocking
Blocking will not occur if:
v The cursor is updatable (see Note 1).
v The cursor is potentially updatable (see Note 2).
v A precompile or bind option is used that caused the package default value to be

force-single-row protocol.
– For DB2, there is no option to do this.
– For DB2 UDB for VM, this is the NOBLOCK keyword on SQLPREP (the

default).
– For DB2/2, this is /K=NO on SQLPREP or SQLBIND.

v The row size is greater than approximately 0.5*QRYBLKSIZ. (The default
QRYBLKSIZ values for DB2, DB2 UDB for VM, and DB2 Connect are 32K, 8K,
and 4K, respectively.)

Summarization of DRDA blocking rules
In summary, what these rules (including the notes) say is that in the absence of
certain special or unusual conditions, blocking will occur in both of the following
cases:

146 OS/400 Distributed Database Programming V5R2

v It will occur if the cursor is read-only (see Note 3) and if:
– Either the application requester or application server is a non-DB2 Universal

Database for iSeries.
– Both the application requester and application server are DB2 Universal

Database for iSeries and ALWBLK(*ALLREAD) is specified and
COMMIT(*ALL) is not specified.

v It will occur if COMMIT(*ALL) was not specified and all of the following are
also true:
– There is no FOR UPDATE OF clause in the SELECT, and
– There are no UPDATE or DELETE WHERE CURRENT OF statements against

the cursor in the program, and
– Either the program does not contain dynamic SQL statements or a

precompile/bind option was used to request limited-block protocol (/K=ALL
with DB2 Connect, ALWBLK(*ALLREAD) with DB2 Universal Database for
iSeries, CURRENTDATA(NO) with DB2, SBLOCK with DB2 UDB for VM).

Notes:

1. A cursor is updatable if it is not read-only (see Note 3), and one of the
following is true:
v The select statement contained the FOR UPDATE OF clause, or
v There exists in the program an UPDATE or DELETE WHERE CURRENT OF

against the cursor.
2. A cursor is potentially updatable if it is not read-only (see Note 3), and if the

program includes an EXECUTE or EXECUTE IMMEDIATE statement (or when
connected to a non-iSeries server, any dynamic statement), and a precompile or
bind option is used that caused the package default value to be single-row
protocol.
v For DB2 Universal Database for iSeries, this is the ALWBLK(*READ)

precompile option (the default).
v For DB2, this is CURRENTDATA(YES) on BIND PACKAGE (the default).
v For DB2 UDB for VM, this is the SBLOCK keyword on SQLPREP.
v For DB2/2, this is /K=UNAMBIG on SQLPREP or SQLBIND (the default).

3. A cursor is read-only if one or more of the following conditions are true:
v The DECLARE CURSOR statement specified an ORDER BY clause but did

not specify a FOR UPDATE OF clause.
v The DECLARE CURSOR statement specified a FOR FETCH ONLY clause.
v The DECLARE CURSOR statement specified the SCROLL keyword without

DYNAMIC (OS/400 only).
v One or more of the following conditions are true for the cursor or a view or

logical file referenced in the outer subselect to which the cursor refers:
– The outer subselect contains a DISTINCT keyword, GROUP BY clause,

HAVING clause, or a column function in the outer subselect.
– The select contains a join function.
– The select contains a UNION operator.
– The select contains a subquery that refers to the same table as the table of

the outer-most subselect.
– The select contains a complex logical file that had to be copied to a

temporary file.
– All of the selected columns are expressions, scalar functions, or constants.

Chapter 8. Distributed Relational Database Performance 147

– All of the columns of a referenced logical file are input only (OS/400
only).

Factors that affect the size of DRDA query blocks
If a large amount of data is being returned on a query, performance may be
improved by increasing the size of the block of query data. The way that this is
done depends upon the types of servers participating in the query. In an unlike
environment, the size of the query block is determined at the application requester
by a parameter sent with the Open Query command. When an iSeries server is the
application requester (AR), it always requests a query block size of 32K. Other
types of ARs give the user a choice of what block size to use. The default query
block sizes for DB2, DB2 UDB for VM, and DB2 Connect are 32K, 8K, and 4K,
respectively. See the product documentation for the platform being used as an AR
when a DB2 UDB for iSeries server is connected to an unlike AR.

In the DB2 UDB for iSeries to DB2 UDB for iSeries environment, the query block
size is determined by the size of the buffer used by the database manager. The
default size is 4K. This can be changed on application servers that are at the
Version 2, Release 3 or higher level. In order to do this, use the Submit Remote
Command (SBMRMTCMD) command to send and execute an Override with
Database File (OVRDBF) command on the application server (AS). Besides the
name of the file being overridden, the (OVRDBF) command should contain
OVRSCOPE(*JOB) and SEQONLY(*YES nnn). The number of records desired per
block replaces nnn in the SEQONLY parameter. Increasing the size of the database
buffer not only can reduce communications overhead, but can also reduce the
number of calls to the database manager to retrieve the rows.

You can also change the query block size using an SQL CALL statement (a stored
procedure) from non-iSeries servers or between iSeries servers.

148 OS/400 Distributed Database Programming V5R2

Chapter 9. Handling Distributed Relational Database Problems

When a problem occurs accessing a distributed relational database, it is the job of
the administrator to:
v Determine the nature of the problem, and
v Determine if it is a problem with the application or a problem with the local or

remote system.

You must then resolve the problem or obtain customer support assistance to
resolve the problem. To do this, you need:
v An understanding of the OS/400 program support.
v A good idea of how to decide if a problem is on an application requester (AR)

or an application server (AS).
v Familiarity with using OS/400 problem management functions.

See the following topics for more information on distributed relational database
problems:
v iSeries Problem Handling Overview
v Isolating Distributed Relational Database Problems
v Working with distributed relational database users
v Application problems
v Getting data to report a failure
v Finding First-Failure Data Capture (FFDC) data
v Starting a service job to diagnose application server problems
v System and communications problems

For more information about diagnosing problems in a distributed relational
database, see the Distributed Relational Database Problem Determination Guide.

iSeries Problem Handling Overview
The OS/400 program helps you manage problems for both user- and
system-detected problems that occur on local and remote iSeries servers. Problem
handling support includes:
v Messages with initial problem handling information
v Automatic alerting of system-detected problems
v Alert management focal point capability
v Integrated problem logging and tracking
v First failure data capture (FFDC) support
v Electronic customer support service requisition
v Electronic customer support, program temporary fix (PTF) requisition

The iSeries server and its attached devices are able to detect some types of
problems. These are called system-detected problems. When a problem is detected,
several operations take place:
v An entry in the Product Activity Log is created
v A problem record is created

© Copyright IBM Corp. 1998, 2001, 2002 149

v A message is sent to the QSYSOPR message queue
v An alert may be created

Information is recorded in the error log and the problem record. The alert may
then be sent to the service provider if the service provider is either an alert focal
point or the network node server for the system with the problem. When some
alerts are sent, a spooled file of FFDC information is also created. The error log
and the problem record may contain the following information:
v Vital product data
v Configuration information
v Reference code
v The name of the associated device
v Additional failure information

User-detected problems are usually related to program errors that can cause any of
the following problems to occur:
v Job problems
v Incorrect output
v Messages indicating a program failure
v Device failure not detected by the system
v Poor performance

When a user detects a problem, no information is gathered by the server until
problem analysis is run or you select the option to save information to help resolve
a problem from the Operational Assistant* USERHELP menu.

The iSeries server tracks both user- and system-detected problems using the
problem log and problem manager. A problem state is maintained from when a
problem is detected (OPENED) to when it is resolved (CLOSED) to assist you with
tracking. Alert and alert management capabilities extend the problem management
support to include problems occurring on other iSeries servers in a distributed
relational database network. For more information, see “iSeries problem log” on
page 173.

Isolating Distributed Relational Database Problems
A problem you encounter when running a distributed relational database
application can exhibit two general symptoms:
v The user receives incorrect output.
v The application does not complete in the expected time

The diagrams and procedures below show generally how you can classify
problems as application program problems, performance related problems, and
server related problems, so you can use standard iSeries server problem analysis
methods to resolve the problem.

DRDA incorrect output problems
If you receive an error message, use the error message, SQLCODE, or SQLSTATE
to determine the cause of the problem. See Figure 15 on page 151. The message
description indicates what the problem is and provides corrective actions. If you
do not receive an error message, you must determine whether distributed
relational database is causing the failure. To do this, run the failing statement
locally on the application server (AS) or use interactive Structured Query

150 OS/400 Distributed Database Programming V5R2

Language (SQL) to run the statement on the AS. If you can create the problem
locally, the problem is not with distributed relational database support. Use iSeries
server problem analysis methods to provide specific information for your support
staff depending on the results of this operation.

Application does not complete in the expected time problems
If the request takes longer than expected to complete, the first place to check is at
the application requester (AR). Check the job log for message SQL7969 which
indicates that a connect to a relational database is complete. This tells you the
application is a distributed relational database application. Check the AR for a loop
by using the Work with Job (WRKJOB) command to display the program stack,
and check the program stack to determine whether the system is looping. See
Figure 16 on page 152. If the application itself is looping, contact the application
programmer for resolution. If you see QAPDEQUE and QCNSRCV on the stack,
the AR is waiting for the application server (AS). See Figure 17 on page 154. If the

Figure 15. Resolving Incorrect Output Problem

Chapter 9. Handling Distributed Relational Database Problems 151

system is not in a communications wait state, use problem analysis procedures to
show whether there is a performance problem or a wait state somewhere else.

You can find the AR job name by looking at the job log on the AS. For more
information about finding jobs on the AS, see “Locating distributed relational
database jobs” on page 102. When you need to check the AS job, use the Work with
Job (WRKJOB), Work with Active Jobs (WRKACTJOB), or Work with User Jobs
(WRKUSRJOB) commands to locate the job on the AS. For information on using
these commands, see the following topics:
v “Working with jobs in a distributed relational database” on page 98
v “Working with user jobs in a distributed relational database” on page 98
v “Working with active jobs in a distributed relational database” on page 100

From one of these job displays, look at the program stack to see if the AS is
looping. If it is looping, use problem analysis to handle the problem. If it is not
looping, check the program stack for WAIT with QCNTRCV, which means the AS
is waiting for the AR. If both servers are in this communications wait state, there is
a problem with your network. If the AS is not in a wait state, there is a
performance issue that may have to be addressed.

Two common sources of slow query performance are:

Figure 16. Resolving Wait, Loop, or Performance Problems on the Application Requester

152 OS/400 Distributed Database Programming V5R2

v An accessed table does not have an index. If this is the case, create an index
using an appropriate field or fields as the key.

v The rows returned on a query request are not blocked. Whether the rows are
blocked can cause a significant difference in query performance. It is important
to understand the factors that affect blocking, and tune the application to take
advantage of it. For more information, see “Factors that Affect Blocking for
DRDA” on page 145.

The first time you connect to DB2 UDB for iSeries from a PC using a product like
DB2 Connect, if you have not already created the SQL packages for the product in
DB2 UDB for iSeries, the packages will be created automatically, and the NULLID
collection may need to be created automatically as well. This can take a long time
and give the appearance of a performance problem. However, it should be just a
one-time occurrence.

A long delay will occur if the server to which you are trying to connect over
TCP/IP is not available. A several minute timeout delay will precede the message
A remote host did not respond within the timeout period. An incorrect IP
address in the RDB directory will cause this behavior as well.

Chapter 9. Handling Distributed Relational Database Problems 153

Working with distributed relational database users
Investigating a problem usually begins with the user. Users may not be getting the
results they expect when running a program or they may get a message indicating
a problem. Sometimes the best way to diagnose and solve a problem is to step
through the procedure with a user. The Copy screen function allows you to do this
either in real time with the user or in examining a file of the displays the user saw
previously.

You can also gather more information from Messages than just the line of text that
appears at the bottom of a display. This section discusses how you can copy

Figure 17. Resolving Wait, Loop, or Performance Problems on the Application Server

154 OS/400 Distributed Database Programming V5R2

displays being viewed by another user and how you can obtain more information
about messages you or a user receive when doing distributed relational database
work.

In addition to programming problems, you may have problems with starting the
program or connecting to the server. See the following topics for details on how to
handle these problems:
v Handling program start request failures for APPC
v Handling connection request failures for TCP/IP

Copy screen
The Start Copy Screen (STRCPYSCN) command allows you to be signed on to
your work station and see the same displays being viewed by someone else at
another work station. You must be signed on to the same iSeries server as the user.
If that user is on a remote server, you can use display station pass-through to sign
on that server and then enter the (STRCPYSCN) command to see the other
displays. Screen images can be copied to a database file at the same time they are
copied to another work station or when another work station cannot be used. This
allows you to process this data later and prepares an audit trail for the operations
that occur during a problem situation.

To copy the display image to another display station the following requirements
must be met:
v Both displays are defined to the server
v Both displays are color or both are monochrome, but not one color and the other

monochrome
v Both displays have the same number of character positions horizontally and

vertically

If you type your own display station ID as the sending device, the receiving
display station must have the sign on display shown when you start copying
screen images. Graphics are copied as blanks.

If not already signed on to the same server, use the following process to see the
displays that another user sees on a remote server:
1. Enter the Start Pass-Through (STRPASTHR) command.

STRPASTHR RMTLOCNAME(KC105)

2. Log on to the application source (AS).
3. Enter the (STRCPYSCN) command.

STRCPYSCN SRCDEV(KC105)
OUTDEV(*REQUESTER)
OUTFILE(KCHELP/TEST)

v SRCDEV specifies the name of the source device, the display station that is
sending the display image. To send your display to command to another
device, enter the *REQUESTER value for this parameter.

v OUTDEV specifies the name of the output device to which the display image
is sent. In this example the display image is sent to the display station of the
person who enters the command (*REQUESTER). You can also name another
display station, another device (where a third user is viewing), or to no other
device (*NONE). When the *NONE value is used, specify an output file for
the display images.

v OUTFILE specifies the name of the output file that will contain an image of
all the displays viewed while the command is active.

Chapter 9. Handling Distributed Relational Database Problems 155

4. An inquiry message is sent to the source device to notify the user of that device
that the displays will be copied to another device or file. Type a g (Go) to start
sending the images to the requesting device.

The sending display station’s screens are copied to the other display station. The
image shown at the receiving display station trails the sending display station by
one screen. If the user at the sending display station presses a key that is not active
(such as the Home key), both display stations will show the same display.

While you are copying screens, the operator of the receiving display station cannot
do any other work at that display station until the copying of screens is ended.

To end the copy screen function from the sending display station, enter the End
Copy Screen (ENDCPYSCN) command from any command line and press the
Enter key.
ENDCPYSCN

The display you viewed when you started the copy screen function is shown.

Messages
The iSeries server sends a variety of system messages that indicate conditions
ranging from simple typing errors to problems with server devices or programs.
The message may be one of the following:
v An error message on your current display.

These messages can interrupt your job or sound an alarm. You can display these
messages by typing DSPMSG on any command line.

v A message regarding a server problem that is sent to the server operator
message queue and displayed on a separate Work with Messages display.
To see these messages, type DSPMSG QSYSOPR on any server command line.

v A message regarding a server problem that is sent to the message queue
specified in a device description.
To see these messages, type DSPMSG message-queue-name on any server command
line.

v A message regarding a server problem that is sent to another server in the
network.
These messages are called alerts. See “Alerts” on page 175 for how to view and
work with alerts.

The server sends informational or inquiry messages for certain server events.
Informational messages give you status on what the server is doing. Inquiry
messages give you information about the server, but also request a reply.

In some message displays a message is accompanied by a letter and number code
such as:
CPF0083

The first two or three letters indicate the message category. Some message
categories for distributed relational database are:

Table 7. Message Categories

Category Description Library

CPA through CPZ Messages from the operating
system

QSYS/QCPFMSG

156 OS/400 Distributed Database Programming V5R2

Table 7. Message Categories (continued)

Category Description Library

MCH Licensed internal code
messages

QSYS/QCPFMSG

SQ and SQL Structured Query Language
(SQL) messages

QSYS/QSQLMSG

TCP TCP/IP messages QTCP/QTCPMSGF

The remaining four digits (five digits if the prefix is SQ) indicate the sequence
number of the message. The example message ID shown indicates this is a
message from the operating system, number 0083.

To obtain more information about a message on the message line of a display or in
a message queue, do the following:
1. Move the cursor to the same line as the message.
2. Press the Help key. The Additional Message Information display is shown.

Additional Message Information

Message ID : CPD6A64 Severity : 30
Message type : DIAGNOSTIC
Date sent : 03/29/92 Time sent : 13:49:06
From program : QUIACT Instruction : 080D
To program : QUIMGFLW Instruction : 03C5

Message : Specified menu selection is not correct.
Cause : The selection that you have specified is not correct for
one of the following reasons:
-- The number selected was not valid.
-- Something other than a menu option was entered on the option line.
Recovery . . . : Select a valid option and press the Enter or Help key
again.

Bottom
Press Enter to continue.

F3=Exit F6=Print F9=Display message details
F10=Display messages in job log F12=Cancel F21=Select assistance level

You can get more information about a message that is not showing on your
display if you know the message identifier and the library in which it is located.
To get this information enter the Display Message Description (DSPMSGD)
command:
DSPMSGD RANGE(SQL0204) MSGF(QSYS/QSQLMSG)

This command produces a display that allows you to select the following
information about a message:
v Message text
v Field data
v Message attributes
v All of the above

The text is the same message and message help text that you see on the Additional
Message Information display. The field data is a list of all the substitution variables
defined for the message and their attributes. The message attributes are the values
(when defined) for severity, logging, level of message, alert, default program,

Chapter 9. Handling Distributed Relational Database Problems 157

default reply, and dump parameters. You can use this information to help you
determine what the user was doing when the message appeared.

Message types
On the Additional Message Information display you see the message type and
severity code for the message. Table 8 shows the different message types for iSeries
messages and their associated severity codes:

Table 8. Message Severity Codes

Message Type Severity Code

Informational messages. For informational
purposes only; no reply is needed. The
message can indicate that a function is in
progress or that a function has completed
successfully.

00

Warning. A potential error condition exists.
The program may have taken a default, such
as supplying missing data. The results of the
operation are assumed to be successful.

10

Error. An error has been found, but it is one
for which automatic recovery procedures
probably were applied; processing has
continued. A default may have been taken to
replace the wrong data. The results of the
operation may not be correct. The function
may not have completed; for example, some
items in a list ran correctly, while other items
did not.

20

Severe error. The error found is too severe
for automatic recovery procedures and no
defaults are possible. If the error was in the
source data, the entire data record was
skipped. If the error occurred during a
program, it leads to an abnormal end of
program (severity 40). The results of the
operation are not correct.

30

Severe error: abnormal end of program or
function. The operation has ended, possibly
because the program was not able to handle
data that was not correct or because the user
canceled it.

40

Abnormal end of job or program. The job
was not started or failed to start, a job-level
function may not have been done as
required, or the job may have been canceled.

50

System status. Issued only to the system
operator message queue. It gives either the
status of or a warning about a device, a
subsystem, or the system.

60

Device integrity. Issued only to the system
operator message queue, indicating that a
device is not working correctly or is in some
way no longer operational.

70

158 OS/400 Distributed Database Programming V5R2

Table 8. Message Severity Codes (continued)

Message Type Severity Code

System alert and user messages. A condition
exists that, although not severe enough to
stop the system now, could become more
severe unless preventive measures are taken.

80

System integrity. Issued only to the system
operator message queue. Describes a
condition where either a subsystem or
system cannot operate.

90

Action. Some manual action is required, such
as entering a reply or changing printer
forms.

99

Distributed Relational Database messages
If an error message occurs at either an application server (AS) or an application
requester (AR), the server message is logged on the job log to indicate the reason
for the failure. See “Tracking request information with the job log of a distributed
relational database” on page 102 for information on how to use a job log and locate
one on an AS.

A server message exists for each SQLCODE returned from an SQL statement
supported by the DB2 Universal Database for iSeries program. The message is
made available in precompiler listings, on interactive SQL, or in the job log when
running in the debug mode. However, when you are working with an AS that is
not an iSeries server, there may not be a specific message for every error condition
in the following cases:
v The error is associated with a function not used by the iSeries server.

For example, the special register CURRENT SQLID is not supported by DB2
UDB for iSeries, so SQLCODE -411 (SQLSTATE 56040) “CURRENT SQLID
cannot be used in a statement that references remote objects” does not exist.

v The error is product-specific and will never occur when using DB2 UDB for
iSeries.
DB2 UDB for iSeries will never have SQLCODE -925 (SQLSTATE 56021), “SQL
commit or rollback is invalid in an IMS or CICS environment.”

For SQLCODEs that do not have corresponding messages, a generic message is
returned that identifies the unrecognized SQLCODE, SQLSTATE, and tokens, along
with the relational database name of the AS which generated the message. To
determine the specific condition and how to interpret the tokens, consult the
product documentation corresponding to the particular release of the connected
AS. For more information on SQLCODEs, see “SQLCODEs and SQLSTATEs” on
page 167.

Messages in the ranges CPx3E00 through CPx3EFF and CPI9100 through CPI91FF
are used for distributed relational database server messages. The following list is
not inclusive, but shows more common server messages you may see in a
distributed database job log on an iSeries server. See the SQL Programming
Concepts book for a list of SQL messages for distributed relational database.

Table 9. Distributed Relational Database Messages

MSG ID Description

CPA3E01 Attempt to delete *LOCAL RDB directory entry

Chapter 9. Handling Distributed Relational Database Problems 159

||

||

||

Table 9. Distributed Relational Database Messages (continued)

MSG ID Description

CPC3EC5 Some parameters for RDB directory entry ignored

CPD3E30 Conflicting remote network ID specified

CPD3E35 Structure of remote location name not valid for ...

CPD3E36 Port identification is not valid

CPD3E38 Type conflict for remote location

CPD3E39 Value &3 for parameter &2 not allowed

CPD3E3B Error occurred retrieving server authorization information for ...

CPD3ECA RDB directory operation may not have completed

CPD3E01 DBCS or MBCS CCSID not supported.

CPD3E03 Local RDB name not in RDB directory

CPD3E05 DDM conversation path not found

CPD3E31 DDM TCP/IP server is not active

CPD3E32 Error occurred ending DDM TCP/IP server

CPD3E33 DDM TCP/IP server error occurred with reason code ...

CPD3E34 DDM TCP/IP server communications error occurred

CPD3E37 DDM TCP/IP get host by name failure

CPF3E30 Errors occurred starting DDM TCP/IP server

CPF3E31 * Unable to start DDM TCP/IP server

CPF3EC6 Change DDM TCP/IP attributes failed

CPF3EC9 Scope message for interrupt RDB

CPF3E0A Resource limits error

CPF3E0B Query not open

CPF3E0C FDOCA LID limit reached

CPF3E0D Interrupt not supported

CPF3E01 DDM parameter value not supported

CPF3E02 AR cannot support operations

CPF3E04 SBCS CCSID not supported

CPF3E05 Package binding not active

CPF3E06 RDB not found

CPF3E07 Package binding process active

CPF3E08 Open query failure

CPF3E09 Begin bind error

CPF3E10 AS does not support DBCS or MC

CPF3E12 Commit/rollback HOLD not supported

CPF3E13 Commitment control operation failed

CPF3E14 End RDB Request failed

CPF3E16 Not authorized to RDB

CPF3E17 End RDB request is in progress

CPF3E18 COMMIT/ROLLBACK with SQLCA

CPF3E19 Commitment control operation failed

160 OS/400 Distributed Database Programming V5R2

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 9. Distributed Relational Database Messages (continued)

MSG ID Description

CPF3E20 DDM conversation path not found

CPF3E21 RDB interrupt fails

CPF3E22 Commit resulted in a rollback at the application server

CPF3E23 * DDM data stream violates conversation capabilities

CPF3E30 * Errors occurred starting DDM TCP/IP server

CPF3E32 * Server error occurred processing client request

CPF3E80 * Data stream syntax error

CPF3E81 * Invalid FDOCA descriptor

CPF3E82 * ACCRDB sent twice

CPF3E83 * Data mismatch error

CPF3E84 * DDM conversational protocol error

CPF3E85 * RDB not accessed

CPF3E86 * Unexpected condition

CPF3E87 * Permanent agent error

CPF3E88 * Query already open

CPF3E89 * Query not open

CPF3E99 End RDB request has occurred

CPI9150 DDM job started

CPI9152 Target DDM job started by application requester (AR)

CPI9160 DDM connection started over TCP/IP

CPI9161 DDM TCP/IP connection ended

CPI9162 Target job assigned to handle DDM connection started

CPI9190 Authorization failure on distributed database

CPI3E01 Local RDB accessed successfully

CPI3E02 Local RDB disconnected successfully

CPI3E04 Connection to relational database &1; ended

CPI3E30 DDM TCP/IP server already active

CPI3E31 DDM TCP/IP server does not support security mechanism

CPI3E32 DDM server successfully started

CPI3E33 DDM server successfully ended

CPI3E34 DDM job xxxx servicing user yyy on mm/dd/yy at hh:mm:ss (This can
be suppressed with QRWOPTIONS)

CPI3E35 No DDM server prestart job entry

CPI3E36 Connection to relational database xxxx ended

SQ30082 A connection attempt failed with reason code...

SQL7992 Connect completed over TCP/IP

SQL7993 Already connected

Note: An asterisk (*) means an alert is associated with the error condition.

Chapter 9. Handling Distributed Relational Database Problems 161

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

||

||

||

||

||

|
|

Handling program start request failures for APPC
When a program start request is received by an OS/400 subsystem on the
application server (AS), the server attempts to start a job based on information
sent with the program start request. The application requester (AR) user’s
authority to the application server (AS), existence of the requested database, and
many other items are checked.

If the AS subsystem determines that it cannot start the job (for example, the user
profile does not exist on the AS, the user profile exists but is disabled, or the user
is not properly authorized to the requested objects on the AS), the subsystem sends
a message, CPF1269, to the QSYSMSG message queue (or QSYSOPR when
QSYSMSG does not exist). The CPF1269 message contains two reason codes (one of
the reason codes may be zero, which can be ignored).

The nonzero reason code gives the reason the program start request was rejected.
Because the remote job was to have started on the AS, the message and reason
codes are provided on the application server (AS), and not the application
requester (AR). The user at the AR only knows that the program start request
failed, not why it failed. The user on the AR must either talk to the system
operator at the AS, or use display station pass-through to the AS to determine the
reason why the request failed.

For a complete description of the reason codes and their meanings, refer to the ICF

Programming book.

Handling connection request failures for TCP/IP
The main causes for failed connection requests at a DRDA server configured for
TCP/IP use is that the DDM TCP/IP server is not started, an authorization error
occurred, or the machine is not running.

Server Is Not Started or the Port ID Is Not Valid
The error message given if the DDM TCP/IP server is not started is CPE3425:
A remote host refused an attempted connect operation.

You can also get this message if you specify the wrong port on the Add Relational
Database Directory Entry (ADDRDBDIRE) or Change Relational Database
Directory Entry (CHGRDBDIRE)commands. For a DB2 UDB for iSeries server, the
port should usually be *DRDA (the DRDA well-known port of 446). However, if
you have configured port 447 for use with IPSec, you might want to use that port
for transmitting sensitive data. If you are using a DRDA client that supports Secure
Sockets Layer (SSL), you must connect to port 448 on the server.

To start the DDM server on the remote server, run the Start TCP/IP Server
(STRTCPSVR) *DDM command. You can request that it be started whenever
TCP/IP is started by running the Change DDM TCP/IP Attributes
(CHGDDMTCPA) AUTOSTART(*YES) command.

DRDA Connect Authorization Failure
The error messages given for an authorization failure is SQ30082:
Authorization failure on distributed database connection attempt.

The cause section of the message gives a reason code and a list of meanings for the
possible reason codes. Reason code 17 means that there was an unsupported
security mechanism (SECMEC).

162 OS/400 Distributed Database Programming V5R2

DB2 UDB for iSeries implements several DRDA SEMECs that an iSeries application
requester (AR) can use:
v user ID only
v user ID with password
v encrypted password security mechanism (V4R5 and later)
v Kerberos (V5R2)

The encrypted password is sent only if a password is available at the time the
connection is initiated.

The default SECMEC for an iSeries server requires user ID with password. If the
application requester (AR) sends a user ID with no password to a server, with the
default security configuration, error message SQ30082 with reason code 17 is given.

Solutions for the unsupported SECMEC failure are:
v To allow the userid-only SEMEC at the server by running the Change DDM

TCP/IP Attributes (CHGDDMTCPA) command PWDRQD(*NO) command, or
v To send at least a clear-text password on the connect request if PWDRQD(*YES)

is in effect at the server, or
v To send an encrypted password if PWDRQD(*ENCRYPTED) is in effect at the

server.
v To use Kerberos at the client if RWDRQD (*KERBEROS), is in effect at the server.

You can send a password by either using the USER/USING form of the SQL
CONNECT statement, or by using the Add Server Authentication Entry
(ADDSVRAUTE) command to add the remote user ID and the password in a
server authorization entry for the user profile under which the connection attempt
is made. In V4R5 and later systems, an attempt is automatically made to send the
password encrypted. Note that Pre-V4R5 iSeries servers cannot send encrypted
passwords, nor can they decrypt encrypted passwords of the type sent by V4R5
iSeries ARs.

Note that you have to have system value QRETSVRSEC (retain server security
data) set to ’1’ to be able to store the remote password in the server authorization
entry.

Attention: You must enter the RDB name on the Add Server Authentication
Entry (ADDSVRAUTE) command in upper case for use with DRDA or the name
will not be recognized during connect processing and the information in the
authorization entry will not be used.

Server Not Available
If a remote server is not up and running, or if you specify an incorrect IP address
in the RDB directory entry for the application source (AS), you will get message
CPE3447:
A remote host did not respond within the timeout period.

There is normally a several minute delay before this message occurs. It may appear
that something is hung up or looping during that time.

Connection Failures Specific to Interactive SQL
Sometimes when you are running a CONNECT statement from interactive SQL, a
general SQ30080 message, Communication error occurred during distributed

Chapter 9. Handling Distributed Relational Database Problems 163

|
|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|

database processing, is given. In order to get the details of the error, you should
exit from interactive SQL and look at the job log.

If you get message SQL7020, SQL package creation failed, when connecting for
the first time (for any given level of commitment control) to a server that has only
single-phase commit capabilities, the likely cause is that you accessed the remote
server as a read-only server and you need to update it to create the SQL package.

You can verify that by looking at the messages in the job log. The solution is to do
a RELEASE ALL and COMMIT to get rid of all connections before connecting, so
that the connection will be updatable. See “Setting up SQL Packages for Interactive
SQL (ISQL)” on page 85.

Not Enough Prestart Jobs at Server
If the number of prestart jobs associated with the TCP/IP server is limited by the
QRWTSRVR prestart job entry of the QSYSWRK subsystem, and all prestart jobs
are being used for a connection, an attempt at a new connection will fail with the
following messages:

CPE3426
A connection with a remote socket was reset by that socket.

CPD3E34
DDM TCP/IP communications error occurred on recv() — MSG_PEEK.

You can avoid this problem at the server by setting the MAXJOBS parameter of the
Change Prestart Job Entry (CHGPJE) command for the QTWTSRVR entry to a
higher number or to *NOMAX, and by setting the ADLJOBS parameter to
something other than 0.

Application problems
The best time to handle a problem with an application is before it goes into
production. However, it is impossible to anticipate all the conditions that will exist
for an application when it gets into general use. The job log of either the
application requester (AR) or the application server (AS) can tell you that a
package failed; the Listings of the program or the package can tell you why it
failed. The SQL compilers provide diagnostic tests that show the SQLCODEs and
SQLSTATEs generated by the precompile process on the diagnostic listing.

For Integrated Language Environment* (ILE*) precompiles, you can optionally
specify OPTION(*XREF) and OUTPUT(*PRINT) to print a precompile source and
cross-reference listing. For non-ILE precompiles, you can optionally specify
*SOURCE and *XREF on the OPTIONS parameter of the Create SQL Program
(CRTSQLxxx) commands to print a precompile source and cross-reference listings.

Listings
The listing from the Create SQL program (CRTSQLxxx) command shown in
Figure 18 on page 165 provides the following kinds of information:
v The values supplied for the parameters of the precompile command
v The program source
v The identifier cross-references
v The messages resulting from the precompile

164 OS/400 Distributed Database Programming V5R2

Precompiler listing

5763ST1 V3R1M0 940909 Create SQL ILE C Object UPDATEPGM 04/19/94 14:30:10 Page 1
Source type...............C
Object name...............TST/UPDATEPGM
Source file...............*LIBL/QCSRC
Member....................*OBJ
Options...................*XREF
Listing option............*PRINT
Target release............*CURRENT
INCLUDE file..............*LIBL/*SRCFILE
Commit....................*CHG
Allow copy of data........*YES
Close SQL cursor..........*ENDACTGRP
Allow blocking............*READ
Delay PREPARE.............*NO
Generation level..........10
Margins...................*SRCFILE
Printer file..............*LIBL/QSYSPRT
Date format...............*JOB
Date separator............*JOB
Time format...............*HMS
Time separator*JOB
Replace...................*YES
Relational database.......RCHASLKM
User*CURRENT
RDB connect method........*DUW
Default Collection........*NONE
Package name..............*OBJLIB/*OBJ
Created object type.......*PGM
Debugging view............*NONE
Dynamic User Profile......*USER
Sort Sequence.............*JOB
Language ID...............*JOB
IBM SQL flagging..........*NOFLAG
ANS flagging..............*NONE
Text......................*SRCMBRTXT
Source file CCSID.........37
Job CCSID.................65535
Source member changed on 04/19/94 14:25:33
5763ST1 V3R1M0 940909 Create SQL ILE C Object UPDATEPGM 04/19/94 14:30:10 Page 2
Record*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change
1 /**/ 100
2 /* This program is called to update the DEPTCODE of file RWDS/DPT1 */ 200
3 /* to NULL. This is run once a month to clear out the old */ 300
4 /* data. */ 400
5 /* */ 500
6 /* NOTE: Because this program was compiled with an RDB name, it is */ 600
7 /* not necessary to do a connect, as an implicit connect will take */ 700
8 /* place when the program is called. */ 800
9 /**/ 900
10 #include <stdio.h> 1000
11 #include <stdlib.h> 1100
12 exec sql include sqlca; 1200
13 1300
14 main() 1400
15 { 1500
16 /* Just update RWDS/DPT1, setting deptcode = NULL */ 1600
17 exec sql update RWDS/DPT1 1700
18 set deptcode = NULL; 1800
19 } 1900
* * * * * E N D O F S O U R C E * * * * *

Figure 18. Listing From a Precompiler (Part 1 of 2)

Chapter 9. Handling Distributed Relational Database Problems 165

CRTSQLPKG listing
The listing from the Create Structured Query Language Package (CRTSQLPKG)
command command shown in Figure 19 provides two types of information:
v The values used on the parameters of the command
v The statement in error, if any
v The messages resulting from running the Create Structured Query Language

Package (CRTSQLPKG) command

5763ST1 V3R1M0 940909 Create SQL ILE C Object UPDATEPGM 04/19/94 14:30:10 Page 3
CROSS REFERENCE
Data Names Define Reference
DEPTCODE **** COLUMN
18
DPT1 **** TABLE IN RWDS
17
RWDS **** COLLECTION
17
5763ST1 V3R1M0 940909 Create SQL ILE C Object UPDATEPGM 04/19/94 14:30:10 Page 4
DIAGNOSTIC MESSAGES
MSG ID SEV RECORD TEXT
SQL0088 0 17 Position 15 UPDATE applies to entire table.
SQL1103 10 17 Field definitions for file DPT1 in RWDS not found.
Message Summary
Total Info Warning Error Severe Terminal
2 1 1 0 0 0
10 level severity errors found in source
19 Source records processed
* * * * * E N D O F L I S T I N G * * * * *

Figure 18. Listing From a Precompiler (Part 2 of 2)

5763SS1 V3R1M0 940909 Create SQL package 04/19/94 14:30:31 Page 1
Record*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change
Program name..............TST/UPDATEPGM
Relational database.......*PGM
User*CURRENT
Replace...................*YES
Default Collection........*PGM
Generation level..........10
Printer file..............*LIBL/QSYSPRT
Object type...............*PGM
Module list...............*ALL
Text......................*PGMTXT
Source file...............TST/QCSRC
Member....................UPDATEPGM

Figure 19. Listing from CRTSQLPKG (Part 1 of 2)

166 OS/400 Distributed Database Programming V5R2

SQLCODEs and SQLSTATEs
SQL returns error codes to the application program when an error occurs.
SQLCODEs and their corresponding SQLSTATEs are returned in the SQL
communication area (SQLCA) structure. An SQLCA is a collection of variables that
is updated with information about the SQL statement most recently run.

When an SQL error is detected, a return code called an SQLCODE is returned. If
SQL encounters a hard error while processing a statement, the SQLCODE is a
negative number (for example, SQLCODE −204). If SQL encounters an exceptional
but valid condition (warning) while processing a statement, the SQLCODE is a
positive number (for example, SQLCODE +100). If SQL encounters no error or
exceptional condition while processing a statement, the SQLCODE is 0. Every DB2
Universal Database for iSeries SQLCODE has a corresponding message in message
file QSQLMSG in library QSYS. For example, SQLCODE −204 is logged as message
ID SQL0204.

SQLSTATE is an additional return code provided in the SQLCA. SQLSTATE
provides application programs with return codes for common error conditions.
SQLCODE does not return the same return code for the same error condition
among the current four IBM relational database products. SQLSTATE has been
designed so that application programs can test for specific error conditions or
classes of errors regardless of whether the application program is connected to a
DB2 UDB for z/OS, DB2 UDB for VM, or DB2 UDB for iSeries application server
(AS).

Because the SQLCA is a valuable problem-diagnosis tool, it is a good idea to
include in your application programs the instructions necessary to display some of
the information contained in the SQLCA. Especially important are the following
SQLCA fields:

SQLCODE
Return code.

SQLERRD(3)
The number of rows updated, inserted, or deleted by SQL.

SQLSTATE
Return code.

SQLWARN0
If set to W, at least one of the SQL warning flags (SQLWARN1 through
SQLWARNA) is set.

5763SS1 V3R1M0 940909 Create SQL package 04/19/94 14:30:31 Page 2
Record*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change
17 UPDATE RWDS / DPT1 SET deptcode = NULL
DIAGNOSTIC MESSAGES
MSG ID SEV RECORD TEXT
SQL0204 10 17 Position 17 DPT1 in RWDS type *FILE not found.
SQL5057 SQL Package UPDATEPGM in TST created at KC000 from
module UPDATEPGM.
Message Summary
Total Info Warning Error Severe Terminal
1 0 1 0 0 0
10 level severity errors found in source
* * * * * E N D O F L I S T I N G * * * * *

Figure 19. Listing from CRTSQLPKG (Part 2 of 2)

Chapter 9. Handling Distributed Relational Database Problems 167

For more information about the SQLCA, see the information on SQLCA and
SQLDA control blocks in the SQL Reference book.

The SQL Programming Concepts book lists each SQLCODE, the associated
message ID, the associated SQLSTATE, and the text of the message. The complete
message can be viewed online by using the Display Message Description
(DSPMSGD) command.

Distributed relational database SQLCODEs and SQLSTATEs

The following list provides some of the more common SQLCODEs and
SQLSTATEs associated with distributed relational database processing. See the SQL
Programming Concepts book for all SQLCODEs and SQLSTATEs. In these brief
descriptions of the SQLCODEs (and their associated SQLSTATEs), message data
fields are identified by an ampersand (&); and a number (for example, &1); The
replacement text for these fields is stored in SQLERRM in the SQLCA. More
detailed cause and recovery information for any SQLCODE can be found by using
the Display Message Description (DSPMSGD) command.

Table 10. SQLCODEs and SQLSTATEs

SQLCODE SQLSTATE Description

+100 02000 This SQLSTATE reports a No
Data exception warning due
to an SQL operation on an
empty table, zero rows
identified in an SQL UPDATE
or SQL DELETE statement, or
the cursor in an SQL FETCH
statement was after the last
row of the result table.

+114 0A001 Relational database name &1;
not the same as current
server &2;

+304 01515 This SQLSTATE reports a
warning on a FETCH or
SELECT into a host variable
list or structure that occurred
because the host variable was
not large enough to hold the
retrieved value. The FETCH
or SELECT does not return
the data for the indicated
SELECT item, the indicator
variable is set to -2 to
indicate the return of a NULL
value, and processing
continues.

+331 01520 Character conversion cannot
be performed.

+335 01517 Character conversion has
resulted in substitution
characters.

+551 01548 Not authorized to object & in
&2 type &3.

+552 01542 Not authorized to &1;

168 OS/400 Distributed Database Programming V5R2

||

|||

|||
|
|
|
|
|
|
|
|

|||
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|

|||
|
|

|||
|

|||

Table 10. SQLCODEs and SQLSTATEs (continued)

SQLCODE SQLSTATE Description

+595 01526 Commit level &1; has been
escalated to &2; lock.

+802 01519 This SQLSTATE reports an
arithmetic exception warning
that occurred during the
processing of an SQL
arithmetic function or
arithmetic expression that
was in the SELECT list of an
SQL select statement, in the
search condition of a SELECT
or UPDATE or DELETE
statement, or in the SET
clause of an UPDATE
statement. For each
expression in error, the
indicator variable is set to -2
to indicate the return of a
NULL value. The associated
data variable remains
unchanged, and processing
continues.

+863 01539 Only SBCS characters
allowed to relational database
&1;

+990 01587 This SQLSTATE reports a
pending response or a mixed
outcome from at least one
participant during the
two-phase process.

+30104 01615 Bind option ignored.

-114 42961 Relational database &1; not
the same as current server
&2;

-144 58003 Section number &1; not valid.
Current high section number
is &3; Reason &2;

-145 55005 Recursion not supported for
heterogeneous application
server.

-175 58028 The commit operation failed.

-189 22522 Coded Character Set
identifier &1; is not valid.

-191 22504 A mixed data value is
invalid.

-250 42718 Local relational database not
defined in the directory.

-251 2E000 42602 Character in relational
database name &1; is not
valid.

Chapter 9. Handling Distributed Relational Database Problems 169

|

|||

|||
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|
|

|||
|
|
|
|

|||

|||
|
|

|||
|
|

|||
|
|

|||

|||
|

|||
|

|||
|

|||
|
|

Table 10. SQLCODEs and SQLSTATEs (continued)

SQLCODE SQLSTATE Description

-300 22024 A NUL-terminated input host
variable or parameter did not
contain a NUL.

-302 22001 Conversion error on input
host variable &2;

-330 22021 Character conversion cannot
be performed.

-331 22021 Character conversion cannot
be performed.

-332 57017 Character conversion
between CCSID &1; and
CCSID &2; not valid.

-334 22524 Character conversion resulted
in truncation.

-351 -352 56084 An unsupported SQLTYPE
was encountered in a
select-list or input-list.

-426 2D528 Operation invalid for
application execution
environment. This SQLSTATE
reports the attempt to use
EXCSQLIMM or EXCSQLSTT
to execute a COMMIT in a
dynamic COMMIT restricted
environment.

-427 2D529 Operation invalid for
application execution
environment.

-501 -502 -507 24501 Execution failed due to an
invalid cursor state. The
identified cursor is not open.

-510 42828 This SQLSTATE reports an
attempt to DELETE WHERE
CURRENT OF CURSOR or
UPDATE WHERE CURRENT
OF CURSOR on a cursor that
is fetching rows using a
blocking protocol.

-525 51015 Statement is in error.

-551 42501 Not authorized to object &1;
in &2; type *&3;

-552 42502 Not authorized to &1;

-683 42842 FOR DATA clause or CCSID
clause not valid for specified
type.

-752 0A001 Application process is not in
a connectable state. Reason
code &1;

170 OS/400 Distributed Database Programming V5R2

|

|||

|||
|
|

|||
|

|||
|

|||
|

|||
|
|

|||
|

|||
|
|

|||
|
|
|
|
|
|
|

|||
|
|

|||
|
|

|||
|
|
|
|
|
|

|||

|||
|

|||

|||
|
|

|||
|
|

Table 10. SQLCODEs and SQLSTATEs (continued)

SQLCODE SQLSTATE Description

-802 22003 22012 A numeric value is out of
range and division by zero is
invalid.

-805 51002 SQL package &1; in &2; not
found.

-818 51003 Consistency tokens do not
match.

-842 08002 The connection already exists.

-862 55029 Local program attempted to
connect to remote relational
database.

-871 54019 Too many CCSID values
specified.

-900 08003 The connection does not
exist.

-918 51021 SQL statements cannot be
executed until the application
process executes a rollback
operation.

-922 42505 This SQLSTATE reports a
failure to authenticate the
end user during connection
processing to an application
server.

-925 -926 2D521 SQL COMMIT or
ROLLBACK statements are
invalid in the current
environment.

-950 42705 Relational database &1; not in
relational directory.

-952 57014 Processing of the SQL
statement was ended by
ENDRDBRQS command.

-969 58033 Error occurred when passing
request to application
requester driver program.

-7017 42971 Commitment control is
already active to a DDM
target.

-7018 42970 COMMIT HOLD or
ROLLBACK HOLD is not
allowed.

-7021 57043 Local program attempting to
run on application server.

-30000 58008 Distributed Relational
Database Architecture
(DRDA) protocol error.

-30001 57042 Call to distributed SQL
program not allowed.

Chapter 9. Handling Distributed Relational Database Problems 171

|

|||

|||
|
|

|||
|

|||
|

|||

|||
|
|

|||
|

|||
|

|||
|
|
|

|||
|
|
|
|

|||
|
|
|

|||
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|

|||
|
|

|||
|

Table 10. SQLCODEs and SQLSTATEs (continued)

SQLCODE SQLSTATE Description

-30020 58009 Distributed Relational
Database Architecture
(DRDA) protocol error.

-30021 58010 Distributed relational
database not supported by
remote server.

-30040 57012 DDM resource &2; at
relational database &1;
unavailable.

-30041 57013 DDM resources at relational
database &1; unavailable.

-30050 58011 DDM command &1; is not
valid while bind process in
progress.

-30051 58012 Bind process with specified
package name and
consistency token not active.

-30052 42932 Program preparation
assumptions are incorrect.

-30053 42506 Not authorized to create
package for owner&1;

-30060 08004 User not authorized to
relational database &1;

-30061 08004 Relational database &1; not
found.

-30070 58014 Distributed Data
Management (DDM)
command &1; not supported.

-30071 58015 Distributed Data
Management (DDM) object
&1; not supported.

-30072 58016 Distributed Data
Management (DDM)
parameter &1; not supported.

-30073 58017 Distributed Data
Management (DDM)
parameter value &1; not
supported.

-30074 58018 Distributed Data
Management (DDM) reply
message &1; not supported.

