

@server
iSeries
Globalization

@server

iSeries
Globalization

Contents

OS/400 globalization 1
What's new for V5R2 2
Print this topic 2
Globalization overview 3
Multiple language support 3
What is a national language version? 3
OS/400 translations 4
National language design on OS/400. 5
Linguistic and cultural values. 9
Set up OS/400 with a national language version 23
How a language is displayed for OS/400 functions 23
Installation preparation and national languages 24
Checklist: Globalization planning 25
Order equipment and software 27
Hardware installation and national languages 33
Software installation and national languages 35
Configure a national language version 36
Scenarios: Set up OS/400 with a national language version 44
Develop global applications 56
Goals and processes 56
Design global applications 61
Programming considerations in global application design 96
Deliver globalized applications 109
Handle data in globalized applications 110
Work with Unicode and UCS-2 data 110
GB18030: The Chinese standard 182
Work with CCSIDs 183
Work with bidirectional data 213
Work with DBCS data 215
Work with locales 237
Globalization reference information 281
National language version feature codes 282
Country/region identifiers 284
Default system values for national language versions 290
System values for other languages with no national language version. 302
Keyboard reference information 303
Code pages 334
Character sets 335
CCSID reference information 358
Locale reference information 388
REXX extension characters 406
Globalization checklists 426

OS/400 globalization

As companies integrate e-commerce on a global scale into their fundamental business processes, their prospective customers, established customers, and active partners can take advantage of increased revenue and decreased expenses through software globalization. They also can improve customer communications and increase savings. Globalized software gives you the following advantages:

- Increased customer satisfaction that can increase sales
- Enhanced customer support communications
- Enhanced global information dissemination
- A better return on Information Technology (IT) investments

This information shows you how to:

- Create an application efficiently and at minimal expense.
- Retrofit existing applications for globalization and create new applications designed for globalization. Designing an application for globalization, however, is usually less expensive than retrofitting an existing application.
- Ensure that the application design does not interfere with the current or planned design of other internationalized applications.

These pages provide a single source for the information you need to build applications for national and international audiences. You can also find information about what's new in this release and how you can brint this topid.

Globalization overview

This topic describes the way that globalization has been implemented on OS/400 ${ }^{(R)}$, including topics that describe globalization-specific values on the system and topics that describe how services and functions in OS/400 support globalization.

Set up OS/400 with a national language version

This topic describes the steps you need to take to properly install and configure a national language version on OS/400, with topics ranging from selecting and installing hardware, installing software, and configuring your environment to run in a globalized setting. You can use this information as you install your own servers, and you can apply the principles when you develop applications for customers who are installing their own national language version on OS/400.

Develop global applications

This topic provides guidelines for designing, developing, and delivering globalized applications:

- Designing functions that are sensitive to national languages
- Supporting various types of hardware support
- Translating the textual data in your application
- Making your application available worldwide

Handle data in globalized applications

This topic describes the ways in which OS/400 enables you to handle data in a globalized environment. Included in these pages are topics that describe Unicode and UCS-2 data, the Chinese standard GB18030, how to use CCSIDs to integrate multiple language environments consistently, and how to use bidirectional data, DBCS data, and locales.

Globalization reference information

This topic provides detailed supporting information for the concepts and tasks discussed in the Globalization category.

Globalization checklists

This topic gathers together all of the checklists that are contained with these pages. These checklists are useful reminders of the issues you need to consider as you create and work with global applications.

What's new for V5R2

This release, the OS/400 Globalization topic has been reorganized for better online readability and accessibility.

Technical updates include the following:

- New support for International Components for Unicode (ICU).
- New system-supplied locales.
- New support for Unicode data.
- Support for GB18030, the new Chinese standard.
- Support for the QTQ_DEFAULT_CCSID system level environment variable.

How to see what's new or changed

To help you see where technical changes have been made, this information uses:

- The
>
image to mark where new or changed information begins.
- The
<
image to mark where new or changed information ends.
To find other information about what's new or changed this release, see the Memo to Users

PDF.

Print this topic

The Globalization topic is divided into smaller PDF documents that correspond to the major categories as they are presented in the iSeries ${ }^{(\mathrm{R})}$ Information Center. The smaller size of each of the parts makes downloading and printing the Globalization information faster and easier. You can view or print the following topics:

- Glabalization overview
- Set up OS/400 with an Nill
- Develon_gobal_applications
- Handle data in globalized applications
- Globalization reference information

If it is more convenient for you, you can also print the Globalization_information_as_a_single_PDR
You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe

Web site (www.adobe.com/prodindex/acrobat/readstep.html).

Note: Some of the illustrations in the PDF format of the Globalization topic do not display in the same manner as they do in the HTML format. The HTML format shows the illustrations as they are best viewed.

Globalization overview

OS/400 supports many languages; you can work in the language of your choice. OS/400 also ensures that the data you send to and receive from the server appears in the form and order you expect. By supporting many different languages, the operating system works as you expect it to work, from both a linguistic and a cultural point of view.

OS/400 uses a common set of program code, regardless of which language you use on the system. For example, the program code on a U.S. English server and the program code on a Spanish server are identical. Different sets of textual data are used, however, for different languages.

Textual data is a collective term for menus, displays, lists, prompts, options, online help information, and messages. This means that you see Help for the description of the function key for online help information on a U.S. English server, while you see Ayuda on a Spanish server. Using the same program code with different sets of textual data allows OS/400 to support more than one language on a single server.

The following topics introduce and explain globalization support on OS/400.

- Multiple_language support
- What is a national language version?
- OS/400 translations
- National language design on OS/400
- Linguistic and cultural values

Multiple language support

OS/400 provides the tools and function you need to make your applications deliver your business information, such as dates and numbers, in formats that conform to the expectations of users in multiple cultures using multiple languages. You can enable your iSeries server to translate, present, and process data in a global environment.

When you install secondary languages on your system, OS/400 also lets you set up your system with user interfaces (that is, textual data) for any of the national language versions provided for the system. To support multiple languages concurrently, you must have adequate storage to install all the necessary secondary languages. You must also install the necessary hardware to support each language.

What is a national language version?

A national language version (NLV) is a version of the Operating System $/ 400^{(\mathrm{R})}(\mathrm{OS} / 400)$ that contains a predefined set of language-dependent values like date format, time format, sort sequence, and so forth for a particular language.

When you order an OS/400 licensed program, you identify the national language version you want by specifying a language feature code. If you want to use more than one national language version of a licensed program, you can order additional languages. For example, if you are a German customer, you may need support for both German and French on one server. You can order a national language version for German and a national language version for French.

When you order more than one national language version for a server, you designate one the versions as the primary language. The primary language you designate is the feature code identified when you ordered the OS/400 program. You designate all other national language versions as secondary languages.

>

If you intend to use languages that require double-byte character set (DBCS) support, you must select a DBCS national language version as your primary language.

<

You must order some of the licensed programs for your server with the same language feature code as the primary language of the system. If the language feature code of a licensed program differs from the language feature code of the primary language of the server, the licensed program may not install correctly. Licensed programs with different feature codes as the primary language can be installed as a secondary language. See the National_language version feature codes topic for a complete listing of national language versions.

For additional information about working with national language versions, see Set up an iSeries server with a national language version.

OS/400 translations

OS/400, or portions of OS/400, are translated into the following languages. Not all portions of OS/400 are translated into every language.

- Albanian
- Arabic
- Brazilian Portuguese
- Bulgarian
- Croatian
- Czech
- Danish
- Dutch (this includes Belgian Dutch)
- English (this includes English uppercase, English uppercase DBCS, English uppercase and lowercase, English uppercase and lowercase DBCS), and Belgian English
- Farsi
- Estonian
- Finnish
- French (this includes Belgian, Canadian, and MNCS character set French)
- German (this includes MNCS German)
- Greek
- Hebrew
- Hungarian
- Icelandic
- Italian (this includes MNCS Italian)
- Japanese
- Korean
- Laotian
- Latvian
- Lithuanian
- Macedonian
- Norwegian
- Polish
- Portuguese (this includes MNCS Portuguese)
- Romanian
- Russian
- Serbian
- Simplified Chinese
- Slovakian
- Slovenian
- Spanish
- Swedish
- Thai
- Traditional Chinese
- Turkish
- Vietnamese

National language design on OS/400

The national language design in OS/400 defines the functions your application software can use to support national languages. These functions include:

- Character representation
- Character processing
- Character presentation
- Globalization hardware support
- Character data translation
- Locales

Character representation

Character representation in the server is controlled by following elements of the Character Data Representation Architecture (CDRA). CDRA identifies characters by encoding scheme identifier (ESid), character set, pairs of character sets and code pages (as needed), and additional coding-related information (as necessary). This identification is established by a system of tags. The tags are handled by OS/400 in a way that ensures character set integrity.

The overall objective of CDRA is to define a method of assigning and preserving the meaning of coded graphic characters through various stages of processing and interchanging.

For more information

- Encoding scheme
- Conversion of character data
- CCSID values
- Character data integrity

Encoding scheme: The Character Data Representation Architecture (CDRA) system of tags uses an encoding scheme to specify:

- The coding space (number and allowable value of code points in a code page)
- Rules for sharing the coding space between control and graphic characters
-

>
Rules related to specific options, such as the number bytes required for each character (single-byte, double-byte, or mixed-byte) permitted in that scheme

<

- Rules related to code extension techniques (if used)

The rules for encoding schemes are followed when code points are assigned to graphic characters in a particular code page. Some common encoding schemes are Extended Binary Coded Decimal Interchange Code (EBCDIC) and American Standard Code for Information Interchange (ASCII).

Conversion of character data: The Character Data Representation Architecture (CDRA) system of tags ensures you can convert character data in a predictable, repeatable way.

》

Conversion pertains to converting the code points assigned to one or more characters in one code page to their corresponding code points in another code page. The conversion may cause a single character to map to a sequence of characters, or a sequence of characters to map to a single character.

<

Conversion should not be equated to translating from one language to another.

Conversion methods:

The following methods are used for conversion:

- Round-trip conversion. The integrity of all character data is maintained from the source coded character set identifier (CCSID) to the target CCSID and back to the source.
When performing a round-trip conversion, you may see incorrect representation of the characters displayed in the target CCSID. The integrity is preserved, however. When the characters are converted back to the source CCSID, they regain their original hexadecimal values and representation.
- Enforced subset match conversion (substitution). Characters that exist in both the source and target CCSID have their integrity maintained. Characters in the source CCSID but not in the target CCSID are replaced. Replaced values are also referred to as substitution characters. For EBCDIC encoding, these appear on most display stations as a solid block. For ASCII encoding, these substitution characters appear differently.
This substitution is permanent when converting back to the source CCSID because it is not possible to retrieve the original hexadecimal values.
For a list of CCSID conversions that result in substitution characters, see the Default conversion that may use substitution table.
- Linguistic conversion. Also known as best-fit conversion, a partial mapping is done from the source code page to the target code page. The integrity of characters that are in both the target CCSID and the source CCSID are preserved. Characters that are not in the target CCSID are mapped to the most culturally acceptable alternative for that character.
For example, the source CCSID may support an A grave (

À

). The target CCSID may not support this character. During the conversion, the most linguistically acceptable character (a Latin capital A) is substituted for the A grave. After the conversion, characters that are not included in the target CCSID are presented to the user as the most linguistically acceptable substitution characters. This substitution is permanent. Any loss of character integrity is permanent.

Through an application programming interface (API), linguistic conversion is available from any supported single-byte CCSID to any other supported single-byte CCSID.

CCSID values: CDRA defines the following range of values for CCSIDs:

CCSID value	Purpose or meaning
00000	Use next higher hierarchical CCSID
00001 through 65533	IBM $^{(R)}$-registered CCSIDs
65534	Refer to lower hierarchical CCSID

65535	No automatic conversion of data between this CCSID and any other CCSID. (This is the default setting of the QCCSID system value.)

CDRA uses a tag field to hold a CCSID value to identify the meaning of coded graphic characters. The tag field may be in a data structure that is logically associated with the data object (explicit tagging), or it may be inherited from the tag field associated with the other objects within the operating system (implicit tagging).

Character data integrity: The Character Data Representation Architecture (CDRA) system of tags uses coded character set identifiers (CCSIDs) to maintain data integrity when character data is passed from system to system or from user to user. CCSIDs assign a value that uniquely identifies the coded graphic character representation used for character data.

Data integrity is not maintained using CCSID 65535 across countries

The following table shows the meaning of maintaining data integrity. A database file created by a U.S. user contains a dollar sign and is read by a user in the United Kingdom and in Denmark. If the application does not assign CCSID tags that are associated with the data to the file, users see different characters.

Country	Keyboard type	Code page	CCSID	Code point	Character
U.S.	USB	037	65535	X'5B' $^{\prime}$	$\$$
U.K.	UKB	285	65535	X' $^{\prime} 5 B^{\prime}$	$£$
					\AA
Denmark	DMB	277	65535	X' $^{\prime} 5 B^{\prime}$	\AA

Data integrity is maintained by using CCSID tags

If the application assigns a CCSID associated with the data to a file, the application can use OS/400 CCSID support to maintain the integrity of the data. When the file is created with CCSID 037, the user in the United Kingdom (job CCSID 285) and the user in Denmark (job CCSID 277) see the same character. Database management takes care of the mapping.

Country	Keyboard type	Code page	CCSID	Code point	Character
U.S.	USB	037	00037	X' $^{\prime} B^{\prime}$	$\$$
U.K.	UKB	285	00285	X' $^{\prime} 4 A^{\prime}$	$\$$
Denmark	DMB	277	00277	X' $^{\prime} 67^{\prime}$	$\$$

CCSID support is particularly important when:

- Multiple national language versions, keyboards, and display stations are installed on OS/400.
- Multiple iSeries servers are sharing data between systems with different national language versions.
- The correct keyboard support for a language is not available when you want to encode data in another language.

For more information

- For a list of the OS/400 CCSIDs, refer to Coded_Character Set_dentifiers (CCSDDs) in the Globalization reference topic
- For a complete list of the CDRA CCSIDs, see the Character Data Representation Architecture - Level 2, Registry
- For an overview of the architecture, refer to Character Data Representation Architecture Executive Overview
- For a complete discussion of the architecture, refer to the Character Data Representation Architecture Level 2 Reference

Character processing

Character processing on OS/400 is controlled by following coding rules and guidelines that ensure consistent processing of character data. These rules and guidelines cover tasks such as:

- Converting character data to all uppercase or to all lowercase data
- Folding data (substituting printable or displayable characters for those that cannot be printed or displayed on a particular device)
- Processing character data strings
- Classifying characters
- Naming objects
- Determining data, file, and field lengths

Some of these rules and guidelines are described in Develop global applications.

Character presentation

Character presentation on OS/400 is controlled by coding rules and algorithms that ensure consistent presentation of character data. These rules and algorithms cover tasks such as:

- Shaping characters
- Truncating characters
- Handling substrings of character data

These rules and algorithms are described in detail in Develop global applications.

Globalization hardware support

Hardware, in this context, means the physical keyboards, displays, printers, and controllers that make up an iSeries server. The extent to which this hardware supports national languages may impose limitations on the degree of support that you can provide with an application. You must refer to the reference manuals for non-IBM hardware to determine what limitations, if any, are imposed by that hardware.

Character data translation

Translating is changing the meaning of character data from a set of concepts, ideas, and statements in one human language to a culturally similar meaning in another human language. You can follow rules as guidelines to ensure translation goes smoothly. A subset of these rules is provided in the "User interfaces" an page 68 topic.

Locales

A locale is an object that can determine how data is processed, printed, and displayed. Locales are made up of categories that define language, cultural data, and character sets. These combinations of language, cultural data, and character sets comprise a locale. The locale support is provided to supplement the job value options that OS/400 previously has provided.

Many locales are shipped with OS/400. In addition, locale definition source files are provided for locale customizations. A locale definition source file contains one or more categories that describe (or make up) a locale.

See the following topics to learn more about using locales in a globalized environment:

- Install and enable locales
- Work with_ocales

Linguistic and cultural values

Linguistic and cultural conventions include any server values, attributes, or settings that can be altered to suit a country or language. Examples of linguistic and cultural conventions on the system include date formats and currency symbols.

Some linguistic and cultural conventions may vary by language within a country. For example, language conventions vary in Canada. One set of linguistic conventions apply for French and another set of linguistic conventions apply for English.

The following topics describe specific values that affect your globalized server environment:

- User profiles
- Subsystems
- Job attributes
- System values
- Device descriptions
- Display and printer files
- Database files
- UIM menus and panel groups

Where you can change linguistic and cultural values on $0 S / 400$:

Settings of cultural and linguistic conventions are supported at different levels in OS/400. The system is structured in the following way:

Subsystem A	System
Job	Subsystem B Job
Job	Job

Some linguistic and cultural conventions can be set or changed at the system level, some at the subsystem level, some at the user profile level, and some at job run time. In addition, some cultural and linguistic settings can be set or changed in device descriptions. For example, keyboard types can be changed when creating or changing a display device description.

For more information

For more information on linguistic and cultural conventions by country, see National Language Design Guide: National Language Support Reference, Volume 2.

User profiles

Individual users can store customized cultural and linguistic values in their user profiles. These customized values can differ from the system default values and can be used by OS/400 when setting job attributes and object attributes for the individual user. Job attributes can also be used as defaults for setting object attributes created or changed under the control of that job.

If you have a single server supporting multiple languages, you should change the user profile to use language and culture-appropriate values. When you change the character set identifier (CCSID) parameter in the user profile, ensure the CCSID:

- Is set to an SBCS CCSID or to CCSID 65535 for SBCS users
- Is set to a mixed CCSID or to CCSID 65535 for DBCS users
- Is set to a SBCS CCSID for SBCS users on a DBCS system

You can use the Create User Profile (CRTUSRPRE) and the Change User Profile (CHGUSRPRE) commands to customize a user profile.

Subsystems

A subsystem is a single, predefined operating environment through which the server coordinates the work flow and resource use. The server can contain several subsystems, all operating independently of each other. Subsystems manage resources. The run-time characteristics of a subsystem are defined in an object called a subsystem description.

You can use subsystems to support users in a multilingual environment. You should create a separate subsystem for each set of users with differing needs. For more information on subsystems, see the Work Management topic.

Subsystem descriptions for secondary language users

You can create_ a_subsystem description to be used in a multilingual environment. For example, you can create a subsystem for secondary language users (such as QGPL/GERMAN for German language users).

A subsystem description defines how, where, and how much work enters a subsystem, and which resources the subsystem uses to perform the work. An active subsystem takes on the simple name of the subsystem description.

A subsystem description consists of three parts:

- Subsystem attributes
- Workstation entry
- Routing entries

Notes:

1. You can work with existing work entries while the subsystem is active.
2. An IBM-supplied subsystem on a DBCS server is shipped with a workstation entry to support DBCS display devices.

For more information about subsystems, see the following:

- Start a subsystem

Create a subsystem description: IBM-supplied subsystem descriptions have been provided as examples and as backup for user-created subsystem descriptions. Therefore, we do not recommend modifying the subsystem descriptions in libraries QSYS and QGPL. You should make copies of the subsystem descriptions from these libraries and make changes to the copies.

You can create a subsystem description in two ways. You can copy an existing subsystem description and change it or you can create an entirely new description.

To copy an existing subsystem description:

1. On a command line, type $C R T D U P O B$.ل. to create a duplicate object of an existing subsystem description.
2. Change the sign-on display file and the system part of the library list for the secondary language.

To create an entirely new subsystem description:

1. Create a subsystem description (CRTSBSD). Specify a sign-on file from the national language version library and specify the national language version library (QSYSnnnn) as the system-library list entry.
2. Create a job description (CRTJOBD).
3. Add work entries to the subsystem description.
a. ADDWSE (Add work station entry)
b. $\triangle A D D J B Q E$ (Add job queue entry)
c. ADDCMNE (Add communications entry)
d. ADDAJ目 (Add autostart job entry)
e. ADDPJ目 (Add prestart job entry)
4. Create a class (CRTCLS).
5. Add routing entries to the subsystem description (ADDRTGE).

Subsystem attributes: Subsystem attributes provide the overall characteristics of the subsystem. Attributes include the system-library list entry and a text description of the subsystem description.

For example, you can specify subsystem attributes to support secondary language users:

1. Specify the national language version for the subsystem library entry parameter.

By creating a subsystem for each secondary language on your system, you can ensure that secondary language users have access to textual data in their own language. Within each subsystem, you can arrange the order of libraries in the library list so the textual data for the appropriate secondary language is at the top of the system library list. For example, if you have a primary language of Danish, and a secondary language of German, you can add a library at the top of the system library list in the German subsystem. Jobs running in the German subsystem then use the library at the top of the system part of the library list and a search for German textual data is successful.
If you add a subystem-library list entry for a national language version library:

- Do not add the library to the QSYSLIBL system value.
- Be sure that there are no more than 14 libraries in the QSYSLIBL list before adding your additional library entry. (The maximum number of list entries for the system part of the library is 15.)

2. Specify the sign on display using the national language version library.
3. Create or duplicate objects that all users of the secondary national language version need in the national language version library.
4. Add workstation entries for these workstations that are specifically configured for this national language version.

Workstation entry: You can specify the following items in a workstation entry. Parameter names are given in parentheses.

- Workstation name or type (WRKSTN or WRKSTNTYPE)
- Job description to be used for jobs started through this workstation entry
- Maximum number of interactive jobs that can be active at the same time through the entry (MAXACT)
- When the work stations are to be allocated, either when the subsystem is started or when an interactive job enters the subsystem through the Transfer Job (TFRJOB) command.

Adding, changing, or removing workstation entries

The following commands allow you to add, change, or remove workstation entries from a subsystem description.

To add a workstation entry to a subsystem description, use the Add Work Station Entry (ADDWSE) command. The following is an example of adding a workstation entry:

```
ADDWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)
JOBD(USERLIB/WSE)
```

To specify a different job description for a previously defined workstation entry, use the Change Work Station Entry (CHGWSF) command. The following is an example of changing a workstation entry:
CHGWSE SBSD (USERLIB/ABC) WRKSTN(DSP12)
JOBD (USERLIB/NEWJD)

To remove a workstation entry from a subsystem description, use the Remove Work Station Entry (RMVWS同) command. The following is an example of removing a workstation entry:
RMVWSE SBSD(USERLIb/ABC) WRKSTN(DSP12)
Start a subsystem: Once you have created a subsystem that meets your needs, you need to start the subsystem. To start a subsystem, use the Start Subsystem (STBSBS) command:
STRSBS SBSD('library name/subsystem name')
For example:
STRSBS USERLIB/ABC

Job attributes

Job attributes are set at the time a job starts. Some job attributes are set from the user profile. Other job attributes come from system values, from locales, from a Submit Job (SBMJOB) command, a job description, and

\gg

the Change Job (CHGJOB) command (from which you can change values for attributes while the job is running). The following attributes are especially useful for globalized environments:

<

- Coded character set identifier job attribute (CCSID)
- Job default coded character set identifier (DFTCCSID)
- Job library list

Coded character set identifier job attribute: When an interactive job is started, the job CCSID value is taken from the user profile. When a batch job is started, the current job CCSID is used unless a CCSID is specifically entered on the SBMJOB command.

For every mixed-byte coded character set CCSID, there is a corresponding SBCS CCSID that is valid. If you specify a mixed-byte coded character set CCSID for an SBCS system, the job CCSID is changed to the corresponding SBCS CCSID.

If a job CCSID is specified as an SBCS CCSID, the job cannot handle DBCS data. If a job CCSID is specified as a mixed CCSID, the job can handle DBCS data. You must use a DBCS-capable display device, though, for the DBCS data in a job to display correctly. You can specify a mixed-byte CCSID for a job only if the DBCS system value (QIGC) value is set to 1 (on). A QIGC value of 1 indicates that a DBCS national

Job default coded character set identifier (DFTCCSID): A job attribute, job default CCSID (DFTCCSID), is created for jobs with a CCSID of 65535 . The DFTCCSID value is used by some system code when a CCSID other than 65535 is needed.

The DFTCCSID attribute can only be retrieved or displayed. The value of this attribute is determined as follows:

- If the job CCSID is not 65535, the DFTCCSID equals the job CCSID.
- If the job CCSID is 65535, the DFTCCSID value is based on an appropriate value derived from the job language identifier (LANGID).

Once the job is running, the system determines the default CCSID for a job using the following logic (you can find the corresponding CCSID for LANGID in default CCSID table):

1. If the job CCSID is set to a value, it uses that value.
2. If the job CCSID is set to *USRPRF, then the system checks the user profile for the value.
3. If the user profile is set to a value, it uses that value.
4. If the user profile is set to *SYSVAL, the system checks the system value.
5. If the system value for QCCSID is set to a value, it uses that value.
6. If the system value is set to 65535 , the system checks the job's language ID.
7.

》
If the job's LANGID is set to a value, the QTQ_DEFAULT_CCSID environment variable is checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system converts that LANGID to a CCSID.

<

8. If the job's LANGID is set to *USRPRF, the system checks the user profile's language ID.
9.

\gg
If the user profile's LANGID is set to a value, the QTQ_DEFAULT_CCSID environment variable is checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system converts that LANGID to a CCSID.
<
10.

》

If the user profile's LANGID is set to *SYSVAL, the QTQ_DEFAULT_CCSID environment variable is checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system converts that LANGID to a CCSID.

<

Language identifiers and associated default CCSIDs contains a list of language identifiers and the DFTCCSID values associated

Job library list: The language used for textual data (displays, messages, printed output, and online help information) is controlled by the library list for the job.

Users can place their national language library before QSYS (the primary language library) and before any other national language libraries in their library lists. In this way, users can customize which national language versions of information are presented to them.

For more information on the national language libraries and proper authority to change these lists, see System Library List (OSYSLIBL) system value.

System values

The system values of the primary language on the server are used as server-wide cultural and linguistic defaults. Therefore, if you change the primary language on the server, each varying system value resets to the default system value for the new primary language.

The following list shows the cultural and linguistic system values. To display or change these values, use the Work with System Value (WRKSYSVAL) command. A subset of language-dependent default system values (QCCSID, QCHRID, QCNTRYID, QCURSYM, QDATFMT, QDATSEP, QDECFMT, QKBDTYPE, QLANGID, and QTIMSEP) are shown in Default system values in the Reference section.

- Century (QCENTURY)
- Character identifier (QCHRID)
- Character identifier control system (QCHRIDCTL)
- Coded character set identifier (QCCSID)
- Coordinated universal time offset (QUTCOFFSET)
- Country or region identifier (QCNTRYID)
- Currency symbol (QCURSYM)
- System date (QDATE)
- Date format (QDATFMT)
- Date separator (QDATSEP)
- Day of month (QDAY)
- Day of week (QDAYOFWEEK)
- DBCS system indicator (QIGC)
- DBCS font name (QIGCCDEFNT)
- Decimal format (QDECFMT)
- Language identifier (QLANGID)
- Language indicator for keyboards (QKBDTYPE)
- Leap-year adjustment (QLEAPADJ)
- Locale (QLOCALE)
- Month of the Year (QMONTH)
- Set job attributes (QSETJOBATR)
- Sort sequence (QSRTSEQ)
- System library list (QSYSLIB)
- Time separator (QTIMSEP)
- Year (QYEAR)

For more information

See System values in the Work Management topic for more information about all system values.
Century (QCENTURY) system value: The century (QCENTURY) system value is used to specify the century. It is used with the system values QDATE and QYEAR to determine the specific date currently being used by the server. The possible values are:

- 0 (the years from 1928 to 1999)
- 1 (the years from 2000 to 2053)

Note: 1900 to 1927 and 2054 to 2099 are not supported years for system time. Applications can, however, support year date ranges from

$\$$

0001 to 9999.
\ll

You can set the value of QCENTURY with the century indicator, or the system sets the value of QCENTURY based on the following two situations:

- At the time of the first IPL, the system sets the initial value of QCENTURY based on the following rules:
- If QYEAR is equal to or greater than 40, the system assigns a value of 0 to QCENTURY.
- If QYEAR is less than 40 , the system assigns a value of 1 to QCENTURY.
- When QYEAR or the year in QDATE is changed:
- QCENTURY is set to 0 if QYEAR is 54 to 99
- QCENTURY is set to 1 if QYEAR is 00 to 27

For example, if you change QYEAR from 95 to 13 , the system changes QCENTURY from 0 to 1 , indicating a year of 2013. However, if you change QYEAR from 95 to 45 , the system will not change QCENTURY, because both 1945 and 2045 are valid dates.

If you change this value, the change takes effect immediately. Changing this value also affects the system value QDATE.

Note: The 21st century begins at 0000 hours, 1 January 2001. However, for purposes of common understanding, we are defining the 20th/21st century boundary to be between 2400 hours, 31 December 1999 and 0000 hours, 1 January 2000. This allows a discussion of the 21st century to include all dates with a 20xx format inclusive of the year 2000.

Character identifier (QCHRID) system value: The character identifier (QCHRID) is used to specify the character set and code page CHRID(*SYSVAL) for the CL commands that create, change, or override display files, display device descriptions, user interface (UIM) menus, panel groups, and printer files. You can change this value if the system QCCSID system value is set to CCSID 65535. You can also change the QCHRID value if the code page portion of the new QCHRID value is the same as the code page portion of the QCCSID value.

Character identifier (QCHRIDCTL) control system value: The character identifier control (QCHRIDCTL) system value controls the type of CCSID conversion that occurs for display files, printer files, and panel groups. You must specify the *CHRIDCTL special value on the CHRID parameter on the create, change, or override command for display files, printer files, and panel groups before this attribute will be used.

Possible values are:
*DEVD
The support provided by the *DEVD special value on the CHRID parameter for display files, printer files, and panel groups.
*JOBCCSID
The support provided by the *JOBCCSID special value on the CHRID parameter for display file, printer files, and panel groups.

Coded character set identifier (QCCSID) system value: The coded character set identifier (QCCSID) is used to specify the CCSID for OS/400. As shipped, and at installation, the CCSID is set to DلDCSE 65535

You can change the coded character set identifier (QCCSID) system value. When you change this value, the default character set and code page system value (QCHRID) is changed to match the character set and code page of the coded character set identifier.

On a system capable of using DBCS data, QCCSID must be set to a mixed-byte coded character set CCSID (such as 05026) or to CCSID 65535. On a system that is not capable of using DBCS data, QCCSID must be set to an SBCS CCSID or to CCSID 65535. The QIGC system value indicates whether a system is capable of using DBCS data.

Coordinated universal time offset (QUTCOFFSET) system value: The coordinated universal time offset (QUTCOFFSET) is used to show the number of degrees, in hours and minutes, by which your local system differs from the zero meridian. This value is used by the system when processing alerts that are sent to other systems, as well as by other parts of the system. If systems in a network cross time zones, the QUTCOFFSET value is sent in the alert.

This value is 5 characters long. The first character is a plus (+) sign or minus (-) sign. The next 2 characters specify hours ranging from 00 through 24 . The last two characters specify minutes ranging from 00 through 59.

For example, you have a network with one system in Brisbane, Queensland, Australia (Eastern Australia standard time zone) and one system in Caracas, Venezuela. You would set QUTCOFFSET to +1000 for the Brisbane system and to -0400 for the Caracas system.

The Brisbane system value should be changed each time the daylight savings time begins or ends. Caracas, Venezuela does not observe a daylight savings time, and its system value remains constant.

If you change this value, the change takes effect immediately.
Country or region identifier (QCNTRYID) system value: The country or region identifier (QCNTRYID) is used to indicate the default country or region identifier for the system. Setting this system value, along with the QLANGDD system value, allows you to choose the correct language dictionary, encoding of data, and advanced linguistics for successful document indexing. There is no validity checking between the QCNTRYID system value and the QCCSID system value.

See Language and country/region identifiers for a list of country and region identifiers.
Currency symbol (QCURSYM) system value: The currency symbol (QCURSYM) is used to verify the currency symbols specified in the DDS keywords Edit Word (EDTWRD) and Edit Code (EDTCDE). You can change the currency symbol to correctly reflect the monetary symbol used in your country or location. If you change this system value, the change takes effect immediately.

System date (QDATE) system value: The system date (QDATE) is used to indicate the year, the month, and the day on the system. This value is made up of the QYEAR, QMONTH and QDAY system values. The format in which QDATE appears is specified by the QDATFMT system value. You can change the system date. If you change QDATE, the change may affect the system values for QCENTURY QYEAR, QMONTH, QDAY, and QDAYOFWEEK Any change you make to QDATE takes effect immediately.

Date format (QDATFMT) system value: The date format (QDATFMT) is used for the default value for the DATFMT job attribute. QDATFMT is also used to determine the format in which a date can be specified on the IPL options prompt.

This system value can be:

- YMD (year, month, day)
- MDY (month, day, year)
- DMY (day, month, year)
- JUL (Julian format, which is year, day of year)

You can change the date format to reflect the format in which months, days, and years are represented in your country or location. If you change this system value, the change takes effect for new jobs that enter the system after you make the change.

Date separator (QDATSEP) system value: The date separator (QDATSEP) is used as the date separator for the default value of the DATSEP job attribute. QDATSEP is also used as the date separator you can specify on the IPL options prompt.

You can change the date separator to reflect the character used to separate days, months, and years for your country or location. You can change the date separator to any one of the following values:

- A slash (/) as a date separator
- A hyphen (-) as a date separator
- A period (.) as a date separator
- A comma (,) as a date separator
- A blank () as a date separator

If you change this value, the change takes effect for new jobs that enter the system after you make the change.

Day of the month (QDAY) system value: The day of the month (QDAY) is used to indicate the day of the month on the system. This value must be a valid day of month or a valid day of year (if you are using Julian date format).

You can change the day of the month to reflect the current day of the month in your country or location. If you change QDAY, you also change the value for QDATE A change to this value takes place immediately.

Day of week (QDAYOFWEEK) system value: The day of week (QDAYOFWEEK) system value specifies the day of the week on the system. This value can be:

- *SUN (Sunday)
- *MON (Monday)
- *TUE (Tuesday)
- *WED (Wednesday)
- *THU (Thursday)
- *FRI (Friday)
- *SAT (Saturday)

This value cannot be changed. It is set by the system. The value of QDATE determines the value of QDAYOFWEEK.

This value may not be set correctly if your system is not using the Gregorian calendar.
See QLEAPAD for additional information that could affect the QDAYOFWEEK system value.
DBCS system indicator (QIGC) system value: The DBCS system indicator (QIGC) is used to specify whether a DBCS national language version is installed. This value is set when the primary national language version is installed.

If QIGC is set to 0 , no DBCS national language version is installed on the system. When QIGC is set to 0 , the coded character set system identifier (QCCSID) must be set to an SBCS coded character set identifier.

If QIGC is set to 1 , a DBCS national language version is installed as the primary language on the system. When QIGC is set to 1 , the coded character set system identifier (QCCSID) system value should be set to a mixed CCSID (such as 05026) or to CCSID 65535.

You cannot change this value.
DBCS font name (QIGCCDEFNT) system value: The DBCS font name (QIGCCDEFNT) is used when transforming SNA character string (SCS) data into an Advanced Function Printing ${ }^{(\mathrm{R})}$ data stream (AFPDS) spooled file with shift in/shift out (SI/SO) characters present in the data.

QIGCCDEFNT is a 20 -character list of up to 2 values. The first 10 characters contain the font name. The last 10 characters contain the library name. The font name can be only 8 characters. The possible values for the DBCS font name are:

*NONE

No font is identified to the system.

Coded font name

The name of the DBCS font.
The possible values for the library are:
*LIBL The library list is used to locate the font.
*CURLIB
The current library is used to locate the font. If no library is specified, library QGPL is used.

Library name

The library containing the font.
Decimal format (QDECFMT) system value: This decimal format (QDECFMT) is used to do the following:

- Determines the type of zero suppression and decimal point character used by DDS edit codes 1 through 4 and A through M
- Determines the decimal point character for decimal input fields on displays

You can change the decimal format to reflect the way decimals are formatted for your country or location. You can change the decimal format to any one of the following values:
(blank)
If you specify a blank, the system uses a period for a decimal point, a comma for a 3-digit grouping character, and zero suppression to the left of the decimal point. For example,
One thousand is formatted as 1,000
and
Four one-hundredths is formatted as .04
J If you specify a J, the system uses a comma for a decimal point, a period for a 3-digit grouping character, and zero suppression at the second character to the left of the decimal point. For example,
One thousand is formatted as 1.000
and
Four one-hundredths is formatted as 0,04
I If you specify an I, the system uses a comma for a decimal point, a period for a 3-digit grouping character, and zero suppression to the left of the decimal point. For example,
One thousand is formatted as 1.000
and
Four one-hundredths is formatted as ,04
A change to this value takes place immediately.
Language identifier (QLANGID) system value: The language identifier (QLANGID) is used to specify the default language identifier for the server. This value also determines the sort sequence table to be used for sorting character data when the QSRTSEO system value is set to *LANGIDSHR or *LANGIDUNQ.

Note: This value is not used to determine the sort sequence table when QSRTSEQ is set either to *HEX or to a user-specified table.

You can change this system value to reflect the default language identifier for your country or location.

There is no validity checking between the QLANGID system value and the QCCSID system value.
Language indicator for keyboards (QKBDTYPE) system value: The language indicator for keyboards (QKBDTYPE) is used to specify the language character set for the keyboard. This value is used as the default keyboard type when you create a display device description. See Nationallanguage keyboard types and SBCS code pages for a list of language indicators for keyboards.

You can change this value to reflect the language of your keyboard.
Leap-year adjustment (QLEAPADJ) system value: The leap-year adjustment (QLEAPADJ) is used to adjust the system algorithms for the leap year in different calendar systems. If your calendar year agrees with what is used in the Gregorian calendar, this system value should be zero. If your calendar year differs from the Gregorian, you may need to adjust the system calendar algorithm to account for the leap year you are using. To make the adjustment, divide the leap year in your calendar system by 4 . Then set QLEAPADJ to the value of the remainder.

For example, the Gregorian calendar year of 1988 was the year 77 in the Taiwan calendar. Because 77 was a leap year for Taiwan, you need to divide 77 by 4. This leaves a remainder of 1. Therefore, to adjust the system calendar algorithm for Taiwan, specify a 1 for the QLEAPADJ value.

If you change QLEAPADJ, you do not change the system clock or the job dates of active jobs. Changing QLEAPADJ may result, however, in an implicit change to the QDATE system value.

Note: Not all system functions, such as DB date and timestamp fields, support QLEAPADJ when working with leap years.

Locale (QLOCALE) system value: The locale (QLOCALE) system value is used to specify a locale object that can determine how data is processed, printed, and displayed. Locales can define the language used by the system, cultural data of that language, and the type of characters displayed or printed.

The locale path name must be a path name that specifies a locale. A locale is made up of the language, territory, and code set combination used to identify a set of language conventions. The maximum path length allowed for the locale path name on the Change System Value (CHGSYSVAL) command is 1024 bytes.

The allowed values are:

```
Value Indication
*NONE: There is no locale for the QLOCALE system value.
*C: The C locale is to be used.
*POSIX: The POSIX locale is to be used.
> The path name of the locale to be used.
    <
path-name
```

Month of the year (QMONTH) system value: The month of the year (QMONTH) is used to indicate the month of the year on the server. This value must be a number from 1 (January) through 12 (December) if your system date format uses the Gregorian calendar. This value cannot be displayed or changed if your server date format uses the Julian format (year, day of year).

You can change the month to reflect the current month in your country or location. If you change QMONTH, you also change the value for QDATB. A change to this value takes place immediately.

Set job attributes (QSETJOBATR) system value: The set job attributes (QSETJOBATR) is used to set job attributes at job startup time. This system value has the following attributes that can be assigned values:

- Coded character set identifier CCSID
- Date format (DATFMT)
- Date separator (DATSEP)
- Decimal format (DFCFMT)
- Sort sequence (SRTSEQ)
- Time separator TIMSEP

The system sets the initial values for these attributes from the (QLOCALE) system value.
Sort sequence (QSRTSEQ) system value: The sort sequence (QSRTSEQ), along with QLANGDD is used to determine the sort sequence table to be used for sorting character data. You can change QSRTSEQ to any one of the following values:

Value	Meaning
*HEX	No sort sequence table is used. The hexadecimal values of the graphic characters are used to determine the sort sequence (a binary sort). This is the only sort sequence available for DBCS data. Note: When you specify values other than *HEX for mixed-byte character data, SBCS character data is sorted according to the sort sequence specified. DBCS character data is sorted by hexadecimal values (binary sort).
*LANGIDSHR	The sort sequence table may use the same weight for multiple graphic characters. The shared-weight sort table associated with the language specified in the LANGID parameter is used. This sort applies only to SBCS data.
*LANGIDUNQ Qualified sort sequence table name	The sort sequence table contains uniquely weighted graphic characters. The unique-weight sort table associated with the language specified in the LANGID parameter is used. This sort applies only to SBCS data.
The name and library of the sort sequence table to be used. This value allows you to specify a sort sequence table other than those associated with the language specified in the	
LANGDD parameter. 》 This sort sequence table can be used to sort Unicode and SBCS data. <<	

See Sort sequence tables for more information about sort sequence tables.
System library list (QSYSLIBL) system value: The system library list (QSYSLIBL) is used as the first part of the library list associated with a job. The libraries in the system part of the library list of a job are searched before any other libraries in the library list of a job. The list can contain as many as 15 names. You cannot delete or rename a library specified as part of the system library list, because libraries in this library list are locked.

You can change the system library list (QSYSLIBL). If you change QSYSLIBL, the change takes place immediately for new jobs entering the system. The change does not affect running jobs, unless the application in the job accesses the system library list directly.

Time separator (QTIMSEP) system value: The time separator (QTIMSEP) is used to specify the character separator for time. This value is used as the time separator for the default value of the TIMSEP job attribute. This value is also used as the time separator that you can specify on the IPL options prompt.

You can change the time separator to reflect the character used to separate hours and minutes for your country or location. You can change the time separator to any one of the following values:

- A colon (:) as a time separator
- A period (.) as a time separator
- A comma (,) as a time separator
- A blank () as a time separator

If you change this value, the change takes effect for new jobs that enter the system after you make the change.

Year (QYEAR) system value: The year (QYEAR) is used to specify the last two digits of the year on the system. This value ranges from 0 through 99 . The system assigns the first two digits for the year based on the current setting for the QCENTUB\ system value. If the calculated year falls outside the range of dates supported by the system (1928 to 2053), the QCENTURY system value is changed so that the calculated year is within the supported range.

If you change this system value:

- QCENTURY is set to 0 if QYEAR is 54 to 99
- QCENTURY is set to 1 if QYEAR is 00 to 27

For example, if you change QYEAR from 95 to 13, the system changes QCENTURY from 0 to 1, indicating a year of 2013. However, if you change QYEAR from 95 to 45 , the system will not change QCENTURY, because both 1945 and 2045 are valid dates.