-30080 08001 Communication error
occurred during distributed
database processing.

-30082 08001 Authorization failure on
distributed database
connection attempt.

-30090 25000 2D528 2D529 Change request not valid for
read-only application server.

172 OS/400 Distributed Database Programming V5R2

|

|||

|||
|
|

|||
|
|

|||
|
|

|||
|

|||
|
|

|||
|
|

|||
|

|||
|

|||
|

|||
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|

Table 10. SQLCODEs and SQLSTATEs (continued)

SQLCODE SQLSTATE Description

-30104 56095 Invalid bind option. This
SQLSTATE reports that one
or more bind options were
not valid at the server. The
bind operation terminates.
The first bind option in error
is reported in SQLERRMC.

-30105 56096 Conflicting bind options. The
bind operation terminates.
The bind options in conflict
are reported in SQLERRMC.

Unrecognized by AR 58020 SQLSTATE value not defined
for the error or warning.

System and communications problems
When a problem with a system or its communications occur, a message will be
generated. System-detected problems are automatically entered into the problem
log, where they can be viewed and analyzed. Another form of message to monitor
and log are alerts. Any message sent to the system operator message queue or to
the history log can be defined as an alert.

See the following topics for more information:
v iSeries problem log
v Alerts

iSeries problem log
System-detected problems are automatically entered into the problem log. You can
also enter a user-detected problem in the problem log. You can run problem
analysis on logged problems at any time by entering the Analyze Problem
(ANZPRB) command from any system command line. This command takes you
through an analysis procedure and stores additional problem-related information
in the problem log.

Use the Work with Problems (WRKPRB) command to view the problem log. The
following displays show the two views of the problem log:

Chapter 9. Handling Distributed Relational Database Problems 173

|

|||

|||
|
|
|
|
|
|

|||
|
|
|

|||
|
|

Work with Problems
System: KC000
Position to Problem ID

Type options, press Enter.
2=Change 4=Delete 5=Display details 6=Print details
8=Work with problem 9=Work with alerts 12=Enter notes

Opt Problem ID Status Problem Description
__ 9114350131 READY User detected a hardware problem on a differen
__ 9114326436 OPENED System cannot call controller . No lines avail
__ 9114326281 OPENED Line failed during insertion into the token-r
__ 9114324416 OPENED Device failed, recovery stopped.
__ 9114324241 OPENED System cannot call controller . No lines avail
__ 9114324238 OPENED System cannot call controller . No lines avail
__ 9114324234 OPENED System cannot call controller . No lines avail
__ 9114324231 OPENED System cannot call controller . No lines avail
__ 9114324227 OPENED System cannot call controller . No lines avail
__ 9114324224 OPENED System cannot call controller . No lines avail
__ 9114324218 OPENED System cannot call controller . No lines avail
More...
F3=Exit F5=Refresh F6=Print list F11=Display dates and times
F12=Cancel F16=Report prepared problems F24=More keys

Press F11 on the first view to see the following display:

Work with Problems
System: KC000
Position to Problem ID

Type options, press Enter.
2=Change 4=Delete 5=Display details 6=Print details
8=Work with problem 9=Work with alerts 12=Enter notes

Opt Problem ID Date Time Origin
__ 9114350131 03/29/92 14:36:05 APPN.KC000
__ 9114326436 03/29/92 07:41:59 APPN.KC000
__ 9114326281 03/29/92 07:39:17 APPN.KC000
__ 9114324416 03/29/92 07:06:42 APPN.KC000
__ 9114324241 03/29/92 07:03:38 APPN.KC000
__ 9114324238 03/29/92 07:03:35 APPN.KC000
__ 9114324234 03/29/92 07:03:31 APPN.KC000
__ 9114324231 03/29/92 07:03:27 APPN.KC000
__ 9114324227 03/29/92 07:03:24 APPN.KC000
__ 9114324224 03/29/92 07:03:20 APPN.KC000
__ 9114324218 03/29/92 07:03:14 APPN.KC000
More...
F3=Exit F5=Refresh F6=Print list F11=Display descriptions F12=Cancel
F14=Analyze new problem F16=Report prepared problems F18=Work with alerts

iSeries problem log support allows you to display a list of all the problems that
have been recorded on the local server. You can also display detailed information
about a specific problem such as the following:
v Product type and serial number of device with a problem
v Date and time of the problem
v Part that failed and where it is located
v Problem status

From the problem log you can also analyze a problem, report a problem, or
determine any service activity that has been done.

174 OS/400 Distributed Database Programming V5R2

Alerts
Alert support on the iSeries server is based on the iSeries server message support,
which is built into the operating system. Any message sent to the system operator
message queue or to the history log can be defined as an alert.

For full support7 in handling distributed relational database problems, alerts and
alert logging can be enabled using the Change Network Attributes (CHGNETA)
command. OS/400 alert support is discussed in “Alert support for a distributed
relational database” on page 29, and procedures and examples for setting up alerts
are provided in “Configuring alert support for a distributed relational database” on
page 40.

Whenever an alert occurs, a system informational message (alert created) is
displayed interactively or put on the job log. You can display an alert with the
Work with Alerts (WRKALR) command. When you enter (WRKALR), the
following display appears:

Work with Alerts KC000
03/28/92 15:44:34
Type options, press Enter.
2=Change 4=Delete 5=Display recommended actions 6=Print details
8=Display alert detail 9=Work with problem

Resource
Opt Name Type Date Time Alert Description: Probable Cause
KC000* UNK 05/28 15:19 Resource unavailable: Printer
AS SRV 05/27 21:31 Distributed process failed: Command not re
KC000* LU 05/23 08:29 Operator intervention required: Printer
KC000* UNK 05/23 08:27 Resource unavailable: Printer
AS SRV 05/20 11:49 Distributed process failed: Command not re
KC000* UNK 05/20 11:26 Resource unavailable: Printer
AS SRV 05/20 10:47 Distributed process failed: Relational dat
AS SRV 05/20 10:31 Distributed process failed: Command not re
KC000* CTL 05/20 09:46 Unable to communicate with remote node: Co
KC000* CTL 05/20 03:23 Unable to communicate with remote node: Co
KC000* UNK 05/19 15:32 Resource unavailable: Printer
AS SRV 05/19 14:37 Distributed process failed: Invalid data s
More...
F3=Exit F10=Show new alerts F11=Display user/group F12=Cancel
F13=Change attributes F20=Right F21=Automatic refresh F24=More keys

Alert message descriptions are contained in the QHST log. Use the Display Log
(DSPLOG) command and specify QHST, or the Display Messages (DSPMSG)
command and specify QSYSOPR to see the alert message description.

The iSeries server enables a subset of the DRDB messages listed in Table 9 on
page 159 to trigger alerts for distributed relational database support. If an error is
detected at the application server (AS), a DDM message is sent to the application
requester (AR). The AR generates an alert based on that DDM message.

Distributed relational database alerts contain the following information:
v Identification number (alert ID)
v Type
v Description
v Probable causes
v Failure causes

7. Alerts can still be generated and logged locally for applications that use DRDA over TCP/IP, but the alert messages do not flow
over TCP/IP.

Chapter 9. Handling Distributed Relational Database Problems 175

v Recommended action

These alerts also contain additional information, such as:
v Product set identifier.
v Product identifier (IBM product number, version, release, modification, and

product common name).
v Hierarchy Name List and Associated Resources List. These two fields show the

resource name and type that detected the error condition; for example, the
resource name of DB2 UDB for VM and the type of AS. If the detecting resource
is not known, the identifier of the system that sent the alert is displayed as the
lowest hierarchical entry.

v Local date and time from either the AS or AR.
v Other details such as relational database name and logical unit of work identifier

(LUWID).

The following alerts are generated for iSeries distributed relational database
support:

Table 11. Distributed Relational Database Messages that Create Alerts

Message ID Alert ID Text

CPF3E23 4821 F0B5 DDM data stream violates
conversation capabilities.

CPF3E80 C299 284E Syntax error detected in
DDM data stream.

CPF3E81 2257 C33F The data descriptor received
is not valid.

CPF3E82 36B0 632B Relational database already
accessed.

CPF3E83 2257 C33F FD:OCA1. Data descriptor
does not match data received.

CPF3E84 DA23 E856 DDM conversational protocol
error was detected.

CPF3E85 36B0 632B Relational database
(RDBNAME) not accessed.

CPF3E86 D67E 885A Error occurred during
distributed database
processing.

CPF3E87 2E0A A333 Permanent error condition
detected.

CPF3E88 3AED 0327 The SQL cursor had been
previously opened at the
remote location.

CPF3E89 3AED 0327 Query is not opened within
this unit of work.

1 Formatted Data: Object Content Architecture (FD:OCA) used by the iSeries server
to describe the data format of the columns of a database table.

When alerts are sent from some modules that support a distributed relational
database, a spooled file that contains extensive diagnostic information is also
created. This data is called first-failure data capture (FFDC) information.

176 OS/400 Distributed Database Programming V5R2

For more information about iSeries alerts, see the DSNX Support book.

Getting data to report a failure
The following sections describe the kinds of data that you can print to help you
diagnose a problem in a distributed relational database on iSeries servers. This
data is produced by the OS/400 program. You can also use system operator
messages and the application program (along with its data) to diagnose problems.
v Printing a job log
v Finding job logs from TCP/IP server prestart jobs
v Printing the product activity log
v Trace job
v Communications trace

Printing a job log
Every job on the iSeries server has a job log that contains information related to
requests entered for that job. When a user is having a problem at an application
requester (AR), the information in the job log may be helpful in diagnosing the
problem. One easy way to get this information is to have the user sign off with the
command:
SIGNOFF *LIST

This command prints a copy of the user’s job log, or places it in an output queue
for printing.

Another way to print the job log is by specifying LOG(4 00 *SECLVL) on the
application job description. After the job is finished, all messages are logged to the
job log for that specific job. You can print the job log by locating it on an output
queue and running a print procedure. See “Tracking request information with the
job log of a distributed relational database” on page 102 for information on how to
locate jobs and job logs on the server.

The job log for the application server (AS) may also be helpful in diagnosing
problems. See “Locating distributed relational database jobs” on page 102 for
information on how to find the job name for the AS job.

Finding job logs from TCP/IP server prestart jobs
When the connection ends that is serviced by one of the QRWTSRVR prestart jobs
associated with the DDM TCP/IP server, the prestart job is recycled for use by
another connection. When this happens, the job log associated with the ended
connection is cleared. However, in certain cases the job log is spooled to a printer
file before it is cleared. The job log is not spooled out if the client user ID and
password were not successfully validated. If validation was successful, these are
the conditions under which the job log is spooled out:
v If at V5R1 or higher and the server job’s message logging text level is *SECLVL

or *MSG
v If the server request handler routing program detects that a serious error

occurred in processing the request that ended the connection
v If the prestart job was being serviced (by use of the Start Service Job

(STRSRVJOB) command)

Chapter 9. Handling Distributed Relational Database Problems 177

|
|
|
|
|
|
|

|
|

|
|

|
|

v If the QRWOPTIONS data area on the client or server specified a job log output
condition that was satisfied by the server job. See the QRWOPTIONS Data Area
Usage topic for more information.

You may want to get job log information for several reasons. It is obviously useful
for diagnosing errors. It can also be useful for analyzing performance problems.
For example, if you want to get SQL optimizer data that is generated when
running under debug, you can either manually start a service job and run the Start
Debug (STRDBG) command, or you can set one or more applicable options in the
QRWOPTIONS data area to cause the job log to be retained.

The logs of jobs in which failures occur during the connection phase will not be
saved by the process described above. Jobs that are saved by that process will not
be stored under the prestart job ID. To find them, run the following command:
WRKJOB userid/QPRTJOB

where userid is the user ID used on the CONNECT to the application server (AS).
You can find that user ID if you do not know it with theDisplay Log (DSPLOG)
command on the AS.

You can filter out unwanted messages by use of parameters like this:
DSPLOG PERIOD((’11:00’)) MSGID(CPI3E34)

Look for the following message. Note, however, that if the QRWOPTIONS data
area has been used to suppress this message (CPI3E34), it will not appear in the
history log.
DDM job xxxx servicing user yyy on ddd at ttt.

Printing the product activity log
The Product Activity Log on the iSeries server is a record of machine checks,
device errors, and tape and diskette statistics. It also contains FFDC information
including the first 1000 bytes of each FFDC dump. By reviewing these errors you
may be able to determine the nature of a problem.

To print the product activity log for a server on which you are signed on, do the
following:
1. Type the Print Error Log (PRTERRLOG) command on any command line and

press F4 (Prompt). The Print Error Log display is shown.
2. Type the parameter value for the kind of log information you want to print and

press the Enter key. The log information is sent to the output queue identified
for your job.

3. Enter the Work with Job (WRKJOB) command. The Work with Job display is
shown.

4. Select the option to work with spooled files. The Work with Job Spooled Files
display is shown.

5. Look for the log file you just created at or near the bottom of the spooled file
list.

6. Type the work with printing status option in the Opt column next to the log
file. The Work with Printing Status display is shown.

7. On the Work with Printing Status display, use the change status option to
change the status of the file and specify the printer to print the file.

178 OS/400 Distributed Database Programming V5R2

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|

|

|

|
|
|

|

Trace job
Sometimes a problem cannot be tracked to a specific program.

You can trace module flow, OS/400 data acquisition (including CL commands), or
both using the Trace Job (TRCJOB) command. TRCJOB logs all of the called
programs. As the trace records are generated, the records are stored in an internal
trace storage area. When the trace is ended, the trace records can be written to a
spooled printer file (QPSRVTRC) or directed to a database output file.

The (TRCJOB) command should be used when the problem analysis procedures do
not supply sufficient information about the problem. For distributed database
applications, the command is useful for capturing distributed database request and
response data streams.

A sample trace scenario is as follows:
TRCJOB SET(*ON) TRCTYPE(*ALL) MAXSTG(2000)

TRCFULL(*WRAP) EXITPGM($SCFTRC)
CALL QCMD
TRCJOB SET(*OFF) OUTPUT(*PRINT)
WRKOUTQ output-queue-name

You will see a spooled file with a name of QPSRVTRC. The spooled file contains
your trace. For more information on the use of trace job, see Appendix C,
“Interpreting Trace Job and FFDC Data” on page 265.

If you need to get a job trace of the Application Server job, you will need to start a
service job at the server. See “Starting a service job to diagnose application server
problems” on page 183.

Communications trace
If you get a message in the CPF3Exx range or the CPF91xx range when using
DRDA to access a distributed relational database, you should run a
communications trace. The following list shows common messages you might see
in these ranges.

Table 12. Communications Trace Messages

MSG ID Description

CPF3E80 DDM data stream syntax error.

CPF91xx DDM protocol error.

CPF3E83 Invalid FD0:CA descriptor.

CPF3E84 Data mismatch error.

You can perform two types of communications traces. The first is the standard
communications trace. The second is the TRCTCPAPP function. TRCTCPAPP
provides for intelligible traces where IPSec or the secure sockets protocol has
encrypted the datastreams. It captures the data before encryption and after
decryption. However, it works well for getting traces of unencrypted datastreams
also. It is required for getting traces of intra-system DRDA flows where
LOOPBACK is used. See the sections below for directions on performing the two
types of traces.

Chapter 9. Handling Distributed Relational Database Problems 179

|
|
|
|
|
|
|
|

Standard communications trace
The communications trace function lets you start or stop a trace of data on
communications configuration objects. After you have run a trace of data, you can
format the data for printing or viewing. You can view the printer file only in the
output queue.

Communication trace options run under system service tools (SST). SST lets you
use the configuration objects while communications trace is active. You can trace
and format data for any of the communications types that you can use in a
distributed database network.

You can run the iSeries communications trace from any display that is connected to
the server. Anyone with a special authority (SPCAUT) of *SERVICE can run the
trace on iSeries server. Communications trace supports all line speeds. See the

Communications Management book for the maximum aggregate line speeds on
the protocols that are available on the communications controllers.

You should use communications trace in the following situations:
v The problem analysis procedures do not supply sufficient information about the

problem.
v You suspect that a protocol violation is the problem.
v You suspect a line noise to be the problem.
v The error messages indicate that there is a Systems Network Architecture (SNA)

BIND problem.

You must have detailed knowledge of the line protocols that you use to correctly
interpret the data that is generated by a communications trace. For information on
interpreting DRDA data streams see “Example: Analyzing the RW trace data” on
page 266.

Whenever possible, start the communications trace before varying on the lines.
This gives you the most accurate sample of your line as it varies on.

To run an APPC trace and to work with its output, you have to know on what
line, controller, and device you are running. If you do not have this information,
refer to “Finding your line, controller, and device descriptions” on page 181.

To format and avoid unwanted data in the output of a TCP/IP trace, you can
specify the IP addresses of the source and application source (AS)s. Sometimes it is
sufficient to just specify the port number instead, which is easier.

The following commands start, stop, print, and delete communications traces:

Start Communications Trace (STRCMNTRC) command
Starts a communications trace for a specified line or network interface
description. A communications trace continues until you run the End
Communications Trace (ENDCMNTRC) command.

End Communications Trace (ENDCMNTRC) command
Ends the communications trace running on the specified line or network
interface description.

Print Communications Trace (PRTCMNTRC) command
Moves the communications trace data for the specified line or network
interface description to a spooled file or an output file. Specify *YES for the
format SNA data only parameter.

180 OS/400 Distributed Database Programming V5R2

|
|
|

Delete Communications Trace (DLTCMNTRC) command
Deletes the communications trace for a specified line or network interface
description.

If you are running on a Version 2, Release 1.1 or earlier system, the preceding
commands are not available. Instead, you have to use the System Service Tools
(SST). Start SST with the Start System Service Tools (STRSST) command. For more
information about the (STRSST) command and details on communication traces see
the iSeries Licensed Internal Code Diagnostic Aids - Volume 1 book.

Finding your line, controller, and device descriptions: Use the Work with
Configuration Status (WRKCFGSTS) command to find the controller and device
under which your application server job starts. For example:
WRKCFGSTS CFGTYPE(*DEV)

CFGD(*LOC)
RMTLOCNAME(DB2ESYS)

The value for the RMTLOCNAME keyword is the application server’s name.

The Work with Configuration Status (WRKCFGSTS) command shows all of the
devices that have the specified server name as the remote location name. You can
tell which device is in use because you can vary on only one device at a time. Use
option 8 to work with the device description and then option 5 to display it. The
attached controller field gives the name of your controller. You can use the
(WRKCFGSTS) command to work with the controller and device descriptions. For
example:
WRKCFGSTS CFGTYPE(*CTL)

CFGD(PCXZZ1205) /* workstation */
WRKCFGSTS CFGTYPE(*CTL)

CFGD(LANSLKM) /* AS/400 on token ring */

The CFGD values are the controller names that are acquired from the device
descriptions in the first example in this section.

The output from the Work with Configuration Status (WRKCFGSTS) command
also includes the name of the line description that you need when working with
communications traces. If you select option 8 and then option 5 to display the
controller description, the active switched line parameter displays the name of the
line description. The LAN remote adapter address gives the token-ring address of
the remote server.

Another way to find the line name is to use the Work with Line Descriptions
(WRKLIND) command, which lists all of the line descriptions for the server.

TRCTCPAPP trace for encrypted datastreams
This function works only when you are using TCP/IP for communication.

To use theTrace TCP/IP Application (TRCTCPAPP) command, you must have a
user profile with *SERVICE special authority. To start the trace, enter the following:
TRCTCPAPP *DDM

If you want to restrict the trace to a certain port, for example port 448 for SSL,
follow this example:
TRCTCPAPP *DDM *ON RMTNETADR(*INET *N ’255.255.255.255’ 448)

Chapter 9. Handling Distributed Relational Database Problems 181

After the communication that you are tracing has finished, run the following
command and look at the resulting spooled file:
TRCTCPAPP *DDM *OFF

Restriction for use with *DDM application

When you use the Trace TCP/IP Application (TRCTCPAPP) command with the
*DDM application, the maximum amount of data you can trace for a single sent or
received message is limited to 6000 bytes.

Finding First-Failure Data Capture (FFDC) data
Note: No FFDC data is produced unless the QSFWERRLOG system value is set to
*LOG.

The following are tips on how to locate FFDC data on an iSeries server. This
information is most useful if the failure causing the FFDC data output occurred on
the application server (AS). The FFDC data for an application requester (AR) can
usually be found in one of the spooled files associated with the job running the
application program.
1.

Execute a Display Messages (DSPMSG) QSYSOPR command and look for a
Software problem detected in Qccxyyyy message in the QSYSOPR message
log. (cc in the program name is usually RW, but could be CN or SQ.) The
presence of this message indicates that FFDC data was produced. You can use
the help key to get details on the message. The message help gives you the
problem ID, which you can use to identify the problem in the list presented by
the Work with Problems (WRKPRB) command. You may be able to skip this
step because the problem record, if it exists, may be at or near the top of the
list.

2.

Enter the Work with Problems (WRKPRB) command and specify the program
name (Qccxyyyy) from the Software problem detected in Qccxyyyy message.
Use the program name to filter out unwanted list items. When a list of
problems is presented, specify option 5 on the line containing the problem ID
to get more problem details, such as symptom string and error log ID.

3.

When you have the error log ID, enter the Start System Service Tools (STRSST)
command. On the first screen, select Start a service tool. On the next screen,
enter 1 to select Error log utility. On the next screen, enter 2 to select
Display or print by error log ID. In the next screen, you can:
v Enter the error log ID.
v Enter Y to get the hexadecimal display.
v Select the Print or Display option.

The Display option gives 16 bytes per line instead of 32. This can be useful for
on-line viewing and printing screens on an 80-character workstation printer. If you
choose the Display option, use F6 to see the hexadecimal data after you press
Enter.

The hexadecimal data contains the first 1K bytes of the FFDC dump data, preceded
by some other data. The start of the FFDC data is identified by the FFDC data
index. The name of the target job (if this is on the application server) is before the

182 OS/400 Distributed Database Programming V5R2

data index. If the FFDC dump spool file has not been deleted, use this fully
qualified job name to find the spool file. If the spool file is missing, either:
v Use the first 1K of the dump stored in the error log.
v Recreate the problem if the 1K of FFDC data is insufficient.

When interpreting FFDC data from the error log, the FFDC data in the error log is
not formatted for reading as well as the data in the spooled files. Each section of
the FFDC dump in the error log is prefixed by a 4-byte header. The first two bytes
of the header are the length of the following section (not counting the prefix). The
second two bytes, which are the section number, correspond to the section number
in the index (see “FFDC Dump Output Description” on page 274).

Starting a service job to diagnose application server problems
When an application uses DRDA, the SQL statements are run in the application
server job. Because of this, you may need to start debug or a job trace for the
application server job that is running on the OS/400 operating system. The
technique for doing this differs based on the use of either APPC or TCP/IP. See the
following topics for more information about starting a service job to diagnose
server problems:
v Service jobs for APPC servers
v Creating your own TPN and Setting QCNTSRVC
v Service jobs for TCP/IP servers
v QRWOPTIONS Data Area Usage

Service jobs for APPC servers
When the DB2 UDB for iSeries application server recognizes a special transaction
program name (TPN), it causes the application server to send a message to the
system operator and then wait for a reply (see 1). See Creating your own TPN and
Setting QCNTSRVC for more information. This allows you to issue a Start Service
Job (STRSRVJOB) command that allows job trace or debug to be started for the
application server job. The following steps allow you to stop the DB2 UDB for
iSeries application server job and restart it in debug mode.
1.

Specify QCNTSRVC as the transaction program name (TPN) at the application
requester. There is a different method of doing this for each platform. The
following sections describe the different methods.

2.

When the OS/400 application receives a TPN of QCNTSRVC, it sends a
CPF9188 message to QSYSOPR and waits for a G (for go) reply.

3.

Before entering the G reply, use the Start Service Job (STRSRVJOB) command to
start a service job for the application server job and put it into debug mode.
(Request help on the CPF9188 message to display the jobname.)

4.

Enter the Start Debug (STRDBG) command.
5.

After starting debug for the application server job, reply to the QSYSOPR
message with a G.

6.

Chapter 9. Handling Distributed Relational Database Problems 183

|
|
|
|
|
|

After receiving the G reply, the application server continues with normal DRDA
processing.

7.

After the application runs, you can look at the application server job log to see
the SQL debug messages.

Creating your own TPN and Setting QCNTSRVC

Setting QCNTSRVC as a TPN on a DB2 UDB for iSeries
Application Requester
Specify the QCNTSRVC on the TNSPGM parameter of the Add Relational
Database Directory Entry (ADDRDBDIRE) or Change Relational Database
Directory Entry (CHGRDBDIRE) commands.

It can be helpful to make a note of the special TPN in the text of the RDB directory
entry as a reminder to change it back when you are finished with debugging.

Creating your own TPN for debugging a DB2 UDB for iSeries
application server (AS) job
It is possible for you to create your own TPN by compiling a CL program
containing debug statements and a TFRCTL QSYS/QCNTEDDM statement at the
end. The advantage of this is that you do not need any manual intervention when
doing the connect. An example of such a program follows:
PGM

MONMSG CPF0000
STRDBG UPDPROD(*YES) PGM(CALL/QRWTEXEC) MAXTRC(9999)
ADDBKP STMT(CKUPDATE) PGMVAR((*CHAR (SQLDA@))) OUTFMT(*HEX) +

LEN(1400)
ADDTRC PGMVAR((DSLENGTH ()) (LNTH ()) (FDODTA_LNTH ()))
TRCJOB *ON TRCTYPE(*DATA) MAXSTG(2048) TRCFULL(*STOPTRC)
TFRCTL QSYS/QCNTEDDM

ENDPGM

The TPN name in the RDB directory entry of the application requester (AR) is the
name that you supply. Use the text field to provide a warning that the special TPN
is in use, and be sure to change the TPN name back when done debugging.

Be aware that when you change the TPN of an RDB, all connections from that AR
will use the new TPN until you change it back. This could cause surprises for
unsuspecting users, such as poor performance, long waits for operator responses,
and the filling up of storage with debug data.

Setting QCNTSRVC as a TPN on a DB2 UDB for VM Application
Requester
Change the UCOMDIR NAMES file to specify QCNTSRVC in the TPN tag.

For example:
:nick.RCHASLAI :tpn.QCNTSRVC

:luname.VM4GATE RCHASLAI
:modename.MODE645
:security.NONE

Then issue SET COMDIR RELOAD USER.

Setting QCNTSRVC as a TPN on a DB2 UDB for z/OS Application
Requester
Update the SYSIBM.LOCATIONS table to specify QCNTSRVC in the TPN column
for the row that contains the RDB-NAME of the DB2 UDB for iSeries application

184 OS/400 Distributed Database Programming V5R2

server. For systems running versions earlier than release 5, substitute the
SYSIBM.SYSLOCATIONS table and the LINKATTR column in the above
instruction.

Setting QCNTSRVC as a TPN on a DB2 Connect Application
Requester
If you are working with DB2 Connect and Universal Database and would like
instructions on how to set up the TPN on this family of products, see the web
page Knowledge Base: DB2 Universal Database and DB2 Connect for Windows,
OS/2, UNIX. There you can find the several books specific to different versions
(Note, however, that not all functions explained in this manual are supported by
all versions):

Service jobs for TCP/IP servers
The DDM TCP/IP server does not use TPNs as the APPC server does. However,
the use of prestart jobs by the TCP/IP server provides a way to start a service job
in that environment. Note, however, that with the introduction of the function
associated with the QRWOPTIONS data area usage, you may not need to start a
service job in many cases. That feature allows one to start traces and do other
diagnostic functions. You may still need to start a service job if you need a trace of
the connection phase of the job.

You can use the Display Log (DSPLOG) command to find the CPI3E34 message
reporting the name of the server job being used for a given connection if the
following statements are true:
v You do not need to trace the actions of the server during the connect operation
v You choose not to use the QRWOPTIONS function
v you have the ability to delay execution of the application requester (AR) job

until you can do some setup on the server, such as from interactive SQL

You can then use the Start Service Job (STRSRVJOB) command as described in the
previous section.

If you do need to trace the connect statement, or do not have time to do manual
setup on the server after the connect, you will need to anticipate what prestart job
will be used for the connection before it happens. One way to do that is to prevent
other users from connecting during the time of your test, if possible, and end all of
the prestart jobs except one.

You can force the number of prestart jobs to be 1 by setting the following
parameters on the Change Prestart Job Entry (CHGPJE) command for QRWTSRVR
running in QSYSWRK to the values specified below:
v Initial number of jobs: 1

v Threshold: 1

v Additional number of jobs: 0

v Maximum number of jobs: 1

If you use this technique, be sure to change the parameters back to values that are
reasonable for your environment; otherwise, users will get the message that ’A
connection with a remote socket was reset by that socket’ when trying to
connect when the one prestart job is busy.

Chapter 9. Handling Distributed Relational Database Problems 185

|
|
|
|
|
|
|

|
|
|

http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7c6db2c697.htm
http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7c6db2c697.htm

QRWOPTIONS Data Area Usage

QRWOPTIONS Data Area Usage
In V5R1, a new diagnostic capability was added to the DDM/DRDA TCP/IP
server. This function is controlled by a 48-character data area named
QRWOPTIONS, which must reside in QGPL to take effect.

Note: The information in the data area must be entered in upper case in CCSID 37
or 500

The format of the data area is as follows:

Table 13. Data Area Format

Columns Contents

1-15 Client IP address in dotted decimal format for use when ’I’ is specified as a
switch value (ignored otherwise).

16 Reserved area ignored by server (can contain a character for human usability)

17–26 User profile name for comparison when ’U’ is specified as a switch value
(ignored otherwise)

27 Switch to cause job log to be kept if set to ’A’, ’I’ or ’U’ (see Notes 1 and 2)

28 Switch to cause DSPJOB output to be printed if set to ’A’, ’I’ or ’U’ (see Notes 1
and 2)

29 Switch to cause job to be traced if set to ’A’, ’I’ or ’U’ (see Notes 1and 2).

30 Switch to cause debug to be started for job if set to ’A’, ’I’ or ’U’ (see Note 1).

31 Switch to invoke the Change Query Attributes (CHGQRYA) command with a
QRYOPTLIB value if set to ’A’, ’I’ or ’U’. The QRYOPTLIB value is extracted
from columns 39-48 which must contain the name of the library containing the
proper QAQQINI file (see Note 1)

Note: If an ’I’ or ’A’ is specified in this column, QUSER must have *JOBCTL
special authority for it to take effect.

32 Switch to shadow client debug options if set to ’A’, ’I’ or ’U’ (see Note 1).

33 Switch to use old TRCJOB instead of new STRTRC for job trace if set to ’T’ and
column 29 requests tracing.

Note: If this column is set to ’T’, TRCJOB will be used for the job trace. Set it to
blank or ’S’ to use STRTRC.

34 Set this to ’N’ to suppress CPI3E34 messages in the history log (This is available
in V5R1 only with PTF SI02613)

35–38 Reserved

39–48 General data area (contains library name if the Change Query Attributes
(CHGQRYA) command is triggered by appropriate value in column 31)

Notes:

1.

Part of this function is available in V4R5 by PTF SF64558. With the PTF, only
the switches in columns 27-30 are supported, and the only switch values
recognized are ’A’ and ’I’, not ’U’.
These are the switch values that activate the function corresponding to the
column in which they appear:
v ’A’ activates the function for all uses of the server job.

186 OS/400 Distributed Database Programming V5R2

|

|
|
|
|

|
|

|

||

||

||
|

||

||
|

||

||
|

||

||

||
|
|
|

|
|

||

||
|

|
|

||
|

||

||
|
|

|

|

|
|
|

|
|

|

v ’I’ activates the function if the client IP address specified in columns 1-15
matches that used on the connect attempt.

v ’U’ activates the function if the user ID specified in columns 17-26 matches
that used on the connect attempt.

2.

To find the spooled files resulting from this function, use Work with Job
command (WRKJOB user-profile/QPRTJOB), where user-profile is the user ID
used on the connect request. Take option 4 and you should see one or more of
these files.

Table 14. File list from WRKJOB user-profile/QPRTJOB command

File Device or Queue User Data

QPJOBLOG QEZJOBLOG QRWTSRVR

QPDSPJOB PRT01

QPSRVTRC PRT01

See the following example for more details:

Example: CL command to create the data area
CRTDTAARA DTAARA(QGPL/QRWOPTIONS) TYPE(*CHAR) LEN(48)

VALUE(’9.5.114.107 :MYUSERID AAUIU TN INILIBRARY’)
TEXT(’DRDA TCP SERVER DIAGNOSTIC OPTIONS’

The example requests the functions indicated in table 15.

Note: Since the proper spacing in the example is critical, the contents of the
VALUE parameter are repeated in table form.

Table 15. Explanation of data elements in VALUE parameter of CRTDTAARA example

Columns Contents Explanation

1–11 9.5.114.107 IP address for use with switch in column 30.

16 : Character to mark the end of the IP address
field.

17–24 MYUSERID User id for use with switches in columns 29 and
31.

27 A Spool the server job log (for QRWTSRVR) for all
users.

28 A Spool the DSPJOB output for all uses of the
server.

29 U Trace the job with the (TRCJOB) command if the
user id on the connect request matches what is
specified in columns 17 through 26
(’MYUSERID’ in this example) of the data area.

30 I Start debug with the Start Debug (STRDBG)
command (specifying no program) if the client
IP address (’9.5.114.107’ in this example) matches
what is specified in columns 1 through 15 of the
data area.

Chapter 9. Handling Distributed Relational Database Problems 187

|
|

|
|

|

|
|
|
|

||

|||

|||

|||

|||
|

|

|
|
|
|

|

|
|

||

|||

|||

|||
|

|||
|

|||
|

|||
|

|||
|
|
|

|||
|
|
|
|

Table 15. Explanation of data elements in VALUE parameter of CRTDTAARA
example (continued)

31 U Invoke the command Change Query Attributes
(CHGQRYA) QRYOPTLIB(INILIBRARY) if the
user id on the connect request matches what is
specified in columns 17 through 26
(’MYUSERID’ in this example) of the data area.

Note: The library name is taken from columns
39 through 48 of the data area.

32 Do not shadow client debug options to server.

33 T Use the old TRCJOB facility for job traces.

34 N Do not place CPI3E34 messages in the history
log

39–48 INILIBRARY Library used with switch 31.

188 OS/400 Distributed Database Programming V5R2

|
|

|||
|
|
|
|

|
|

|||

|||

|||
|

|||

Chapter 10. Writing Distributed Relational Database
Applications

Programmers can write high-level language programs that use SQL statements for
iSeries distributed application programs. The main differences from programs
written for local processing only are the ability to connect to remote databases and
to create SQL packages. The CONNECT SQL statement can be used to explicitly
connect an application requester to an application server, or the name of the
relational database can be specified when the program is created to allow an
implicit connection to occur. Also, the SET CONNECTION, RELEASE, and
DISCONNECT statements can be used to manage connections for applications that
use distributed unit of work.

An SQL package is an iSeries object used only for distributed relational databases.
It can be created as a result of the precompile process of SQL or can be created
from a compiled program object. An SQL package resides on the application server.
It contains SQL statements, host variable attributes, and access plans which the
application server uses to process an application requester’s request.

Because application programs can connect to many different servers, programmers
may need to pay more attention to data conversion between servers. The iSeries
server provides for conversion of various types of data, including coded character
set identifier (CCSID) support for the management of character information.

You can create and maintain programs for a distributed relational database on the
iSeries server using the SQL language the same way you use it for local-processing
applications. You can embed static and dynamic Structured Query Language (SQL)
statements with any one or more of the following high-level languages:
v iSeries PL/I
v ILE C/400*
v COBOL/400
v ILE COBOL/400
v FORTRAN/400*
v RPG/400
v ILE RPG/400

The process for developing distributed applications is similar to that of developing
SQL applications for local processing. The difference is that the application for
distributed processing must specify the name of the relational database to which it
connects. This may be done when you precompile the program or within the
application.

The same SQL objects are used for both local and distributed applications, except
that one object, the SQL package, is used exclusively for distributed relational
database support. You create the program using the Create SQL program
(CRTSQLxxx) command. The xxx in this command refers to the host language CI,
CBL, CBLI, FTN, PLI, RPG, or RPGI. The SQL package may be a product of the
precompile in this process. The Create Structured Query Language Package
(CRTSQLPKG) command creates SQL packages for existing distributed SQL
programs.

© Copyright IBM Corp. 1998, 2001, 2002 189

You must have the DB2 UDB Query Manager and SQL Development Kit licensed
program installed to precompile programs with SQL statements. However, you can
create SQL packages from existing distributed SQL programs with only the
compiled program installed on your server. The DB2 UDB Query Manager and
SQL Development Kit licensed program also allows you to use interactive SQL to
access a distributed relational database. This is helpful when you are debugging
programs because it allows you to test SQL statements without having to
precompile and compile a program.

This chapter provides an overview of programming issues for a distributed
relational database. More detailed information on the following topics is in the
SQL Programming Concepts topic in the iSeries Information Center:
v Programming considerations for a Distributed Relational Database application
v Preparing distributed relational database programs
v Working with SQL packages

Programming considerations for a Distributed Relational Database
application

Programming considerations for a distributed relational database application on an
iSeries server fall into two main categories: those that deal with a function that is
supported on the local server and those that are a result of having to connect to
other servers. This section addresses both of these categories as it discusses the
following:
v Naming conventions
v Connecting to other servers
v Distributed SQL statements and coexistence
v Ending DRDA units of work
v Coded character set identifiers (CCSIDs)
v Data translation
v Distributed Data Management (DDM) files and SQL programs

“Tips: Designing distributed relational database applications” on page 20 provides
additional information that you should take into consideration when designing
distributed relational database applications.

Naming distributed relational database objects
SQL objects are created and maintained as iSeries server objects.

You can use either of two naming conventions in DB2 Universal Database for
iSeries programming: system (*SYS) and SQL (*SQL). The naming convention you
use affects the method for qualifying file and table names. It also affects security
and the terms used on the interactive SQL displays. Distributed relational database
applications can access objects on another iSeries server using either naming
convention. However, if your program accesses a relational database on a
non-iSeries server, only SQL names can be used. Select the naming convention
using the NAMING parameter on the Start SQL (STRSQL) command or the
OPTION parameter on one of the CRTSQLxxx commands.

System (*SYS) naming convention
When you use the system naming convention, files are qualified by library name in
the form: library/file. Tables created using this naming convention assume the
public authority of the library in which they are created. If the table name is not

190 OS/400 Distributed Database Programming V5R2

explicitly qualified and a default collection name is used in the DFTRDBCOL
parameter of the CRTSQLxxx or CRTSLQPKG commands, the default collection
name is used for static SQL statements. If the file name is not explicitly qualified
and the default collection name is not specified, the following rules apply:
v All SQL statements except certain CREATE statements cause SQL to search the

library list (*LIBL) for the unqualified file.
v The CREATE statements resolve to unqualified objects as follows:

– CREATE TABLE: The table name must be explicitly qualified.
– CREATE VIEW: The view is created in the first library referred to in the

subselect.
– CREATE INDEX: The index is created in the collection or library that contains

the table on which the index is being built.

SQL (*SQL) naming convention
When you use the SQL naming convention, tables are qualified by the collection
name in the form: collection.table. If the table name is not explicitly qualified and
the default collection name is specified in the default relational database collection
(DFTRDBCOL) parameter of the CRTSQLxxx or Create Structured Query Language
Package (CRTSQLPKG) command, the default collection name is used. If the table
name is not explicitly qualified and the default collection name is not specified, the
following rules apply:
v For static SQL, the default qualifier is the user profile of the program owner.
v For dynamic SQL or interactive SQL, the default qualifier is the user profile of

the job running the statement.

Default collection name
You can specify a default collection name to be used by an SQL program by
supplying this name for the DFTRDBCOL parameter on the CRTSQLxxx command
when you precompile the program. The DFTRDBCOL parameter provides the
program with the collection name as the library for an unqualified file if the *SYS
naming convention is used, or as the collection for an unqualified table if the *SQL
naming convention is used. If you do not specify a default collection name when
you precompile the program, the rules for unqualified names apply, as stated
above, for each naming convention. The default relational database collection name
only applies to static SQL statements.

You can also use the DFTRDBCOL parameter on the Create Structured Query
Language Package (CRTSQLPKG) command to change the default collection of a
package. After an SQL program is compiled you can create a new SQL package to
change the default collection. See “Using the Create SQL Package (CRTSQLPKG)
command” on page 215 for a discussion of all the parameters of the (CRTSQLPKG)
command.

Connecting to a Distributed Relational Database
What makes a distributed relational database application distributed is its ability to
connect to a relational database on another server.

There are two types of CONNECT statements with the same syntax but different
semantics:
v CONNECT (Type 1) is used for remote unit of work.
v CONNECT (Type 2) is used for distributed unit of work.

The type of CONNECT that a program uses is indicated by the RDBCNNMTH
parameter on the CRTSQLxxx commands.

Chapter 10. Writing Distributed Relational Database Applications 191

DRDA remote unit of work
The remote unit of work facility provides for the remote preparation and execution
of SQL statements. An activation group at computer server A can connect to an
application server at computer server B. Then, within one or more units of work,
that activation group can execute any number of static or dynamic SQL statements
that reference objects at B. After ending a unit of work at B, the activation group
can connect to an application server at computer server C, and so on.

Most SQL statements can be remotely prepared and executed with the following
restrictions:
v All objects referenced in a single SQL statement must be managed by the same

application server.
v All of the SQL statements in a unit of work must be executed by the same

application server.

DRDA remote unit of work connection management: An activation group is in
one of three states at any time:

Connectable and connected
Unconnectable and connected
Connectable and unconnected

The following diagram shows the state transitions:

The initial state of an activation group is connectable and connected. The application
server to which the activation group is connected is determined by the RDB
parameter on the CRTSQLxxx and STRSQL commands and may involve an

Figure 20. Remote Unit of Work Activation Group Connection State Transition

192 OS/400 Distributed Database Programming V5R2

implicit CONNECT operation. An implicit CONNECT operation cannot occur if an
implicit or explicit CONNECT operation has already successfully or unsuccessfully
occurred. Thus, an activation group cannot be implicitly connected to an
application server more than once.

Connectable and connected state: An activation group is connected to an application
server and CONNECT statements can be executed. The activation group enters this
state when it completes a rollback or successful commit from the unconnectable
and connected state, or a CONNECT statement is successfully executed from the
connectable and unconnected state.

Unconnectable and connected state: An activation group is connected to an
application server, but a CONNECT statement cannot be successfully executed to
change application servers. The activation group enters this state from the
connectable and connected state when it executes any SQL statement other than
CONNECT, COMMIT, or ROLLBACK.

Connectable and unconnected state: An activation group is not connected to an
application server. The only SQL statement that can be executed is CONNECT.

The activation group enters this state when:
v The connection was previously released and a successful COMMIT is executed.
v The connection is disconnected using the SQL DISCONNECT statement.
v The connection was in a connectable state, but the CONNECT statement was

unsuccessful.

Consecutive CONNECT statements can be executed successfully because
CONNECT does not remove the activation group from the connectable state. A
CONNECT to the application server to which the activation group is currently
connected is executed like any other CONNECT statement.

CONNECT cannot execute successfully when it is preceded by any SQL statement
other than CONNECT, COMMIT, DISCONNECT, SET CONNECTION, RELEASE,
or ROLLBACK (unless running with COMMIT(*NONE)). To avoid an error,
execute a commit or rollback operation before a CONNECT statement is executed.

Application-directed distributed unit of work
The application-directed distributed unit of work facility also provides for the remote
preparation and execution of SQL statements in the same fashion as remote unit of
work. Like remote unit of work, an activation group at computer server A can
connect to an application server at computer server B and execute any number of
static or dynamic SQL statements that reference objects at B before ending the unit
of work. All objects referenced in a single SQL statement must be managed by the
same application server. However, unlike remote unit of work, any number of
application servers can participate in the same unit of work. A commit or rollback
operation ends the unit of work.

Application-directed distributed unit of work connection management: At any
time:
v An activation group is always in the connected or unconnected state and has a set

of zero or more connections. Each connection of an activation group is uniquely
identified by the name of the application server of the connection.

v An SQL connection is always in one of the following states:
– Current and held
– Current and released

Chapter 10. Writing Distributed Relational Database Applications 193

– Dormant and held
– Dormant and released

Initial state of an activation group: An activation group is initially in the connected
state and has exactly one connection. The initial state of a connection is current and
held.

The following diagram shows the state transitions:

Figure 21. Application-Directed Distributed Unit of Work Connection and Activation Group
Connection State Transitions

194 OS/400 Distributed Database Programming V5R2

Connection States: If an application executes a CONNECT statement and the
server name is known to the application requester and is not in the set of existing
connections of the activation group, then:
v The current connection is placed in the dormant state and held state.
v The server name is added to the set of connections and the new connection is

placed in the current and held state.

If the server name is already in the set of existing connections of the activation
group, an error occurs.

A connection in the dormant state is placed in the current state using the SET
CONNECTION statement. When a connection is placed in the current state, the
previous current connection, if any, is placed in the dormant state. No more than
one connection in the set of existing connections of an activation group can be
current at any time. Changing the state of a connection from current to dormant or
from dormant to current has no effect on its held or released state.

A connection is placed in the released state by the RELEASE statement. When an
activation group executes a commit operation, every released connection of the
activation group is ended. Changing the state of a connection from held to released
has no effect on its current or dormant state. Thus, a connection in the released
state can still be used until the next commit operation. There is no way to change
the state of a connection from released to held.

Activation group connection states: A different application server can be
established by the explicit or implicit execution of a CONNECT statement. The
following rules apply:
v An activation group cannot have more than one connection to the same

application server at the same time.
v When an activation group executes a SET CONNECTION statement, the

specified location name must be an existing connection in the set of connections
of the activation group.

v When an activation group executes a CONNECT statement, the specified server
name must not be an existing connection in the set of connections of the
activation group.

If an activation group has a current connection, the activation group is in the
connected state.

The CURRENT SERVER special register contains the name of the application
server of the current connection. The activation group can execute SQL statements
that refer to objects managed by that application server.

An activation group in the unconnected state enters the connected state when it
successfully executes a CONNECT or SET CONNECTION statement.

If an activation group does not have a current connection, the activation group is
in the unconnected state. The CURRENT SERVER special register contents are equal
to blanks. The only SQL statements that can be executed are CONNECT,
DISCONNECT, SET CONNECTION, RELEASE, COMMIT, and ROLLBACK.

An activation group in the connected state enters the unconnected state when its
current connection is intentionally ended or the execution of an SQL statement is
unsuccessful because of a failure that causes a rollback operation at the application
server and loss of the connection. Connections are intentionally ended when an

Chapter 10. Writing Distributed Relational Database Applications 195

activation group successfully executes a commit operation and the connection is in
the released state, or when an application process successfully executes the
DISCONNECT statement.

When a connection is ended: When a connection is ended, all resources that were
acquired by the activation group through the connection and all resources that
were used to create and maintain the connection are no longer allocated. For
example, when the activation group executes a RELEASE statement, any open
cursors will be closed when the connection is ended during the next commit
operation.

A connection can also be ended as a result of a communications failure in which
case the activation group is placed in the unconnected state. All connections of an
activation group are ended when the activation group ends.

Running with both RUW and DUW connection management: Programs
compiled with RUW connection management can be called by programs compiled
with DUW connection management. SET CONNECTION, RELEASE, and
DISCONNECT statements can be used by the program compiled with RUW
connection management to work with any of the active connections. However,
when a program compiled with DUW connection management calls a program
compiled with RUW connection management, CONNECTs that are performed in
the program compiled with RUW connection management will attempt to end all
active connections for the activation group as part of the CONNECT.

Such CONNECTs will fail if the conversation used by active connections uses
protected conversations. Furthermore, when protected conversations were used for
inactive connections and the DDMCNV job attribute is *KEEP, these unused DDM
conversations will also cause the connections in programs compiled with RUW
connection management to fail. To avoid this situation, run with
DDMCNV(*DROP) and perform a RELEASE and COMMIT prior to calling any
programs compiled with RUW connection management that perform CONNECTs.

Likewise, when creating packages for programs compiled with DUW connection
management after creating a package for a program compiled with RUW
connection management, either run with DDMCNV(*DROP) or perform a
RCLDDMCNV after creating the package for the programs compiled with DUW
connection management.

Programs compiled with DUW connection management can also be called by
programs compiled with RUW connection management. When the program
compiled with DUW connection management performs a CONNECT, the
connection performed by the program compiled with RUW connection
management is not disconnected. This connection can be used by the program
compiled with DUW connection management.

Implicit connection management for the default activation group
The application requester can implicitly connect to an application server. Implicit
connection occurs when the application requester detects the first SQL statement is
being issued by the first active SQL program for the default activation group and
the following items are true:
v The SQL statement being issued is not a CONNECT statement with parameters.
v SQL is not active in the default activation group.

196 OS/400 Distributed Database Programming V5R2

For a distributed program, the implicit connection is to the relational database
specified on the RDB parameter. For a nondistributed program, the implicit
connection is to the local relational database.

SQL will end any active connections in the default activation group when SQL
becomes not active. SQL becomes not active when:
v The application requester detects the first active SQL program for the process

has ended and the following are all true:
– There are no pending SQL changes
– There are no connections using protected conversations
– A SET TRANSACTION statement is not active
– No programs that were precompiled with CLOSQLCSR(*ENDJOB) were run.

If there are pending changes, protected conversations, or an active SET
TRANSACTION statement, then SQL is placed in the exited state. If programs
precompiled with CLOSQLCSR(*ENDJOB) were run, then SQL will remain
active for the default activation group until the job ends.
– At the end of a unit of work if SQL is in the exited state. This occurs when

you issue a COMMIT or ROLLBACK command outside of an SQL program.
– At the end of a job.

Implicit connection management for nondefault activation groups
The application requester can implicitly connect to an application server. Implicit
connection occurs when the application requester detects the first SQL statement
issued for the activation group and it is not a CONNECT statement with
parameters.

For a distributed program, the implicit connection is made to the relational
database specified on the RDB parameter. For a nondistributed program, the
implicit connection is made to the local relational database.

Implicit disconnect can occur at the following parts of a process:
v When the activation group ends, if commitment control is not active, activation

group level commitment control is active, or the job level commitment definition
is at a unit of work boundary.
If the job level commitment definition is active and not at a unit of work
boundary then SQL is placed in the exited state.

v If SQL is in the exited state, when the job level commitment definition is
committed or rolled back.

v At the end of a job.

The following example program is not distributed (no connection is required). It is
a program run at a Spiffy Corporation regional office to gather local repair
information into a report.
CRTSQLxxx PGM(SPIFFY/FIXTOTAL) COMMIT(*CHG) RDB(*NONE)

PROC: FIXTOTAL;
.
.
.
SELECT * INTO :SERVICE �A�

FROM REPAIRTOT;
EXEC SQL
COMMIT;

Chapter 10. Writing Distributed Relational Database Applications 197

.

.

.
END FIXTOTAL;

�A� Statement run on the local relational database

Another program, such as the following example, could gather the same
information from Spiffy dealerships in the Kansas City region. This is an example
of a distributed program that is implicitly connected and disconnected:
CRTSQLxxx PGM(SPIFFY/FIXES) COMMIT(*CHG) RDB(KC101) RDBCNNMTH(*RUW)

PROC: FIXES;
.
.
.

EXEC SQL
SELECT * INTO :SERVICE �B�

FROM SPIFFY.REPAIR1;

EXEC SQL �C�
COMMIT;

.

.

.
END FIXES; �D�

�B� Implicit connection to application server (AS). The statement runs on the
AS.

�C� End of unit of work. The application requester (AR) is placed in a
connectable and connected state if the COMMIT is successful.

�D� Implicit disconnect at the end of the SQL program.

Explicit CONNECT
The CONNECT statement is used to explicitly connect an application requester
(AR) to an identified application server (AS). This SQL statement can be
embedded within an application program or you can issue it using interactive
SQL. The CONNECT statement is used with a TO or RESET clause. A CONNECT
statement with a TO clause allows you to specify connection to a particular AS
relational database. The CONNECT statement with a RESET clause specifies
connection to the local relational database.

When you issue (or the program issues) a CONNECT statement with a TO or
RESET clause, the AS identified must be described in the relational database
directory. See “Using the relational database directory” on page 76 for more
information on how to work with this directory. The AR must also be in a
connectable state for the CONNECT statement to be successful.

The CONNECT statement has different effects depending on the connection
management method you use. For RUW connection management, the CONNECT
statement has the following effects:
v When a CONNECT statement with a TO or RESET clause is successful, the

following occurs:
– Any open cursors are closed, any prepared statements are discarded, and any

held resources are released from the previous AS if the application process
was placed in the connectable state through the use of COMMIT HOLD or
ROLLBACK HOLD SQL statements, or if the application process is running
COMMIT(*NONE).

198 OS/400 Distributed Database Programming V5R2

– The application process is disconnected from its previous AS, if any, and
connected to the identified AS.

– The name of the AS is placed in the Current Server special register.
– Information that identifies the type of AS is placed in the SQLERRP field of

the SQL communication area (SQLCA).
v If the CONNECT statement is unsuccessful for any reason, the application

remains in the connectable but unconnected state. An application in the
connectable but unconnected state can only run the CONNECT statement.

v Consecutive CONNECT statements can be run successfully because CONNECT
does not remove the AR from the connectable state. A CONNECT to the AS to
which the AR is currently connected is run like any other CONNECT statement.

v If running with commitment control, the CONNECT statement cannot run
successfully when it is preceded by any SQL statement other than CONNECT,
SET CONNECTION, COMMIT, ROLLBACK, DISCONNECT, or RELEASE. To
avoid an error, perform a COMMIT or ROLLBACK operation before a
CONNECT statement is run. If running without commitment control, the
CONNECT statement is always allowed.

For DUW connection management, the CONNECT statement has the following
effects:
v When a CONNECT statement with a TO or RESET clause is successful, the

following occurs:
– The name of the AS is placed in the Current Server special register.
– Information that identifies the type of AS is placed in the SQLERRP field of

the SQL communication area (SQLCA).
– Information on the type of connection is put into the SQLERRD(4) field of the

SQLCA. Encoded in this field is the following information:
- Whether the connection is to the local relational database or a remote

relational database.
- Whether or not the connection uses a protected conversation.
- Whether the connection is always read-only, always capable of updates, or

whether the ability to update can change between each unit of work.

See the SQL Programming Concepts topic in the iSeries Information Center
for more information on SQLERRD(4).

v If the CONNECT statement with a TO or RESET clause is unsuccessful because
the AR is not in the connectable state or the server-name is not listed in the local
relational database directory, the connection state of the AR is unchanged.

v A connect to a currently connected AS results in an error.
v A connection without a TO or RESET clause can be used to obtain information

about the current connection. This includes the following information:
– Information that identifies the type of AS is placed in the SQLERRP field of

the SQL communications area.
– Information on whether an update is allowed to the relational database is

encoded in the SQLERRD(3) field. A value of 1 indicates that an update can
be performed. A value of 2 indicates that an update can not be performed
over the connection. See the SQL Programming Concepts topic in the iSeries
Information Center for more information on SQLERRD(3).

It is a good practice for the first SQL statement run by an application process to be
the CONNECT statement. However, when you have CONNECT statements
embedded in your program you may want to dynamically change the AS name if

Chapter 10. Writing Distributed Relational Database Applications 199

the program connects to more than one AS. If you are going to run the application
at multiple servers, you can specify the CONNECT statement with a host variable
as shown below, so that the program can be passed the relational database name.
CONNECT TO : host-variable

Without CONNECT statements, all you need to do when you change the AS is to
recompile the program with the new relational database name.

The following example shows two forms of the CONNECT statement (�1� and
�2�) in an application program:
CRTSQLxxx PGM(SPIFFY/FIXTOTAL) COMMIT(*CHG) RDB(KC105)

PROC: FIXTOTAL;
EXEC SQL CONNECT TO KC105; �1�

...
EXEC SQL

SELECT * INTO :SERVICE
FROM REPAIRTOT;

...
EXEC SQL COMMIT;

...
EXEC SQL CONNECT TO MPLS03 USER :USERID USING :PW; �2�

...
EXEC SQL SELECT ...

...
EXEC SQL COMMIT;

...
END FIXTOTAL;

The example (�2�) shows the use of the USER/USING form of the CONNECT
statement. You must specify the user ID and password with host variables when
this form of the CONNECT statement is embedded in a program. If you are using
TCP/IP, a userid and password can be extracted from a security object at connect
time if you have used the Add Server Authentication Entry (ADDSVRAUTE)
command with the appropriate parameters to store them.

The following example shows both CONNECT statement forms in interactive SQL.
Note that the password must be enclosed in single quotes.

Type SQL statement, press Enter.
Current connection is to relational database (RDB) KC105.
CONNECT TO KC000___...
COMMIT___
===> CONNECT TO MPLS03 USER JOE USING ’X47K’__________________________________

SQL Specific to distributed relational database and SQL CALL
During the precompile process of a distributed DB2 UDB for iSeries application,
the OS/400 program may build SQL packages to be run on an application server
(AS). After it is compiled, a distributed SQL program and package must be
compatible with the servers that are being used as application receivers and

200 OS/400 Distributed Database Programming V5R2

|
|
|
|
|
|

application servers. “Preparing distributed relational database programs” on
page 208 gives you more information about the changes to the precompile process
and the addition of SQL packages.

This section gives an overview of the SQL statements that are used with
distributed relational database support and some things for you to consider about
coexistence with other servers. For more detail on these subjects, see the SQL
Reference and SQL Programming Concepts topics in the iSeries Information Center.

Distributed relational database statements
The following statements included with the SQL language specifically support a
distributed relational database:
v CONNECT
v SET CONNECTION
v RELEASE
v DISCONNECT
v DROP PACKAGE
v GRANT EXECUTE ON PACKAGE
v REVOKE EXECUTE ON PACKAGE

The SQL CALL statement can be used locally, but its primary purpose is to allow a
procedure to be called on a remote server.

“Connecting to a Distributed Relational Database” on page 191 describes using the
CONNECT, SET CONNECTION, RELEASE, and DISCONNECT statements to
manage connections between an application requester (AR) and an application
server (AS). Using the SQL GRANT EXECUTE ON PACKAGE and REVOKE
EXECUTE ON PACKAGE statements to grant or revoke user authority to SQL
packages is described in “Authority to distributed relational database objects” on
page 66.

The SQL DROP PACKAGE statement, as it is used to drop an SQL package, is
discussed in “Working with SQL packages” on page 214.

SQL CALL statement (Stored Procedures)

Note: DB2 UDB for iSeries did not support the return of result sets from stored
procedures before V5R1. In V5R1, support was added to the DRDA server
for stored procedure calls from non-iSeries clients. In V5R2, iSeries
client-side support was added for applications that use the CLI interface for
SQL. However, you must apply a PTF to V5R1 iSeries servers to enable
them to return stored procedure result sets to V5R2 iSeries clients. The
description of the PTF is ″V5R1 DRDA server PTF to support return of
stored procedure result sets to V5R2 iSeries DRDA clients″. See the PTF
Cover Letter Database to see a list of cover letters sorted by release, by date,
or by fix number.

Result sets can be generated in the stored procedure by opening one or more SQL
cursors associated with SQL SELECT statements. In addition, a maximum of one
array result set can also be returned. For more information about writing stored
procedures that return result sets, see the descriptions of the SET RESULT SETS
and CREATE PROCEDURE statements in the SQL Reference topic in the iSeries
Information Center.

Chapter 10. Writing Distributed Relational Database Applications 201

|
|
|
|
|
|
|
|
|
|

The SQL CALL statement is not actually specific to distributed relational databases,
but a discussion of it is included here because its main value is in distributing
application logic and processing. The CALL statement provides a capability in a
DRDA environment much like the Remote Procedure Call (RPC) mechanism does
in the Open Software Foundation** (OSF**) Distributed Computing Environment
(DCE). In fact, an SQL CALL to a program on a remote relational database actually
is a remote procedure call. This type of RPC has certain advantages; for instance, it
does not require the compilation of interface definitions, nor does it require the
creation of stub programs.

You might want to use SQL CALL, or stored procedures, as the technique is
sometimes called, for the following reasons:
v To reduce the number of message flows between the application requester (AR)

and application server (AS) to perform a given function. If a set of SQL
operations are to be run, it is more efficient for a program at the server to
contain the statements and interconnecting logic.

v To allow native database operations to be performed at the remote location.
v To perform nondatabase operations (for example, sending messages or

performing data queue operations) using SQL.
Note: Unlike database operations, these operations are not protected by
commitment control by the server.

v To access server Application Programming Interfaces (APIs) on a remote server.

A stored procedure and application program can run in the same or different
activation groups. It is recommended that the stored procedure be compiled with
ACTGRP(*CALLER) specified to achieve consistency between the application
program at the AR and the stored procedure at the AS. If the stored procedure is
designed to return result sets, then you should not create it to run in a *NEW
activation group. If you do, the cursors associated with the result sets may be
prematurely closed when the procedure returns to the caller and the activation
group is destroyed.

When a stored procedure is called that issues an inquiry message, the message is
sent to the QSYSOPR message queue. The stored procedure waits for a response to
the inquiry message. To have the stored procedure respond to the inquiry message,
use the Add Reply List Entry (ADDRPYLE) command and specify *SYSRPYL on
the INQMSGRPY parameter of the Change Job (CHGJOB) command in the stored
procedure.

You cannot perform a COMMIT or ROLLBACK in a stored procedure if it runs in
an AS job in the default activation group. When a stored procedure and an
application program run under different commitment definitions, the COMMIT
and ROLLBACK statements in the application program only affect its own
commitment definition. You must commit the changes in the stored procedure by
other means.

For more information on SQL CALL, see the SQL Reference topic in the iSeries
Information Center.

Calling stored procedures using SQL CALL to the DB2 Universal Database
(UDB): Stored procedures written in C that are invoked on a platform running
DB2 UDB cannot use argc and argv as parameters (that is, they cannot be of type
main()). This differs from iSeries stored procedures which must use argc and argv.

202 OS/400 Distributed Database Programming V5R2

|
|
|
|
|
|
|
|

For examples of stored procedures for DB2 UDB platforms, see the
\SQLLIB\SAMPLES (or /sqllib/samples) subdirectory. Look for outsrv.sqc and
outcli.sqc in the C subdirectory.

For UDB stored procedures called by an iSeries server, make sure that the
procedure name is in upper case letters. iSeries server currently folds procedure
names to upper case. This means that a procedure on the UDB server, having the
same procedure name but in lower case, will not be found. For stored procedures
on an iSeries server, the procedure names are in upper case.

Stored procedures on the iSeries server cannot have a COMMIT in them when they
are created to run in the same activation group as the calling program (the proper
way to create them). In UDB, a stored procedure is allowed to have a COMMIT,
but the application designer should be aware that there is no knowledge on the
part of DB2 UDB for iSeries that the commit occurred.

DB2 UDB for iSeries coexistence
When you write and maintain programs for a distributed relational database using
the SQL language, you need to consider the other servers in the distributed
relational database network. The program you are writing or maintaining may
have to be compatible with the following:
v Other iSeries servers
v Previous iSeries server releases
v Servers that are not iSeries servers

Remember that the SQL statements in a distributed SQL program run on the
application server (AS). Even though the program runs on the application
requester (AR), the SQL statements are in the SQL package to be run on the AS.
Those statements must be supported by the AS and be compatible with the
collections, tables, and views that exist on the AS. Also, the users who run the
program on the AR must be authorized to the SQL package and other SQL objects
on the AS.

You can convert a non-distributed SQL program to a distributed SQL program by
creating the program again using the CRTSQLxxx command and specifying the
relational database name (RDB parameter) for an AS. This compiles the program
again using the distributed relational database support in DB2 Universal Database
for iSeries and creates the SQL package needed on the AS.

You can write DB2 UDB for iSeries programs that run on application servers that
are not iSeries server and these other platforms may support more or less SQL
functions. Statements that are not supported on the DB2 UDB for iSeries AR can be
used and compiled on the server when the AS supports the function. SQL
programs written to run on an iSeries server AS only provide the level of support
described in this guide. See the support documentation for the other systems to
determine the level of function they provide.

Ending DRDA units of work
You should be careful about ending SQL programs with uncommitted work. When
a program ends with uncommitted work, the connection to the relational database
remains active. (In some cases involving programs running in system-named
activation groups, however, the system performs an automatic commit when the
program ends.)

Chapter 10. Writing Distributed Relational Database Applications 203

This behavior differs from that of other systems because in the OS/400 operating
system, COMMITs and ROLLBACKs can be used as commands from the command
line or in a CL program. However, the preceding scenario can lead to unexpected
results in the next SQL program run, unless you plan for the situation. For
example, if you run interactive SQL next (STRSQL command), the interactive
session starts up in the state of being connected to the previous application server
(AS) with uncommitted work. As another example, if following the preceding
scenario, you start a second SQL program that does an implicit connect, an attempt
is made to find and run a package for it on the AS that was last used. This may
not be the AS that you intended. To avoid these surprises always commit or
rollback the last unit of work before ending any application program.

Coded Character Set Identifier (CCSID)
Support for the national language of any country requires the proper handling of a
minimum set of characters. A cross-system support for the management of
character information is provided with the IBM Character Data Representation
Architecture (CDRA). CDRA defines the coded character set identifier (CCSID)
values to identify the code points used to represent characters, and to convert
these codes (character data), as needed to preserve their meanings.

The use of an architecture such as CDRA and associated conversion protocols is
important in the following situations:
v More than one national language version is installed on the iSeries server.
v Multiple iSeries server are sharing data between systems in different countries

with different primary national language versions.
v iSeries servers and non-iSeries servers are sharing data between systems in

different countries with different primary national language versions.

Tagging is the primary means to assign meaning to coded graphic characters. The
tag may be in a data structure that is associated with the data object (explicit
tagging), or it may be inherited from objects such as the job or the system itself
(implicit tagging).

DB2 UDB for iSeries tags character columns with CCSIDs. A CCSID is a 16-bit
number identifying a specific set of encoding scheme identifiers, character set
identifiers, code page identifiers, and additional coding-related information that
uniquely identifies the coded graphic character representation used. When running
applications, data is not converted when it is sent to another system; it is sent as
tagged along with its CCSID. The receiving job automatically converts the data to
its own CCSID if it is different from the way the data is tagged.

The CDRA has defined the following range of values for CCSIDs.

00000 Use next hierarchical CCSID

00001 through 28671
IBM-registered CCSIDs

28672 through 65533
Reserved

65534 Refer to lower hierarchical CCSID

65535 No conversion done

See the National Language Support topic in the iSeries Information Center for a list
of the OS/400 CCSIDs and the Character Data Representation Architecture - Level 1,

204 OS/400 Distributed Database Programming V5R2

Registry for a complete list of the CDRA CCSIDs. For more information on
handling CCSIDs, see the SQL Reference and SQL Programming Concepts topics in
the iSeries Information Center.

The following illustration shows the parts of a CCSID.

iSeries server Support
The default CCSID for a job on the iSeries server is specified using the Change Job
(CHGJOB) command. If a CCSID is not specified in this way, the job CCSID is
obtained from the CCSID attribute of the user profile. If a CCSID is not specified
on the user profile, the system gets it from the QCCSID system value. This
QCCSID value is initially set to 65535. If your server is in a distributed relational
database with unlike systems, it may not be able to use CCSID 65535. See
Appendix B, “Cross-Platform Access Using DRDA” on page 253 for things to
consider when operating in an unlike environment.

All control information that flows between the application requester (AR) and
application server (AS) is in CCSID 500 (a DRDA standard). This is information
such as collection names, table names, and some descriptive text. Using variant
characters for control information causes these names to be converted, which can
affect performance. Package names are also sent in CCSID 500. Using variant
characters in a package name causes the package name to be converted. This
means the package is not found at run time.

After a job has been initiated, you can change the job CCSID by using the Change
Job (CHGJOB) command. To do this:
1.

Enter the Work with Job (WRKJOB) command to get the Work with Jobs
display.

2.

Select option 2 (Display job definition attributes).
This locates the current CCSID value so you can reset the job to its original
CCSID value later.

3.

Enter the Change Job (CHGJOB) command with the new CCSID value.

Figure 22. Coded Character Set Identifier (CCSID)

Chapter 10. Writing Distributed Relational Database Applications 205

The new CCSID value is reflected in the job immediately. However, if the job
CCSID you change is an AR job, the new CCSID does not affect the work being
done until the next CONNECT.

Attention: If you change the CCSID of an AS job, the results cannot be predicted.

Source files are tagged with the job CCSID if a CCSID is not explicitly specified on
the Create Source Physical File (CRTSRCPF) or Create Physical File (CRTPF)
commands for source files. Externally described database files and tables are
tagged with the job CCSID if a CCSID is not explicitly specified in data description
specification (DDS), in interactive data definition utility (IDDU), or in the CREATE
TABLE SQL statement.

For source and externally described files, if the job CCSID is 65535, the default
CCSID based on the language of the operating system is used. Program described
files are tagged with CCSID 65535. Views are tagged with the CCSID of its
corresponding table tag or column-level tags. If a view is defined over several
tables, it is tagged at the column level and assumes the tags of the underlying
columns. Views cannot be explicitly tagged with a CCSID. The system
automatically converts data between the job and the table if the CCSIDs are not
equal and neither of the CCSIDs is equal to 65535.

When you change the CCSID of a tagged table, it cannot be tagged at the column
level or have views defined on it. To change the CCSID of a tagged table, use the
Change Physical File (CHGPF) command. To change a table with column-level
tagging, you must create it again and copy the data to a new table using
FMT(*MAP) on the Copy File (CPYF) command. When a table has one or more
views defined, you must do the following to change the table:
1. Save the view and table along with their access paths.
2. Delete the views.
3. Change the table.
4. Restore the views and their access paths over the created table.

Source files and externally described files migrated to DB2 Universal Database for
iSeries that are not tagged or are implicitly tagged with CCSID 65535 will be
tagged with the default CCSID based on the language of the operating system
installed. This includes files that are on the system when you install a new release
and files that are restored to DB2 Universal Database for iSeries.

All data that is sent between an AR and an AS is sent not converted. In addition,
the CCSID is also sent. The receiving job automatically converts the data to its own
CCSID if it is different from the way the data is tagged. For example, consider the
following application that is run on a dealership system, KC105.
CRTSQLxxx PGM(PARTS1) COMMIT(*CHG) RDB(KC000)

PROC: PARTS1;
.
.

EXEC SQL
SELECT * INTO :PARTAVAIL

FROM INVENTORY
WHERE ITEM = :PARTNO;

.

.
END PARTS1;

206 OS/400 Distributed Database Programming V5R2

In the above example, the local system (KC105) has the QCCSID system value set
at CCSID 37. The remote regional center (KC000) uses CCSID 937 and all its tables
are tagged with CCSID 937. CCSID processing takes place as follows:
v The KC105 system sends an input host variable (:PARTNO) in CCSID 37. (The

DECLARE VARIABLE SQL statement can be used if the CCSID of the job is not
appropriate for the host variable.)

v The KC000 system converts :PARTNO to CCSID 937, selects the required data,
and sends the data back to KC105 in CCSID 937.

v When KC105 gets the data, it converts it to CCSID 37 and places it in
:PARTAVAIL for local use.

Other DRDA data conversion
Sometimes, when you are doing processing on a remote system, your program
may need to convert the data from one system so that it can be used on the other.
DRDA support on the iSeries server converts the data automatically between other
systems that use DRDA support. When a DB2 Universal Database for iSeries
application requester (AR) connects to an application server (AS), it sends
information that identifies its type. Likewise, the AS sends back information to the
server that identifies its processor type (for example, S/390* host or iSeries server).
The two systems then automatically convert the data between them as defined for
this connection. This means that you do not need to program for architectural
differences between systems.

Data conversion between IBM systems with DRDA support includes data types
such as:
v Floating point representations
v Zoned decimal representations
v Byte reversal
v Mixed data types
v iSeries specific data types such as:

– DBCS-only
– DBCS-either
– Integer with precision and scale

DDM files and SQL
You can use iSeries DDM support to help you do some distributed relational
database tasks within a program that also uses SQL distributed relational database
support. It may be faster, for example, for you to use DDM and the Copy File
(CPYF) command to get a large number of records rather than an SQL FETCH
statement. Also, DDM can be used to get external file descriptions of the remote
system data brought in during compile for use with the distributed relational
database application. To do this you need to use DDM as described in Chapter 3,
“Communications for an iSeries Distributed Relational Database” Chapter 5,
“Setting Up an iSeries Distributed Relational Database”

The following example shows how you can add a relational database directory
entry and create a DDM file so that the same job can be used on the application
server (AS) and application requester (AR) .

Note: Either both connections must be protected or both connections must be
unprotected for the conversation to be shared.

Chapter 10. Writing Distributed Relational Database Applications 207

Relational Database Directory:

ADDRDBDIRE RDB(KC000) +
RMTLOCNAME(KC000)
TEXT(’Kansas City regional database’)

DDM File:

CRTDDMF FILE(SPIFFY/UPDATE)
RMTFILE(SPIFFY/INVENTORY)
RMTLOCNAME(KC000)
TEXT(’DDM file to update local orders’)

The following is a sample program that uses both the relational database directory
entry and the DDM file in the same job on the remote server:

CRTSQLxxx PGM(PARTS1) COMMIT(*CHG) RDB(KC000) RDBCNNMTH(*RUW)

PROC :PARTS1;
OPEN SPIFFY/UPDATE;

.

.

.
CLOSE SPIFFY/UPDATE;

.

.

.
EXEC SQL

SELECT * INTO :PARTAVAIL
FROM INVENTORY
WHERE ITEM = :PARTNO;

EXEC SQL
COMMIT;
.
.
.

END PARTS1;

See the Distributed Data Management topic in the iSeries Information Center for
more information on how to use iSeries DDM support.

Preparing distributed relational database programs
When you write a program using the SQL language, you normally embed the SQL
statements in a host program. The host program is the program that contains the
SQL statements, written in one of the host languages: the iSeries PL/I, ILE C/400,
COBOL/400, ILE COBOL/400, FORTRAN/400, RPG/400, or ILE RPG/400
programming languages. In a host program you use variables referred to as host
variables. These are variables used in SQL statements that are identifiable to the
host program. In RPG, this is called a field name; in FORTRAN, PL/I, and C, this
is known as a variable; in COBOL, this is called a data item.

You can code your distributed DB2 Universal Database for iSeries programs in a
way similar to the coding for a DB2 UDB for iSeries program that is not
distributed. You use the host language to embed the SQL statements with the host
variables. Also, like a DB2 UDB for iSeries program that is not distributed, a
distributed DB2 UDB for iSeries program is prepared using the following
processes:
v Precompiling
v Testing and debugging
v Binding the application

208 OS/400 Distributed Database Programming V5R2

v Compiling an application program

However, a distributed DB2 UDB for iSeries program also requires that an SQL
package is created on the application server (AS) to access data.

This section discusses these steps in the process, outlining the differences for a
distributed DB2 UDB for iSeries program.

Precompiling programs with SQL statements
You must precompile and compile an application program containing embedded
SQL statements before you can run it. Precompiling such programs is done by an
SQL precompiler. The SQL precompiler scans each statement of the application
program source and does the following:
v Looks for SQL statements and for the definition of host variable names
v Verifies that each SQL statement is valid and free of syntax errors
v Validates the SQL statements using the description in the database
v Prepares each SQL statement for compilation in the host language
v Produces information about each precompiled SQL statement

Application programming statements and embedded SQL statements are the
primary input to the SQL precompiler. The SQL precompiler assumes that the host
language statements are syntactically correct. If the host language statements are
not syntactically correct, the precompiler may not correctly identify SQL statements
and host variable declarations.

The SQL precompile process produces a listing and a temporary source file
member. It can also produce the SQL package depending on what is specified for
the OPTION and RDB parameters of the precompiler command. See “Compiling
an application program” on page 211 for more information about this parameter.

Listing
The output listing is sent to the printer file specified by the PRTFILE parameter of
the CRTSQLxxx command. The following items are written to the printer file:
v Precompiler options

This is a list of all the options specified with the CRTSQLxxx command and the
date the source member was last changed.

v Precompiler source
This output is produced if the *SOURCE option is used for non-ILE precompiles
or if the OUTPUT(*PRINT) parameter is specified for ILE precompiles. It shows
each precompiler source statement with its record number assigned by the
precompiler, the sequence number (SEQNBR) you see when using the source
entry utility (SEU), and the date the record was last changed.

v Precompiler cross-reference
This output is produced if *XREF was specified in the OPTION parameter. It
shows the name of the host variable or SQL entity (such as tables and columns),
the record number where the name is defined, what the name is defined, and
the record numbers where the name occurs.

v Precompiler diagnostic list
This output supplies diagnostic messages, showing the precompiler record
numbers of statements in error.

Chapter 10. Writing Distributed Relational Database Applications 209

Temporary source file member
Source statements processed by the precompiler are written to QSQLTEMP in the
QTEMP library (QSQLTEMP1 in the QTEMP library for programs created using
CRTSQLRPGI). In your precompiler-changed source code, SQL statements have
been converted to comments and calls to the SQL interface modules: QSQROUTE,
QSQLOPEN, QSQLCLSE, and QSQLCMIT. The name of the temporary source file
member is the same as the name specified in the PGM parameter of CRTSQLxxx.
This member cannot be changed before being used as input to the compiler.

QSQLTEMP or QSQLTEMP1 can be moved to a permanent library after the
precompile, if you want to compile at a later time. If you change the records of the
temporary source file member, the compile attempted later will fail.

SQL package creation
An object called an SQL package can be created as part of the precompile process
when the CRTSQLxxx command is compiled. See “Compiling an application
program” on page 211 and “Binding an application” on page 211 for information on
situations that affect package creation as part of these processes. See “Working
with SQL packages” on page 214 for more information on the SQL package and
commands that you can use to work with a package.

Precompiler commands
The DB2 UDB Query Manager and SQL Development Kit program has seven
precompiler commands, one for each of the host languages.

Host Language Command

iSeries PL/I CRTSQLPLI
ILE C/400 language CRTSQLCI
COBOL/400 language CRTSQLCBL
ILE COBOL/400 language CRTSQLCBLI
FORTRAN/400 language CRTSQLFTN
RPG III (part of RPG/400 language) CRTSQLRPG
ILE RPG/400 language CRTSQLRPGI

A separate command for each language exists so each language can have
parameters that apply only to that language. For example, the options *APOST and
*QUOTE are unique to COBOL. They are not included in the commands for the
other languages. The precompiler is controlled by parameters specified when it is
called by one of the SQL precompiler commands. The parameters specify how the
input is processed and how the output is presented.

You can precompile a program without specifying anything more than the name of
the member containing the program source statements as the PGM parameter (for
non-ILE precompiles) or the OBJ parameter (for ILE precompiles) of the
CRTSQLxxx command. SQL assigns default values for all precompiler parameters
(which may, however, be overridden by any that you explicitly specify).

The following briefly describes parameters common to all the CRTSQLxxx
commands that are used to support distributed relational database. To see the
syntax and full description of the parameters and supported values, see the SQL
Programming Concepts book.

RDB
Specifies the name of the relational database where the SQL package option is
to be created. If *NONE is specified, then the program or module is not a

210 OS/400 Distributed Database Programming V5R2

distributed object and the Create Structured Query Language Package
(CRTSQLPKG) command cannot be used. The relational database name can be
the name of the local database.

RDBCNNMTH
Specifies the type of semantics to be used for CONNECT statements: remote
unit of work (RUW) or distributed unit of work (DUW) semantics.

SQLPKG
Specifies the name and library of the SQL package.

USER
Specifies the user name sent to the remote server when starting the
conversation. This parameter is used only if a conversation is started as part of
the precompile process.

PASSWORD
Specifies the password to be used on the remote server when starting the
conversation. This parameter is used only if a conversation is started as part of
the precompile process.

REPLACE
Specifies if any objects created as part of the precompile process should be able
to replace an existing object.

The following example creates a COBOL program named INVENT and stores it in
a library named SPIFFY. The SQL naming convention is selected, and every row
selected from a specified table is locked until the end of the unit of recovery. An
SQL package with the same name as the program is created on the remote
relational database named KC000.
CRTSQLCBL PGM(SPIFFY/INVENT) OPTION(*SRC *XREF *SQL)

COMMIT(*ALL) RDB(KC000)

Compiling an application program
The DB2 Universal Database for iSeries precompiler automatically calls the host
language compiler after the successful completion of a precompile, unless the
*NOGEN precompiler option is specified. The compiler command is run specifying
the program name, source file name, precompiler created source member name,
text, and user profile. Other parameters are also passed to the compiler, depending
on the host language.

For more information on these parameters, see the SQL Programming Concepts
topic in the iSeries Information Center.

Binding an application
Before you can run your application program, a relationship between the program
and any referred-to tables and views must be established. This process is called
binding. The result of binding is an access plan. The access plan is a control
structure that describes the actions necessary to satisfy each SQL request. An access
plan contains information about the program and about the data the program
intends to use. For distributed relational database work, the access plan is stored in
the SQL package and managed by the server along with the SQL package. See
“Working with SQL packages” on page 214 for more information about SQL
packages.

SQL automatically attempts to bind and create access plans when the result of a
successful compile is a program or service program object. If the compile is not
successful or the result of a compile is a module object, access plans are not

Chapter 10. Writing Distributed Relational Database Applications 211

created. If, at run time, the database manager detects that an access plan is not
valid or that changes have occurred to the database that may improve performance
(for example, the addition of indexes), a new access plan is automatically created.
If the application server (AS) is not an iSeries server, then a bind must be done
again using the Create Structured Query Language Package (CRTSQLPKG)
command. Binding does three things:
v Re-validates the SQL statements using the description in the database.

During the bind process, the SQL statements are checked for valid table, view,
and column names. If a referred to table or view does not exist at the time of the
precompile or compile, the validation is done at run time. If the table or view
does not exist at run time, a negative SQLCODE is returned.

v Selects the access paths needed to access the data your program wants to
process.
In selecting an access path, indexes, table sizes, and other factors are considered
when SQL builds an access plan. The bind process considers all indexes
available to access the data and decides which ones (if any) to use when
selecting a path to the data.

v Attempts to build access plans.
If all the SQL statements are valid, the bind process builds and stores access
plans in the program.

If the characteristics of a table or view your program accesses have changed, the
access plan may no longer be valid. When you attempt to use an access plan that
is not valid, the server automatically attempts to rebuild the access plan. If the
access plan cannot be rebuilt, a negative SQLCODE is returned. In this case, you
might have to change the program’s SQL statements and reissue the CRTSQLxxx
command to correct the situation.

For example, if a program contains an SQL statement that refers to COLUMNA in
TABLEA and the user deletes and recreates TABLEA so that COLUMNA no longer
exists, when you call the program, the automatic rebind is unsuccessful because
COLUMNA no longer exists. You must change the program source and reissue the
CRTSQLxxx command.

Testing and debugging
Testing and debugging distributed SQL programs is similar to testing and
debugging local SQL programs, but certain aspects of the process are different.

More than one server will eventually be required for testing. If applications are
coded so that the relational database names can easily be changed by recompiling
the program, changing the input parameters to the program, or making minor
modifications to the program source, most testing can be accomplished using a
single server.

After the program has been tested against local data, the program is then made
available for final testing on the distributed relational database network. Consider
testing the application locally on the server that will be the application server (AS)
when the application is tested over a remote connection, so that only the program
will need to be moved when the testing moves into a distributed environment.

Debugging a distributed SQL program uses the same techniques as debugging a
local SQL program. You use the Start Debug (STRDBG) command to start the
debugger and to put the application in debug mode. You can add breakpoints,
trace statements, and display the contents of variables.

212 OS/400 Distributed Database Programming V5R2

However, to debug a distributed SQL program, you must specify the value of *YES
for the UPDPROD parameter. This is because OS/400 distributed relational
database support uses files in library QSYS and QSYS is a production library. This
allows data in production libraries to be changed on the application requester
(AR). Issuing the Start Debug (STRDBG) command on the AR only puts the AR job
into debug mode, so your ability to manipulate data on the AS is not changed.

While in debug mode on the AR, informational messages are entered in the job log
for each SQL statement run. These messages give information about the result of
each SQL statement. A list of SQL return codes and a list of error messages for
distributed relational database are provided in Chapter 9, “Handling Distributed
Relational Database Problems”.

Informational messages about how the server maximizes processing efficiency of
SQL statements also are issued as a result of being in debug mode. Since any
maximization occurs at the AS, these types of messages will not appear in the AR
job log. To get this information, the AS job must be put in to debug mode.

A relatively easy way to start debug mode on the server if you are using TCP/IP is
to use the QRWOPTIONS data area. However, you cannot specify a specific
program to debug with this facility. For details on setup, see QRWOPTIONS Data
Area Usage. The data area can be used not only to start debug, but to start job
traces and request job logs and display job output and do other things as well. You
can even do the QRWOPTIONS set up on an iSeries AR, and have the options
shadowed to an iSeries server.

If both the AR and AS are iSeries servers, and they are connected with APPC, you
can use the Submit Remote Command (SBMRMTCMD) command to start the
debug mode in an AS job. Create a DDM file as described in “Setting up DDM
files” on page 86. The communications information in the DDM file must match the
information in the relational database directory entry for the relational database
being accessed. Then issue the command:
SBMRMTCMD CMD(’STRDBG UPDPROD(*YES)’) DDMFILE(ddmfile name)

The (SBMRMTCMD) command starts the AS job if it does not already exist and
starts the debug mode in that job. Use the methods described in “Monitoring
relational database activity” on page 97 to examine the AS job log to find the job.

See “SQL CALL statement (Stored Procedures)” on page 201 for more information.

The following method for putting the AS job into debug mode works with any AR
and a DB2 Universal Database for iSeries AS with certain restrictions. It depends
on being able to pause after the application makes a connection to do setup. It also
assumes that what you want to trace or otherwise debug occurs after the
connection is established.
v Sign on to the AS and find the AS job.
v Issue the Start Service Job (STRSRVJOB) command from the interactive job (the

job you are using to find the AS job) as shown:
STRSRVJOB (job-number/user-ID/job-name)

The job name for the (STRSRVJOB) command is the name of the AS job. Issuing
this command lets you issue certain commands from your interactive job that
affect the AS job. One of these commands is the Start Debug (STRDBG)
command.

Chapter 10. Writing Distributed Relational Database Applications 213

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|

|
|
|
|

v Issue the (STRDBG) command using a value of *YES for the UPDPROD
parameter in the interactive job. This puts the AS job into debug mode to
produce debug messages on the AS job log.

To end this debug session, either end your interactive job by signing off or use the
End Debug (ENDDBG) command followed by the End Service Job (ENDSRVJOB)
command.

Since the AS job must be put into debug before the SQL statements are run, the
application may need to be changed to allow you time to set up debug on the AS.
The AS job starts as a result of the application connecting to the AS. Your
application could be coded to enter a wait state after connecting to the AS until
debug is started on the AS.

If you can anticipate the prestart job that will be used for a TCP/IP connection
before it occurs, such as when there is only one waiting for work and there is no
interference from other clients, you do not have the need to introduce a delay.

Program references
When a program is created, the OS/400 licensed program stores information about
all collections, tables, views, SQL packages, and indexes referred to in SQL
statements in an SQL program.

You can use the Display Program References (DSPPGMREF) command to display
all object references in the program. If the SQL naming convention is used, the
library name is stored in one of three ways:
v If the SQL name is fully qualified, the collection name is stored as the name

qualifier.
v If the SQL name is not fully qualified, and the DFTRDBCOL parameter is not

specified, the authorization ID of the statement is stored as the name qualifier.
v If the SQL name is not fully qualified, and the DFTRDBCOL parameter is

specified, the collection name specified on the DFTRDBCOL parameter is stored
as the name qualifier.

If the server naming convention is used, the library name is stored in one of three
ways:
v If the object name is fully qualified, the library name is stored as the name

qualifier.
v If the object is not fully qualified, and the DFTRDBCOL parameter is not

specified, *LIBL is stored.
v If the SQL name is not fully qualified, and the DFTRDBCOL parameter is

specified, the collection name specified on the DFTRDBCOL parameter is stored
as the name qualifier.

Working with SQL packages
An SQL package is an SQL object used specifically by distributed relational
database applications. It contains control structures for each SQL statement that
accesses data on an application server (AS). These control structures are used by
the AS at run time when the application program requests data using the SQL
statement.

You must use a control language (CL) command to create an SQL package because
there is no SQL statement for SQL package creation. You can create an SQL
package in two ways:

214 OS/400 Distributed Database Programming V5R2

|
|
|

v Using the CRTSQLxxx command with a relational database name specified in
the RDB parameter. See “Precompiling programs with SQL statements” on
page 209

v Using the Create SQL Package (CRTSQLPKG) command.

In addition to creating an SQL package, you can also do the following:
v Manage an SQL package
v Delete an SQL Package using the DLTSQLPKG command
v Use the SQL DROP PACKAGE statement

Using the Create SQL Package (CRTSQLPKG) command
You do not need the DB2 UDB Query Manager and SQL Development Kit licensed
program to create an SQL package on an application server (AS). You can enter
the Using the Create SQL Package (CRTSQLPKG) command to create an SQL
package from a compiled distributed relational database program. You can also use
this command to replace an SQL package that was created previously. A new SQL
package is created on the relational database defined by the RDB parameter. The
new SQL package has the same name and is placed in the same library as specified
on the PKG parameter of the CRTSQLxxx command.

Chapter 10. Writing Distributed Relational Database Applications 215

PGM
Specifies the qualified name of the program for which the SQL package is
being created.

*LIBL: Specifies that the library list is used to locate the program.

*CURLIB: Specifies that the current library is able to find the program. If a
current library entry does not exist in the library list, the QGPL library is used.

library-name: Specifies the library where the program is located.

program-name: Specifies the name of the distributed program for which the SQL
package is being created.

Job: B,I Pgm: B,I REXX: B,I Exec

WW CRTSQLPKG
*LIBL/

PGM(program-name)
*CURLIB/
library-name/

W

W
*PGM

RDB(relational-database-name)
*CURRENT

USER(user-name)

W

W
*NONE

PASSWORD(password)
10

GENLVL(severity-level)

W

W
*YES

REPLACE(*NO)
*PGM

DFTRDBCOL(*NONE)
collection-name

W

W
*LIBL/ QSYSPRT

PRTFILE(printer-file-name)
*CURLIB/
library-name/

W

W
*PGM

OBJTYPE(*SRVPGM)

X

*ALL
.

(1)
MODULE(module-name)

W

W
*PGMTXT

TEXT(*BLANK)
'description'

WY

Notes:

1 A maximum of 256 modules may be specified.

216 OS/400 Distributed Database Programming V5R2

RDB
Specifies the relational database name that identifies the remote database
where the SQL package is being created.

*PGM: Specifies that the relational database name to be used is the same as
the value specified on the RDB parameter of the CRTSQLxxx command used
when the program was created.

relational-database-name: Specifies the name of the relational database where the
SQL package is to be created.

USER
Specifies the user name sent to the remote server when starting the
conversation.

*CURRENT: The user name associated with the current job is used.

user-name: Specifies the user name to be used for the remote job.

PASSWORD
Specifies the password to be used on the remote server.

*NONE: No password is sent. If a user name is specified on the USER
parameter, the value is not valid.

password: Specifies the password of the user name specified on the USER
parameter.

GENLVL
Controls the generation of the SQL package. If error messages are returned
with a severity greater than the GENLVL value, the SQL package is not
created.

10: If a severity level value is not specified, the default severity level is 10.

severity-level: Specify a number from 0 through 40. Some suggested values are
listed below:

10 warnings

20 general error messages

30 serious error messages

40 server detected error messages

Note: There are some errors that cannot be controlled by GENLVL. When
those errors occur, the SQL package is not created.

REPLACE
Specifies whether or not to replace an existing SQL package of the same name
with a newly created SQL package.

*YES: Specifies that if the SQL package already exists, it will be replaced with
the new SQL package.

*NO: Specifies that the create SQL package operation will end if an SQL
package already exists.

DFTRDBCOL
Identifies the default collection name to be used for unqualified names of
tables, views, indexes and SQL packages with static SQL statements.

*PGM: Specifies that the collection name to be used is the same as the
DFTRDBCOL parameter value used when the program was created.

Chapter 10. Writing Distributed Relational Database Applications 217

*NONE: Specifies that unqualified names for tables, indexes, views, and SQL
packages will use the search conventions defined for the *SQL and *SYS
options in the SQL precompiler commands.

collection-name: Specify the name of the collection name that is to be used for
unqualified tables, views, indexes and SQL packages.

PRTFILE
Specifies the qualified name of the printer device file to which the precompiler
listing is directed. The file should have a minimum length of 132 characters. If
a file with a record length of less than 132 characters is specified, information
is lost.

*LIBL: Specifies the library list used to locate the printer file.

*CURLIB: Specifies that the current library for the job is used to locate the
printer file. If no library entry exists in the library list, QGPL is used.

library-name: Specify the library where the printer file is located.

QSYSPRT: If a file name is not specified, the precompiler listing is directed to
the IBM-supplied printer file QSYSPRT.

printer-file-name: Specify the name of the printer device file to which the
precompiler listing is directed.

OBJTYPE
Specifies the type of program for which an SQL package is created.

*PGM: Create an SQL package from the program specified on the PGM
parameter.