If you change this value, the change takes effect immediately. Changing this value also affects the system value QDATE

Device descriptions

Following are the control language (CL) command parameters that you can use to change cultural and linguistic conventions for some display and printer devices.

Note: Some printer device descriptions do not allow you to specify a CHRID.

- Character identifier (CHRID) parameter. You can change the character identifier when you create or change device descriptions for printers and displays. Change the character identifier for a printer or display device using one of the following commands:
- The Create Device Description (Display) (CRTDEVDSP)
- The Change Device Description (Display) CHGDFVDSB)
- The Create Device Description (Printer) C CRTDFVPRT
- The Change Device Description (Printer) (CHGDFVPRT)
- Keyboard type (KBDTYPE) parameter. You can set the keyboard language type for a keyboard when you create a device description. Set the keyboard language type using the CHGDEVDSP command.
- Workstation customization (WSCST) parameter. You can set the workstation customization parameter when creating a device to specify the use of a customized keyboard layout. To set this parameter, the display device must be varied off. You can specify the WSCST parameter when using the CRTDEVDSP command. .
- Language type (LNGTYPE) parameter. When you create an ASCII printer using the CRTDEVPRT command, the LNGTYPE parameter describes the default country or region keyboard language identifier for the printer. When you specify the *SYSVAL value, the QKBDTYPE system value is used.

Display and printer files

Following are the keywords and command parameters that you can use to change cultural and linguistic values for display files and printer files.

- The Create Display File CRTDSPE, Change Display File CHGDSPE, Create Printer File CCRTPRTE, Change Printer file (CHGPRTF), and Override Printer File (OVRPRTF) commands. You can specify a character identifier explicitly:
- As the QCHRID system value (*SYSVAL)
- As a device description or a device default of the output device (*DEVD)
- With the *JOBCCSID value
- As using the *CHRIDCTL system value (*SYSVAL)
- Character identifier (CHRID) keyword in DDS. Use this field-level keyword to identify fields that should be converted to the character identifier (CHRID) of the device. Use this keyword in conjunction with the CHRID parameter on the CRTDSPF, CHGDSPF, CRTPRTF, CHGPRTF, and OVRPRTF commands. This keyword is ignored, however, when the CHRID parameter of these commands is set to *JOBCCSID.
- The SRTSEQ parameter and LANGID parameter on the CRTDSPF command. These parameters can be used to specify a sort sequence and a language identifier for a display file.

Note:

>

If *JOBCCSID is not specified for the CHRID parameter of a display file (either directly or indirectly with CHRIDCTL), the CHRID parameter of the display file must be compatible with the job CCSID. Otherwise, unpredictable results might occur when data is displayed or when data is stored in a database file.

<

Database files

Following are the command parameters that you can use to change language-dependent values for database files:

- The SRTSEQ, LANGID,

>

and CCSID parameters

<

on the Create Physical File (CRTPF) command
-

》

The SRTSEQ, LANGID, and CCSID parameters on the Change Physical File (CHGPF) command

```
    <
```

-

>

The parameters on the Copy File (CPYF) command

<

- The SRTSEQ parameter and LANGID parameter on the Create Logical File (CRTLF) command

These parameters can be used to specify a sort sequence and language for a database file.

DDS keywords for database files

Following are the DDS keywords that you can use to change language-dependent values for database files:

- The CCSID keyword. This keyword can be used to tag character data stored in a database. By default, the CCSID value is taken from the job creating the database file.
- DATFMT, DATSEP, TIMFMT, and TIMSEP keywords in DDS.

The format of the data type Time (T) field is described by DDS with the TIMFMT keyword that can have *JOB specified for a value. Similarly, the format of the data type Date (L) is described by DDS with the DATFMT keyword that can have *JOB specified for a value.
Use the TIMSEP and DATSEP keywords to specify date and time separators.

UIM menus and panel groups

You can use commands to specify a *JOBCCSID for a menu or a panel group.
The CHRID parameter on the Create Menu CRTMNU command for creating menus can be used to specify a *JOBCCSID value for a menu. Conversion is automatically done between the CHRID parameter of the device and the CCSID value of the menu.

The CHRID parameter on the Create Panel Group (CRTPNLGRP) command for creating panel groups can be used to specify a *JOBCCSID value for panel groups. Conversion is automatically done between the CHRID of the device and the CCSID of the panel group and the CCSID of the job.

Set up OS/400 with a national language version

The feature codd identified when you order an OS/400 program is the language of your textual data and is called the primary language of the system. Any other language versions that you have ordered are called secondary languages. For secondary languages, the national language version consists of only the textual data for all licensed programs ordered. The program code is not contained in the secondary language version.

The primary language is the language in which the system is serviced and from which all language-dependent or culture-dependent system values are initialized. In addition, other system objects and functions assume attributes based on the primary language. For example, messages appearing in the history log always appear in the primary language.

The following topics provide details about setting up OS/400 with a national language version:

- How a language is displayed for OS/400 functions
- Installation preparation
- Checklist: Globalization planning
- Ordering equipment and software
- Hardware installation
- Software installation
- Configuring a national_language version
- Scenarios: Setting up OS/400 with a national_language version

For more information

See the Software_Installation PDF for complete details on installing your primary language and licensed programs.

How a language is displayed for 0S/400 functions

If you want information presented in a language other than the primary language of the server, you must first have a secondary language loaded. When a secondary language is loaded, you can display information in that language in any of three ways.

Method 1: Place the desired language at the top of your library list

One way to display information in a secondary language is to change the system part of your library list so that your desired national language library is positioned before all other libraries in the system library list that contain national language information.

For example, to present the French version of textual data, you could enter the following command to place French information at the top of the library list:
CHGSYSLIBL LIB(QSYS2928) OPTION(*ADD)
To remove a library from the library list enter:
CHGSYSLIBL LIB(QSYS2928) OPTION(*REMOVE)
Note: The authority shipped with the $C H G S Y S L I B L$ command does not allow all users to run the command. As shipped, you must have *ALLOBJ and *SECADM special authority to use the Change System Library List (CHGSYSLIBL) command.

Method 2: Create a subsystem for the desired language

A second way to present information in a different language is to follow these steps:

1. Create a subsystem for the secondary language.
2. Define the subsystem system part of the library list entry with the national language version library for the secondary language.

All jobs running in the subsystem use textual data from the secondary language. All jobs that you submit as batch jobs have the national language version library as the first library on the system part of the library list.

Method 3: Change the library list for your job so that the national language version library for the secondary language is the first library on the system part of the library list

A third way to present information in a different language is to change the library list for your job so that the national language version library for the secondary language is the first library on the system part of the library list. All jobs running in the subsystem use textual data from the secondary language. All jobs that you submit as batch jobs have the national language version library as the first library on the system part of the library list.

How a language of your choice is displayed for licensed programs

Libraries for other licensed programs are added either automatically, or must be added by the user, when needed. If you want to add libraries for other licensed programs to your library list, use the CHGLIBL command.

Installation preparation and national languages

IBM periodically creates program temporary fixes (PTF) to correct existing problems or potential problems within a particular IBM licensed program. PTFs are designed to fully replace one or more objects in the licensed program. Primary and secondary languages may have language-sensitive online information PTFs.

If the primary language of your system is changed at any time for reasons other than a new release update, the cumulative PTF package of the new primary language should be at the same level as the previous primary national language. PTFs that were associated with the primary language and any secondary language must be applied again. In addition, primary language and secondary language PTFs for the online information need to be ordered by the customer.

Checklist: Globalization planning

When planning to install a multilingual system, start by completing the Globalization planning checklist for global and multilingual support. The checklist consists of two parts, which should be completed sequentially.

Globalization checklist: Part 1

Before you work with a national language, answer the questions in the following table. After you have answered the questions in this table, you can then use Planning checklist for global support, part 2 (see page 25) for planning for multilingual support.

Check off	Question	Response		
	What national language version for the primary language are you going to install? (Refer to Set up lan iSeries server with an NLV)			
	What program library can it be ordered from? (Refer to Nationallanguage version feature codes			
	Are you going to use a DBCS national language version as a secondary language? (Refer to Secondary danguage requirements.)			
	Are you aware that the latest 5250 PC emulation is necessary to support graphics data format (GDF) type?			
	What national language version for the secondary language are you going to install, if any? (Refer to			
Secondary language requirements.)			\quad	Do you want to change your subsystem to change
:---				
the language of your initial sign-on display? (Refer				
to Secondary danguage requirements.)	\quad.			

Globalization checklist: Part 2

When you have completed part 1 (see page 25) of the checklist, answer the additional questions in part 2 , below:

Check off	Question	Response
	What local workstation controllers support your language? (Refer to Order equipment and software.)	
	What display stations and keyboards are required to support your language? (To determine the display stations and keyboards, refer to Orded	Equipment and software and Multilingual support

Check off	Question	Response
	What printers support your language? (Refer to Order equinment and software.)	
	What keyboard ID are you using for your local devices? (Refer to National_language version default system values.)	
	What remote workstation controllers support your language? (Refer to Order equipment and software.)	
	What display stations and keyboards support your language from a remote location? (Refer to Order equipment and software and Multilingua_support for the iSeries workstation controller)	
	What printers support your language from a remote location? (Refer to Order equipment and software.)	
	What keyboard ID are you using for your remote devices? (Refer to National Language Version default system valued.)	
	Are you considering the workstation customization function for workstations? (See the Workstation Customization PDF.)	
	What applications support your languages on the local system? (Contact your marketing support representative in your country.)	
	What applications support your languages on the remote system? (Contact your marketing support representative in your country.)	
	Do you want all your database files with the CCSID of the primary language? (Refer to Database management support for CCSID.	
	Do you want to work with sort sequence tables in your applications? (Refer to Sort sequence forl brograms	

Check off	Question	Response
	When creating user profiles (user IDs) only certain characters are allowed. You can use any of the following characters in the user profile name: - Any letter (A through Z) - Any number (0 through 9) - These special characters: pound (\#), dollar (\$), underscore (_), at (@). However, these characters should be avoided for global application systems. See User profile_name Eonsiderations for more information. See the Security Reference S.	
PDF for more detailed information on user profile considerations.		

Order equipment and software

To properly support a language or multiple languages on a single system, the appropriate hardware and software must be ordered and configured. This section describes some considerations you should take into account when ordering your hardware and software.

- Workstation controller requirements
- Keyboards

Workstation controllers

Workstation controllers that attach to the iSeries server can support a number of different languages simultaneously. The characteristics of multilingual support depend on the type of workstation controller. The types of workstation controllers that can be attached to the iSeries server are:

- Twinaxia
- ASCI
- Remote

Multilingual support for the iSeries workstation controller

There are limitations to the amount of support provided by a workstation controller in a multilingual support.

- The workstation must be able to transmit and receive data in the required language.
- Each workstation controller supports a maximum number of languages at the same time, regardless of the keyboard types. This maximum number is in addition to the U.S. English support.
- Twinaxial workstation controllers support a maximum of 3 languages.
- ASCII workstation controllers support a maximum of 14 national language versions, in addition to U.S. English.
- The number of keyboard types allowed on a workstation controller is dependent on the different keyboard types required.

Twinaxial workstation controller requirements: The local twinaxial workstation controller maps keyboard data received from a workstation into EBCDIC values corresponding to the keyboard ID configured for that workstation on the system. Multiple languages are supported by using a separate keyboard mapping table to handle each unique combination of national language version and keyboard for each workstation attached to the system.

The amount of storage available within the twinaxial workstation controller for mapping tables is limited and restricts the total number of national language versions that the workstation controller can simultaneously support. Depending on the mix of languages and types of keyboards, the twinaxial workstation controller can support several different national language versions simultaneously (in addition to U.S. English, which is always available).

Keyboard types on the twinaxial workstation controller

The twinaxial workstation controller supports the following types of IBM keyboards:

- 5250 typewriter keyboard
- 5250 data entry keyboard
- 122-key typewriter keyboard
- 122-key data entry keyboard
- Enhanced keyboard

The sum of the computational factors for a language and keyboard type must not exceed 22 for the twinaxial workstation controller. The following table shows the computational factor for each language, KBDTYPE parameter, and keyboard type.

Each workstation controller supports a maximum number of languages at the same time, regardless of the keyboard types. This maximum number is in addition to the US English support.

Note: The actual number of keyboards of each type does not have any impact on the sum. For example, the computational factor is 3 whether there are 1 or 30 enhanced keyboards running Austrian/German.

Language and keyboard computational factor table

To use the language and keyboard computational factor table, do the following:

1. Identify the language down the first column of the table.
2. Identify the keyboard type across the row for the selected language.
3. Record the computational factor listed for each keyboard type.
4. Repeat the first three steps for all the required keyboard types.
5. Add the computational factor for all required keyboard types.
a. If the sum of all computational factors does not exceed 22, then the twinaxial workstation controller can support all the required keyboard types for the languages.
b. If the sum of the computational factors exceeds 22, then the twinaxial workstation controller may not support all the required keyboard types for the languages.

Language	KBDTYPE	$\mathbf{5 2 5 0}$ Typewriter Keyboard	5250 Data Entry Keyboard	122-key Typewriter Keyboard	122-key Data Entry Keyboard	Enhanced Keyboard
Albanian	ALI	N/A	N/A	1	N/A	3
Arabic	CLB	2	N/A	2	N/A	2.5
Austrian / German	AGB	1	1	1	N/A	3
Austrian / German MNCS	AGI	1	1	1	N/A	3
Belgian Dutch MNCS	BLI	1	1	1	N/A	3
Brazilian Portuguese	BRB	1	1	1	N/A	3
Bulgarian	BGB	N/A	N/A	N/A	N/A	3
Canadian French	CAB	1	1	1	1	3
Canadian French MNCS	CAI	1	1	1	1	3

Language	KBDTYPE	5250 Typewriter Keyboard	5250 Data Entry Keyboard	122-key Typewriter Keyboard	122-key Data Entry Keyboard	Enhanced Keyboard
Croatian	YGI	1	1	1	N/A	3
Cyrillic	CYB	2	N/A	2	N/A	2.5
Czech	CSB	N/A	N/A	N/A	N/A	3
Danish	DMB	1	1	1	N/A	3
Danish MNCS	DMI	1	1	1	N/A	3
Estonia	ESB	N/A	N/A	N/A	N/A	1.5
Finnish / Swedish	FNB	1	1	1	N/A	3
Finnish / Swedish MNCS	FNI	1	1	1	N/A	3
French (Azerty)	FAB	1	1	1	N/A	3
French (Azerty) MNCS	FAI	1	1	1	N/A	3
French (Qwerty)	FQB	1	1	N/A	N/A	N/A
French (Qwerty) MNCS	FQI	1	1	N/A	N/A	N/A
Greek	GNB	2	N/A	2	N/A	2.5
Hebrew	NCB	2	N/A	2	N/A	2.5
Hungarian	HNB	N/A	N/A	1	N/A	3
Icelandic	ICB	1	N/A	1	N/A	3
Icelandic MNCS	ICI	1	N/A	1	N/A	3
International	INB	1	1	N/A	N/A	N/A
International MNCS	INI	1	1	N/A	N/A	N/A
Iran (Farsi)	IRB	N/A	N/A	2	N/A	2.5
Italian	ITB	1	1	1	N/A	3
Italian MNCS	ITI	1	1	1	N/A	3
Japanese - English	JEB	1	1	N/A	N/A	N/A
Japanese - English MNCS	JKB	1	1	N/A	N/A	N/A
Japanese - Kanji and Katakana	JKB	N/A	N/A	N/A	N/A	2.5
Japanese - Kanji and US English	JUB	N/A	N/A	1	N/A	N/A
Japanese Katakana	KAB	2	2	2	2	2.5
Japanese Latin Extended	JPB	1	1	N/A	N/A	N/A
Korean	KOB	1	1	1	1	1
Latin 2	ROB	1	N/A	1	N/A	1.5
Latvia	LVB	N/A	N/A	N/A	N/A	2.5
Lithuania	LTB	N/A	N/A	N/A	N/A	2.5
Macedonian	MKB	N/A	N/A	N/A	N/A	2.5
Netherlands Dutch	NEB	1	1	1	1	3
Netherlands Dutch MNCS	NEI	1	1	1	1	3
Norwegian	NWB	1	1	1	1	3
Norwegian MNCS	NWI	1	1	1	1	3
Polish	PLB	N/A	N/A	1	N/A	3

Language	KBDTYPE	5250 Typewriter Keyboard	5250 Data Entry Keyboard	122-key Typewriter Keyboard	122-key Data Entry Keyboard	Enhanced Keyboard
Portuguese	PRB	1	1	1	N/A	3
Portuguese MNCS	PRI	1	1	1	N/A	3
Romanian	RMB	1	1	1	N/A	3
Russian	RUB	N/A	N/A	N/A	N/A	3
Serbian (Latin)	YGI	1	1	1	N/A	3
Serbian (Cyrillic)	SQB	1	1	1	N/A	3
Simplified Chinese	RCB	1	1	1	1	N/A
Slovakian	SKB	N/A	N/A	1	N/A	3
Slovenian	YGI	1	1	1	N/A	3
Spanish	SPB	1	1	1	N/A	3
Spanish MNCS	SPI	1	1	1	N/A	3
Spanish Speaking	SSB	1	1	1	1	3
Spanish Speaking MNCS	SSI	1	1	1	1	3
Swedish	SWB	1	1	1	N/A	3
Swedish MNCS	SWI	1	1	1	N/A	3
Swiss / French MNCS	SFI	1	N/A	1	N/A	3
Swiss / German MNCS	SGI	1	N/A	1	N/A	3
Thai	THB	N/A	N/A	N/A	N/A	2.5
Traditional Chinese	TAB	1	1	1	1	1
Turkish (QWERTY)	TKB	1	N/A	1	N/A	1.5
Turkish (F)	TRB	1	N/A	1	N/A	1.5
United Kingdom English	UKB	1	1	1	1	3
United Kingdom English MNCS	UKI	1	1	1	1	3
United States / Canada English	USB	See note.				
United States / Canada MNCS	USI	1	1	1	1	3

Note: Information about USB is not included, because it is always available and does not take up any additional space in the workstation controller.

ASCII workstation controller requirements: Like twinaxial devices, ASCII devices for different national language versions support different code pages. The ASCII workstation controller handles conversion of data back and forth between a particular EBCDIC code page for a language and an ASCII code page for that same language by using a set of mapping tables.

The ASCII workstation controller can simultaneously support 14 national language versions (in addition to U.S. English, which is always available).

The set of languages that may be selected for the ASCII workstation controller is a subset of the language types that may be selected for the twinaxial workstation controller. For the list of languages supported by the ASCII workstation controller, see Multilingual support for the iSeries workstation controller (see page 27).

Keyboard types on an ASCII workstation controller

The maximum number of country and keyboard types on the ASCII workstation controller is 14. Depending on the display or printer device type, the controller may be able to fully support all graphic characters in a language. If the display or printer does not support all graphic characters in your language, you can use the workstation customization function to display and print unsupported graphic characters.

Languages supported without workstation customization

- Arabic
- Austrian/German
- Austrian/German MNCS
- Belgian Dutch MNCS
- Canadian French
- Canadian French MNCS
- Danish
- Danish MNCS
- Finnish/Swedish
- Finnish/Swedish MNCS
- French (Azerty)
- French (Azerty) MNCS
- Hebrew
- Italian
- Italian MNCS
- Norwegian
- Norwegian MNCS
- Portuguese
- Portuguese MNCS
- Spanish
- Spanish MNCS
- Spanish Speaking
- Spanish Speaking MNCS
- Swedish
- Swedish MNCS
- Swiss/French
- Swiss/French MNCS
- Swiss/German
- Swiss/German MNCS
- United Kingdom English
- United Kingdom English MNCS
- United States and Canada English
- United States and Canada English MNCS

Languages supported using workstation customization

Using the workstation customization functions, the following countries or languages can also be supported by the ASCII workstation controller.

- Brazilian Portuguese
- Croatian
- Cyrillic
- Czech
- Estonian
- Greek
- Hungarian
- Icelandic
- Icelandic MNCS
- Latin 2
- Latvian
- Lithuanian
- Polish
- Russian
- Slovakian
- Slovenian
- Turkish
- Thai
- Ukranian

5394 remote workstation controller requirements: The 5394 remote workstation controller is a twinaxial workstation controller and uses conversion tables to map the data between the devices.

The 5394 remote workstation controller can support up to 4 MNCS languages at a time and only one language that is not a MNCS language. When changing languages, you must change the keyboard language code. Changing the keyboard language code is explained further in the 5394 Remote Control Unit Setup Guide and the 5394 Remote Control Unit Introduction and Installation Planning book.

5494 remote workstation controller requirements: The 5494 remote workstation controller has 4 ports for twinaxial workstations, a port for communication networks, and on the Model 002, a port for attaching to a token-ring network.

The 5494 remote workstation controller can support up to 4 MNCS languages at a time and only one language that is not a MNCS language. When changing languages, you must change the keyboard language code. Changing the keyboard language codes is explained further in the 5494 Remote Control Unit Planning Guide and the 5494 Remote Control Unit User's Guide

Keyboards

You can choose the keyboard that matches the national language version you are using; see the Keyboard layouts topic in the Reference information for illustrations of these keyboards.

Determine the number of supported keyboard types

To determine the number of keyboard types that the twinaxial or ASCII controllers can support, you must understand the following:

- A twinaxial or ASCII workstation controller can support several types of keyboards and languages.
- Each of the supported languages may be available on more than one of the supported keyboards.
- For each workstation controller, the size of the conversion table for each keyboard is different.
- The matrix for languages used on each supported keyboard type is called a keyboard and language computational factor.
- The sum of the computational factors for each required keyboard type determines whether all required keyboard types can be supported on one workstation controller.
- If the sum of the computational factors for the required keyboard types exceeds the maximum limit, the language for the first workstation that caused the overflow and any additional workstations default to U.S. English.
- To recover from a keyboard-type overflow, you can do one of the following:
- Attach the workstation causing the overflow to a second workstation controller.
- On the same workstation controller, configure the workstations causing the overflow to some other keyboard type that reduces the sum of the computational factor to within the maximum limits.

Hardware installation and national languages

When installing or changing a device on your system, you must make sure that the device is configured correctly to reflect the keyboard ID that matches the character set and code page of the job CCSID.

\$

Changing the keyboard configuration of a device results in different behavior, similar to adding a new display or printer to the system.

<

Panels, menus, and messages used by the installation process do not support right-to-left presentation of data. Therefore, online information for the installation appears left to right, in English, for bidirectional languages (such as Arabic and Hebrew).

The following topics provide additional information about hardware installation:

- Console device
- Workstation consideration
- Considerations for changing printers

Console device

Make sure that your console device is configured to support the default code page of the primary language you are going to install. If the console device supports the code page of the new primary language, panels, messages, and online help will display properly after you change the primary language. For example, you cannot have a 5555 configured as the console device unless the primary language is a DBCS language.

You must change the console device to one that supports the code page of the new primary language before doing the IPL that activates the new primary language. Make sure that autoconfig is on before doing this IPL.

Scenario: Console configured as a single-byte device: Your system has a primary language of English Uppercase DBCS (feature 2938). You decide to change the primary language to Japanese DBCS (feature 2962).

The existing console device on your system is configured as a single-byte-only English device using a code page of 00037. While a single-byte English device supports the installation of all other single-byte national language versions, it does not support the installation of double-byte national language versions. You must change the console device to one that supports the Japanese DBCS code page before doing the activation IPL.

If you do not change the console device to one that supports the Japanese DBCS code page, the IPL cannot complete.

Scenario: Console configured with an F-type keyboard: Assume that your system has a primary language of English (feature 2924) and you decide to change your primary language to Czech, Farsi, Hungarian, Russian, Polish, Slovakian, or Thai. Also assume that your system console has an F Type keyboard (a relatively old keyboard type).

While F type keyboards are supported for many national language versions, they are not supported for Czech, Farsi, Hungarian, Russian, Polish, Slovakian, or Thai. You must change the system console to a device that does not have an F type keyboard.

If you do not change the console device and keyboard, an error results because there is no keyboard mapping table supported for the F type keyboard in your new primary language (Czech, Farsi, Hungarian, Russian, Polish, Slovakian, or Thai). The IPL that occurs when changing the primary language cannot complete.

Workstation considerations

In a multilingual environment, different workstations support different languages on the same iSeries server. Any data that is not tagged with CCSIDs should be stored in separate objects, unless the CCSID for each language is the same. Data that is tagged with CCSIDs (such as message files and database files) do not have to be stored in separate objects.

To correctly retrieve, process, and display data that is not tagged with CCSIDs, the application being used needs to be aware of the language differences, and how they relate to the following:

- Programmable workstations through iSeries Access programs
- Nonprogrammable workstations

Note: The 3486 , 3487,3488 model V, and 3489 displays support all languages (except Thai) listed in 3486, 3487, 3488 Model V,_and 3489 Keyboard_and Display Part Numbers by __ anguage.

- Keyboards

Keyboard layouts contains examples of the IBM-enhanced keyboard for the languages supported by OS/400.
-
\$
Telnet or pass-through

\ll

implications
The characters shown on your workstation depend on the keyboard type defined on your source system. If you pass through to the target system and use a virtual device with a different keyboard type, you may not see the same characters as if you were directly attached to the target system, because the target system uses another language.

Considerations for changing printers

When changing printers, consider the areas of data interchange, data stream, fonts, and host printer emulation.

- Interchange (a System/370 ${ }^{(\mathrm{R})}$ system or a System/390 system sending Advanced Function Printing (AFP ${ }^{(R)}$) data for DBCS to OS/400.)
AFP data containing DBCS data can be generated on OS/400. In addition, the server can receive AFP-generated data from the System/370 system containing DBCS data and print it on IPDS ${ }^{(R)}$ printers attached to the iSeries server. The IPDS printers must be configured with *YES specified for the AFP parameter.
- Data Stream

Printers consist of SNA character string (SCS) and intelligent printer data stream (IPDS) printers.
SNA character string (SCS) is a data stream composed of EBCDIC controls, optionally intermixed with end-user data, which is carried within a request/response unit. Host-attached SCS printers can be configured by the systems engineer or by the customer, using a diskette or selection of keys on the printer. The appropriate printer operator's guide should be used to determine how to configure the SCS printer for the language you are using.

One of the strengths of IPDS is that independent applications can create source data. The source data from independent applications is merged at the printer to create an integrated mixed data page. For example, text data could be produced on an editor like the OfficeVision ${ }^{(R)}$ editor, image data could be the output of a scanner stored in a folder, and graphics data could be produced by the Business Graphics Utility program. IPDS makes it possible to integrate application output rather than requiring the use of integrated applications.

- Fonts

Font types for IPDS printers can be configured through the use of the Create Device Description (Printer) or Change Device Description (Printer) (CRTDFVPBTlor CHGDFVPRI) commands. Fonts may be downloaded from the host or may be saved in printer storage.
For a list of the character identifier (CHRID values) supported by the various printers and languages, see the Printer Device Programming

PDF.

- iSeries Access printer to emulate host printer

The iSeries Access programs support multiple languages on a single server. An iSeries Access user (except for host emulation) can use any single language of choice that is installed on the attached iSeries server. If an iSeries Access user has a host emulation session with five different iSeries servers, the user can potentially view a different language on each session. However, the same personal computer ASCII code page must be on all the systems.
Refer to the iseries Access topic for your environment for information on installing and configuring attached PC printers.
For information about a specific device, see the appropriate device manuals.

Software installation and national languages

If your system will be communicating with systems using different languages, use care when specifying configuration names that will be exchanged with the remote system. Do not use characters that may not be available on the keyboard used by the remote system; for example, characters such as a dollar sign (\$), pound sign (\#), and an at sign (@). For an illustration of characters you can use in configuration names, see lnvariant character sed.

You should limit support of configuration names that use characters outside of the invariant character set to those already in use on existing systems.

Configuration names that may be exchanged with remote systems include:

- Network identifiers
- Location names
- Control point names
- Mode description names
- Class-of-service description names
- User IDs (from the directory entry)

For more information on configuration names, see the Communications Configuration

PDF. For more information on software installation, see the Software_Installation

PDF and the appropriate software product books.

Configure a national language version

The following topics provide information about configuring OS/400 with a national language version:

- User profile name considerations
- Service tools
- System and user interfaces
- Configuring the primary language
- Configuring secondary languages
- Installing and enabling locales

User profile name considerations

The user profile name identifies the user to the server. This user profile name is also known as the user ID. It is the name the user types in the User prompt on the Sign On display.

The user profile name can be a maximum of 10 characters. The characters can be:

- Any letter (A through Z)
- Any number (0 through 9)
- In addition to these characters, three special codepoints are allowed ($x^{\prime} 5 B^{\prime}, x^{\prime} 7 B^{\prime}, x^{\prime} 7 C^{\prime}$). For many CCSIDs, including 37, these code points are interpreted as '\$', '\#', and '@', respectively. For other CCSIDs, however, these code points represent other characters. Although these code points are allowed, you should avoid using them because of the potential misinterpretation when multiple CCSIDs are used on a single system. For example, a Spanish person using CCSID 284 may create a user profile with the name "ESPA

N

OL", but an English person using CCSID 37 would see this name as "ESPA\#OL".
The user profile name cannot begin with a number.
Note: You can create a user profile such that when a user signs on, the user ID is only numerals. To create a profile like this, specify a Q as the first character, such as Q12345. A user can then sign on by entering 12345 or Q12345 for the User prompt on the Sign On display. See the iSeries Security Reference

PDF for more detailed information on user profile considerations.

Service tools

Panels, messages, and online help information for service tools are usually shown in the primary language of the system. Therefore, the workstation from which the system is being serviced must be configured to support the primary language, and the keyboard for the primary language must be attached to that workstation.

Panels, menus, and messages used by the service tools do not support right-to-left presentation of data. Therefore, online information for the service tools appears left to right, in English, for bidirectional languages (such as Arabic and Hebrew).

System and user interfaces

The server interfaces and user interfaces are presented through a workstation or printer. The workstation controller interprets keystrokes on keyboards according to the mapping determined by the KBDTYPE parameter in the device description. The display presents the data to the user, depending on the code page mapping located in the workstation controller. This code page mapping in the workstation controller is determined by the CHRID parameter in the device description. Each supported keyboard type has a
character identifier assigned to it, and the default setting of CHRID in the device description (*KBDTYPE) refers to that character identifier. For information about setting code page and national language support on a personal computer, refer to the iSeries Access topic.

See the following topics for more information about system and user inferfaces:

- NLV automatic device configuration
- NLV automatic character set and code page conversion
- NLV printer file conversion

Automatic device configuration: Automatic configuration defines the local devices and some remote devices to the server for you. This means that the devices attached to your server are available for use when the server is running and a has a powered-on display. You do not have to use manual configuration to create configuration descriptions for the devices before you can use them. For devices that are able to send configuration information to the workstation controller, the KBDTYPE parameter is set according to the keyboard attached. If the device cannot send KBDTYPE information to the server, the QKBDTYPE (keyboard system value) is used. For more information about automatic configuration, see the Local Device Configuration

PDF.

Note: If you use manual configuration to set up a device with a different keyboard type than the hardware reports, automatic configuration changes the device description to match the keyboard attached. To avoid this, each time the device is powered on, you can switch automatic configuration off by setting QAUTOCFG system value to 0 (Off).

Automatic character set and code page conversion: The system provides automatic conversion between character set and code pages for all applications that are enabled for national language support. This automatic conversion can be controlled in the display, menu, or panel source, or through the CHRID parameter on the control language (CL) commands that create these displays. The character set and code page of the device used by the end user is determined by the CHRID parameter in the device description. The CHRID value is normally set to *KBDTYPE.

When the data to be presented is in a character set and code page different from the language of the end user, automatic data conversion may occur. For detailed information on data conversions, refer to the Implement CDRA with CCSIDs topic. For a list of supported CCSIDs, see the CCSIDs topic in the Globalization reference topic.

Printer file conversion: The printer provides printed output to the user. OS/400 printer support does not do any conversion between the different character sets. For the data to be printed, the user must make sure that the proper character set and code page are specified in the printer and the fonts are in the printer.

If the CHRID value of the printer file is set to *JOBCCSID, the printer joins the CHRID value of the job CCSID to the data to be printed. For externally described printer files, constants within your DDS (data description specification) are converted from the DDS source file CCSID to the character identifier of the job CCSID value.

Configure the primary language

A primary language consists of program code, textual data for each licensed program ordered, and default national language cultural values. The primary language is the language in which the system is serviced and from which all language-dependent or culture-dependent system values are initialized. In addition, other system objects and functions assume attributes based on the primary language. For example, messages appearing in the history log always appear in the primary language.

For each licensed program installed on the server, the national language version for the primary language is in the product library. For example, the OS/400 program ordered in Spanish is installed in library QSYS as the primary language.

The server provides default system values for each of the primary languages. If some of the defaults do not meet the needs of your users, you can change some language-dependent system values.

For a list of default system values for each of the primary languages, see Defaultsystem values topic. See the System valued topic for information on how to change system value settings.

Select and change the primary language

Choosing your primary language is important. OS/400 lets you change your primary language to accommodate your business needs based on the country in which you are operating.

>

Keep in mind, however, that changing the primary language can take several hours or longer to accomplish.

<

To change a primary language on your system, you can order a different primary language from IBM. If you have a secondary language tape for the language you want as your new primary language, you can change the primary language from that tape. For example, if you have a primary language of U.S. English, and a secondary language of Canadian French, you can use the Canadian French secondary language tape to change your primary language to Canadian French. The instructions to change the primary language on your system are in the chapter called "Changing Your Primary Language" in the Software Installation

PDF.
When you change a primary or secondary language, and want to continue receiving software and documentation updates for future releases of licensed programs that you are currently using, contact your IBM representative.

Selecting and changing a primary language affects the following operational characteristics of your system:

- Cultural values of the user.
- Language used to communicate with the system through user interfaces presented through a workstation or printer (see the figure in the topic Example: How locales work).
- Implied character identifier (CHRID) of the character data stored in objects other than database files, message files, and message queues on the system.

All user-created files that have an implicit CCSID are tagged with the job default CCSID (DFTCCSID).

- If you change the primary language and the CCSID for the data remains the same, there is no effect on your system. An example would be to change the primary language from the German MNCS to the Italian MNCS, which both use CCSID 00500. The multinational character set refers to character set 00697 and code page 00500.
- If changing the primary language includes changing the CCSID value, the character data in objects other than database files may not be presented properly through the system and user interfaces. The database manager automatically converts character data unless conversion is suppressed by the application that processes the file. Data in objects other than database files are displayed correctly if the CHRID value of the display file, panel group, or menu is *JOBCCSID.

If DBCS capability is required for your system, then the primary language needs to be one of the DBCS NLVs:

- 2984 (English for DBCS)
- 2938 (English uppercase for DBCS)
- 2962 (Japanese)
- 2986 (Korean)
- 2987 (Traditional Chinese)
- 2989 (Simplified Chinese)

Configure secondary languages

A secondary language consists of textual data for all licensed programs supported for a national language version. When you install a secondary language, the textual data for licensed programs installed on your system is copied into the secondary language library. See the chapter called "Installing a Secondary Language" in the Software_Installation

PDF for instructions on installing secondary languages.
The program code is not included in the secondary language version.

Secondary language environments

Some multilingual environments have more than one national language version installed. To have a single iSeries server support multiple languages, you must have the associated hardware installed. You must also have sufficient disk storage space available to contain all of the system and application textual data for the secondary languages. The amount of disk storage space that is required varies by language and applications, but it is usually somewhere in the range of 50 to 300 MB .

The languages currently supported on OS/400 as either primary or secondary languages can be found in NLV feature codes. Listed are the national language versions, their feature codes, and the program libraries from which they are available.

Each of the national language versions available from the program library (primary or secondary) include culture- and language-dependent system values for that particular language. Date format, date and time separators, code page and character set, and keyboard types are examples. The system values are initially set to the cultural values of the primary language. By setting up a subsystem, however, you can ensure that the cultural values for the secondary languages are set properly for users of the secondary languages.

Applications can use language values that are available in message CPX8416, in file QCPFMSG, accessed using the library list. Message CPX8416 gives the correct values for the primary or secondary language, depending on the library list.

Except for logical partitioning (LPAR), when you use a multilingual environment, the primary language version and any secondary languages must be at the same release level. You must also order and install the correct devices (workstation controllers, display stations, and printers) to support your languages.

The following links provide additional information about using primary and secondary languages:

- Secondary language requirements
- Ensuring that the secondary language can be used
- Multilingual support

Secondary language requirements: Important requirements for the installation and use of secondary languages are:

- A DBCS secondary language (for example, feature number 5786 for Korean DBCS) may be installed only on a system with a DBCS primary language (for example, 2984 for English uppercase and lowercase DBCS, or 2962 for Japanese DBCS).

Notes:

1. If you install Japanese DBCS (feature number 5762) as a secondary language and you require English as a primary language, you should install English uppercase DBCS (2938) as the primary language. English uppercase DBCS (2938) should be installed because all of its user interface text is in uppercase English letters. Some Japanese workstation displays do not support lowercase English letters. English Uppercase DBCS allows users to view English text from these Japanese displays, without loss of data.
Note, that If you do install English uppercase DBCS as the primary language, you must respond to all messages in uppercase rather than lowercase. If you respond in lowercase, you will receive an error message.
2. Set the QKBDTYPE system value to JUB (Japanese English) when using Japanese DBCS (5762) as a secondary language with English Uppercase and Lowercase Support for DBCS (2984). Use JUB as QKBDTYPE because this allows the primary language users to enter English characters, but not Katakana characters.
3. If Simplified Chinese, Traditional Chinese, or Korean is used as a secondary language and English is required as the primary language, use English Uppercase and Lowercase (2984) as a primary language. You should use English Uppercase and Lowercase because English uppercase and lowercase characters can be displayed on devices supporting these DBCS languages.

- An SBCS secondary language may be installed on a system with a DBCS primary language or with a SBCS primary language.

Enable the secondary language: To ensure that secondary languages can be used after they have been installed on OS/400, you must do the following:

- Change the user's system part of the library list to add the secondary language library to the beginning of the list. You can accomplish this in one of the following ways:
- Use the Change System Library List (CHGSYSLIBL) command to add the desired national language library to the top of the library list. The command can be in an initial program specified in the user profile so the user does not have to enter the command at every sign-on.
The authority shipped with the CHGSYSLIBL command does not allow all users to run the command. To enable a user to run the CHGSYSLIBL command without granting the user rights to the command, you can write a CL program containing the command. The program is owned by the security officer and adopts the security officer's authority when created. Any user with authority to run the program may use it to change the system part of the library list in the user's job.
- Use a separate subsystem for a secondary language. To do this:

1. Create a subsystem description to be used for secondary language users (QGPL/DANISH, for example).
2. Specify the secondary language library for SYSLIBLE (QSYS2926, for example).
3. Specify the sign-on display file from the secondary language library for SGNDSPF (QSYS2926/QDSIGNON, for example).
4. Remove the appropriate display devices (Remove Work Station Entry (RMVWSE) command) from the interactive subsystem and add them (Add Work Station Entry (ADDWSE) command) to the secondary language subsystem. When you use these commands, no one can be signed on to the devices that you are removing.
5. If you want to use separate job queues (JOBQ) and output queues (OUTQ) for a secondary language, you can create these in the secondary language library (for example, QSYS2926). Attach the job queue to the secondary language subsystem (for example, QGPL/DANISH).

- You may have licensed programs that have secondary language libraries and that are not on the OS/400 secondary language tape. You should add those secondary language libraries to the library
list before the primary language product libraries. Use the Change System Library List (CHGSYSLIBL) command to add the secondary language libraries to the library list if the product libraries are in the system part of the library list.
- Specify the keyboard ID for the secondary language in the device description for the display station. This can be accomplished through the use of the Change Device Description (Display) (CHGDEVDSP) command. You need to vary off your device, use the CHGDEVDSP command, and then use the Vary Configuration (VRYCFG) command to vary the device back on.
- Change the date format to reflect the date format of your language. The date format, date separator, and time separator only can be changed using the CHGJOB command for secondary language users. If you use the CHGSYSVAL command to change these values, all primary language users and all secondary language users have this information changed. The following table illustrates this and shows the ways the date and other NLS-related job attributes should be specified for secondary language users:

	CHGJOB	CRTJOBD	CHGJOBD	CRTUSRPRF	CHGUSRPRF
Date	X	X	X		
Date Format	X				
Date Separator	X				
Time Separator	X				
Character Set Identifier	X			X	X
Language Identifier	X		X	X	
Sort Sequence	X			X	
Country or Region Identifier	X			X	

- Change the CCSID value to reflect the CCSID of the secondary language that you want to use. You can set the CCSID value for all jobs to run under your user profile by using the Change User Profile (CHGUSRPRF) command. This change takes effect for any jobs that enter the system using your profile after you have made the change.
You can set the CCSID value for a batch job to be run using the CCSID parameter on the Submit Job (SBMJOB) command. You can change the CCSID of a job that is running by using the Change Job (CHGJOB) command. For more information on CCSID values, see Work with CCSIDs.
- Ensure that your data, in objects other than database files and message files, prints correctly. To do this, you may want to direct all of your printed output to a print queue that contains printer output for only the character identifier of your language.

1. Use the Create Output Queue (CRTOUTD) command to create a printer queue.
2. Use the OUTQ parameter of the Change Job (CHGJOB) command to change your job output queue.
CHGJOB OUTQ(output_queue)
Note: You can use the Change User Profile (CHGUSRPR)F command instead to make a more permanent change to the OUTQ. Then, each time you sign on to the system, the correct OUTQ is used.

If the printer supports changing the code page, you can use the *JOBCCSID value in the printer file.

- Change other culture- and language-dependent values to the secondary language you want to use if you do not want to use the system values. Use the Change Job (CHGJOB) command to change the culture- and language-dependent values.

See Linguistic and cultural values for information on changing linguistic and cultural system values, as well as the subsystem description.

Multilingual support: Multilingual support on OS/400 is support that includes more than one language on one system. A server that works in multiple languages must be able to handle a variety of cultural and linguistic characteristics, such as:

- Graphic characters, such as an e accent grave (
è
)
- Currency symbols, such as the Pound Sterling symbol
- Date formats, such as 24.06 .93
- Time formats, such as 23:59
- Sort sequences, such as a, b, c....

The server must also handle differences such as the direction in which text prints and displays. For example, all text of Latin-based languages, such as French and Spanish, displays from left to right across a display. On the other hand, the general direction of Arabic and Hebrew text is from right to left across a display. The server displays text, prints text, and allows data entry left to right for some languages and right to left for other languages.

Printing and displaying text left to right for some languages and right to left for others is not enough, though. Numbers and Latin character phrases that are included in Arabic and Hebrew text display and print from left to right. For example, Hebrew text generally flows from right to left across a display. When Hebrew text includes a street address, the street name flows right to left, but the address number flows left to right. Similarly, if Hebrew text includes a Latin name, such as John Smith, the Latin name flows from left to right. Because this text flows both right to left and left to right (bidirectionally), the system displays and prints text bidirectionally.