*SRVPGM: Create an SQL package from the service program specified on the
PGM parameter.

MODULE
Specifies a list of modules in a bound program.

*ALL: An SQL package is created for each module in the program. An error
message is sent if none of the modules in the program contain SQL statements
or none of the modules is a distributed module.

Note: The Using the Create SQL Package (CRTSQLPKG) commandcan process
programs that do not contain more than 1024 modules.

module-name: Specify the names of up to 256 modules in the program for which
an SQL package is to be created. If more than 256 modules exist that need to
have an SQL package created, multiple Using the Create SQL Package
(CRTSQLPKG) commands must be used.

Duplicate module names in the same program are allowed. This command
looks at each module in the program and if *ALL or the module name is
specified on the MODULE parameter, processing continues to determine
whether an SQL package should be created. If the module is created using SQL
and the RDB parameter is specified on the precompile command, an SQL
package is created for the module. The SQL package is associated with the
module of the bound program.

TEXT
Specifies text that briefly describes the program and its function.

*PGMTXT: Specifies that the text is taken from the program.

218 OS/400 Distributed Database Programming V5R2

*BLANK: Specifies no text.

’description’: Specify no more than 50 characters of text enclosed in apostrophes
(’).

The following sample command creates an SQL package from the distributed SQL
program INVENT on relational database KC000.
CRTSQLPKG INVENT RDB(KC000) TEXT(’Inventory Check’)

The new SQL package is created with the same options that were specified on the
CRTSQLxxx command.

If errors are encountered while creating the SQL package, the SQL statement being
processed when the error occurred and the message text for the error are written to
the file identified by the PRTFILE parameter. A listing is not generated if no errors
were found during the create SQL package process.

If the CRTSQLxxx command failed to create an SQL package (for example, the
communications line failed during the precompile) but the program was created,
the SQL package can be created without running the CRTSQLxxx command again.

SQL package management
After an SQL package is created, you can manage it the same way you manage
other objects on the iSeries server, with some restrictions. You can save and restore
it, send it to other servers, and grant and revoke a user’s authority to the package.
You can also delete it by entering the Delete Structured Query Language Package
(DLTSQLPKG) command or the DROP PACKAGE SQL statement.

When a distributed SQL program is created, the name of the SQL package and an
internal consistency token are saved in the program. These are used at run time to
find the SQL package and verify that the SQL package is correct for this program.
Because the name of the SQL package is critical for running distributed SQL
programs, an SQL package cannot be moved, renamed, duplicated, or restored to a
different library.

Delete SQL Package (DLTSQLPKG) command
You can use the Delete Structured Query Language Package (DLTSQLPKG)
command to delete one or more SQL packages. You must enter the (DLTSQLPKG)
command on the iSeries server where the SQL package being deleted is located.

SQLPKG
Specifies the qualified name of the SQL package being deleted. A specific or
generic SQL package name can be specified.

The possible library values are:

Job: B,I Pgm: B,I REXX: B,I Exec

WW DLTSQLPKG
*LIBL/

SQLPKG(SQL-package-name)
CURLIB/ generic-SQL-package name
*USRLIBL/
*ALL/
*ALLUSR/
library-name/

WY

Chapter 10. Writing Distributed Relational Database Applications 219

*LIBL: All libraries in the user and server portions of the job’s library list
are searched.

v *CURLIB: The current library is searched. If no library is specified as the
current library for the job, the QGPL library is used.

v *USRLIBL: Only the libraries listed in the user portion of the library list are
searched.

v *ALL: All libraries in the server, including QSYS, are searched.
v *ALLUSR: All nonsystem libraries, including all user-defined libraries and

the QGPL library, not just those in the job’s library list are searched.
Libraries whose names start with the letter Q, other than QGPL, are not
searched.

v library-name: Specifies the name of the library to be searched.

SQL-package-name: Specifies the name of the SQL package being deleted.

generic*-SQL-package-name: Specifies the generic name of the SQL package to be
deleted. A generic name is a character string of one or more characters
followed by an asterisk (*); for example, ABC*. If a generic name is specified,
all SQL packages with names that begin with the generic name, and for which
the user has authority, are deleted. If an asterisk is not included with the
generic (prefix) name, the server assumes it to be the complete SQL package
name.

You must have *OBJEXIST authority for the SQL package and at least *EXECUTE
authority for the collection where it is located.

There are also several SQL methods to drop packages:
v If you have the DB2 UDB Query Manager and SQL Development Kit licensed

program installed, use interactive SQL to connect to the application server (AS)
and then drop the package using the SQL DROP PACKAGE statement.

v Run an SQL program that connects and then drops the package.
v Use Query Management to connect and drop the package.

The following command deletes the SQL package PARTS1 in the SPIFFY collection:
DLTSQLPKG SQLPKG(SPIFFY/PARTS1)

To delete an SQL package on a remote iSeries server, use the Submit Remote
Command (SBMRMTCMD) command to run the Delete Structured Query
Language Package (DLTSQLPKG) command on the remote server. You can also use
display station pass-through to sign on the remote server to delete the SQL
package. If the remote server is not an iSeries server, pass through to that server
using a remote work station program and then submit the delete SQL package
command local to that server.

SQL DROP PACKAGE statement
The DROP PACKAGE statement includes the PACKAGE parameter for distributed
relational database. You can issue the DROP PACKAGE statement embedded in a
program or using interactive SQL. When you issue a DROP PACKAGE statement,
the SQL package and its description are deleted from the application server (AS).
This has the same result as a Delete Structured Query Language Package
(DLTSQLPKG) command entered on a local server. No other objects dependent on
the SQL package are deleted as a result of this statement.

220 OS/400 Distributed Database Programming V5R2

You must have the following privileges on the SQL package to successfully delete
it:
v The system authority *EXECUTE on the referenced collection
v The system authority *OBJEXIST on the SQL package

The following example shows how the DROP PACKAGE statement is issued:
DROP PACKAGE SPIFFY.PARTS1

A program cannot issue a DROP PACKAGE statement for the SQL package it is
currently using.

Chapter 10. Writing Distributed Relational Database Applications 221

222 OS/400 Distributed Database Programming V5R2

Appendix A. Application Programming Examples

This appendix contains an example RUW application for distributed relational
database use, written in RPG/400, COBOL/400 and ILE C/400 programming
languages. This example shows how to use a distributed relational database for
functional specification tasks.

Business requirement for distributed relational database example

The application for the distributed relational database in this example is parts stock
management in an automobile dealer or distributor network.

This program checks the level of stock for each part in the local part stock table. If
this is below the re-order point, the program then checks on the central tables to
see whether there are any existing orders outstanding and what quantity has been
shipped against each order.

If the net quantity (local stock, plus orders, minus shipments) is still below the
re-order point, an order is placed for the part by inserting rows in the appropriate
tables on the central server. A report is printed on the local server.

Technical Notes

Commitment control

This program uses the concept of Local and Remote Logical Units of Work
(LUW). Since this program uses remote unit of work, it is necessary to
close the current LUW on one server (COMMIT) before beginning a new
unit of work on another server.

Cursor repositioning

When a LUW is committed and the application connects to another
database, all cursors are closed. This application requires the cursor
reading the part stock file to be re-opened at the next part number. To
achieve this, the cursor is defined to begin where the part number is
greater than the current value of part number, and to be ordered by part
number.

Note: This technique will not work if there are duplicate rows for the same
part number.

For more information about this example, see the following topics:
v Example: Creating a collection and tables
v Example: Inserting data into the tables
v Example: RPG Program
v Example: COBOL Program
v Example: C Program
v Example: Program Output
v This disclaimer information pertains to code examples.

© Copyright IBM Corp. 1998, 2001, 2002 223

Example: Creating a collection and tables
This disclaimer information pertains to code examples.

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:16:50 PAGE 1
SOURCE FILE DRDA/QLBLSRC
MEMBER CRTDB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
100 IDENTIFICATION DIVISION. 03/29/92
200 PROGRAM-ID. CRTDB. 03/29/92
300 ENVIRONMENT DIVISION. 03/29/92
400 DATA DIVISION. 03/29/92
500 WORKING-STORAGE SECTION. 03/29/92
600 EXEC SQL INCLUDE SQLCA END-EXEC. 03/29/92
700 PROCEDURE DIVISION. 03/29/92
800 MAIN. 03/29/92
900 * --- 03/29/92
1000 * LOCATION TABLE 03/29/92
1100 * --*/-- 03/29/92
1200 EXEC SQL 03/29/92
1300 CREATE COLLECTION DRDA 03/29/92
1400 END-EXEC. 03/29/92
1500 EXEC SQL 03/29/92
1600 CREATE TABLE DRDA/PART_STOCK 03/29/92
1700 (PART_NUM CHAR(5) NOT NULL,
1800 PART_UM CHAR(2) NOT NULL,
1900 PART_QUANT INTEGER NOT NULL WITH DEFAULT, 03/29/92
2000 PART_ROP INTEGER NOT NULL, 03/29/92
2100 PART_EOQ INTEGER NOT NULL, 03/29/92
2200 PART_BIN CHAR(6) NOT NULL WITH DEFAULT 03/29/92
2300) END-EXEC. 03/29/92
2400 EXEC SQL 03/29/92
2500 CREATE UNIQUE INDEX DRDA/PART_STOCI 03/29/92
2600 ON DRDA/PART_STOCK 03/29/92
2700 (PART_NUM ASC) END-EXEC. 03/29/92
2800 EXEC SQL 03/29/92
2900 CREATE TABLE DRDA/PART_ORDER 03/29/92
3000 (ORDER_NUM SMALLINT NOT NULL,
3100 ORIGIN_LOC CHAR(4) NOT NULL,
3200 ORDER_TYPE CHAR(1) NOT NULL,
3300 ORDER_STAT CHAR(1) NOT NULL,
3400 NUM_ALLOC SMALLINT NOT NULL WITH DEFAULT,
3500 URG_REASON CHAR(1) NOT NULL WITH DEFAULT,
3600 CREAT_TIME TIMESTAMP NOT NULL,
3700 ALLOC_TIME TIMESTAMP,
3800 CLOSE_TIME TIMESTAMP,
3900 REV_REASON CHAR(1) 03/29/92
4000) END-EXEC. 03/29/92
4100 EXEC SQL 03/29/92
4200 CREATE UNIQUE INDEX DRDA/PART_ORDEI 03/29/92
4300 ON DRDA/PART_ORDER 03/29/92
4400 (ORDER_NUM ASC) END-EXEC. 03/29/92
4500 EXEC SQL 03/29/92
4600 CREATE TABLE DRDA/PART_ORDLN 03/29/92
4700 (ORDER_NUM SMALLINT NOT NULL,
4800 ORDER_LINE SMALLINT NOT NULL,
4900 PART_NUM CHAR(5) NOT NULL,
5000 QUANT_REQ INTEGER NOT NULL, 03/29/92
5100 LINE_STAT CHAR(1) NOT NULL 03/29/92
5200) END-EXEC. 03/29/92
5300 EXEC SQL 03/29/92
5400 CREATE UNIQUE INDEX PART_ORDLI 03/29/92
5500 ON DRDA/PART_ORDLN 03/29/92
5600 (ORDER_NUM ASC, 03/29/92
5700 ORDER_LINE ASC) END-EXEC. 03/29/92

Figure 23. Creating a Collection and Tables (Part 1 of 2)

224 OS/400 Distributed Database Programming V5R2

Example: Inserting data into the tables
This disclaimer information pertains to code examples.

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:16:50 PAGE 2
SOURCE FILE DRDA/QLBLSRC
MEMBER CRTDB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
5800 EXEC SQL 03/29/92
5900 CREATE TABLE DRDA/SHIPMENTLN 03/29/92
6000 (SHIP_NUM SMALLINT NOT NULL,
6100 SHIP_LINE SMALLINT NOT NULL,
6200 ORDER_LOC CHAR(4) NOT NULL,
6300 ORDER_NUM SMALLINT NOT NULL,
6400 ORDER_LINE SMALLINT NOT NULL,
6500 PART_NUM CHAR(5) NOT NULL,
6600 QUANT_SHIP INTEGER NOT NULL, 03/29/92
6700 QUANT_RECV INTEGER NOT NULL WITH DEFAULT 03/29/92
6800) END-EXEC. 03/29/92
6900 EXEC SQL 03/29/92
7000 CREATE UNIQUE INDEX SHIPMENTLI 03/29/92
7100 ON DRDA/SHIPMENTLN 03/29/92
7200 (SHIP_NUM ASC, 03/29/92
7300 SHIP_LINE ASC) END-EXEC. 03/29/92
7400 EXEC SQL 03/29/92
7500 COMMIT END-EXEC. 03/29/92
7600 STOP RUN. 03/29/92
* * * * E N D O F S O U R C E * * * *

Figure 23. Creating a Collection and Tables (Part 2 of 2)

Appendix A. Application Programming Examples 225

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:16:54 PAGE 1
SOURCE FILE DRDA/QLBLSRC
MEMBER INSDB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
100 IDENTIFICATION DIVISION. 03/29/92
200 PROGRAM-ID. INSDB. 03/29/92
300 ENVIRONMENT DIVISION. 03/29/92
400 DATA DIVISION. 03/29/92
500 WORKING-STORAGE SECTION. 03/29/92
600 EXEC SQL INCLUDE SQLCA END-EXEC. 03/29/92
700 PROCEDURE DIVISION. 03/29/92
800 MAIN. 03/29/92
900 03/29/92
1000 03/29/92
1100 *-- 03/29/92
1200 * PART_STOCK TABLE 03/29/92
1300 *--*/-- 03/29/92
1400 03/29/92
1500 03/29/92
1600 EXEC SQL 03/29/92
1700 INSERT INTO PART_STOCK 03/29/92
1800 VALUES 03/29/92
1900 (’14020’,’EA’,038,050,100,’ ’) END-EXEC. 03/29/92
2000 EXEC SQL 03/29/92
2100 INSERT INTO PART_STOCK 03/29/92
2200 VALUES 03/29/92
2300 (’14030’,’EA’,043,050,050,’ ’) END-EXEC. 03/29/92
2400 EXEC SQL 03/29/92
2500 INSERT INTO PART_STOCK 03/29/92
2600 VALUES 03/29/92
2700 (’14040’,’EA’,030,020,030,’ ’) END-EXEC. 03/29/92
2800 EXEC SQL 03/29/92
2900 INSERT INTO PART_STOCK 03/29/92
3000 VALUES 03/29/92
3100 (’14050’,’EA’,010,005,015,’ ’) END-EXEC. 03/29/92
3200 EXEC SQL 03/29/92
3300 INSERT INTO PART_STOCK 03/29/92
3400 VALUES 03/29/92
3500 (’14060’,’EA’,110,045,090,’ ’) END-EXEC. 03/29/92
3600 EXEC SQL 03/29/92
3700 INSERT INTO PART_STOCK 03/29/92
3800 VALUES 03/29/92
3900 (’14070’,’EA’,130,080,160,’ ’) END-EXEC. 03/29/92
4000 EXEC SQL 03/29/92
4100 INSERT INTO PART_STOCK 03/29/92
4200 VALUES 03/29/92

Figure 24. Inserting Data into the Tables (Part 1 of 4)

226 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:16:54 PAGE 2
SOURCE FILE DRDA/QLBLSRC
MEMBER INSDB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
4300 (’18020’,’EA’,013,025,050,’ ’) END-EXEC. 03/29/92
4400 EXEC SQL 03/29/92
4500 INSERT INTO PART_STOCK 03/29/92
4600 VALUES 03/29/92
4700 (’18030’,’EA’,015,005,010,’ ’) END-EXEC. 03/29/92
4800 EXEC SQL 03/29/92
4900 INSERT INTO PART_STOCK 03/29/92
5000 VALUES 03/29/92
5100 (’21010’,’EA’,029,030,050,’ ’) END-EXEC. 03/29/92
5200 EXEC SQL 03/29/92
5300 INSERT INTO PART_STOCK 03/29/92
5400 VALUES 03/29/92
5500 (’24010’,’EA’,025,020,040,’ ’) END-EXEC. 03/29/92
5600 EXEC SQL 03/29/92
5700 INSERT INTO PART_STOCK 03/29/92
5800 VALUES 03/29/92
5900 (’24080’,’EA’,054,050,050,’ ’) END-EXEC. 03/29/92
6000 EXEC SQL 03/29/92
6100 INSERT INTO PART_STOCK 03/29/92
6200 VALUES 03/29/92
6300 (’24090’,’EA’,030,025,050,’ ’) END-EXEC. 03/29/92
6400 EXEC SQL 03/29/92
6500 INSERT INTO PART_STOCK 03/29/92
6600 VALUES 03/29/92
6700 (’24100’,’EA’,020,015,030,’ ’) END-EXEC. 03/29/92
6800 EXEC SQL 03/29/92
6900 INSERT INTO PART_STOCK 03/29/92
7000 VALUES 03/29/92
7100 (’24110’,’EA’,052,050,080,’ ’) END-EXEC. 03/29/92
7200 EXEC SQL 03/29/92
7300 INSERT INTO PART_STOCK 03/29/92
7400 VALUES 03/29/92
7500 (’25010’,’EA’,511,300,600,’ ’) END-EXEC. 03/29/92
7600 EXEC SQL 03/29/92
7700 INSERT INTO PART_STOCK 03/29/92
7800 VALUES 03/29/92
7900 (’36010’,’EA’,013,005,010,’ ’) END-EXEC. 03/29/92
8000 EXEC SQL 03/29/92
8100 INSERT INTO PART_STOCK 03/29/92
8200 VALUES 03/29/92
8300 (’36020’,’EA’,110,030,060,’ ’) END-EXEC. 03/29/92
8400 EXEC SQL 03/29/92
8500 INSERT INTO PART_STOCK 03/29/92
8600 VALUES 03/29/92
8700 (’37010’,’EA’,415,100,200,’ ’) END-EXEC. 03/29/92
8800 EXEC SQL 03/29/92
8900 INSERT INTO PART_STOCK 03/29/92
9000 VALUES 03/29/92
9100 (’37020’,’EA’,010,020,040,’ ’) END-EXEC. 03/29/92
9200 EXEC SQL 03/29/92
9300 INSERT INTO PART_STOCK 03/29/92
9400 VALUES 03/29/92
9500 (’37030’,’EA’,154,055,060,’ ’) END-EXEC. 03/29/92
9600 EXEC SQL 03/29/92
9700 INSERT INTO PART_STOCK 03/29/92
9800 VALUES 03/29/92
9900 (’37040’,’EA’,223,120,120,’ ’) END-EXEC. 03/29/92
10000 EXEC SQL 03/29/92
10100 INSERT INTO PART_STOCK 03/29/92
10200 VALUES 03/29/92
10300 (’43010’,’EA’,110,020,040,’ ’) END-EXEC. 03/29/92
10400 EXEC SQL 03/29/92
10500 INSERT INTO PART_STOCK 03/29/92
10600 VALUES 03/29/92
10700 (’43020’,’EA’,067,050,050,’ ’) END-EXEC. 03/29/92
10800 EXEC SQL 03/29/92

Figure 24. Inserting Data into the Tables (Part 2 of 4)

Appendix A. Application Programming Examples 227

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:16:54 PAGE 3
SOURCE FILE DRDA/QLBLSRC
MEMBER INSDB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
10900 INSERT INTO PART_STOCK 03/29/92
11000 VALUES 03/29/92
11100 (’48010’,’EA’,032,030,060,’ ’) END-EXEC. 03/29/92
11200 03/29/92
11300 *--- -- 03/29/92
11400 * PART_ORDER TABLE 03/29/92
11500 *--*/-- 03/29/92
11600 03/29/92
11700 03/29/92
11800 03/29/92
11900 EXEC SQL 03/29/92
12000 INSERT INTO PART_ORDER 03/29/92
12100 VALUES 03/29/92
12200 (1,’DB2B’,’U’,’O’,0,’ ’,’1991-03-12-17.00.00’,NULL,NULL,NULL) 03/29/92
12300 END-EXEC. 03/29/92
12400 EXEC SQL 03/29/92
12500 INSERT INTO PART_ORDER 03/29/92
12600 VALUES 03/29/92
12700 (2,’SQLA’,’U’,’O’,0,’ ’,’1991-03-12-17.01.00’, 03/29/92
12800 NULL,NULL,NULL) 03/29/92
12900 END-EXEC. 03/29/92
13000 EXEC SQL 03/29/92
13100 INSERT INTO PART_ORDER 03/29/92
13200 VALUES 03/29/92
13300 (3,’SQLA’,’U’,’O’,0,’ ’,’1991-03-12-17.02.00’, 03/29/92
13400 NULL,NULL,NULL) 03/29/92
13500 END-EXEC. 03/29/92
13600 EXEC SQL 03/29/92
13700 INSERT INTO PART_ORDER 03/29/92
13800 VALUES 03/29/92
13900 (4,’SQLA’,’U’,’O’,0,’ ’,’1991-03-12-17.03.00’, 03/29/92
14000 NULL,NULL,NULL) 03/29/92
14100 END-EXEC. 03/29/92
14200 EXEC SQL 03/29/92
14300 INSERT INTO PART_ORDER 03/29/92
14400 VALUES 03/29/92
14500 (5,’DB2B’,’U’,’O’,0,’ ’,’1991-03-12-17.04.00’, 03/29/92
14600 NULL,NULL,NULL) 03/29/92
14700 END-EXEC. 03/29/92
14800 03/29/92
14900 *-- 03/29/92
15000 * PART_ORDLN TABLE 03/29/92
15100 *--*/-- 03/29/92
15200 03/29/92
15300 03/29/92
15400 EXEC SQL 03/29/92
15500 INSERT INTO PART_ORDLN 03/29/92
15600 VALUES 03/29/92
15700 (1,1,’24110’,005,’O’) END-EXEC. 03/29/92

Figure 24. Inserting Data into the Tables (Part 3 of 4)

228 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:16:54 PAGE 5
SOURCE FILE DRDA/QLBLSRC
MEMBER INSDB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
15800 EXEC SQL 03/29/92
15900 INSERT INTO PART_ORDLN 03/29/92
16000 VALUES 03/29/92
16100 (1,2,’24100’,021,’O’) END-EXEC. 03/29/92
16200 EXEC SQL 03/29/92
16300 INSERT INTO PART_ORDLN 03/29/92
16400 VALUES 03/29/92
16500 (1,3,’24090’,018,’O’) END-EXEC. 03/29/92
16600 EXEC SQL 03/29/92
16700 INSERT INTO PART_ORDLN 03/29/92
16800 VALUES 03/29/92
16900 (2,1,’14070’,004,’O’) END-EXEC. 03/29/92
17000 EXEC SQL 03/29/92
17100 INSERT INTO PART_ORDLN 03/29/92
17200 VALUES 03/29/92
17300 (2,2,’37040’,043,’O’) END-EXEC. 03/29/92
17301 EXEC SQL 03/29/92
17302 INSERT INTO PART_ORDLN 03/29/92
17303 VALUES 03/29/92
17304 (2,3,’14030’,015,’O’) END-EXEC. 03/29/92
17305 EXEC SQL 03/29/92
17306 INSERT INTO PART_ORDLN 03/29/92
17307 VALUES 03/29/92
17308 (3,2,’14030’,025,’O’) END-EXEC. 03/29/92
17400 EXEC SQL 03/29/92
17500 INSERT INTO PART_ORDLN 03/29/92
17600 VALUES 03/29/92
17700 (3,1,’43010’,003,’O’) END-EXEC. 03/29/92
17800 EXEC SQL 03/29/92
17900 INSERT INTO PART_ORDLN 03/29/92
18000 VALUES 03/29/92
18100 (4,1,’36010’,013,’O’) END-EXEC. 03/29/92
18200 EXEC SQL 03/29/92
18300 INSERT INTO PART_ORDLN 03/29/92
18400 VALUES 03/29/92
18500 (5,1,’18030’,005,’O’) END-EXEC. 03/29/92
18600 03/29/92
18700 03/29/92
18800 *-- 03/29/92
18900 * SHIPMENTLN TABLE 03/29/92
19000 *--*/-- 03/29/92
19100 03/29/92
19200 03/29/92
19300 EXEC SQL 03/29/92
19400 INSERT INTO SHIPMENTLN 03/29/92
19500 VALUES 03/29/92
19600 (1,1,’DB2B’,1,1,’24110’,5,5) END-EXEC. 03/29/92
19700 EXEC SQL 03/29/92
19800 INSERT INTO SHIPMENTLN 03/29/92
19900 VALUES 03/29/92
20000 (1,2,’DB2B’,1,2,’24100’,10,1) END-EXEC. 03/29/92
20100 EXEC SQL 03/29/92
20200 INSERT INTO SHIPMENTLN 03/29/92
20300 VALUES 03/29/92
20400 (2,1,’SQLA’,2,1,’14070’,4,4) END-EXEC. 03/29/92
20500 EXEC SQL 03/29/92
20600 INSERT INTO SHIPMENTLN 03/29/92
20700 VALUES 03/29/92
20800 (2,2,’SQLA’,2,2,’37040’,45,25) END-EXEC. 03/29/92
20801 EXEC SQL 03/29/92
20802 INSERT INTO SHIPMENTLN 03/29/92
20803 VALUES 03/29/92
20804 (2,3,’SQLA’,2,3,’14030’, 5,5) END-EXEC. 03/29/92
20805 EXEC SQL 03/29/92
20806 INSERT INTO SHIPMENTLN 03/29/92
20807 VALUES 03/29/92
20808 (3,1,’SQLA’,2,3,’14030’, 5,5) END-EXEC. 03/29/92
20900 03/29/92
21000 EXEC SQL COMMIT END-EXEC. 03/29/92
21100 STOP RUN. 03/29/92
* * * * E N D O F S O U R C E * * * *

Figure 24. Inserting Data into the Tables (Part 4 of 4) Appendix A. Application Programming Examples 229

Example: RPG Program
This disclaimer information pertains to code examples.

230 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:48 PAGE 1
SOURCE FILE DRDA/QRPGSRC
MEMBER DDBPT6RG
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
100 ** 03/29/92
200 * * 03/29/92
300 * DESCRIPTIVE NAME = D-DB SAMPLE APPLICATION * 03/29/92
400 * REORDER POINT PROCESSING * 03/29/92
500 * AS/400 * 03/29/92
600 * * 03/29/92
700 * FUNCTION = THIS MODULE PROCESS THE PART_STOCK TABLE AND * 03/29/92
800 * FOR EACH PART BELOW THE ROP (REORDER POINT) * 03/29/92
900 * CREATES A SUPPLY ORDER AND PRINTS A REPORT. * 03/29/92
1000 * * 03/29/92
1100 * * 03/29/92
1200 * INPUT = PARAMETERS EXPLICITLY PASSED TO THIS FUNCTION: * 03/29/92
1300 * * 03/29/92
1400 * LOCADB LOCAL DB NAME * 03/29/92
1500 * REMODB REMOTE DB NAME * 03/29/92
1600 * * 03/29/92
1700 * TABLES = PART-STOCK - LOCAL * 03/29/92
1800 * PART_ORDER - REMOTE * 03/29/92
1900 * PART_ORDLN - REMOTE * 03/29/92
2000 * SHIPMENTLN - REMOTE * 03/29/92
2100 * * 03/29/92
2200 * INDICATORS = *IN89 - ’0’ ORDER HEADER NOT DONE * 03/29/92
2300 * ’1’ ORDER HEADER IS DONE * 03/29/92
2400 * *IN99 - ’1’ ABNORMAL END (SQLCOD<0) * 03/29/92
2500 * * 03/29/92
2600 * TO BE COMPILED WITH COMMIT(*CHG) RDB(remotedbname) * 03/29/92
2700 * * 03/29/92
2800 * INVOKE BY : CALL DDBPT6RG PARM(localdbname remotedbname) * 03/29/92
2900 * * 03/29/92
3000 * CURSORS WILL BE CLOSED IMPLICITLY (BY CONNECT) BECAUSE * 03/29/92
3100 * THERE IS NO REASON TO DO IT EXPLICITLY * 03/29/92
3200 * * 03/29/92
3300 ** 03/29/92
3400 * 03/29/92
3500 FQPRINT O F 33 OF PRINTER 03/29/92
3600 F* 03/29/92
3700 I* 03/29/92
3800 IMISC DS 03/29/92
3900 I B 1 20SHORTB 03/29/92
4000 I B 3 60LONGB 03/29/92
4100 I B 7 80INDNUL 03/29/92
4200 I 9 13 PRTTBL 03/29/92
4300 I 14 29 LOCTBL 03/29/92
4400 I I ’SQLA’ 30 33 LOC 03/29/92
4500 I* 03/29/92
4600 I* 03/29/92
4700 C* 03/29/92
4800 C *LIKE DEFN SHORTB NXTORD NEW ORDER NR 03/29/92
4900 C *LIKE DEFN SHORTB NXTORL ORDER LINE NR 03/29/92
5000 C *LIKE DEFN SHORTB RTCOD1 RTCOD NEXT_PART 03/29/92
5100 C *LIKE DEFN SHORTB RTCOD2 RTCOD NEXT_ORD_ 03/29/92
5200 C *LIKE DEFN SHORTB CURORD ORDER NUMBER 03/29/92
5300 C *LIKE DEFN SHORTB CURORL ORDER LINE 03/29/92
5400 C *LIKE DEFN LONGB QUANTI FOR COUNTING 03/29/92
5500 C *LIKE DEFN LONGB QTYSTC QTY ON STOCK 03/29/92
5600 C *LIKE DEFN LONGB QTYORD REORDER QTY 03/29/92

Figure 25. RPG Program Example (Part 1 of 8)

Appendix A. Application Programming Examples 231

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:48 PAGE 2
SOURCE FILE DRDA/QRPGSRC
MEMBER DDBPT6RG
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
5700 C *LIKE DEFN LONGB QTYROP REORDER POINT 03/29/92
5800 C *LIKE DEFN LONGB QTYREQ QTY ORDERED 03/29/92
5900 C *LIKE DEFN LONGB QTYREC QTY RECEIVED 03/29/92
6000 C* 03/29/92
6100 C* 03/29/92
6200 C** 03/29/92
6300 C* PARAMETERS * 03/29/92
6400 C** 03/29/92
6500 C* 03/29/92
6600 C *ENTRY PLIST 03/29/92
6700 C PARM LOCADB 18 LOCAL DATABASE 03/29/92
6800 C PARM REMODB 18 REMOTE DATABASE 03/29/92
6900 C* 03/29/92
7000 C* 03/29/92
7100 C** 03/29/92
7200 C* SQL CURSOR DECLARATIONS * 03/29/92
7300 C** 03/29/92
7400 C* 03/29/92
7500 C* NEXT PART WHICH STOCK QUANTITY IS UNDER REORDER POINTS QTY 03/29/92
7600 C/EXEC SQL 03/29/92
7700 C+ DECLARE NEXT_PART CURSOR FOR 03/29/92
7800 C+ SELECT PART_NUM, 03/29/92
7900 C+ PART_QUANT, 03/29/92
8000 C+ PART_ROP, 03/29/92
8100 C+ PART_EOQ 03/29/92
8200 C+ FROM PART_STOCK 03/29/92
8300 C+ WHERE PART_ROP > PART_QUANT 03/29/92
8400 C+ AND PART_NUM > :PRTTBL 03/29/92
8500 C+ ORDER BY PART_NUM ASC 03/29/92
8600 C/END-EXEC 03/29/92
8700 C* 03/29/92
8800 C* ORDERS WHICH ARE ALREADY MADE FOR CURRENT PART 03/29/92
8900 C/EXEC SQL 03/29/92
9000 C+ DECLARE NEXT_ORDER_LINE CURSOR FOR 03/29/92
9100 C+ SELECT A.ORDER_NUM, 03/29/92
9200 C+ ORDER_LINE, 03/29/92
9300 C+ QUANT_REQ 03/29/92
9400 C+ FROM PART_ORDLN A, 03/29/92
9500 C+ PART_ORDER B 03/29/92
9600 C+ WHERE PART_NUM = :PRTTBL 03/29/92
9700 C+ AND LINE_STAT <> ’C’ 03/29/92
9800 C+ AND A.ORDER_NUM = B.ORDER_NUM 03/29/92
9900 C+ AND ORDER_TYPE = ’R’ 03/29/92
10000 C/END-EXEC 03/29/92
10100 C* 03/29/92
10200 C** 03/29/92
10300 C* SQL RETURN CODE HANDLING * 03/29/92
10400 C** 03/29/92
10500 C/EXEC SQL 03/29/92
10600 C+ WHENEVER SQLERROR GO TO DBERRO 03/29/92
10700 C/END-EXEC 03/29/92
10800 C/EXEC SQL 03/29/92
10900 C+ WHENEVER SQLWARNING CONTINUE 03/29/92
11000 C/END-EXEC 03/29/92

Figure 25. RPG Program Example (Part 2 of 8)

232 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:48 PAGE 3
SOURCE FILE DRDA/QRPGSRC
MEMBER DDBPT6RG
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
11100 C* 03/29/92
11200 C* 03/29/92
11300 C** 03/29/92
11400 C* PROCESS - MAIN PROGRAM LOGIC * 03/29/92
11500 C* MAIN PROCEDURE WORKS WITH LOCAL DATABASE * 03/29/92
11600 C** 03/29/92
11700 C* 03/29/92
11800 C*CLEAN UP TO PERMIT RE-RUNNING OF TEST DATA 03/29/92
11900 C EXSR CLEANU 03/29/92
12000 C* 03/29/92
12100 C* 03/29/92
12200 C RTCOD1 DOUEQ100 03/29/92
12300 C* 03/29/92
12400 C/EXEC SQL 03/29/92
12500 C+ CONNECT TO :LOCADB 03/29/92
12600 C/END-EXEC 03/29/92
12700 C/EXEC SQL 03/29/92
12800 C+ OPEN NEXT_PART 03/29/92
12900 C/END-EXEC 03/29/92
13000 C/EXEC SQL 03/29/92
13100 C+ FETCH NEXT_PART 03/29/92
13200 C+ INTO :PRTTBL, 03/29/92
13300 C+ :QTYSTC, 03/29/92
13400 C+ :QTYROP, 03/29/92
13500 C+ :QTYORD 03/29/92
13600 C/END-EXEC 03/29/92
13700 C MOVE SQLCOD RTCOD1 03/29/92
13800 C/EXEC SQL 03/29/92
13900 C+ COMMIT 03/29/92
14000 C/END-EXEC 03/29/92
14100 C RTCOD1 IFNE 100 03/29/92
14200 C EXSR CHECKO 03/29/92
14300 C ENDIF 03/29/92
14400 C* 03/29/92
14500 C ENDDO 03/29/92
14600 C* 03/29/92
14700 C GOTO SETLR 03/29/92
14800 C* 03/29/92
14900 C* 03/29/92
15000 C*** 03/29/92
15100 C* SQL RETURN CODE HANDLING ON ERROR SITUATIONS * 03/29/92
15200 C*** 03/29/92
15300 C* 03/29/92
15400 C DBERRO TAG 03/29/92
15500 C* *-------------* 03/29/92
15600 C EXCPTERRLIN 03/29/92
15700 C MOVE *ON *IN99 03/29/92
15800 C/EXEC SQL 03/29/92
15900 C+ WHENEVER SQLERROR CONTINUE 03/29/92
16000 C/END-EXEC 03/29/92

Figure 25. RPG Program Example (Part 3 of 8)

Appendix A. Application Programming Examples 233

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:48 PAGE 4
SOURCE FILE DRDA/QRPGSRC
MEMBER DDBPT6RG
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
16100 C/EXEC SQL 03/29/92
16200 C+ ROLLBACK 03/29/92
16300 C/END-EXEC 03/29/92
16400 C/EXEC SQL 03/29/92
16500 C+ WHENEVER SQLERROR GO TO DBERRO 03/29/92
16600 C/END-EXEC 03/29/92
16700 C* 03/29/92
16800 C* 03/29/92
16900 C SETLR TAG 03/29/92
17000 C* *-------------* 03/29/92
17100 C/EXEC SQL 03/29/92
17200 C+ CONNECT RESET 03/29/92
17300 C/END-EXEC 03/29/92
17400 C MOVE *ON *INLR 03/29/92
17500 C* 03/29/92
17600 C*** 03/29/92
17700 C* THE END OF THE PROGRAM * 03/29/92
17800 C*** 03/29/92
17900 C* 03/29/92
18000 C* 03/29/92
18100 C** 03/29/92
18200 C* SUBROUTINES TO WORK WITH REMOTE DATABASES * 03/29/92
18300 C** 03/29/92
18400 C* 03/29/92
18500 C* 03/29/92
18600 C CHECKO BEGSR 03/29/92
18700 C* *---------------* 03/29/92
18800 C*** 03/29/92
18900 C* CHECKS WHAT IS CURRENT ORDER AND SHIPMENT STATUS FOR THE PART * 03/29/92
19000 C* IF ORDERED AND SHIPPED IS LESS THAN REORDER POINT OF PART, * 03/29/92
19100 C* PERFORMS A SUBROUTINE WHICH MAKES AN ORDER. * 03/29/92
19200 C*** 03/29/92
19300 C* 03/29/92
19400 C MOVE 0 RTCOD2 03/29/92
19500 C MOVE 0 QTYREQ 03/29/92
19600 C MOVE 0 QTYREC 03/29/92
19700 C* 03/29/92
19800 C/EXEC SQL 03/29/92
19900 C+ CONNECT TO :REMODB 03/29/92
20000 C/END-EXEC 03/29/92
20100 C/EXEC SQL 03/29/92
20200 C+ OPEN NEXT_ORDER_LINE 03/29/92
20300 C/END-EXEC 03/29/92
20400 C* 03/29/92
20500 C RTCOD2 DOWNE100 03/29/92
20600 C* 03/29/92
20700 C/EXEC SQL 03/29/92
20800 C+ FETCH NEXT_ORDER_LINE 03/29/92
20900 C+ INTO :CURORD, 03/29/92

Figure 25. RPG Program Example (Part 4 of 8)

234 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:48 PAGE 5
SOURCE FILE DRDA/QRPGSRC
MEMBER DDBPT6RG
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
21000 C+ :CURORL, 03/29/92
21100 C+ :QUANTI 03/29/92
21200 C/END-EXEC 03/29/92
21300 C* 03/29/92
21400 C SQLCOD IFEQ 100 03/29/92
21500 C MOVE 100 RTCOD2 03/29/92
21600 C ELSE 03/29/92
21700 C ADD QUANTI QTYREQ 03/29/92
21800 C* 03/29/92
21900 C/EXEC SQL 03/29/92
22000 C+ SELECT SUM(QUANT_RECV) 03/29/92
22100 C+ INTO :QUANTI:INDNUL
22200 C+ FROM SHIPMENTLN 03/29/92
22300 C+ WHERE ORDER_LOC = :LOC 03/29/92
22400 C+ AND ORDER_NUM = :CURORD 03/29/92
22500 C+ AND ORDER_LINE = :CURORL 03/29/92
22600 C/END-EXEC 03/29/92
22700 C* 03/29/92
22800 C INDNUL IFGE 0 03/29/92
22900 C ADD QUANTI QTYREC 03/29/92
23000 C ENDIF 03/29/92
23100 C* 03/29/92
23200 C ENDIF 03/29/92
23300 C ENDDO 03/29/92
23400 C* 03/29/92
23500 C/EXEC SQL 03/29/92
23600 C+ CLOSE NEXT_ORDER_LINE 03/29/92
23700 C/END-EXEC 03/29/92
23800 C* 03/29/92
23900 C QTYSTC ADD QTYREQ QUANTI 03/29/92
24000 C SUB QUANTI QTYREC 03/29/92
24100 C* 03/29/92
24200 C QTYROP IFGT QUANTI 03/29/92
24300 C EXSR ORDERP 03/29/92
24400 C ENDIF 03/29/92
24500 C* 03/29/92
24600 C/EXEC SQL 03/29/92
24700 C+ COMMIT 03/29/92
24800 C/END-EXEC 03/29/92
24900 C* 03/29/92
25000 C ENDSR CHECKO 03/29/92
25100 C* 03/29/92
25200 C* 03/29/92
25300 C ORDERP BEGSR 03/29/92
25400 C* *---------------* 03/29/92

Figure 25. RPG Program Example (Part 5 of 8)

Appendix A. Application Programming Examples 235

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:48 PAGE 7
SOURCE FILE DRDA/QRPGSRC
MEMBER DDBPT6RG
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
25500 C*** 03/29/92
25600 C* MAKES AN ORDER. IF FIRST TIME, PERFORMS THE SUBROUTINE, WHICH * 03/29/92
25700 C* SEARCHES FOR NEW ORDER NUMBER AND MAKES THE ORDER HEADER. * 03/29/92
25800 C* AFTER THAT MAKES ORDER LINES USING REORDER QUANTITY FOR THE * 03/29/92
25900 C* PART. FOR EVERY ORDERED PART WRITES A LINE ON REPORT. * 03/29/92
26000 C*** 03/29/92
26100 C* 03/29/92
26200 C *IN89 IFEQ *OFF FIRST ORDER ? 03/29/92
26300 C EXSR STRORD 03/29/92
26400 C MOVE *ON *IN89 ORD.HEAD.DONE 03/29/92
26500 C EXCPTHEADER WRITE HEADERS 03/29/92
26600 C ENDIF 03/29/92
26700 C* 03/29/92
26800 C ADD 1 NXTORL NEXT ORD.LIN 03/29/92
26900 C/EXEC SQL 03/29/92
27000 C+ INSERT 03/29/92
27100 C+ INTO PART_ORDLN 03/29/92
27200 C+ (ORDER_NUM, 03/29/92
27300 C+ ORDER_LINE, 03/29/92
27400 C+ PART_NUM, 03/29/92
27500 C+ QUANT_REQ, 03/29/92
27600 C+ LINE_STAT) 03/29/92
27700 C+ VALUES (:NXTORD, 03/29/92
27800 C+ :NXTORL, 03/29/92
27900 C+ :PRTTBL, 03/29/92
28000 C+ :QTYORD, 03/29/92
28100 C+ ’O’) 03/29/92
28200 C/END-EXEC 03/29/92
28300 C* 03/29/92
28400 C *INOF IFEQ *ON 03/29/92
28500 C EXCPTHEADER 03/29/92
28600 C END 03/29/92
28700 C EXCPTDETAIL 03/29/92
28800 C* 03/29/92
28900 C ENDSR ORDERP 03/29/92
29000 C* 03/29/92
29100 C* 03/29/92
29200 C STRORD BEGSR 03/29/92
29300 C* *---------------* 03/29/92
29400 C*** 03/29/92
29500 C* SEARCHES FOR NEXT ORDER NUMBER AND MAKES AN ORDER HEADER * 03/29/92
29600 C* USING THAT NUMBER. WRITES ALSO HEADERS ON REPORT. * 03/29/92
29700 C*** 03/29/92
29800 C* 03/29/92
29900 C/EXEC SQL 03/29/92
30000 C+ SELECT (MAX(ORDER_NUM) + 1) 03/29/92
30100 C+ INTO :NXTORD 03/29/92
30200 C+ FROM PART_ORDER 03/29/92
30300 C/END-EXEC 03/29/92

Figure 25. RPG Program Example (Part 6 of 8)

236 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:48 PAGE 8
SOURCE FILE DRDA/QRPGSRC
MEMBER DDBPT6RG
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
30400 C/EXEC SQL 03/29/92
30500 C+ INSERT 03/29/92
30600 C+ INTO PART_ORDER 03/29/92
30700 C+ (ORDER_NUM, 03/29/92
30800 C+ ORIGIN_LOC, 03/29/92
30900 C+ ORDER_TYPE, 03/29/92
31000 C+ ORDER_STAT, 03/29/92
31100 C+ CREAT_TIME) 03/29/92
31200 C+ VALUES (:NXTORD, 03/29/92
31300 C+ :LOC, 03/29/92
31400 C+ ’R’, 03/29/92
31500 C+ ’O’, 03/29/92
31600 C+ CURRENT TIMESTAMP) 03/29/92
31700 C/END-EXEC 03/29/92
31800 C ENDSR STRORD 03/29/92
31900 C* 03/29/92
32000 C* 03/29/92
32100 C CLEANU BEGSR 03/29/92
32200 C* *---------------* 03/29/92
32300 C*** 03/29/92
32400 C* THIS SUBROUTINE IS ONLY REQUIRED IN A TEST ENVIRONMENT 03/29/92
32500 C* TO RESET THE DATA TO PERMIT RE-RUNNING OF THE TEST 03/29/92
32600 C*** 03/29/92
32700 C* 03/29/92
32800 C/EXEC SQL 03/29/92
32900 C+ CONNECT TO :REMODB 03/29/92
33000 C/END-EXEC 03/29/92
33100 C/EXEC SQL 03/29/92
33200 C+ DELETE 03/29/92
33300 C+ FROM PART_ORDLN 03/29/92
33400 C+ WHERE ORDER_NUM IN 03/29/92
33500 C+ (SELECT ORDER_NUM 03/29/92
33600 C+ FROM PART_ORDER 03/29/92
33700 C+ WHERE ORDER_TYPE = ’R’) 03/29/92
33800 C/END-EXEC 03/29/92
33900 C/EXEC SQL 03/29/92
34000 C+ DELETE 03/29/92
34100 C+ FROM PART_ORDER 03/29/92
34200 C+ WHERE ORDER_TYPE = ’R’ 03/29/92
34300 C/END-EXEC 03/29/92
34400 C/EXEC SQL 03/29/92
34500 C+ COMMIT 03/29/92
34600 C/END-EXEC 03/29/92
34700 C* 03/29/92
34800 C ENDSR CLEANU 03/29/92
34900 C* 03/29/92
35000 C* 03/29/92

Figure 25. RPG Program Example (Part 7 of 8)

Appendix A. Application Programming Examples 237

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:48 PAGE 9
SOURCE FILE DRDA/QRPGSRC
MEMBER DDBPT6RG
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
35100 C*** 03/29/92
35200 O* OUTPUTLINES FOR THE REPORT * 03/29/92
35300 O*** 03/29/92
35400 O* 03/29/92
35500 OQPRINT E 2 HEADER 03/29/92
35600 O + 0 ’***** ROP PROCESSING’ 03/29/92
35700 O + 1 ’REPORT *****’ 03/29/92
35800 O* 03/29/92
35900 OQPRINT E 2 HEADER 03/29/92
36000 O + 0 ’ ORDER NUMBER = ’ 03/29/92
36100 O NXTORDZ + 0 03/29/92
36200 O* 03/29/92
36300 OQPRINT E 1 HEADER 03/29/92
36400 O + 0 ’------------------------’ 03/29/92
36500 O + 0 ’---------’ 03/29/92
36600 O* 03/29/92
36700 OQPRINT E 1 HEADER 03/29/92
36800 O + 0 ’ LINE ’ 03/29/92
36900 O + 0 ’PART ’ 03/29/92
37000 O + 0 ’QTY ’ 03/29/92
37100 O* 03/29/92
37200 OQPRINT E 1 HEADER 03/29/92
37300 O + 0 ’ NUMBER ’ 03/29/92
37400 O + 0 ’NUMBER ’ 03/29/92
37500 O + 0 ’REQUESTED ’ 03/29/92
37600 O* 03/29/92
37700 OQPRINT E 11 HEADER 03/29/92
37800 O + 0 ’------------------------’ 03/29/92
37900 O + 0 ’---------’ 03/29/92
38000 O* 03/29/92
38100 OQPRINT EF1 DETAIL 03/29/92
38200 O NXTORLZ + 4 03/29/92
38300 O PRTTBL + 4 03/29/92
38400 O QTYORD1 + 4 03/29/92
38500 O* 03/29/92
38600 OQPRINT T 2 LRN99 03/29/92
38700 O + 0 ’------------------------’ 03/29/92
38800 O + 0 ’---------’ 03/29/92
38900 OQPRINT T 1 LRN99 03/29/92
39000 O + 0 ’NUMBER OF LINES ’ 03/29/92
39100 O + 0 ’CREATED = ’ 03/29/92
39200 O NXTORLZ + 0 03/29/92
39300 O* 03/29/92
39400 OQPRINT T 1 LRN99 03/29/92
39500 O + 0 ’------------------------’ 03/29/92
39600 O + 0 ’---------’ 03/29/92
39700 O* 03/29/92
39800 OQPRINT T 2 LRN99 03/29/92
39900 O + 0 ’*********’ 03/29/92
40000 O + 0 ’ END OF PROGRAM ’ 03/29/92
40100 O + 0 ’********’ 03/29/92
40200 O* 03/29/92
40300 OQPRINT E 2 ERRLIN 03/29/92
40400 O + 0 ’** ERROR **’ 03/29/92
40500 O + 0 ’** ERROR **’ 03/29/92
40600 O + 0 ’** ERROR **’ 03/29/92
40700 OQPRINT E 1 ERRLIN 03/29/92
40800 O + 0 ’* SQLCOD:’ 03/29/92
40900 O SQLCODM + 0 03/29/92
41000 O 33 ’*’ 03/29/92
41100 OQPRINT E 1 ERRLIN 03/29/92
41200 O + 0 ’* SQLSTATE:’ 03/29/92
41300 O SQLSTT + 2 03/29/92
41400 O 33 ’*’ 03/29/92
41500 OQPRINT E 1 ERRLIN 03/29/92
41600 O + 0 ’** ERROR **’ 03/29/92
41700 O + 0 ’** ERROR **’ 03/29/92
41800 O + 0 ’** ERROR **’ 03/29/92

Figure 25. RPG Program Example (Part 8 of 8)

238 OS/400 Distributed Database Programming V5R2

Example: COBOL Program
This disclaimer information pertains to code examples.

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:35 PAGE 1
SOURCE FILE DRDA/QLBLSRC
MEMBER DDBPT6CB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
100 IDENTIFICATION DIVISION.
200 *------------------------
300 PROGRAM-ID. DDBPT6CB. 03/29/92
400 ** 03/29/92
500 * MODULE NAME = DDBPT6CB 03/29/92
600 *
700 * DESCRIPTIVE NAME = D-DB SAMPLE APPLICATION
800 * REORDER POINT PROCESSING
900 * AS/400 03/29/92
1000 * COBOL
1100 *
1200 * FUNCTION = THIS MODULE PROCESS THE PART_STOCK TABLE AND
1300 * FOR EACH PART BELOW THE ROP (REORDER POINT)
1400 * CHECKS THE EXISTING ORDERS AND SHIPMENTS, 03/29/92
1500 * CREATES A SUPPLY ORDER AND PRINTS A REPORT. 03/29/92
1600 *
1700 * DEPENDENCIES = NONE 03/29/92
1800 *
1900 * INPUT = PARAMETERS EXPLICITLY PASSED TO THIS FUNCTION:
2000 *
2100 * LOCAL-DB LOCAL DB NAME 03/29/92
2200 * REMOTE-DB REMOTE DB NAME 03/29/92
2300 *
2400 * TABLES = PART-STOCK - LOCAL 03/29/92
2500 * PART_ORDER - REMOTE 03/29/92
2600 * PART_ORDLN - REMOTE 03/29/92
2700 * SHIPMENTLN - REMOTE 03/29/92
2800 * 03/29/92
2900 * CRTSQLCBL SPECIAL PARAMETERS 03/29/92
3000 * PGM(DDBPT6CB) RDB(remotedbname) OPTION(*APOST *APOSTSQL) 03/29/92
3100 * 03/29/92
3200 * INVOKE BY : CALL DDBPT6CB PARM(localdbname remotedbname) 03/29/92
3300 * 03/29/92
3400 ** 03/29/92
3500 ENVIRONMENT DIVISION.
3600 *---------------------
3700 INPUT-OUTPUT SECTION.
3800 FILE-CONTROL.
3900 SELECT RELAT ASSIGN TO PRINTER-QPRINT. 03/29/92
4000 DATA DIVISION.
4100 *--------------
4200 FILE SECTION.
4300 *------------- 03/29/92
4400 FD RELAT
4500 RECORD CONTAINS 33 CHARACTERS
4600 LABEL RECORDS ARE OMITTED
4700 DATA RECORD IS REPREC.
4800 01 REPREC PIC X(33).
4900 WORKING-STORAGE SECTION.
5000 *------------------------ 03/29/92
5100 * PRINT LINE DEFINITIONS 03/29/92
5200 01 LINE0 PIC X(33) VALUE SPACES.
5300 01 LINE1 PIC X(33) VALUE

Figure 26. COBOL Program Example (Part 1 of 8)

Appendix A. Application Programming Examples 239

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:35 PAGE 2
SOURCE FILE DRDA/QLBLSRC
MEMBER DDBPT6CB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
5400 ’***** ROP PROCESSING REPORT *****’.
5500 01 LINE2.
5600 05 FILLER PIC X(18) VALUE ’ ORDER NUMBER = ’.
5700 05 MASK0 PIC ZZZ9.
5800 05 FILLER PIC X(11) VALUE SPACES.
5900 01 LINE3 PIC X(33) VALUE
6000 ’---------------------------------’.
6100 01 LINE4 PIC X(33) VALUE
6200 ’ LINE PART QTY ’.
6300 01 LINE5 PIC X(33) VALUE
6400 ’ NUMBER NUMBER REQUESTED ’.
6500 01 LINE6.
6600 05 FILLER PIC XXXX VALUE SPACES.
6700 05 MASK1 PIC ZZZ9.
6800 05 FILLER PIC XXXX VALUE SPACES.
6900 05 PART-TABLE PIC XXXXX.
7000 05 FILLER PIC XXXX VALUE SPACES.
7100 05 MASK2 PIC Z,ZZZ,ZZZ.ZZ.
7200 01 LINE7.
7300 05 FILLER PIC X(26) VALUE
7400 ’NUMBER OF LINES CREATED = ’.
7500 05 MASK3 PIC ZZZ9.
7600 05 FILLER PIC XXX VALUE SPACES.
7700 01 LINE8 PIC X(33) VALUE
7800 ’********* END OF PROGRAM ********’.
7900 * MISCELLANEOUS DEFINITIONS 03/29/92
8000 01 WHAT-TIME PIC X VALUE ’1’.
8100 88 FIRST-TIME VALUE ’1’.
8200 01 CONTL PIC S9999 COMP-4 VALUE ZEROS. 03/29/92
8300 01 CONTD PIC S9999 COMP-4 VALUE ZEROS. 03/29/92
8400 01 RTCODE1 PIC S9999 COMP-4 VALUE ZEROS. 03/29/92
8500 01 RTCODE2 PIC S9999 COMP-4. 03/29/92
8600 01 NEXT-NUM PIC S9999 COMP-4. 03/29/92
8700 01 IND-NULL PIC S9999 COMP-4. 03/29/92
8800 01 LOC-TABLE PIC X(16).
8900 01 ORD-TABLE PIC S9999 COMP-4. 03/29/92
9000 01 ORL-TABLE PIC S9999 COMP-4. 03/29/92
9100 01 QUANT-TABLE PIC S9(9) COMP-4. 03/29/92
9200 01 QTY-TABLE PIC S9(9) COMP-4. 03/29/92
9300 01 ROP-TABLE PIC S9(9) COMP-4. 03/29/92
9400 01 EOQ-TABLE PIC S9(9) COMP-4. 03/29/92
9500 01 QTY-REQ PIC S9(9) COMP-4. 03/29/92
9600 01 QTY-REC PIC S9(9) COMP-4. 03/29/92
9700 * CONSTANT FOR LOCATION NUMBER 03/29/92
9800 01 XPARM. 03/29/92
9900 05 LOC PIC X(4) VALUE ’SQLA’. 03/29/92
10000 * DEFINITIONS FOR ERROR MESSAGE HANDLING 03/29/92
10100 01 ERROR-MESSAGE. 03/29/92
10200 05 MSG-ID. 03/29/92
10300 10 MSG-ID-1 PIC X(2) 03/29/92
10400 VALUE ’SQ’. 03/29/92
10500 10 MSG-ID-2 PIC 99999. 03/29/92

Figure 26. COBOL Program Example (Part 2 of 8)

240 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:35 PAGE 3
SOURCE FILE DRDA/QLBLSRC
MEMBER DDBPT6CB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
10600 ****************************** 03/29/92
10700 * SQLCA INCLUDE * 03/29/92
10800 ****************************** 03/29/92
10900 EXEC SQL INCLUDE SQLCA END-EXEC.
11000 03/29/92
11100 LINKAGE SECTION. 03/29/92
11200 *---------------- 03/29/92
11300 01 LOCAL-DB PIC X(18). 03/29/92
11400 01 REMOTE-DB PIC X(18). 03/29/92
11500 03/29/92
11600 PROCEDURE DIVISION USING LOCAL-DB REMOTE-DB. 03/29/92
11700 *------------------ 03/29/92
11800 ***************************** 03/29/92
11900 * SQL CURSOR DECLARATION * 03/29/92
12000 ***************************** 03/29/92
12100 * RE-POSITIONABLE CURSOR : POSITION AFTER LAST PART_NUM 03/29/92
12200 EXEC SQL DECLARE NEXT_PART CURSOR FOR
12300 SELECT PART_NUM,
12400 PART_QUANT,
12500 PART_ROP,
12600 PART_EOQ
12700 FROM PART_STOCK
12800 WHERE PART_ROP > PART_QUANT
12900 AND PART_NUM > :PART-TABLE 03/29/92
13000 ORDER BY PART_NUM ASC 03/29/92
13100 END-EXEC.
13200 * CURSOR FOR ORDER LINES 03/29/92
13300 EXEC SQL DECLARE NEXT_ORDER_LINE CURSOR FOR
13400 SELECT A.ORDER_NUM,
13500 ORDER_LINE,
13600 QUANT_REQ
13700 FROM PART_ORDLN A, 03/29/92
13800 PART_ORDER B
13900 WHERE PART_NUM = :PART-TABLE
14000 AND LINE_STAT <> ’C’ 03/29/92
14100 AND A.ORDER_NUM = B.ORDER_NUM
14200 AND ORDER_TYPE = ’R’
14300 END-EXEC.
14400 ****************************** 03/29/92
14500 * SQL RETURN CODE HANDLING* 03/29/92
14600 ****************************** 03/29/92
14700 EXEC SQL WHENEVER SQLERROR GO TO DB-ERROR END-EXEC.
14800 EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC. 03/29/92
14900 03/29/92
15000 MAIN-PROGRAM-PROC. 03/29/92
15100 *------------------ 03/29/92
15200 PERFORM START-UP THRU START-UP-EXIT. 03/29/92
15300 PERFORM MAIN-PROC THRU MAIN-EXIT UNTIL RTCODE1 = 100. 03/29/92
15400 END-OF-PROGRAM. 03/29/92

Figure 26. COBOL Program Example (Part 3 of 8)

Appendix A. Application Programming Examples 241

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:35 PAGE 4
SOURCE FILE DRDA/QLBLSRC
MEMBER DDBPT6CB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
15500 *--------------- 03/29/92
15600 **** 03/29/92
15700 EXEC SQL CONNECT RESET END-EXEC. 03/29/92
15800 ****
15900 CLOSE RELAT.
16000 GOBACK.
16100 MAIN-PROGRAM-EXIT. EXIT. 03/29/92
16200 *------------------ 03/29/92
16300 03/29/92
16400 START-UP. 03/29/92
16500 *---------- 03/29/92
16600 OPEN OUTPUT RELAT. 03/29/92
16700 **** 03/29/92
16800 EXEC SQL COMMIT END-EXEC. 03/29/92
16900 **** 03/29/92
17000 PERFORM CLEAN-UP THRU CLEAN-UP-EXIT. 03/29/92
17100 ******************************** 03/29/92
17200 * CONNECT TO LOCAL DATABASE * 03/29/92
17300 ******************************** 03/29/92
17400 **** 03/29/92
17500 EXEC SQL CONNECT TO :LOCAL-DB END-EXEC. 03/29/92
17600 **** 03/29/92
17700 START-UP-EXIT. EXIT. 03/29/92
17800 *------------ 03/29/92
17900 EJECT
18000 MAIN-PROC.
18100 *---------
18200 EXEC SQL OPEN NEXT_PART END-EXEC. 03/29/92
18300 EXEC SQL
18400 FETCH NEXT_PART
18500 INTO :PART-TABLE,
18600 :QUANT-TABLE,
18700 :ROP-TABLE,
18800 :EOQ-TABLE
18900 END-EXEC.
19000 IF SQLCODE = 100
19100 MOVE 100 TO RTCODE1 03/29/92
19200 PERFORM TRAILER-PROC THRU TRAILER-EXIT 03/29/92
19300 ELSE
19400 MOVE 0 TO RTCODE2
19500 MOVE 0 TO QTY-REQ
19600 MOVE 0 TO QTY-REC
19700 * --- IMPLICIT "CLOSE" CAUSED BY COMMIT --- 03/29/92
19800 **** 03/29/92
19900 EXEC SQL COMMIT END-EXEC 03/29/92
20000 **** 03/29/92
20100 ********************************* 03/29/92
20200 * CONNECT TO REMOTE DATABASE * 03/29/92
20300 ********************************* 03/29/92

Figure 26. COBOL Program Example (Part 4 of 8)

242 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:35 PAGE 5
SOURCE FILE DRDA/QLBLSRC
MEMBER DDBPT6CB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
20400 **** 03/29/92
20500 EXEC SQL CONNECT TO :REMOTE-DB END-EXEC 03/29/92
20600 **** 03/29/92
20700 EXEC SQL OPEN NEXT_ORDER_LINE END-EXEC 03/29/92
20800 PERFORM UNTIL RTCODE2 = 100
20900 EXEC SQL 03/29/92
21000 FETCH NEXT_ORDER_LINE
21100 INTO :ORD-TABLE,
21200 :ORL-TABLE,
21300 :QTY-TABLE
21400 END-EXEC
21500 IF SQLCODE = 100
21600 MOVE 100 TO RTCODE2
21700 EXEC SQL CLOSE NEXT_ORDER_LINE END-EXEC
21800 ELSE
21900 ADD QTY-TABLE TO QTY-REQ
22000 EXEC SQL
22100 SELECT SUM(QUANT_RECV) 03/29/92
22200 INTO :QTY-TABLE:IND-NULL
22300 FROM SHIPMENTLN 03/29/92
22400 WHERE ORDER_LOC = :LOC
22500 AND ORDER_NUM = :ORD-TABLE
22600 AND ORDER_LINE = :ORL-TABLE
22700 END-EXEC
22800 IF IND-NULL NOT < 0
22900 ADD QTY-TABLE TO QTY-REC
23000 END-IF
23100 END-IF
23200 END-PERFORM
23300 IF ROP-TABLE > QUANT-TABLE + QTY-REQ - QTY-REC
23400 PERFORM ORDER-PROC THRU ORDER-EXIT
23500 END-IF
23600 END-IF.
23700 **** 03/29/92
23800 EXEC SQL COMMIT END-EXEC. 03/29/92
23900 **** 03/29/92
24000 ********************************** 03/29/92
24100 * RECONNECT TO LOCAL DATABASE * 03/29/92
24200 ********************************** 03/29/92
24300 **** 03/29/92
24400 EXEC SQL CONNECT TO :LOCAL-DB END-EXEC. 03/29/92
24500 **** 03/29/92
24600 MAIN-EXIT. EXIT.
24700 *---------------
24800 ORDER-PROC.
24900 *----------
25000 IF FIRST-TIME
25100 MOVE ’2’ TO WHAT-TIME
25200 PERFORM CREATE-ORDER-PROC THRU CREATE-ORDER-EXIT. 03/29/92
25300 ADD 1 TO CONTL.

Figure 26. COBOL Program Example (Part 5 of 8)

Appendix A. Application Programming Examples 243

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:35 PAGE 7
SOURCE FILE DRDA/QLBLSRC
MEMBER DDBPT6CB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
25400 EXEC SQL
25500 INSERT
25600 INTO PART_ORDLN 03/29/92
25700 (ORDER_NUM,
25800 ORDER_LINE,
25900 PART_NUM,
26000 QUANT_REQ,
26100 LINE_STAT)
26200 VALUES (:NEXT-NUM,
26300 :CONTL,
26400 :PART-TABLE,
26500 :EOQ-TABLE,
26600 ’O’)
26700 END-EXEC.
26800 PERFORM DETAIL-PROC THRU DETAIL-EXIT.
26900 ORDER-EXIT. EXIT.
27000 *----------------
27100 03/29/92
27200 CREATE-ORDER-PROC. 03/29/92
27300 *------------------ 03/29/92
27400 *GET NEXT ORDER NUMBER 03/29/92
27500 EXEC SQL 03/29/92
27600 SELECT (MAX(ORDER_NUM) + 1) 03/29/92
27700 INTO :NEXT-NUM:IND-NULL 03/29/92
27800 FROM PART_ORDER 03/29/92
27900 END-EXEC. 03/29/92
28000 IF IND-NULL < 0 03/29/92
28100 MOVE 1 TO NEXT-NUM. 03/29/92
28200 EXEC SQL 03/29/92
28300 INSERT 03/29/92
28400 INTO PART_ORDER 03/29/92
28500 (ORDER_NUM, 03/29/92
28600 ORIGIN_LOC, 03/29/92
28700 ORDER_TYPE, 03/29/92
28800 ORDER_STAT, 03/29/92
28900 CREAT_TIME) 03/29/92
29000 VALUES (:NEXT-NUM, 03/29/92
29100 :LOC, ’R’, ’O’, 03/29/92
29200 CURRENT TIMESTAMP) 03/29/92
29300 END-EXEC. 03/29/92
29400 MOVE NEXT-NUM TO MASK0. 03/29/92
29500 PERFORM HEADER-PROC THRU HEADER-EXIT. 03/29/92
29600 CREATE-ORDER-EXIT. EXIT. 03/29/92
29700 *------------------ 03/29/92
29800 03/29/92
29900 DB-ERROR. 03/29/92
30000 *-------- 03/29/92
30100 PERFORM ERROR-MSG-PROC THRU ERROR-MSG-EXIT. 03/29/92
30200 *********************** 03/29/92
30300 * ROLLBACK THE LUW * 03/29/92

Figure 26. COBOL Program Example (Part 6 of 8)

244 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:35 PAGE 8
SOURCE FILE DRDA/QLBLSRC
MEMBER DDBPT6CB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
30400 *********************** 03/29/92
30500 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC. 03/29/92
30600 **** 03/29/92
30700 EXEC SQL ROLLBACK WORK END-EXEC. 03/29/92
30800 **** 03/29/92
30900 PERFORM END-OF-PROGRAM THRU MAIN-PROGRAM-EXIT. 03/29/92
31000 * -- NEXT LINE INCLUDED TO RESET THE "GO TO" DEFAULT -- 03/29/92
31100 EXEC SQL WHENEVER SQLERROR GO TO DB-ERROR END-EXEC. 03/29/92
31200 03/29/92
31300 ERROR-MSG-PROC. 03/29/92
31400 *---------- 03/29/92
31500 MOVE SQLCODE TO MSG-ID-2. 03/29/92
31600 DISPLAY ’SQL STATE =’ SQLSTATE ’ SQLCODE =’ MSG-ID-2. 03/29/92
31700 * -- ADD HERE ANY ADDITIONAL ERROR MESSAGE HANDLING -- 03/29/92
31800 ERROR-MSG-EXIT. EXIT. 03/29/92
31900 *---------------- 03/29/92
32000 03/29/92
32100 ******************* 03/29/92
32200 * REPORT PRINTING * 03/29/92
32300 ******************* 03/29/92
32400 HEADER-PROC. 03/29/92
32500 *----------- 03/29/92
32600 WRITE REPREC FROM LINE1 AFTER ADVANCING PAGE.
32700 WRITE REPREC FROM LINE2 AFTER ADVANCING 3 LINES.
32800 WRITE REPREC FROM LINE3 AFTER ADVANCING 2 LINES.
32900 WRITE REPREC FROM LINE4 AFTER ADVANCING 1 LINES.
33000 WRITE REPREC FROM LINE5 AFTER ADVANCING 1 LINES.
33100 WRITE REPREC FROM LINE3 AFTER ADVANCING 1 LINES.
33200 WRITE REPREC FROM LINE0 AFTER ADVANCING 1 LINES.
33300 HEADER-EXIT. EXIT.
33400 *-----------------
33500 DETAIL-PROC.
33600 *-----------
33700 ADD 1 TO CONTD.
33800 IF CONTD > 50
33900 MOVE 1 TO CONTD
34000 PERFORM HEADER-PROC THRU HEADER-EXIT
34100 END-IF
34200 MOVE CONTL TO MASK1.
34300 MOVE EOQ-TABLE TO MASK2.
34400 WRITE REPREC FROM LINE6 AFTER ADVANCING 1 LINES.
34500 DETAIL-EXIT. EXIT.
34600 *-----------------
34700 TRAILER-PROC.
34800 *------------
34900 MOVE CONTL TO MASK3.
35000 WRITE REPREC FROM LINE3 AFTER ADVANCING 2 LINES.
35100 WRITE REPREC FROM LINE7 AFTER ADVANCING 2 LINES.
35200 WRITE REPREC FROM LINE3 AFTER ADVANCING 2 LINES.
35300 WRITE REPREC FROM LINE8 AFTER ADVANCING 1 LINES.
35400 TRAILER-EXIT. EXIT.
35500 *------------------

Figure 26. COBOL Program Example (Part 7 of 8)

Appendix A. Application Programming Examples 245

Example: C Program
This disclaimer information pertains to code examples.

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:12:35 PAGE 8
SOURCE FILE DRDA/QLBLSRC
MEMBER DDBPT6CB
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
35600 ** 03/29/92
35700 * THIS PARAGRAPH IS ONLY REQUIRED IN A TEST ENVIRONMENT* 03/29/92
35800 * TO RESET THE DATA TO PERMIT RE-RUNNING OF THE TEST * 03/29/92
35900 ** 03/29/92
36000 CLEAN-UP. 03/29/92
36100 *--------- 03/29/92
36200 ********************************* 03/29/92
36300 * CONNECT TO REMOTE DATABASE * 03/29/92
36400 ********************************* 03/29/92
36500 **** 03/29/92
36600 EXEC SQL CONNECT TO :REMOTE-DB END-EXEC. 03/29/92
36700 **** 03/29/92
36800 *---------------------DELETE ORDER ROWS FOR RERUNABILITY 03/29/92
36900 EXEC SQL 03/29/92
37000 DELETE 03/29/92
37100 FROM PART_ORDLN 03/29/92
37200 WHERE ORDER_NUM IN 03/29/92
37300 (SELECT ORDER_NUM 03/29/92
37400 FROM PART_ORDER 03/29/92
37500 WHERE ORDER_TYPE = ’R’) 03/29/92
37600 END-EXEC. 03/29/92
37700 EXEC SQL 03/29/92
37800 DELETE 03/29/92
37900 FROM PART_ORDER 03/29/92
38000 WHERE ORDER_TYPE = ’R’ 03/29/92
38100 END-EXEC. 03/29/92
38200 **** 03/29/92
38300 EXEC SQL COMMIT END-EXEC. 03/29/92
38400 **** 03/29/92
38500 CLEAN-UP-EXIT. EXIT. 03/29/92
38600 *------------- 03/29/92
* * * * E N D O F S O U R C E * * * *

Figure 26. COBOL Program Example (Part 8 of 8)

246 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:11:13 PAGE 1
SOURCE FILE DRDA/QCSRC
MEMBER DDBPT6C
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
100 /***/ 03/29/92
200 /* MODULE NAME = DDBPT6C */ 03/29/92
300 /* */ 03/29/92
400 /* DESCRIPTIVE NAME: D-DB SAMPLE APPLICATION */ 03/29/92
500 /* REORDER POINT PROCESSING */ 03/29/92
600 /* AS/400 */ 03/29/92
700 /* C/400 */ 03/29/92
800 /* */ 03/29/92
900 /* FUNCTION: THIS MODULE PROCESS THE PART_STOCK TABLE AND */ 03/29/92
1000 /* FOR EACH PART BELOW THE ROP (REORDER POINT) */ 03/29/92
1100 /* CREATES A SUPPLY ORDER. */ 03/29/92
1200 /* */ 03/29/92
1300 /* OUTPUT: BATCH : SPOOLFILE */ 03/29/92
1400 /* INTER : DISPLY */ 03/29/92
1500 /* */ 03/29/92
1600 /* LOCAL TABLES: PART_STOCK */ 03/29/92
1700 /* */ 03/29/92
1800 /* REMOTE TABLES: PART_ORDER, PART_ORDLN, SHIPMENTLN */ 03/29/92
1900 /* */ 03/29/92
2000 /* COMPILE OPTIONS: */ 03/29/92
2100 /* CRTSQLC PGM(DDBPT6C) COMMIT(*CHG) RDB(rdbname) */ 03/29/92
2200 /* */ 03/29/92
2300 /* INVOKED BY: CALL PGM(DDBPT6C) PARM(’lcldbname’ ’rmtdbname’) */ 03/29/92
2400 /***/ 03/29/92
2500 03/29/92
2600 #include <stdlib.h>
2700 #include <string.h> 03/29/92
2800 #include <stdio.h>
2900 03/29/92
3000 EXEC SQL BEGIN DECLARE SECTION; 03/29/92
3100 03/29/92
3200 char loc [4] = "SQLA"; /* dealer’s database name */
3300 char remote_db [18] = " "; /* sample remote database */
3400 char local_db [18] = " "; /* sample local database */
3500 03/29/92
3600 char part_table [5] = " "; /* part number in table part_stock */
3700 long quant_table; /* quantity in stock, tbl part_stock */ 03/29/92
3800 long rop_table; /* reorder point , tbl part_stock */ 03/29/92
3900 long eoq_table; /* reorder quantity , tbl part_stock */ 03/29/92
4000 03/29/92
4100 short next_num; /* next order nbr,table part_order */ 03/29/92
4200 03/29/92
4300 short ord_table; /* order nbr. , tbl order_line */ 03/29/92
4400 short orl_table; /* order line , tbl order_line */ 03/29/92
4500 long qty_table; /* ordered quantity , tbl order_line */ 03/29/92
4600 long line_count = 0; /* total number of order lines */ 03/29/92
4700 short ind_null; /* null indicator for qty_table */ 03/29/92
4800 short contl = 0; /* continuation line, tbl order_line */ 03/29/92
4900 03/29/92
5000 EXEC SQL END DECLARE SECTION; 03/29/92
5100 EXEC SQL INCLUDE SQLCA; 03/29/92
5200 EXEC SQL WHENEVER SQLERROR go to error_tag; 03/29/92
5300 EXEC SQL WHENEVER SQLWARNING CONTINUE; 03/29/92
5400 03/29/92

Figure 27. C Program Example (Part 1 of 5)

Appendix A. Application Programming Examples 247

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:11:13 PAGE 2
SOURCE FILE DRDA/QCSRC
MEMBER DDBPT6C
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
5500 /**/ 03/29/92
5600 /* Other Variables */ 03/29/92
5700 /**/ 03/29/92
5800 03/29/92
5900 char first_time, what_time; 03/29/92
6000 long qty_rec = 0, qty_req = 0; 03/29/92
6100 03/29/92
6200 /**/ 03/29/92
6300 /* Function Declaration */ 03/29/92
6400 /**/ 03/29/92
6500 03/29/92
6600 declare_cursor () { 03/29/92
6700 03/29/92
6800 /* SQL Cursor declaration and reposition for local UW */ 03/29/92
6900 03/29/92
7000 EXEC SQL DECLARE NEXT_PART CURSOR FOR 03/29/92
7100 SELECT PART_NUM, PART_QUANT, PART_ROP, PART_EOQ 03/29/92
7200 FROM PART_STOCK 03/29/92
7300 WHERE PART_ROP > PART_QUANT 03/29/92
7400 AND PART_NUM > :part_table 03/29/92
7500 ORDER BY PART_NUM; 03/29/92
7600 /* SQL Cursor declaration and connect for RUW */ 03/29/92
7700 03/29/92
7800 EXEC SQL DECLARE NEXT_OLINE CURSOR FOR 03/29/92
7900 SELECT A.ORDER_NUM, ORDER_LINE, QUANT_REQ 03/29/92
8000 FROM PART_ORDLN A, 03/29/92
8100 PART_ORDER B 03/29/92
8200 WHERE PART_NUM = :part_table 03/29/92
8300 AND LINE_STAT <> ’C’ 03/29/92
8400 AND A.ORDER_NUM = B.ORDER_NUM 03/29/92
8500 AND ORDER_TYPE = ’R’; 03/29/92
8600 03/29/92
8700 /* upline exit function in connectable state */ 03/29/92
8800 03/29/92
8900 EXEC SQL COMMIT; 03/29/92
9000 goto function_exit; 03/29/92
9100 error_tag: 03/29/92
9200 error_function(); 03/29/92
9300 function_exit: ; 03/29/92
9400 } /* function declare_cursor */ 03/29/92
9500 03/29/92
9600 delete_for_rerun () { 03/29/92
9700 03/29/92

Figure 27. C Program Example (Part 2 of 5)

248 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:11:13 PAGE 3
SOURCE FILE DRDA/QCSRC
MEMBER DDBPT6C
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
9800 /* Clean up for rerunability in test environment */ 03/29/92
9900 EXEC SQL CONNECT TO :remote_db; 03/29/92
10000 EXEC SQL DELETE 03/29/92
10100 FROM PART_ORDLN 03/29/92
10200 WHERE ORDER_NUM IN 03/29/92
10300 (SELECT ORDER_NUM 03/29/92
10400 FROM PART_ORDER 03/29/92
10500 WHERE ORDER_TYPE = ’R’); 03/29/92
10600 EXEC SQL DELETE 03/29/92
10700 FROM PART_ORDER 03/29/92
10800 WHERE ORDER_TYPE = ’R’; 03/29/92
10900 /* upline exit function in connectable state */ 03/29/92
11000 EXEC SQL COMMIT; 03/29/92
11100 EXEC SQL CONNECT TO :local_db; 03/29/92
11200 goto function_exit; 03/29/92
11300 error_tag: 03/29/92
11400 error_function(); 03/29/92
11500 function_exit: ; 03/29/92
11600 } /* function delete_for_rerun */ 03/29/92
11700 03/29/92
11800 calculate_order_quantity () { 03/29/92
11900 03/29/92
12000 /* available qty = Stock qty + qty in order - qty received */ 03/29/92
12100 03/29/92
12200 EXEC SQL OPEN NEXT_PART; 03/29/92
12300 EXEC SQL FETCH NEXT_PART 03/29/92
12400 INTO :part_table, :quant_table, :rop_table, :eoq_table; 03/29/92
12500 03/29/92
12600 if (sqlca.sqlcode == 100) { 03/29/92
12700 printf("--------------------------------\n"); 03/29/92
12800 printf("NUMBER OF LINES CREATED = %d\n",line_count); 03/29/92
12900 printf("--------------------------------\n"); 03/29/92
13000 printf("***** END OF PROGRAM *********\n"); 03/29/92
13100 rop_table = 0; /* no (more) orders to process */ 03/29/92
13200 } 03/29/92
13300 else { qty_rec = 0; 03/29/92
13400 qty_req = 0; 03/29/92
13500 /* */ 03/29/92
13600 EXEC SQL COMMIT; 03/29/92
13700 EXEC SQL CONNECT TO :remote_db; 03/29/92
13800 EXEC SQL OPEN NEXT_OLINE; 03/29/92
13900 do { 03/29/92
14000 EXEC SQL FETCH NEXT_OLINE 03/29/92
14100 INTO :ord_table, :orl_table, :qty_table; 03/29/92
14200 qty_rec = qty_rec + qty_table; 03/29/92
14300 } while(sqlca.sqlcode != 100); 03/29/92
14400 EXEC SQL CLOSE NEXT_OLINE; 03/29/92

Figure 27. C Program Example (Part 3 of 5)

Appendix A. Application Programming Examples 249

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:11:13 PAGE 4
SOURCE FILE DRDA/QCSRC
MEMBER DDBPT6C
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
14500 EXEC SQL SELECT SUM(QUANT_RECV) 03/29/92
14600 INTO :qty_table:ind_null 03/29/92
14700 FROM SHIPMENTLN 03/29/92
14800 WHERE ORDER_LOC = :loc 03/29/92
14900 AND ORDER_NUM = :ord_table 03/29/92
15000 AND ORDER_LINE = :orl_table; 03/29/92
15100 if (ind_null != 0) 03/29/92
15200 qty_rec = qty_rec + qty_table; 03/29/92
15300 } /* end of else branch */ 03/29/92
15400 goto function_exit; 03/29/92
15500 error_tag: 03/29/92
15600 error_function(); 03/29/92
15700 function_exit: ; 03/29/92
15800 } /* end of calculate_order_quantity */ 03/29/92
15900 03/29/92
16000 process_order () { 03/29/92
16100 03/29/92
16200 /* insert order and order_line in remote database */ 03/29/92
16300 03/29/92
16400 if (contl == 0) { 03/29/92
16500 03/29/92
16600 EXEC SQL SELECT (MAX(ORDER_NUM) + 1) 03/29/92
16700 INTO :next_num 03/29/92
16800 FROM PART_ORDER; 03/29/92
16900 EXEC SQL INSERT INTO PART_ORDER 03/29/92
17000 (ORDER_NUM, ORIGIN_LOC, ORDER_TYPE, ORDER_STAT, CREAT_TIME) 03/29/92
17100 VALUES (:next_num, :loc, ’R’, ’O’, CURRENT TIMESTAMP); 03/29/92
17200 printf("***** ROP PROCESSING *********\n"); 03/29/92
17300 printf("ORDER NUMBER = %d \n\n",next_num); 03/29/92
17400 printf("--------------------------------\n"); 03/29/92
17500 printf(" LINE PART QTY \n"); 03/29/92
17600 printf(" NBR NBR REQUESTED\n"); 03/29/92
17700 printf("--------------------------------\n"); 03/29/92
17800 contl = contl + 1; 03/29/92
17900 } /* if contl == 0 */ 03/29/92
18000 03/29/92
18100 EXEC SQL INSERT INTO PART_ORDLN 03/29/92
18200 (ORDER_NUM, ORDER_LINE, PART_NUM, QUANT_REQ, LINE_STAT) 03/29/92
18300 VALUES (:next_num, :contl, :part_table, :eoq_table, ’O’); 03/29/92
18400 line_count = line_count + 1; 03/29/92
18500 printf(" %d %.5s %d\n", 03/29/92
18600 line_count,part_table,eoq_table); 03/29/92
18700 contl = contl + 1; 03/29/92
18800 03/29/92
18900 /* upline exit function in connectable state */ 03/29/92
19000 EXEC SQL COMMIT; 03/29/92

Figure 27. C Program Example (Part 4 of 5)

250 OS/400 Distributed Database Programming V5R2

5738PW1 V2R1M1 920327 SEU SOURCE LISTING 03/29/92 17:11:13 PAGE 5
SOURCE FILE DRDA/QCSRC
MEMBER DDBPT6C
SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 0
19100 /* RECONNECT TO LOCAL DATABASE */ 03/29/92
19200 EXEC SQL CONNECT TO :local_db; 03/29/92
19300 03/29/92
19400 goto function_exit; 03/29/92
19500 error_tag: 03/29/92
19600 error_function(); 03/29/92
19700 function_exit: ; 03/29/92
19800 } /* end of function process_order */ 03/29/92
19900 03/29/92
20000 error_function () { 03/29/92
20100 /* */ 03/29/92
20200 printf("************************\n"); 03/29/92
20300 printf("* SQL ERROR *\n"); 03/29/92
20400 printf("************************\n"); 03/29/92
20500 printf("SQLCODE = %d\n",sqlca.sqlcode); 03/29/92
20600 printf("SQLSTATE = %5s",sqlca.sqlstate); 03/29/92
20700 printf("\n**********************\n"); 03/29/92
20800 EXEC SQL WHENEVER SQLERROR CONTINUE; 03/29/92
20900 EXEC SQL ROLLBACK; 03/29/92
21000 EXEC SQL CONNECT RESET; 03/29/92
21100 exit (999); 03/29/92
21200 } 03/29/92
21300 03/29/92
21400 main(int argc, char *argv[]) {
21500 memcpy(local_db,argv[1],strlen(argv[1]));
21600 memcpy(remote_db,argv[2],strlen(argv[2]));
21700 /* clean up */ 03/29/92
21800 declare_cursor(); 03/29/92
21900 delete_for_rerun(); 03/29/92
22000 03/29/92
22100 /* main-line, state is connectable */ 03/29/92
22200 03/29/92
22300 do { 03/29/92
22400 calculate_order_quantity (); 03/29/92
22500 if (rop_table > quant_table + qty_req - qty_rec) { 03/29/92
22600 process_order(); 03/29/92
22700 quant_table = qty_req = qty_rec = 0; 03/29/92
22800 } 03/29/92
22900 } while (sqlca.sqlcode == 0); 03/29/92
23000 /* RECONNECT TO APPLICATION SERVER */ 03/29/92
23100 EXEC SQL CONNECT RESET; 03/29/92
23200 exit(0); 03/29/92
23300 03/29/92
23400 03/29/92
23500 } /* end of main */ 03/29/92
* * * * E N D O F S O U R C E * * * *

Figure 27. C Program Example (Part 5 of 5)

Appendix A. Application Programming Examples 251

Example: Program Output

This disclaimer information pertains to code examples.

***** ROP PROCESSING *********
ORDER NUMBER = 6

LINE PART QTY
NBR NBR REQUESTED

1 14020 100
2 14030 50
3 18020 50
4 21010 50
5 37020 40

NUMBER OF LINES CREATED = 5

***** END OF PROGRAM *********

Figure 28. Program Output Example

252 OS/400 Distributed Database Programming V5R2

Appendix B. Cross-Platform Access Using DRDA

This book concentrates on describing iSeries support for distributed relational
databases in a network of iSeries servers (a like environment). Many distributed
relational database implementations exist in a network of different
DRDA-supporting platforms. This appendix provides a list of tips and techniques
you may need to consider when using the iSeries server in an unlike DRDA
environment.

This appendix describes some conditions you need to consider when working with
another specific IBM product. It is not intended to be a comprehensive list. Many
problems or conditions like the ones described here depend significantly on your
application. You can get more information on the differences between the various
IBM platforms from the IBM SQL Reference Volume 2, SC26-8416, or the DRDA
Application Programming Guide, SC26-4773.

For more information about Cross-Platform Access Using DRDA, see the following
topics:
v CCSID considerations
v Interactive SQL and Query Management setup on unlike application servers
v FAQs from users of DB2 Connect
v Other tips for interoperating with workstations using DB2 Connect and DB2

UDB for iSeries
v Creating Interactive SQL packages on DB2 UDB Server for VM

On DB2 UDB Server for VM, a collection name is synonymous with a user ID.
To create packages to be used with interactive SQL or iSeries Query Manager on
an DB2 UDB Server for VM application server, create a user ID of QSQL400 on
the OS/400 system. This user ID can be used to create all the necessary packages
on the DB2 UDB Server for VM application server. Users can then use their own
user IDs to access DB2 UDB Server for VM through interactive SQL or iSeries
Query Manager on the OS/400.

CCSID considerations
When you work with a distributed relational database in an unlike environment,
coded character set identifiers (CCSIDs) need to be set up and used properly. The
iSeries server is shipped with a default value that may need to be changed to work
in an unlike environment. Also, the server supports some CCSIDs for DBCS that
are not supported by the DB2 UDB for z/OS and DB2 UDB Server for VM
database managers. This section discusses these two conditions and provides you
with a way to work around them.

See the following sections for more information:
v iSeries server value QCCSID
v CCSID conversion considerations for DB2 UDB for z/OS and DB2 UDB server

for VM Database Managers
v CCSID conversion considerations for DB2 Connect connections

When you connect from DB2 Connect to a DB2 UDB for iSeries application
server (AS), columns tagged with CCSID 65535 are not converted from EBCDIC
to ASCII. If the files that contain these columns do not contain any columns that

© Copyright IBM Corp. 1998, 2001, 2002 253

have a CCSID explicitly identified, the CCSID of all character columns can be
changed to another CCSID value. To change the CCSID, use the Change Physical
File (CHGPF) command. If you have logical files built over the physical file,
follow the directions given in the recovery section of the error message
(CPD322D) that you get.

iSeries server value QCCSID
The iSeries server is shipped with a QCCSID value set to 65535. Data tagged with
this CCSID is not to be converted by the receiving server. You may not be able to
connect to an unlike server when your iSeries server application requester (AR) is
using this CCSID. Also, you may not be able to use source files that are tagged
with this CCSID to create applications on unlike servers.

As stated in “Coded Character Set Identifier (CCSID)” on page 204, the CCSID
used at connection time is determined by the job CCSID. When a job begins, its
CCSID is determined by the user profile the job is running under. The user profile
can, and as a default does, use the server value QCCSID.

If you are connecting to a server that does not support the server default CCSID,
you need to change your job CCSID. You can change the job CCSID by using the
Change Job (CHGJOB) command. However, this solution is only for the job you
are currently working with. The next time you will have to change the job CCSID
again.

A more permanent solution is to change the CCSID designated by the user profiles
used in the distributed relational database. When you change the user profiles you
affect only those users that need to have their data converted. If you are working
with a DB2 Universal Database for iSeries application server (AS), you need to
change the user profile that the AS uses.

The default CCSID value in a user profile is *SYSVAL. This references the QCCSID
server value. You can change this server value, and therefore the default value
used by all user profiles, with the Change System Value (CHGSYSVAL) command.
If you do this, you would want to select a CCSID that represents most (if not all)
of the users on your server. For a list of CCSIDs available and the languages they
represent, see the National Language Support topic.

If you suspect that you are working with a server that does not support a CCSID
used by your job or your server, look for the following indicators in a job log or
SQLCA:

Message
SQ30073

SQLCODE
-30073

SQLSTATE
58017

Text Distributed Data Management (DDM) parameter X'0035' not supported.

Message
SQL0332

SQLCODE
-332

254 OS/400 Distributed Database Programming V5R2

SQLSTATE
57017

Text Total conversion between CCSID &1 and CCSID &2 not valid.

CCSID conversion considerations for DB2 UDB for z/OS and
DB2 UDB server for VM Database Managers

One of the differences between a DB2 Universal Database for iSeries and other
DB2* databases is that the iSeries system supports a larger set of CCSIDs. This can
lead to errors when the other database managers attempt to perform character
conversion on the data (SQLCODE –332 and SQLSTATE 57017).

Certain fields in the DB2 UDB SQL catalog tables may be defined to have a
DBCS-open data type. This is a data type that allows both double-byte character
set (DBCS) and single-byte character set (SBCS) characters. The CCSID for these
field types is based on the default CCSID shipped with the server.

When these fields are selected from a DB2 UDB for z/OS or DB2 UDB Server for
VM application requester (AR), the SELECT statement may fail because the DB2
UDB for z/OS and DB2 UDB Server for VM databases may not support the
conversion to this CCSID.

To avoid this error, you must change the DB2 UDB for z/OS database or the DB2
UDB Server for VM AR to run with either:
v The same mixed-byte CCSID as the DBCS-OPEN fields in the iSeries SQL

catalog tables.
v A CCSID that the server allows conversion of data to when the data is from the

mixed-byte CCSID of the DBCS-OPEN fields in the iSeries SQL catalog tables.
This CCSID may be a single-byte CCSID if the data in the iSeries SQL catalog
tables DBCS-OPEN fields is all single-byte data.

This requires some analysis of the CCSID conversions supported on the DB2 UDB
for z/OS or DB2 UDB Server for VM so you can make the correct changes to your
server. See the DB2 UDB for z/OS Administration Guide for specific information on
how to handle this error.

Interactive SQL and Query Management setup on unlike application
servers

Interactive SQL and iSeries Query Manager create packages on unlike application
servers based on the user’s run options (date format, commitment control, and so
on) as they are needed. These packages are created in a collection called QSQL400
on the application server. The package name is QSQLabcd where ‘abcd’ correspond
to numbers which refer to specific options that are used for that package.

Values for ‘abcd’ correspond to options as follows :

Position Option Value

a Date Format 0 = ISO, JIS date format 1 =
USA date format 2 = EUR
date format

b Time Format 0 = JIS time format 1 = USA
time format 2 = EUR, ISO
time format

Appendix B. Cross-Platform Access Using DRDA 255

|
|
|
|

Position Option Value

c Commitment Control
Decimal Delimiter

0 = *CS commitment control
period decimal delimiter 1 =
*CS commitment control
comma decimal delimiter 2 =
*RR commitment control
period decimal delimiter 3 =
*RR commitment control
comma decimal delimiter

d String Delimiter Default
Character Subtype

0 = apostrophe string
delimiter, single byte
character subtype 1 =
apostrophe string delimiter,
double byte character
subtype 2 = double quote
string delimiter, single byte
character subtype 3 = double
quote string delimiter, double
byte character subtype

For example, a package created from interactive SQL to an unlike application
server with the following options: USA date format, USA time format, commitment
control level of *CS, a period for the decimal delimiter, an apostrophe for the string
delimiter, and a default character subtype of single byte would have the name
’QSQL1100’. Once a package is created with a particular set of options, all
subsequent interactive SQL or iSeries Query Manager users running with those
same options against that application server will use that package.

As has been pointed out elsewhere, you need to have an updatable connection to
the application server (AS) when the package is created. You may need to do a
RELEASE ALL and COMMIT before connecting to the AS to have the package
created.