Multilingual network. Two or more servers, each using a different primary language, can interchange data. Because data is flowing between systems with different primary languages, the data must have a CCSID assigned. When data has a CCSID assigned, data integrity is maintained. Thus, character data is correctly displayed for the receiving user.

Install and enable locales

If you are installing a new release, you can request that library QSYSLOCALE be installed on the system at that time. See "System-supplied locales and recommended CCSIDs" on page 388 for a list of the system-supplied locale source members.

If you decide to install library QSYSLOCALE at a later time, type GO LICPGM and press the Enter key. Scroll until you find Extended NLS Support. Select option 1 to install Extended NLS Support.

Locales can be enabled on OS/400 by using system values or user profiles.

Enable locales with system values:

Two system values are related to locales:

QLOCALE

The system value specifying the locale object. The default is *NONE. Other possible values are:

- *C

The C locale is assigned for this user (same result as using *POSIX)

- *POSIX

The POSIX (Portable Operating System Interface for Computer Environments) locale path name is assigned for this user.

- locale path name

The path name of the locale to be assigned for this user.

QSETJOBATR

A system value that sets job attributes at job start up time. The default is *NONE. The following values indicate the job attributes that are to be set from the locale object specified by QLOCALE:

- *CCSID (Coded character set identifier)

The CCSID associated with a locale when the locale object is created.

- *DATFMT (Date format)

The date format is determined from the locale object.

- *DATSEP (Date separator)

The date separator is determined from the locale object.

- *SRTSEQ (Sort sequence)

The sort sequence is determined from the locale object

- *TIMSEP (Time separator)

The time separator is determined from the locale object.

- *DECFMT (Decimal format)

The decimal format is determined from the locale object.

Enable locales with user profiles:

Two parameters on the user profile are related to locales:

LOCALE

The parameter value specifying the locale object to use for the LANG environment variable. The default is *NONE. Other possible values are:

- *SYSVAL

The system value QLOCALE is used to determine the locale path name to be assigned for this user.

- *C

The C locale is assigned for this user (same result as using *POSIX)

- *POSIX

The POSIX locale path name is assigned for this user.

- locale path name

The path name of the locale to be assigned for this user.

SETJOBATR

The parameter value that sets job attributes at job start up time. The default is *NONE. If *SYSVAL is specified, then the attributes are set from the QSETJOBATR value. The same attributes (*CCSID, *TIMSEP, *DATFMT, *DATSEP, *DECFMT, *SRTSEQ) that can be specified on the system value QSETJOBATR can be specified on the SETJOBATR parameter of the user profile.

If you want all users on the system to use locales, setting system values accomplishes this. On the other hand, the user profile is an ideal mechanism if you want to provide locale function to a limited or specific group of users.

For more information

See the following topics for more information about using locales:

- L_ocales
- Work with_locales. This topic provides numerous examples showing how you can use locales.

Scenarios: Set up OS/400 with a national language version

The following links provide scenarios and examples for multilingual support:

- Scenario: Single system single language
- Scenario: Single system with multiple languages
- Scenario: Single system supporting DBCS and SBCS
- Example: Multilingual support, separate database model
- Example: Multilingual support, UCS-2 database model

Scenario: A single system with a single language

This scenario assumes you are in Argentina. You have already ordered and received your hardware. You have also ordered and received an OS/400 licensed program with Spanish (feature code 2931) as the primary language. You did not order any secondary languages.

To set up this system, do the following steps:

1. Configure the console to support the code page of Spanish (code page 00284).
2. Configure the keyboards and printers to support the code page of Spanish (code page 00284).
3. Install the Spanish primary language operating system.
4. Install all licensed programs using the Spanish primary NLV feature code (feature code 2931). Any licensed programs you add to the system must be in the Spanish primary national language version feature code (feature code 2931). If you add licensed programs that are not in feature code 2931, these programs appear as errors on the Install Licensed Program display (LICPGM menu). The Save Licensed Program (SAVLICPGM) command will fail with an exception when trying to save these programs.
5. Once the operating system and any additional licensed programs are installed, you must update and verify system value settings.
a. Change the system value for QCCSID from the shipped default (CCSID 65535) to the recommended value for Spanish (CCSID 00284). Make this change using the Work with System Value (WRKSYSVAL) command. Changing this value allows the system to correctly tag your character data.
b. Change the system value for QCNTRYID to AR for Argentina.
c. Ensure that the system value for QLANGID is ESP for Spanish.
d. Change the system value for QTIMSEP to a period (.).
e. Change the system value for QSRTSEQ to the type of sort sequence you want performed on your data. For example, if you want a unique-weight sort sequence, set this value to *LANGIDUNQ.

Your system values are now as shown in the following table. A list of default system values for some languages is included in "Linguistic and cultural values" on page 9.

System values for an Argentinian system with one language		
System Value	Value Setting	Meaning
QCCSID	00284	Your character data is correctly tagged for the Spanish language.
QCHRID	697284	Your default character set is character set 00697. Your default code page is code page 00284.

System values for an Argentinian system with one language			
QDECFMT	J	The system uses a comma for a decimal point. For example, eleven and one-half would be formatted as: 11,5	
			The system uses a period for a 3-digit grouping character. For example, one thousand nine hundred eleven and one-half would be formatted as: $1.911,5$ The system uses zero suppression at the second character to the left of the decimal point. For example, one-half is formatted as: 0,5
QCURSYM	S	The symbol used for the austral.	

Your printers and workstations have default character identifiers of 697 284, with a keyboard

Scenario: A single system with multiple languages

This scenario shows a single system with Spanish as the primary language and Italian and German as secondary languages. For Spanish language users, the system defaults are activated and no special configuration is necessary.

Users of secondary languages must ensure that the device descriptions for the display stations, the system part of the library lists, and the CCSIDs of the user profiles reflect the secondary language used. Italian users must do the following:

1. Create or change their user profiles to CCSID 00280 and the language identifier to ITA.
2. Set KBDTYPE to ITB, which specifies the type of keyboard attached to the Italian display station. This also implies that the code page for the device is 00280 (see keyboard to code mapping in UNationa language keyboard types and SBCS code pages" on page 332).
3. Change the system part of the library list of the job to include QSYS2932 before the QSYS library.
4. Use the Change Job (CHGJOB) command to change the date format, date separator, and time separator.
5. Direct Italian printed output to the printer queue that contains the printed output for Italian data.

German users would make changes similar to those made by Italian users:

1. Create or change the user profiles to CCSID 00273 and the language identifier to DEU.
2. Use AGB for the KBDTYPE in the device description for their display station.
3. Change the system part of the library list of the job to include QSYS2929 before the QSYS library.
4. Use the CHGJOB command to change the date format, date separator, and time separator.
5. Direct German printed output to the print queue that contains the printed output for German data.

The CCSID for the character fields in the database for this system is the Spanish CCSID 00284, which is based on the job CCSID when the file is created. Assuming the Spanish user did not specify a different CCSID for the database files created, the files are assigned CCSID 00284 and contain code points from character set 00697 and the Spanish code page 00284. The Italian and German users can still use these files.

Database support automatically converts character data between the default Spanish CCSID 00284 and the Italian user's job CCSID 00280 or the German user's job CCSID 00273.

The example in the following figure shows a SRTSEQ value of *LANGIDUNQ. This example shows the system from the primary language user view.

Argentinian system with a primary language of Spanish (Feature 2931)

RBAGS514-0

The following figure shows the system from the Italian secondary language user view.

Argentinian server with a secondary language of Italian

The following figure shows the system from the German secondary language user view.

Argentinian server with a secondary language of German

REAGS516-0

Scenario: A single server supporting DBCS and SBCS

This scenario shows a single server containing English Uppercase DBCS as the primary language and Japanese DBCS and English SBCS as secondary languages. It shows the server from the primary language user view

In this scenario, the system value QKBDTYPE is set to JKB. This allows users to enter double-byte coded Japanese characters, single-byte coded English uppercase characters, and single-byte coded Katakana characters concurrently.

OS/400 requires a DBCS primary language to support a DBCS secondary language. If you have a DBCS primary language and a DBCS secondary language, you may want also to provide uppercase and lowercase English for some users. You can do this by changing the system library list and adding QSYS2924 to the system library list. A better way is to use a subsystem description for each secondary language. For more information on using the subsystem description, see the Enable the secondary language" on page 40 topic.

Users of DBCS and SBCS languages usually store their data in separate databases. You can create a separate DBCS-capable physical file and a separate SBCS-capable physical file. The CCSID parameter can be used to specify the CCSID that data is stored in. For more information about creating DBCS-capable files, refer to the DDS Reference: Concepts topic.

The following figure shows an English Uppercase DBCS primary system:

The following figure shows the system from the Japanese secondary language user view:

This following figure shows the system from the U.S. English secondary language user view.

Example: Multilingual support, separate database model

Consider a large bank in Switzerland with branch banks operating in Spain, Egypt, Japan, and Russia. Each branch bank has an iSeries server set up as follows:

- The central bank in Switzerland provides software to all branch banks to allow them to pass data back and forth using OS/400 communications.
- A branch is installed with the Arabic national language version. The displays, keyboards, and printers are all bidirectional Arabic devices.
- Another branch is installed with the Japanese national language version. The displays, keyboards, and printers are all double-byte character set (DBCS) Japanese devices.
- A third branch is installed with the Russian national language version. The displays, keyboards, and printers are all Russian devices.
- The central banking system in Switzerland is set up for multilingual support:
- The primary national language version is DBCS English. This national language version is used so that the Swiss system can support data from all of the branch banks, including DBCS data from the Japanese branch.
- Additional national language versions are installed on the Swiss system to support each of the languages (French, German, Italian, and English) that are used by the Swiss employees.
- Additional hardware is installed to allow the Swiss employees to display and print data received from the branch banks.
- The information technology department for the central bank designed a multilingual banking application to support this environment. They use the national language support-enabling capabilities of OS/400, including national language support application program interfaces. This design allows for
adding new languages when they are needed. They place program integrated information into message files, display files, printer files, help files, and panels to allow for translation into different languages.
- The Swiss bank has separate libraries for data represented by different character sets:
- Library EUROPE contains all data from Spain and Switzerland. This data is normalized to a common encoding for these countries (code page 00500).
- Library JAPAN contains all data from Japan.
- Library RUSSIA contains all data from Russia.
- Library EGYPT contains all data from Egypt.

Separate libraries are set up for each unique character set that is supported by the central banking application. Because French, German, Italian, and Spanish share the same character set, the data for these languages is stored in a single library (EUROPE). Arabic, Russian, and Japanese use character sets that differ from each other. Therefore, the data for these languages is stored in separate libraries.

The following figure shows an example of multilingual support.

Swiss bank iSeries server	English DBCS system library

Example: Multilingual support, UCS-2 database model

Now consider the same bank in Switzerland with branch banks as described in Example: Multilingual support, separate_database model. The setup for the central bank and branch banks is the same as before, with some exceptions.

- There is now one subsystem for each country.
- The Swiss bank has one database that consolidates all the data. No character data is corrupted because Universal Character Set (UCS) is used for all text fields. When accessed through the appropriate logical view, each bank sees the data in its own code page.

Swiss bank iSeries server Central bank banking application	English DBCS system library	UCS-2 enabled database
	French subsystem library - Machine readable info. - Cultural values - Logical views	
	GERMANY subsystem library	
Application runtime	RUSSIA subsystem library	
	JAPAN subsystem library	
	EGYPT subsystem library	

RBAGS518-0

Develop global applications

Global applications are those applications that have national language support. National language support allows users to enter, store, process, retrieve, print, and display data in their language of choice. National language support also allows users to see and enter data, commands, prompts, messages, and documentation in their language of choice, in formats that match their cultural expectations.

Although your reasons may differ, most internationalized applications are created because:

- The market demands global software products that have a local feel
- The application is used in a community that represents multiple cultures
- Revenue opportunities are expanded

The following links provide valuable information that you need to know as you begin your development process:

- Develop global applications: goals and processes
- Design globalized applications
- Programming_considerations in global_application design
- Deliver globalized applications

For more information

See Handle data in globalized applications for information about how you work with various types of data in a global environment.

Goals and processes

Before you invest your time and money into the development of global applications, you will benefit from a planning process that gives you an opportunity to consider how you can efficiently and effectively serve your global users. The following topics will help you develop such a plan:

- Development goals
- Market research process
- Development process
- Documentation process
- Translation process
- Testing process
- Packaging and installation process
- Application maintenance process

Globalization development goals

Use this topic when you are planning for, and creating, international applications. The recommendations in this topic assume that your basic goals are:

- To create an application efficiently.
- To create an application at minimal expense. You can retrofit existing applications for globalization and create new applications designed for globalization. Designing an application for globalization, however, is usually less expensive than retrofitting an existing application.
- To ensure that the application design does not interfere with the current or planned design of other internationalized applications.
- When creating an application with national language support, you must plan for or put into effect the following tasks:
- Designing functions that are sensitive to national languages
- Supporting various types of hardware support
- Translating the textual data in your application
- Making your application available worldwide.

Globalization development planning processes

A global application should be well planned at every stage in order to save time, effort, and money. You should not have to recompile programs nor repackage data objects. Your product may, however, be required to use a different data object based on the language version you are using. You should have one set of program code and different sets of culture- and text-dependent code, as needed.

Consider the following processes when planning for a global application.

- Market research
- Development
- Documentation
- Translation
- Testing
- Packaging_and installation
- Application maintenance

Market research process

The most important factor for every decision is that you know for whom you are designing and developing your applications. To determine the answer to this question, ask yourself and your potential customers the following types of questions.

What are my target markets for today and tomorrow?

The answer to this question makes a significant difference if you define your marketplace in different countries or only in the area of your own language, or if you decide to include countries speaking other languages. For example, if you are coding an application from a Latin-based language, application complexity increases when you decide to include countries using non-Latin languages such as Hebrew, Chinese, or Japanese. The application complexity increases because you need to deal with incompatible characters sets and more complex input methods.

Along with the language problem, there are other areas to consider. You need to understand the culture, habits, ways of doing business, and laws of the target markets. You need to understand the customers' ways of life for you to be accepted as a business partner, to be able to get into the market, and to support them in their countries.

These factors can affect:

- The skills that you need (technical, cultural, language, laws)
- The environments to consider
- Your company structure and support organization
- Your relationship to other companies
- The resources that you need (people, time, and money)

Who are the users of my application?

You must understand the requirements that future users of your application will have. For example, do they want to:

- Work with separate databases for different languages?
- Work with a shared database for all languages?
- Exchange or consolidate data?
- Work with different languages dependent on the end user, the company, or the company's customers?
- Use end-user database tools to do their own inquiries on the application database?

All these factors may affect the design you choose, the way your application is able to switch from one language environment to another, and how data presentation and conversion take place.

How much globalization support is needed?

After you understand the requirements for your customers and their end users, you can decide what kind of culture-sensitive information you need to store and maintain, the type of data presentation, which parts you have to translate, and how your application must be able to be integrated in the different environments.

What is the cost of the effort?

To estimate the expected revenue, analyze the places you have chosen as your target market. After you know the requirements, you should be able to determine the effort and costs. This amount allows you to compare the costs against the expected revenue.

Which costs more, enabling or retrofitting an application?

The initial cost of enabling an application for national language support might be higher. But consider that the enabling steps are based more on normal modular and data-driven design techniques, which improve the quality of your application even without NLS enabling. Because a good design helps people to understand and describe the application system, you will receive a certain return on the investment. A good design helps to improve productivity of development and maintenance. You have the additional effort of designing and implementing the application only once, even for many different language versions. Compared to retrofitting an existing application, it is much less expensive to plan and design it from the very beginning.

Development process

Before you are ready to develop NLS-enabled applications, consider the following for a successful development process.

Education for developing internationalized applications

When you intend to develop NLS-enabled applications, you need to consider additional initial education. The following are important topics to learn about:

- General globalization concepts
- Available globalization support on OS/400
- Available globalization support on other systems and applications with which your application operates
- Isolation of different parts of an application
- Data presentation corresponding to cultural conventions
- Design and coding for textual data parts
- Translation process
- Product and system integration
- Packaging, installation, and setup
- Product support and maintenance

Based on the globalization enabling guidelines, first prepare a prototype application and test the chosen way of implementing the application for your specific environment. Afterward include the globalization enabling guidelines in your general application development processes, guidelines, and standards.

Implementing internationalized applications

When implementing an internationalized application, the most important objective is to produce only one set of running code. You must differentiate consistently between running code and textual data. It is essential that you standardize the chosen approach throughout the whole application. Work with unique and clearly defined naming conventions. To understand and to maintain this information in the application, handle parameters called from a program in a consistent way.

Documentation process

Documentation should provide information for the end users of the application system in their own language. The documentation should also include installation, setup, and customization information for the end user, the system operator, and the application system manager.

The user documentation should be textual data that can be easily translated. Whenever possible, combine the online help information and user documentation to reduce the volume of text to translate. Any example displays or print layouts should be produced by the application and included in the documentation.

Translation process

Translating the textual data is a very time-consuming process. The textual data should be available to translators very early in the development stage, even before the code is stable. Consider the following areas when planning for translation:

Physical equipment

Each translator should have equipment compatible with the language being translated. The display stations and keyboards should have all the characters needed to translate, and the printers should be able to print the translated text.

Translation tools

Provide the translators with tools that increase productivity and that prevent translation of non-textual application data. When purchasing or developing a translation tool, the following features should be included.

- An editor that provides the ability to show displays that would be seen by the end user, and the ability to translate the textual data on the system but still protect the parts of the application that are not textual data. The editor should also include functions such as scan and replace, find, copy, move, and delete.
- A dictionary function to provide consistency of words and phrases throughout the product.
- A validation process to check translation errors that might cause the application to malfunction.
- A merge function that provides the ability to merge the translated text into a new version of the original text. This merge function allows for translating only new text, and saves time and effort.
- A print function for validation purposes.

Translation education

It is important that translators are familiar with the product they are translating and also with the tools they are using. The translation process is not the replacement of one word with another, but the formation of concepts in another language. Knowledge of the product being translated provides more understandable products to the end user. Time and resources for educating translators should be planned well in advance.

Translation guidelines and instructions

Translation guidelines and instructions should be provided to ensure correct translation. For example, to translate an error message properly, it is important to know in what context this message is displayed. A note to translators telling them what error caused the message to be displayed also helps.

Translation glossary

To ensure accurate translation, use terminology based on definitions in standard, widely available, dictionaries. If your application uses terms not found in standard dictionaries or terms that are used differently from standard definitions, provide a glossary of non-standard terms to the translators. Avoid using abbreviations and acronyms in your application. If you must use abbreviations or acronyms in your application, define them in the glossary. Remember, abbreviations and acronyms that are obvious in your language may not be obvious in another language.

Testing process

The testing of an globalization-enabled product should be done in three phases:

1. Testing the running code

The running code should be tested in a globalization support environment in order to check all the possible language-dependent combinations. Translators should not test the product functionality.
2. Checking the textual data The textual data should be tested to check correct translation and consistency throughout the product.
3. Integrating the running code and textual data

After the textual data and the code have been tested separately, an integration test should be performed to test if the application has taken into account all the globalization-related processing, and that the translation of the textual data has not caused a malfunction in the product.
If your application will also run on a multinational or multilingual system a separate test that includes more than one set of textual data should be planned.

Packaging and installation process

Consider running code, translated textual data, and installation documents when packaging applications. Some suggestions for simplifying the packaging and installation of your application include:

- Store the running code and textual data separately.
- Package the textual data so that customers receive only the textual data in the languages that are ordered. (If the textual data for all languages is sent to all customers, it will waste system resources and lead to maintenance problems.)
- Provide comprehensive installation documents (translated to the language of the person installing the product) to avoid unnecessary operator-related problems and also to avoid the wrong impression right at the beginning that the application is not reliable.
Installation documentation should cover the following topics:
- What is needed to install and run the application, such as hardware and software requirements.
- How to install the application, and how to recover when things go wrong.
- What changes need to be made regarding:
- Subsystem definitions
- Device descriptions
- User profiles
- System values
- Library lists
- What are the application limitations?

Application maintenance process

Consider the following points when planning for maintenance of a multilingual application:

- The running code must be maintained separately from the textual data. These separate components must be fully synchronized. A redesign in one component may cause a redesign to be made in another.
- Whenever textual data is changed, be sure that it is incorporated in all the languages to which your textual data was translated. In this way, you can ensure a single maintenance level for the complete product.
- Be sure to test the running code for each textual data change that you distribute.

Design global applications

Your goal in designing international application components is to create components that support national languages independently. The support of one language should not interfere with the support of another language. The support of one language should not force any reduction in the function of the product for another language.

Your application should be able to support multiple languages simultaneously. For example, support for a double-byte coded character set (DBCS) language should not exclude support for single-byte coded character set (SBCS) languages. When you set up your libraries, consider using multiple textual data libraries, which can be dynamically allocated for testing, packaging, and delivery.

As you develop a global application for the iSeries server, you must consider these and other unique design issues that will affect the way you build and code your application for the global user. The following topics identify the scope of these issues, and provide useful guidance on how you should proceed:

- Checklist: Application design
- Globalization and localization
- Application arrangement and architecture
- User interfaces

Checklist: Application design
The following table provides some guidelines that you can follow when creating an application with national language support.

Complies	Not applicable	Rule
		The existence of a specific character set within a system or its components must not be assumed.
		Converting character case must be definable for each language and code page.
	Folding must be definable for each language and code page.	
Folding is the process in which characters that can be printed or		
displayed are substituted for those that cannot be printed or		
displayed on a particular device.		

Complies	Not applicable	Rule
		Functions dependent on display field length and display field position, or display field position alone, must not be designed in such a way that they are affected by user-interface text expansion.
		A method must be provided to allow for the identification and tracking of panels and messages during the translation process.
		Variables must be permitted to assume any location and order within a display field.
	Messages and other displayed words or phrases must be complete entities and must not be constructed from individual words or phrases.	
		Entry of end-user commands, keywords, or responses must be possible without regard to uppercase or lowercase characters.
	A product with national language-dependent functions must be designed to facilitate the addition of other countries or national languages.	
		Lowercase alphabets should not be assumed to be invariant.
		Character sets should be definable by the operator, a user, or an application.
	Special characters, including punctuation marks, should be definable and not program dependent.	
	User-interface text modules should be packaged separately from the running code.	

Globalization and localization

OS/400 controls the operation of programs and provides services such as controlling resources, scheduling jobs, controlling input and output, and managing data. It is designed to complement and extend the capabilities of iSeries servers to provide fully-integrated support for interactive and batch applications.

Many OS/400 functions apply directly to interactive data processing. Among these functions are:

- Database support to make up-to-date business data available for rapid retrieval from any workstation
- Work management support to schedule the processing of requests from all work station users
- Application development support that allows online development and testing of new application programs to run at the same time as normal production activities
- System operation support that allows the user responsible for system operations to perform work from the display station using a single control language, complete with prompting and help for all commands
- Help and index search support that allows users to request online information on a wide variety of topics
- Message handling support that allows communication among the system, the user responsible for systems operations, workstation users, and programs running in the system
- Security support to protect data and other system resources from unauthorized access

In addition to these functions, the OS/400 program provides national language support. National language support allows users to interact with the system in the language of their choice, with results that are culturally acceptable. National language support consists of two parts: globalization and localization.

Globalization is support that allows an application to operate in all language environments without any change to the application. This type of design is also known as enabling an application for national
language support. A globalized application, shown in the following figure, is culturally neutral.

Internationalized Application

Culture-Independent Code

An internationalized application is designed so you can add support for any language, country, or culture.

RBAGS519-0
By contrast, localization allows an application to operate in a specific language, country, or culture. Localization of an application goes a step beyond globalization of the application, as shown in the following figure.

When localized code is integrated with globalized code at run time, the resulting application appears to the user with full national language support. The processing environment defines which localization code is
combined with the globalized code at run time, as shown in the following figure.

RBAGS521-0

Application arrangement and architecture

When you design an international application, consider the ways that you can organize and structure your application so that it can be used in an international environment. In particular, consider the following strategies:

- Separate program modules at appropriate places
- Name application parts appropriately for a multilingual environment
- Refer to specifications whenever possible
- Provide multiple sets of logical files in separate libraries when working with database_definitions

The following figure shows you the recommended way to organize the parts of your application.

Program module separation: You can separate culture-dependent parts from your running code and set up culture-dependent environments. You can do this using system values, user profile attributes, job attributes, and object attributes.

When it is impossible to separate national language and culture-dependent parts from the running code, you must provide national language exits or calls at all points where functions dependent on national language support are required. The following figure shows a national language exit.

Application part names: When you want to enable your application for different languages and countries, consider the environments of the target systems in your naming conventions. Use characters that are available, can be displayed, and can be printed in all the target environments. Use only characters of the invariant character set whenever you specify names for:

- Libraries
- Database files
- Device files (display or printer)
- Help panels
- Message files
- User commands
- Programs
- Record formats
- Fields

All other characters either vary their meaning or may not be available on the keyboard.

To create an internationalized application, you need to divide your application objects into related parts that are textual data and nontextual data. Your naming conventions should be able to distinguish between these parts. You should also be able to distinguish between the textual data of different languages. You can do this by separating the objects into different libraries.

Scenario: Library naming convention

Your library naming convention could look like the following:
AAATTTLLL
where: AAA is the application identification; TTT is the type of objects; and LLL is the language code.
This naming convention allows you to have all libraries that belong to an application grouped together because you have a unique identifier (AAA) at the beginning.

The second part (TTT) allows you to distinguish between different types of objects:
Textual data

- Display files
- Printer files
- Message files
- Help panels
- User command
- Cultural values
- Database files with NLS-sensitive information and specifications
- NLS-dependent program modules

Nontextual data

Programs
Data Database files
The third part (LLL) allows you to specify the national language version for all the textual data parts. This allows you to use the same names for objects of the different national language versions within the different libraries. Your program is able to use different objects by just rearranging the library list accordingly when the job is run.

The initial library list can be taken from the job description. You can build a new library list by specifying the library list in the INLLIBL parameter of the Create Job Description (CRTJOBD) command for a new job description, or the Change Job Description (CHGJOBD) command for an existing job description. The following figure shows an example of this.

> English user

French user

Specification references: Define all your fields first in the field reference file of your application and refer to them whenever you can: in the database specifications, in device file specifications, and in the high-level language programs. This technique helps you to define the field specifications once and use them again. If you need to distinguish between the same field of different sources, you can rename or qualify them. Whenever you need to change the definition of a specific field, you just need to change the attributes of that field in the field reference file and create the objects again. Then the changes take place automatically in all the different places where the field is used.

For example:

```
|...+....1....+....2....+....3....+....4....+....5....+....6....+.....7....+..... }
    A REF(field-ref-file-name)
    A R record
    A field R line pos
or A field R line pos
    REFFLD(ref-field-name)
```

Database definitions: You define a file to specify certain facts, and the specifications are then used on database files. The following are some examples of such specifications:

- The object description text of the file
- The explanation text (TEXT keyword) on record formats and field descriptions
- The column headings (COLHDG keyword) on field descriptions
- Date and time formats and separators
- Sort sequence
- Language identifier

The object description text is shown by all database tools such as DB2 ${ }^{(\mathrm{R})}$ UDB for iSeries SQL, iSeries Access, and data file utility (DFU) on the file selection display.

The column headings are shown by the database tools on the output field definition display. Column headings are also used on screen design aid (SDA) and report layout utility (RLU) as the proposed field-prompting text or heading.

Data management handles date- and time-type fields in the format specified at file-creation time, unless your application or database tool does a conversion to present it according to your request or job demand.

When you want to present all this information according to the language and culture of the user, you need to provide multiple sets of logical files in separate libraries. Along with the translated text, you can specify different date and time formats or different sort sequence and let data management perform the conversion. A similar technique can also be used for numeric-type date fields (unless they are packed), using the substring (SST) function. The user can access the data only through the designated logical views. When you are defining logical files with different sort sequences, avoid using a unique index with a shared-weight table. Although this is possible, a unique index prevents using keys that differ only in characters with the same weight.

The scenario in Application part names shows an example of using different sets of logical files for different users.

User interfaces

A user interface is the part of a software product that your customer actually sees. A user interface may include the layout of display screens or printed output, displayed or printed text, commands, online help, and messages. A user interface is also the part of a software product that you must either translate or make cultural changes to for users in other countries or cultures.

OS/400 provides specific software functions to help you organize text from your user interface and store that text in a library for easy translation. The operating system also provides you with a user interface
manager that provides a consistent user interface. The user interface manager provides comprehensive support for defining and running panels such as displays and online help.

This section provides guidelines that you can follow when designing a user interface for an international application. You should apply these guidelines early in the design process. Guidelines are provided for:

- Checklist: User interface design
- Text translation design
- Textual data code design
- User interface manager
- Program message design
- Menu design
- Command design
- Cultural-dependent design
- Display file design
- Printer file design and translation
- Source file design
- CDRA design
- Handling languages that do not have NLV support

Checklist: User interface design: When creating a user interface with global support, you should follow some rules and guidelines, as shown in the following table:

Complies	Not applicable	Rule
		The use of a graphic character for software control purposes must not preclude the use of the same character in the text of messages, menus, prompts, input fields, or output fields.
		Graphic symbols and icons must be translatable.
		Language-dependent parts of a product must be isolated from nonlanguage-dependent parts for easy modification.
		All user interface text and presentation control information must be isolated from the running code.
	Sufficient space must be available for user-interface text expansion caused by translation.	
	Functions dependent on display field length and display field position, or display field position alone, must not be designed in such a way that they are affected by user-interface text expansion.	
		A method must be provided to allow for the identification and tracking of panels and messages during the translation process.
	Variables must be permitted to assume any location and order within a display field.	
		Messages and other displayed words or phrases must be complete entities and must not be constructed from individual words or phrases.
		Entry of end-user commands, keywords, or responses must be possible without regard to uppercase or lowercase characters.
		Date and time formats must be selectable.
		Numeric punctuation must be selectable.
		Number rounding and mathematical formats must be selectable.
		Monetary format must be definable.

Complies	Not applicable	Rule
		The default currency symbol and its abbreviations must be selectable.
		The currency symbol position must be selectable.
		Field sizes for monetary values must be selectable.
		The measurement system must be selectable.
		Special characters, including punctuation marks, should be definable and not program dependent.
		User-interface text modules should be packaged separately from the running code.
	User-interface text modules for single-byte coded character set systems should be loaded separately from the running code.	
		A consistent convention should be used throughout the product for denoting variables and input fields.
		Words should not be used in place of numbers.
		The terminology in user interface text should be consistent
		Slanghout a product.

Text translation design: The following information provides some general tips to help simplify the translation of your textual material.

Isolate textual data from running code

To allow easier translation and to avoid translating the running code, you should separate all textual data from the running code. Only one set of running code is needed, but many translations of the textual data can be done.

Provide expansion space

The space needed to translate text from one language to another varies by language. To ensure that the translated version preserves the concept and keeps usability, allow sufficient presentation space for the textual data expansion. The following table shows recommended expansion space for user interfaces designed using U.S. English.

Number of characters in text	Additional space required
Up to 10	100 to 200%
11 to 20	80 to 100%
21 to 30	60 to 80%
31 to 50	40 to 60%
51 to 70	31 to 40%

Number of characters in text	Additional space required
Over 70	30%

Variable placement of an object on the display

Because the position of one display element often is influenced by the position and size of others, some of the elements on the translated version of a display may have to be relocated. The program must continue to respond properly, despite this relocation.

Flexible order of variables

In order to contain dynamic information, messages usually employ substitution variables. However, each spoken language has its own syntax (order of arrangement of parts of speech). When a message is translated into another language, the position and order of substitution variables may have to change to meet the syntax requirements in the translated language.

Complete textual data entities

If the final form of the constant text relies on the composition of various parts, it may be untranslatable. This is because the translator might not know which form of the word to use or because there is no combination of parts that work for a different language.

For example, you should define column headings for display screens as complete entities. You should not combine words or parts of words to define column headings. Assume you are writing an application for scheduling jobs between Monday and Friday. You are creating your application in French. You decide to create column headings for reports and screen displays by combining the first part of the name of the day with the constant DI. Throughout the application, the column and report headings are assembled like this:
First Part of the

Name of the Day:	Combine With:	Result:
LUN	DI	LUNDI
MAR	DI	MARDI
MERCRE	DI	MERCREDI
JEU	DI	JEUDI
VENDRE	DI	VENDREDI

When you translate your application from French to German, you cannot combine two parts to create the names of the days: MONTAG, DIENSTAG, MITTWOCH, DONNERSTAG, and FREITAG.

Treat commands, responses, and keywords like textual data

Commands, responses, and keywords should be translated into the language normally spoken by the user. For example, an English application has been translated into German. If the response is still in English as Yes and No, the German users would feel unfamiliar and uncomfortable in using the program because the responses they are familiar with are Ja and Nein.

Express all text as simply and clearly as possible

- Use simple phrases and sentences and avoid compound phrases. Simple words allow easy translation.
- Make terminology consistent throughout the product.

If consistent terminology is not being adopted throughout the product, translators will waste time trying to determine the appropriate word to be used in translation.

- Include notes to translators in your information for correct word use to prevent any misunderstandings.
- Avoid abbreviations.

Rules for abbreviations vary from language to language. Abbreviations of words can lead to misunderstandings by the translator and by the end user.

- Avoid slang, jargon, and humor.

Slang, jargon, and humor are specific for a particular language and cannot be easily translated into another language.

- Avoid negative questions.

Negative questions are often misunderstood by the user. When asking questions, ask them in a positive way.

Textual data code design: Application displays, printer file specifications, and user-created commands usually contain a large amount of constant text. Application displays, printer file specifications, and user-created commands also contain input and output fields such as headings, field prompts, instruction lines, and function key descriptions.

You can use different techniques to specify, store, and use constant text. You can use each technique for specific types of textual data components. Each technique has its advantages and disadvantages. The following topics show you how each technique works and describe which techniques you can use for various components:

- Early binding of messages
- Late binding of messages
- Direct coding as an unnamed output field
- Text stored in database files

Early message binding: Text can be stored externally from the source code in a separate message file but is bound into the object when it is created. This technique can be used for:

Display files

Constants such as titles, instruction lines, option definitions, headings, field prompts, command key descriptions

Printer files

Constants such as titles, headings, total line descriptions

User commands

Prompt descriptions on the command definition statements
For device files (display and brinten), the message is referred to by the Message Constant (MSGCON) keyword in the DDS source specifications.

For example:
A line pos MSGCON(length message-ID [*libl/]message-file-name)
For user commands, the message identifier xxxnnnn is specified on the PROMPT keyword instead of a literal. The message file is referred to on the Create Command (CRTCMD) command.

For example:
CMD PROMPT (xxxnnnn)
The message file name message-file-name is in a source file referred to by the following command.
CRTCMD CMD(command-name) PGM(1ibrary-name/program-name) +
PMTFILE([*libl/]message-file-name)
Before the object can be created, you must enter the message description into the specified message file. Enter the message description using the Add Message Description (ADDMSGD) command.

For example:
ADDMSGD MSGID(xxxnnnn) MSGF(1ibrary-name/message-file-name) +
MSG('Text
')
where xxxnnnn is the message identifier.
This technique allows you to create any number of objects in different languages and to put them into different libraries using the same source code by just assigning another message file at object creation time.

The message file is needed only during the creation of the object. Consider specifying the appropriate length for different languages on the MSGCON keyword. Then make the length information available to the translator.

The following graphic shows how early message binding works:

At file creation time, you can choose the appropriate textual data of the language version you want to work with by setting up the library list with the specific library containing the textual data and the program library.

Late message binding: Text can be stored externally from the DDS source code in a message description and is bound only to the display format at run time.

This technique can be used for:

Display files only

Constants such as titles, instruction lines, option definitions, headings, field prompts, command key descriptions (MSGID keyword)
Default values on input fields (MSGID keyword)
Field validation specifications (CHKMSGID keyword)
Error messages (ERRMSGID and SFLMSGID keywords)

In the DDS for the display file, the message is specified through the MSGID (Message Identifier) keyword. The message has to be entered into the specified message file using the ADDMSGD (Add Message Description) command.

For example:
A FLD-name $\begin{aligned} & \text { length line pos MSGID(message-ID [*libl/]message-filename) } \\ & \text { includes expansion space } \\ & \text { ADDMSGD MSGID(xxxnnnn) MSGF(library-name/message-file-name) + } \\ & \text { MSG('Text }\end{aligned}$ ')
This technique allows you to create any number of message files in different languages and different libraries, with one DDS source code and display file object. During run time, you assign another message file by setting the library list accordingly. The following figure is an example.

Note: This technique requires the application to perform all editing based on the cultural convention.
Direct coding as an unnamed output field: The most common way to define constant text is to specify the text directly in the source code as a literal. While this method is the most common way to define constant text, it is the most difficult to translate. Avoid using this method whenever coding an application, even if the application is not planned for translation.

If you are coding an application that will not be translated, you may want to use this technique for:

Display files

Constants such as titles, instruction lines, option definitions, headings, field prompts, command key descriptions

Default values on input fields (DFT keyword)
Error messages (ERRMSG/SFLMSG keyword)

Printer files

Constants such as titles, headings, total line descriptions

User commands

Prompt descriptions on the command definition statements.

For device files, specify the text as an unnamed field, indicating the starting line and column and the constant text itself.

For example:
A line pos 'Text : '

A similar rule applies to user-created commands. Define the text directly on the keywords of your command source statements.

For example:
CMD
PROMPT(' Command description ')
When defining the text directly on the keywords, standardize the sizes of the different elements in a large literal, rather than specifying many small single ones as single words. This makes the source code more readable and more flexible for translation.

Consider that the space needed for explanation text can vary from language to language. To have enough room after translation, remember to reserve space initially. The source members need to be translated and the objects need to be created for different languages as shown in the following figure:

RBAGS512-0

Each national language version has one set of programs, but can have multiple sets of source members and data objects. When the application is run, you can choose the appropriate textual data of the language version that you want to work with. This can be done if you set up the system part of the library list with the specific library that contains both the textual data and the program library.

Text stored in database files: Text can be stored externally from the source code in a database file, retrieved by the application program, and then moved to the display or print format at run time. Instead of coding constants on the DDS, you can specify output fields that can be filled by the program. Consider specifying the appropriate length for different languages on the output fields and making that available to the translator.

This technique can be used for:

Display files

All constant text
Default values on input fields
Error messages

Printer files

All constant text

Programs

All constants like compare values, scan characters, and tables.
This technique allows you to create any number of database files in different languages and different libraries, with only one DDS source code and display file object. During run time, you assign the corresponding database file by setting the library list accordingly.

Note: This technique requires the application to perform all editing based on the cultural convention.
User interface manager: The OS/400 user interface manager (UIM) is a part of the system that allows you to define panels and dialogs for your application. UIM provides the following support:

- A tag-based language for describing data and panels.
- A compiler to create panel group objects and menu objects by using the tag-based language.
- A set of application programming interfaces (APIs) to use as panel group objects to display and print panels.

The UIM also provides the following functions:

- Dialog commands for screen management
- Contextual online help
- Pop-up windows
- Menu bars
- Command line for entering CL commands
- Tailoring of the contents of a panel for different users or environments
- Fast paths through menu networks
- Double-byte character set (DBCS) languages
- Bidirectional (BIDI) language support

UIM supports common panel types such as menus, information displays, list displays, and entry displays. When all display types and interfaces are consistent, users adapt more quickly to new applications.

UIM applications can coexist with and share the requester display device with other open display files that are not under UIM control. However, a UIM panel and a DDS-defined record format cannot appear on the display at the same time. When a UIM panel either replaces a DDS panel or vice versa, the system suspends operations of one file or panel group and restores the display as needed.

The following provide more information for user interface manager:

- Online help design
- Index search tags
- Index search and DBCS

Online help design: You can define online help by using one of the following:

Panel groups

Objects into which user interface manager (UIM) source is entered.

Records

A set of DDS keywords contained in a source file member.
If the user interface manager is used for defining online help, the panel groups are defined either in place of DDS or in the display file. In either case, the encoding of the data to be displayed must be indicated by the CHRID value in the display file or the panel group.

A panel group is an object that can be used to contain help information. OS/400 uses *PNLGRP as an identifier for the object type that contains a collection of help information.

Guidelines: Online help

When defining online help information to be translated into national language versions, keep in mind the following about panel groups and records:

- Records do not have word processing available (functions such as spell check and word wrap though system APIs exist to provide spell checking).
- Various OS/400 messages and panel groups determine the national language conventions and translations. Not all countries have a national language version available for the OS/400 program. Not all national language versions are completely translated, with many parts still in English. The messages and panel groups that are not translated do not reflect the national language cultural conventions. See Command design for an example of a translated panel in which part of the panel has remained in English because not all parts of the NLV were translated.
- Allow for translation expansion.

Guidelines: DDS online help design

When multiple languages are installed on one system, the help documents are stored in different folders. The DDS source file needs to be copied, changed, and compiled again for each language on the system.

Index search tags: Help panel groups may contain index search modules. Index search supplements the help information that is provided for each display. To use the information in help panel groups for the index search function, you need to add the appropriate UIM tags to your help modules.

Users can access the index search function from any display help that specifies that the index search function is available.

The ISCH tag

The ISCH tag defines the title of a topic in the index and specifies the root words that serve as the link between the topic and the search words (synonyms) entered by the user. The tag appears immediately after the HELP tag to which it refers. There can only be one ISCH tag within a single help module.

For each ISCH tag, there can be several lines of root words, provided that the total number of root words is no more than 50 . If more than one line of root words is used, ROOTS= must be repeated at the beginning of the second line and subsequent lines:
: PNLGRP.
:HELP name=entry1.
:ISCH ROOTS='root1 root2 root3 root4 root5'
ROOTS='root6 root7 root8 root9 root10'
ROOTS='root11 root12 root13 ... root50'.
Title of First Topic
This is the first index search module in this panel group.
: EHELP.
:EPNLGRP.
The root words on all lines must be enclosed in apostrophes and a period must be placed only at the end of the last line of root words. The topic title follows the period on the ISCH tag and may be placed on the line immediately following the period.

The ISCHSYN tag

The ISCHSYN tag defines the words (synonyms) that, if entered by a user, match a specific root word. If a word that is entered by a user is a synonym for a root word, then a match is found for each topic whose ISCH tag contains that root.

If you want a word that is used as a root word to be used as a synonym as well, you must include the word as a synonym on the ISCHSYN tag. For example:
:ISCHSYN ROOT='ocean'.ocean water sea
The synonyms for the ISCHSYN tag must be entered on one line, and at least one ISCHSYN tag must exist for each root word. If more than one line is needed, more ISCHSYN tags may be entered for the same root word.