FAQs from users of DB2 Connect
This section answers the following frequently asked questions from users of
workstations who want to access iSeries data through DB2 Connect:
v Do iSeries files have to be journaled?
v When will query data be blocked for better performance?
v Is the DB2 UDB Query Manager and SQL Development Kit product required on

an iSeries server to create collections and tables?
v How do you interpret an SQLCODE and the associated tokens reported in a

DBM SQL0969N error message?
v How can host variable type in WHERE clauses affect performance?
v Can I use a library list for resolving unqualified table and view names?
v What considerations must be given to CCSIDs? (See “CCSID considerations” on

page 253.)
v Can a user of DB2 Connect specify that the NLSS sort sequence table of the

DRDA job on the iSeries server be used instead of the usual EBCDIC sequence?
v Why are no rows returned when I perform a query? One potential cause of this

problem is a failure to add an entry for the iSeries server in the DB2 Connect
Database Communication Services Directory.

256 OS/400 Distributed Database Programming V5R2

Do iSeries files have to be journaled?
The answer to this question is closely related to the question in “When will query
data be blocked for better performance?”. Journaling is not required if the client
application is using an isolation level of no-commit (NC) or uncommitted read
(UR), and if the DB2 UDB SQL function determines that the query data can be
blocked. In that case commitment control is not enabled, which makes journaling
unnecessary.

The DB2 Connect precompiler parameter that specifies uncommitted read is
ISOLATION UR. When using the DB2 Connect command line processor, the
command DBM CHANGE SQLISL TO UR sets the isolation level to uncommitted
read.

When will query data be blocked for better performance?
The query data will be blocked if none of the following conditions are true:
v The cursor is updatable (see Note 1).
v The cursor is potentially updatable (see Note 2).
v The BLOCKING NO precompiler or bind option was used on SQLPREP or

SQLBIND.

Unless you force single-row protocol with the BLOCKING NO precompile/bind
option, blocking will occur in both of the following cases:
v The cursor is read-only (see Note 3).
v All of the following are true:

– There is no FOR UPDATE OF clause in the SELECT, and
– There are no UPDATE or DELETE WHERE CURRENT OF statements against

the cursor in the program, and
– Either the program does not contain dynamic SQL statements or BLOCKING

ALL was used.

Notes:

1. A cursor is updatable if it is not read-only (see Note 3), and one of the
following is true:
v The select statement contained the FOR UPDATE OF clause, or
v There exists in the program an UPDATE or DELETE WHERE CURRENT OF

against the cursor.
2. A cursor is potentially updatable if it is not read-only (see Note 3), and if the

program includes any dynamic statement, and the BLOCKING UNAMBIG
precompile or bind option was used on SQLPREP or SQLBIND.

3. A cursor is read-only if one or more of the following conditions is true:
v The DECLARE CURSOR statement specified an ORDER BY clause but did

not specify a FOR UPDATE OF clause.
v The DECLARE CURSOR statement specified a FOR FETCH ONLY clause.
v One or more of the following conditions are true for the cursor or a view or

logical file referenced in the outer subselect to which the cursor refers:
– The outer subselect contains a DISTINCT keyword, GROUP BY clause,

HAVING clause, or a column function in the outer subselect.
– The select contains a join function.
– The select contains a UNION operator.

Appendix B. Cross-Platform Access Using DRDA 257

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

|

|
|

|
|
|

– The select contains a subquery that refers to the same table as the table of
the outer-most subselect.

– The select contains a complex logical file that had to be copied to a
temporary file.

– All of the selected columns are expressions, scalar functions, or constants.
– All of the columns of a referenced logical file are input only.

Is the DB2 UDB Query Manager and SQL Development Kit
product needed for collection and table creation?

Working locally on an iSeries server, it is possible to create an SQL collection
without having the DB2 UDB Query Manager and SQL Development Kit product
installed. For example, to create the NULLID collection needed for part of the DB2
Connect installation you can:
1. Create a source file member containing the line:

CREATE COLLECTION NULLID

2. Perform a Create Query Management Query (CRTQMQRY) command
referencing the above source file member.

3. Execute the CREATE statement using the Start Query Management Query
(STRQMQRY) command.

It is also possible to create tables and execute other SQL statements with the above
approach as well. A REXX or Control Language program can improve the usability
of this approach. The following CL program is a simple example of the type of
thing that can be done.
PGM
MONMSG MSGID(CPF0000)
DLTQMQRY MYLIB/QMTEMP
STRSEU MYLIB/SRC QMTEMP
CRTQMQRY MYLIB/QMTEMP MYLIB/SRC
STRQMQRY MYLIB/QMTEMP
ENDPGM

When the SEU program involved in the preceding series of commands displays an
edit screen, enter an SQL statement and save the file. The program then attempts
to process and execute the statement.

How do you interpret an SQLCODE and the associated tokens
reported in a DBM SQL0969N error message?

The client support used with DB2 Connect returns message SQL0969N when
reporting host SQLCODEs and tokens for which it has no equivalent code. The
following is an example of message SQL0969N:
SQL0969N There is no message text corresponding to SQL error
"-7008" in the Database Manager message file on this workstation.
The error was returned from module "QSQOPEN" with original
tokens "TABLE1 PRODLIB1 3".

Use the Display Message Description (DSPMSGD) command to interpret the code
and tokens:
DSPMSGD SQL7008 MSGF(QSQLMSG)

Select option 1 (Display message text) and the server presents the Display
Formatted Message Text display. The three tokens in the message are represented
by &1, &2, and &3 in the display. The reason code in the example message is 3,
which points to Code 3 in the list at the bottom of the display.

258 OS/400 Distributed Database Programming V5R2

Display Formatted Message Text
System: RCHASLAI
Message ID : SQL7008
Message file : QSQLMSG
Library : QSYS

Message : &1 in &2 not valid for operation.
Cause : The reason code is &3. A list of reason codes follows:
-- Code 1 indicates that the table has no members.
-- Code 2 indicates that the table has been saved with storage free.
-- Code 3 indicates that the table is not journaled, the table is
journaled to a different journal than other tables being processed under
commitment control, or that you do not have authority to the journal.
-- Code 4 indicates that the table is in a production library but the user
is in debug mode with UPDPROD(*NO); therefore, production tables may not be
updated.
-- Code 5 indicates that a table, view, or index is being created into a
production library but the user is in debug mode with UPDPROD(*NO);
therefore, tables, views, or indexes may not be created.
More...
Press Enter to Continue.

F3=Exit F11=Display unformatted message text F12=Cancel

How can host variable type in WHERE clauses affect
performance?

One potential source of performance degradation on an iSeries server is the client’s
use in a C program of a floating point variable for a comparend in the WHERE
clause of a SELECT statement. If OS/400 has to do a conversion of the data for
that column, that will prevent it from being able to use an index on that column.
You should always try to use the same type for columns, literals, and host
variables used in a comparison. If the column in the database is defined as packed
or zoned decimal, and the host variable is of some other type, that can present a
problem in C.

For more detailed information, see the Programming techniques for database
performance topic in the iSeries Information Center.

Can I use a library list for resolving unqualified table and view
names?

As of V4R5, iSeries now supports a limited capability to use the OS/400 system
naming option when accessing DB2 UDB for iSeries data from a non-iSeries DRDA
client program such as those that use the DB2 Connect product. Previously, only
the SQL naming option has been available when connecting from unlike DRDA
clients. System naming changes several characteristics of DB2 UDB for iSeries. For
example:
1. The library list is searched for resolving unqualified table and view names.
2. When running a CREATE SQL statement, an unqualified object will be created

in the current library.
3. A slash (/) instead of a period (.) is used to separate qualified objects names

from the library or collection in which they reside.
4. Certain authorization characteristics are changed.

For details, read about server naming in the iSeries SQL Reference book. For more
information about the implications regarding authorization, see Planning and
Design for Distributed Relational Database.

Appendix B. Cross-Platform Access Using DRDA 259

|

|

|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|

|

|
|

|
|

|

|
|
|

This feature is available from DRDA application requesters that support the DRDA
generic bind function. It has undergone limited testing using DB2 Connect 5.2
running on NT as a client development platform and execution environment. DB2
Connect supports the specification of generic bind options on two of its program
preparation commands, the pre-compile (PREP) command and the (BIND)
command. OS/400 naming can be specified on either of them as in the following
examples drawn from an NT batch file:
DB2 PREP %1.SQC BINDFILE GENERIC ’OS400NAMING SYSTEM’ ... DB2 BIND %1.BND GENERIC
’OS400NAMING SYSTEM’

Note that on the NT development platform, single quotes (apostrophes) are used
around the generic option name/value pair, but on an AIX or UNIX platform,
double quotes should be used.

Note: For iSeries V4R5 and V5R1, the name of the option is AS400NAMING, not
OS400NAMING.

The only valid value for the OS400NAMING option besides SYSTEM is SQL,
which is the default value, and the only possible option from a non-iSeries client
prior to the introduction of this feature.

If you use the OS400NAMING option on the (BIND) command but not on the
(PREP) command, then you may need to code a parameter on the (PREP)
command that indicates a bind file should be created in spite of SQL errors
detected by the server platform. In the case of DB2 Connect, the SQLERROR
CONTINUE parameter is what should be used for this purpose. The capability is
described as ’limited’ because in certain situations, the client-side software may
parse an SQL statement intended for execution on the remote server. If a slash
instead of a period is used to separate a schema id from a table id, as is required
for server naming, the statement may be rejected as having improper syntax.

Can a user of DB2 Connect specify that the NLSS sort
sequence table of the DRDA job on the iSeries server be used
instead of the usual EBCDIC sequence?

The iSeries now recognizes a new generic bind option, which allows one who
prepares a program to be run from DB2 Connect or any other client that supports
generic bind options to request that the iSeries server use the NLSS sort sequence
associated with the server job in which the client’s request is run. This function is
enabled by PTF SF64531 in V4R5 and PTF SI00174 in V5R1. It is in the base
operating system for subsequent releases.

If you choose to take advantage of this enhancement, you need to recreate any
SQL packages on DB2 UDB for iSeries for which the new sort sequence option is
desired by using the generic bind option SORTSEQ with a value of JOBRUN from
the client system.

The bind option enables a user to specify that the NLSS sort sequence table of the
DRDA job on the iSeries server should be used instead of the usual EBCDIC
sequence. Previously, only the default *HEX option, which causes the EBCDIC
sequence to be used, has been available when connecting from unlike DRDA
clients.

This feature is available from DRDA application requesters that support the DRDA
generic bind function. It has undergone limited testing using DB2 Connect 6.1
FixPak 1 running on NT as a client development platform and execution

260 OS/400 Distributed Database Programming V5R2

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

environment. DB2 Connect supports the specification of generic bind options on
two of its program preparation commands, the pre-compile (PREP) command and
the (BIND) command. JOBRUN sort sequence can be specified on either of them as
in the following examples drawn from an NT batch file:
DB2 PREP %1.SQC BINDFILE GENERIC ’SORTSEQ JOBRUN’
...
DB2 BIND %1.BND GENERIC ’SORTSEQ JOBRUN’

Note: On the NT development platform, single quotes (apostrophes) are used
around the generic option name/value pair, but on an AIX or UNIX
platform, double quotes should be used.

The only other valid value for the SORTSEQ option is HEX, which is the default
value, and only possible option from a non-iSeries client prior to the introduction
of this feature.

Other tips for interoperating with workstations using DB2 Connect and
DB2 UDB

The following sections provide additional information for using DB2 UDB for
iSeries with DB2 Connect and DB2 UDB. These tips were developed from
experiences testing with the products on an OS/2 platform, but it is believed that
they apply to all environments to which they have been ported.

DB2 Connect versus DB2 UDB

Users are sometimes confused over what products are needed to perform the
DRDA Application Server function versus the Application Requester (client)
function. The AR is referred to as DB2 Connect; and the AS as DB2 Universal
Database (UDB).

Proper configuration and maintenance level

Be sure to follow the installation and configuration instructions given in the
product manuals carefully. Make sure that you have the most current level of the
products. Apply the appropriate fix packs if not.

Table and collection naming

SQL tables accessed by DRDA applications have three-part names: the first part is
the database name, the second part is a collection ID, and the third part is the base
table name. The first two parts are optional. DB2 UDB for iSeries qualifies table
names at the second level by a collection (or library) name. Tables reside in the
DB2 UDB for iSeries database.

Prior to V5R2 and the advent of independent auxiliary storage pools, there was
only one database for each iSeries server. However, in DB2 UDB, tables are
qualified by a user ID (that of the creator of the table), and reside in one of
possibly multiple databases on the platform. DB2 Connect has the same notion of
using the user ID for the collection ID.

A dynamic query from DB2 Connect to DB2 UDB for iSeries will use the user ID of
the target side job (on the iSeries server) for the default collection name, if the
name of the queried table was specified without a collection name. This may not
be what is expected by the user and can cause the table to be not found.

Appendix B. Cross-Platform Access Using DRDA 261

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

A dynamic query from DB2 UDB for iSeries to DB2 UDB would have an implied
table qualifier if it is not specified in the query in the form qualifier.table-name. The
second-level UDB table qualifier defaults to the user ID of the user making the
query.

You may want to create the DB2 UDB databases and tables with a common user
ID. Remember, for UDB there are no physical collections as there are in DB2 UDB
for iSeries; there is only a table qualifier, which is the user ID of the creator.

Granting privileges

For any programs created on an iSeries server that is accessing a UDB database,
remember to do the following UDB commands (perhaps from the command line
processor):
1. GRANT ALL PRIVILEGES ON TABLE table-name TO user (possibly ’PUBLIC’

for user)
2. GRANT EXECUTE ON PACKAGE package-name (usually the iSeries program

name) TO user (possibly ’PUBLIC’ for user)

APPC communications setup

OS/400 communications must be configured properly, with a controller and device
created for the workstation, when using APPC with either DB2 Connect as an AR,
or UDB as an AS.

Setting up the RDB directory

Add an entry in the RDB directory for each UDB database an iSeries server will
connect to. Use the Add Relational Database Directory Entry (ADDRDBDIRE)
command. The RDB name is the UDB database name.

When using APPC communications, the remote location name is the name of the
workstation.

When using TCP/IP, the remote location name is the domain name of the
workstation, or its IP address. The port used by the UDB DRDA server is typically
not 446, the well-known DRDA port that the iSeries server uses (*DDM).

Consult the UDB product documentation to determine the port number. A
common value used is 50000. An example DSPRDBDIRE screen showing a
properly configured RDB entry for a UDB server follows.
Display Relational Database Detail

Relational database : SAMPLE
Remote location:

Remote location : 9.5.36.17
Type : *IP

Port number or service name . : 50000
Text : My UDB server

Setting up the SQL package for DB2 Connect

Before using DB2 Connect to access data on DB2 UDB for iSeries, you must create
SQL packages on the iSeries serverfor application programs and for DB2 Connect
utilities.

262 OS/400 Distributed Database Programming V5R2

The DB2 (PREP) command can be used to process an application program source
file with embedded SQL. This processing will create a modified source file
containing host language calls for the SQL statements and it will, by default, create
an SQL package in the database you’re currently connected to.

To bind DB2 Connect to a DB2 UDB for iSeries server:
1. CONNECT TO rdbname
2. BIND path@ddcs400.lst BLOCKING ALL SQLERROR CONTINUE MESSAGES

DDCS400.MGS GRANT PUBLIC
Replace ’path’ in the path@ddcs400.lst parameter above with the default path
C:\SQLLIB\BND\ (c:/sqllib/bin/ on non-INTEL platforms), or with your
value if you did not install to the default directory.

3. CONNECT RESET

Using Interactive SQL to DB2 UDB

To use interactive SQL, you need the DB2 UDB Query Manager and SQL
Development Kit product installed on OS/400. To access data on UDB:
1. When starting a session with STRSQL, use session attributes of

NAMING(*SQL), DATFMT(*ISO), and TIMFMT(*ISO). Other formats besides
*ISO work, but not all, and what is used for the date format (DATFMT) must
also be used for the time format (TIMFMT).

2. Note the correspondence between COLLECTIONs on the iSeries server, and
table qualifier (the creator’s user ID) for UDB.

3. For the first interactive session, you must do this sequence of SQL statements
to get a package created on UDB: (1) RELEASE ALL, (2) COMMIT, and (3)
CONNECT TO rdbname (where ’rdbname’ is replaced with a particular
database).

As part of your setup for the use of interactive SQL, you may also want to
GRANT EXECUTE ON PACKAGE QSQL400.QSQLabcd TO PUBLIC (or to specific
users), so that others can use the SQL PKG created on the PC for interactive SQL.
The actual value for ’abcd’ in the above GRANT statement can be determined from
the table presented in “Interactive SQL and Query Management setup on unlike
application servers” on page 255, which gives the package names for various sets
of options in effect when the package is created. For example, you would GRANT
EXECUTE ON PACKAGE QSQL400.QSQL0200 TO some-user if the following
options were in use when you created the package: *ISO for date, *ISO for time,
*CS for commitment control, apostrophe for string delimiter, and single byte for
character subtype.

Appendix B. Cross-Platform Access Using DRDA 263

264 OS/400 Distributed Database Programming V5R2

Appendix C. Interpreting Trace Job and FFDC Data

This appendix provides additional problem-analysis information. It is useful to
specialists responsible for problem determination. It is also for suppliers of
software products designed to conform to the Distributed Relational Database
Architecture who want to test connectivity to an iSeries server.

This appendix contains an example of the RW component trace data from a job
trace with an explanation of the trace data output. Some of this information is
helpful with interpreting communications trace data. This appendix also shows an
example of a first-failure data capture printout of storage, with explanations of the
output.

See the following topics for the examples of Interpreting Trace Job and FFDC Data:
v Interpreting data entries for the RW component of trace job
v First-Failure Data Capture (FFDC)

Interpreting data entries for the RW component of trace job
It is the RW component of the OS/400 licensed program that includes most of the
DRDA support. This component produces certain types of diagnostic information
when the Trace Job (TRCJOB) command is issued with TRCTYPE(*ALL) or
TRCTYPE(*DATA). RW trace points are of the type that are shown in Figure 29.
RW trace points can be located easily by doing a find operation using the string
‘>>’ as the search argument. See the topic Description of RW trace points for more
information. The end of the data dumped at each trace point can be determined by
looking for the ‘<<<...’ delimiter characters. There are one or more of the ‘<’
delimiter characters at the end of the data, enough to fill out the last line.

See the topic Example: Analyzing the RW trace data for information about the
elements that make up the data stream.

Note: There is an exception to the use of the ‘<’ delimiters to determine the end of
data. In certain rare circumstances where a received data stream is being
dumped, the module that writes the trace data is unable to determine where
the end of the data stream is. In that case, the program dumps the entire
receive buffer, and as a warning that the length of the data dumped is
greater than that of the data stream, it replaces the ‘<<<...’ delimiter with a
string of ‘(’ characters.

DATA FF 6E6ED9E6D8E840D9C37A0016D052000100102205000611490000 *>>RWOQ RC: } *
DATA FF 0006210224170025D0530001001F241A0C76D00500023100030A * } } *
DATA FF 00080971E0540001D000010671F0E00000002CD0530001002624 * \ } 0\ } *
DATA FF 1BFF0000000100F1F1F14110000000000000FF0000000200F2F2 * 111 22 *
DATA FF F241200000000000000026D05200010020220B00061149000400 *2 } *
DATA FF 162110C4C2F2C5E2E8E240404040404040404040400056D00300 * DB2ESYS } *
DATA FF 01005024080000000064F0F2F0F0F0C4E2D5E7D9C6D54000C4C2 * & 02000DSNXRFN DB *
DATA FF F2C5E2E8E24040404040404040404040FFFFFF92000000000000 *2ESYS k *
DATA FF 0000FFFFFFFF0000000000000000404040404040404040404000 * *
DATA FF 0000004C * <<<<<<<<<<<<<<<<<<<<<< *

Figure 29. An Example of Job Trace RW Component Information

© Copyright IBM Corp. 1998, 2001, 2002 265

Following the ‘>>’ prefix is a 7-character string that identifies the trace point. The
first 2 characters, ‘RW’, identify the component. The second 2 characters identify
the RW function being performed. The ‘QY’ indicates the query function which
corresponds to the DDM commands OPNQRY, CNTQRY, and CLSQRY. The ‘EX’
indicates the EXECUTE function which corresponds to the DDM commands
EXCSQLSTT, EXCSQLIMM, and PRPSQLSTT.

Which program module corresponds to each of these functions depends on
whether the job trace was taken at the application requester (AR) end of the
distributed SQL access operation, or at the application server (AS) end. The
modules performing the process and query functions at the AR are QRWSEXEC
and QRWSQRY. The modules at the AS are QRWTEXEC and QRWTQRY.

The last 2 characters of the 7-byte trace point identifier indicate the nature of the
dumped data or the point at which the dump is taken. For example, SN
corresponds to the data stream sent from an AR or an AS, and RC corresponds to
the data stream received by an AR.

Example: Analyzing the RW trace data
The example in Figure 29 on page 265 shows the data stream received during a
distributed SQL query function. This particular trace was run at the application
requester (AR) end of the connection. Therefore, the associated program module
that produced the data is QRWSQRY.

The following discussion examines the elements that make up the data stream in
the example. For more information on the interpretation of DRDA data streams,
see the Distributed Relational Database Architecture Reference and the Distributed Data
Management Level 4.0 Architecture Reference books. These documents are available on
the web at http://www.opengroup.org/dbiop/index.htm.

The trace data follows the ‘:’ marking the end of the trace point identifier. In this
example, the first 6 bytes of the data stream contain the DDM data stream
structure (DSS) header. The first 2 bytes of this DSS header are a length field. The
third byte, X'D0' is the registered SNA architecture identifier for all DDM data. The
fourth byte is the format identifier (explained in more detail later). The fifth and
sixth bytes contain the DDM request correlation identifier.

The next 2 bytes, X'0010' (decimal 16) give the length of the next DDM object,
which in this case is identified by the X'2205' which follows it and is the code
point for the OPNQRYRM reply message.

Following the 16-byte reply message is a 6-byte DSS header for the reply objects
that follow the reply message. The first reply object is identified by the X'241A'
code point. It is a QRYDSC object. The second reply object in the example is a
QRYDTA structure identified by the X'241B' code point (split between two lines in
the trace output). As with the OPNQRYRM code point, the preceding 2 bytes give
the length of the object.

Looking more closely at the QRYDTA object, you can see a X'FF' following the
X'241B' code point. This represents a null SQLCAGRP (the form of an SQLCA that
flows on the wire). The null form of the SQLCAGRP indicates that it contains no
error or warning information about the associated data. In this case, the associated
data is the row of data from an SQL SELECT operation. It follows the null
SQLCAGRP. Because rows of data as well as SQLCAGRPs are nullable, however,
the first byte that follows the null SQLCAGRP is an indicator containing X'00' that

266 OS/400 Distributed Database Programming V5R2

http://www.opengroup.org/publications/catalog/c812.htm

indicates that the row of data is not null. The meaning of the null indicator byte is
determined by the first bit. A ‘1’ in this position indicates ‘null’. However, all 8 bits
are usually set on when an indicator represents a null object.

The format of the row of data is indicated by the preceding QRYDSC object. In this
case, the QRYDSC indicates that the row contains a nullable SMALLINT value, a
nullable CHAR(3) value, and a non-nullable double precision floating point value.
The second byte past the null SQLCAGRP is the null indicator associated with the
SMALLINT field. It indicates the field is not null, and the X'0001' following it is
the field data. The nullable CHAR(3) that follows is present and contains ‘111’. The
floating point value that follows next does not have a X'00' byte following it, since
it is defined to be not nullable.

A second row of data with a null SQLCAGRP follows the first, which in turn is
followed by another 6-byte DSS header. The second half of the format byte (X'2')
contained in that header indicates that the corresponding DSS is a REPLY. The
format byte of the previous DSS (X'53') indicated that it was an OBJECT DSS. The
ENDQRYRM reply message carried by the third DSS requires that it be contained
in a REPLY DSS. The ENDQRYRM code point is X'220B'. This reply message
contains a severity code of X'0004', and the name of the RDB that returned the
query data (‘DB2ESYS’).

Following the third DSS in this example is a fourth and final one. The format byte
of it is X'03'. The 3 indicates that it is an OBJECT DSS, and the 0 that precedes it
indicates that it is the last DSS of the chain (the chaining bits are turned off).

The object in this DSS is an SQLCARD containing a non-null SQLCAGRP. The first
byte following the X'2408' SQLCARD code point is the indicator telling us that the
SQLCAGRP is not null. The next 4 bytes, X'00000064', represents the +100
SQLCODE which means that the query was ended by the encounter of a ‘row not
found’ condition. The rest of the fields correspond to other fields in an SQLCA.
The mapping of SQLCAGRP fields to SQLCA fields can be found in the Distributed
Relational Database Architecture Reference book. This document is available on the
web at http://www.opengroup.org/dbiop/index.htm.

Description of RW trace points

RWff RC—Receive Data Stream Trace Point
This data stream contains a DDM response from an application server (AS)
program. The DSS headers are present in this data stream. This is the trace point
that is shown in Figure 29 on page 265.

The IDs of the DRDA function that is being performed (ff) are provided below.

ff DRDA Function

AC Access RDB.

OQ Open query.

CQ Continue query.

EQ Close query.

PS Prepare SQL statement.

XS Execute SQL statement.

XI Execute SQL statement immediately.

Appendix C. Interpreting Trace Job and FFDC Data 267

http://www.opengroup.org/publications/catalog/c812.htm

DT Describe Table statement.

DS Describe Statement statement.

SY TCP/IP SYnc point operation

RWff SN—Send Data Stream Trace Point
This data stream contains either a DDM request from an application requester
(AR) program, or a DDM response from an application server (AS) program, as
they exist before they are given to the lower level CN component for addition of
headers and transmission across the wire. Besides content, the main difference
between the trace information for receive data streams and send data streams is
that for the latter, the 6-byte DSS header information is missing. For the first DSS
in a send data stream trace area, the header is omitted entirely, and for subsequent
ones, 6 bytes of zeros are present which will be overlaid by the header when it is
constructed later by a CN component module.

The IDs of the DRDA function that is being performed are the same as those listed
for “RWff RC—Receive Data Stream Trace Point” on page 267.

RWQY S1—Partial Send Data Stream Trace Point 1
This trace point occurs in the NEWBLOCK routine of the QRWTQRY module,
when a new query block is needed in the building of QRYDTA in the like
environment. In the like environment a query block need not be filled up before it
is transmitted, and it is always put on the wire at this point so that the buffer
space can be reused. DSS headers are absent as in other send data streams.

RWQY S2—Partial Send Data Stream Trace Point 2
This trace point occurs in the NEWBLOCK routine of the QRWTQRY module,
when a new query block is needed in the building of QRYDTA in the unlike
environment. In the unlike environment all query blocks except the last one must
be filled up before construction of a new one can be started, and they are not
transmitted until all are built.

RWQY BP—Successful Fetch Trace Point

This trace point occurs in the FETCH routine of the QRWTQRY module, when a
call to the SQFCHCRS macro results in a non-null pointer to a BPCA structure,
implying that one or more records were returned in the BPCA buffer. The data
dumped is the BPCA structure (not the associated buffer), which among other
things indicates how many records were returned.

RWQY NB—Unsuccessful Fetch Trace Point
This trace point occurs in the FETCH routine of the QRWTQRY module, when a
call to the SQFCHCRS macro results in a null pointer to a BPCA structure,
implying that no records were returned in the BPCA buffer. The data dumped is
the SQLSTATE in the associated SQLCA area.

RWQY L1 and RWEX L1—Saved in Outbound LOB Table Trace
Point
These trace points record the address and other information about a large object
(LOB) column saved by QRWTQRY or QRWTEXEC for later transmission to an
Application Requestor.

RWQY L2 and RWEX L2—Built in Datastream from LOB Table
Trace Point
These trace points record the address and other information about a large object
(LOB) column copied by QRWTQRY or QRWTEXEC to the communications buffer.

268 OS/400 Distributed Database Programming V5R2

||

RWQX L0 and RWEX L0—Saved in Inbound LOB Table Trace
Point
These trace points record the address and other information about a large object
(LOB) column saved by QRWTQRY or QRWTEXEC for later construction of an
SQL descriptor area (SQLDA) for input to the database management system
(DBMS).

RWAC RQ—Access RDB Request Trace Point
This trace point occurs on entry to either the QRWSARDB module at a DRDA
application requester (AR), or the QRWTARDB module at an application server
(AS). The content varies accordingly. If the trace is taken at an AS, the content of
the data is a two-byte DDM code point identifying the DDM command to be
executed by QRWTARDB, followed by the English name of the command, which
can be SXXDSCT for disconnect, SXXCLNUP for cleanup, or ACCRDB for a
connect. If the trace is taken at the AR, the content of the data is as follows:

OFFSET TYPE CONTENT
-- ------- --
0 BIN(8) FUNCTION CODE
1 CHAR(8) INTERPRETATION OF FUNCTION CODE
9 BIT(8) BIT FLAGS
10 CHAR(1) COMMIT SCOPE
11 CHAR(1) SQLHOLD value
12 CHAR(1) CMTFAIL value
13 BIN(15) Index of last AFT entry processed by RWRDBCMT

The function codes are:
0 ’CONNECT ’ ==> CONNECT
1 ’DISCONNE’ ==> DISCONNECT
2 ’CLEANUP ’ ==> CLEANUP
3 ’RELEASE ’ ==> RELEASE
4 ’EXIT ’ ==> EXIT
5 ’PRECMT ’ ==> PRE-COMMIT
6 ’POSTCMT ’ ==> POST-COMMIT
7 ’PREROLLB’ ==> PRE-ROLLBACK
8 ’POSTROLL’ ==> POST-ROLLBACK
9 ’FORCED D’ ==> FORCED DISCONNECT

RWAC cb—Access RDB Control Block Trace Points
The following trace points identify control blocks that are associated with functions
that are provided by the QRWSARDB module:

cb Name of control block

LV Local variables.

DD Commit definition directory.

CD Commit definition control block.

RI TSSCNAFT ’remote info’ structure.

CB Access RDB control block.

DE RDB directory entry.

TE Active file table entry.

RWSY FN: SYNCxxx [TYPE:x] -- Source TCP SYNC/RESYNC
Trace Point
This source-side trace point records various commands and replies flown in the
execution of TCP/IP two-phase commit operations. The segment of the data
represented by ’xxx’ above can be:
v CTL, representing a control command

Appendix C. Interpreting Trace Job and FFDC Data 269

v RSY, representing a resync command
v CRD, representing reply data from a control command
v RRD, representing reply data from a resync command

For the CTL and RSY records, there is also a TYPE code associated with the
commands. It is not a printable character, so is observable only in the hexadecimal
data part of the record. It follows the string ’TYPE:’.

RWSY xx: yyyyyyy... -- Target TCP SYNC/RESYNC Trace Point
This target-side trace point records various information. The type of information is
identified by the two characters represented by xx above. The details are in the
variable length yyyyyyy string.
v Type RC records the command received: SYNCCTL or SYNCRSY.
v Type RW records the parameter structure WrwSYData.
v Type LG records a received synclog (can be multiple occurrances).
v Type SN records the send buffer when no errors occurred.
v Type GE records the local variables at time of a general exception.
v Type TE records the send buffer and local variables when a request to TN

component failed (two occurrances of record).
v Type CP records the send buffer and local variables when a conversation

protocol error was detected (two occurrances of record).

RW_ff_m—Application Requester Driver (ARD) Control Block
Trace Point
This trace point displays the contents of the ARD control blocks for the different
types of ARD calls that can be made. It displays three different types of control
blocks: input formats, output formats, and SQLCAs. The type of call and type of
control block being displayed is encoded in the trace point ID. The form of the ID
is RW_ff_m, where ff is the call-type ID, and m is the control block type code. The
call-type IDs (ff) and control block type codes (m) are as follows:

ff Call Type m Ctl Blk Type
-- ---------------------- - ------------
CN Connect I Input Format
DI Disconnect O Output Format
BB Begin Bind C SQLCA
BS Bind Statement
EB End Bind
PS Prepare Statement
PD Prepare and Describe Statement
XD Execute Bound Statement with Data
XB Execute Bound Statement without Data
XP Execute Prepared Statement
XI Execute Immediate
OC Open Cursor
FC Fetch from Cursor
CC Close Cursor
DS Describe a Statement
DT Describe an Object

First-Failure Data Capture (FFDC)
The iSeries server provides a way for you to capture and report error information
for the distributed relational database. This function is called first-failure data
capture (FFDC). The primary purpose of FFDC support is to provide extensive
information on errors detected in the DDM components of the OS/400 system
from which an Authorized Program Analysis Report (APAR) can be created.

270 OS/400 Distributed Database Programming V5R2

You can also use this function to help you diagnose some system-related
application problems. By means of this function, key structures and the DDM data
stream are automatically dumped to the spooled file. The goal of this automatic
dumping of error information on the first occurrence of an error is to minimize the
need to have to create the failure again to report it for service support. FFDC is
active in both the application requester and the application server.

One thing you should keep in mind is that not all negative SQLCODEs result in
dumps; only those that may indicate an APAR situation are dumped.

See the following topics for more information about First-Failure Data Capture
(FFDC) and dumps:
v An FFDC Dump
v FFDC Dump Output Description
v DDM Error Codes
v Finding First-Failure Data Capture (FFDC) data

An FFDC Dump
The processing of alerts triggers FFDC data to be dumped. However, the FFDC
data is produced even when alerts or alert logging is disabled (using the Change
Network Attributes (CHGNETA) command). FFDC output can be disabled by
setting the QSFWERRLOG system value to *NOLOG, but it is strongly
recommended that you do not disable the FFDC dump process. If an FFDC dump
has occurred, the informational message, “*Software problem detected in
Qxxxxxxx.” (where Qxxxxxxx is an OS/400 module identifier), is logged in the
QSYSOPR message queue.

To see output from an FFDC dump operation, use the Work with Spooled Files
(WRKSPLF) command and view QPSRVDMP. The information contained in the
dump output are:
v DDM function
v Specific information on the failing DDM module
v DDM source or target main control block
v DDM internal control structures
v DDM communication control blocks
v Input and output parameter list for the failing DDM module if at the application

requester
v The request and reply data stream

The first 1K-byte of data is put in the error log. However, the data put in the
spooled file is always complete and easier to work with. If multiple DDM
conversations have been established, the dump output may be contained in more
than one spooled file because of a limit of only 32 entries per spooled file. In this
case, there will be multiple “Software Problem” messages in the QSYSOPR
message queue that are prefixed with an asterisk (*).

Appendix C. Interpreting Trace Job and FFDC Data 271

|
|
|
|
|
|

Work With Error Log 02/27/91 13:33:05 Page . . . : 1
�A� �B�

5738SS1 V2R1M1 AS/400 DUMP 090454/SRR/SRRS1 02/27/91 15:12:52 PAGE 1
DUMP TAKEN FOR DETECTED ERROR

�C�
.SUSPECTED- QRWSQRY LIBRARY- S
..LICENSED PROGRAM- 5738SS1 V2R1M1
..FUNCTION- 5001
..LOAD- 0000
..PTF-

�D�
.DETECTOR- QRWSQRY LIBRARY- S
..LICENSED PROGRAM- 5738SS1 V2R1M1
..FUNCTION- 5001
..LOAD- 0000
..PTF-
.SYMPTOM STRING-

�E� �F� �G�
5738 MSGCPF3E86 F/QRWSQRY RC10000002

�H�
.SPACE- 01 �I�
000000 F0F17EC9 D5C4E740 F0F27EC6 C3E34E40 F0F37EC5 D4E2C740 F0F47ED7 D9D4E240 *01=INDX 02=FCT+ 03=EMSG 04=PRMS *
000020 F0F57EE2 D5C4C240 F0F67ED9 C3E5C240 F0F77EC1 D9C4C240 F0F87ED8 C4E3C140 *05=SNDB 06=RCVB 07=ARDB 08=QDTA *
000040 F0F97EC9 D5C4C140 F1F07EE2 D8C3C140 F1F17EE6 D9C3C140 F1F27ED9 C6D4E340 *09=INDA 10=SQCA 11=WRCA 12=RFMT *
000060 F1F37EC1 C6E34040 F1F47EE2 D4C3C240 F1F57EE3 E2D3D240 F1F67EE5 C1D9E240 *13=AFT 14=SMCB 15=TSLK 16=VARS *
000080 4DD9C5E2 E340C9E2 40C3C3C2 6BD7C3C2 E26BE2C1 E36BD7D4 C1D76BD9 C3E5C240 *(REST IS CCB,PCBS,SAT,PMAP,RCVB *
0000A0 D7C5D940 C3C3C25D *PER CCB) *
.SPACE- �L� 02
000000 200C1254 0102F5F8 F0F0F9 * 58009 *
.SPACE- 04 �J�
000000 D8D7C1D9 D4E20000 D67FC01D A60065A0 00000000 F0F10000 00000434 00000000 *QPARMS O" 01 *
000020 D9C3C8C1 E2F2F6F6 40404040 40404040 4040E2D9 D9404040 40404040 40404040 *RCHAS266 SRR *
000040 40404040 D7E3F140 40404040 40404040 40404040 4040700F 70DB33C0 00BB0005 * PT1 *
.SPACE- 05
000000 00000000 0056D051 00010050 200C0044 2113D9C3 C8C1E2F2 F6F64040 40404040 * & RCHAS266 *
000020 40404040 E2D9D940 40404040 40404040 40404040 4040D7E3 F1404040 40404040 * SRR PT1 *
000040 40404040 40404040 700F70DB 33C000BB 00050008 21140000 7FFF0021 D0030001 * *
000060 001B2412 00100010 0676D004 00000671 E4D00001 0007147A 000002 * *
.SPACE- 06
000000 0016D052 00010010 22050006 11490000 00062102 24170052 D0530001 0022241A * *
000020 0F76D004 00002600 03020000 0A000009 71E05400 01D00001 0671F0E0 0000002A * *
000040 241BFF00 0001F0F0 F1000000 013FF000 00000000 00FF0000 02F0F0F2 00000002 * 001 0 002 *
000060 40000000 00000000 0010D052 0001000A 220B0006 11490004 0069D003 00010063 * *
0000E0 FF * *
.SPACE- �K� 07
000000 D9C3C8C1 E2F2F6F6 40404040 40404040 4040D9C3 C8C1E2F2 F6F64040 40404040 *RCHAS266 RCHAS266 *
000020 40404040 E2D9D940 40404040 40404040 40404040 4040D7E3 F1404040 40404040 * SRR PT1 *
000040 40404040 40404040 700F70DB 33C000BB D8E3C4E2 D8D3F4F0 F0D8E2D8 F0F2F0F1 * QTDSQL400QSQ0201*
000060 F1002500 00000000 25000000 000010F0 F4F5F1F7 F461E2D9 D961C4E2 F3F7F840 *1 045174/SRR/DS378 *
000080 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
LINES 0000A0 TO 00015F SAME AS ABOVE
000160 40404040 40404040 40404040 4040A000 2434E2D9 D9404040 40404040 00000000 * SRR *
000180 C1D7D7D5 4BD9C3C8 C1E2F3F7 F8A7CCA7 54137200 40404000 00000000 00000000 *APPN.RCHAS378x x *
0001A0 00000000 00000000 * *

272 OS/400 Distributed Database Programming V5R2

.SPACE- 09
000000 E2D8D3C4 C1404040 00000060 00010001 01F40002 00000400 00000040 40404040 *SQLDA 4 *
000020 80000000 00000000 007FC01E 11000334 00000000 00000000 00000000 00000000 * *
000040 00080000 00250000 00000000 00000000 00000000 00000000 00000000 00000000 * *
.SPACE- 10
000000 E2D8D3C3 C1404040 00000088 FFFF8ABC 00041254 01020000 00000000 00000000 *SQLCA *
000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000060 00000000 00000000 00000000 00000000 00000000 00000000 40404040 40404040 * *
000080 404040F5 F8F0F0F9 * 58009 *
.SPACE- 11
000000 E2D8D3C3 C1404048 00000088 00000000 00000000 00000000 00000000 00000000 *SQLCA *
000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000060 00000000 00000000 00000000 00000000 00000000 00000000 40404040 40404040 * *
000080 404040F0 F0F0F0F0 * 00000 *
.SPACE- 13
000000 00001BB0 00310001 F0F0F0F0 F0F0F0F0 00000000 00000000 00000000 00000000 * 00000000 *
000020 00000470 000002C0 7023C382 57000048 80000000 00000000 007FA083 A3000820 * *
000040 80000000 00000000 007FA083 E7000100 D9C3C8C1 E2F2F6F6 40404040 40404040 * RCHAS266 *
000060 40405CD3 D6C34040 40404040 5CD5C5E3 C1E3D940 D9C3C8C1 E2F2F6F6 5CD3D6C3 * *LOC *NETATR RCHAS266*LOC*
LINES 0000A0 TO 001B9F SAME AS ABOVE
001BA0 00000000 00000000 00000000 00000000 * *
.SPACE- 14
000000 E2D4C3C2 20000100 00000010 F0F9F0F4 F5F461E2 D9D961E2 D9D9E2F1 00000000 *SMCB 090454/SRR/SRRS1 *
000020 00000000 00000000 E5F0F2D9 F0F1D4F0 F1D9C3C8 C1E2F3F7 F8000000 00800000 * V02R01M01RCHAS378 *
000040 0302C3D5 E2E2D5D9 C3E5D8D3 F7F9F7F1 80000000 00000000 007FA083 E9000106 * CNSSNRCVQL7971 *
000060 F1000000 00710000 00000000 00000000 00000470 000002C0 7023C382 57000048 *1 *
.SPACE- 15
000000 00000000 00000000 007FA083 E60019FF 00000000 00000000 00000000 00000000 * *
000020 00000000 00400000 * *
.SPACE- 16
000000 00000000 00000000 00000000 00000002 00000017 000000E1 00000000 00000071 * *
000020 00000000 00007FFF 00000003 00170000 001B0000 FF000000 00002410 00F0F060 * *
000040 E70400 *X *
.SPACE- 17
000000 E2C3C3C2 5CD3D6C3 40404040 40405CD5 C5E3C1E3 D9405CD3 D6C34040 4040D9C3 *SCCB*LOC *NETATR *LOC RC*
000020 C8C1E2F2 F6F65CD3 D6C34040 404007F6 C4C24040 40405CC4 D9C4C140 40404040 *HAS266*LOC 6DB *DRDA *
000040 40404040 40404040 4000001E 00110000 00000000 00000000 00000000 00000000 * *
000060 00000000 00000000 00000000 00000000 * *
.SPACE- 18
000000 E2D7C3C2 00000000 007FA083 A3000810 00000470 000002C0 7023C382 57000048 *SPCB *
000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000040 00000000 00000000 00000000 00000000 * *
.SPACE- 19
000000 C5E7C3C2 00000076 00000003 00000079 00000009 00000082 00000010 00000092 *EXCB *
000020 00000008 00000000 00000018 00200003 00030003 00030003 00030001 00030003 * *
000040 00000000 00000000 00000000 00000000 00000000 0000C4C4 D4E5F0F2 D9F0F1D4 *
DDMV02R01M*000060 F0F1F0F4 F5F1F7F4 61E2D9D9 61C4E2F3 F7F8D9C3 C8C1E2F2 F6F6 *
01045174/SRR/DS378RCHAS266 *
.SPACE- 20
000000 00000030 000002B6 00000430 0000043E 00010000 00000000 00000000 00000000 * *
000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000040 80000000 00000000 007FA083 D2000100 00000000 0000029A 0000005C 22050000 * *
000060 00060000 02B60000 00B00000 00000000 00000000 00000000 00000000 00000000 * *
LINES 0000E0 TO 00017F SAME AS ABOVE

Appendix C. Interpreting Trace Job and FFDC Data 273

FFDC Dump Output Description
The following information describes the data areas and types of information
available in an FFDC dump output like the one in the preceding figure.

Notes:

1. Each FFDC dump output will differ in content, but the format is generally the
same. An index (�I�) is provided to help you understand the content and
location of each section of data.

2. Each section of data is identified by “SPACE-” and a number; for example:
SPACE- ... 01. The sections of data present in your dump output are dependent
on the operation and its progress at the time of failure.

3. Each section of data is given a name; for example SQCA. SQCA is the section
name for data from the DB2 UDB Query Manager and SQL Development Kit
SQLCA. To locate the SQLCA data, find SQCA in the index (�I�). In the sample
dump index, SQCA is shown to be in data section 10 (10=SQCA). To view the
SQLCA data, go the SPACE- 10.

4. There are two basic classes of modules that can be dumped:
v application requester (AR) modules
v application server (AS) modules

The sample dump output is typical of a dump from an AR module. AR dump
outputs typically have a fixed number of data sections identified in the index. (For
example, in the sample dump output SPACE- 01 through 16 are listed.) In addition,
they have a variable number of other data sections. These sections are not included
in the index. (For example, in the sample dump output, SPACE- 17 through 25 are
not listed in the index.)

Application server dump output is usually simpler because they consist only of a
fixed number of data sections, all of which are identified in the index.
5. There are index entries for all data sections whether or not the data section

actually exists in the current dump output. For example, in the sample dump

.SPACE- 21
000000 0016D052 00010010 22050006 11490000 00062102 24170052 D0530001 0022241A * *
000020 0F76D004 00002600 03020000 0A000009 71E05400 01D00001 0671F0E0 0000002A * *
000040 241BFF00 0001F0F0 F1000000 013FF000 00000000 00FF0000 02F0F0F2 00000002 * 001 0 002 *
000060 40000000 00000000 0010D052 0001000A 220B0006 11490004 0069D003 00010063 * *
000080 24080000 000064F0 F2F0F0F0 D8E2D8C6 C5E3C3C8 00D9C3C8 C1E2F2F6 F6404040 * 02000QSQFETCH RCHAS266 *
.SPACE- 22
000000 E2C3C3C2 5CD3D6C3 40404040 40405CD5 C5E3C1E3 D9405CD3 D6C34040 4040D9C3 *SCCB*LOC *NETATR *LOC RC*
000020 C8C1E2F2 F6F65CD3 D6C34040 404007F0 F0F14040 4040E77D F0F7C6F0 C6F0C6F1 *HAS266*LOC 001 X’07F0F0F1*
000040 7D404040 40404040 40000014 00110000 00000000 00000000 00000000 00000000 * *
000060 00000000 00000000 00000000 00000000 00008F00 00000700 F0F0F100 00000000 * 001 *
.SPACE- 23
000000 C5E7C3C2 00000076 00000003 00000079 00000009 00000082 00000010 00000092 *EXCB b k*
000020 00000008 00000000 00000018 00200003 00030003 00030003 00030001 00030003 * *
000040 00000000 00000000 00000000 00000000 00000000 0000C4C4 D4E5F0F2 D9F0F1D4 * DDMV02R01M*
000060 F0F1F0F4 F5F1F7F2 61E2D9D9 61C4E2F3 F7F8D9C3 C8C1E2F2 F6F6 *01045172/SRR/DS378RCHAS266 *
.SPACE- 24
000000 00000030 0000005C 00000000 000000CC 00010000 00000000 00000000 00000000 * * *
000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
000040 80000000 00000000 007FA083 A4000100 00000000 00000000 0000005C D2010000 * *K *
.SPACE- 25
000000 0010D002 0001000A D2010006 11490000 E2000D11 5AE5F0F2 D9F0F1D4 F0F1000C * V02R01M01 *
000020 116DD9C3 C8C1E2F2 F6F60014 115EF0F4 F5F1F7F2 61E2D9D9 61C4E2F3 F7F80064 * RCHAS266 045172/SRR/DS378 *
000040 14041403 00031423 00031405 00031406 00031407 00031444 00031458 00011457 * *
000060 0003140C 00031419 0003141E 00031422 0003240F 000314A0 00041432 00031433 *
END OF DUMP
* * * * * E N D O F L I S T I N G * * * * *

274 OS/400 Distributed Database Programming V5R2

output, there is no SPACE- 08. In the index, 08 equals QDTA (query data). The
absence of SPACE- 08 means that no query data was returned, so none could
be dumped.