UIM does not differentiate between synonyms entered in uppercase, lowercase, or mixed case. For this reason, it is not necessary to repeat synonyms to cover all the different cases.

You may use alphabetic or numeric characters for synonyms; however, the following characters (including their hexadecimal equivalents) are not allowed to be used as a synonym or part of a synonym:

- . (period)
- ((left parenthesis)
-) (right parenthesis)
- ; (semicolon)
- , (comma)
- ? (question mark)
- : (colon)

The ISCHSYN tags may be placed anywhere in the panel group, but to make maintenance and translation easier, place them all in one area (such as at the beginning of your panel group or in a panel group object that contains only ISCHSYN tags).

Example: ISCH and ISCHSYN usage

The following example shows some ISCHSYN tags and the ISCH tags that use them:

```
:PNLGRP.
:ISCHSYN ROOT='ocean'.ocean water sea
:ISCHSYN ROOT='lake'.lake water pond
:ISCHSYN ROOT='definition'.definition define description what
:ISCHSYN ROOT='definition'.summary concept information explanation
:HELP name='defocean'.
:ISCH ROOTS='definition ocean'.
Definition of ocean
```

```
An ocean is one of the five large bodies of salt water, which
together cover nearly three-fourths of the world.
:EHELP.
:HELP name='deflake'.
:ISCH ROOTS='definition lake'.
Definition of lake
A lake is a body of standing water that is enclosed by land.
:EHELP.
:EPNLGRP.
```

Index search and DBCS: The index search function can be used with either double-byte character support (DBCS) or single-byte character support (SBCS) data. When DBCS data is used, the device from which it is requested must be capable of entering and presenting the data in DBCS. The object that contains the index search data is marked as containing DBCS data. The system determines if the device is capable of handling the DBCS data.

When the data is being prepared for DBCS format and the index search function is used with that data, consider the following:

- When the index search data is prepared for a DBCS system, the synonyms entered on the ISCHSYN tag must be in double-byte character mode. That is, the first byte after the tag must be a shift-out character and the last byte of the data must be a shift-in character. The system does not convert data on the ISCHSYN tag to double-byte character data.
- Words must be separated by a single-byte blank. From 1 to 19 double-byte characters may be combined to form a word. Intervening shift-out and shift-in characters are allowed, but are ignored by index search.
- The words that are used to link the ISCH and ISCHSYN tags (the ROOTS attribute of the ISCH tag and the ROOT attribute of ISCHSYN tag) must be identical and should not be entered in DBCS.
- Search words can be entered in either single-byte mode or double-byte mode. Single-byte blanks can be entered to separate the words.

When the search words are shown on the screen, the double-byte character representation (the character that was actually used in the search) is shown. Special processing takes place so that index search is not case sensitive. The search words from the ISCHSYN tag are converted to uppercase using a conversion table for the code page that is specified with the TXTCHRID attribute of the PNLGRP tag. If the search words are DBCS, they are not converted to uppercase. Shift-out and shift-in characters are treated as blanks during parsing; leading and trailing blanks are removed. All SBCS words are converted to uppercase using a conversion table for the code page of the device description.

Program message design: On OS/400, a message can be predefined or immediate. Consider the following when designing and coding your messages:

- Do not use immediate messages. They are created by the sender or program at the time they are sent and are not stored in a message file. Therefore, they cannot be translated by the translator.
- Use predefined message descriptions that can both:
- Exist outside of the program that uses them.
- Be stored in a message file.
- Do not specify the maximum size for a message file. When the message file becomes full, you cannot change the size of the message file. You need to create another message file and add the message description again.
Use the Create Message File (CBTMSG且) command to create a message file to hold the predefined message description. The contents of the predefined message description can be put into a message file by the Add Message Description (ADDMSGD) command. For details, refer to the Control_Language information.
- Use substitution variables with care. Different languages have different orders for substitution variables. For example, in the English message:
File \&1 in Library \&2 not found.
\&1; and \&2; are the substitution variables. Those substitution variables may appear in different positions for different languages.
- Make your design and coding able to understand a reply code for different languages. For example,

English	Y $=$ Yes
Danish	J $=$ Ja (means Yes)

The following figure shows the creation of different NLV messages from message files.

A program can directly access the message file for program messages, or it can indirectly access the message file through display files for program messages. For more information on message files, see CCSID support for messages.

Menu design: You can define your own menus on OS/400. There are three types of user-defined menus: display file menus, UIM (reference) menus, and program menus.

To use an application system, users have to deal with a lot of menus and displays. When an application is being translated from one language to another, a large portion of the literal text to be translated comes from menus.

Display file menu

A display file menu uses a display defined by DDS to present a menu format. The menu functions are controlled by a menu object that contains the commands used to run each of the menu options. The following figure shows how display file menus are created for different national language versions.

Program menu

A program menu uses programs to present the menu format (defined by DDS) and to provide functions necessary to run the menu options. The following figure shows how program menus are created in different national language versions.

Menu Translation

To allow for easy translation into national language versions of your menus:

- Keep the literal text of menus external by holding the constant text as externally defined message descriptions in a message file and by incorporating the text into a menu file when the program is run.
- Be aware of the expansion space needed when a menu is translated from one language to the next. Leave space for translation expansion when you design your menus.
- Be aware of cultural conventions when date, time, or edited fields are displayed on the menu.
- Use numerals 0 through 9, instead of uppercase and lowercase English letters (A through Z), as the option fields for selection. Numeric characters are more standard among different languages.

Command design: The OS/400 program allows users to define and create their own commands. To create a command, you must first define the command through command definition statements. Then use the Create Command (CRTCMD) command to process the command definition statements to create the command definition object.

When defining and creating a command, take into consideration the following:

- Use help panel groups to provide online help information for the command. See User interfaces" on page 68 for information on national language version help panels.
- Use message identifiers instead of literal text for the PROMPT keyword on the CL CMD, PARM, ELEM, and QUAL command definition statements.
- Translate the text that is displayed to the right of the prompt line of each parameter on the prompt display. This text is specified by the CHOICE parameter of the PARM command definition statements, so the appearance of the command prompt display will maintain its coherency.
- Compile command-prompt text into separate command definition object versions for each national language. Use the Change System Library List (CHGSYS—BL command before creating the command to get the national language version prompt text from the correct national language version library.
- The function keys of the command prompt display are provided by the OS/400 program. If the NLV of the OS/400 program is different from the NLV of the command, two different languages would appear on the command prompt display. For example, when translating an English display into German, both the English and German would appear on the command prompt display.
For additional information on creating and defining commands, see Controلـanguage.
Cultural-dependent design: Different countries have different standards that must be taken into account when developing an NLS-enabled application. This culturally sensitive information must be placed outside the program the same way as the textual data is handled.

Many languages have characters (such as common-usage vowels essential to the correct spelling of a word) outside of the A-Z alphabet that must be considered for collating purposes.

Through system values, the system supplies linguistic support, cultural support, and the ordering of data. For a list of the default system values for each national language version, see Default system values.

The following topics address the various attributes that should be considered when designing culturally dependent applications:

- Database file attributes
- Job attributes
- Program attributes
- Information in message CPX8416
- Date formats
- Date separators
- Editing date presentation
- Time formats
- Time separators
- Editing time presentation
- Decimal format
- NLS sort sequence

Database file attributes: Culture-dependent database attributes are the following:

- Coded character set identifier (CCSID)
- Sort sequence (SBTSFQ)
- Language identifier (LANGID)

The CCSID attribute applies only to physical files. The SRTSEQ and LANGID attributes can be used with both physical files and logical files. A logical file can have a CCSID value only when it has taken the CCSID from the physical file. The database attributes are stored with the data. They are static in the sense that they cannot be dynamically altered by the process of accessing the data.

Job attributes: Culture-dependent job attributes are the following:

- Coded character set identifier (CCSID)
- Sort sequence (SBTSEO)
- Language identifier (LANGID)
- Country or region identifier (CNTRYID)
- Date format (DATFMT)
- Date separator (DATSEP)
- Decimal format (DECFMT)
- Time separator (TIMSEP)

The default values for CCSID, SRTSEQ, LANGID, and CNTRYID attributes are set from the user profile when the job starts. The values for CCSID, DATFMT, DATSEP, DECFMT, SRTSEQ, and TIMESEP can be set from the LOCALE and SETJOBATR attributes associated with the user profile. When you use the Change Job (CHGJOB) command, you can override the values specified for any of the listed job attributes.

Program attributes: The SRTSEQ and LANGID parameters can also be specified as program attributes belonging to a *PGM object type. The LANGID parameter is used together with the SRTSEQ parameter only when the SRTSEQ value is set to *LANIDUNQ or *LANGIDSHR. Otherwise, the LANGID parameter is not used.

If a program explicitly refers to a sort sequence or a language identifier, then those attributes stored in the program object take effect. The *JOBRUN value for these parameters is used to refer to the attributes of the job running the program. *JOBRUN makes it possible to use a single set of programs processing data according to different sort sequences. The *JOBRUN value affects only the processing of data, however, not the retrieval sequence of data. The retrieval sequence is determined by the database attributes. To retrieve data in a sort sequence different than what is defined in the database, use logical files that are built separately.

Information in message CPX8416: If your application will be translated into other languages, use the message CPX8416 from the QCPFMSG message file to get the correct setting for some cultural values for the other languages. The message exists for your primary language and all installed secondary language libraries. The system message contains these values:

- Code page and character set
- Currency symbol
- Date format
- Date separator
- Decimal format
- Leap year adjustment
- Coded character set identifier
- Time separator
- Language identifien
- Country or regionidentifier

Culture-dependent fields in the panel or display should not contain hard-coded values. These fields should be defined with the maximum length permitted for the field on the display.

If your application is to support users in languages other than the primary language, the callable routines should use the CPX8416 message values. A callable routine uses the cultural values for the primary language to determine the contents of the field (for example, date format) and places these values on the display. NLS system values maintained in message CPX8416 determine the format of the cultural values appearing in the culture-dependent fields.

Your application can use the details from the system message.
The following table shows the layout for message CPX8416. This example shows the values in the text column using the English uppercase and lowercasd NLV (feature 2924).

	Field	Start	Length	Justify
Description Value	$\begin{array}{\|l\|l\|} \hline \text { QCHRID } \\ 69737 \end{array}$	$\begin{aligned} & 0001 \\ & 0012 \end{aligned}$	$\begin{aligned} & 10 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	QCURSYM \$	$\begin{array}{\|l} 0034 \\ 0045 \end{array}$	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	QDATFMT MDY	$\begin{array}{\|l\|} 0047 \\ 0058 \end{array}$	$\begin{aligned} & 10 \\ & 03 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	QDATSEP /	$\begin{aligned} & 0062 \\ & 0073 \end{aligned}$	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	QDECFMT	$\begin{aligned} & 0075 \\ & 0086 \end{aligned}$	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	$\begin{aligned} & \text { QLEAPADJ } \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0088 \\ 0099 \end{array}$	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	$\begin{aligned} & \text { QCCSID } \\ & 37 \end{aligned}$	$\begin{aligned} & 0101 \\ & 0112 \end{aligned}$	$\begin{aligned} & 10 \\ & 05 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	QTIMSEP	$\begin{aligned} & 0118 \\ & 0129 \end{aligned}$	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	QLANGID ENU	$\begin{array}{\|l} 0131 \\ 0142 \end{array}$	$\begin{aligned} & 10 \\ & 03 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	QCNTRYID US	$\begin{array}{\|l} 0146 \\ 0157 \end{array}$	$\begin{aligned} & 10 \\ & 02 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
Description Value	QIGCCDEFNT *NONE	$\begin{array}{\|l} 0160 \\ 0171 \end{array}$	$\begin{aligned} & 10 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$

Date formats: There is no worldwide standard for the presentation of dates. Therefore, the date format should always be stored externally as part of the textual data. The valid date formats on OS/400 are:

- *MDY (Month, day, year)
- *DMY (Day, month, year)
- *YMD (Year, Month, Day)
- *JUL (yy/ddd)
- *ISO (YYYY-MM-DD)
- *USA (MM/DD/YYYY)
- *EUR (DD.MM.YYYY)
- *JIS (YYYY-MM-DD)

Note: Some OS/400 functions do not support all of the date formats shown above.
In database files, dates can be stored as:

- Normal numeric data fields
- $S A A^{(R)}$ date data-types

When you store dates as numeric data, your application needs to specify the format in which it is stored and presented.

When you store dates as data type DATE (L), you can specify the format with the DDS keyword DATFMT on the database file. The date is shown in this predefined format as character data, including the date separators.

If date sorting and other processing is needed, the date should be stored in *ISO format (YYYY-MM-DD) and converted to another format during the input and output operations. Write a high-level language routine to convert dates.

Date separators: The valid date separators are:

- / (slash)
- - (dash)
- . (period)
- , (comma)
- (blank)

The date separator for presentation should always be stored externally as part of the textual data.
When you use decimal fields for dates, not only does your application have to specify the format, but it also must handle the date separators during the input operation and presentation.

When you use date-type fields, the date separators are always included in the date. To change the date separator, you can write a high-level language routine to convert dates.

Editing date presentation: You need to handle the presentation of dates on display and printer files differently, depending on how they are stored:

- As a normal decimal data field

Your application program has responsibility for the way the date is entered, stored, and presented. The application must check to see that the date is entered in the right format, remove any date separators, convert the date to another format when necessary, and edit it on the display file or printer file.
The DDS keyword DATE is used as an output-only field. DATE uses the job attributes DATE, DATFMT, and DATSEP. You can edit DATE using the edit code keyword, EDTCDE, for 6 - and 8 -digit date fields.
Editing with EDTCDE includes the following changes to the appearance of displayed fields, depending on which edit code is specified:

- Leading zeros are suppressed.
- Zero values can be displayed as zero or blanks.
- The field can be further edited using a user-defined edit code.

For all other types of fields using the EDTCDE Y keyword, the program has to specify the format, and the system uses the date separator of the job that created the device file. The date separator is integrated in the object, and you are not able to change it dynamically at run time.

- As an SAA data type DATE (L) field

The DDS date format (DATFMT) keyword allows you to specify different date formats, including default date separators, at the database field level. For the *MDY, *DMY, *YMD, and *JUL parameters, the default date separator can be changed with the date separator (DATSFP) keyword. The *ISO, *USA, *EUR, and *JIS values have a fixed separator, and the DATSEP keyword is not allowed with these values. The DATFMT and DATSEP keywords allow you to specify the format and editing characters for storing date fields. The date is shown as a character string, including the separators.
Any format conversion between the date input and the format the database asks for can be done by:

- Application program routines
- Field mapping through logical files that define different date formats and separators

For example, you can provide a date conversion that is dependent on the actual job attributes by using the following CL program:

PGM	PARM (\&fromfmt \&fromfld \&tofld);	
DCL	$\operatorname{VAR}(\& f r o m f m t) ;$	TYPE (*CHAR)
LEN (4)		
DCL	$\operatorname{VAR}(\& f r o m f l d) ;$	TYPE (*CHAR)
	$\operatorname{LEN}(10)$	

```
DCL VAR(&tofld); TYPE(*CHAR) LEN(10)
CVTDAT DATE(&fromfld); TOVAR(&tofld);
FROMFMT (&fromfmt); TOFMT (*JOB) TOSEP(*JOB)
ENDPGM
```

Your application program has to pass the format of the date you want to convert and the date itself to the CL program. The CL program assumes that the job attributes represent the way the user expects to see date fields edited. It retrieves these values and does the conversion, conforming to these values, and passes back the date in that way. The *ISO, *USA, *EUR, and *JIS values have a fixed separator that cannot be changed. If the TOFMT parameter contains one of these values, the TOSEP value is ignored.

Time formats: The time formats supported on OS/400 are:

- *HMS (hh:mm:ss)
- *ISO (hh.mm.ss)
- *USA (hh:mm AM or hh:mm PM)
- *EUR (hh.mm.ss)
- *JIS (hh:mm:ss)

The system value QTIME has one format (hhmmss). The time separator value is determined by the QTIMSEP system value.

The time format for presentation should always be stored externally as part of the textual data.
In database files, times can be stored as:

- Normal numeric data fields
- SAA time data-types

When you store the time as numeric data, your application needs to specify the format in which it is stored and presented.

When you store the time as data type TIME (T), you can specify the format with the DDS keyword TIMFMT on the database file. The time is sorted in this predefined format as character data, including the time separators. To convert time fields from one format to another, write a CL program or high-level language routine to do the conversion.

Time separators: The valid time separator characters on OS/400 are:

- : (colon)
- . (period)
- (blank)
- , (comma)

The time separator for presentation should always be stored externally as part of the textual data.
When you use decimal-data fields for time fields, your application needs to specify the format and time separators on the input and presentation operations.

When you use time-type fields, the time separators are always included in the time field. To change the time separators, write a CL program or high-level language routine to do the conversion.

Editing time presentation: You need to handle the presentation of times on display files and printer files differently, depending on the way they are stored:

- As a decimal data field

Your application program has responsibility for the way the value is entered, stored, and presented. The program must check for the correct format, eliminate the time separators, convert the time to another format when necessary, and edit it on the display file or printer file.
The editing can be done by specifying the edit word (EDTWRD) for the field. The TIME keyword is an output-only field. Both the edit word and TIME keyword use the information available at creation time. The time separators are integrated in the device file object.
Both ways force you to have different copies of the source and objects for different editing requirements.

- As an SAA data type TIME (T) field

The OS/400 program allows you to specify different time formats and time separators on the database file level. The TIME keywords allow you to specify the format and editing characters for storing time fields. The time type field is shown as a character string that includes the separators.
As an SAA data type, you can specify such time fields as normal character fields on the display file or printer file. On an input operation, your program has to check entered values for the correct format and separators and move them over to the database field. On an output operation, you just move the character string from the database file field to the device file field, including the separators. Any format conversion between the input and output format and the format that the database asks for can be done either by:

- Application program routines
- Field mapping through logical files that define different time format and separators

Decimal formats:

》

You can change the decimal format with the QDECFM system value to reflect the way decimals are presented for your country or location.

<

Sort sequences: Sort sequence is supported on OS/400. You can order your data according to culture-dependant requirements for specific applications by using one of the following options:

- Hexadecimal sorting (sort sequence tables not used). This is the default.
- A user-supplied or system-supplied shared-weight sort sequence table or unique-weight sort sequence table, determined by the SRTSEQ parameter.

The following example shows how to use one DDS source file to create database files with different sort sequences. The following steps can be performed:

```
CRTxF FILE(*CURLIB/NAME)
    SRTSEQ(*JOB)
    LANGID(*JOB)
```

You can then change the job attributes to create files with different sort sequences.
The CL program and high-level language programs can be created by specifying either early binding or late binding of a sort sequence. With early binding of a sort sequence, the sort sequence table to be used is determined at compile time. With late binding of a sort sequence, the sort sequence table to be used is determined at run time.

Late binding makes it possible to use one set of programs in different national language environments. The following figure illustrates using different sort sequences for different jobs with one set of physical files and program code. The sort sequence table defined for the job and used by the program should be the same as (or compatible with) the sort sequence table assigned to the logical files accessed through the library list.

Design for running with different sort sequences:

If your program is expected to run with different sort sequences, consider the following:

- Presenting the data in different order.
- Processing different records.

Specifying selection criteria such as less than or greater than can result in selecting different records. The selection criteria equal to can result in selecting a different number of records when the shared-weight sort sequence table is used.

- Processing of a conditional branch may be different.

Note: System lists (such as the output from the WRKOBJ command) are not affected by sort sequence support.

You can use the DDS file-level keyword alternate sequence (ALTSFQ) to specify the sequencing table and the library in which it is contained. The system-supplied sort sequence tables with shared and unique weight can be used for defining the alternative collating sequence.

The alternative collating sequence table is inserted into the file at compile time and is not needed at run time. You can have different files containing different collating sequences using one set of DDS.

Note: The alternative collating sequence defined in your database files must also be defined in your application programs; otherwise, you may get unexpected results.

The DDS keyword ALTSEQ, provides limited support for sequencing, it has no effect on select/omit logic. The ALTSEQ keyword can only be used with the SRTSEQ(*SRC) parameter on the CRTPB and CRTLH commands.

For more information

See Character graphic (data) sort implementation for more information about sort sequences.
Display file design: Application panels usually consist of the following major elements:

- Constant text strings
- Input and output fields
- Field editing specifications
- Cursor positioning specifications
- Default values for input fields
- Field validation specifications
- Error messages

You can handle these either as a program-described or an externally described file using DDS. The information found in this topic is based on the externally described technique using DDS.

Constant text strings: Because different languages have different space needs for the same expression, design your panels with this in mind. Do not place many fields on the same line, except for a list panel that has column headings instead of field prompts. Do not overload the panels with information. Choose one of the techniques described under "Textual data code design" on page 72 to make your panels.

Input and output fields: Consider defining your fields according to the needs of the different languages, countries, cultures, currencies, and laws that you want to address with your application. For example, assume you want to store Italian lira and Japanese yen in the same field as United States dollars. You must size the field to accommodate the higher number of digits needed for Italian lira.

Field editing specifications: For the edit specification of your numeric, date, and time fields, consider the different cultural conventions of the users you want to address. Do not code the format and editing instructions in your application program in a way that requires program modification when another convention is needed. Refer to Cultural-dependent design for more information.

Cursor positioning specifications: Do not specify cursor positioning values to fixed locations on the screen, because different languages have different space requirements. When you work with different display files, you can adjust them with the translation process. When you need to work with field-independent cursor locations, store the positional information outside of your code and retrieve the variable values for the keyword within your program.

For example:
A record-name CSRLOC(field-name-1 field-name-2)
Cursor positioning on the field level is more useful in an NLS environment. For normal records, this is done by specifying the DSPATR(PC) keyword on a specific field. For subfiles, the cursor can be positioned using SFLRCDNBR(CURSOR) keyword on a special positioning field. In addition, the subfile record number must be stored in that field before the format is written.

For example:

A field-name $4 S 0 B$ line pos SFLRCDNBR(CURSOR)

Note: The name of the record and field where the cursor is positioned, the subfile relative record number, and subfile fold/truncate indicator can be returned to your application program. This function is provided by hidden fields on the DDS keywords RTNCSRLOC, SFLCSRRRN and SFLMODE.

Input field default values: There are three different ways to put default values into the input fields of your display, which the user can override with his own data:

- Getting information from program

Never hard code the values as a literal if they are language or culture-dependent values. Use values you can get from the system-provided information, such as system or job date, or get the values from a data object, such as a database file or data area from outside of the program.

- Using DDS keywords DFT (Default) or DFTVAL (Default Value)

Specify the default input value directly on the DDS after the keyword. The DDS keyword DFT is for input-only (I) fields. For output-only (O) or input-output (B) fields, use the keyword DFTVAL.
For example:
A field-name length type I line pos DFT('default ')
${ }_{\text {A }}^{\text {or }}$ field-name length type 0/B line pos DFTVAL('default value ')

- Using DDS keyword MSGID (Message Identification)

Using the Message Identification (MSGID) keyword allows you to retrieve the content of a specified message description when the program is run and to put that value as a default in your display file field. The field must be input-output capable (B) for you to use this technique.
For example:
A field-name length type B line pos MSGID(message-id [*libl/message-file)
This allows you to use different message files for each national language version by setting the library list accordingly when the program is run.

Field validation specifications: The following DDS keywords provide validation checks on input-capable fields on your display:

- RANG: (Range checking)
- VALUES (Values checking)
- CMP and COMP (Comparison)
- CHECK (Check validity, keyboard control and cursor control)

Using the DDS keywords with any hard-coded values that are language, country, or culture-dependent makes duplication and modification of the DDS and the application program necessary.

Example: Validation checks

An example of field validation checks on input-capable fields on your display using the DDS keywords VALUES, COMP and CHECK follows:
A field-name length type usage line pos
or VALUES('Y' 'N')
A field-name length type usage line pos
or COMP(EQ 'US\$')
A field-name length type usage line pos
(Modulus checking)
or (M10 or M11)
A field-name length type usage line pos
(Right-to-left support)

Validation checks are provided according to the sort sequence defined for the display file at creation time. You can use the same DDS source file to create objects for different languages. For example, the following command creates a display object tagged with the Latin 1 sort sequence table:

The following specification:
A field-name length type usage line pos $\operatorname{COMP}(E Q$ 'a')
accepts all lowercase, uppercase, and accented characters, as defined by the shared-weight in the Latin 1 sort sequence.

In addition, note that all the checks specified using those DDS keywords are done by the data management function of the OS/400 program. Any error message caused by wrong input or handling by the user appears in the language of the OS/400 program. This could be the primary language or a secondary language, depending how the library list of the job is set up.

You can override this when you use the additional DDS keyword CHKMSGDD (Check Message Identifier). This keyword allows you to specify your own customized messages and message file to be used by the checking routines of the OS/400 program.

For example:

```
A field-name length type usage RANGE(1 999)
A MSGFLD1 length type P TEXT('Message data field')
and
ADDMSGD MSGID(USR1234) MSGF(APPTXDENU/APPMSGF)
    MSG('Value &1; is out of range 1 to 999')
and
ADDMSGD MSGID(USR1234) MSGF(APPTXDDEU/APPMSGF)
    MSG('Wert &1; ist ausserhalb des gltigen Bereichs 1 bis 999')
```

To use different message files of different library names, do not specify a fixed library name. You can use a message file for different languages by setting the library list when you run the program.

Error messages: There are two ways to provide error messages on a display file:

- Specifying text as constant on ERRMSG or SLFMSG keywords

Specify the text directly as a constant on the DDS keyword. When you want to have more than one language, you have to duplicate the DDS source code and translate constants within the DDS specifications. You can then create a separate display file object for each language.

- Using predefined messages on ERRMSGID or SLFMSGID keyword

When using predefined messages instead of constants, you need to have multiple display files. Instead of using different display files, exchange only the used message file by setting the library according to the language that you want to use.
For example:

.

Printer file design and translation: The types of printer files are:

- Program-described printer files

Program-described files rely on the high-level language program to define records and fields to be printed.

- Externally described printer files

Externally described printer files use DDS rather than the high-level language to define records and fields to be printed.

The following figure shows how externally described printer files are used in creating reports for a different national language version.

Printer file translation:

When designing printer files to be translated into a national language version:

- Use externally described printer files to define records and fields to be printed. Avoid using program-described printer files. Program-described printer files are described inside the high-level language program. Translators trying to translate text imbedded within the program can mistakenly translate literals that are within your program.
- Print data in one national graphic character set on devices that support the corresponding character sets and code pages. Not all printers support all CHRID parameters.
- Use the MSGCON keyword to access the constant text described in the message file. A printer file does not have the MSGID keyword. However, the techniques of direct coding as unnamed output field (literal) and storing text in a database file can be used to specify the constant text in a printer file. See "Textual data code design" on page 72 .
- Take culture conventions into consideration when bar codes are being described in the printer file. Different countries have different standards for bar codes.
- When entering data, consider these parameters on the Create Printer File (CRTPBTF) command.
- PAGESIZE (page size)

Different countries have different page-size standards.

- OVRFLW (overflow line number)

The overflow line number must be less than or equal to the page length.

- CHRID (character set and code page)

If the CHRID parameter of the printer file is set to *DEVD, the printer uses the character identifier that was set on the control panel or specified in the device description.
If the CHRID parameter of the printer file is set to a specific value, this value determines the code page and character set used to print the data. For externally described printer files, the CHRID parameter is used only for fields that also have the CHRID DDS keyword specified. For all other fields, the code page and character set used is the same as if *DEVD was specified.
If the CHRID parameter of the printer file is set to *JOBCCSID, constant text from an externally described printer file is converted to the CCSID of the job. The printer data stream is tagged with the CHRID taken from the job CCSID, using this CHRID value to print the data. When using the *JOBCCSID value on the CHRID parameter, the CHRID DDS keyword is ignored.
Note: All code pages and character sets cannot be handled by all printers.
Source file design: Database source files are implicitly assigned the CCSID of the job when they are created, unless they have been explicitly assigned a CCSID value using the CCSID parameter on the Create Physical File (CRTPF) or Create Source Physical File (CRTSRCPF) command. If the job CCSID is 65535, the job default CCSID (DFTCCSID) is used as the implicitly assigned CCSID. The job default CCSID is determined by the system language identifier value and the job DBCS-capable indicator.

Character data representation architecture (CDRA) design: To enable your application for a multilingual environment, consider the following:

- Avoid coding CCSID values directly in your DDS for physical files. When creating different physical files for different languages, change the CCSID for your job (using the CHGJOB command). Only one set of DDS source code needs to be maintained.
Conversions between all CCSIDs may not make sense in all cases. For example, if you access a Greek database with a CCSID of 00875 from a German display station with a job CCSID of 00273, you see garbled data on your display.
Countries outside the Latin-1 character set use character sets that include non-Latin characters. No meaningful conversion is possible between the non-Latin code points and the Latin code points. Arabic, Greek, Hebrew, and Turkish are SBCS languages with non-Latin characters.
- When database sharing takes place, define your files with the CCSID of the primary language being used. Make sure all users have the CCSID of the language that they use defined in their user profile.

See the following for additional information on CDRA:

- Work with CCSIDS
- Use of the SNDNETF command
- Scenario: Multilingual single system
- Scenario: Multilingual network

Use of the Send Network File command: When you use the Send Network File (SNDNETF) command, the data (if sending a member only) is assumed to be in the CCSID of the job that is running the command. Therefore, no conversion takes place. When the data is received, care must be taken to store the member in a file with the same CCSID as the originating file. If the receiver does not know the CCSID of the incoming file member, it can be received into a file with a CCSID of 65535, which indicates that no conversion takes place.

Scenario: Multilingual single system: The following figure shows a multilingual single system with German as the primary language and English and French as secondary languages. All users enter data into the same database file.

On this multilingual system, all users are entering character data into a single file with CCSID 00273 (German), and character data entered from the English and French display stations is being mapped into the German file.

To preserve correct mapping, fields defined as character fields should be actual character fields. If the fields contain application development values (for example, control characters or fields that are not used as real character fields), the fields either should be specified as hexadecimal fields or assigned a CCSID value of 65535 .

Using CCSIDs, characters that cannot be converted between different code pages are replaced with a substitution code. If you are using a user-defined data stream (UDDS) to format and lay out your display (instead of using DDS), you may get substitution codes returned after the system reads and inserts that data in your user-defined data stream. Substitution codes may cause unpredictable results on the display.

Scenario: Multilingual network: The following figure shows an example of a multilingual network with three iSeries servers located in three different countries, each with a different language. In this example, the application on the Danish system is using distributed relational database. All national characters (regardless of the language that the data is stored in) are displayed correctly at the Danish display. When the CCSID of the language is used by the database, the integrity of the database is preserved. The conversion of data between the different code pages is completely automatic and part of the OS/400 database management.

RBAGS501-0

Handle languages with no NLV support: If you need to support a language that does not have a supported national language version, follow these general steps.

1. Study the available national language versions. Find out which national language version most closely resembles your language in character representation.
2. Install the most appropriate national language version as your primary language.
3. Modify the system values to meet your cultural needs. For example, set date and time formats to meet those of the culture that you are supporting. For information on setting system values for cultural needs, see System values for other languages.
4. Configure your workstations and printers to match your primary language. Then, handle discrepancies between support for the installed NLV and your own language.
Note: The workstation customization functions can support only those capabilities built into your hardware. You cannot support functions through workstation customization that your hardware is unable to support.
5. Use the Create Table command to create a sort sequence table based on the existing table that most nearly matches the appropriate sorting sequence for your language.
6. If your language is a DBCS language, create your own characters (UDC) to represent missing characters in the code page associated with the NLV you installed. UDC is an acronym for a user-defined character that is created through the character generator utility (CGU). CGU is an extension of the code page with special user-defined ideographic characters, symbols, or logos.

Programming considerations in global application design

As you develop your global applications, the national language version environment often requires that you pay additional attention to how you prepare and compile your code. The following topics describe some of these requirements, and offer guidelines that you can follow to minimize problems:

- Code globalized applications with high-level languages
- Code globalized applications that use bidirectional data
- Use message catalogs

Code globalized applications with high-level languages

Your major goal must be to have only one general set of running code that is common for all language versions and to make your programs table-driven as much as possible. You should:

- Base validity checks on database accesses and message files rather than on hard-coded literals or tables.
- Base calculations on variable factors retrieved from a file rather than coding them inline.
- Place culture-dependent functions into separate modules of the application and call them when you cannot code them flexibly.

Do not use hard-coded values unless they are fully language and culture independent on comparison, scan, replace, or call operations. In addition, do not use uppercase or lowercase-sensitive values. For example, never hard code Yes and No (Y or N) responses in your program, because these values are different for every language, and should be part of the textual data.

For literals and constants in source code, use characters only from the invariant character set. If input data is checked for validity in the program, make sure that the characters checked belong to the invariant character set; otherwise you may get a situation where the user is requested to enter a character that is not even on his keyboard. For example, the left brace ($\{$) and right brace (\}) do not appear on Arabic keyboards. See Invariant character sef for a listing of the invariant character set.

Do not use compile-time arrays to hold messages or any other language or culture-sensitive data.
For better performance, when you need to call external NLS-dependent modules, call them by a fixed name as a literal (but based on the library list) rather than by a variable field containing the program name. This allows your application to call the modules of different libraries based on the associated library list.

To allow users to work with an application in the language and habits of their culture, specify the editing values (for example, date, time, and date separators) as dependent on the language and country or region. You can then retrieve them according to the information in the user profile. The parameters are LANGID (language identifier) and CNTRYID (country or region identifier). You need to retrieve the culture-sensitive information only once at program initiation. You can do this by an initial CL program or by the high-level language program and prepare them as:

- Parameters on the call operation
- Parameters on the local data area (LDA)
- Program load tables

Using an initial program allows you to set the user's job attributes to present a consistent application, such as the OS/400 program and other licensed programs.

For additional information about high-level languages, see the following:

- Language compilers CCSID
- Session manager
- ILE C/400 ${ }^{(\mathrm{R})}$ considerations
- ILE RPG sort sequence
- ILE COBOL sort sequence
- DB2 and SQL sort sequence
- iSeries Access sort sequence

Language compilers CCSID: Some language compilers expect syntactical operators and the naming convention for the source code to be in CCSID 00037. (Refer to the documentation for the language
compiler you use.) For these compilers, incorrect mapping occurs if the source is compiled with a CCSID other than 00037 or 65535 . You must ensure that these compilers receive any variant characters used in language syntax in CCSID 00037.

ILE language compilers

When compiling an ILE C/400, ILE RPG for iSeries, or ILE COBOL for iSeries program, source from database source files is converted to the CCSID of the primary source file.

Compilers for these languages can handle syntactical operators in most CCSIDs. These compilers can also handle naming conventions for the source code in most CCSIDs.

Non-ILE language compilers

When compiling a non-ILE CL, RPG, or COBOL program, source from database source files is converted to the CCSID of the job.

If you do not want your names, constants, or literals converted to the CCSID of the job, you may change your job CCSID to 65535 . Your constants, literals and names then remain intact.

Note: REXX/400 procedures and the literal data coded within them are not converted to the job CCSID.

Example 1

The following example shows a sample non-ILE RPG program. This example shows English source on a system in the United States.

Example 2

In Finland, the program in the first example does not compile because the field name FLD\$ contains a variant character (the dollar sign). The variant character represents a different code point in a code page other than 00037. This figure shows the same sample non-ILE RPG program as English (U.S.) source on a system in Finland (CCSID 278).

Example 3

You can correct this error by changing the file CCSID to 00037 and setting the job CCSID to 00278 (for Finland). The following example shows the changed file as seen English source in Finland.

Session manager: For all applications that use a session manager, you must ensure that the output data stream has no X'3F' values in it. OS/400 uses X'3F' values to blank out a screen.

General sort sequence

The sort sequence used by a program may influence the program logic. The following figure shows an example of this.

Using the Latin 1 shared-weight sort sequence, character test 3 is equivalent to character test 4 (not all characters are shown). When using hexadecimal or unique sorting, they are completely different. The following example shows an RPG program using different sort sequences.

```
* RPG Source (Program created with Latin 1 sort sequence)
*
C* Test char 3
C*
C FLD1 IFEQ 'a'
C* Test char 4
C*
\begin{tabular}{ccc}
\(C\) & FLD1 & IFEQ 'a' \\
C & FLD1 & OREQ 'A' \\
C & FLD1 & OREQ \('\) '' \\
C & FLD1 & OREQ '' \\
C & & \(\ldots\)
\end{tabular}
C* S
```

If you compile the program with *JOBRUN specified for the SRTSEQ parameter and *JOBRUN specified for the LANGDD parameter, the sort sequence table used at run time is not known at compile time.

ILE C/400 and DB2 Query Manager and SQL Development Kit for iSeries licensed programs have additional special considerations.

ILE C considerations: Consider the following when you compile programs with ILE C:

- You can compile a source file in any EBCDIC code page except code page 00290.
- If the CCSID of the primary source file is 65535 , code page 00037 is assumed.
- All secondary source files are converted to the CCSID of the primary source file.

Note: While most secondary source files are converted to the CCSID of the primary source file, some conversions are not supported. Contact your IBM service representative if you require support for an unsupported CCSID conversion.

- If the CCSID of the secondary source files is 65535 , no conversion takes place.
- Any modules are created in the code page of the primary source file. A module is an OS/400 object that can be a collection of one or more procedures and one or more definitions for external or internal variables. A module is compiled from source code.
- When binding modules of different CCSIDs, no conversion takes place and unpredictable results may occur.
- You can use the trigraph support for the C characters that are not available on all keyboards. Trigraph support generally uses invariant characters to represent variant characters. For example, the left bracket ([) is represented by ??(.

The ILE C run-time library functions that parse strings containing variant characters use the variant character code point value associated with the CCSID of the job.

ILE RPG sort sequence: The ILE RPG for iSeries licensed program provides the possibility for a user to specify a sort sequence table and use it in comparison operations performed with non-numeric data. For each of the supported languages, two tables (a shared-weight and unique-weight) are shipped with the server. With sort sequence support you can create sort sequence tables based on the existing ones.

The control specifications are specifications that provide the ILE RPG for iSeries compiler with information about your program and your server. The sort sequence used in ILE RPG for iSeries programs is controlled by all of the following:

- The control specifications.
- The SRTSEQ (sort sequence table) parameter on the Create RPG Module and the Create Bound RPG Program commands.
- The LANGID (language identifier) parameter on the Create RPG Module and the Create Bound RPG Program commands.

The alternative collating sequence field (ALTSEQ) in the control specifications allows the following values:
blank No alternative collating sequence is used in the RPG program. The normal collating sequence is used in the RPG program. The compile options SRTSEQ and LANGID are ignored.

*NONE

No alternative collating sequence is used in the RPG program. The normal collating sequence is used in the RPG program. The compile options SRTSEQ and LANGID are ignored.
*SRC The alternative collating sequence is used in the RPG program, according to the tables entered at the end of the RPG program. The alternative collating sequence table is loaded at compile time, and ordering, sorting, comparing, and match field processing is done according to that table.

The SORTA and LOOKUP operation codes do not use specified alternative collating sequence tables.

The SRTSEQ and LANGID parameters on the Create RPG Module and Create Bound RPG Program commands are ignored.
*EXT The alternative collating sequence is specified outside of the RPG program. RPG compiler imports an external sort sequence table, based on the SRTSEQ and LANGID parameters on the Create RPG Module and the Create Bound RPG Program commands.
The SORTA and LOOKUP function with the arrays and tables at compile time and processing time take effect only when you specify D in the control specifications.

The sort sequence table to be used by the program can be determined at compile time or when the job is run. If the SRTSEQ parameter of the Create RPG Module and Create Bound RPG Program commands:

- Is set to *HEX, no sort sequence table is used.
- Specifies a table name, then that table is stored with the program object to be used when the job is run. For system-supplied default sort sequence tables for the supported languages, refer to Sort sequence tables.
- Is set to *LANGIDSHR or *LANGIDUNQ, the shared-weight or unique-weight table for the language determined by the LANGID parameter is stored with the program object. For a list of valid language identifiers, refer to Language_and_country/region_identifiers
- Is set to *JOB, the SRTSEQ parameter of the compile time job is used to determine the sort sequence. The table is stored with the program object.
- Is set to *JOBRUN, the attributes of the job running the compiled program determine the sort sequence to be used. If the SRTSEQ attribute of the job refers to the LANGID, the LANGID stored with the program object is used. If the LANGID stored with the program is also *JOBRUN, the LANGID of the run-time job is used.

Notes:

1. If the table to be stored with the program object at compile time does not exist, a table defining hexadecimal sort sequence and tagged with a CCSID value of 65535 is used.
2. If the sort sequence table and the CCSID of the job running the program differ, the table is converted to the CCSID of the job.

SORTA and LOOKUP operation codes

The implementation of compare operation codes, match field and control field processing with the sort sequence tables is the same for the alternative collating sequence and for the sort sequence support. Compare operation codes are ANDxx, COMP, CABxx, CASxx, DOUxx, DOWxx, IFxx, ORxx, and WHxx. Additional functions provided with the SORTA and LOOKUP operation codes follow:

SORTA

The data in the array is sorted according to the sort sequence table.

LOOKUP

To provide proper table searching, the sort sequence table is used with the search arguments in the arrays and tables.
The search argument and either the table or array element are compared using the sort sequence table.

The array and table data are checked using the sort sequence table, whenever ascending or descending sequence is specified. If the SRTSEO and LANGID parameter values resolve to retrieve the sort sequence table again at run-time, then the array and table elements are loaded without a sequence check at the compile time. The sequence checks are performed at run time, according to the sort sequence table.

ILE COBOL sort sequence: The ILE COBOL for iSeries licensed program uses the sort sequence support in the following ways:

- Create COBOL Module command
- Create Bound COBOL Program command
- PROCESS clause
- ALPHABET clause

The ILE COBOL for iSeries licensed program uses sort sequence tables that are system-supplied or user-supplied.

Create COBOL module and create bound COBOL program commands

These CL commands have two compiler options relating to sort sequence support: the SRTSEQ parameter and LANGID parameter. The SRTSEQ parameter allows the user to specify any of the system-supplied or user-supplied sort sequence tables residing in a specified library. You can specify whether the sort sequence table should be taken at compile time or run time. Also, you can choose between the shared-weight and unique-weight tables.

With the LANGID parameter, you can specify one of the system-defined language identifiers, or leave that parameter to be defined at the run time.

The meanings of the SRTSEQ and LANGID parameters on the Create COBOL Module and Create Bound COBOL Program commands are the same as on the Create RPG Module and Create Bound RPG Program commands as described in UF RPG sort sequence" on page 100.

PROCESS statement

Sort sequence support options can be supplied in the PROCESS statement. The syntax for that command is like that for the Create COBOL Module and Create Bound COBOL program commands. The only exception to this is that the values for the parameters in the PROCESS statement are entered without an asterisk (*) for the predefined values. Any options specified in the PROCESS statement override the corresponding options on the Create COBOL Module and Create COBOL program commands.