6. In the sample dump output, the last entry in the index is “(REST IS CCB,
PCBS, SAT, PMAP, RCVB, PER CCB)”. This entry means that SPACE- 17 and
upward contain one or more communications control blocks (CCB), each
containing:

v Zero, one, or more path control blocks (SPCB); there is normally just one.
v Exchange server attributes control block (EXCB)
v Parser map space
v Receive buffer for the communications control block

The data section number is increment by one from 17 onward as each control block
is dumped. For example, in the sample dump output, data sections SPACE- 17
through SPACE- 21 are for the first data control block dumped (CCB 1), while data
sections SPACE- 22 through SPACE- 25 are for the second data control block
dumped (CCB 2), as shown below:

17 CCB (Eyecatcher is :‘SCCB:’. For an application server module, the
eyecatcher is :‘TCCB:’.)

18 PCB for CCB 1 (Eyecatcher is :‘SPBC:’.)

19 SAT for CCB 1 (Eyecatcher is :‘EXCB:’.)

20 PMAP for CCB 1 (No eyecatcher.)

21 RCVB for CCB 1 (No eyecatcher.)

22 CCB 2 (Eyecatcher is :‘SCCB:’.)

-- (No PCB for CCB 2 because the conversation is not active.)

23 SAT for CCB 2 (Eyecatcher is :‘EXCB:’.)

24 PMAP for CCB 2 (No eyecatcher.)

25 RCVB for CCB 2 (No eyecatcher.)

�A� Name and release information of the server on which the dump was taken.

�B� Name of job that created the dump output.

�C� Name of module in the operating system suspected of failure.

�D� Name of module that detected the failure.

Symptom String- contents:

�E� Message identifier.

�F� Name of module suspected of causing the FFDC dump.

�G� Return code (RC), identifying the point of failure.

The first digit after RC indicates the number of dump files associated with this
failure. There can be multiple dump files depending on the number of
conversations that were allocated. In the sample dump output, the digit is “1”,
indicating that this is the first (and possible the only) dump file associated with
this failure.

You may have four digits (not zeros) at the rightmost end of the return code that
indicate the type of error.

Appendix C. Interpreting Trace Job and FFDC Data 275

v The possible codes for errors detected by the AR are:

0001 Failure occurred in connecting to the remote database

0002 More-to-receive indicator was on when it should not have been

0003 AR detected an unrecognized object in the data stream received from the
AS

0097 Error detected by the AR DDM communications manager

0098 Conversation protocol error detected by the DDM component of the AR

0099 Function check
v The possible codes for errors detected by the AS are:

0099 Function check

4415 Conversational protocol error

4458 Agent permanent error

4459 Resource limit reached

4684 Data stream syntax not valid

4688 Command not supported

4689 Parameter not supported

4690 Value not supported

4691 Object not supported

4692 Command check

8706 Query not open

8708 Remote database not accessed

8711 Remote database previously accessed

8713 Package bind process active

8714 FDO:CA descriptor is not valid

8717 Abnormal end of unit of work

8718 Data and/or descriptor does not match

8719 Query previously opened

8722 Open query failure

8730 Remote database not available

�H� SPACE- number identifying a section of data. The number is related to a
data section name by the index. Data section names are defined under �I�
below.

�I� An index and definition of SPACE- numbers (defined in �H�) to help you
understand the content and location of each section of data. The order of
the different data sections may vary between dump output from different
modules. The meaning of the data section names are:
v AFT: DDM active file table, containing all conversation information.
v ARDB: Access remote database control block, containing the AR and AS

connection information. The structure contains the LUWID token used to
correlate the dump with any related alert data.

v ARDP: ARD program parameters at start of user space.

276 OS/400 Distributed Database Programming V5R2

v BDTA: Buffer processing communications area (BPCA) and associated
data record from SELECT INTO statement.

v BIND: SQL bind template
v BPCA: BPCA structure (without data records)
v DATA: Data records associated with the BPCA. It is possible that the

records in this section do not reflect the total BPCA buffer contents.
Already-processed records may not be included.

v DOFF: Offset within query data stream (QRYDTA) where the error was
detected.

v EICB: Error information control block
v EMSG: Error message associated with a function check or DDM

communications manager error.
v FCT: DDM function code point (2 bytes)
v FCT+: Same as FCT, plus message tokens and the SQLSTATE logged in

the SQLCA. See “DDM Error Codes” on page 279 for more information
on how to interpret FCT+.
– DDM function code point (2 bytes)
– DDM reply code point (2 bytes)
– DDM reply reason code (2 bytes)

- Location at which the error was detected (1 byte; 01 = application
requester; 02 = application server)

- Error reason code (1 byte; see the DDM Error Codes on page 279.)
– SQLSTATE (5 bytes)

v FDOB: FDO:CA descriptor input to the parser in an execute operation.
v FDTA: FDO:CA data structure consisting of:

– A 4-byte field defining the length of the FDO:CA data stream
(FDODTA)

– The FDODTA
v HDRS: Communications manager command header stack.
v IFMT: ARD program input format.
v INDA: Input SQLDA containing user-defined SQLDA for insert, select,

delete, update, open, and execute operations.
v INDX: The index that maps the data section name to the data section

SPACE- code. Not all of the entries in the index have a corresponding
data section. The dump data is based on the error that occurs and the
progress of the operation at the time of the error. A maximum of 32
entries can be dumped in one spooled file.

v INST: SQL statement
v ITKN: Interrupt token.
v OFMT: ARD program output format.
v PKGN: Input package name, consistency token and section number.
v PMAP: Parser map in an AS dump output.
v PRMS: DDM module input or output parameter structure.
v PSOP: Input parser options.
v QDTA: Query data structure consisting of:

– A 4-byte field defining the length of the query data stream (QRYDTA)
– The QRYDTA

v RCVB: Received data stream. The contents depend on the following:

Appendix C. Interpreting Trace Job and FFDC Data 277

– If the dump occurs on the application server, the section contains the
DDM request data that was sent from the application requester.

– If the dump occurs on the application requester, the section contains
the DDM reply data that was sent from the application server. If this
section is not present, it is possible the received data may be found in
the receive buffer in the variable part of the dump.

v RDBD: Relational database directory.
v RFMT: Record format structure.
v RMTI: Remote location information in the commitment control block.
v RTDA: Returned SQLDA (from ARD program).
v SMCB: DDM source master control block, containing pointers to other

DDM connection control blocks and internal DDM control blocks.
v SNDB: Send data stream. The contents depend on the following:

– If the dump occurs on the application requester, the buffer contains
the DDM request that was sent to the application server or that was
being prepared to send.
Note the four bytes of zeros that are at the beginning of SPACE- 05 in
the example. When zeros are present, they are not part of the data
stream. They represent space in the buffer that is used only in the
case that a DDM large object has to be sent with a DDM request. The
DDM request stream is shifted left four bytes in that case.

– If the dump occurs on the application server, the buffer contains the
DDM reply data that was being prepared to send to the application
requester.

v SQCA: Output SQLCA being returned to the user.
v SQDA: SQLDA built by the FDO:CA parser.
v TBNM: Input remote database table name.
v TMCB: Target main control block.
v TSLK: Target or source connection control block, containing pointers to

the DDM active file table and other internal DDM control blocks.
v VARS: Local variables for the module being dumped.
v WRCA: Warning SQLCA returned only for an open operation

(OPNQRYRM).
v XSAT: Exchange server attributes control block.
v Remainder: Multiple conversation control blocks for all the DDM

conversations for the job at the time of the error. Each conversation
control block contains the following:
– Path control blocks, containing information about an established

conversation. There can be multiple path control blocks for one
conversation control block.

– One exchange server information control block, containing
information about the application requester and application server.

– One DDM parser map area, containing the locations and values for all
the DDM commands, objects, and replies.

– One receive buffer, containing the requested data stream received by
the application server. See also 6 on page 275.

The data section number is incremented by one as each control block is
dumped.

278 OS/400 Distributed Database Programming V5R2

�J� The eyecatcher area. Information identifying the type of data in some of
the areas that were dumped.

�K� The logical unit of work identifier (LUWID) for the conversation in
progress at the time of the failure can be found in the access RDB control
block. This data area is identified by the string ‘ARDB’ in the FFDC index.
In this example, it is in SPACE- 07. The LUWID begins at offset 180. The
network identifier (NETID) is APPC. A period separates it from the logical
unit (LU) name, RCHAS378, which follows. Following the LU name is the
6-byte LUW instance number X'A7CCA7541372'.

DDM Error Codes
These error codes are included in the FFDC dumps (�L� in the sample dump
output) that identify DDM error conditions. These conditions may or may not be
defined by the DDM architecture.

Command Check Codes

If FCT+ (SPACE- 02) contains 1254 in bytes 3 and 4, look for one of these codes in
byte 6:

01 Failure to connect to the relational database (RDB).

02 State of the DDM data stream is incorrect.

03 Unrecognized object in the data stream.

04 Statement CCSID received from SQL not recognized.

05 EXCSQLSTT OUTEXP value is inconsistent with the SQL statement being
executed.

06 DDM command or object sent to application server (AS) violates OS/400
extension to DRDA2 architecture.

07 DDM reply or object received from AS violates DRDA2 architecture.

08 SQLDA data pointer is NULL when it should not be.

09 Product data structure not valid.

0A XLATECC failure

0B EXTJOBDI failure

0C Get ASP from name failure

0D Get RDB name from ASP failure

10 An expected LOB was not received.

11 LOB length mismatch between placeholder and received data.

12 LOB usage mismatch.

13 XMIT Mode wrong for LOBs.

14 Buffer extension failure

15 Negative SQLCODE on fetch after successful open

16 Space allocation error

17 Mismatch in result set reply (SQRY)

18 Unexpected RM in result set reply (SQRY)

88 No records in BPCA.

Appendix C. Interpreting Trace Job and FFDC Data 279

||

||

||

||

||

||

||

||

89 Unexpected BGNBND object.

8A Unsupported large DDM object header size.

8B LOB table error.

8C Request for LOB and none available.

97 DDM communications manager detected an error.

98 Conversation protocol error detected by the DDM module.

99 Function check. Look for EMSG section, normally in SPACE- 03.

FF Error on SQ open (TQRY)

Conversational Protocol Error Code Descriptions
IF FCT+ (SPACE- 02) contains 1245 in bytes 3 and 4, look for one of these codes in
byte 6:

01 RPYDSS received by target communications manager.

02 Multiple DSSs sent without chaining, or multiple DSS chains sent.

03 OBJDSS sent when not allowed.

04 Request correlation identifier of an RQSDSS is less than or equal to the
previous RQSDSS request correlation identifier in the chain.

If two RQSDSSs have the same request correlation identifier, the
PRECCNVRM must be sent in RPYDSS with a request correlation identifier
of minus 1.

05 Request correlation identifier of an OBJDSS does not equal the request
correlation identifier of the preceding RQSDSS.

06 EXCSAT was not the first command after the connection was established.

DA SQLDA not doubled to accommodate labels.

DF FDODSC was received but no accompanying FDODTA.

E0 No OPNQRY (open query) reply message.

E1 RDBNAM on ENDQRYRM (end query reply message) is not valid.

E2 An OPEN got QRYDTA (query answer set data) without a QRYDSC (query
answer set description).

E3 Unexpected OPNQRY reply object.

E4 Unexpected CXXQRY reply object.

E5 QRYDTA on OPEN, single row.

E6 RM after OPNQRYRM is not valid.

E7 No interrupt reply message.

E8 LOB request where application server (AS) does not support.

FD Null SQLCARD (SQLCA reply data) following error RM.

FE Null QRYDTA row follows null SQLCA.

FF Expected SQLCARD missing.

DDM Syntax Error Code Descriptions
If FCT+ (SPACE- 02) contains 124C in bytes 3 and 4, look for one of these codes in
byte 6:

280 OS/400 Distributed Database Programming V5R2

01 DSS header length less than 6.

02 DSS header length does not match the number of bytes of data found.

03 DSS head C-byte not X'D0'.

04 DSS header F-bytes either not recognized or not supported.

05 DSS continuation specified, but not found. For example, DSS continuation
is specified on the last DSS, and the SEND indicator has been returned by
the SNA LU 6.2 communications program.

06 DSS chaining specified, but no DSS found. For example, DSS chaining is
specified on the last DSS, and the SEND indicator has been returned by the
SNA LU 6.2 communications program.

07 Object length less than 4. For example, a command parameter length is
specified as 2, or a command length is specified as 3.

08 Object length does not match the number of bytes of data found. For
example, an RQSDSS with a length 150 contains a command whose length
is 125, or an SRVDGN (server diagnostic information) parameter specifies a
length of 200, but there are only 50 bytes left in the DSS.

09 Object length greater than maximum allowed. For example, the RECCNT
parameter specifies a length of 5, but this indicates that only half of the
hours field is present instead of the complete hours field.

0A Object length less than minimum required. For example, the SVRCOD
parameter specifies a length of 5, but the parameter is defined to have a
fixed length of 6.

0B Object length not allowed. For example, the FILEXPDT parameter is
specified with a length of 11, but this indicates that only half of the hours
field is present instead of the complete hours field.

0C Incorrect large object extended length field (see the description of DSS). For
example, an extended length field is present, but it is only 3 bytes long. It
is defined as being a multiple of 2 bytes long.

0D Object code point index not supported. For example, a code point of
X'8032' is encountered, but X'8' is a reserved code point index.

0E Required object not found. For example, a CLRFIL command does not
have an FILNAM parameter present, or an MODREC command is not
followed by a RECORD command data object.

0F Too many command data objects sent. For example, an MODREC
command is followed by two RECORD command data objects, or a
DELREC command is followed by a RECORD object.

10 Mutually exclusive objects present. For example, a CRTDIRF command
specifies both a DCLNAM and a FILNAM parameter.

11 Too few command data objects sent. For example, an INSRECEF command
that specified RECCNT(5) is followed by only four RECORD command
data objects.

12 Duplicate object present. For example, a LSTFAT command has two
FILNAM parameters specified.

13 Specified request correlation identifier not valid. Use PRCCNVRM with a
PRCCNVCD of X'04' or X'05' instead of this error code. This error code is
being maintained for compatibility with Level 1 architecture.

Appendix C. Interpreting Trace Job and FFDC Data 281

14 Required value not found.

15 Reserved value not allowed. For example, an INSRECEF command
specified an RECCNT(0) parameter.

16 DSS continuation less than or equal to 2. For example, the length bytes for
the DSS continuation have a value of 1.

17 Objects not in required order. For example, a RECAL object contains a
RECORD object followed by a RECNBR object that is not in the specified
order.

18 DSS chaining bit not a binary 1, but DSSFMT bit 3 is set to a binary 1. is
requested.

19 Previous DSS indicated current DSS has the same request correlation, but
the request correlation identifiers are not the same.

1A DSS chaining bit not a binary 1, but error continuation is requested.

1B Mutually exclusive parameter values specified. For example, an OPEN
command specified PRPSHD(TRUE) and FILSHR(READER).

1D Code point not a valid command. For example, the first code point in
RQSDSS either is not in the dictionary or is not a code point for a
command.

282 OS/400 Distributed Database Programming V5R2

Appendix D. Glossary
Access plan

In DB2 UDB for iSeries, the control structure produced during compile time
that is used to process SQL statements encountered when the program is run.

Alert focal point
The system in a network that receives and processes (logs, displays, and
optionally forwards) alerts. An alert focal point is a subset of a problem
management focal point. Supported only in an SNA environment.

Advanced program-to-program communications (APPC)
Data communications support that allows programs on an iSeries server to
communicate with programs on other systems having compatible
communications support. APPC on the iSeries server provides an application
programming interface to the SNA LU type 6.2 and node type 2.1 architectures.
Part of IBM’s System Network Architecture (SNA).

Advanced Peer-to-Peer Networking(R) (APPN)
Pertaining to data communications support that routes data in a network
between two or more APPC systems that do not need to be directly connected.
Part of IBM’s System Network Architecture (SNA).

Application requester (AR)
When using a distributed relational database, the system on which the
application program is run.

Application requester driver (ARD)
An exit program that is used with the SQL Client Integration feature of
OS/400. It enables SQL applications to access data managed by a database
management system other than the OS/400 relational database.

Application server (AS)
When using a distributed relational database, the system on which the remote
data resides.

Auxiliary storage pool (ASP)
One or more storage units that are defined from the storage devices or storage
device subsystems that make up auxiliary storage. An ASP provides a way of
organizing data to limit the impact of storage-device failures and to reduce
recovery time.

Batch processing
A method of running a program or a series of programs in which one or more
records (a batch) are processed with little or no action from the user or
operator. Contrast with interactive processing.

Binding
(1) The process of creating a program by packaging Integrated Language
Environment (ILE) modules and resolving symbols passed between those
modules. For example, before you can run your application program, a
relationship between the program and any referred-to tables and views must
be established. (2) In the context of DRDA, the process of creating an SQL
package on an application server (AS).

Catalog
A set of tables and views that contain information about tables, packages,
views, indexes, and constraints. The catalog views in QSYS2 contain
information about all tables, packages, views, indexes, and constraints on the

© Copyright IBM Corp. 1998, 2001, 2002 283

iSeries server. Additionally, an SQL schema will contain a set of these views
that only contains information about tables, packages, views, indexes, and
constraints only in the schema.

Character Data Representation Architecture (CDRA)
An IBM architecture that defines a set of identifiers, services, supporting
resources, and conventions to achieve a consistent representation, processing,
and interchange of characters (data) among iSeries servers and other types that
support CDRA.

Coded character set identifier (CCSID)
A 16-bit number that identifies a specific set of encoding scheme identifiers,
character set identifiers, code page identifiers, and other relevant information
that uniquely identifies the coded graphic character representation used.

Code page
A specific set of assignments between characters and internal codes.

Commit
When the requests are complete, the application program can commit the unit
of work. This means that any database changes associated with the unit of
work are made permanent.

Commitment control
A means of grouping committable resource operations to allow either the
processing of a group of committable resource changes as a single unit through
the Commit command, or the removing of a group of committable resource
changes as a single unit through the Rollback command.

Controlling subsystem
The interactive subsystem that is automatically started first when the system is
started and through which the system operator controls the system.

DB2 Query Manager
Part of the DB2 Query Manager and SQL Development Kit licensed program
that is a collection of tools used to obtain information from the iSeries
database. DB2 Query Manager can also be used to create query definitions, to
run new or existing query definitions, or to format query information.

DB2 Query Manager and SQL Development Kit
The IBM licensed program that is one of the DB2 UDB family of products.
Query Manager allows users to develop SQL queries and reports. The SQL
Development Kit allows programmers to develop SQL applications.

DB2 Universal Database for iSeries (DB2 UDB for iSeries)
The integrated relational database manager on iSeries. It provides access to and
protection for data. It also provides advanced functions such as referential
integrity and parallel database processing.

Display station pass-through
A communications function that allows a user to sign on to one iSeries server
from another iSeries server and use that server’s programs and data.

Distributed Data Management (DDM)
A function of the operating system that allows an application program or user
on one system to use database files stored on a remote system. The system
must be connected by a communications network, and the remote system must
also use DDM. The term also applies to the underlying communications
architecture.

Distributed Relational Database
Distributed relational database exists when the application programs that use

284 OS/400 Distributed Database Programming V5R2

the data and the data itself are located on different machines, or when the
programs use data that is located on multiple databases on the same server. In
the latter case the database is distributed in the sense that DRDA protocols are
used to access one or more of the databases within the single server.

Distributed Relational Database Architecture (DRDA)
DRDA specifies a set of formats and protocols:
v For making connections from an application to one or more remote database

management systems,
v For exchanging data among them, and
v For managing transactions to ensure their integrity and consistency.

The DRDA protocol is built on the Distributed Data Management Architecture.

Distributed unit of work (DUW)
A distributed unit of work (DUW) enables a user or application program to
read or update data at multiple locations within a unit of work.

Domain Name System (DNS)
In the Internet suite of protocols, the distributed database system used to map
domain names to IP addresses.

Encryption
In computer security, the process of transforming data into an unintelligible
form in such a way that the original data either cannot be obtained or can be
obtained only by using a decryption process.

Enterprise Identity Mapping (EIM)
EIM is a mechanism for mapping (associating) a person or entity to the
appropriate user identities in various registries throughout the enterprise. EIM
provides APIs for creating and managing these identity mapping relationships
as well as APIs used by applications to query this information.

First-failure data capture (FFDC)
The OS/400 implementation of the FFST architecture providing problem
recognition, selective dump of diagnostic data, symptom string generation, and
problem log entry.

High-performance routing (HPR)
An addition to the Advanced Peer-to-Peer Networking (APPN) architecture
that enhances data routing performance and reliability, especially when using
high-speed links.

Host language
In DB2 UDB for iSeries SQL, any programming language, such as C, COBOL,
and RPG, in which you can embed SQL statements.

Host program
In DB2 UDB for iSeries, a program written in a host language that contains
embedded SQL statements.

Host variable
In a DB2 UDB for iSeries SQL application program, a variable referred to by
embedded SQL statements. In RPG, this is called a field name; in C, this is
known as a variable; in COBOL, this is called a data item.

Independent auxilary storage pool, or independent disk pool
One or more storage units that are defined from the disk units or disk-unit
subsystems that make up addressable disk storage. An independent disk pool
contains objects, the directories that contain the objects, and other object
attributes such as authorization ownership attributes. An independent disk

Appendix D. Glossary 285

pool can be made available (varied on) and made unavailable (varied off)
without restarting the system. An independent disk pool can be either a)
switchable among multiple systems in a clustering environment or b) privately
connected to a single system.

Interactive processing
A processing method in which each operator action causes a response from the
program or the system. Contrast with batch processing.

Interactive Structured Query Language (ISQL)
A function of the DB2 UDB Query Manager and SQL Development Kit
licensed program that allows SQL statements to run dynamically instead of in
batch mode. Every interactive SQL statement is read from the work station,
prepared, and run dynamically.

IP Security Architecture (IPSec)
A collection of Internet Engineering Task Force (IETF) standards that define an
architecture at the Internet Protocol (IP) layer to protect IP traffic by using
various security services.

Journal
A system object that identifies the objects being journaled, the current journal
receiver, and all the journal receivers on the system for the journal. The
system-recognized identifier for the object type is *JRN.

Kerberos
Pertaining to the security system of the Massachusetts Institute of Technology’s
(MIT’s) Project Athena. It uses symmetric key cryptography to provide security
services to users in a network.

Kerberos configuration file (krb5.conf)
In cases where the Kerberos realm name differs from the DNS suffix name, it
must be mapped to the correct realm. To do that, there must be an entry in the
Kerberos configuration file (krb5.conf) to map each remote host name to its
correct realm name.

Kerberos Realm
A Kerberos realm is the set of Kerberos principals that are registered within a
Kerberos server.

Like environment
When access to distributed relational data is between two or more iSeries
systems.

Location
A location is a specific relational database management system in an
interconnected network of relational database management systems that
participate in distributed relational database. A ’location’ in this sense can also
be a user database in a system configured with independent ASP groups.

Logical unit (LU)
In SNA, one of three types of network addressable units that serve as a port
through which a user accesses the communications network. The other two
include physical unit (PU) and system services control point (SSCP).

Pacing
In SNA, a technique by which the receiving system controls the rate of
transmission of the sending system to prevent overrun.

Package
See SQL package.

286 OS/400 Distributed Database Programming V5R2

Physical unit (PU)
In SNA, one of three types of network addressable units. A physical unit exists
in each node of an SNA network to manage and monitor the resources (such as
attached links and adjacent link stations) of a node, as requested by a system
services control point logical unit (SSCP-LU) session.

Relational Database
A database that can be perceived as a set of tables and can be manipulated in
accordance with the relational model of data. There are three types of relational
databases a user can access from an iSeries server, a system relational database
(or system database), a user relational databse (or user database), and a remote
relational database (or remote database).

Remote Relational Database, or Remote Database
A database that resides on an iSeries or another server that can be accessed
remotely.

Remote unit of work (RUW)
A remote unit of work (RUW) is a mode of distributed relational database
processing in which an application program can access data on a remote
database within a unit of work. A remote unit of work can include more than
one relational database request, but all requests must be made to the same
remote database.

Roll back
With unit of work support, the application program can also roll back changes
to a unit of work. If a unit of work is rolled back, the changes made since the
last commit or rollback operation are not applied. Thus, the application
program treats the set of requests to a database as a unit.

Schema
Consists of a library, a journal, a journal receiver, an SQL catalog, and an
optional data dictionary. A schema groups related objects and allows you to
find the objects by name. Note: A schema is also commonly referred to as a
collection.

Secure Sockets Layer (SSL)
A popular security scheme that was developed by Netscape Communications
Corp. and RSA Data Security, Inc. SSL allows the client to authenticate the
server and all data and requests to be encrypted. The URL of a secure server
that is protected by SSL begins with https rather than http.

SNA distribution services (SNADS)
An IBM asynchronous distribution service that defines a set of rules to receive,
route, and send electronic mail in a network of systems.

SNA upline facility (SNUF)
The communications support that allows the iSeries server to communicate
with CICS/VS and IMS/VS application programs on a host system. For
example, DHCF communicates with HCF and DSNX communicates with the
NetView Distribution Manager program.

Spool
(1) The system function of putting files or jobs into disk storage for later
processing or printing. (2) To reduce, through the use of auxiliary storage as
buffer storage, processing delays when transferring data between peripheral
equipment and the processors of a computer.

SQL package
An SQL package is an iSeries object used only for distributed relational
databases. It can be created as a result of the precompile process of SQL or can

Appendix D. Glossary 287

be created from a compiled program object. An SQL package resides on the
application server. It contains SQL statements, host variable attributes, and
access plans which the application server uses to process an application
requester’s request.

Structured Query Language (SQL)
A language that can be used within host programming languages or
interactively to put information into a database and to get and organize
selected information from a database. SQL can also control access to database
resources. SQL provides the necessary consistency to enable distributed data
processing across different servers.

Subsystem
An operating environment, defined by a subsystem description, where the
system coordinates processing and resources.

Subsystem description
A system object that contains information defining the characteristics of an
operating environment controlled by the system. The system-recognized
identifier for the object type is *SBSD.

Synchronous data link control (SDLC)
(1) A form of communications line control that uses commands to control the
transfer of data over a communications line. (2) A communications discipline
conforming to subsets of the Advanced Data Communication Control
Procedures (ADCCP) of the American National Standards Institute (ANSI) and
High-Level Data Link Control (HDLC) of the International Organization for
Standardization (ISO), for transferring synchronous, code-transparent,
serial-by-bit information over a communications line. Transmission exchanges
may be duplex or half-duplex over switched or nonswitched lines. The
configuration of the connection may be point-to-point, multipoint, or loop.

System Relational Database, or System Database
All the database objects that exist on disk attached to the iSeries server that are
not stored on independent auxiliary storage pools.

System services control point (SSCP)
A focal point within an SNA network for managing the other systems and
devices, coordinating network operator requests and problem analysis requests,
and providing directory routing and other session services for network users.

Systems Network Architecture (SNA)
In IBM networks, the description of the layered logical structure, formats,
protocols, and operational sequences that are used for transmitting information
units through networks, as well as controlling the configuration and operation
of networks.

Ticket-granting ticket (TGT)
A ticket that a principal passes to the ticket-granting server when a service
ticket is requested. The ticket-granting service uses the ticket-granting ticket to
verify that the principal has authenticated to the authentication server before it
grants the request for the service ticket.

Transaction program name (TPN)
The name by which each program participating in an LU 6.2 conversation is
known. Normally, the initiator of a connection identifies the name of the
program it connects to at the other LU. When used in conjunction with an LU
name, a TPN identifies a specific transaction program in the network.

Transmission Control Protocol/Internet Protocol (TCP/IP)
(1) A set of communications protocols that support peer-to-peer connectivity

288 OS/400 Distributed Database Programming V5R2

functions for both local and wide area networks. (2) The primary
communications protocol that is used on the Internet. TCP/IP could also be
used on an internal network.

Unit of work
A unit of work is one or more database requests and the associated processing
that make up a completed piece of work. Equivalent to transaction.

Unlike environment
When access to distributed relational data is between different types of
computers.

User Relational Database, or User Database
All the database objects that exist in a single independent auxiliary storage
pool group along with those database objects that are not stored on
independent auxiliary storage pools . Note: As of V5R2, an iSeries server can
be host to multiple relational databases if independent auxiliary storage pools
are configured on the server. There will always be one system relational
database, and there can be one or more user relational databases. Each user
database includes all the objects in the system database. Note: The user should
be aware, however, that from a commitment control point of view, the system
database is treated as a separate database, even when from an SQL point of
view, it is viewed as being included within a user database.

Appendix D. Glossary 289

290 OS/400 Distributed Database Programming V5R2

Bibliography

This bibliography lists four classifications of
books available from IBM that are related to this
book. These classifications are:
v iSeries server library
v Distributed Relational Database Library
v Other IBM Distributed Relational Database

Platform Libraries
v Architecture books
v IBM Redbooks

iSeries server Information
The following iSeries books contain information
you may need. The order number is provided for
ordering and referencing purposes.

v DSNX Support , provides information for
configuring an iSeries server to use the remote
management support (distributed host
command facility), the change management
support (distributed systems node executive)
and the problem management support (alerts).

v The Backup and Recovery topic in the iSeries
Information Center provides the system
programmer with information about the
different media available to save and restore
system data, as well as a description of how to
record changes made to database files and how
that information can be used for system
recovery and activity report information.

v The CL Programming topic in the iSeries
Information Center provides a wide-ranging
discussion of programming topics, including a
general discussion of objects and libraries,
control language (CL) programming,
controlling flow and communicating between
programs, working with objects in CL
programs, and creating CL programs. Other
topics include predefined and immediate
messages and message handling, defining and
creating user-defined commands and menus,
and application testing, including debug mode,
breakpoints, traces, and display functions.

v Communications Management , contains
information on working with communications
status, communications-related work
management topics, communications errors,
performance, line speed and subsystem storage.

v The Distributed Database Management topic in
the iSeries Information Center provides the
application programmer or system programmer
with information about remote file processing.
It describes how to define a remote file to
OS/400 distributed data management (DDM),
how to create a DDM file, which file utilities
are supported through DDM, and the
requirements of OS/400 DDM as related to
other systems.

v Local Device Configuration , provides the
system operator or system administrator with
information on how to do an initial local
hardware configuration and how to change that
configuration. It also contains conceptual
information for device configuration, and
planning information for device configuration
on the 9406, 9404, and 9402 System Units.

v ADTS/400: Data File Utility , provides the
application programmer, programmer or help
desk aide with information about the
Application Development Tools data file utility
(DFU) to create programs to enter data into
files, update files, inquire into files and run
DFU programs. This guide also provides the
work station operator with activities and
material to learn about DFU.

v SNA Distribution Services , provides the
system programmer or network administrator
with information about configuring a
communications network for distribution
services (SNADS) and the Virtual
Machine/Multiple Virtual Storage (VM/MVS)
bridge. In addition, object distribution
functions, document library services and
system distribution directory services are also
discussed.

v ICF Programming , provides the application
programmer with the information needed to
write application programs that use iSeries
communications and ICF files. It also contains
information on data description specifications
(DDS) keywords, system-supplied formats,
return codes, file transfer support, and
programming examples.

© Copyright IBM Corp. 1998, 2001, 2002 291

v The ISDN topic in the iSeries Information
Center descibes how to connect your iSeries
server to an Integrated Services Digital
Network (ISDN) for faster, more accurate data
transmission.

v LAN, Frame-Relay and ATM Support ,
contains information on using an iSeries server
in a token-ring network, an Ethernet network,
or bridged network environment.

v Remote Work Station Support , provides
information for the application programmer or
system programmer about configuration
commands and defining lines, controllers, and
devices.

v The Query Management Programming topic in
the iSeries Information Center provides the
application programmer with information on
how to determine the database files to be
queried for a report, define a structured query
language (SQL) query definition, and use and
write procedures that use query management
commands. This book also includes information
on how to use the query global variable
support and understanding the relationship
between the OS/400 query management and
the iSeries Query licensed program.

v Remote Work Station Support , provides
information on how to set up and use remote
work station support, such as display station
pass-through, distributed host command
facility, and 3270 remote attachment.

v The Security topic in the iSeries Information
Center provides the system programmer (or
someone who is assigned the responsibilities of
a security officer) with information about
system security concepts, planning for security,
and setting up security on the system.

v The SQL Programming Concepts topic in the
iSeries Information Center provides the
application programmer, programmer, or
database administrator with an overview of
how to design, write, test and run SQL
statements. It also describes interactive
Structured Query Language (SQL).

v The SQL Reference topic in the iSeries
Information Center provides the application
programmer, programmer, or database
administrator with detailed information about
SQL statements and their parameters.

v X.25 Network Support , contains information
on using iSeries servers in an X.25 network.

Distributed Relational Database
Library
The following books provide background and
general support information for IBM Distributed
Relational Database Architecture implementations.
v DRDA: Every Manager’s Guide , GC26-3195,

provides concise, high-level education on
distributed relational database and distributed
file. This book describes how IBM supports the
development of distributed data systems, and
discusses some current IBM products and
announced support for distributed data. The
information in this book is intended to help
executives, managers, and technical personnel
understand the concepts of distributed data.

v DRDA: Planning for Distributed Relational
Database , SC26-4650, helps you plan for
distributed relational data. It describes the steps
to take, the decisions to make, and the options
from which to choose in making those
decisions. The book also covers the distributed
relational database products and capabilities
that are now available or that have been
announced, and it discusses IBM’s stated
direction for supporting distributed relational
data in the future. The information in this book
is intended for planners.

v DRDA: Connectivity Guide SC26-4783, describes
how to interconnect IBM products that support
Distributed Relational Database Architecture. It
explains concepts and terminology associated
with distributed relational database and
network systems. This book tells you how to
connect unlike systems in a distributed
environment. The information in the
Connectivity Guide is not included in any
product documentation. The information in this
book is intended for system administrators,
database administrators, communication
administrators, and system programmers.

v DRDA: Application Programming Guide,
SC26-4773, describes how to design, build, and
modify application programs that access IBM’s
relational database management systems. This
manual focuses on what a programmer should
do differently when writing distributed
relational database applications for unlike
environments. Topics include program design,
preparation, and execution, as well as
performance considerations. Programming
examples written in IBM C are included. The
information in this manual is designed for
application programmers who work with at

292 OS/400 Distributed Database Programming V5R2

least one of IBM’s high-level languages and
with Structured Query Language (SQL).

v DRDA: Problem Determination Guide, SC26-4782,
helps you define the source of problems in a
distributed relational database environment.
This manual contains introductory material on
each product, for people not familiar with those
products, and gives detailed information on
how to diagnose and report problems with
each product. The guide describes procedures
and tools unique to each host system and those
common among the different systems. The
information in this book is intended for the
people who report distributed relational
database problems to the IBM Support Center.

v IBM SQL Reference, Volume 2, SC26-8416, makes
references to DRDA and compares the facilities
of:
– IBM SQL relational database products
– IBM SQL
– ISO-ANSI SQL (SQL92E)
– X/Open SQL (XPG4-SQL)
– ISO-ANSI SQL Call Level Interface (CLI)
– X/Open CLI
– Microsoft Open Database Connectivity

(ODBC) Version 2.0

Other IBM Distributed Relational
Database Platform Libraries
DB2 Connect and Universal Database

If you are working with DB2 Connect and
Universal Database and would like more
information, see the web page Knowledge Base:
DB2 Universal Database and DB2 Connect for
Windows, OS/2, UNIX. There you can find the
following books , as well as others specific to
different versions (Note, however, that not all
functions explained in this manual are supported
by all versions):
v DB2 Connect Enterprise Edition Quick Beginning

v DB2 Connect Personal Edition Quick Beginning

v DB2 Connect User’s Guide

v DB2 UDB for OS/2 Quick Beginnings

v DB2 UDB for UNIX Quick Beginnings

v DB2 UDB for Windows NT Quick Beginnings

v DB2 UDB Personal Edition Quick Beginnings

v DB2 UDB SQL Getting Started

v DB2 UDB Administration Guide

v DB2 UDB SQL Reference

v DB2 UDB Command Reference

v DB2 UDB Messages Reference

v DB2 UDB Troubleshooting Guide

DB2 for OS/390 and z/OS

If you are working with DB2 for OS/390 and
z/OS and would like more information, see the
web page DB2 for OS/390 and z/OS. There you
can find the following books , as well as others
specific to different versions (Note, however, that
not all functions explained in this manual are
supported by all versions):
v DB2 for OS/390 Command Reference

v DB2 for OS/390 Reference for Remote DRDA

v DB2 for OS/390 SQL Reference

v DB2 for OS/390 Utility Guide and Reference

v DB2 for OS/390 Messages and Codes

DB2 Server for VSE &VM

If you are working with DB2 Server for VSE
&VM and would like more information, see the
web page DB2 Server for VSE &VM. There you
can find the following books , as well as others
specific to different versions (Note, however, that
not all functions explained in this manual are
supported by all versions):
v SBOF for DB2 Server for VM

v DB2 and Data Tools for VSE and VM

v DB2 Server for VM Database Administration

v DB2 Server for VM Application Programming

v DB2 Server for VM Database Services Utilities

v DB2 Server for VM Messages and Codes

v DB2 Server for VM Master Index and Glossary

v DB2 Server for VM Operation

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

v DB2 Server for VM System Administration

v DB2 Server for VM Diagnosis Guide

v DB2 Server for VM Interactive SQL Guide

v DB2 Server Data Spaces Support for VM/ESA

v DB2 Server for VSE & VM LPS

v DB2 Server for VSE & VM Data Restore

v DB2 for VM Control Center Installation

v DB2 Server for VM/VSE Training Brochure

Bibliography 293

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7c6db2c697.htm
http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7c6db2c697.htm
http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/document.d2w/report?fn=db2v7c6db2c697.htm
http://www-4.ibm.com/software/data/db2/os390/library.html
http://www-4.ibm.com/software/data/db2/vse-vm/support.html

Architecture Books
v Character Data Representative Architecture:

Overview, GC09-2207
v Character Data Representative Architecture: Details,

SC09-2190
This manual includes a CD-ROM, which
contains the two CDRA publications in online
BOOK format, conversion tables in binary
form, mapping source for many of the
conversion binaries, a collection of code page
and character set resources, and character
naming information as used in IBM. The CD
also includes a viewing utility to be used with
the provided material. Viewer works with
OS/2, Windows 3.1, and Windows 95.

v DRDA Vol. 1: Distributed Relational Database
Architecture (DRDA)

This Technical Standard is one of three volumes
documenting the Distributed Relational
Database Architecture Specification. This
volume describes the connectivity between
relational database managers that enable
applications programs to access distributed
relational data. It describes the necessary
connection between an application and a
relational database management system in a
distributed environment; the responisbilities of
the participants and when flows should occur;
and the formats and protocols required for
distributed database management system
processing. It does not describe an API for
distributed database managment system
processing. This document is available on the
web at
http://www.opengroup.org/dbiop/index.htm.

v DRDA Vol. 2: Formatted Data Object Content
Architecture (FD:OCA)

This Technical Standard is one of three volumes
documenting the Distributed Relational
Database Architecture Specification. This
volume describes the functions and services
that make up the Formatted Data Object
Content Architecture (FD:OCA). This
architecture makes it possible to bridge the
connectivity gap between environments with
different data types and data representations
methods. FD:OCA is embedded in DRDA. This
document is available on the web at
http://www.opengroup.org/dbiop/index.htm.

v DRDA Vol. 3: Distributed Data Management
(DDM) Architecture

This Technical Standard is one of three volumes
documenting the Distributed Relational

Database Architecture Specification. This
volume describes the architected commands,
parameters, objects, and messages of the DDM
data stream. This data stream accomplishes the
data interchange between the various pieces of
the DDM model. This document is available on
the web at
http://www.opengroup.org/dbiop/index.htm.

Redbooks
v Distributed Relational Database: Using DDCS/6000

DRDA Support with DB2 and DB2/400,
GG24-4155

v Setup and Usage of SQL/DS in a DRDA
Environment, GG24-3733

v DRDA Client/Server Application Scenarios,
GG24-4193

v DRDA Client/Server for VM &VSE Setup,
GG24-4275

v DATABASE 2/400 Advanced Database Functions,
GG24-4249

v Distributed Relational Database Cross Platform
Connectivity and Application, GG24-4311

v Getting Started with DB2 Stored Procedures: Give
Them a Call through the Network, GG24-4693

v WOW! DRDA Supports TCP/IP: DB2 Server for
OS/390, SG24-2212, SG24-2212-00

294 OS/400 Distributed Database Programming V5R2

http://www.opengroup.org/publications/catalog/c812.htm
http://www.opengroup.org/publications/catalog/c813.htm
http://www.opengroup.org/publications/catalog/c814.htm

Index

Special characters
(FFDC) first-failure data capture 182

A
access path

protection, system-managed 130
access plan

definition 211
SQL package 211

accessing iSeries data via DB2
Connect 256

accounting
planning for 25

active job
working with 145

active jobs
working with 100, 144

Add Relational Database Directory Entry
(ADDRDBDIRE) command 77, 122,
136, 184

Add Sphere of Control Entry
(ADDSOCE) command 41

adding
relational database directory

entry 77, 136, 184
sphere of control entry 41

ADDRDBDIRE (Add Relational Database
Directory Entry) command 77, 122,
136, 184

ADDSOCE (Add Sphere of Control
Entry) command 41

administration and operation 97
administration task

displaying job log 102
finding a distributed relational

database job 102
job accounting 111
operating servers remotely 104
starting and stopping remote

servers 104
submitting remote commands 105
working with active jobs 100
working with commitment

definitions 101
working with jobs 98
working with user jobs 98

Advanced Peer-to-Peer Networking
(APPN)

configuration example 33
DRDA support 28
remote location list 32

Advanced Program-to-Program
Communications (APPC)

DRDA support 28
alert

definition 29
for distributed relational

database 176
problem handling 175

alert (continued)
set up 40
types 29
working with 175

alert default focal point (ALRDFTFP)
parameter 41

alert primary focal point (ALRPRIFP)
parameter 41

alert support
focal point

definition 29
set up 43

overview 29
sphere of control

definition 29
set up 43

analyzing
RW trace data 266

APPC (Advanced Program-to-Program
Communications)

DRDA support 28
application

considerations 20
designing 20
requirements 20

Application Development Tools
(ADT) 88

application program
binding 211
compiling 211
creating an SQL package 215
deleting an SQL package 219
handling problems

SQLCODE 164
SQLSTATE 164

host program 208
host variable 208
precompiler commands 210
precompiling 209
program references 214
SQL naming convention 191
SQLCODE 167
SQLSTATE 167
system naming convention 190
temporary source file member 210
testing and debugging 212

application programming examples 223
application requester

commitment control for DDM
jobs 207

definition 3
problem diagnosis 151
program start request failure

message 162
relational database directory 76

application requester driver (ARD)
programs 9

application server 152
commitment control for DDM

jobs 207
definition 3

application server (continued)
problem diagnosis 152
program start request failure

message 162
relational database directory 76
starting a service job 183

application server (AS)
submit remote commands 105

applications
writing Distributed Relational

Database 189
APPN (Advanced Peer-to-Peer

Networking)
configuration example 33
DRDA support 28
remote location list 32

APPN location list 32
ARD (application requester driver)

programs 9
ASP (auxiliary storage pool) 127
ASP group

definition 61
use 21

auditing
Add Relational Database Directory

Entry (ADDRDBDIRE) 122
ADDRDBDIRE (Add Relational

Database Directory Entry) 122
Change Relational Database Directory

Entry (CHGRDBDIRE) 122
CHGRDBDIRE (Change Relational

Database Directory Entry) 122
Display Relational Database Directory

Entry (DSPRDBDIRE) 122
DSPRDBDIRE (Display Relational

Database Directory Entry) 122
relational database directory 122
Remove Relational Database Directory

Entry (RMVRDBDIRE) 122
RMVRDBDIRE (Remove Relational

Database Directory Entry) 122
Work with Relational Database

Directory Entries
(WRKRDBDIRE) 122

WRKRDBDIRE (Work with Relational
Database Directory Entries) 122

authority
restoring 134, 135
saving 135

autostart job 72
auxiliary storage pool (ASP) 127

B
backup

planning for 26
batch job 72
binding an application 211
blocking

factors that affect 145

© Copyright IBM Corp. 1998, 2001, 2002 295

blocks
size factors 148

C
C/400

programming
examples 246

capabilities
distributed relational database 18

catalog
definition 1

CCSID
conversion considerations 253, 255
DB2 255
DB2 Connect licensed program 253
DB2 Server for VM database

managers 255
CCSID (coded character set identifier) 8

allowed values 204
changing 205
how data is translated 206
in user profile 205
overview 204
tagging 204, 206

CCSID (Coded Character Set Identifier)
DB2 considerations 255
DB2 UDB Server for VM

considerations 255
CCSID considerations 253
CDRA (Character Data Representation

Architecture) 8, 204
Change Job (CHGJOB) command 107
Change Network Attributes (CHGNETA)

command 31, 41
Change Object Auditing Value

(CHGOBJAUD) command 125
Change Relational Database Directory

Entry (CHGRDBDIRE) command 80,
122, 184

Change Subsystem Description
(CHGSBSD) command 73

changed object
saving 134

changing
job 107
network attributes 31, 41
object auditing value 125
relational database directory

entry 80, 184
subsystem description 73

character conversion 8
Character Data Representation

Architecture (CDRA) 8, 204
with DRDA 8

checksum protection 127
CHGDDMTCPA command 85
CHGJOB (Change Job) command 107
CHGNETA (Change Network Attributes)

command 31, 41
CHGOBJAUD (Change Object Auditing

Value) command 125
CHGRDBDIRE (Change Relational

Database Directory Entry)
command 80, 122, 184

CHGSBSD (Change Subsystem
Description) command 73

COBOL/400
programming

examples 239
code page 9
coded character set identifier (CCSID) 8
Coded Character Set Identifier (CCSID)

allowed values 204
changing 205
DB2 considerations 255
DB2 UDB Server for VM

considerations 255
how data is translated 206
in user profile 205
overvie1w 204
tagging 204, 206

collection
definition 1
in SQL naming convention 191
SQL communication area

(SQLCA) 167
collection and table creation

DB2 UDB Query Manager and SQL
Development Kit needed for 258

command, CL
Add Relational Database Directory

Entry (ADDRDBDIRE) 77, 122, 136,
184

Add Sphere of Control Entry
(ADDSOCE) 41

ADDRDBDIRE (Add Relational
Database Directory Entry) 77, 122,
136, 184

ADDSOCE (Add Sphere of Control
Entry) 41

Change Job (CHGJOB) 107
Change Network Attributes

(CHGNETA) 31, 41
Change Object Auditing Value

(CHGOBJAUD) 125
Change Relational Database Directory

Entry (CHGRDBDIRE) 80, 122, 184
Change Subsystem Description

(CHGSBSD) 73
CHGJOB (Change Job) 107
CHGNETA (Change Network

Attributes) 31, 41
CHGOBJAUD (Change Object

Auditing Value) 125
CHGRDBDIRE (Change Relational

Database Directory Entry) 80, 122,
184

CHGSBSD (Change Subsystem
Description) 73

Create Structured Query Language C
(CRTSQLC) 210

Create Structured Query Language C
ILE (CRTSQLCI) 210

Create Structured Query Language
COBOL (CRTSQLCBL) 210

Create Structured Query Language
COBOL ILE (CRTSQLCBLI) 210

Create Structured Query Language
FORTRAN (CRTSQLFTN) 210

Create Structured Query Language
Package (CRTSQLPKG) 215

Create Structured Query Language
PL/I (CRTSQLPLI) 210

command, CL (continued)
Create Structured Query Language

RPG (CRTSQLRPG) 210
Create Structured Query Language

RPG ILE (CRTSQLRPGI) 210
CRTSQLC (Create Structured Query

Language C) 210
CRTSQLCBL (Create Structured Query

Language COBOL) 210
CRTSQLCBLI (Create Structured

Query Language COBOL ILE) 210
CRTSQLCI (Create Structured Query

Language C ILE) 210
CRTSQLFTN (Create Structured

Query Language FORTRAN) 210
CRTSQLPKG (Create Structured

Query Language Package) 215
CRTSQLPLI (Create Structured Query

Language PL/I) 210
CRTSQLRPG (Create Structured

Query Language RPG) 210
CRTSQLRPGI (Create Structured

Query Language RPG ILE) 210
Display Job Log (DSPJOBLOG) 102
Display Journal (DSPJRN) 25, 129
Display Message Descriptions

(DSPMSGD) 157
Display Program References

(DSPPGMREF) 108, 214
Display Relational Database Directory

Entry (DSPRDBDIRE) 80, 122, 135
Display Sphere of Control Status

(DSPSOCSTS) 41
DSPJOBLOG (Display Job Log) 102
DSPJRN (Display Journal) 25, 129
DSPMSGD (Display Message

Descriptions) 157
DSPPGMREF (Display Program

References) 108, 214
DSPRDBDIRE (Display Relational

Database Directory Entry) 80, 122,
135

DSPSOCSTS (Display Sphere of
Control Status) 41

RCLDDMCNV (Reclaim Distributed
Data Management
Conversations) 107

RCLRSC (Reclaim Resources) 107
Reclaim Distributed Data

Management Conversations
(RCLDDMCNV) 107

Reclaim Resources (RCLRSC) 107
Remove Relational Database Directory

Entry (RMVRDBDIRE) 80, 122
Remove Sphere of Control Entry

(RMVSOCE) 41
Restore Authority (RSTAUT) 134, 135
Restore Configuration (RSTCFG) 134
Restore Library (RSTLIB) 134
Restore Object (RSTOBJ) 134, 135,

137
Restore User Profiles

(RSTUSRPRF) 134, 135
RMVRDBDIRE (Remove Relational

Database Directory Entry) 80, 122
RMVSOCE (Remove Sphere of

Control Entry) 41

296 OS/400 Distributed Database Programming V5R2

command, CL (continued)
RSTAUT (Restore Authority) 134, 135
RSTCFG (Restore Configuration) 134
RSTLIB (Restore Library) 134
RSTOBJ (Restore Object) 134, 135,

137
RSTUSRPRF (Restore User

Profiles) 134, 135
SAVCHGOBJ (Save Changed

Object) 134
Save Changed Object

(SAVCHGOBJ) 134
Save Library (SAVLIB) 129, 134
Save Object (SAVOBJ) 129, 134, 135
Save Save File Data

(SAVSAVFDTA) 134
Save Security Data

(SAVSECDTA) 135
Save System (SAVSYS) 134, 135
SAVLIB (Save Library) 129, 134
SAVOBJ (Save Object) 129, 134, 135
SAVSAVFDTA (Save Save File

Data) 134
SAVSECDTA (Save Security

Data) 135
SAVSYS (Save System) 134, 135
SBMRMTCMD (Submit Remote

Command) 105, 110
authority restrictions 105

Start Commitment Control
(STRCMTCTL) 131

Start Copy Screen
(STRCPYSCRN) 155

Start Debug (STRDBG) 183
Start Journal Access Path

(STRJRNAP) 129
Start Pass-Through

(STRPASTHR) 155
Start Service Job (STRSRVJOB) 183
STRCMTCTL (Start Commitment

Control) 131
STRCPYSCRN (Start Copy

Screen) 155
STRDBG (Start Debug) 183
STRJRNAP (Start Journal Access

Path) 129
STRPASTHR (Start

Pass-Through) 155
STRSRVJOB (Start Service Job) 183
Submit Remote Command

(SBMRMTCMD) 105, 110
authority restrictions 105

Vary Configuration (VRYCFG) 32,
139

VRYCFG (Vary Configuration) 32,
139

Work with Active Jobs
(WRKACTJOB) 100, 144

Work with Configuration Status
(WRKCFGSTS) 32, 139

Work with Disk Status
(WRKDSKSTS) 144

Work with Job (WRKJOB) 98
Work with Relational Database

Directory Entries
(WRKRDBDIRE) 80, 122

command, CL (continued)
Work with Sphere of Control

(WRKSOC) 41
Work with System Status

(WRKSYSSTS) 144
Work with User Jobs

(WRKUSRJOB) 98
WRKACTJOB (Work with Active

Jobs) 100, 144
WRKCFGSTS (Work with

Configuration Status) 32, 139
WRKDSKSTS (Work with Disk

Status) 144
WRKJOB (Work with Job) 98
WRKRDBDIRE (Work with Relational

Database Directory Entries) 80, 122
WRKSOC (Work with Sphere of

Control) 41
WRKSYSSTS (Work with System

Status) 144
WRKUSRJOB (Work with User

Jobs) 98
command, precompiler

Create Structured Query Language C
ILE (CRTSQLCI) 210

Create Structured Query Language
COBOL (CRTSQLCBL) 210

Create Structured Query Language
COBOL ILE (CRTSQLCBLI) 210

Create Structured Query Language
FORTRAN (CRTSQLFTN) 210

Create Structured Query Language
PL/I (CRTSQLPLI) 210

Create Structured Query Language
RPG (CRTSQLRPG) 210

Create Structured Query Language
RPG ILE (CRTSQLRPGI) 210

CRTSQLCBL (Create Structured Query
Language COBOL) 210

CRTSQLCBLI (Create Structured
Query Language COBOL ILE) 210

CRTSQLCI (Create Structured Query
Language C ILE) 210

CRTSQLFTN (Create Structured
Query Language FORTRAN) 210

CRTSQLPLI (Create Structured Query
Language PL/I) 210

CRTSQLRPG (Create Structured
Query Language RPG) 210

CRTSQLRPGI (Create Structured
Query Language RPG ILE) 210

commitment control
journal management 128
lock levels 131
notify object (NFYOBJ)

parameter 131
overview 4
record lock durations 132
starting 131
transaction recovery 130
with distributed relational database

and DDM jobs 207
commitment definitions, defined 101
committed work

definition 4
communications

alert support 29

communications (continued)
APPC support 28
APPN support 28
configuration

alerts 40
controller description 32
line description 32
location list 32
network interface description 31
steps 31
varying on or off 32

DDM and DRDA coexistence 28, 86
DDM conversations 106
job 72, 73
network considerations

for DRDA support 30
overview 27

communications tools 27
communications trace

messages 179
system service tools (SST) 180

compiling programs 211
concepts and terms 6
configuration

alerts 40
restoring 134
varying 32, 139

configuration status
working with 32, 139

configuring
alerts 42
APPN network nodes 33
communications

controller description 32
line description 32
network interface description 31
steps 31

configuring communications
network attributes 31

connected state 195
connection

SQL 193
SQL versus network 106

connection failures 162
connection management 20
connection problems 162
connection state

CONNECT (Type 2) statement 193
connection states

activation group 195
distributed unit of work 193
remote unit of work 192

considerations
application programming 190
CCSID 253

controlling subsystem
definition 72
QBASE 72
QCTL 73

conversations
SNA versus TCP/IP 106

conversion considerations
CCSID 253, 255
DB2 255
DB2 Connect licensed program 253
DB2 Server for VM database

managers 255

Index 297

copying displays 155
CPI3E34

See QRWOPTIONS 56
Create Structured Query Language C ILE

(CRTSQLCI) command 210
Create Structured Query Language

COBOL (CRTSQLCBL) command 210
Create Structured Query Language

COBOL ILE (CRTSQLCBLI)
command 210

Create Structured Query Language
FORTRAN (CRTSQLFTN)
command 210

Create Structured Query Language
Package (CRTSQLPKG) command 215

Create Structured Query Language PL/I
(CRTSQLPLI) command 210

Create Structured Query Language RPG
(CRTSQLRPG) command 210

Create Structured Query Language RPG
ILE (CRTSQLRPGI) command 210

creating
structured query language

package 215
cross-platform DRDB notes 253
CRTSQLCBL (Create Structured Query

Language COBOL) command 210
CRTSQLCBLI (Create Structured Query

Language COBOL ILE) command 210
CRTSQLCI (Create Structured Query

Language C ILE) command 210
CRTSQLFTN (Create Structured Query

Language FORTRAN) command 210
CRTSQLPKG (Create Structured Query

Language Package) command 215
CRTSQLPLI (Create Structured Query

Language PL/I) command 210
CRTSQLRPG (Create Structured Query

Language RPG) command 210
CRTSQLRPGI (Create Structured Query

Language RPG ILE) command 210
current connection state 195

D
data

accessing via DB2 Connect 256
blocked for better performance 257
character conversion 8
considerations 22
designing 20
failure 177
requirements 22

data availability and protection 125
data capture

FFDC 182
data conversion

noncharacter data 207
data entries

interpreting 265
data file utility (DFU) 88
data location

deciding 145
data needs

determining 17
data redundancy 140

data translation
CCSID 204
noncharacter data 207

database
security 45

database administration
displaying job log 102
finding a distributed relational

database job 102
job accounting 111
operating servers remotely 104
starting and stopping remote

servers 104
submitting remote commands 105
working with

active jobs 100
commitment definitions 101
jobs 98
user jobs 98

database recovery
auxiliary storage pool (ASP) 127
checksum protection 127
converting journal receiver

entries 129
disk failures 126
failure types 125
journal management 127
methods 125
mirrored protection 127
rebuilding indexes 129
reducing index rebuilding time 130
uninterruptible power supply 126

database, improving performance
through 145

DB2 7
CCSID 255
conversion considerations 255

DB2 Connect 7
accessing iSeries server data 256

DB2 Connect licensed program
CCSID 253
conversion considerations 253

DB2 for iSeries Query Management
function

loading data into tables 87
DB2 for VSE & VM 7
DB2 Server for VM database managers

CCSID 255
conversion considerations 255

DB2 UDB for iSeries Query Management
function

moving data between iSeries
servers 91

DB2 UDB Query Manager and SQL
Development Kit

coexistence across DRDA
platforms 203

collection and table creation 258
distributed relational database

statements 201
DDM (distributed data management)

CHGJOB command 107
coexistence with DRDA support 28
DDMCNV job attribute 106, 107
dropped conversations 106
dropping conversations 106, 107
keeping conversations 106

DDM (distributed data management)
(continued)

keeping conversations active 106, 107
moving data between iSeries

servers 91
reclaiming

conversations 107
resources 107

unused conversations 106
using copy file commands 91

DDM error codes on FFDC 279
DDM file

setting up 86
DDM file access 86
DDM files

SQL commitment control 207
DDM job start message 102
DDMCNV (DDM conversations) job

attribute 106, 107
debug

starting 183
debugging and testing

application program 212
default collection name 191
default focal point

definition 29
defining

controller description 32
line description 32
network interface description 31

description
FFDC dump output 274
RW trace points 267

design
application 20
data 20
network 20

design for distributed relational
database 17

developing
management strategy 22

DFU (data file utility) 88
diagnostic options 187
Diffie-Hellman

encryption 60
DISCONNECT 106
disk failure

auxiliary storage pool (ASP) 127
checksum protection 127
mirrored protection 127

disk status
working with 144

Display Job Log (DSPJOBLOG)
command 102

Display Journal (DSPJRN) command 25,
129

Display Message Descriptions
(DSPMSGD) command 157

Display Program References
(DSPPGMREF) command 108, 214

Display Relational Database Directory
Entry (DSPRDBDIRE) command 80,
122, 135

Display Sphere of Control Status
(DSPSOCSTS) command 41

display, copying 155

298 OS/400 Distributed Database Programming V5R2

displaying
job log 102
journal 25, 129
message descriptions 157
objects 108
program references 108, 214
relational database directory

entry 80, 135
sphere of control status 41

distributed data management (DDM)
CHGJOB command 107
coexistence with DRDA support 28
DDMCNV job attribute 106, 107
dropped conversations 106
dropping conversations 106, 107
keeping conversations 106
keeping conversations active 106, 107
moving data between iSeries

servers 91
reclaiming

conversations 107
resources 107

unused conversations 106
using copy file commands 91

distributed data management
conversations

reclaiming 107
distributed relational database

remote unit of work 192
set up 71
SQL specific to 200

Distributed Relational Database
administration and operation 97
managing 11

Distributed Relational Database
application

considerations for a Distributed
Relational Database 190

programming considerations 190
Distributed Relational Database

Architecture (DRDA) support
coexistence with DDM 28
current iSeries support 10
overview 7
with CDRA 8

distributed relational database
capabilities 18

distributed relational database problems
incorrect output 150
waiting, looping, performance

at the application requester 151
at the application server 152

distributed relational database
security 45

distributed unit of work (DUW)
application design tips 20
definition 5

dormant connection state 195
DRDA (Distributed Relational Database

Architecture) Level 2 support 5
DRDA (Distributed Relational Database

Architecture) support
coexistence with DDM 28
current iSeries support 10
level 1 support 1
level 2 support 1
overview 7

DRDA (Distributed Relational Database
Architecture) support (continued)

with CDRA 8
DRDA Connect Authorization

Failure 162
DRDB

cross-platform 253
DROP PACKAGE statement 220
dropping a collection 110
DSPJOBLOG (Display Job Log)

command 102
DSPJRN (Display Journal) command 25,

129
DSPMSGD (Display Message

Descriptions) command 157
DSPPGMREF (Display Program

References) command 108, 214
DSPRDBDIRE (Display Relational

Database Directory Entry)
command 80, 122, 135

DSPSOCSTS (Display Sphere of Control
Status) command 41

dump, FFDC 271
DUW (distributed unit of work)

definition 5

E
EBCDIC 9
encoding, character conversion 8
encrypted

datastreams 181
encryption

Diffie-Hellman 60
End TCP/IP Server CL command 115
ending SQL programs 203
environments

like 7
unlike 7

error log 178
FFDC data 183

error message
DRDA Connect Authorization

Failure 162
error recovery

relational database 125
error reporting

alerts 175
communications trace 179
definition 270
DRDA supported alerts 176
first-failure data capture 270
printing a job log 177
printing an error log 178
trace jobs 179

example
alerts configuration

adding a sphere of control
entry 43

at end nodes 43
creating 43

analyzing the RW trace data 266
APPN configuration

controller description,
nonswitched 35, 39

controller description,
switched 36, 40

example (continued)
APPN configuration (continued)

network attributes 35, 37, 38
network node to network

node 33
nonswitched line description 35,

38
switched line description 36, 39

configuring alert support 42
displaying program references 109
displaying SQL package

references 110
FFDC dump 271
programming

C/400 language 246
COBOL/400 language 239
database setup 224
inserting data 225
RPG/400 language 230

spiffy corporation 12
examples 82

application programming 223
expectations and needs

identifying 17
explicit connection 198

F
factors that affect blocking 145
factors that affect query block size 148
failure data 177
FAQs from users of DB2 Connect 256
FFDC (first-failure data capture) 177

interpreting 265
FFDC data

interpreting 183
FFDC dump 271
files

journaling 257
finding first-failure data capture

data 182
finding job logs from TCP/IP server

prestart jobs 177
first-failure data capture (FFDC) 177,

182
DDM error codes 279
dump output description 274

first-failure data capture data (FFDC)
interpreting 265

focal point
default 29
definition 29
primary 29
sphere of control 29

G
getting data to report a failure 177

H
handling DRDB problems 149
held connection state 195
history log, displaying 121
host program

definition 208

Index 299

host variables
definition 208

hung job 110

I
IBM-supplied subsystem

QBASE 72
QBATCH 73
QCMN 73
QCTL 73
QINTER 73
QSPL 73
QSYSWRK 73

identifying your needs and
expectations 17

implicit connect 196
independent ASP

configuring with 21
vary on/off 128

index
definition 1
journaling 129
journaling restrictions 129
rebuilding 129
recovering 129
saving and restoring 134
starting journaling 129
table design considerations 130

informational messages 156
interactive job 72, 73
interactive SQL

moving data between servers 89
starting commitment control 131

interactive SQL and query management
setup 255

interpreting
data entries

for the RW component of trace
job 265

FFDC data 265
FFDC data from the error log 183
trace job 265

iSeries Distributed Relational Database
managing an 11

iSeries files
journaling 257

iSeries QCCSID value 254
iSeries server data

accessing via DB2 Connect 256

J
job

accounting 111
changing 107
types 72
working with 98

job log
alerts 177
displaying 102
finding a job 102

job trace 179
jobs

working with active 145

journal
displaying 25, 129

journal access path
starting 129

journal management
commitment control 128
indexes 129
journal receiver 127
overview 127
starting index journaling 129
stopping 128

journal receiver 127
journaling

iSeries files 257

K
Kerberos 60

authentication 55, 84
define names 57
source configuguration 56

L
LCKLVL parameter 131
library

restoring 134
saving 129, 134

like environment
definition 7

Listener program 114
load data

into tables 87
using DB2 for iSeries Query

Management 87
using DFU (data file utility) 88
using SQL 87

location, definition 21
loop problem

application requester 151
application server 152

M
management strategy

developing 22
managing an iSeries Distributed

Relational Database 11
message

Additional Message Information
display 157

category descriptions 156
database accessed 104
DDM job start 102
distributed relational database 159
handling problems 156
informational 156
inquiry 156
program start request failure 162
severity code 158
target DDM job started 104
types 158

message category 156
message descriptions

displaying 157

migration of data from mainframes 91,
94

mirrored protection 127
monitoring

relational database activity 97
moving data

between iSeries servers 88
between unlike servers

using communications 94
using File Transfer Protocol 95
using OSI File Services/400

licensed program 95
using SQL functions 94
using tape or diskette 94
using TCP/IP Connectivity

Utilities/400 licensed
program 95

copying files with DDM 91
using copy file commands 91
using DB2 UDB for iSeries Query

Management 91
using interactive SQL 89
using save and restore 93

N
naming convention

default collection name 191
SQL 191
system 190

naming distributed relational database
objects 190

national language support 204
needs and expectations

identifying 17
network

considerations 21
designing 20
improving performance through 143
requirements 21

network attributes
changing 31, 41

network configuration example 33
network considerations

for DRDA support 30
network redundancy 138
NFYOBJ (notify object) parameter 131
notes

cross-platform DRDB 253
notify object (NFYOBJ) parameter 131

O
object

restoring 134, 135, 137
saving 129, 134, 135

object auditing value
changing 125

objects
naming distributed relational

database 190
operation and administration 97
operations, general

planning for 22

300 OS/400 Distributed Database Programming V5R2

P
package management

SQL 219
packages

working with 214
pass-through

starting 155
password

encrypted 47, 50, 53, 60, 162
in CONNECT statement 200
in interactive SQL 200
sending 200

performance
blocked query data 257
blocking 145
deciding data location 145
delays on connect 153
distributed relational database 143
factors affecting 145
improving through database 145
improving through the network 143
improving through the server 144
observing server 144

performance problems
application server 152

planning
backup 26
general operations 22
recovery 26
security 24

planning for distributed relational
database 17

precompile process
commands 210
output listing 209
overview 209
SQL package 210
temporary source file member 210

precompiler command
Create Structured Query Language C

ILE (CRTSQLCI) 210
Create Structured Query Language

COBOL (CRTSQLCBL) 210
Create Structured Query Language

COBOL ILE (CRTSQLCBLI) 210
Create Structured Query Language

FORTRAN (CRTSQLFTN) 210
Create Structured Query Language

PL/I (CRTSQLPLI) 210
Create Structured Query Language

RPG (CRTSQLRPG) 210
Create Structured Query Language

RPG ILE (CRTSQLRPGI) 210
CRTSQLCBL (Create Structured Query

Language COBOL) 210
CRTSQLCBLI (Create Structured

Query Language COBOL ILE) 210
CRTSQLCI (Create Structured Query

Language C ILE) 210
CRTSQLFTN (Create Structured

Query Language FORTRAN) 210
CRTSQLPLI (Create Structured Query

Language PL/I) 210
CRTSQLRPG (Create Structured

Query Language RPG) 210
CRTSQLRPGI (Create Structured

Query Language RPG ILE) 210

prestart job 72
prestart jobs, using 116
primary focal point

definition 29
sphere of control setup 41

problem
system-detected 149
user-detected 150

problem analysis, planning for 25
problem handling 270

Additional Message Information
display 157

alerts 175
Analyze Problem (ANZPRB)

command 173
application problems 164
communications trace 179
copying displays 155
displaying message description 157
distributed relational database

messages 159
DRDA supported alerts 176
error log 178
isolating distributed relational

database problems 150
job log 177
job trace 179
message category 156
message severity 158
overview 149
problem log 173
program start request failure 162
system messages 156
system-detected problems 149
user-detected problems 150
using display station

pass-through 155
wait, loop, performance problems

application requester 151
application server 152

working with users 154
problem log 173
problems

handling 149
program references

displaying 108, 214
program start request failure 162
programming considerations

for a Distributed Relational Database
application 190

programming examples
application 223

protection
system-managed access-path 130

Q
QADBXRDBD 122
QBASE controlling subsystem 72
QCCSID

system value 254
QCNTSRVC 184, 185
QCTL controlling subsystem 73
QCTLSBSD system value 73
QPSRVDMP FFDC spooled file 271
QRWOPTIONS

data usage 186

query block size
factors that affect the 148

query data
blocked for better performance 257

query management and interactive SQL
setup 255

R
RCLDDMCNV (Reclaim Distributed Data

Management Conversations)
command 107

RCLRSC (Reclaim Resources)
command 107

RDB (relational database) parameter
implicit CONNECT 196
in CRTSQLPKG command 217
in relational database directory 78

Reclaim Distributed Data Management
Conversations (RCLDDMCNV)
command 107

Reclaim Resources (RCLRSC)
command 107

reclaiming
distributed data management

conversations 107
resources 107

recovery
auxiliary storage pool (ASP) 127
checksum protection 127
disk failures 126
failure types 125
journal management 127
methods 125
mirrored protection 127
planning for 26
uninterruptible power supply 126

redundancy
communications network 138
data 140

relational database
definition 1

relational database (RDB) parameter
implicit CONNECT 196
in CRTSQLPKG command 217
in relational database directory 78

relational database activity
monitoring 97

relational database directory
auditing 122
changing entries 80
commands 77
creating an output file 135
definition 71
displaying entries 80
local entry 77
optional parameters 78
RDB (relational database)

parameter 78
removing entries 80
restoring 136
RMTLOCNAME parameter 78
saving 135
setting up 76
setup example 82
using CL programs 84
working with entries 80

Index 301

relational database directory entries
working with 80

relational database directory entry
adding 77, 136, 184
changing 80, 184
displaying 80, 135
removing 80

relational database name
implicit CONNECT 196
in CRTSQLPKG command 217
in relational database directory 78

RELEASE 106
released connection state 195
remote command

submitting 105, 110
remote database

definition 1
remote procedure call 201
remote server operation

starting and stopping 104
submitting remote commands 105

remote unit of work (RUW) 192
definition 4

Remove Relational Database Directory
Entry (RMVRDBDIRE) command 80,
122

Remove Sphere of Control Entry
(RMVSOCE) command 41

removing
relational database directory entry 80
sphere of control entry 41

resources
reclaiming 107

Restore Authority (RSTAUT)
command 134, 135

Restore Configuration (RSTCFG)
command 134

Restore Library (RSTLIB) command 134
Restore Object (RSTOBJ) command 134,

135, 137
moving data between iSeries

servers 93
Restore User Profiles (RSTUSRPRF)

command 134, 135
restoring

authority 134, 135
configuration 134
from save file 134
from tape or diskette 134
indexes 134
library 134
object 134, 135, 137
relational database directory 136
security data 135
SQL packages 135
user profiles 134, 135

result sets
definition 201

RMVRDBDIRE (Remove Relational
Database Directory Entry)
command 80, 122

RMVSOCE (Remove Sphere of Control
Entry) command 41

rollback
definition 4

RPG/400
programming

examples 230
RSTAUT (Restore Authority)

command 134, 135
RSTCFG (Restore Configuration)

command 134
RSTLIB (Restore Library) command 134
RSTOBJ (Restore Object) command 134,

135, 137
RSTUSRPRF (Restore User Profiles)

command 134, 135
RUNRMTCMD command 86
RUW (remote unit of work)

definition 4
RW trace data

analyzing 266

S
SAVCHGOBJ (Save Changed Object)

command 134
Save Changed Object (SAVCHGOBJ)

command 134
save file 134
save file data

saving 134
Save Library (SAVLIB) command 129,

134
Save Object (SAVOBJ) command 129,

134, 135
moving data between iSeries

servers 93
Save Save File Data (SAVSAVFDTA)

command 134
Save Security Data (SAVSECDTA)

command 135
Save System (SAVSYS) command 134,

135
saving

changed object 134
indexes 134
journal receivers 128
library 129, 134
object 129, 134, 135
relational database directory 135
save file data 134
security data 135
SQL packages 135
system 134, 135
to save file 134
to tape or diskette 134

SAVLIB (Save Library) command 129,
134

SAVOBJ (Save Object) command 129,
134, 135

SAVSAVFDTA (Save Save File Data)
command 134

SAVSECDTA (Save Security Data)
command 135

SAVSYS (Save System) command 134,
135

SBMRMTCMD (Submit Remote
Command) command 105, 110

SBMRMTCMD command 86
schema

definition 1

security
application

requester 46
server 46

auditing 122
consistent system levels across

network 46
distributed database overview 46
encrypted 24
for an iSeries distributed relational

database 45
password 24, 200
planning for 24
restoring profiles and authorities 135
saving profiles and authorities 135
setting up 84

security data
saving 135

server
application

starting a service job 183
improving performance through 144

server authorization entries 85
server message

category 156
service job

on the application server 183
starting 183

setting QCNTSRVC as a TPN
on a DB2 Connect application

requester 185
on a DB2 for VM application

requester 184
on a DB2 UDB for iSeries application

requester 184
on a DB2 UDB for z/OS application

requester 184
setting up a distributed relational

database 71
setup

interactive SQL 255
query management 255

size of query blocks
factors that affect the 148

SMAPP (system-managed access-path
protection) 130

sort sequence
definition 260

special TPN for debugging APPC server
jobs 184

sphere of control
definition 29
working with 41

sphere of control entry
adding 41
removing 41

sphere of control status
displaying 41

spiffy corporation example 12
spooled job 72
SQL CALL 201
SQL collection

definition 1
SQL naming convention 191
SQL package

access plan 211
creating with CRTSQLPKG 215

302 OS/400 Distributed Database Programming V5R2

SQL package (continued)
creating with CRTSQLxxx 215
creation as a result of precompile 210
definition 189
deleting 219
displaying objects used 110
for interactive SQL 86
restoring 135
saving 135

SQL package management 219
SQL packages

working with 214
SQL program

compiling 211
displaying objects used 109
example listing

CRTSQLPKG 166
precompiler 164
SQLCODE 164
SQLSTATE 164

handling problems
SQLCODE 164
SQLSTATE 164

starting commitment control 131
SQL programs, ending 203
SQL specific to distributed relational

database 200
SQL statement

CALL 201
CONNECT

explicit 198
implicit 196

DISCONNECT 106
DROP PACKAGE 220
precompiling 209
RELEASE 106

SQL terms
corresponding system terms 1
definition list 1

SQLCODE error code
error handling 167
for distributed relational

database 167
SQLSTATE error code

error handling 167
for distributed relational

database 168
SST (system service tools) 180
Start Commitment Control

(STRCMTCTL) command 131
Start Copy Screen (STRCPYSCRN)

command 155
Start Debug (STRDBG) command 183
Start Journal Access Path (STRJRNAP)

command 129
Start Pass-Through (STRPASTHR)

command 155
Start Service Job (STRSRVJOB)

command 183
Start TCP/IP Server CL command 115
starting

commitment control 131
debug 183
journal access path 129
pass-through 155
service job 183

starting a service job 183

states
SQL connection 195

stored procedure 22, 116, 148
definition 201
use 145

STRCMTCTL (Start Commitment Control)
command 131

STRCPYSCRN (Start Copy Screen)
command 155

STRDBG (Start Debug) command 183
STRJRNAP (Start Journal Access Path)

command 129
STRPASTHR (Start Pass-Through)

command 155
STRSRVJOB (Start Service Job)

command 183
structured query language package

creating 215
Submit Remote Command

(SBMRMTCMD) command 105, 110
submitting

remote command 105, 110
subsystem 100, 119

communications 68
controlling 72
definition 72
descriptions 116
IBM-supplied 72
QBASE 72, 73
QBATCH 73
QCMN 73, 74
QCTL 73
QCTLSBSD system value 73
QINTER 73, 74
QSPL 73
QSYSWRK 73
setup considerations 73

subsystem description
changing 73

subsytem
user-defined 114

supported products
DB2 7
DB2 Connect 7
DB2 for VSE & VM 7

system
naming convention 190
saving 134, 135
terms 1

system database
definition 1

system message
Additional Message Information

display 157
displaying message description 157
for distributed relational

database 159
informational 156
inquiry 156
returned SQLCODE 159
severity code 158
types 156, 158

system performance
applicator requester problem 152

system service tools (SST) 180
system status

working with 144

system value
QCCSID 254

system-detected problem 149
system-managed access-path protection

(SMAPP) 130

T
table

definition 1
table creation

DB2 UDB Query Manager and SQL
Development Kit needed for 258

TCP/IP 20
finding job logs 178
finding server job logs 177
finding server jobs 103
forcing job logs to be saved 178
security 84
service jobs 185
working with server jobs 99

TCP/IP Communication Support
Concepts 113

TCP/IP communications,
establishing 114

temporary source file member 210
terminology 113
terms and concepts 6
testing and debugging

application program 212
tools

communications 27
TPN

setting QCNTSRVC 184, 185
trace

communications 179
job 179

trace data
analyzing 266

trace job data
interpreting 265

trace point
description 267

built in datastream from LOB
table 268

partial send data stream 268
receive data stream 267
saved in inbound LOB table 269
saved in outbound LOB table 268
send data stream 268
successful fetch 268
unsuccessful fetch 268

transaction program name parameter
in SNA (TPN) 78
in the iSeries server (TNSPGM) 78

TRCTCPAPP
command 53
function 179
trace 181

U
unconnected state 195
uninterruptible power supply 126
unit of work

definition 4

Index 303

unlike environment
definition 7

user database
association with ’location’ 21
definition 1

user exit program 65
DDM 75
example 63
function check 62

user jobs
working with 98

user profile
CCSID 205
restoring 135
saving 135

user profiles
restoring 134, 135

user-detected problem 150

V
Vary Configuration (VRYCFG)

command 32, 139
varying

configuration 32, 139
view

definition 1
recovering 129

VRYCFG (Vary Configuration)
command 32, 139

W
wait problem

application requester 151
application server 152

work management
job types 72
subsystem setup 73
subsystems 72

Work with Active Jobs (WRKACTJOB)
command 100, 144

Work with Configuration Status
(WRKCFGSTS) command 32, 139

Work with Disk Status (WRKDSKSTS)
command 144

Work with Job (WRKJOB) command 98
Work with Relational Database Directory

Entries (WRKRDBDIRE) command 80,
122

Work with Sphere of Control (WRKSOC)
command 41

Work with System Status (WRKSYSSTS)
command 144

Work with User Jobs (WRKUSRJOB)
command 98

working with
active jobs 100, 144, 145
configuration status 32, 139
disk status 144
job 98
relational database directory

entries 80
sphere of control 41
system status 144
user jobs 98

working with SQL packages 214
writing Distributed Relational Database

applications 189
WRKACTJOB (Work with Active Jobs)

command 100, 144
WRKCFGSTS (Work with Configuration

Status) command 32, 139
WRKDSKSTS (Work with Disk Status)

command 144
WRKJOB (Work with Job) command 98
WRKRDBDIRE (Work with Relational

Database Directory Entries)
command 80, 122

WRKSOC (Work with Sphere of Control)
command 41

WRKSYSSTS (Work with System Status)
command 144

WRKUSRJOB (Work with User Jobs)
command 98

304 OS/400 Distributed Database Programming V5R2

����

Printed in U.S.A.

	Contents
	About Distributed Database Programming
	Who should read this information
	What's new in V5R2 in the Distributed Database Programming book
	Code disclaimer information

	Chapter 1. Distributed Relational Database and the iSeries server
	Distributed relational database processing
	Remote unit of work
	Distributed unit of work
	Other distributed relational database terms and concepts

	Distributed Relational Database Architecture Support
	DRDA and CDRA support
	Character conversion with CDRA

	Application requester driver programs
	Distributed relational database on the iSeries server
	Managing an iSeries Distributed Relational Database
	Example: Spiffy Corporation distributed relational database
	Spiffy Organization and system profile
	Business processes of the Spiffy Corporation Automobile Service
	Distributed Relational Database administration for the Spiffy Corporation

	Chapter 2. Planning and Design for Distributed Relational Database
	Identifying your needs and expectations for a distributed relational database
	Data needs for distributed relational databases
	Distributed relational database capabilities
	Goals and directions for a distributed relational database

	Designing the application, network, and data for a distributed relational database
	Tips: Designing distributed relational database applications
	Network considerations for a distributed relational database
	Data considerations for a distributed relational database

	Developing a management strategy for a distributed relational database
	General operations for a distributed relational database
	Security considerations for a distributed relational database
	Accounting for a distributed relational database
	Problem analysis for a distributed relational database
	Backup and recovery for a distributed relational database

	Chapter 3. Communications for an iSeries Distributed Relational Database
	Communications tools for DRDA implementation
	APPC/APPN for a distributed relational database
	Using DDM and distributed relational database
	Alert support for a distributed relational database

	Distributed relational database communications network considerations
	Configuring communications for a distributed relational database
	Configuring a communications network for APPC
	Defining network attributes for a distributed relational database
	Defining a network interface description for a distributed relational database
	Defining a line description for a distributed relational database
	Defining a controller description for a distributed relational database
	Other configuration considerations for a distributed relational database

	Example: APPN configuration for a distributed relational database
	Configuring Network Node MP000
	Configuring Network Node KC000

	Configuring alert support for a distributed relational database
	Example: Configuration for alert support for a distributed relational database
	Create alerts at a network node
	Define A primary focal point
	Update the primary focal point’s sphere of control
	Create alerts for end nodes

	Configuring a communications network for TCP/IP
	Configuring communications over OptiConnect

	Chapter 4. Security for an iSeries Distributed Relational Database
	Elements of distributed relational database security
	Elements of DRDA Security in an APPC network
	APPN configuration lists
	Conversation level security

	DRDA application server (AS) security in an APPC network
	User-related elements of target security

	Elements of DDM/DRDA Security using TCP/IP
	Connection security protocols for DDM/DRDA
	Secure Sockets Layer (SSL) for DDM/DRDA
	Internet Protocol Security Protocol (IPSec) for DDM/DRDA
	Ports and port restrictions for DDM/DRDA
	Authentication Method Negotiation
	Kerberos Source Configuration
	Define Kerberos DRDA service names for non-iSeries remote servers
	Application server (AS) security in a TCP/IP network

	DRDA server access control exit programs
	Example: DRDA server access control exit program

	Object-related security for DRDA
	Authority to distributed relational database objects
	Programs that run under adopted authority for a distributed relational database

	Protection strategies in a Distributed Relational Database

	Chapter 5. Setting Up an iSeries Distributed Relational Database
	Work Management on the iSeries server
	Setting up your work management environment for DRDA
	Considerations for setting up subsystems for APPC

	DRDA considerations with user relational databases
	Using the relational database directory
	Working with the relational database directory
	Relational database directory setup example

	Setting up DRDA security
	Setting up the TCP/IP Server for DRDA
	Setting up SQL Packages for Interactive SQL (ISQL)
	Setting up DDM files
	Loading data into tables in a distributed relational database
	Loading new data into the tables of a distributed relational database
	Loading data into a table using SQL
	Manipulating data in tables and files using the iSeries Query Management function
	Entering data, updating tables, and making inquiries using Data File Utility

	Moving data from one iSeries server to another
	Creating a User-Written Application Program
	Querying a database using Interactive SQL
	Querying remote servers using DB2 UDB for iSeries Query Management function
	Copying files to and from tape or diskette
	Moving data between iSeries servers using Copy File Commands
	Transferring data over networks using Network File Commands
	Moving a table using server save and restore commands

	Moving a database to an iSeries server from a non-iSeries server
	Moving data from another IBM server
	Moving data from a non-IBM server

	Chapter 6. Distributed Relational Database Administration and Operation Tasks
	Monitoring relational database activity
	Working with jobs in a distributed relational database
	Working with user jobs in a distributed relational database
	Working with active jobs in a distributed relational database
	Working with commitment definitions in a distributed relational database
	Tracking request information with the job log of a distributed relational database
	Locating distributed relational database jobs

	Operating remote iSeries servers
	Controlling DDM conversations
	Reclaiming DDM resources

	Displaying objects used by programs
	Example: Display Program Reference

	Dropping a collection from a distributed relational database
	Job accounting in a distributed relational database
	Managing the TCP/IP server
	DRDA TCP/IP server terminology
	TCP/IP communication support concepts for DDM
	Establish a DRDA or DDM connection over TCP/IP
	DRDA/DDM listener program
	Start TCP/IP Server (STRTCPSVR) CL Command
	End TCP/IP Server (ENDTCPSVR) CL Command
	Start DDM listener in iSeries Navigator

	DRDA/DDM server jobs
	Subsystem Descriptions and Prestart Job Entries with DDM
	DRDA/DDM prestart jobs

	Configure the DDM server job subsystem
	Identifying server jobs
	iSeries Job Names
	Displaying Server Jobs
	Display the history log

	Auditing the relational database directory

	Chapter 7. Data Availability and Protection for a Distributed Relational Database
	Recovery support for a distributed relational database
	Data recovery after disk failures for distributed relational databases
	Auxiliary storage pools
	Checksum protection in a distributed relational database
	Mirrored protection for a distributed relational database

	Journal management for distributed relational databases
	Index recovery
	Designing tables to reduce index rebuilding time
	System-managed access-path protection (SMAPP)

	Transaction recovery through commitment control
	Save and restore processing for a distributed relational database
	Saving and restoring indexes in the distributed relational database environment
	Saving and restoring security information in the distributed relational database environment
	Saving and restoring SQL Packages in the distributed relational database environment
	Saving and restoring relational database directories

	Network redundancy issues for a distributed relational database
	Data redundancy in your distributed relational database network

	Chapter 8. Distributed Relational Database Performance
	Improving distributed relational database performance through the network
	Improving distributed relational database performance through the server
	Improving distributed relational database performance through the database
	Deciding DRDA data location
	Factors that Affect Blocking for DRDA
	Case 1: DB2 UDB for iSeries to DB2 UDB for iSeries Blocking
	Case 2: DB2 UDB for iSeries to Non-DB2 UDB for iSeries Blocking
	Case 3: Non-DB2 UDB for iSeries to DB2 UDB for iSeries Blocking
	Summarization of DRDA blocking rules

	Factors that affect the size of DRDA query blocks

	Chapter 9. Handling Distributed Relational Database Problems
	iSeries Problem Handling Overview
	Isolating Distributed Relational Database Problems
	DRDA incorrect output problems
	Application does not complete in the expected time problems

	Working with distributed relational database users
	Copy screen
	Messages
	Message types
	Distributed Relational Database messages

	Handling program start request failures for APPC
	Handling connection request failures for TCP/IP
	Server Is Not Started or the Port ID Is Not Valid
	DRDA Connect Authorization Failure
	Server Not Available
	Connection Failures Specific to Interactive SQL
	Not Enough Prestart Jobs at Server

	Application problems
	Listings
	Precompiler listing
	CRTSQLPKG listing

	SQLCODEs and SQLSTATEs
	Distributed relational database SQLCODEs and SQLSTATEs

	System and communications problems
	iSeries problem log
	Alerts

	Getting data to report a failure
	Printing a job log
	Finding job logs from TCP/IP server prestart jobs
	Printing the product activity log
	Trace job
	Communications trace
	Standard communications trace
	TRCTCPAPP trace for encrypted datastreams

	Finding First-Failure Data Capture (FFDC) data
	Starting a service job to diagnose application server problems
	Service jobs for APPC servers
	Creating your own TPN and Setting QCNTSRVC
	Setting QCNTSRVC as a TPN on a DB2 UDB for iSeries Application Requester
	Creating your own TPN for debugging a DB2 UDB for iSeries application server (AS) job
	Setting QCNTSRVC as a TPN on a DB2 UDB for VM Application Requester
	Setting QCNTSRVC as a TPN on a DB2 UDB for z/OS Application Requester
	Setting QCNTSRVC as a TPN on a DB2 Connect Application Requester

	Service jobs for TCP/IP servers
	QRWOPTIONS Data Area Usage
	QRWOPTIONS Data Area Usage
	Example: CL command to create the data area

	Chapter 10. Writing Distributed Relational Database Applications
	Programming considerations for a Distributed Relational Database application
	Naming distributed relational database objects
	System (*SYS) naming convention
	SQL (*SQL) naming convention
	Default collection name

	Connecting to a Distributed Relational Database
	DRDA remote unit of work
	Application-directed distributed unit of work
	Implicit connection management for the default activation group
	Implicit connection management for nondefault activation groups
	Explicit CONNECT

	SQL Specific to distributed relational database and SQL CALL
	Distributed relational database statements
	SQL CALL statement (Stored Procedures)
	DB2 UDB for iSeries coexistence

	Ending DRDA units of work
	Coded Character Set Identifier (CCSID)
	iSeries server Support

	Other DRDA data conversion
	DDM files and SQL

	Preparing distributed relational database programs
	Precompiling programs with SQL statements
	Listing
	Temporary source file member
	SQL package creation
	Precompiler commands

	Compiling an application program
	Binding an application
	Testing and debugging
	Program references

	Working with SQL packages
	Using the Create SQL Package (CRTSQLPKG) command
	SQL package management
	Delete SQL Package (DLTSQLPKG) command
	SQL DROP PACKAGE statement

	Appendix A. Application Programming Examples
	Example: Creating a collection and tables
	Example: Inserting data into the tables
	Example: RPG Program
	Example: COBOL Program
	Example: C Program
	Example: Program Output

	Appendix B. Cross-Platform Access Using DRDA
	CCSID considerations
	iSeries server value QCCSID
	CCSID conversion considerations for DB2 UDB for z/OS and DB2 UDB server for VM Database Managers

	Interactive SQL and Query Management setup on unlike application servers
	FAQs from users of DB2 Connect
	Do iSeries files have to be journaled?
	When will query data be blocked for better performance?
	Is the DB2 UDB Query Manager and SQL Development Kit product needed for collection and table creation?
	How do you interpret an SQLCODE and the associated tokens reported in a DBM SQL0969N error message?
	How can host variable type in WHERE clauses affect performance?
	Can I use a library list for resolving unqualified table and view names?
	Can a user of DB2 Connect specify that the NLSS sort sequence table of the DRDA job on the iSeries server be used instead of the usual EBCDIC sequence?

	Other tips for interoperating with workstations using DB2 Connect and DB2 UDB

	Appendix C. Interpreting Trace Job and FFDC Data
	Interpreting data entries for the RW component of trace job
	Example: Analyzing the RW trace data
	Description of RW trace points
	RWff RC—Receive Data Stream Trace Point
	RWff SN—Send Data Stream Trace Point
	RWQY S1—Partial Send Data Stream Trace Point 1
	RWQY S2—Partial Send Data Stream Trace Point 2
	RWQY BP—Successful Fetch Trace Point
	RWQY NB—Unsuccessful Fetch Trace Point
	RWQY L1 and RWEX L1—Saved in Outbound LOB Table Trace Point
	RWQY L2 and RWEX L2—Built in Datastream from LOB Table Trace Point
	RWQX L0 and RWEX L0—Saved in Inbound LOB Table Trace Point
	RWAC RQ—Access RDB Request Trace Point
	RWAC cb—Access RDB Control Block Trace Points
	RWSY FN: SYNCxxx [TYPE:x] -- Source TCP SYNC/RESYNC Trace Point
	RWSY xx: yyyyyyy... -- Target TCP SYNC/RESYNC Trace Point
	RW_ff_m—Application Requester Driver (ARD) Control Block Trace Point

	First-Failure Data Capture (FFDC)
	An FFDC Dump
	FFDC Dump Output Description
	DDM Error Codes
	Command Check Codes
	Conversational Protocol Error Code Descriptions
	DDM Syntax Error Code Descriptions

	Appendix D. Glossary
	Bibliography
	iSeries server Information
	Distributed Relational Database Library
	Other IBM Distributed Relational Database Platform Libraries
	Architecture Books
	Redbooks

	Index