ALPHABET clause

The alphabet-name in the ALPHABET clause of the SPECIAL-NAMES paragraph may use the NLSSORT option. Use the SRTSEQ and LANGID parameters of the compiler for alternative collating sequence options. Otherwise, it means the same as the NATIVE option.

The following COBOL lines are affected by the NLSSORT option:

- PROGRAM COLLATING SEQUENCE phrase of OBJECT-COMPUTER paragraph

When evaluating the result of nonnumeric comparisons, the alphabet name has to be referenced in this phrase to enable the program to use the specified sort sequence options. This option also applies to the nonnumeric sort or merge operation. Otherwise, the hexadecimal collating sequence is used.

- ALPHABET CLAUSE in the SPECIAL-NAMES paragraph

This clause should specify the NLSSORT option.

- COLLATING SEQUENCE in the MERGE (or SORT) statement

This phrase is used to specify the collating sequence to be used for nonnumeric comparisons for the KEY data name in the MERGE or SORT operation. If omitted, the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph defines the collating sequence to be used. If neither is specified, hexadecimal collating sequence is used.

- Nonnumeric relation names and condition names

The selected sort sequence table affects the result of certain statements, using nonnumeric relation names and condition names: EVALUATE, IF, PERFORM...UNTIL, SEARCH and START. The truth values of the nonnumeric comparisons depend on the corresponding weights of the characters in the selected sort sequence table. For example, if you specify unique-weight table (LANGIDUNQ) for French (Latin 1), the following statement is true for the single value of the variable ITEM-1,e.
IF ITEM-1 = "e"
If you specify a shared-weight table (LANGIDSHR) for French (Latin 1), the same statement is true for several values of the variable ITEM-1. All have the same shared weight of 77 :

```
lowercase e (e), uppercase e (E),
lowercase e acute (), uppercase e acute (),
lowercase e grave (), uppercase e grave (),
lowercase e caret (), uppercase e caret (),
lowercase e umlaut (), uppercase e umlaut ()
```


DB2 and SQL sort sequence:

For interactive SQL, the SRTSEQ and LANGID parameters can be specified on the STRSQL command. Later these parameters can be changed using the session services for interactive displays.

Sort sequence tables are used for all string comparisons. String comparisons are performed in the following SQL statements:

- ORDER BY clause
- WHERE clause
- GROUP clause
- HAVING clause
- UNION and UNION ALL clauses
- DISTINCT clause
- BETWEEN predicate
- IN predicate
- LIKE predicate
- MIN and MAX scalar functions
- MIN and MAX column functions

In addition, any indexes or views that are created using the CREATE INDEX or the CREATE VIEW statements are created with the specified sort sequence table.

DB2 Query Manager and SQL Development Kit for iSeries

DB2 Query Manager and SQL Development Kit for iSeries does not assume a particular CCSID when precompiling source. Any variant characters in the language syntax (such as the
not symbol) are assumed to be encoded in the CCSID of the source file.
For example, if the source file has a CCSID of 00037, the

ᄀ

not symbol is correctly interpreted to be at code point X'5F'. If the source file has a CCSID of 00500, however, the

ᄀ
not symbol is correctly interpreted to be at code point $\mathrm{X}^{\prime} \mathrm{BA}^{\prime}$.
A literal is stored in the CCSID of the source file.
Because DB2 Query Manager and SQL Development Kit for iSeries calls the appropriate language compiler to create an SQL program, the general guidelines for high-level languages must also be taken into account.
iSeries Access sort sequence: You can specify the sort sequence in the iSeries Access functions, remote SQL and transfer function. When performing queries on the server databases and SQL tables, you can specify the system-supplied or user-supplied sort sequence tables.

Remote SQL support

You can specify the way the selected data has to be sorted when performing the query. For that purpose, sort fields have to be specified in the ORDER BY clause. The following clauses also use the specified sort sequence:

- WHERE clause
- GROUP BY clause
- HAVING clause
- JOIN BY clause
- UNION clause
- DISTINCT clause
- IN predicate
- LIKE predicate
- BETWEEN predicate
- RANGE predicate
- MAX function
- MIN function

The actual sort sequence table is retrieved from the job attributes of the user. The SRTSED and LANGID parameters can be affected through changing the user profile or changing the job attributes.

Transfer function support

When transferring data from the iSeries server to the workstation, you can specify the sort sequence to be applied on selected data. The sort sequence table is also used in the following string comparison operations:

- WHERE clause
- GROUP BY clause
- HAVING clause
- JOIN BY clause
- IN predicate
- LIKE predicate
- BETWEEN predicate
- MAX function
- MIN function

You can specify in the OPTION statement the following parameters related to sort sequence:

- SRTSEQ (sort sequence table)
- *JOB
- *HEX
- *LANGIDSHR
- *LANGIDUNQ
- *LIBL/sort-seq-table-name
- *CURLIB/sort-seq-table-name
- library-name/sort-seq-table-name
- LANGID (language identifier)
- *JOB
- language-identifier

You can choose the appropriate sort sequence through options on iSeries Access displays.

Code globalized applications that use bidirectional data

When you are developing NLV-enabled applications, consider the following restrictions:

- Bidirectional language display layout

The presentation of data should have a right-to-left orientation. Literals should appear on the right side of the fields that they describe. The following examples illustrate a U.S. English display with a left-to-right orientation and the same display in a right-to-left orientation.
Left-to-right layout of a U.S. English display

Display employee record (DSPEMPRCD)

Type choices, press enter.

Employee code	Code, *ALL
Field name	Name, *ALL
File name	Name
Library name	Name, *LIBL
Output to	*CONS, *PRINT

Right-to-left layout of a U.S. English display

> (DSPEMPRCD) drocer eeyolpme yalpsiD .retne sserp ,seciohc epyT
> *ALL ,edoC _ edoc eeyolpmE
> *ALL ,emaN —— eman dleiF emaN —— eman eliF
> *LIBL ,emaN —_ eman yrarbil *CONS ,*PRINT —— ot tuptuO

- Long fields in bidirectional languages

Avoid defining input fields that span more than one line. When the field is displayed or printed as one entity, the result for bidirectional languages would not be what the user intended.

- Variable positioning in bidirectional languages

Your application must allow for variables to be in any order. For example,consider the following message in English:
File \&1 in library \&2 not found
When translated to another language, the message might look like the following:
dnuof ton \& yrarbil ni \&1 elif
In this case, variable 2 is positioned before variable 1.

- CHECK(RL) and CHECK(RB) keywords with bidirectional languages These options are valid only for display stations capable of right-to-left movement, and have the following restrictions:
- Option indicators are not valid with cursor control codes.
- CHECK(RZ) and CHECK(RB) are not valid with these keywords.
- A field that spans more than one line gives a warning message.
- The check digit for modulus checking is the farthest-right byte in the field.
- CHECK(RL) applies to character fields only.
- Online information for bidirectional languages

The special bidirectional tags have a restriction. When combining online help information from several panel groups that do not have the same value for the BIDI tag, the end user must use the hot key sequence to read the opposite orientation online help information.

- CCSIDs for bidirectional languages

As bidirectional languages have special character sets that are unique, no exchange of data into other languages is feasible. You may need to use data mapping between EBCDIC and ASCII data streams, however. For example, you need data mapping between EBCDIC and ASCII data streams if you are using Distributed Relational Database Architecture ${ }^{(\mathrm{R})}$ (DRDA $^{(\mathrm{R})}$).
When exchanging data in a language that uses Latin characters and when special characters that are not part of the invariant character set are needed, use CCSID 00424 for Hebrew and CCSID 00420 for Arabic for data mapping to take place. For a list of supported CCSIDs, see CCSIDs.

See Work with bidirectional data for more information about bidirectional data. This topic also includes a checklist for bidirectional data that provides guidelines to follow when you create applications with bidirectional support.

Use message catalogs

OS/400 can use message catalogs to store messages. Messages in a message catalog are grouped as sets. Each message has a unique number within a set. You can create a message catalog as a stream file, a source file member, or a user space object type from one or more source files.

Because you can store message catalogs as stream files, you can use directories to isolate messages for specific products or national language versions.

Create or update a message catalog with the GENCAT and MRGMSGCLG commands

You can use both the Generate Message Catalog (GENCAI) command or the Merge Message Catalog (MRGMSGCLG) command to create or update a message catalog. Once a message catalog exists, continued use of these commands updates a catalog by comparing the original messages to the messages in the source. New message text replaces specific messages without changing the other messages within the set. With these commands, you can add or delete messages from an existing set of messages. You can also delete sets of messages from an existing message catalog.

For more information

See the following topics for more information about message catalogs:

- Source for message catalogs
- Open, extract, and close message catalogs

Source for message catalogs: The source for a message catalog is either a source physical file, a stream file, or multiple files. The source contains fields to define set numbers, message numbers, message text, or to specify sets to delete. The following topics provide additional information and examples relating to message catalogs.

Message catalog source format

A message catalog contains five fields of message text source lines. A single blank character separates each of the five fields. Any other blank characters are considered as part of the subsequent field data. See Special characters and escape sequences (see page 108) for additional information.

Note: Enter the key fields exactly as listed below, using the dollar sign (\$) and lowercase characters. Definitions for maximum and minimum values are stored in QSYSINC/QSYS/LIMITS.

- \$ comment

A line that begins with $\$$ that is followed by one or more blank characters is treated as a comment line. A omment line should be placed directly beneath the message to which it refers. Place comments for an entire set directly below the \$set directive in the source file.

- \$quote C

This line specifies an optional quote character C that is used to surround message text. This character enables trailing spaces or null (empty) messages to be visible in a message source line. By default, or if an empgy \$quote directive is supplied, no quoting of message text is recognized.

- \$set n comment

This line specifies the set identifier of the messages to follow until the next \$set or end-of-file appears. The N denotes the set identifier that is defined by a number between 1 and NL_SETMAX. Place set identifiers in ascending order within a single source file. They do not need to be contiguous. A character string that follows a set identifier is treated as a comment and ignored.

- \$delsetncomment

This line deletes message set n from an existing message catalog. The n specifies the set number. Data that follows the set number is treated as a comment. The \$set and \$delset identifiers can both be in the message catalog source or the field tags.

- m message text

The m specifies the message identifier that is defined by a number between 1 and NL_SETMAX. The message text is stored in the message catalog with message identifier m with the set identifier that is specified in the last \$set directive. If the message text is empty and a blank character field separator is present, it stores an empty string in the message catalog. Existing messages get deleted from the catalog if the message line does not have a field separator or MESSAGE TEXT and a NEWLINE or carriage return follows the message line. Message identifiers must be in ascending order, noncontiguous, and within a single set. The length of the MESSAGE TEXT must be in the range of 0 to NL_TEXTMAX.
Note: Empty lines in a message text source file will be ignored.

Messages programming format

MESSAGES should follow these recommendations:

- The last line of all messages should end with $\backslash n$.
- The second and remaining lines of a message should begin with $\backslash t$, indicating a tab.
- All lines of messages that continue to the next line should end with $\backslash n \backslash$, indicating that the message continues to the next line.
- The quotation mark at the end or beginning of a line should be omitted. The quotation mark delineates the beginning and end of a complete message.

Using multiple source files

You can specify multiple source files for the source file parameter. The messages that are contained in all of the files must follow the same rules for sets and messages as defined in a single source file. For example, the first source file contains messages in sets 1 through 3. The next source file must begin with set 3 and have a message number greater than the last message number in the first source file. If not, it must contain sets that begin with a number higher than the highest number (set 3) in the previous source file.

Replacing messages

Messages in an existing message catalog can be replaced by specifying a source file that contains the same set number and message number as the message text you want to change. All other messages in the source file remain the same. To update a value for the \$QUOTE in a catalog, use the same \$QUOTE character in subsequent source files.

Example source for a message catalog

The following shows a sample format for the source that is used to create a message catalog. A quotation mark delineates each message. The message text that is stored in the message catalog has had the extraneous blank characters removed. This example describes three sets of messages. Set 2 is deleted while sets 1 and 3 remain stored in the message catalog.

```
$ Messages for my new product
$quote "
```

\$set 1
1 "Error occurred.\n"
\$ The next message is continued on the next line.
2 "This is a very long message $\backslash n \backslash$
\t that requires another line to display. In"
3 "Specify a value greater than \%d. $\ n$ "
4 "File \%c cannot be used at this time. ${ }^{2}$ "
\$set 2
1 "Error \%d occurred. \n"
2 "Flag not set. ${ }^{n}$ "
3 "Number of arguments must be \%d. $\backslash n$ "
\$set 4
1 "Before using this command, you must \}
set the correct values in the \%c box. \n"
2 "You have not properly NLS enabled this function. $\ n$ "
10 "Messages should end with a \%c.\n"
\$delset 2
Note: Message 2 in set 1 will be displayed in two lines. Message 1 in set 4 will display as a one line message.

The following is an example for using the MRGMSGCLG command to create a message catalog.

```
MRGMSGCLG CLGFILE('/MYPRODUCT/MESSAGES?US')
    SRCFILE('QSYS.LIB/MYLIB.LIB/MYSOURCE.FILE/US.MBR')
    CLGCCSID(*SRCCCSID) SRCCCSID(*SRCFILE)
    TEXT('Message catalog for USA')
```

This example creates a message catalog into the stream file US in directory /MYPRODUCT/MESSAGES using the source from MYLIB library in file MYSOURCE and member US. The CCSID of the data in the message catalog is the same as the CCSID tag of the source file.

Special characters and escape sequences

Text strings can contain special characters and escape sequences as defined in the following table.

Description of special characters	Sequence
\backslash	l
backspace	lb
carriage return	lr
form feed	lf
horizontal tab	lt
NEWLINE	ln

Description of special characters	Sequence
octal bit pattern	Iddd Note: The escape sequence \ddd consists of a backslash followed by up to three octal digits that specify the value of the desired character. If the character following the backslash is not an octal digit, the backslash and data following are included as part of the text.

Open, extract, and close message catalogs: Once you have created a message catalog, you can use the following C functions:

CATOPEN()

Opens a message catalog

CATGETS()

Extracts a message from a message catalog, given a set identifier and a message identifier

CATCLOSE()

Closes the message catalog
The C function CATOPEN opens the message catalog. If no slash (/) characters are found in the name, the NLSPATH environment variable and the LC_MESSAGES category are used to find the specified message catalog. If the name contains one or more slash (/) characters, the name is interpreted as a path name of the catalog to open.

A default path is used if there is no NLSPATH environment variable or a message catalog cannot be found in the NLSPATH path specified. If the value of oflag is NO_CAT_LOCALE the environment variable setting of LC_MESSAGES may affect the default path. If the value of oflag is zero the LANG environment variable may affect it also.

For more information about C functions and message catalogs, see the $\amalg E C / C_{++}$Language Reference

PDF.

Deliver globalized applications

As you prepare to deliver your global application, you should consider how globalization issues might affect the ways that your customers will install and use your application. The following topics briefly discuss these issues.

Hardware support for multilingual systems

Hardware, in this context, means the physical keyboards, displays, printers, and controllers that make up an iSeries server. The extent to which this hardware supports national languages may impose limitations on the degree of support that you can provide with an application. You must refer to the reference manuals for non-IBM hardware to determine what limitations, if any, are imposed by that hardware.

Character data translation

Translating is changing the meaning of character data from a set of concepts, ideas, and statements in one human language to a culturally similar meaning in another human language. You can follow some basic rules to ensure translation goes smoothly. A subset of these rules is provided in the Usel interfaces" on page 68 topic.

Delivering your globalized application to customers

Delivering your application to customers includes the processes of packaging, servicing, supporting, and educating users about your application. You must consider various tasks when following these processes in different countries and cultures throughout the world. See "Packaging and installation process" on page 60 for more information on the processes associated with the delivery of your application to customers.

Handle data in globalized applications

One of the most critical challenges you will face as you work with globalized servers and applications is the effective interaction with data. OS/400 provides a wide range of options that you can use to insure that data is viewed and processed seamlessly across national languages. The following topics describe globalization as it affects how you handle your data:

- Work with Unicode and UCS-2 data
-

\gg
GB18030: The Chinese standard
<

- Work with CCSIDs
- Work with bidirectional data
- Work with DBCS data
- Work with locales

Work with Unicode and UCS-2 data

Unicode

Prior to Unicode, the encoding systems that existed did not cover all the necessary numbers, characters, and symbols in use. Different encoding systems might assign the same number to different characters. If you used the wrong encoding system, your output might not have been what you expected to see.

Unicode provides a unique number for every character, regardless of platform, language, or program. Using Unicode, you can develop a software product that will work with various platforms, languages, and countries. Unicode also allows data to be transported through many different systems.

The following topics describe the Unicode implementation on OS/400:

```
- UTF-8
•
    >
    UTF-16
    <
•
    >
    UTF-32
    <<
- How Unicode relates to prior standards such as ASCll and EBCDIC
- International components for Unicode (ICU)
```

For more information about Unicode, see the Unicode
web page.
UTF-8: A Unicode transformation format (UTF) is the algorithmic mapping from every Unicode value to a unique byte sequence. UTF-8 converts (via an algorithm) Unicode data so that it:

- No longer have nulls in it
- Uses 8 data bits to encode the data
- Keeps all ASCII codes from 00 to 7F as encoded as themselves

For example, the string "ABC" in Unicode would be "004100420043"x. However, in UTF-8 it would be " 414243 ".

Since UTF-8 allows Unicode data to flow over an 8-bit network without the network needing to know that it is Unicode, UTF-8 is used to store Unicode on several UNIX platforms and is used as the default encoding for most new internet standards.

OS/400 supports UTF-8 encoding with CCSID 1208.

UTF-16:

>

UTF-16 is an encoding of Unicode in which each character is composed of either one or two 16-bit elements.

OS/400 supports UTF-16 encoding with CCSID 1200.
Unicode was originally designed as a pure 16 -bit encoding, aimed at representing all modern scripts. Over time, and especially after the addition of over 14,500 composite characters for compatibility with legacy sets, it became clear that 16 bits were not sufficient for most users. Out of this arose UTF-16.

UTF-16 allows access to about 60,000 characters as single Unicode 16-bit units. It can access an additional $1,000,000$ characters by a mechanism known as surrogate pairs.

Two ranges of Unicode code values are reserved for the high (first) and low (second) values of these pairs. Highs are from 0xD800 to 0xDBFF, and lows from 0xDC00 to 0xDFFF. Since the most common characters have already been encoded in the first 64,000 values, the characters requiring surrogate pairs are relatively rare.

For more information about UTF-16, see the Unicode

```
Ag
web page.
<
UTF-32:
>
UTF-32 is an encoding of Unicode in which each character is composed of 4 bytes.
OS/400 does not support UTF-32 encoding with a CCSID value.
```

Unicode was originally designed as a pure 16 -bit encoding, aimed at representing all modern scripts. Over time, and especially after the addition of over 14,500 composite characters for compatibility with legacy sets, it became clear that 16 bits were not sufficient for many users. Out of this arose UTF-32.

UTF-32 allows characters to be encoded as 4 bytes at any code point from 00000000 to 0010 FFFF. For example, the string ABC in UTF-32 would be encoded as x"000000410000004200000043".

For more information about UTF-32, see the Unicode
web page.

<

How Unicode relates to prior standards such as ASCII and EBCDIC:

>

This topic provides a historical perspective on the Unicode standard, and explains how it can reduce the complexity of handling character data in global applications.

Evolving standards based on limited platforms

The representation of character data in modern computer systems can be fairly complicated, depending on the needs of your global application. One of the reasons for this complexity is that the methods for handling this data have evolved from early methods that served less complicated environments and hardware platforms.

In fact, many early decisions about how to encode characters on a system were guided by the functional requirements of specific devices, such as the early Telex (TTY) terminals and punch card technologies. For example, the Delete character (with an ASCII value of $x^{\prime} 7 F^{\prime}$) was required in order to punch out all of the holes in a column of a punch card to signify that the column should be ignored. The storage capacities of these early computing systems placed additional limitations on system and application designers.

The character encoding schemes that have grown out of these early systems were built upon this historical foundation:

- The ASCII (American Standard Code for Information Interchange) character set uses 7-bit units, with a trivial encoding designed for 7-bit bytes. It is the most important character set in use today, despite its limitation to very few characters, because its design is the foundation for most modern character sets. ASCII provides only 128 numeric values, and 33 of those are reserved for special functions.
- The EBCDIC (Extended Binary-Coded Decimal Interchange Code) character set and a number of associated character sets, designed by IBM for its mainframes, uses 8 -bit bytes. It was developed at a similar time as ASCII, and shares the same set of base characters and has other similar properties. Unlike ASCII, the Latin letters are not combined in two blocks for upper- and lower-case. Instead, the letters are arranged so that their hexadecimal values have second digits of 1 through 9 (another punch card-friendly design).

Historical simplicity creates modern complexity

The physical and functional limitations of the early character sets gave way to rapidly expanding hardware and functional capabilities. Character representation on computing systems became less dependent on hardware; instead, software designers used the existing encoding schemes to accommodate the needs of an increasingly global community of computer users.

Character sets for many characters

The most common encodings (character encoding schemes) use a single byte per character, and they are often called single-byte character sets (SBCS). They are all limited to 256 characters. Because of this, none of them can even cover all of the accented letters for the Western European languages. Consequently, many different such encodings were created over time to fulfill the needs of different user communities. The most widely used SBCS encoding today, after ASCII, is ISO-8859-1. It is an 8-bit superset of ASCII and provides most of the characters necessary for Western Europe.

However, East Asian writing systems needed a way to store over 10,000 characters, and so double-byte character sets (DBCS) were developed to provide enough space for the thousands of ideographic characters in East Asian writing systems. Here, the encoding is still byte-based, but each two bytes together represent a single character.

Even in East Asia, text contains letters from small alphabets like Latin or Katakana. These are represented more efficiently with single bytes. Multi-byte character sets (MBCS) provide for this by using a variable number of bytes per character, which distinguishes them from the DBCS encodings. MBCSs are often compatible with ASCII; that is, the Latin letters are represented in such encodings with the same bytes that ASCII uses. Some less often used characters may be encoded using three or even four bytes.

An important feature of MBCSs is that they have byte value ranges that are dedicated for lead bytes and trail bytes. Special ranges for lead bytes, the first bytes in multibyte sequences, make it possible to decide how many bytes belong together to encode a single character. Traditional MBCS encodings are designed so that it is easy to go forwards through a stream of bytes and read characters. However, it is often complicated and very dependent on the properties of the encoding to go backwards in text: going backwards, it is often hard to find out which variable number of bytes represents a single character, and sometimes it is necessary to go forward from the beginning of the text to do this.

Examples of commonly used MBCS encodings are Shift-JIS and EUC-JP (for Japanese), with up to two and three bytes per character, respectively.

Stateful encodings

Some encodings are stateful; they have bytes or byte sequences that switch the meanings of the following bytes. Simple encodings, like mixed-byte EBCDIC, use Shift-In and Shift-Out control characters (bytes) to switch between two states. Sometimes, the bytes after a Shift-In are interpreted as a certain SBCS encoding, and the bytes after a Shift-Out as a certain DBCS encoding. This is very different from an MBCS encoding where the bytes for each character indicate the length of the byte sequence.

The most common stateful encoding is ISO 2022 and its language-specific variations. It uses Escape sequences (byte sequences starting with an ASCII Escape character, byte value 27) to switch between many different embedded encodings. It can also announce encodings that are to be used with special shifting characters in the embedded byte stream. Language-specific variants like ISO-2022-JP limit the set of embeddable encodings and specify only a small set of acceptable Escape sequences for them.

Such encodings are very powerful for data exchange but hard to use in an application. Their flexibility allows you to embed many other encodings, but direct use in programs and conversions to and from other encodings are complicated. For direct use, a program has to keep track not only of the current position in the text, but also of the state-which embeddable encoding is currently active-or must be able to determine the state for a position from considerable context. For conversions to other encodings, converting software may need to have mappings for many embeddable encodings, and for conversions from other encodings, special code must figure out which embeddable encoding to choose for each character.

Unicode: The last character set?

The Unicode standard specifies a character set and several encodings. As of early 2002, it contains almost 94000 characters, which include all the characters of the common character sets that were in use
when Unicode was started around 1990, plus many that have been added since. It is an open character set, which means that it keeps growing and adding less frequently used characters.

The standard assigns numbers from 0 to 0x10FFFF, which is more than a million possible numbers for characters. About 5% of this space is used. Another 5\% is in preparation, about 13% is reserved for private use (anyone can place any character in there), and about 2% is reserved and not to be used for characters. The remaining 75% is open for future use but not by any means expected to be filled up. In other words, there is finally a character set with plenty of space!

Unicode is in use today, and it is the preferred character set for the Internet, especially for HTML and XML. It is slowly being adopted for use in e-mail, too. Its most attractive property is that it covers all the characters of the world (with exceptions, which will be added in the future). Unicode makes it possible to access and manipulate characters by unique numbers-their Unicode code points-and use older encodings only for input and output, if at all.

Why Unicode?

Hundreds of encodings have been developed, each for small groups of languages and special purposes. As a result, the interpretation of text, input, sorting, display, and storage depends on the knowledge of all the different types of character sets and their encodings. Programs are written to either handle one single encoding at a time and switch between them, or to convert between external and internal encodings.

Part of the problem is that there is no single, authoritative source of precise definitions of many of the encodings and their names. Transferring of text from one machine to another one often causes some loss of information. Also, if a program has the code and the data to perform conversion between a significant subset of traditional encodings, then it carries several megabytes of data around.

Unicode provides a single character set that covers the languages of the world, and a small number of machine-friendly encoding forms and schemes to fit the needs of existing applications and protocols. It is designed for best interoperability with both ASCII and ISO-8859-1, the most widely used character sets, to make it easier for Unicode to be used in applications and protocols.

Unicode encodings

For single characters, 32-bit integer variables are most appropriate for the value range of Unicode. For strings, however, storing 32 bits for each character takes up too much space, especially considering that the highest value, 0x10FFFF, takes up only 21 bits. 11 bits are always unused in a 32 -bit word storing a Unicode code point. Therefore, you will find that software generally uses 16 -bit or 8 -bit units as a compromise, with a variable number of code units per Unicode code point. It is a trade-off between ease of programming and storage space.

As a result, there are three common ways to store Unicode strings:

- UTF-32, with 32 -bit code units, each storing a single code point
- UTF-16, with one or two 16 -bit code units for each code point
- UTF-8, with one to four 8-bit code units (bytes) for each code point

UTF-8 is used mainly as a direct replacement for older MBCS encodings which all use 8-bit code units, but it takes some more code to process it. It is a good encoding if 90% of your data is English, since all English letters use only one byte.

UTF-16 is extremely well designed as the best compromise between handling and space, and all commonly used characters can be stored with one code unit per code point. This is the default encoding for Unicode.

```
<
```

International Components for Unicode: The International Components for Unicode (ICU) is a C library that provides a full-featured, industrial strength, Unicode support. The library provides:

- Calendar support
- Character set conversions
- Collation (language-sensitive)
- Date and time formatting
- Locales (140+ supported)
- Message catalogs (resources)
- Message formatting
- Normalization
- Number and currency formatting
- Time zones
- Transliteration
- Word, line, and sentence breaks

ICU is a collaborative, open-source development project jointly managed by a group of companies and individual volunteers throughout the world, using the Internet and the Web to communicate, plan, and develop the software and documentation.

The ICU project is licensed under the IBM Public License, which has been approved by the Open Source Initiative. For more information, see International Components for Unicode
(http://oss.software.ibm.com/icu/).

UCS-2 and its relationship to Unicode

>
Since the UCS-2 standard is limited to 65,535 characters, and the data processing industry needs over 94,000 characters, the UCS-2 standard is in the process of being superseded by the Unicode UTF-16 standard.

However, because UTF-16 is a superset of the existing UCS-2 standard, you can develop your applications using the systems existing UCS-2 support as long as your applications treat the UCS-2 as if it were UTF-16.

<

UCS (Universal Multiple-Octet Coded Character Set)

The ISO 10646 standard is a character code designed to encode text for storage in computer files. The design of the ISO 10646 standard is based on today's prevalent character code, ASCII (and ISO 8859-1, an extended version of the ASCII code). But ISO 10646 goes beyond ASCII's ability to encode only the Latin alphabet. The ISO 10646 encoding provides the capability to encode all of the characters used for written languages throughout the world.

Two UCS encoding schemes

In order to accommodate the many thousands of characters used in international text, ISO/IEC 10646 specifies the Universal Multiple-Octet Coded Character Set (UCS). UCS can be implemented through two encoding schemes:

- UCS-2: Each character is represented by 16 bits or 2 bytes. (The number 2 in UCS-2 indicates 2 bytes.) For example, uppercase A is represented by 0041.
- UCS-4: Each character is represented by 32 bits or 4 bytes. (The number 4 in UCS-4 indicates 4 bytes.) For example, uppercase A is represented by 00000041.

The major difference between the 2-byte and 4-byte representation is that the 4-byte representation allows for the presentation or use of additional characters beyond the capability of UCS-2. That is, you can encode more characters in UCS-4 than you can in UCS-2.

Benefits of UCS over ASCII

UCS provides codes for more than 65,000 characters, a huge increase over ASCII's 7 -bit code capacity of 128 characters. To keep character coding simple and efficient, the UCS-2 standard assigns each character a unique 16-bit value, and does not use complex modes or escape codes to specify modified characters or special cases. This simplicity and efficiency makes it easy for computers and software to handle ISO 10646-encoded text files.

UCS-2 allows for the use of "combining characters". A combining character is a non-spacing character that is used together with a non-combining character to form a composite character, or glyph. For example, Latin small letter A used with a combining tilde results in

ã

Within UCS-2 and UCS-4, characters can be presented or used at various levels. The levels and their descriptions are:

- Level 1: No use of combining characters is allowed.
- Level 2: Limited use of combining characters is allowed.
- Level 3: No restriction on use of combining characters.

The following topics provide more detailed information about UCS-2 support on OS/400:

- Why use UCS-2?
- UCS-2 on OS/400
- UCS-2 level-1 mapping tables

Why use UCS-2?: OS/400 provides multilingual support. UCS-2 provides the means to store and retrieve data in the user's national language of choice in a single file and therefore provides for one database file to support all text needs, regardless of the language of the input device. For example, the same parts file could have Greek, Russian, and English descriptions and names in it.

Mapping of data

OS/400 uses the EBCDIC encoding scheme. However, not all clients attached to it use an EBCDIC encoding scheme to store, retrieve, and process data. For example, some clients may use ASCII, PC DATA, or other encoding schemes. Using UCS-2 prevents the loss of data due to incomplete conversion between encoding schemes and code pages. Therefore, some clients use UCS-2 as an "exchange mechanism" that is safe across all platforms.

Examples:

The following examples highlight two users on the same system. One user is English and the other Greek. The English user has his display device CCSID set to 37. The Greek user has his display device CCSID set to 875 . Both users query, update, and replace data in the DATABASE1. DATABASE1 is tagged with CCSID 37.

- Example 1: Displaying data without UCS-2
- Example 2: Displaying data with UCS-2

Example: Display data without UCS-2: Problems with data integrity develop because users are operating with CCSIDs that have varied character support. That is, not all characters in CCSID 37 are available in CCSID 875 and vice-versa.

Assume that the following names are to be entered by the English-speaking user (display device supports a CCSID of 37):
-
A
alson

- Gifford

When these entries are stored, the data integrity remains intact. That is, an

\AA

is stored as an

A

. This is because the display device CCSID and the database CCSID are both 37 .
Assume the following names are also input into DATABASE1 by the Greek-speaking user (display device CCSID of 875):
-
\AA
π
غ́
v
-
Ω
ρ

1
μ
α

DATABASE1 now consists of the following logical entries:
-

A

alson

- Gifford

M
π
$\dot{\varepsilon}$
v
-
Ω
ρ
1
μ
α

The Greek characters that make up the name are stored as those characters only if the same character exists within CCSID 37. If the character does not exist, the server converts the characters using a predetermined algorithm to a code point from code page 37. The algorithm converts

Ω

to
\AA

The following list shows the code point used to store the first character of each name in DATABASE1. (Using only the first character makes the example easier by eliminating long strings of code points which would be shown if we presented the code point for each character in the name.)
Name CCSID 37 Stored Code Point (Hexadecimal)
\AA
alson 67...
Gifford
C7...

M
π
'
v
$53 .$.
Ω
ρ
l
μ
α
67 ...
The next step in this example is to show how data can be incorrectly selected due to the character conversion when it was stored in the database.

Assume the Greek user wants to find all names beginning with

Ω

. The following SQL statement would provide two names:
Ω
ρ
1

μ

α
and
\AA
alson
Select from DATABASE1 where name LIKE ' $\%$ '
The search yielded an unexpected name (

Å

alson). This is because the first character in

Å

alson is stored with the same code point as the first character in
Ω

Example: Display data with UCS-2: In this example, using UCS-2 as the CCSID of DATABASE1, we can show how data integrity is maintained both in storing and retrieving data. As in the previous example, one user is English using CCSID 37 and the other user is Greek using CCSID 875.

We'll use DATABASE1 as in the previous example. However DATABASE1 is now defined with CCSID 13488. (13488 is a UCS-2 CCSID.)
-

Å

alson

- Gifford
-

M

π
ε
v
-
Ω
ρ
1

1

μ

α
The key difference in using UCS-2 as the CCSID of DATABASE1 is that data integrity is maintained for each user who inputs data to the database. That is each character, regardless of the CCSID of the inputting device, is stored with a unique code point. (Remember that in this example the CCSID of DATABASE1 is 13488.)

Name CCSID 13488 Stored Code Point (Hexadecimal)

```
\AA
alson 00C5...
Gifford
            0047 . . .
    M
    \pi
\varepsilon
            03A9 ...
\Omega
\rho
l
\mu
\alpha
    039C . . .
Assume the Greek user wants to find all names beginning with
```


Ω

```
. The following SQL statement would provide one name,
\(\Omega\)
\(\Omega\)
\(\rho\)
1
\(\mu\)
\(\alpha\)
, as compared to two in the previous example:
Select from DATABASE1 where Substr(name,1,1) = ''
```

The reason for this is that each character stored in a UCS-2 tagged database has a unique code point. This contrasts to the brevious example that had the first character in

Å

alson stored with the same code point as the first character in
Ω
ρ
l
μ
α
UCS-2 on OS/400: OS/400 supports UCS-2 and implements its UCS-2 conversion support using level 1 support. That is, no use of combining characters is mapped.

>

The coded character set identifier (CCSID) 13488 on OS/400 represents UCS-2.
UCS-2 cannot be specified as a value for:
<

- The system CCSID
- A user profile CCSID
- A job CCSID

OS/400 provides external support for UCS-2 in the following parts of the system (see note, below):

- Database files and functions
- DB2 UDB for iSeries
- SQL tables
- Query files and tools
- DDS
- Display file and panel groups
- Sort sequences
- UCS-2 variables in UIM
- ILE high-level languages such as RPG
- Message handling and message catalogs

Several other OS/400 functions implement UCS-2 internally so that character data integrity is maintained for users across multilingual platforms.

Note: These topics do not give detailed information on application development as it relates to the implementation of UCS-2. Rather, they provide highlights of OS/400 support for UCS-2. Where possible, reference to a book that provides detailed information for UCS-2 implementation is given.

>

You should have available and understand the information in the Unicode standard.

<

For more information about Unicode, see the Unicode
web page.
Database files and functions: When you create UCS-2 database applications, you need to consider the implications for creating physical files (see page 12.3), creating logical files (see page 123), and performing input and output on the database files (see page 124).

Creating physical files:

UCS-2 graphic fields can be created in physical files. This is done by specifying a G data type and a UCS-2 CCSID for the CCSID keyword.

The following example shows the DDS for a physical file containing four fields, and the command for creating the file:

A	R FMT1		
A	EMPNO	6 A	
A	NAME	$30 G$	CCSID(13488)
A	DESCR1	500 G	CCSID(13488) VARLEN
A	DESCR2	500 A	
	CRTPF	FILE (UCS-2PF)	SRCFILE(CLR/QDDSSRC)

In the example:

- The first field, EMPNO, is a character field of length 6. The CCSID of the EMPNO field is the SBCS CCSID of the job. The decision was made to use a character field because the EMPNO field contains only numerics and UCS-2 support is not needed.
- The NAME and DESCR1 fields are both UCS-2 fields. Both of these fields may need to contain data from more than one EBCDIC code page so the decision was made to make these fields UCS-2 graphic.
- The DESCR2 field is the SBCS CCSID of the job. This field is used as illustratioin of mapping to a logical field in Creating logical files (see page 123).

You can specify the default (DFT) keyword for UCS-2 graphic fields. The default value can be specified as SBCS, bracketed-DBCS, or bracketed-DBCS-graphic character strings. If you do not specify the DFT keyword, the default value for fixed-length UCS-2 fields is the UCS-2 blank (hexadecimal 0020). For varying-length UCS-2 fields, the default is the empty string.

Creating logical files:

You can use logical files to map UCS-2 data to and from character, DBCS-open, or DBCS-graphic. This allows UCS-2 graphic data to be manipulated in a character based form.

The following example shows the DDS for a logical file containing 4 character fields. The UCS-2 graphic data is converted to character data when reading from the logical file, and character data is converted to UCS-2 graphic data when writing to the file.
R FMT1
PFILE (UCS2PF1)

A	EMPNO		
A	NAME	A	CCSID(37)
A	DESCR1	A	$\operatorname{CCSID(37)}$
A	DESCR2	G	$\operatorname{CCSID(13488)~}$

Database input/output:

Whenever reading or writing data from or to a field tagged with a UCS-2 CCSID to the job physical files, the data is passed as UCS-2 data without any conversions occurring. Regardless of the job CCSID, data is passed as UCS-2 data. When writing data to a logical file, the from CCSID is the job CCSID; however, if the job CCSID is 65535, the from CCSID is the CCSID of the field in the logical file.

The following are some scenarios from the physical and logical files listed above. For the scenarios, the job CCSID is 297.

Scenario 1. When reading the data from the physical file:

- EMPNO is converted from its CCSID to 297.
- NAME is not converted but is left as UCS-2 data.
- DESCR1 is not converted but is left as UCS-2 data.
- DESCR2 is converted from its CCSID to 297.

Scenario 2. When writing the data to the physical file:

- EMPNO is converted from 297 to its CCSID.
- NAME is not converted but is left as UCS-2 data.
- DESCR1 is not converted but is left as UCS-2 data.
- DESCR2 is converted from 297 to its CCSID.

Scenario 3. When reading the data from the logical file:

- EMPNO is converted from its CCSID to 297.
- NAME is converted from UCS-2 data to character data with a CCSID of 297.
- DESCR1 is converted from UCS-2 data to character data with a CCSID of 297.
- DESCR2 is converted from character data to UCS-2 data and not converted to the job CCSID.

Scenario 4. When writing the data to the logical file:

- EMPNO is converted from 297 to its CCSID.
- NAME is converted from 297 to UCS-2 data.
- DESCR1 is converted from 297 to UCS-2 data.
- DESCR2 is converted from UCS-2to its CCSID in the physical file.

Scenario 5. If the job was 65535, the conversions for the above fields would be:

- EMPNO is not converted.
- NAME is converted from 37 to UCS-2 data.
- DESCR1 is converted from 37 to UCS-2 data.
- DESCR2 is converted from UCS-2 to its CCSID in the physical file.

DB2 UDB for iSeries: Keep the following in mind when using DB2 UDB for iSeries applications:

- Implicit conversion when comparing UCS-2 fields with character/IGC/graphic fields as well as with literals and host variables can occur.
- Physical and logical files with UCS-2 fields cannot have their CCSIDs changed with the Change Physical File (CHGPF) command.
- A UCS-2 CCSID is not allowed on the CHGPF command.
- The Copy File (CPYB) and Copy From Query File (CPYFRMORYE) commands with FMTOPT(*MAP) specified is not allowed when copying from or to a UCS-2 graphic field unless:
- the corresponding field is a UCS-2 or DBCS-graphic field.
- the corresponding field is a character, DBCS-open, DBCS-either, or DBCS-only field with a CCSID other than 65535 .
- The Copy File (CPYB) command supports copying of SBCS character, DBCS-open, DBCS-only, DBCS-either, and DBCS-graphic fields to and from UCS-2 graphic fields. There is limited support for UCS-2 on the FROMKEY, TOKEY, INCCHAR, and INCREL parameters.

SQL tables: SQL supports tables that contain UCS-2 graphic columns by specifying a UCS-2 CCSID for the GRAPHIC and VARGRAPHIC data types.

The following SQL example creates the table UCS2_TABLE. UCS2_TABLE contains one character column called EMPNO, and two UCS-2 graphic columns. NAME is a fixed-length UCS-2 graphic column and DESCRIPTION is a variable-length UCS-2 graphic column. The decision was made to use a character field since the EMPNO field only contains numerics and UCS-2 support is not needed. The NAME and DESCRIPTION fields are both UCS-2 fields. Both of these fields may contain data from more than one EBCDIC code page.
CREATE TABLE UCS2_TABLE (EMPNO CHAR(6) NOT NULL,
NAME GRAPHIC(30) C̄CSID 13488,
DESCRIPTION VARGRAPHIC(500) CCSID 13488)

Inserting data

SBCS character, mixed character, and DBCS graphic data can be inserted into UCS-2 graphic columns using the SQL INSERT statement. DB2 UDB for iSeries SQL converts the data to UCS-2 graphic. In SQL programs, the DECLARE VARIABLE statement can be used to attach a UCS-2 CCSID to graphic host variables.

The following SQL example converts character data to UCS-2 graphic for the NAME and DESCRIPTION columns and inserts the row into the UCS2_TABLE.
insert into ucs2_TAble values('000001','John Doe','Engineer')

Selecting UCS-2 data

Implicit conversion of UCS-2 graphic data is supported on a FETCH or select INTO and CALL.
In the following example, the EMPNO column is returned in empno_hv as character data. The NAME column is returned in name_hv as UCS-2 graphic data because name_hv is a UCS-2 variable. It is not converted to character, mixed character, or DBCS graphic.

```
char empno_hv[7];
wchar_t name_hv[31];
EXEC S
EXEC SQL SELECT EMPNO, NAME
INTO :empno_hv, :name_hv
.FROM UCS2_TABLE;
```

To return UCS-2 graphic data as EBCDIC data, the prior example could be changed to return the UCS-2 data as character data, EMPNO and NAME are returned in the job CCSID.
char empno_hv[7];
char name_hv[31];
EXEC SQL SELECT EMPNO, NAME
INTO :empno_hv, :name_hv
FROM UCS2_TĀBLE;

When doing selection, implicit conversions is done when comparing UCS-2 graphic data and character or DBCS graphic data.

The following example converts the character string 'John Doe' to UCS-2 graphic and then selects the rows where the NAME column is 'John Doe'.
EXEC SQL DECLARE C1 CURSOR FOR
SELECT *
FROM UCS2 TABLE
WHERE NAME = 'John Doe';
For additional information on using SQL with UCS-2 graphic data, see the SOL_Reference topic in the Information Center.

Query files and tools: Open query file (OPNQRYF) command considerations
The Open Query File (OPNORYB) command, as shown below, can retrieve or perform selection of UCS-2 data. Using the MAPFLD parameter, data can be mapped to or from UCS-2.
OPNQRYF FILE (UCS2_TABLE)
QRYSLT('NAME=MAPNĀME')
MAPFLD((MAPNAME 'John Doe' *GRAPHIC *N *N 13488))

Interactive query tools considerations

Query for iSeries, DB2 Query Manager, and the DB2 Query Management function for OS/400 all have UCS-2 support. UCS-2 data can be displayed or printed on a report; by implicitly converting to either character or mixed art.

For additional information, see the Query Manager Use
and Query Management Programming

PDFs.
Data description specifications (DDS): In DDS, you use the CCSID file-, record-, or field-level keyword to specify that a G-type field supports UCS-2 data instead of DBCS-graphical data. See the CCSID keyword description in the DDS Reference: Physical and Logical Files topic.

The following are DDS considerations for UCS-2 and OS/400 applications:

- UCS-2 CCSID 13488 can be specified for graphic and variable graphic fields in physical files. UCS-2 CCSID 61952 cannot be specified in physical files.
- Logical files can be used to map from UCS-2 fields in the physical file to character (A or O) or DBCS graphic in the logical. Logical files can also be used to map character (A or O) or DBCS graphic in the physical file to UCS-2 graphic in the logical file. A CCSID can be specified in a DDS logical file. If the CCSID parameter is specified, the logical file is created using that CCSID. If a CCSID is not specified, the job default CCSID is used if mapping from UCS-2 to character is specified.
If a logical file is used for I/O, fields are defined as character or DBCS graphic and the underlying physical fields are defined as UCS-2. On output the data is mapped directly from the job CCSID to UCS-2. Data will not map first from the job CCSID to the logical file CCSID and then from the logical file CCSID to the physical file UCS-2 CCSID. This mapping prevents data loss. On input, the UCS-2 data is mapped directly to the job CCSID.
- If a UCS-2 CCSID is specified at the file level and there are character fields defined for the file, the file can be created and the job default CCSID is used for the fields that do not have an explicit CCSID specified.
- If the field has a UCS-2 CCSID and a user-specified default value is not specified, then the default is UCS-2 blanks (X'0020') for fixed-length UCS-2 graphic and the empty string for varying-length UCS-2 graphic. A user-specified default may be specified as either a character or graphic literal. This literal value is converted to UCS-2 by database and stored internally in UCS-2.

Display files and panel groups: UCS-2 data is not supported on display devices that currently support the 5250 data stream. Therefore, conversions between the UCS-2 data and EBCDIC are necessary during input/output operations. On output, the UCS-2 data is converted to the CCSID of the device. On input, the data is converted from the device CCSID to the UCS-2 CCSID.

Since the device CCSID, which is determined from the device configuration, determines what the UCS-2 data is converted to, the converted data appears differently on different devices. For example, a UCS-2 character which maps to a SBCS character is displayed as a DBCS replacement character on a graphic-DBCS capable device. On a DBCS or SBCS capable device, the character appears as a SBCS character. A UCS-2 character which maps to a DBCS character is displayed as a graphic-DBCS character on a graphic-DBCS capable device. On a DBCS device, a DBCS character is bracketed (enclosed in a shift-out and shift-in). A SBCS replacement character is displayed on a SBCS device.

It is also suggested that all UCS-2 capable fields are initialized in the output buffer before writing the fields to the screen. Unpredictable results may occur if default initialization is allowed to take place.

For more information about display file and panel group considerations, see the UCS-2 appendix in the DDS Reference: Physical and Logical topic.

UCS-2 variables in UIM: The following example shows how to define a UCS-2 variable in UIM.
1 :class name=example basetype='graphic 6 13488' width=10,
2
3 :class name=example2 basetype='graphic 10 13488' width=20.
4

Line 1 defines a class for variables that will contain 6 UCS-2 characters and is to be displayed in a field that is 10 bytes long.

Line 3 defines a class for variables that will contain 10 UCS-2 characters and is to be displayed in a field that is 20 bytes long.

For more information on UCS-2 and UIM, see the definition of the CLAS tag in the Application Display Programming

PDF.
UCS-2 level-1 mapping tables: You can convert characters encoded in universal coded character set 2 level 1 (UCS-2 level-1) from uppercase to lowercase. The Uppercase to _lowercase mapping table shows the mapping for this conversion.

You can also convert UCS-2 level-1 characters from lowercase to uppercase. The Lowercase to uppercase mapping_table shows the mapping for this conversion.

Use the Convert Case API to perform these conversions.

ISO 10646 uppercase to lowercase UCS-2 level-1 conversion mapping:

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0041	0061	LATIN CAPITAL LETTER A	LATIN SMALL LETTER A
0042	0062	LATIN CAPITAL LETTER B	LATIN SMALL LETTER B
0043	0063	LATIN CAPITAL LETTER C	LATIN SMALL LETTER C
0044	0064	LATIN CAPITAL LETTER D	LATIN SMALL LETTER D
0045	0065	LATIN CAPITAL LETTER E	LATIN SMALL LETTER E
0046	0066	LATIN CAPITAL LETTER F	LATIN SMALL LETTER F
0047	0067	LATIN CAPITAL LETTER G	LATIN SMALL LETTER G
0048	0068	LATIN CAPITAL LETTER H	LATIN SMALL LETTER H
0049	0069	LATIN CAPITAL LETTER I	LATIN SMALL LETTER I
004A	006A	LATIN CAPITAL LETTER J	LATIN SMALL LETTER J
004B	006B	LATIN CAPITAL LETTER K	LATIN SMALL LETTER K
004C	006C	LATIN CAPITAL LETTER L	LATIN SMALL LETTER L
004D	006D	LATIN CAPITAL LETTER M	LATIN SMALL LETTER M
004E	006E	LATIN CAPITAL LETTER N	LATIN SMALL LETTER N
004F	006F	LATIN CAPITAL LETTER O	LATIN SMALL LETTER O
0050	0070	LATIN CAPITAL LETTER P	LATIN SMALL LETTER P
0051	0071	LATIN CAPITAL LETTER Q	LATIN SMALL LETTER Q
0052	0072	LATIN CAPITAL LETTER R	LATIN SMALL LETTER R
0053	0073	LATIN CAPITAL LETTER S	LATIN SMALL LETTER S
0054	0074	LATIN CAPITAL LETTER T	LATIN SMALL LETTER T
0055	0075	LATIN CAPITAL LETTER U	LATIN SMALL LETTER U
0056	0076	LATIN CAPITAL LETTER V	LATIN SMALL LETTER V
0057	0077	LATIN CAPITAL LETTER W	LATIN SMALL LETTER W
0058	0078	LATIN CAPITAL LETTER X	LATIN SMALL LETTER X
0059	0079	LATIN CAPITAL LETTER Y	LATIN SMALL LETTER Y
005A	007A	LATIN CAPITAL LETTER Z	LATIN SMALL LETTER Z
00C0	00E0	LATIN CAPITAL LETTER A GRAVE	LATIN SMALL LETTER A GRAVE
00C1	00E1	LATIN CAPITAL LETTER A ACUTE	LATIN SMALL LETTER A GRAVE
00C2	00E2	LATIN CAPITAL LETTER A CIRCUMFLEX	LATIN SMALL LETTER A GRAVE
00C3	00E3	LATIN CAPITAL LETTER A TILDE	LATIN SMALL LETTER A GRAVE
00C4	00E4	LATIN CAPITAL LETTER A DIAERESIS	LATIN SMALL LETTER A GRAVE
00C5	00E5	LATIN CAPITAL LETTER A RING	LATIN SMALL LETTER A GRAVE
00C6	00E6	LATIN CAPITAL LETTER A E	LATIN SMALL LETTER A GRAVE
00C7	00E7	LATIN CAPITAL LETTER C CEDILLA	LATIN SMALL LETTER A GRAVE

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
00C8	00E8	LATIN CAPITAL LETTER E GRAVE	LATIN SMALL LETTER A GRAVE
00C9	00E9	LATIN CAPITAL LETTER E ACUTE	LATIN SMALL LETTER A GRAVE
00CA	00EA	LATIN CAPITAL LETTER E CIRCUMFLEX	LATIN SMALL LETTER E CIRCUMFLEX
00CB	00EB	LATIN CAPITAL LETTER E DIAERESIS	LATIN SMALL LETTER E DIAERESIS
00CC	00EC	LATIN CAPITAL LETTER I GRAVE	LATIN SMALL LETTER I GRAVE
OOCD	O0ED	LATIN CAPITAL LETTER I ACUTE	LATIN SMALL LETTER I ACUTE
OOCE	O0EE	LATIN CAPITAL LETTER I CIRCUMFLEX	LATIN SMALL LETTER I CIRCUMFLEX
O0CF	00EF	LATIN CAPITAL LETTER I DIAERESIS	LATIN SMALL LETTER I DIAERESIS
00D0	00F0	LATIN CAPITAL LETTER ETH	LATIN SMALL LETTER ETH
00D1	00F1	LATIN CAPITAL LETTER N TILDE	LATIN SMALL LETTER N TILDE
00D2	00F2	LATIN CAPITAL LETTER O GRAVE	LATIN SMALL LETTER O GRAVE
00D3	00F3	LATIN CAPITAL LETTER O ACUTE	LATIN SMALL LETTER O ACUTE
00D4	00F4	LATIN CAPITAL LETTER O CIRCUMFLEX	LATIN SMALL LETTER O CIRCUMFLEX
00D5	00F5	LATIN CAPITAL LETTER O TILDE	LATIN SMALL LETTER O TILDE
00D6	00F6	LATIN CAPITAL LETTER O DIAERESIS	LATIN SMALL LETTER O DIAERESIS
00D8	00F8	LATIN CAPITAL LETTER O SLASH	LATIN SMALL LETTER O SLASH
00D9	00F9	LATIN CAPITAL LETTER U GRAVE	LATIN SMALL LETTER U GRAVE
00DA	00FA	LATIN CAPITAL LETTER U ACUTE	LATIN SMALL LETTER U ACUTE
00DB	00FB	LATIN CAPITAL LETTER U CIRCUMFLEX	LATIN SMALL LETTER U CIRCUMFLEX
00DC	00FC	LATIN CAPITAL LETTER U DIAERESIS	LATIN SMALL LETTER U DIAERESIS
O0DD	00FD	LATIN CAPITAL LETTER Y ACUTE	LATIN SMALL LETTER Y ACUTE
00DE	00FE	LATIN CAPITAL LETTER THORN	LATIN SMALL LETTER THORN
0100	0101	LATIN CAPITAL LETTER A WITH MACRON	LATIN SMALL LETTER A WITH MACRON
0102	0103	LATIN CAPITAL LETTER A WITH BREVE	LATIN SMALL LETTER A WITH BREVE

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0104	0105	LATIN CAPITAL LETTER A WITH OGONEK	LATIN SMALL LETTER A WITH OGONEK
0106	0107	LATIN CAPITAL LETTER C WITH ACUTE	LATIN SMALL LETTER C WITH ACUTE
0108	0109	LATIN CAPITAL LETTER C WITH CIRCUMFLEX	LATIN SMALL LETTER C WITH CIRCUMFLEX
010A	010B	LATIN CAPITAL LETTER C WITH DOT ABOVE	LATIN SMALL LETTER C WITH DOT ABOVE
010C	010D	LATIN CAPITAL LETTER C WITH CARON	LATIN SMALL LETTER C WITH CARON
010E	010F	LATIN CAPITAL LETTER D WITH CARON	LATIN SMALL LETTER D WITH CARON
0110	0111	LATIN CAPITAL LETTER D WITH STROKE	LATIN SMALL LETTER D WITH STROKE
0112	0113	LATIN CAPITAL LETTER E WITH MACRON	LATIN SMALL LETTER E WITH MACRON
0114	0115	LATIN CAPITAL LETTER E WITH BREVE	LATIN SMALL LETTER E WITH BREVE
0116	0117	LATIN CAPITAL LETTER E WITH DOT ABOVE	LATIN SMALL LETTER E WITH DOT ABOVE
0118	0119	LATIN CAPITAL LETTER E WITH OGONEK	LATIN SMALL LETTER E WITH OGONEK
011A	011B	LATIN CAPITAL LETTER E WITH CARON	LATIN SMALL LETTER E WITH CARON
011C	011D	LATIN CAPITAL LETTER G WITH CIRCUMFLEX	LATIN SMALL LETTER G WITH CIRCUMFLEX
011E	011F	LATIN CAPITAL LETTER G WITH BREVE	LATIN SMALL LETTER G WITH BREVE
0120	0121	LATIN CAPITAL LETTER G WITH DOT ABOVE	LATIN SMALL LETTER G WITH DOT ABOVE
0122	0123	LATIN CAPITAL LETTER G WITH CEDILLA	LATIN SMALL LETTER G WITH CEDILLA
0124	0125	LATIN CAPITAL LETTER H WITH CIRCUMFLEX	LATIN SMALL LETTER H WITH CIRCUMFLEX
0126	0127	LATIN CAPITAL LETTER H WITH STROKE	LATIN SMALL LETTER H WITH STROKE
0128	0129	LATIN CAPITAL LETTER I WITH TILDE	LATIN SMALL LETTER I WITH TILDE
012A	012B	LATIN CAPITAL LETTER I WITH MACRON	LATIN SMALL LETTER I WITH MACRON
012C	012D	LATIN CAPITAL LETTER I WITH BREVE	LATIN SMALL LETTER I WITH BREVE
012E	012F	LATIN CAPITAL LETTER I WITH OGONEK	LATIN SMALL LETTER I WITH OGONEK
0130	0069	LATIN CAPITAL LETTER I WITH DOT ABOVE	LATIN SMALL LETTER I
0132	0133	LATIN CAPITAL LIGATURE IJ	LATIN SMALL LIGATURE IJ

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0134	0135	LATIN CAPITAL LETTER J WITH CIRCUMFLEX	LATIN SMALL LETTER J WITH CIRCUMFLEX
0136	0137	LATIN CAPITAL LETTER K WITH CEDILLA	LATIN SMALL LETTER K WITH CEDILLA
0139	013A	LATIN CAPITAL LETTER L WITH ACUTE	LATIN SMALL LETTER L WITH ACUTE
013B	013C	LATIN CAPITAL LETTER L WITH CEDILLA	LATIN SMALL LETTER L WITH CEDILLA
013D	013E	LATIN CAPITAL LETTER L WITH CARON	LATIN SMALL LETTER L WITH CARON
013F	0140	LATIN CAPITAL LETTER L WITH MIDDLE DOT	LATIN SMALL LETTER L WITH MIDDLE DOT
0141	0142	LATIN CAPITAL LETTER L WITH STROKE	LATIN SMALL LETTER L WITH STROKE
0143	0144	LATIN CAPITAL LETTER N WITH ACUTE	LATIN SMALL LETTER N WITH ACUTE
0145	0146	LATIN CAPITAL LETTER N WITH CEDILLA	LATIN SMALL LETTER N WITH CEDILLA
0147	0148	LATIN CAPITAL LETTER N WITH CARON	LATIN SMALL LETTER N WITH CARON
014A	014B	LATIN CAPITAL LETTER ENG (SAMI)	LATIN SMALL LETTER ENG (SAMI)
014C	014D	LATIN CAPITAL LETTER O WITH MACRON	LATIN SMALL LETTER O WITH MACRON
014E	014F	LATIN CAPITAL LETTER O WITH BREVE	LATIN SMALL LETTER O WITH BREVE
0150	0151	LATIN CAPITAL LETTER O WITH DOUBLE ACUTE	LATIN SMALL LETTER O WITH DOUBLE ACUTE
0152	0153	LATIN CAPITAL LIGATURE OE	LATIN SMALL LIGATURE OE
0154	0155	LATIN CAPITAL LETTER R WITH ACUTE	LATIN SMALL LETTER R WITH ACUTE
0156	0157	LATIN CAPITAL LETTER R WITH CEDILLA	LATIN SMALL LETTER R WITH CEDILLA
0158	0159	LATIN CAPITAL LETTER R WITH CARON	LATIN SMALL LETTER R WITH CARON
015A	015B	LATIN CAPITAL LETTER S WITH ACUTE	LATIN SMALL LETTER S WITH ACUTE
015C	015D	LATIN CAPITAL LETTER S WITH CIRCUMFLEX	LATIN SMALL LETTER S WITH CIRCUMFLEX
015E	015F	LATIN CAPITAL LETTER S WITH CEDILLA	LATIN SMALL LETTER S WITH CEDILLA
0160	0161	LATIN CAPITAL LETTER S WITH CARON	LATIN SMALL LETTER S WITH CARON
0162	0163	LATIN CAPITAL LETTER T WITH CEDILLA	LATIN SMALL LETTER T WITH CEDILLA
0164	0165	LATIN CAPITAL LETTER T WITH CARON	LATIN SMALL LETTER T WITH CARON

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0166	0167	LATIN CAPITAL LETTER T WITH STROKE	LATIN SMALL LETTER T WITH STROKE
0168	0169	LATIN CAPITAL LETTER U WITH TILDE	LATIN SMALL LETTER U WITH TILDE
016A	016B	LATIN CAPITAL LETTER U WITH MACRON	LATIN SMALL LETTER U WITH MACRON
016C	016D	LATIN CAPITAL LETTER U WITH BREVE	LATIN SMALL LETTER U WITH BREVE
016E	016F	LATIN CAPITAL LETTER U WITH RING ABOVE	LATIN SMALL LETTER U WITH RING ABOVE
0170	0171	LATIN CAPITAL LETTER U WITH DOUBLE ACUTE	LATIN SMALL LETTER U WITH DOUBLE ACUTE
0172	0173	LATIN CAPITAL LETTER U WITH OGONEK	LATIN SMALL LETTER U WITH OGONEK
0174	0175	LATIN CAPITAL LETTER W WITH CIRCUMFLEX	LATIN SMALL LETTER W WITH CIRCUMFLEX
0176	0177	LATIN CAPITAL LETTER Y WITH CIRCUMFLEX	LATIN SMALL LETTER Y WITH CIRCUMFLEX
0178	00FF	LATIN CAPITAL LETTER Y WITH DIAERESIS	LATIN SMALL LETTER Y DIAERESIS
0179	017A	LATIN CAPITAL LETTER Z WITH ACUTE	LATIN SMALL LETTER Z WITH ACUTE
017B	017C	LATIN CAPITAL LETTER Z WITH DOT ABOVE	LATIN SMALL LETTER Z WITH DOT ABOVE
017D	017E	LATIN CAPITAL LETTER Z WITH CARON	LATIN SMALL LETTER Z WITH CARON
0181	0253	LATIN CAPITAL LETTER B WITH HOOK	LATIN SMALL LETTER B WITH HOOK
0182	0183	LATIN CAPITAL LETTER B WITH TOPBAR	LATIN SMALL LETTER B WITH TOPBAR
0184	0185	LATIN CAPITAL LETTER TONE SIX	LATIN SMALL LETTER TONE SIX
0186	0254	LATIN CAPITAL LETTER OPEN O	LATIN SMALL LETTER OPEN O
0187	0188	LATIN CAPITAL LETTER C WITH HOOK	LATIN SMALL LETTER C WITH HOOK
018A	0257	LATIN CAPITAL LETTER D WITH HOOK	LATIN SMALL LETTER D WITH HOOK
018B	018C	LATIN CAPITAL LETTER D WITH TOPBAR	LATIN SMALL LETTER D WITH TOPBAR
018E	0258	LATIN CAPITAL LETTER REVERSED E	LATIN SMALL LETTER REVERSED E
018F	0259	LATIN CAPITAL LETTER SCHWA	LATIN SMALL LETTER SCHWA
0190	025B	LATIN CAPITAL LETTER OPEN E	LATIN SMALL LETTER OPEN E

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0191	0192	LATIN CAPITAL LETTER F WITH HOOK	LATIN SMALL LETTER F WITH HOOK
0193	0260	LATIN CAPITAL LETTER G WITH HOOK	LATIN SMALL LETTER G WITH HOOK
0194	0263	LATIN CAPITAL LETTER GAMMA	LATIN SMALL LETTER GAMMA
0196	0269	LATIN CAPITAL LETTER IOTA	LATIN SMALL LETTER IOTA
0197	0268	LATIN CAPITAL LETTER I WITH STROKE	LATIN SMALL LETTER I WITH STROKE
0198	0199	LATIN CAPITAL LETTER K WITH HOOK	LATIN SMALL LETTER K WITH HOOK
019C	026f	LATIN CAPITAL LETTER TURNED M	LATIN SMALL LETTER TURNED M
019D	0272	LATIN CAPITAL LETTER N WITH LEFT HOOK	LATIN SMALL LETTER N WITH LEFT HOOK
019F	0275	LATIN CAPITAL LETTER O WITH MIDDLE TILDE	LATIN SMALL LETTER BARRED O
01A0	01A1	LATIN CAPITAL LETTER O WITH HORN	LATIN SMALL LETTER O WITH HORN
01A2	01A3	LATIN CAPITAL LETTER OI	LATIN SMALL LETTER OI
01A4	01A5	LATIN CAPITAL LETTER P WITH HOOK	LATIN SMALL LETTER P WITH HOOK
01A7	01A8	LATIN CAPITAL LETTER TONE TWO	LATIN SMALL LETTER TONE TWO
01A9	0283	LATIN CAPITAL LETTER ESH	LATIN SMALL LETTER ESH
01AC	01AD	LATIN CAPITAL LETTER T WITH HOOK	LATIN SMALL LETTER T WITH HOOK
01AE	0288	LATIN CAPITAL LETTER T WITH RETROFLEX HOOK	LATIN SMALL LETTER T WITH RETROFLEX HOOK
01AF	01B0	LATIN CAPITAL LETTER U WITH HORN	LATIN SMALL LETTER U WITH HORN
01B1	028A	LATIN CAPITAL LETTER UPSILON	LATIN SMALL LETTER UPSILON
01B2	028B	LATIN CAPITAL LETTER V WITH HOOK	LATIN SMALL LETTER V WITH HOOK
01B3	01B4	LATIN CAPITAL LETTER Y WITH HOOK	LATIN SMALL LETTER Y WITH HOOK
01B5	01B6	LATIN CAPITAL LETTER Z WITH STROKE	LATIN SMALL LETTER Z WITH STROKE
01B7	0292	LATIN CAPITAL LETTER EZH	LATIN SMALL LETTER EZH
01B8	01B9	LATIN CAPITAL LETTER EZH REVERSED	LATIN SMALL LETTER EZH REVERSED
01BC	01BD	LATIN CAPITAL LETTER TONE FIVE	LATIN SMALL LETTER TONE FIVE
01C4	01C6	LATIN CAPITAL LETTER DZ WITH CARON	LATIN SMALL LETTER DZ WITH CARON

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description WITH CAPITAL LETTER D CARON
01 C 5	01 C 6	LATIN SMALL LETTER DZ WITH CARON	
01 LATIN CAPITAL LETTER LJ WITH			

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
01FA	01FB	LATIN CAPITAL LETTER A WITH RING ABOVE AND ACUTE	LATIN SMALL LETTER A WITH RING ABOVE AND ACUTE
01FC	01FD	LATIN CAPITAL LIGATURE AE WITH ACUTE	LATIN SMALL LIGATURE AE WITH ACUTE
01FE	01FF	LATIN CAPITAL LETTER O WITH STROKE AND ACUTE	LATIN SMALL LETTER O WITH STROKE AND ACUTE
0200	0201	LATIN CAPITAL LETTER A WITH DOUBLE GRAVE	LATIN SMALL LETTER A WITH DOUBLE GRAVE
0202	0203	LATIN CAPITAL LETTER A WITH INVERTED BREVE	LATIN SMALL LETTER A WITH INVERTED BREVE
0204	0205	LATIN CAPITAL LETTER E WITH DOUBLE GRAVE	LATIN SMALL LETTER E WITH DOUBLE GRAVE
0206	0207	LATIN CAPITAL LETTER E WITH INVERTED BREVE	LATIN SMALL LETTER E WITH INVERTED BREVE
0208	0209	LATIN CAPITAL LETTER I WITH DOUBLE GRAVE	LATIN SMALL LETTER I WITH DOUBLE GRAVE
020A	020B	LATIN CAPITAL LETTER I WITH INVERTED BREVE	LATIN SMALL LETTER I WITH INVERTED BREVE
020C	020D	LATIN CAPITAL LETTER O WITH DOUBLE GRAVE	LATIN SMALL LETTER O WITH DOUBLE GRAVE
020E	020F	LATIN CAPITAL LETTER O WITH INVERTED BREVE	LATIN SMALL LETTER O WITH INVERTED BREVE
0210	0211	LATIN CAPITAL LETTER R WITH DOUBLE GRAVE	LATIN SMALL LETTER R WITH DOUBLE GRAVE
0212	0213	LATIN CAPITAL LETTER R WITH INVERTED BREVE	LATIN SMALL LETTER R WITH INVERTED BREVE
0214	0215	LATIN CAPITAL LETTER U WITH DOUBLE GRAVE	LATIN SMALL LETTER U WITH DOUBLE GRAVE
0216	0217	LATIN CAPITAL LETTER U WITH INVERTED BREVE	LATIN SMALL LETTER U WITH INVERTED BREVE
0386	03AC	GREEK CAPITAL LETTER ALPHA WITH TONOS	GREEK SMALL LETTER ALPHA WITH TONOS
0388	03AD	GREEK CAPITAL LETTER EPSILON WITH TONOS	GREEK SMALL LETTER EPSILON WITH TONOS
0389	03AE	GREEK CAPITAL LETTER ETA WITH TONOS	GREEK SMALL LETTER ETA WITH TONOS
038A	03AF	GREEK CAPITAL LETTER IOTA WITH TONOS	GREEK SMALL LETTER IOTA WITH TONOS
038C	03CC	GREEK CAPITAL LETTER OMICRON WITH TONOS	GREEK SMALL LETTER OMICRON WITH TONOS
038E	03CD	GREEK CAPITAL LETTER UPSILON WITH TONOS	GREEK SMALL LETTER UPSILON WITH TONOS
038F	03CE	GREEK CAPITAL LETTER OMEGA WITH TONOS	GREEK SMALL LETTER OMEGA WITH TONOS
0391	03B1	GREEK CAPITAL LETTER ALPHA	GREEK SMALL LETTER ALPHA
0392	03B2	GREEK CAPITAL LETTER BETA	GREEK SMALL LETTER BETA

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0393	03B3	GREEK CAPITAL LETTER GAMMA	GREEK SMALL LETTER GAMMA
0394	03B4	GREEK CAPITAL LETTER DELTA	GREEK SMALL LETTER DELTA
0395	03B5	GREEK CAPITAL LETTER EPSILON	GREEK SMALL LETTER EPSILON
0396	03B6	GREEK CAPITAL LETTER ZETA	GREEK SMALL LETTER ZETA
0397	03B7	GREEK CAPITAL LETTER ETA	GREEK SMALL LETTER ETA
0398	03B8	GREEK CAPITAL LETTER THETA	GREEK SMALL LETTER THETA
0399	03B9	GREEK CAPITAL LETTER IOTA	GREEK SMALL LETTER IOTA
039A	03BA	GREEK CAPITAL LETTER KAPPA	GREEK SMALL LETTER KAPPA
039B	03BB	GREEK CAPITAL LETTER LAMDA	GREEK SMALL LETTER LAMDA
039C	03BC	GREEK CAPITAL LETTER MU	GREEK SMALL LETTER MU
039D	03BD	GREEK CAPITAL LETTER NU	GREEK SMALL LETTER NU
039E	03BE	GREEK CAPITAL LETTER XI	GREEK SMALL LETTER XI
039F	03BF	GREEK CAPITAL LETTER OMICRON	GREEK SMALL LETTER OMICRON
03A0	03C0	GREEK CAPITAL LETTER PI	GREEK SMALL LETTER PI
03A1	03C1	GREEK CAPITAL LETTER RHO	GREEK SMALL LETTER RHO
03A3	03C3	GREEK CAPITAL LETTER SIGMA	GREEK SMALL LETTER SIGMA
03A4	03C4	GREEK CAPITAL LETTER TAU	GREEK SMALL LETTER TAU
03A5	03C5	GREEK CAPITAL LETTER UPSILON	GREEK SMALL LETTER UPSILON
03A6	03C6	GREEK CAPITAL LETTER PHI	GREEK SMALL LETTER PHI
03A7	03C7	GREEK CAPITAL LETTER CHI	GREEK SMALL LETTER CHI
03A8	03C8	GREEK CAPITAL LETTER PSI	GREEK SMALL LETTER PSI
03A9	03C9	GREEK CAPITAL LETTER OMEGA	GREEK SMALL LETTER OMEGA
03AA	03CA	GREEK CAPITAL LETTER IOTA WITH DIALYTIKA	GREEK SMALL LETTER IOTA WITH DIALYTIKA
03AB	03CB	GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA	GREEK SMALL LETTER UPSILON WITH DIALYTIKA
03E2	03E3	COPTIC CAPITAL LETTER SHEI	COPTIC SMALL LETTER SHEI
03E4	03E5	COPTIC CAPITAL LETTER FEI	COPTIC SMALL LETTER FEI
03E6	03E7	COPTIC CAPITAL LETTER KHEI	COPTIC SMALL LETTER KHEI
03E8	03E9	COPTIC CAPITAL LETTER HORI	COPTIC SMALL LETTER HORI
03EA	03EB	COPTIC CAPITAL LETTER GANGIA	COPTIC SMALL LETTER GANGIA
03EC	03ED	COPTIC CAPITAL LETTER SHIMA	COPTIC SMALL LETTER SHIMA

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
03EE	03EF	COPTIC CAPITAL LETTER DEI	COPTIC SMALL LETTER DEI
0401	0451	CYRILLIC CAPITAL LETTER IO	CYRILLIC SMALL LETTER IO
0402	0452	CYRILLIC CAPITAL LETTER DJE (SERBOCROATIAN)	CYRILLIC SMALL LETTER DJE (SERBOCROATIAN)
0403	0453	CYRILLIC CAPITAL LETTER GJE	CYRILLIC SMALL LETTER GJE
0404	0454	CYRILLIC CAPITAL LETTER UKRAINIAN IE	CYRILLIC SMALL LETTER UKRAINIAN IE
0405	0455	CYRILLIC CAPITAL LETTER DZE	CYRILLIC SMALL LETTER DZE
0406	0456	CYRILLIC CAPITAL LETTER BYELORUSSIAN_UKRAINIAN I	CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
0407	0457	CYRILLIC CAPITAL LETTER YI (UKRANIAN)	CYRILLIC SMALL LETTER YI (UKRANIAN)
0408	0458	CYRILLIC CAPITAL LETTER JE	CYRILLIC SMALL LETTER JE
0409	0459	CYRILLIC CAPITAL LETTER LJE	CYRILLIC SMALL LETTER LJE
040A	045A	CYRILLIC CAPITAL LETTER NJE	CYRILLIC SMALL LETTER NJE
040B	045B	CYRILLIC CAPITAL LETTER TSHE (SERBOCROATIAN)	CYRILLIC SMALL LETTER TSHE (SERBOCROATIAN)
040C	045C	CYRILLIC CAPITAL LETTER KJE	CYRILLIC SMALL LETTER KJE
040E	045E	CYRILLIC CAPITAL LETTER SHORT U (BYELORUSSIAN)	CYRILLIC SMALL LETTER SHORT U (BYELORUSSIAN)
040F	045F	CYRILLIC CAPITAL LETTER DZHE	CYRILLIC SMALL LETTER DZHE
0410	0430	CYRILLIC CAPITAL LETTER A	CYRILLIC SMALL LETTER A
0411	0431	CYRILLIC CAPITAL LETTER BE	CYRILLIC SMALL LETTER BE
0412	0432	CYRILLIC CAPITAL LETTER VE	CYRILLIC SMALL LETTER VE
0413	0433	CYRILLIC CAPITAL LETTER GHE	CYRILLIC SMALL LETTER GHE
0414	0434	CYRILLIC CAPITAL LETTER DE	CYRILLIC SMALL LETTER DE
0415	0435	CYRILLIC CAPITAL LETTER IE	CYRILLIC SMALL LETTER IE
0416	0436	CYRILLIC CAPITAL LETTER ZHE	CYRILLIC SMALL LETTER ZHE
0417	0437	CYRILLIC CAPITAL LETTER ZE	CYRILLIC SMALL LETTER ZE
0418	0438	CYRILLIC CAPITAL LETTER I	CYRILLIC SMALL LETTER I
0419	0439	CYRILLIC CAPITAL LETTER SHORT I	CYRILLIC SMALL LETTER SHORT I
041A	043A	CYRILLIC CAPITAL LETTER KA	CYRILLIC SMALL LETTER KA
041B	043B	CYRILLIC CAPITAL LETTER EL	CYRILLIC SMALL LETTER EL
041C	043C	CYRILLIC CAPITAL LETTER EM	CYRILLIC SMALL LETTER EM
041D	043D	CYRILLIC CAPITAL LETTER EN	CYRILLIC SMALL LETTER EN
041E	043E	CYRILLIC CAPITAL LETTER O	CYRILLIC SMALL LETTER O
041F	043F	CYRILLIC CAPITAL LETTER PE	CYRILLIC SMALL LETTER PE

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0420	0440	CYRILLIC CAPITAL LETTER ER	CYRILLIC SMALL LETTER ER
0421	0441	CYRILLIC CAPITAL LETTER ES	CYRILLIC SMALL LETTER ES
0422	0442	CYRILLIC CAPITAL LETTER TE	CYRILLIC SMALL LETTER TE
0423	0443	CYRILLIC CAPITAL LETTER U	CYRILLIC SMALL LETTER U
0424	0444	CYRILLIC CAPITAL LETTER EF	CYRILLIC SMALL LETTER EF
0425	0445	CYRILLIC CAPITAL LETTER HA	CYRILLIC SMALL LETTER HA
0426	0446	CYRILLIC CAPITAL LETTER TSE	CYRILLIC SMALL LETTER TSE
0427	0447	CYRILLIC CAPITAL LETTER CHE	CYRILLIC SMALL LETTER CHE
0428	0448	CYRILLIC CAPITAL LETTER SHA	CYRILLIC SMALL LETTER SHA
0429	0449	CYRILLIC CAPITAL LETTER SHCHA	CYRILLIC SMALL LETTER SHCHA
042A	044A	CYRILLIC CAPITAL LETTER HARD SIGN	CYRILLIC SMALL LETTER HARD SIGN
042B	044B	CYRILLIC CAPITAL LETTER YERU	CYRILLIC SMALL LETTER YERU
042C	044C	CYRILLIC CAPITAL LETTER SOFT SIGN	CYRILLIC SMALL LETTER SOFT SIGN
042D	044D	CYRILLIC CAPITAL LETTER E	CYRILLIC SMALL LETTER E
042E	044E	CYRILLIC CAPITAL LETTER YU	CYRILLIC SMALL LETTER YU
042F	044F	CYRILLIC CAPITAL LETTER YA	CYRILLIC SMALL LETTER YA
0460	0461	CYRILLIC CAPITAL LETTER OMEGA	CYRILLIC SMALL LETTER OMEGA
0462	0463	CYRILLIC CAPITAL LETTER YAT	CYRILLIC SMALL LETTER YAT
0464	0465	CYRILLIC CAPITAL LETTER IOTIFIED E	CYRILLIC SMALL LETTER IOTIFIED E
0466	0467	CYRILLIC CAPITAL LETTER LITTLE YUS	CYRILLIC SMALL LETTER LITTLE YUS
0468	0469	CYRILLIC CAPITAL LETTER IOTIFIED LITTLE YUS	CYRILLIC SMALL LETTER IOTFIED LITTLE YUS
046A	046B	CYRILLIC CAPITAL LETTER BIG YUS	CYRILLIC SMALL LETTER BIG YUS
046C	046D	CYRILLIC CAPITAL LETTER IOTIFIED BIG YUS	CYRILLIC SMALL LETTER IOTIFIED BIG YUS
046E	046F	CYRILLIC CAPITAL LETTER KSI	CYRILLIC SMALL LETTER KSI
0470	0471	CYRILLIC CAPITAL LETTER PSI	CYRILLIC SMALL LETTER PSI
0472	0473	CYRILLIC CAPITAL LETTER FITA	CYRILLIC SMALL LETTER FITA
0474	0475	CYRILLIC CAPITAL LETTER IZHITSA	CYRILLIC SMALL LETTER IZHITSA
0476	0477	CYRILLIC CAPITAL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT	CYRILLIC SMALL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0478	0479	CYRILLIC CAPITAL LETTER UK	CYRILLIC SMALL LETTER UK
047A	047B	CYRILLIC CAPITAL LETTER ROUND OMEGA	CYRILLIC SMALL LETTER ROUND OMEGA
047C	047D	CYRILLIC CAPITAL LETTER OMEGA WITH TITLO	CYRILLIC SMALL LETTER OMEGA WITH TITLO
047E	047F	CYRILLIC CAPITAL LETTER OT	CYRILLIC SMALL LETTER OT
0480	0481	CYRILLIC CAPITAL LETTER KOPPA	CYRILLIC SMALL LETTER KOPPA
0490	0491	CYRILLIC CAPITAL LETTER GHE WITH UPTURN	CYRILLIC SMALL LETTER GHE WITH UPTURN
0492	0493	CYRILLIC CAPITAL LETTER GHE WITH STROKE	CYRILLIC SMALL LETTER GHE WITH STROKE
0494	0495	CYRILLIC CAPITAL LETTER GHE WITH MIDDLE HOOK	CYRILLIC SMALL LETTER GHE WITH MIDDLE HOOK
0496	0497	CYRILLIC CAPITAL LETTER ZHE WITH DESCENDER	CYRILLIC SMALL LETTER ZHE WITH DESCENDER
0498	0499	CYRILLIC CAPITAL LETTER ZE WITH DESCENDER	CYRILLIC SMALL LETTER ZE WITH DESCENDER
049A	049B	CYRILLIC CAPITAL LETTER KA WITH DESCENDER	CYRILLIC SMALL LETTER KA WITH DESCENDER
049C	049D	CYRILLIC CAPITAL LETTER KA WITH VERTICAL STROKE	CYRILLIC SMALL LETTER KA WITH VERTICAL STROKE
049E	049F	CYRILLIC CAPITAL LETTER KA WITH STROKE	CYRILLIC SMALL LETTER KA WITH STROKE
04A0	04A1	CYRILLIC CAPITAL LETTER BASHKIR KA	CYRILLIC SMALL LETTER EASHKIR KA
04A2	04A3	CYRILLIC CAPITAL LETTER EN WITH DESCENDER	CYRILLIC SMALL LETTER EN WITH DESCENDER
04A4	04A5	CYRILLIC CAPITAL LIGATURE EN GHF	CYRILLIC SMALL LIGATURE EN GHE
04A6	04A7	CYRILLIC CAPITAL LETTER PE WITH MIDDLE HOOK (ABKHASIAN)	CYRILLIC SMALL LETTER PE WITH MIDDLE HOOK (ABKHASIAN)
04A8	04A9	CYRILLIC CAPITAL LETTER ABKHASIAN HA	CYRILLIC SMALL LETTER ABKHASIAN HA
04AA	04AB	CYRILLIC CAPITAL LETTER ES WITH DESCENDER	CYRILLIC SMALL LETTER ES WITH DESCENDER
04AC	04AD	CYRILLIC CAPITAL LETTER TE WITH DESCENDER	CYRILLIC SMALL LETTER TE WITH DESCENDER
04AE	04AF	CYRILLIC CAPITAL LETTER STRAIGHT U	CYRILLIC SMALL LETTER STRAIGHT U
04B0	04B1	CYRILLIC CAPITAL LETTER STRAIGHT U WITH STROKE	CYRILLIC SMALL LETTER STRAIGHT U WITH STROKE
04B2	04B3	CYRILLIC CAPITAL LETTER HA WITH DESCENDER	CYRILLIC SMALL LETTER HA WITH DESCENDER
04B4	04B5	CYRILLIC CAPITAL LIGATURE TE TSE (ABKHASIAN)	CYRILLIC SMALL LIGATURE TE TSE (ABKHASIAN)

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
04B6	04B7	CYRILLIC CAPITAL LETTER CHE WITH DESCENDER	CYRILLIC SMALL LETTER CHE WITH DESCENDER
04B8	04B9	CYRILLIC CAPITAL LETTER CHE WITH VERTICAL STROKE	CYRILLIC SMALL LETTER CHE WITH VERTICAL STROKE
04BA	04BB	CYRILLIC CAPITAL LETTER SHHA	CYRILLIC SMALL LETTER SHHA
04BC	04BD	CYRILLIC CAPITAL LETTER ABKHASIAN CHE	CYRILLIC SMALL LETTER ABKHASIAN CHE
04BE	04BF	CYRILLIC CAPITAL LETTER ABKHASIAN CHE WITH DESCENDER	CYRILLIC SMALL LETTER ABKHASIAN CHE WITH DESCENDER
04C1	04C2	CYRILLIC CAPITAL LETTER ZHE WITH BREVE	CYRILLIC SMALL LETTER ZHE WITH BREVE
04C3	04C4	CYRILLIC CAPITAL LETTER KA WITH HOOK	CYRILLIC SMALL LETTER KA WITH HOOK
04C7	04C8	CYRILLIC CAPITAL LETTER EN WITH HOOK	CYRILLIC SMALL LETTER EN WITH HOOK
04CB	04CC	CYRILLIC CAPITAL LETTER KHAKASSIAN CHE	CYRILLIC SMALL LETTER KHAKASSIAN CHE
04D0	04D1	CYRILLIC CAPITAL LETTER A WITH BREVE	CYRILLIC SMALL LETTER A WITH BREVE
04D2	04D3	CYRILLIC CAPITAL LETTER A WITH DIAERESIS	CYRILLIC SMALL LETTER A WITH DIAERESIS
04D4	04D5	CYRILLIC CAPITAL LIGATURE A IE	CYRILLIC SMALL LIGATURE A IE
04D6	04D7	CYRILLIC CAPITAL LETTER IE WITH BREVE	CYRILLIC SMALL LETTER IE WITH BREVE
04D8	04D9	CYRILLIC CAPITAL LETTER SCHWA	CYRILLIC SMALL LETTER SCHWA
04DA	04DB	CYRILLIC CAPITAL LETTER SCHWA WITH DIAERESIS	CYRILLIC SMALL LETTER SCHWA WITH DIAERESIS
04DC	04DD	CYRILLIC CAPITAL LETTER ZHE WITH DIAERESIS	CYRILLIC SMALL LETTER ZHE WITH DIAERESIS
04DE	04DF	CYRILLIC CAPITAL LETTER ZE WITH DIAERESIS	CYRILLIC SMALL LETTER ZE WITH DIAERESIS
04E0	04E1	CYRILLIC CAPITAL LETTER ABKHASIAN DZE	CYRILLIC SMALL LETTER ABKHASIAN DZE
04E2	04E3	CYRILLIC CAPITAL LETTER I WITH MACRON	CYRILLIC SMALL LETTER I WITH MACRON
04E4	04E5	CYRILLIC CAPITAL LETTER I WITH DIAERESIS	CYRILLIC SMALL LETTER I WITH DIAERESIS
04E6	04E7	CYRILLIC CAPITAL LETTER O WITH DIAERESIS	CYRILLIC SMALL LETTER O WITH DIAERESIS
04E8	04E9	CYRILLIC CAPITAL LETTER BARRED O	CYRILLIC SMALL LETTER BARRED O
04EA	04EB	CYRILLIC CAPITAL LETTER BARRED O WITH DIAERESIS	CYRILLIC SMALL LETTER BARRED 0 WITH DIAERESIS

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
04EE	04EF	CYRILLIC CAPITAL LETTER U WITH MACRON	CYRILLIC SMALL LETTER U WITH MACRON
04F0	04F1	CYRILLIC CAPITAL LETTER U WITH DIAERESIS	CYRILLIC SMALL LETTER U WITH DIAERESIS
04F2	04F3	CYRILLIC CAPITAL LETTER U WITH DOUBLE ACUTE	CYRILLIC SMALL LETTER U WITH DOUBLE ACUTE
04F4	04F5	CYRILLIC CAPITAL LETTER CHE WITH DIAERESIS	CYRILLIC SMALL LETTER CHE WITH DIAERESIS
04F8	04F9	CYRILLIC CAPITAL LETTER YERU WITH DIAERESIS	CYRILLIC SMALL LETTER YERU WITH DIAERESIS
0531	0561	ARMENIAN CAPITAL LETTER AYB	ARMENIAN SMALL LETTER AYB
0532	0562	ARMENIAN CAPITAL LETTER BEN	ARMENIAN SMALL LETTER BEN
0533	0563	ARMENIAN CAPITAL LETTER GIM	ARMENIAN SMALL LETTER GIM
0534	0564	ARMENIAN CAPITAL LETTER DA	ARMENIAN SMALL LETTER DA
0535	0565	ARMENIAN CAPITAL LETTER ECH	ARMENIAN SMALL LETTER ECH
0536	0566	ARMENIAN CAPITAL LETTER ZA	ARMENIAN SMALL LETTER ZA
0537	0567	ARMENIAN CAPITAL LETTER EH	ARMENIAN SMALL LETTER EH
0538	0568	ARMENIAN CAPITAL LETTER ET	ARMENIAN SMALL LETTER ET
0539	0569	ARMENIAN CAPITAL LETTER TO	ARMENIAN SMALL LETTER TO
053A	056A	ARMENIAN CAPITAL LETTER ZHE	ARMENIAN SMALL LETTER ZHE
053B	056B	ARMENIAN CAPITAL LETTER INI	ARMENIAN SMALL LETTER INI
053C	056C	ARMENIAN CAPITAL LETTER LIWN	ARMENIAN SMALL LETTER LIWN
053D	056D	ARMENIAN CAPITAL LETTER XEH	ARMENIAN SMALL LETTER XEH
053E	056E	ARMENIAN CAPITAL LETTER CA	ARMENIAN SMALL LETTER CA
053F	056F	ARMENIAN CAPITAL LETTER KEN	ARMENIAN SMALL LETTER KEN
0540	0570	ARMENIAN CAPITAL LETTER HO	ARMENIAN SMALL LETTER HO
0541	0571	ARMENIAN CAPITAL LETTER JA	ARMENIAN SMALL LETTER JA
0542	0572	ARMENIAN CAPITAL LETTER GHAD	ARMENIAN SMALL LETTER GHAD

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
0543	0573	ARMENIAN CAPITAL LETTER CHEH	ARMENIAN SMALL LETTER CHEH
0544	0574	ARMENIAN CAPITAL LETTER MEN	ARMENIAN SMALL LETTER MEN
0545	0575	ARMENIAN CAPITAL LETTER YI	ARMENIAN SMALL LETTER YI
0546	0576	ARMENIAN CAPITAL LETTER NOW	ARMENIAN SMALL LETTER NOW
0547	0577	ARMENIAN CAPITAL LETTER SHA	ARMENIAN SMALL LETTER SNA
0548	0578	ARMENIAN CAPITAL LETTER VO	ARMENIAN SMALL LETTER VO
0549	0579	ARMENIAN CAPITAL LETTER CHA	ARMENIAN SMALL LETTER CHA
054A	057A	ARMENIAN CAPITAL LETTER PEH	ARMENIAN SMALL LETTER PEH
054B	057B	ARMENIAN CAPITAL LETTER JHEH	ARMENIAN SMALL LETTER JHEH
054C	057C	ARMENIAN CAPITAL LETTER RA	ARMENIAN SMALL LETTER RA
054D	057D	ARMENIAN CAPITAL LETTER SEH	ARMENIAN SMALL LETTER SEH
054E	057E	ARMENIAN CAPITAL LETTER VEW	ARMENIAN SMALL LETTER VEW
054F	057F	ARMENIAN CAPITAL LETTER TIWN	ARMENIAN SMALL LETTER TIWN
0550	0580	ARMENIAN CAPITAL LETTER REH	ARMENIAN SMALL LETTER REH
0551	0581	ARMENIAN CAPITAL LETTER CO	ARMENIAN SMALL LETTER CO
0552	0582	ARMENIAN CAPITAL LETTER YIWN	ARMENIAN SMALL LETTER YIWN
0553	0583	ARMENIAN CAPITAL LETTER PIWR	ARMENIAN SMALL LETTER PIWP
0554	0584	ARMENIAN CAPITAL LETTER KEH	ARMENIAN SMALL LETTER KEH
0555	0585	ARMENIAN CAPITAL LETTER OH	ARMENIAN SMALL LETTER OH
0556	0586	ARMENIAN CAPITAL LETTER FEH	ARMENIAN SMALL LETTER FEH
10A0	10D0	GEORGIAN CAPITAL LETTER AN (KHUTSURI)	GEORGIAN LETTER AN
10A1	10D1	GEORGIAN CAPITAL LETTER BAN (KHUTSURI)	GEORGIAN LETTER BAN
10A2	10D2	GEORGIAN CAPITAL LETTER GAN (KHUTSURI)	GEORGIAN LETTER GAN
10A3	10D3	GEORGIAN CAPITAL LETTER DON (KHUTSURI)	GEORGIAN LETTER DON

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
10A4	10D4	GEORGIAN CAPITAL LETTER EN (KHUTSURI)	GEORGIAN LETTER EN
10A5	10D5	GEORGIAN CAPITAL LETTER VIN (KHUTSURI)	GEORGIAN LETTER VIN
10A6	10D6	GEORGIAN CAPITAL LETTER ZEN (KHUTSURI)	GEORGIAN LETTER ZEN
10A7	10D7	GEORGIAN CAPITAL LETTER TAN (KHUTSURI)	GEORGIAN LETTER TAN
10A8	10D8	GEORGIAN CAPITAL LETTER IN (KHUTSURI)	GEORGIAN LETTER IN
10A9	10D9	GEORGIAN CAPITAL LETTER KAN (KHUTSURI)	GEORGIAN LETTER KAN
10AA	10DA	GEORGIAN CAPITAL LETTER LAS (KHUTSURI)	GEORGIAN LETTER LAS
10AB	10DB	GEORGIAN CAPITAL LETTER MAN (KHUTSURI)	GEORGIAN LETTER MAN
10AC	10DC	GEORGIAN CAPITAL LETTER NAR (KHUTSURI)	GEORGIAN LETTER NAR
10AD	10DD	GEORGIAN CAPITAL LETTER ON (KHUTSURI)	GEORGIAN LETTER ON
10AE	10DE	GEORGIAN CAPITAL LETTER PAR (KHUTSURI)	GEORGIAN LETTER PAR
10AF	10DF	GEORGIAN CAPITAL LETTER ZHAR (KHUTSURI)	GEORGIAN LETTER ZHAR
10B0	10E0	GEORGIAN CAPITAL LETTER RAE (KHUTSURI)	GEORGIAN LETTER RAE
10B1	10E1	GEORGIAN CAPITAL LETTER SAN (KHUTSURI)	GEORGIAN LETTER SAN
10B2	10E2	GEORGIAN CAPITAL LETTER TAR (KHUTSURI)	GEORGIAN LETTER TAR
10B3	10E3	GEORGIAN CAPITAL LETTER UN (KHUTSURI)	GEORGIAN LETTER UN
10B4	10E4	GEORGIAN CAPITAL LETTER PHAR (KHUTSURI)	GEORGIAN LETTER PHAR
10B5	10E5	GEORGIAN CAPITAL LETTER KHAR (KHUTSURI)	GEORGIAN LETTER KHAR
10B6	10E6	GEORGIAN CAPITAL LETTER GHAN (KHUTSURI)	GEORGIAN LETTER GHAN
10B7	10E7	GEORGIAN CAPITAL LETTER QAR (KHUTSURI)	GEORGIAN LETTER QAR
10B8	10E8	GEORGIAN CAPITAL LETTER SHIN (KHUTSURI)	GEORGIAN LETTER SHIN
10B9	10E9	GEORGIAN CAPITAL LETTER CHIN (KHUTSURI)	GEORGIAN LETTER CHIN
10BA	10EA	GEORGIAN CAPITAL LETTER CAN (KHUTSURI)	GEORGIAN LETTER CAN

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
10BB	10EB	GEORGIAN CAPITAL LETTER JIL (KHUTSURI)	GEORGIAN LETTER JIL
10BC	10EC	GEORGIAN CAPITAL LETTER CIL (KHUTSURI)	GEORGIAN LETTER CIL
10BD	10ED	GEORGIAN CAPITAL LETTER CHAR (KHUTSURI)	GEORGIAN LETTER CHAR
10BE	10EE	GEORGIAN CAPITAL LETTER XAN (KHUTSURI)	GEORGIAN LETTER XAN
10BF	10EF	GEORGIAN CAPITAL LETTER JHAN (KHUTSURI)	GEORGIAN LETTER JHAN
10C0	10F0	GEORGIAN CAPITAL LETTER HAE (KHUTSURI)	GEORGIAN LETTER HAE
10C1	10F1	GEORGIAN CAPITAL LETTER HE (KHUTSURI)	GEORGIAN LETTER HE
10C2	10F2	GEORGIAN CAPITAL LETTER HIE (KHUTSURI)	GEORGIAN LETTER HIE
10C3	10F3	GEORGIAN CAPITAL LETTER WE (KHUTSURI)	GEORGIAN LETTER WE
10C4	10F4	GEORGIAN CAPITAL LETTER HAR (KHUTSURI)	GEORGIAN LETTER HAR
10C5	10F5	GEORGIAN CAPITAL LETTER HOE (KHUTSURI)	GEORGIAN LETTER HOE
1E00	1E01	LATIN CAPITAL LETTER A WITH RING BELOW	LATIN SMALL LETTER A WITH RING BELOW
1E02	1E03	LATIN CAPITAL LETTER B WITH DOT ABOVE	LATIN SMALL LETTER B WITH DOT ABOVE
1E04	1E05	LATIN CAPITAL LETTER B WITH DOT BELOW	LATIN SMALL LETTER B WITH DOT BELOW
1E06	1E07	LATIN CAPITAL LETTER B WITH LINE BELOW	LATIN SMALL LETTER B WITH LINE BELOW
1E08	1E09	LATIN CAPITAL LETTER C WITH CEDILLA AND ACUTE	LATIN SMALL LETTER C WITH CEDILLA AND ACUTE
1E0A	1E0B	LATIN CAPITAL LETTER D WITH DOT ABOVE	LATIN SMALL LETTER D WITH DOT ABOVE
1E0C	1E0D	LATIN CAPITAL LETTER D WITH DOT BELOW	LATIN SMALL LETTER D WITH DOT BELOW
1E0E	1E0F	LATIN CAPITAL LETTER D WITH LINE BELOW	LATIN SMALL LETTER D WITH LINE BELOW
1E10	1E11	LATIN CAPITAL LETTER D WITH CEDILLA	LATIN SMALL LETTER D WITH CEDILLA
1E12	1E13	LATIN CAPITAL LETTER D WITH CIRCUMFLEX BELOW	LATIN SMALL LETTER D WITH CIRCUMFLEX BELOW
1E14	1E15	LATIN CAPITAL LETTER E WITH MACRON AND GRAVE	LATIN SMALL LETTER E WITH MACRON AND GRAVE
1E16	1E17	LATIN CAPITAL LETTER E WITH MACRON AND ACUTE	LATIN SMALL LETTER E WITH MACRON AND ACUTE

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
1E18	1E19	LATIN CAPITAL LETTER E WITH CIRCUMFLEX BELOW	LATIN SMALL LETTER E WITH CIRCUMFLEX BELOW
1E1A	1E1B	LATIN CAPITAL LETTER E WITH TILDE BELOW	LATIN SMALL LETTER E WITH TILDE BELOW
1E1C	1E1D	LATIN CAPITAL LETTER E WITH CEDILLA AND BREVE	LATIN SMALL LETTER E WITH CEDILLA AND BREVE
1E1E	1E1F	LATIN CAPITAL LETTER F WITH DOT ABOVE	LATIN SMALL LETTER F WITH DOT ABOVE
1E20	1E21	LATIN CAPITAL LETTER G WITH MACRON	LATIN SMALL LETTER G WITH MACRON
1 E 22	1 E 23	LATIN CAPITAL LETTER H WITH DOT ABOVE	LATIN SMALL LETTER H WITH DOT ABOVE
1E24	1E25	LATIN CAPITAL LETTER H WITH DOT BELOW	LATIN SMALL LETTER H WITH DOT BELOW
1E26	1E27	LATIN CAPITAL LETTER H WITH DIAERESIS	LATIN SMALL LETTER H WITH DIAERESIS
1E28	1E29	LATIN CAPITAL LETTER H WITH CEDILLA	LATIN SMALL LETTER H WITH CEDILLA
1E2A	1E2B	LATIN CAPITAL LETTER H WITH BREVE BELOW	LATIN SMALL LETTER H WITH BREVE BELOW
1E2C	1E2D	LATIN CAPITAL LETTER I WITH TILDE BELOW	LATIN SMALL LETTER I WITH TILDE BELOW
1E2E	1E2F	LATIN CAPITAL LETTER I WITH DIAERESIS AND ACUTE	LATIN SMALL LETTER I WITH DIAERESIS AND ACUTE
1E30	1E31	LATIN CAPITAL LETTER K WITH ACUTE	LATIN SMALL LETTER K WITH ACUTE
1 E32	1E33	LATIN CAPITAL LETTER K WITH DOT BELOW	LATIN SMALL LETTER K WITH DOT BELOW
1E34	1E35	LATIN CAPITAL LETTER K WITH LINE BELOW	LATIN SMALL LETTER K WITH LINE BELOW
1 E36	1E37	LATIN CAPITAL LETTER L WITH DOT BELOW	LATIN SMALL LETTER L WITH DOT BELOW
1 E38	1E39	LATIN CAPITAL LETTER L WITH DOT BELOW AND MACRON	LATIN SMALL LETTER L WITH DOT BELOW AND MACRON
1E3A	1E3B	LATIN CAPITAL LETTER L WITH LINE BELOW	LATIN SMALL LETTER L WITH LINE BELOW
1E3C	1E3D	LATIN CAPITAL LETTER L WITH CIRCUMFLEX BELOW	LATIN SMALL LETTER L WITH CIRCUMFLEX BELOW
1E3E	1E3F	LATIN CAPITAL LETTER M WITH ACUTE	LATIN SMALL LETTER M WITH ACUTE
1E40	1E41	LATIN CAPITAL LETTER M WITH DOT ABOVE	LATIN SMALL LETTER M WITH DOT ABOVE
1E42	1E43	LATIN CAPITAL LETTER M WITH DOT BELOW	LATIN SMALL LETTER M WITH DOT BELOW
1 E 44	1E45	LATIN CAPITAL LETTER N WITH DOT ABOVE	LATIN SMALL LETTER N WITH DOT ABOVE

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
1E46	1E47	LATIN CAPITAL LETTER N WITH DOT BELOW	LATIN SMALL LETTER N WITH DOT BELOW
1 E 48	1E49	LATIN CAPITAL LETTER N WITH LINE BELOW	LATIN SMALL LETTER N WITH LINE BELOW
1E4A	1E4B	LATIN CAPITAL LETTER N WITH CIRCUMFLEX BELOW	LATIN SMALL LETTER N WITH CIRCUMFLEX BELOW
1E4C	1E4D	LATIN CAPITAL LETTER O WITH TILDE AND ACUTE	LATIN SMALL LETTER O WITH TILDE AND ACUTE
1E4E	1E4F	LATIN CAPITAL LETTER O WITH TILDE AND DIAERESIS	LATIN SMALL LETTER O WITH TILDE AND DIAERESIS
1 E 50	1E51	LATIN CAPITAL LETTER O WITH MACRON AND GRAVE	LATIN SMALL LETTER O WITH MACRON AND GRAVE
1 E 52	1E53	LATIN CAPITAL LETTER O WITH MACRON AND ACUTE	LATIN SMALL LETTER O WITH MACRON AND ACUTE
1 E 54	1E55	LATIN CAPITAL LETTER P WITH ACUTE	LATIN SMALL LETTER P WITH ACUTE
1 E 56	1E57	LATIN CAPITAL LETTER P WITH DOT ABOVE	LATIN SMALL LETTER P WITH DOT ABOVE
1 E 58	1E59	LATIN CAPITAL LETTER R WITH DOT ABOVE	LATIN SMALL LETTER R WITH DOT ABOVE
1E5A	1E5B	LATIN CAPITAL LETTER R WITH DOT BELOW	LATIN SMALL LETTER R WITH DOT BELOW
1E5C	1E5D	LATIN CAPITAL LETTER R WITH DOT BELOW AND MACRON	LATIN SMALL LETTER R WITH DOT BELOW AND MACRON
1E5E	1E5F	LATIN CAPITAL LETTER R WITH LINE BELOW	LATIN SMALL LETTER R WITH LINE BELOW
1 E 60	1E61	LATIN CAPITAL LETTER S WITH DOT ABOVE	LATIN SMALL LETTER S WITH DOT ABOVE
1 E 62	1E63	LATIN CAPITAL LETTER S WITH DOT BELOW	LATIN SMALL LETTER S WITH DOT BELOW
1E64	1E65	LATIN CAPITAL LETTER S WITH ACUTE AND DOT ABOVE	LATIN SMALL LETTER S WITH ACUTE AND DOT ABOVE
1 E66	1 E67	LATIN CAPITAL LETTER S WITH CARON AND DOT ABOVE	LATIN SMALL LETTER S WITH CARON AND DOT ABOVE
1 E68	1E69	LATIN CAPITAL LETTER S WITH DOT BELOW AND DOT ABOVE	LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE
1E6A	1E6B	LATIN CAPITAL LETTER T WITH DOT ABOVE	LATIN SMALL LETTER T WITH DOT ABOVE
1E6C	1E6D	LATIN CAPITAL LETTER T WITH DOT BELOW	LATIN SMALL LETTER T WITH DOT BELOW
1E6E	1E6F	LATIN CAPITAL LETTER T WITH LINE BELOW	LATIN SMALL LETTER T WITH LINE BELOW
1 E70	1E71	LATIN CAPITAL LETTER T WITH CIRCUMFLEX BELOW	LATIN SMALL LETTER T WITH CIRCUMFLEX BELOW
1 E 72	1E73	LATIN CAPITAL LETTER U WITH DIAERESIS BELOW	LATIN SMALL LETTER U WITH DIAERESIS BELOW

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
1E74	1E75	LATIN CAPITAL LETTER U WITH TILDE BELOW	LATIN SMALL LETTER U WITH TILDE BELOW
1 E 76	1 E77	LATIN CAPITAL LETTER U WITH CIRCUMFLEX BELOW	LATIN SMALL LETTER U WITH CIRCUMFLEX BELOW
1 E 78	1 E79	LATIN CAPITAL LETTER U WITH TILDE AND ACUTE	LATIN SMALL LETTER U WITH TILDE AND ACUTE
1E7A	1E7B	LATIN CAPITAL LETTER U WITH MACRON AND DIAERESIS	LATIN SMALL LETTER U WITH MACRON AND DIAERESIS
1E7C	1E7D	LATIN CAPITAL LETTER \vee WITH TILDE	LATIN SMALL LETTER V WITH TILDE
1E7E	1E7F	LATIN CAPITAL LETTER V WITH DOT BELOW	LATIN SMALL LETTER V WITH DOT BELOW
1 E 80	1E81	LATIN CAPITAL LETTER W WITH GRAVE	LATIN SMALL LETTER W WITH GRAVE
1 E 82	1 E83	LATIN CAPITAL LETTER W WITH ACUTE	LATIN SMALL LETTER W WITH ACUTE
1E84	1 E85	LATIN CAPITAL LETTER W WITH DIAERESIS	LATIN SMALL LETTER W WITH DIAERESIS
1 E86	1 E87	LATIN CAPITAL LETTER W WITH DOT ABOVE	LATIN SMALL LETTER W WITH DOT ABOVE
1 E88	1 E89	LATIN CAPITAL LETTER W WITH DOT BELOW	LATIN SMALL LETTER W WITH DOT BELOW
1E8A	1E8B	LATIN CAPITAL LETTER X WITH DOT ABOVE	LATIN SMALL LETTER X WITH DOT ABOVE
1E8C	1E8D	LATIN CAPITAL LETTER X5 WITH DIAERESIS	LATIN SMALL LETTER X WITH DIAERESIS
1E8E	1E8F	LATIN CAPITAL LETTER Y WITH DOT ABOVE	LATIN SMALL LETTER Y WITH DOT ABOVE
1E90	1E91	LATIN CAPITAL LETTER Z WITH CIRCUMFLEX	LATIN SMALL LETTER Z WITH CIRCUMFLEX
1E92	1 E93	LATIN CAPITAL LETTER Z WITH DOT BELOW	LATIN SMALL LETTER Z WITH DOT BELOW
1E94	1E95	LATIN CAPITAL LETTER Z WITH LINE BELOW	LATIN SMALL LETTER Z WITH LINE BELOW
1EA0	1EA1	LATIN CAPITAL LETTER A WITH DOT BELOW	LATIN SMALL LETTER A WITH DOT BELOW
1EA2	1EA3	LATIN CAPITAL LETTER A WITH HOOK ABOVE	LATIN SMALL LETTER A WITH HOOK ABOVE
1EA4	1EA5	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND ACUTE	LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE
1EA6	1EA7	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND GRAVE	LATIN SMALL LETTER A WITH CIRCUMFLEX AND GRAVE
1EA8	1EA9	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND HOOK ABOVE	LATIN SMALL LETTER A WITH CIRCUMFLEX AND HOOK ABOVE
1EAA	1EAB	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND TILDE	LATIN SMALL LETTER A WITH CIRCUMFLEX AND TILDE

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
1EAC	1EAD	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND DOT BELOW	LATIN SMALL LETTER A WITH CIRCUMFLEX AND DOT BELOW
1EAE	1EAF	LATIN CAPITAL LETTER A WITH BREVE AND ACUTE	LATIN SMALL LETTER A WITH bREVE AND ACUTE
1EB0	1EB1	LATIN CAPITAL LETTER A WITH BREVE AND GRAVE	LATIN SMALL LETTER A WITH bREVE AND GRAVE
1EB2	1EB3	LATIN CAPITAL LETTER A WITH BREVE AND HOOK ABOVE	LATIN SMALL LETTER A WITH BREVE AND HOOK ABOVE
1EB4	1EB5	LATIN CAPITAL LETTER A WITH BREVE AND TILDE	LATIN SMALL LETTER A WITH BREVE AND TILDE
1EB6	1EB7	LATIN CAPITAL LETTER A WITH BREVE AND DOT BELOW	LATIN SMALL LETTER A WITH BREVE AND DOT BELOW
1EB8	1EB9	LATIN CAPITAL LETTER E WITH DOT BELOW	LATIN SMALL LETTER E WITH DOT BELOW
1EBA	1EBB	LATIN CAPITAL LETTER E WITH hook above	LATIN SMALL LETTER E WITH HOOK ABOVE
1EBC	1EBD	LATIN CAPITAL LETTER E WITH TILDE	LATIN SMALL LETTER E WITH TILDE
1EBE	1EBF	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND ACUTE	LATIN SMALL LETTER E WITH CIRCUMFLEX AND ACUTE
1EC0	1EC1	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND GRAVE	LATIN SMALL LETTER E WITH CIRCUMFLEX AND GRAVE
1EC2	1EC3	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND HOOK ABOVE	LATIN SMALL LETTER E WITH CIRCUMFLEX AND HOOK ABOVE
1EC4	1EC5	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND TILDE	LATIN SMALL LETTER E WITH CIRCUMFLEX AND TILDE
1EC6	1EC7	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND DOT BELOW	LATIN SMALL LETTER E WITH CIRCUMFLEX AND DOT BELOW
1EC8	1EC9	LATIN CAPITAL LETTER I WITH HOOK ABOVE	LATIN SMALL LETTER I WITH HOOK ABOVE
1ECA	1ECB	LATIN CAPITAL LETTER I WITH DOT BELOW	LATIN SMALL LETTER I WITH DOT BELOW
1ECC	1ECD	LATIN CAPITAL LETTER O WITH DOT BELOW	LATIN SMALL LETTER O WITH DOT BELOW
1ECE	1ECF	LATIN CAPITAL LETTER O WITH HOOK ABOVE	LATIN SMALL LETTER O WITH HOOK ABOVE
1ED0	1ED1	LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND ACUTE	LATIN SMALL LETTER O WITH CIRCUMFLEX AND ACUTE
1ED2	1ED3	LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND GRAVE	LATIN SMALL LETTER O WITH CIRCUMFLEX AND GRAVE
1ED4	1ED5	LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND HOOK ABOVE	LATIN SMALL LETTER O WITH CIRCUMFLEX AND HOOK ABOVE

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Uppercase code } \\
\text { point }\end{array} & \begin{array}{l}\text { Lowercase code } \\
\text { point }\end{array}
$$ \& \begin{array}{l}Uppercase character

description\end{array} \& Lowercase character description\end{array}\right]\)| LED7 |
| :--- |
| 1ED6 |
| WITH CIRCUMFLEX AND TILDE | LEIRCUMFLEX AND TILDE | CITH |
| :--- |
| 1ED8 |
| 1EDA |

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
1F0D	1F05	GREEK CAPITAL LETTER ALPHA WITH DASIA AND OXIA	GREEK SMALL LETTER ALPHA WITH DASIA AND OXIA
1F0E	1F06	GREEK CAPITAL LETTER ALPHA WITH PSILI AND PERISPOMENI	GREEK SMALL LETTER ALPHA WITH PSILI AND PERISPOMENI
1F0F	1F07	GREEK CAPITAL LETTER ALPHA WITH DASIA AND PERISPOMENI	GREEK SMALL LETTER ALPHA WITH DASIA AND PERISPOMENI
1F18	1F10	GREEK CAPITAL LETTER EPSILON WITH PSILI	GREEK SMALL LETTER EPSILON WITH PSILI
1F19	1F11	GREEK CAPITAL LETTER EPSILON WITH DASIA	GREEK SMALL LETTER EPSILON WITH DASIA
1F1A	1F12	GREEK CAPITAL LETTER EPSILON WITH PSILI AND VARIA	GREEK SMALL LETTER EPSILON WITH PSILI AND VARIA
1F1B	1F13	GREEK CAPITAL LETTER EPSILON WITH DASIA AND VARIA	GREEK SMALL LETTER EPSILON WITH DASIA AND VARIA
1F1C	1F14	GREEK CAPITAL LETTER EPSILON WITH PSILI AND OXIA	GREEK SMALL LETTER EPSILON WITH PSILI AND OXIA
1F1D	1F15	GREEK CAPITAL LETTER EPSILON WITH DASIA AND OXIA	GREEK SMALL LETTER EPSILON WITH DASIA AND OXIA
1F28	1F20	GREEK CAPITAL LETTER ETA WITH PSILI	GREEK SMALL LETTER ETA WITH PSILI
1F29	1F21	GREEK CAPITAL LETTER ETA WITH DASIA	GREEK SMALL LETTER ETA WITH DASIA
1F2A	1F22	GREEK CAPITAL LETTER ETA WITH PSILI AND VARIA	GREEK SMALL LETTER ETA WITH PSILI AND VARIA
1F2B	1F23	GREEK CAPITAL LETTER ETA WITH DASIA AND VARIA	GREEK SMALL LETTER ETA WITH DASIA AND VARIA
1F2C	1F24	GREEK CAPITAL LETTER ETA WITH PSILI AND OXIA	GREEK SMALL LETTER ETA WITH PSILI AND OXIA
1F2D	1F25	GREEK CAPITAL LETTER ETA WITH DASIA AND OXIA	GREEK SMALL LETTER ETA WITH DASIA AND OXIA
1F2E	1F26	GREEK CAPITAL LETTER ETA WITH PSILI AND PERISPOMENI	GREEK SMALL LETTER ETA WITH PSILI AND PERISPOMENI
1F2F	1F27	GREEK CAPITAL LETTER ETA WITH DASIA AND PERISPOMENI	GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI
1F38	1F30	GREEK CAPITAL LETTER IOTA WITH PSILI	GREEK SMALL LETTER IOTA WITH PSILI
1F39	1F31	GREEK CAPITAL LETTER IOTA WITH DASIA	GREEK SMALL LETTER IOTA WITH DASIA
1F3A	1F32	GREEK CAPITAL LETTER IOTA WITH PSILI AND VARIA	GREEK SMALL LETTER IOTA WITH PSILI AND VARIA
1F3B	1F33	GREEK CAPITAL LETTER IOTA WITH DASIA AND VARIA	GREEK SMALL LETTER IOTA WITH DASIA AND VARIA

\(\left.\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Uppercase code } \\
\text { point }\end{array} & \begin{array}{l}\text { Lowercase code } \\
\text { point }\end{array} & \begin{array}{l}\text { Uppercase character } \\
\text { description }\end{array} & \text { Lowercase character description }\end{array}
$$ \right\rvert\, $$
\begin{array}{l}\text { GREEK CAPITAL LETTER IOTA } \\
\text { WITH PSILI AND OXIA }\end{array}
$$ \quad \begin{array}{l}GREEK SMALL LETTER IOTA WITH

PSILI AND OXIA\end{array}\right]\)| 1F3C |
| :--- |
| 1F3D |
| 1F35 |
| 1F3E |
| 1F36 |
| WITH DASIA AND OXIA |

\(\left.\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Uppercase code } \\
\text { point }\end{array} & \begin{array}{l}\text { Lowercase code } \\
\text { point }\end{array} & \begin{array}{l}\text { Uppercase character } \\
\text { description }\end{array} & \text { Lowercase character description }\end{array}
$$ \right\rvert\, $$
\begin{array}{l}\text { GREEK CAPITAL LETTER } \\
\text { OMEGA WITH PSILI AND } \\
\text { PERISPOMENI }\end{array}
$$ \quad \begin{array}{l}GREEK SMALL LETTER OMEGA

WITH PSILI AND PERISPOMENI\end{array}\right]\)| GF6E |
| :--- |

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
1F9E	1F96	GREEK CAPITAL LETTER ETA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI	GREEK SMALL LETTER ETA WITH PSILI AND PERISPOMENI AND YPOGEGRAMMENI
1F9F	1F97	GREEK CAPITAL LETTER ETA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI	GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI AND YPOGEGRAMMENI
1FA8	1 FA0	GREEK CAPITAL LETTER OMEGA WITH PSILI AND PROSGEGRAMMENI	GREEK SMALL LETTER OMEGA WITH PSILI AND YPOGEGRAMMENI
1FA9	1FA1	GREEK CAPITAL LETTER OMEGA WITH DASIA AND PROSGEGRAMMENI	GREEK SMALL LETTER OMEGA WITH DASIA AND YPOGEGRAMMENI
1FAA	1FA2	GREEK CAPITAL LETTER OMEGA WITH PSILI AND VARIA AND PROSGEGRAMMENI	GREEK SMALL LETTER OMEGA WITH PSILI AND VARIA AND YPOGEGRAMMENI
1FAB	1FA3	GREEK CAPITAL LETTER OMEGA WITH DASIA AND VARIA AND PROSGEGRAMMENI	GREEK SMALL LETTER OMEGA WITH DASIA AND VARIA AND YPOGEGRAMMENI
1FAC	1FA4	GREEK CAPITAL LETTER OMEGA WITH PSILI AND OXIA AND PROSGEGRAMMENI	GREEK SMALL LETTER OMEGA WITH PSILI AND OXIA AND YPOGEGRAMMENI
1FAD	1FA5	GREEK CAPITAL LETTER OMEGA WITH DASIA AND OXIA AND PROSGEGRAMMENI	GREEK SMALL LETTER OMEGA WITH DASIA AND OXIA AND YPOGEGRAMMENI
1FAE	1FA6	GREEK CAPITAL LETTER OMEGA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI	GREEK SMALL LETTER OMEGA WITH PSILI AND PERISPOMENI AND YPOGEGRAMMENI
1FAF	1FA7	GREEK CAPITAL LETTER OMECA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI	GREEK SMALL LETTER OMEGA WITH DASIA AND PEPISPOMENI AND YPOGEGRAMMENI
1FB8	1FB0	GREEK CAPITAL LETTER ALPHA WITH VRACHY	GREEK SMALL LETTER ALPHA WITH VRACHY
1FB9	1FB1	GREEK CAPITAL LETTER ALPHA WITH MACRON	GREEK SMALL LETTER ALPHA WITH MACRON
1FD8	1FD0	GREEK CAPITAL LETTER IOTA WITH VRACHY	GREEK SMALL LETTER IOTA WITH VRACHY
1FD9	1FD1	GREEK CAPITAL LETTER IOTA WITH MACRON	GREEK SMALL LETTER IOTA WITH MACRON
1FE8	1FE0	GREEK CAPITAL LETTER UPSILON WITH VRACHY	GREEK SMALL LETTER UPSILON WITH VRACHY
1FE9	1FE1	GREEK CAPITAL LETTER UPSILON WITH MACRON	GREEK SMALL LETTER UPSILON WITH MACRON
24B6	24D0	CIRCLED LATIN CAPITAL LETTER A	CIRCLED LATIN SMALL LETTER A
24B7	24D1	CIRCLED LATIN CAPITAL LETTER B	CIRCLED LATIN SMALL LETTER B

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
24B8	24D2	CIRCLED LATIN CAPITAL LETTER C	CIRCLED LATIN SMALL LETTER C
24B9	24D3	CIRCLED LATIN CAPITAL LETTER D	CIRCLED LATIN SMALL LETTER D
24BA	24D4	CIRCLED LATIN CAPITAL LETTER E	CIRCLED LATIN SMALL LETTER E
24BB	24D5	CIRCLED LATIN CAPITAL LETTER F	CIRCLED LATIN SMALL LETTER F
24BC	24D6	CIRCLED LATIN CAPITAL LETTER G	CIRCLED LATIN SMALL LETTER G
24BD	24D7	CIRCLED LATIN CAPITAL LETTER H	CIRCLED LATIN SMALL LETTER H
24BE	24D8	CIRCLED LATIN CAPITAL LETTER I	CIRCLED LATIN SMALL LETTER I
24BF	24D9	CIRCLED LATIN CAPITAL LETTER J	CIRCLED LATIN SMALL LETTER J
24C0	24DA	CIRCLED LATIN CAPITAL LETTER K	CIRCLED LATIN SMALL LETTER K
24C1	24DB	CIRCLED LATIN CAPITAL LETTER L	CIRCLED LATIN SMALL LETTER L
24C2	24DC	CIRCLED LATIN CAPITAL LETTER M	CIRCLED LATIN SMALL LETTER M
24C3	24DD	CIRCLED LATIN CAPITAL LETTER N	CIRCLED LATIN SMALL LETTER N
24C4	24DE	CIRCLED LATIN CAPITAL LETTER O	CIRCLED LATIN SMALL LETTER O
24C5	24DF	CIRCLED LATIN CAPITAL LETTER P	CIRCLED LATIN SMALL LETTER P
24C6	24E0	CIRCLED LATIN CAPITAL LETTER Q	CIRCLED LATIN SMALL LETTER Q
24C7	24E1	CIRCLED LATIN CAPITAL LETTER R	CIRCLED LATIN SMALL LETTER R
24C8	24E2	CIRCLED LATIN CAPITAL LETTER S	CIRCLED LATIN SMALL LETTER S
24C9	24E3	CIRCLED LATIN CAPITAL LETTER T	CIRCLED LATIN SMALL LETTER T
24CA	24E4	CIRCLED LATIN CAPITAL LETTER U	CIRCLED LATIN SMALL LETTER U
24CB	24E5	CIRCLED LATIN CAPITAL LETTER V	CIRCLED LATIN SMALL LETTER V
24CC	24E6	CIRCLED LATIN CAPITAL LETTER W	CIRCLED LATIN SMALL LETTER W
24CD	24E7	CIRCLED LATIN CAPITAL LETTER X	CIRCLED LATIN SMALL LETTER X
24CE	24E8	CIRCLED LATIN CAPITAL LETTER Y	CIRCLED LATIN SMALL LETTER Y

Uppercase code point	Lowercase code point	Uppercase character description	Lowercase character description
24CF	24E9	CIRCLED LATIN CAPITAL LETTER Z	CIRCLED LATIN SMALL LETTER Z
FF21	FF41	FULLWIDTH LATIN CAPITAL LETTER A	FULLWIDTH LATIN SMALL LETTER A
FF22	FF42	FULLWIDTH LATIN CAPITAL LETTER B	FULLWIDTH LATIN SMALL LETTER B
FF23	FF43	FULLWIDTH LATIN CAPITAL LETTER C	FULLWIDTH LATIN SMALL LETTER C
FF24	FF44	FULLWIDTH LATIN CAPITAL LETTER D	FULLWIDTH LATIN SMALL LETTER D
FF25	FF45	FULLWIDTH LATIN CAPITAL LETTER E	FULLWIDTH LATIN SMALL LETTER
FF26	FF46	FULLWIDTH LATIN CAPITAL LETTER F	FULLWIDTH LATIN SMALL LETTER F
FF27	FF47	FULLWIDTH LATIN CAPITAL LETTER G	FULLWIDTH LATIN SMALL LETTER G
FF28	FF48	FULLWIDTH LATIN CAPITAL LETTER H	FULLWIDTH LATIN SMALL LETTER H
FF29	FF49	FULLWIDTH LATIN CAPITAL LETTER I	FULLWIDTH LATIN SMALL LETTER I
FF2A	FF4A	FULLWIDTH LATIN CAPITAL LETTER J	FULLWIDTH LATIN SMALL LETTER J
FF2B	FF4B	FULLWIDTH LATIN CAPITAL LETTER K	FULLWIDTH LATIN SMALL LETTER K
FF2C	FF4C	FULLWIDTH LATIN CAPITAL LETTER L	FULLWIDTH LATIN SMALL LETTER L
FF2D	FF4D	FULLWIDTH LATIN CAPITAL LETTER M	FULLWIDTH LATIN SMALL LETTER M
FF2E	FF4E	FULLWIDTH LATIN CAPITAL LETTER N	FULLWIDTH LATIN SMALL LETTER N
FF2F	FF4F	FULLWIDTH LATIN CAPITAL LETTER O	FULLWIDTH LATIN SMALL LETTER 0
FF30	FF50	FULLWIDTH LATIN CAPITAL LETTER P	FULLWIDTH LATIN SMALL LETTER P
FF31	FF51	FULLWIDTH LATIN CAPITAL LETTER Q	FULLWIDTH LATIN SMALL LETTER Q
FF32	FF52	FULLWIDTH LATIN CAPITAL LETTER R	FULLWIDTH LATIN SMALL LETTER R
FF33	FF53	FULLWIDTH LATIN CAPITAL LETTER S	FULLWIDTH LATIN SMALL LETTER S
FF34	FF54	FULLWIDTH LATIN CAPITAL LETTER T	FULLWIDTH LATIN SMALL LETTER T
FF35	FF55	FULLWIDTH LATIN CAPITAL LETTER U	FULLWIDTH LATIN SMALL LETTER U
FF36	FF56	FULLWIDTH LATIN CAPITAL LETTER V	FULLWIDTH LATIN SMALL LETTER V

| Uppercase code
 point | Lowercase code
 point | Uppercase character
 description | Lowercase character description |
| :--- | :--- | :--- | :--- |$|$| | FF57 | FULLWIDTH LATIN CAPITAL
 LETTER W | FULLWIDTH LATIN SMALL LETTER
 W |
| :--- | :--- | :--- | :--- |
| FF38 | FF58 | FULLWIDTH LATIN CAPITAL
 LETTER X | FULLWIDTH LATIN SMALL LETTER
 X |
| FF39 | FF59 | FULLWIDTH LATIN CAPITAL
 LETTER Y | FULLWIDTH LATIN SMALL LETTER
 Y |
| FF3A | FULLWIDTH LATIN CAPITAL
 LETTER Z | FULLWIDTH LATIN SMALL LETTER
 Z | |

ISO 10646 lowercase to uppercase mapping table:

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
0061	0041	LATIN SMALL LETTER A	LATIN CAPITAL LETTER A
0062	0042	LATIN SMALL LETTER B	LATIN CAPITAL LETTER B
0063	0043	LATIN SMALL LETTER C	LATIN CAPITAL LETTER C
0064	0044	LATIN SMALL LETTER D	LATIN CAPITAL LETTER D
0065	0045	LATIN SMALL LETTER E	LATIN CAPITAL LETTER E
0066	0046	LATIN SMALL LETTER F	LATIN CAPITAL LETTER F
0067	0047	LATIN SMALL LETTER G	LATIN CAPITAL LETTER G
0068	0048	LATIN SMALL LETTER H	LATIN CAPITAL LETTER H
0069	0049	LATIN SMALL LETTER I	LATIN CAPITAL LETTER I
006A	004A	LATIN SMALL LETTER J	LATIN CAPITAL LETTER J
006B	004B	LATIN SMALL LETTER K	LATIN CAPITAL LETTER K
006C	004C	LATIN SMALL LETTER L	LATIN CAPITAL LETTER L
006D	004D	LATIN SMALL LETTER M	LATIN CAPITAL LETTER M
006E	004E	LATIN SMALL LETTER N	LATIN CAPITAL LETTER N
006F	004F	LATIN SMALL LETTER O	LATIN CAPITAL LETTER O
0070	0050	LATIN SMALL LETTER P	LATIN CAPITAL LETTER P
0071	0051	LATIN SMALL LETTER Q	LATIN CAPITAL LETTER Q
0072	0052	LATIN SMALL LETTER R	LATIN CAPITAL LETTER R
0073	0053	LATIN SMALL LETTER S	LATIN CAPITAL LETTER S
0074	0054	LATIN SMALL LETTER T	LATIN CAPITAL LETTER T
0075	0055	LATIN SMALL LETTER U	LATIN CAPITAL LETTER U
0076	0056	LATIN SMALL LETTER V	LATIN CAPITAL LETTER V
0077	0057	LATIN SMALL LETTER W	LATIN CAPITAL LETTER W
0078	0058	LATIN SMALL LETTER X	LATIN CAPITAL LETTER X
0079	0059	LATIN SMALL LETTER Y	LATIN CAPITAL LETTER Y
007A	005A	LATIN SMALL LETTER Z	LATIN CAPITAL LETTER Z
O0E0	00C0	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER A GRAVE
00E1	00C1	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER A ACUTE

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
00E2	00C2	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER A CIRCUMFLEX
O0E3	00C3	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER A TILDE
O0E4	00C4	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER A DIAERESIS
00E5	00C5	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER A RING
00E6	00C6	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER A E
O0E7	00C7	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER C CEDILLA
00E8	00C8	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER E GRAVE
00E9	00C9	LATIN SMALL LETTER A GRAVE	LATIN CAPITAL LETTER E ACUTE
00EA	00CA	LATIN SMALL LETTER E CIRCUMFLEX	LATIN CAPITAL LETTER E CIRCUMFLEX
00EB	00CB	LATIN SMALL LETTER E DIAERESIS	LATIN CAPITAL LETTER E DIAERESIS
O0EC	O0CC	LATIN SMALL LETTER I GRAVE	LATIN CAPITAL LETTER I GRAVE
O0ED	OOCD	LATIN SMALL LETTER I ACUTE	LATIN CAPITAL LETTER I ACUTE
O0EE	OOCE	LATIN SMALL LETTER I CIRCUMFLEX	LATIN CAPITAL LETTER I CIRCUMFLEX
O0EF	00CF	LATIN SMALL LETTER I DIAERESIS	LATIN CAPITAL LETTER I DIAERESIS
00F0	00D0	LATIN SMALL LETTER ETH	LATIN CAPITAL LETTER ETH
00F1	00D1	LATIN SMALL LETTER N TILDE	LATIN CAPITAL LETTER N TILDE
00F2	00D2	LATIN SMALL LETTER O GRAVE	LATIN CAPITAL LETTER O GRAVE
00F3	00D3	LATIN SMALL LETTER O ACUTE	LATIN CAPITAL LETTER O ACUTE
00F4	00D4	LATIN SMALL LETTER O CIRCUMFLEX	LATIN CAPITAL LETTER O CIRCUMFLEX
00F5	00D5	LATIN SMALL LETTER O TILDE	LATIN CAPITAL LETTER O TILDE
00F6	00D6	LATIN SMALL LETTER O DIAERESIS	LATIN CAPITAL LETTER O DIAERESIS
00F8	00D8	LATIN SMALL LETTER O SLASH	LATIN CAPITAL LETTER O SLASH
00F9	00D9	LATIN SMALL LETTER U GRAVE	LATIN CAPITAL LETTER U GRAVE
00FA	00DA	LATIN SMALL LETTER U ACUTE	LATIN CAPITAL LETTER U ACUTE
00FB	00DB	LATIN SMALL LETTER U CIRCUMFLEX	LATIN CAPITAL LETTER U CIRCUMFLEX
00FC	00DC	LATIN SMALL LETTER U DIAERESIS	LATIN CAPITAL LETTER U DIAERESIS
OOFD	00DD	LATIN SMALL LETTER Y ACUTE	LATIN CAPITAL LETTER Y ACUTE
00FE	O0DE	LATIN SMALL LETTER THORN	LATIN CAPITAL LETTER THORN
00FF	0178	LATIN SMALL LETTER Y DIAERESIS	LATIN CAPITAL LETTER Y WITH DIAERESIS
0101	0100	LATIN SMALL LETTER A WITH MACRON	LATIN CAPITAL LETTER A WITH MACRON
0103	0102	LATIN SMALL LETTER A WITH BREVE	LATIN CAPITAL LETTER A WITH BREVE

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
0105	0104	LATIN SMALL LETTER A WITH OGONEK	LATIN CAPITAL LETTER A WITH OGONEK
0107	0106	LATIN SMALL LETTER C WITH ACUTE	LATIN CAPITAL LETTER C WITH ACUTE
0109	0108	LATIN SMALL LETTER C WITH CIRCUMFLEX	LATIN CAPITAL LETTER C WITH CIRCUMFLEX
010B	010A	LATIN SMALL LETTER C WITH DOT ABOVE	LATIN CAPITAL LETTER C WITH DOT ABOVE
010D	010C	LATIN SMALL LETTER C WITH CARON	LATIN CAPITAL LETTER C WITH CARON
010F	010E	LATIN SMALL LETTER D WITH CARON	LATIN CAPITAL LETTER D WITH CARON
0111	0110	LATIN SMALL LETTER D WITH STROKE	LATIN CAPITAL LETTER D WITH STROKE
0113	0112	LATIN SMALL LETTER E WITH MACRON	LATIN CAPITAL LETTER E WITH MACRON
0115	0114	LATIN SMALL LETTER E WITH BREVE	LATIN CAPITAL LETTER E WITH BREVE
0117	0116	LATIN SMALL LETTER E WITH DOT ABOVE	LATIN CAPITAL LETTER E WITH DOT ABOVE
0119	0118	LATIN SMALL LETTER E WITH OGONEK	LATIN CAPITAL LETTER E WITH OGONEK
011B	011A	LATIN SMALL LETTER E WITH CARON	LATIN CAPITAL LETTER E WITH CARON
011D	011C	LATIN SMALL LETTER G WITH CIRCUMFLEX	LATIN CAPITAL LETTER G WITH CIRCUMFLEX
011F	011E	LATIN SMALL LETTER G WITH BREVE	LATIN CAPITAL LETTER G WITH BREVE
0121	0120	LATIN SMALL LETTER G WITH DOT ABOVE	LATIN CAPITAL LETTER G WITH DOT ABOVE
0123	0122	LATIN SMALL LETTER G WITH CEDILLA	LATIN CAPITAL LETTER G WITH CEDILLA
0125	0124	LATIN SMALL LETTER H WITH CIRCUMFLEX	LATIN CAPITAL LETTER H WITH CIRCUMFLEX
0127	0126	LATIN SMALL LETTER H WITH STROKE	LATIN CAPITAL LETTER H WITH STROKE
0129	0128	LATIN SMALL LETTER I WITH TILDE	LATIN CAPITAL LETTER I WITH TILDE
012B	012A	LATIN SMALL LETTER I WITH MACRON	LATIN CAPITAL LETTER I WITH MACRON
012D	012C	LATIN SMALL LETTER I WITH BREVE	LATIN CAPITAL LETTER I WITH BREVE
012F	012E	LATIN SMALL LETTER I WITH OGONEK	LATIN CAPITAL LETTER I WITH OGONEK
0131	0049	LATIN SMALL LETTER DOTLESS I	LATIN CAPITAL LETTER I
0133	0132	LATIN SMALL LIGATURE IJ	LATIN CAPITAL LIGATURE IJ

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
0135	0134	LATIN SMALL LETTER J WITH CIRCUMFLEX	LATIN CAPITAL LETTER J WITH CIRCUMFLEX
0137	0136	LATIN SMALL LETTER K WITH CEDILLA	LATIN CAPITAL LETTER K WITH CEDILLA
013A	0139	LATIN SMALL LETTER L WITH ACUTE	LATIN CAPITAL LETTER L WITH ACUTE
013C	013B	LATIN SMALL LETTER L WITH CEDILLA	LATIN CAPITAL LETTER L WITH CEDILLA
013E	013D	LATIN SMALL LETTER L WITH CARON	LATIN CAPITAL LETTER L WITH CARON
0140	013F	LATIN SMALL LETTER L WITH MIDDLE DOT	LATIN CAPITAL LETTER L WITH MIDDLE DOT
0142	0141	LATIN SMALL LETTER L WITH STROKE	LATIN CAPITAL LETTER L WITH STROKE
0144	0143	LATIN SMALL LETTER N WITH ACUTE	LATIN CAPITAL LETTER N WITH ACUTE
0146	0145	LATIN SMALL LETTER N WITH CEDILLA	LATIN CAPITAL LETTER N WITH CEDILLA
0148	0147	LATIN SMALL LETTER N WITH CARON	LATIN CAPITAL LETTER N WITH CARON
014B	014A	LATIN SMALL LETTER ENG (SAMI)	LATIN CAPITAL LETTER ENG (SAMI)
014D	014C	LATIN SMALL LETTER O WITH MACRON	LATIN CAPITAL LETTER O WITH MACRON
014F	014E	LATIN SMALL LETTER O WITH BREVE	LATIN CAPITAL LETTER O WITH BREVE
0151	0150	LATIN SMALL LETTER O WITH DOUBLE ACUTE	LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
0153	0152	LATIN SMALL LIGATURE OE	LATIN CAPITAL LIGATURE OE
0155	0154	LATIN SMALL LETTER R WITH ACUTE	LATIN CAPITAL LETTER R WITH ACUTE
0157	0156	LATIN SMALL LETTER R WITH CEDILLA	LATIN CAPITAL LETTER R WITH CEDILLA
0159	0158	LATIN SMALL LETTER R WITH CARON	LATIN CAPITAL LETTER R WITH CARON
015B	015A	LATIN SMALL LETTER S WITH ACUTE	LATIN CAPITAL LETTER S WITH ACUTE
015D	015C	LATIN SMALL LETTER S WITH CIRCUMFLEX	LATIN CAPITAL LETTER S WITH CIRCUMFLEX
015F	015E	LATIN SMALL LETTER S WITH CEDILLA	LATIN CAPITAL LETTER S WITH CEDILLA
0161	0160	LATIN SMALL LETTER S WITH CARON	LATIN CAPITAL LETTER S WITH CARON
0163	0162	LATIN SMALL LETTER T WITH CEDILLA	LATIN CAPITAL LETTER T WITH CEDILLA
0165	0164	LATIN SMALL LETTER T WITH CARON	LATIN CAPITAL LETTER T WITH CARON

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
0167	0166	LATIN SMALL LETTER T WITH STROKE	LATIN CAPITAL LETTER T WITH STROKE
0169	0168	LATIN SMALL LETTER U WITH TILDE	LATIN CAPITAL LETTER U WITH TILDE
016B	016A	LATIN SMALL LETTER U WITH MACRON	LATIN CAPITAL LETTER U WITH MACRON
016D	016C	LATIN SMALL LETTER U WITH BREVE	LATIN CAPITAL LETTER U WITH BREVE
016F	016E	LATIN SMALL LETTER U WITH RING ABOVE	LATIN CAPITAL LETTER U WITH RING ABOVE
0171	0170	LATIN SMALL LETTER U WITH DOUBLE ACUTE	LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
0173	0172	LATIN SMALL LETTER U WITH OGONEK	LATIN CAPITAL LETTER U WITH OGONEK
0175	0174	LATIN SMALL LETTER W WITH CIRCUMFLEX	LATIN CAPITAL LETTER W WITH CIRCUMFLEX
0177	0176	LATIN SMALL LETTER Y WITH CIRCUMFLEX	LATIN CAPITAL LETTER Y WITH CIRCUMFLEX
017A	0179	LATIN SMALL LETTER Z WITH ACUTE	LATIN CAPITAL LETTER Z WITH ACUTE
017C	017B	LATIN SMALL LETTER Z WITH DOT ABOVE	LATIN CAPITAL LETTER Z WITH DOT ABOVE
017E	017D	LATIN SMALL LETTER Z WITH CARON	LATIN CAPITAL LETTER Z WITH CARON
0183	0182	LATIN SMALL LETTER B WITH TOPBAR	LATIN CAPITAL LETTER B WITH TOPBAR
0185	0184	LATIN SMALL LETTER TONE SIX	LATIN CAPITAL LETTER TONE SIX
0188	0187	LATIN SMALL LETTER C WITH HOOK	LATIN CAPITAL LETTER C WITH HOOK
018C	018B	LATIN SMALL LETTER D WITH TOPBAR	LATIN CAPITAL LETTER D WITH TOPBAR
0192	0191	LATIN SMALL LETTER F WITH HOOK	LATIN CAPITAL LETTER F WITH HOOK
0199	0198	LATIN SMALL LETTER K WITH HOOK	LATIN CAPITAL LETTER K WITH HOOK
01A1	01A0	LATIN SMALL LETTER O WITH HORN	LATIN CAPITAL LETTER O WITH HORN
01A3	01A2	LATIN SMALL LETTER OI	LATIN CAPITAL LETTER OI
01A5	01A4	LATIN SMALL LETTER P WITH HOOK	LATIN CAPITAL LETTER P WITH HOOK
01A8	01A7	LATIN SMALL LETTER TONE TWO	LATIN CAPITAL LETTER TONE TWO
01AD	01AC	LATIN SMALL LETTER T WITH HOOK	LATIN CAPITAL LETTER T WITH HOOK
01B0	01AF	LATIN SMALL LETTER U WITH HORN	LATIN CAPITAL LETTER U WITH HORN

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
01B4	01B3	LATIN SMALL LETTER Y WITH HOOK	LATIN CAPITAL LETTER Y WITH HOOK
01B6	01B5	LATIN SMALL LETTER Z WITH STROKE	LATIN CAPITAL LETTER Z WITH STROKE
01B9	01B8	LATIN SMALL LETTER EZH REVERSED	LATIN CAPITAL LETTER EZH REVERSED
01BD	01BC	LATIN SMALL LETTER TONE FIVE	LATIN CAPITAL LETTER TONE FIVE
01C6	01C4	LATIN SMALL LETTER DZ WITH CARON	LATIN CAPITAL LETTER DZ WITH CARON
01C9	01C7	LATIN SMALL LETTER LJ	LATIN CAPITAL LETTER LJ
01CC	01CA	LATIN SMALL LETTER NJ	LATIN CAPITAL LETTER NJ
01CE	01CD	LATIN SMALL LETTER A WITH CARON	LATIN CAPITAL LETTER A WITH CARON
01D0	01CF	LATIN SMALL LETTER I WITH CARON	LATIN CAPITAL LETTER I WITH CARON
01D2	01D1	LATIN SMALL LETTER O WITH CARON	LATIN CAPITAL LETTER O WITH CARON
01D4	01D3	LATIN SMALL LETTER U WITH CARON	LATIN CAPITAL LETTER U WITH CARON
01D6	01D5	LATIN SMALL LETTER U WITH DIAERESIS AND MACRON	LATIN CAPITAL LETTER U WITH DIAERESIS AND MACRON
01D8	01D7	LATIN SMALL LETTER U WITH DIAERESIS AND ACUTE	LATIN CAPITAL LETTER U WITH DIAERESIS AND ACUTE
01DA	01D9	LATIN SMALL LETTER U WITH DIAERESIS AND CARON	LATIN CAPITAL LETTER U WITH DIAERESIS AND CARON
01DC	01DB	LATIN SMALL LETTER U WITH DIAERESIS AND GRAVE	LATIN CAPITAL LETTER U WITH DIAERESIS AND GRAVE
01DF	01DE	LATIN SMALL LETTER A WITH DIAERESIS AND MACRON	LATIN CAPITAL LETTER A WITH DIAERESIS AND MACRON
01E1	01E0	LATIN SMALL LETTER A WITH DOT ABOVE AND MACRON	LATIN CAPITAL LETTER A WITH DOT ABOVE AND MACRON
01E3	01E2	LATIN SMALL LIGATURE AE WITH MACRON	LATIN CAPITAL LIGATURE AE MTH MACRON
01E5	01E4	LATIN SMALL LETTER G WITH STROKE	LATIN CAPITAL LETTER G WITH STROKE
01E7	01E6	LATIN SMALL LETTER G WITH CARON	LATIN CAPITAL LETTER G WITH CARON
01E9	01E8	LATIN SMALL LETTER K WITH CARON	LATIN CAPITAL LETTER K WITH CARON
01EB	01EA	LATIN SMALL LETTER O WITH OGONEK	LATIN CAPITAL LETTER O WITH OGONEK
01ED	01EC	LATIN SMALL LETTER O WITH OGONEK AND MACRON	LATIN CAPITAL LETTER O WITH OGONEK AND MACRON
01EF	01EE	LATIN SMALL LETTER EZH WITH CARON	LATIN CAPITAL LETTER EZH WITH CARON
01F3	01F1	LATIN SMALL LETTER DZ	LATIN CAPITAL LETTER DZ

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
01F5	01F4	LATIN SMALL LETTER G WITH ACUTE	LATIN CAPITAL LETTER G WITH ACUTE
01FB	01FA	LATIN SMALL LETTER A WITH RING ABOVE AND ACUTE	LATIN CAPITAL LETTER A WITH RING ABOVE AND ACUTE
01FD	01FC	LATIN SMALL LIGATURE AE WITH ACUTE	LATIN CAPITAL LIGATURE AE WITH ACUTE
01FF	01FE	LATIN SMALL LETTER O WITH STROKE AND ACUTE	LATIN CAPITAL LETTER O WITH STROKE AND ACUTE
0201	0200	LATIN SMALL LETTER A WITH DOUBLE GRAVE	LATIN CAPITAL LETTER A WITH DOUBLE GRAVE
0203	0202	LATIN SMALL LETTER A WITH INVERTED BREVE	LATIN CAPITAL LETTER A WITH INVERTED BREVE
0205	0204	LATIN SMALL LETTER E WITH DOUBLE GRAVE	LATIN CAPITAL LETTER E WITH DOUBLE GRAVE
0207	0206	LATIN SMALL LETTER E WITH INVERTED BREVE	LATIN CAPITAL LETTER E WITH INVERTED BREVE
0209	0208	LATIN SMALL LETTER I WITH DOUBLE GRAVE	LATIN CAPITAL LETTER I WITH DOUBLE GRAVE
020B	020A	LATIN SMALL LETTER I WITH INVERTED BREVE	LATIN CAPITAL LETTER I WITH INVERTED BREVE
020D	020C	LATIN SMALL LETTER O WITH DOUBLE GRAVE	LATIN CAPITAL LETTER O WITH DOUBLE GRAVE
020F	020E	LATIN SMALL LETTER O WITH INVERTED BREVE	LATIN CAPITAL LETTER O WITH INVERTED BREVE
0211	0210	LATIN SMALL LETTER R WITH DOUBLE GRAVE	LATIN CAPITAL LETTER R WITH DOUBLE GRAVE
0213	0212	LATIN SMALL LETTER R WITH INVERTED BREVE	LATIN CAPITAL LETTER R WITH INVERTED BREVE
0215	0214	LATIN SMALL LETTER U WITH DOUBLE GRAVE	LATIN CAPITAL LETTER U WITH DOUBLE GRAVE
0217	0216	LATIN SMALL LETTER U WITH INVERTED BREVE	LATIN CAPITAL LETTER U WITH INVERTED BREVE
0253	0181	LATIN SMALL LETTER B WITH HOOK	LATIN CAPITAL LETTER B WITH HOOK
0254	0186	LATIN SMALL LETTER OPEN O	LATIN CAPITAL LETTER OPEN O
0257	018A	LATIN SMALL LETTER D WITH HOOK	LATIN CAPITAL LETTER D WITH HOOK
0258	018E	LATIN SMALL LETTER REVERSED E	LATIN CAPITAL LETTER REVERSED E
0259	018F	LATIN SMALL LETTER SCHWA	LATIN CAPITAL LETTER SCHWA
025B	0190	LATIN SMALL LETTER OPEN E	LATIN CAPITAL LETTER OPEN E
0260	0193	LATIN SMALL LETTER G WITH HOOK	LATIN CAPITAL LETTER G WITH HOOK
0263	0194	LATIN SMALL LETTER GAMMA	LATIN CAPITAL LETTER GAMMA
0268	0197	LATIN SMALL LETTER I WITH STROKE	LATIN CAPITAL LETTER I WITH STROKE

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
0269	0196	LATIN SMALL LETTER IOTA	LATIN CAPITAL LETTER IOTA
026 F	019 L	LATIN SMALL LETTER TURNED M	LATIN CAPITAL LETTER TURNED M
0272	019 L	LATIN SMALL LETTER N WITH LEFT HOOK	LATIN CAPITAL LETTER N WITH LEFT HOOK
0275	019 F	LATIN SMALL LETTER BARRED O	LATIN CAPITAL LETTER O WITH MIDDLE TILDE
0283	01 A9	LATIN SMALL LETTER ESH	LATIN CAPITAL LETTER ESH
0288	$01 A E$	LATIN SMALL LETTER T WITH RETROFLEX HOOK	LATIN CAPITAL LETTER T WITH RETROFLEX HOOK
$028 A$	$01 B 1$	LATIN SMALL LETTER UPSILON	LATIN CAPITAL LETTER UPSILON
$028 B$	03 LATIN SMALL LETTER V WITH		
HOOK			

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
03C5	03A5	GREEK SMALL LETTER UPSILON	GREEK CAPITAL LETTER UPSILON
03C6	03A6	GREEK SMALL LETTER PHI	GREEK CAPITAL LETTER PHI
03C7	03A7	GREEK SMALL LETTER CHI	GREEK CAPITAL LETTER CHI
03C8	03A8	GREEK SMALL LETTER PSI	GREEK CAPITAL LETTER PSI
03C9	03A9	GREEK SMALL LETTER OMEGA	GREEK CAPITAL LETTER OMEGA
03CA	03AA	GREEK SMALL LETTER IOTA WITH DIALYTIKA	GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
03CB	03AB	GREEK SMALL LETTER UPSILON WITH DIALYTIKA	GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
03CC	038C	GREEK SMALL LETTER OMICRON WITH TONOS	GREEK CAPITAL LETTER OMICRON WITH TONOS
03CD	038E	GREEK SMALL LETTER UPSILON WITH TONOS	GREEK CAPITAL LETTER UPSILON WITH TONOS
03CE	038F	GREEK SMALL LETTER OMEGA WITH TONOS	GREEK CAPITAL LETTER OMEGA WITH TONOS
03E3	03E2	COPTIC SMALL LETTER SHEI	COPTIC CAPITAL LETTER SHEI
03E5	03E4	COPTIC SMALL LETTER FEI	COPTIC CAPITAL LETTER FEI
03E7	03E6	COPTIC SMALL LETTER KHEI	COPTIC CAPITAL LETTER KHEI
03E9	03E8	COPTIC SMALL LETTER HORI	COPTIC CAPITAL LETTER HORI
03EB	03EA	COPTIC SMALL LETTER GANGIA	COPTIC CAPITAL LETTER GANGIA
03ED	03EC	COPTIC SMALL LETTER SHIMA	COPTIC CAPITAL LETTER SHIMA
03EF	03EE	COPTIC SMALL LETTER DEI	COPTIC CAPITAL LETTER DEI
0430	0410	CYRILLIC SMALL LETTER A	CYRILLIC CAPITAL LETTER A
0431	0411	CYRILLIC SMALL LETTER BE	CYRILLIC CAPITAL LETTER BE
0432	0412	CYRILLIC SMALL LETTER VE	CYRILLIC CAPITAL LETTER VE
0433	0413	CYRILLIC SMALL LETTER GHE	CYRILLIC CAPITAL LETTER GHE
0434	0414	CYRILLIC SMALL LETTER DE	CYRILLIC CAPITAL LETTER DE
0435	0415	CYRILLIC SMALL LETTER IE	CYRILLIC CAPITAL LETTER IE
0436	0416	CYRILLIC SMALL LETTER ZHE	CYRILLIC CAPITAL LETTER ZHE
0437	0417	CYRILLIC SMALL LETTER ZE	CYRILLIC CAPITAL LETTER ZE
0438	0418	CYRILLIC SMALL LETTER I	CYRILLIC CAPITAL LETTER I
0439	0419	CYRILLIC SMALL LETTER SHORT I	CYRILLIC CAPITAL LETTER SHORT I
043A	041A	CYRILLIC SMALL LETTER KA	CYRILLIC CAPITAL LETTER KA
043B	041B	CYRILLIC SMALL LETTER EL	CYRILLIC CAPITAL LETTER EL
043C	041C	CYRILLIC SMALL LETTER EM	CYRILLIC CAPITAL LETTER EM
043D	041D	CYRILLIC SMALL LETTER EN	CYRILLIC CAPITAL LETTER EN
043E	041E	CYRILLIC SMALL LETTER O	CYRILLIC CAPITAL LETTER O
043F	041F	CYRILLIC SMALL LETTER PE	CYRILLIC CAPITAL LETTER PE
0440	0420	CYRILLIC SMALL LETTER ER	CYRILLIC CAPITAL LETTER ER
0441	0421	CYRILLIC SMALL LETTER ES	CYRILLIC CAPITAL LETTER ES

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
0442	0422	CYRILLIC SMALL LETTER TE	CYRILLIC CAPITAL LETTER TE
0443	0423	CYRILLIC SMALL LETTER U	CYRILLIC CAPITAL LETTER U
0444	0424	CYRILLIC SMALL LETTER EF	CYRILLIC CAPITAL LETTER EF
0445	0425	CYRILLIC SMALL LETTER HA	CYRILLIC CAPITAL LETTER HA
0446	0426	CYRILLIC SMALL LETTER TSE	CYRILLIC CAPITAL LETTER TSE
0447	0427	CYRILLIC SMALL LETTER CHE	CYRILLIC CAPITAL LETTER CHE
0448	0428	CYRILLIC SMALL LETTER SHA	CYRILLIC CAPITAL LETTER SHA
0449	0429	CYRILLIC SMALL LETTER SHCHA	CYRILLIC CAPITAL LETTER SHCHA
044A	042A	CYRILLIC SMALL LETTER HARD SIGN	CYRILLIC CAPITAL LETTER HARD SIGN
044B	042B	CYRILLIC SMALL LETTER YERU	CYRILLIC CAPITAL LETTER YERU
044C	042C	CYRILLIC SMALL LETTER SOFT SIGN	CYRILLIC CAPITAL LETTER SOFT SIGN
044D	042D	CYRILLIC SMALL LETTER E	CYRILLIC CAPITAL LETTER E
044E	042E	CYRILLIC SMALL LETTER YU	CYRILLIC CAPITAL LETTER YU
044F	042F	CYRILLIC SMALL LETTER YA	CYRILLIC CAPITAL LETTER YA
0451	0401	CYRILLIC SMALL LETTER IO	CYRILLIC CAPITAL LETTER IO
0452	0402	CYRILLIC SMALL LETTER DJE (SERBOCROATIAN)	CYRILLIC CAPITAL LETTER DJE (SERBOCROATIAN)
0453	0403	CYRILLIC SMALL LETTER GJE	CYRILLIC CAPITAL LETTER GJE
0454	0404	CYRILLIC SMALL LETTER UKRAINIAN IE	CYRILLIC CAPITAL LETTER UKRAINIAN IE
0455	0405	CYRILLIC SMALL LETTER DZE	CYRILLIC CAPITAL LETTER DZE
0456	0406	CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I	CYRILLIC CAPITAL LETTER BYELORUSSIAN_UKRAINIAN I
0457	0407	CYRILLIC SMALL LETTER YI (UKRANIAN)	CYRILLIC CAPITAL LETTER YI (UKRANIAN)
0458	0408	CYRILLIC SMALL LETTER JE	CYRILLIC CAPITAL LETTER JE
0459	0409	CYRILLIC SMALL LETTER LJE	CYRILLIC CAPITAL LETTER LJE
045A	040A	CYRILLIC SMALL LETTER NJE	CYRILLIC CAPITAL LETTER NJE
045B	040B	CYRILLIC SMALL LETTER TSHE (SERBOCROATIAN)	CYRILLIC CAPITAL LETTER TSHE (SERBOCROATIAN)
045C	040C	CYRILLIC SMALL LETTER KJE	CYRILLIC CAPITAL LETTER KJE
045E	040E	CYRILLIC SMALL LETTER SHORT U (BYELORUSSIAN)	CYRILLIC CAPITAL LETTER SHORT U (BYELORUSSIAN)
045F	040F	CYRILLIC SMALL LETTER DZHE	CYRILLIC CAPITAL LETTER DZHE
0461	0460	CYRILLIC SMALL LETTER OMEGA	CYRILLIC CAPITAL LETTER OMEGA
0463	0462	CYRILLIC SMALL LETTER YAT	CYRILLIC CAPITAL LETTER YAT
0465	0464	CYRILLIC SMALL LETTER IOTIFIED E	CYRILLIC CAPITAL LETTER IOTIFIED E
0467	0466	CYRILLIC SMALL LETTER LITTLE YUS	CYRILLIC CAPITAL LETTER LITTLE YUS

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
0469	0468	CYRILLIC SMALL LETTER IOTFIED LITTLE YUS	CYRILLIC CAPITAL LETTER IOTIFIED LITTLE YUS
046B	046A	CYRILLIC SMALL LETTER BIG YUS	CYRILLIC CAPITAL LETTER BIG YUS
046D	046C	CYRILLIC SMALL LETTER IOTIFIED BIG YUS	CYRILLIC CAPITAL LETTER IOTIFIED BIG YUS
046F	046E	CYRILLIC SMALL LETTER KSI	CYRILLIC CAPITAL LETTER KSI
0471	0470	CYRILLIC SMALL LETTER PSI	CYRILLIC CAPITAL LETTER PSI
0473	0472	CYRILLIC SMALL LETTER FITA	CYRILLIC CAPITAL LETTER FITA
0475	0474	CYRILLIC SMALL LETTER IZHITSA	CYRILLIC CAPITAL LETTER IZHITSA
0477	0476	CYRILLIC SMALL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT	CYRILLIC CAPITAL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT
0479	0478	CYRILLIC SMALL LETTER UK	CYRILLIC CAPITAL LETTER UK
047B	047A	CYRILLIC SMALL LETTER ROUND OMEGA	CYRILLIC CAPITAL LETTER ROUND OMEGA
047D	047C	CYRILLIC SMALL LETTER OMEGA WITH TITLO	CYRILLIC CAPITAL LETTER OMEGA WITH TITLO
047F	047E	CYRILLIC SMALL LETTER OT	CYRILLIC CAPITAL LETTER OT
0481	0480	CYRILLIC SMALL LETTER KOPPA	CYRILLIC CAPITAL LETTER KOPPA
0491	0490	CYRILLIC SMALL LETTER GHE WITH UPTURN	CYRILLIC CAPITAL LETTER GHE WITH UPTURN
0493	0492	CYRILLIC SMALL LETTER GHE WITH STROKE	CYRILLIC CAPITAL LETTER GHE WITH STROKE
0495	0494	CYRILLIC SMALL LETTER GHE WITH MIDDLE HOOK	CYRILLIC CAPITAL LETTER GHE WITH MIDDLE HOOK
0497	0496	CYRILLIC SMALL LETTER ZHE WITH DESCENDER	CYRILLIC CAPITAL LETTER ZHE WITH DESCENDER
0499	0498	CYRILLIC SMALL LETTER ZE WITH DESCENDER	CYRILLIC CAPITAL LETTER ZE WITH DESCENDER
049B	049A	CYRILLIC SMALL LETTER KA WITH DESCENDER	CYRILLIC CAPITAL LETTER KA WITH DESCENDER
049D	049C	CYRILLIC SMALL LETTER KA WITH VERTICAL STROKE	CYRILLIC CAPITAL LETTER KA WITH VERTICAL STROKE
049F	049E	CYRILLIC SMALL LETTER KA WITH STROKE	CYRILLIC CAPITAL LETTER KA WITH STROKE
04A1	04A0	CYRILLIC SMALL LETTER EASHKIR KA	CYRILLIC CAPITAL LETTER BASHKIR KA
04A3	04A2	CYRILLIC SMALL LETTER EN WITH DESCENOER	CYRILLIC CAPITAL LETTER EN WITH DESCENDER
04A5	04A4	CYRILLIC SMALL LIGATURE EN GHE	CYRILLIC CAPITAL LIGATURE EN GHF
04A7	04A6	CYRILLIC SMALL LETTER PE WITH MIDDLE HOOK (ABKHASIAN)	CYRILLIC CAPITAL LETTER PE WITH MIDDLE HOOK (ABKHASIAN)

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
04A9	04A8	CYRILLIC SMALL LETTER ABKHASIAN HA	CYRILLIC CAPITAL LETTER ABKHASIAN HA
04AB	04AA	CYRILLIC SMALL LETTER ES WITH DESCENDER	CYRILLIC CAPITAL LETTER ES WITH DESCENDER
04AD	04AC	CYRILLIC SMALL LETTER TE WITH DESCENDER	CYRILLIC CAPITAL LETTER TE WITH DESCENDER
04AF	04AE	CYRILLIC SMALL LETTER STRAIGHT U	CYRILLIC CAPITAL LETTER STRAIGHT U
04B1	04B0	CYRILLIC SMALL LETTER STRAIGHT U WITH STROKE	CYRILLIC CAPITAL LETTER STRAIGHT U WITH STROKE
04B3	04B2	CYRILLIC SMALL LETTER HA WITH DESCENDER	CYRILLIC CAPITAL LETTER HA WITH DESCENDER
04B5	04B4	CYRILLIC SMALL LIGATURE TE TSE (ABKHASIAN)	CYRILLIC CAPITAL LIGATURE TE TSE (ABKHASIAN)
04B7	04B6	CYRILLIC SMALL LETTER CHE WITH DESCENDER	CYRILLIC CAPITAL LETTER CHE WITH DESCENDER
04B9	04B8	CYRILLIC SMALL LETTER CHE WITH VERTICAL STROKE	CYRILLIC CAPITAL LETTER CHE WITH VERTICAL STROKE
04BB	04BA	CYRILLIC SMALL LETTER SHHA	CYRILLIC CAPITAL LETTER SHHA
04BD	04BC	CYRILLIC SMALL LETTER ABKHASIAN CHE	CYRILLIC CAPITAL LETTER ABKHASIAN CHE
04BF	04BE	CYRILLIC SMALL LETTER ABKHASIAN CHE WITH DESCENDER	CYRILLIC CAPITAL LETTER ABKHASIAN CHE WITH DESCENDER
04C2	04C1	CYRILLIC SMALL LETTER ZHE WITH BREVE	CYRILLIC CAPITAL LETTER ZHE WITH BREVE
04C4	04C3	CYRILLIC SMALL LETTER KA WITH HOOK	CYRILLIC CAPITAL LETTER KA WITH HOOK
04C8	04C7	CYRILLIC SMALL LETTER EN WITH HOOK	CYRILLIC CAPITAL LETTER EN WITH HOOK
04CC	04CB	CYRILLIC SMALL LETTER KHAKASSIAN CHE	CYRILLIC CAPITAL LETTER KHAKASSIAN CHE
04D1	04D0	CYRILLIC SMALL LETTER A WITH BREVE	CYRILLIC CAPITAL LETTER A WITH BREVE
04D3	04D2	CYRILLIC SMALL LETTER A WITH DIAERESIS	CYRILLIC CAPITAL LETTER A WITH DIAERESIS
04D5	04D4	CYRILLIC SMALL LIGATURE A IE	CYRILLIC CAPITAL LIGATURE A IE
04D7	04D6	CYRILLIC SMALL LETTER IE WITH BREVE	CYRILLIC CAPITAL LETTER IE WITH BREVE
04D9	04D8	CYRILLIC SMALL LETTER SCHWA	CYRILLIC CAPITAL LETTER SCHWA
04DB	04DA	CYRILLIC SMALL LETTER SCHWA WITH DIAERESIS	CYRILLIC CAPITAL LETTER SCHWA WITH DIAERESIS
04DD	04DC	CYRILLIC SMALL LETTER ZHE WITH DIAERESIS	CYRILLIC CAPITAL LETTER ZHE WITH DIAERESIS
04DF	04DE	CYRILLIC SMALL LETTER ZE WITH DIAERESIS	CYRILLIC CAPITAL LETTER ZE WITH DIAERESIS

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
04E1	04E0	CYRILLIC SMALL LETTER ABKHASIAN DZE	CYRILLIC CAPITAL LETTER ABKHASIAN DZE
04E3	04E2	CYRILLIC SMALL LETTER I WITH MACRON	CYRILLIC CAPITAL LETTER I WITH MACRON
04E5	04E4	CYRILLIC SMALL LETTER I WITH DIAERESIS	CYRILLIC CAPITAL LETTER I WITH DIAERESIS
04E7	04E6	CYRILLIC SMALL LETTER O WITH DIAERESIS	CYRILLIC CAPITAL LETTER O WITH DIAERESIS
04E9	04E8	CYRILLIC SMALL LETTER BARRED O	CYRILLIC CAPITAL LETTER BARRED O
04EB	04EA	CYRILLIC SMALL LETTER BARRED O WITH DIAERESIS	CYRILLIC CAPITAL LETTER BARRED O WITH DIAERESS
04EF	04EE	CYRILLIC SMALL LETTER U WITH MACRON	CYRILLIC CAPITAL LETTER U WITH MACRON
04F1	04F0	CYRILLIC SMALL LETTER U WITH DIAERESIS	CYRILLIC CAPITAL LETTER U WITH DIAERESIS
04F3	04F2	CYRILLIC SMALL LETTER U WITH DOUBLE ACUTE	CYRILLIC CAPITAL LETTER U WITH DOUBLE ACUTE
04F5	04F4	CYRILLIC SMALL LETTER CHE AITH DIAERESIS	CYRILLIC CAPITAL LETTER CHE WITH DIAERESIS
04F9	04F8	CYRILLIC SMALL LETTER YERU WITH DIAERESIS	CYRILLIC CAPITAL LETTER YERU WITH DIAERESIS
0561	0531	ARMENIAN SMALL LETTER AYB	ARMENIAN CAPITAL LETTER AYB
0562	0532	ARMENIAN SMALL LETTER BEN	ARMENIAN CAPITAL LETTER BEN
0563	0533	ARMENIAN SMALL LETTER GIM	ARMENIAN CAPITAL LETTER GIM
0564	0534	ARMENIAN SMALL LETTER DA	ARMENIAN CAPITAL LETTER DA
0565	0535	ARMENIAN SMALL LETTER ECH	ARMENIAN CAPITAL LETTER ECH
0566	0536	ARMENIAN SMALL LETTER ZA	ARMENIAN CAPITAL LETTER ZA
0567	0537	ARMENIAN SMALL LETTER EH	ARMENIAN CAPITAL LETTER EH
0568	0538	ARMENIAN SMALL LETTER ET	ARMENIAN CAPITAL LETTER ET
0569	0539	ARMENIAN SMALL LETTER TO	ARMENIAN CAPITAL LETTER TO
056A	053A	ARMENIAN SMALL LETTER ZHE	ARMENIAN CAPITAL LETTER ZHE
056B	053B	ARMENIAN SMALL LETTER INI	ARMENIAN CAPITAL LETTER INI
056C	053C	ARMENIAN SMALL LETTER LIWN	ARMENIAN CAPITAL LETTER LIWN
056D	053D	ARMENIAN SMALL LETTER XEH	ARMENIAN CAPITAL LETTER XEH
056E	053E	ARMENIAN SMALL LETTER CA	ARMENIAN CAPITAL LETTER CA
056F	053F	ARMENIAN SMALL LETTER KEN	ARMENIAN CAPITAL LETTER KEN
0570	0540	ARMENIAN SMALL LETTER HO	ARMENIAN CAPITAL LETTER HO
0571	0541	ARMENIAN SMALL LETTER JA	ARMENIAN CAPITAL LETTER JA
0572	0542	ARMENIAN SMALL LETTER GHAD	ARMENIAN CAPITAL LETTER GHAD
0573	0543	ARMENIAN SMALL LETTER CHEH	ARMENIAN CAPITAL LETTER CHEH
0574	0544	ARMENIAN SMALL LETTER MEN	ARMENIAN CAPITAL LETTER MEN

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
0575	0545	ARMENIAN SMALL LETTER YI	ARMENIAN CAPITAL LETTER YI
0576	0546	ARMENIAN SMALL LETTER NOW	ARMENIAN CAPITAL LETTER NOW
0577	0547	ARMENIAN SMALL LETTER SNA	ARMENIAN CAPITAL LETTER SHA
0578	0548	ARMENIAN SMALL LETTER VO	ARMENIAN CAPITAL LETTER VO
0579	0549	ARMENIAN SMALL LETTER CHA	ARMENIAN CAPITAL LETTER CHA
057A	054A	ARMENIAN SMALL LETTER PEH	ARMENIAN CAPITAL LETTER PEH
057B	054B	ARMENIAN SMALL LETTER JHEH	ARMENIAN CAPITAL LETTER JHEH
057C	054C	ARMENIAN SMALL LETTER RA	ARMENIAN CAPITAL LETTER RA
057D	054D	ARMENIAN SMALL LETTER SEH	ARMENIAN CAPITAL LETTER SEH
057E	054E	ARMENIAN SMALL LETTER VEW	ARMENIAN CAPITAL LETTER VEW
057F	054F	ARMENIAN SMALL LETTER TIWN	ARMENIAN CAPITAL LETTER TIWN
0580	0550	ARMENIAN SMALL LETTER REH	ARMENIAN CAPITAL LETTER REH
0581	0551	ARMENIAN SMALL LETTER CO	ARMENIAN CAPITAL LETTER CO
0582	0552	ARMENIAN SMALL LETTER YIWN	ARMENIAN CAPITAL LETTER YIWN
0583	0553	ARMENIAN SMALL LETTER PIWP	ARMENIAN CAPITAL LETTER PIWR
0584	0554	ARMENIAN SMALL LETTER KEH	ARMENIAN CAPITAL LETTER KEH
0585	0555	ARMENIAN SMALL LETTER OH	ARMENIAN CAPITAL LETTER OH
0586	0556	ARMENIAN SMALL LETTER FEH	ARMENIAN CAPITAL LETTER FEH
10D0	10A0	GEORGIAN LETTER AN	GEORGIAN CAPITAL LETTER AN (KHUTSURI)
10D1	10A1	GEORGIAN LETTER BAN	GEORGIAN CAPITAL LETTER BAN (KHUTSURI)
10D2	10A2	GEORGIAN LETTER GAN	GEORGIAN CAPITAL LETTER GAN (KHUTSURI)
10D3	10A3	GEORGIAN LETTER DON	GEORGIAN CAPITAL LETTER DON (KHUTSURI)
10D4	10A4	GEORGIAN LETTER EN	GEORGIAN CAPITAL LETTER EN (KHUTSURI)
10D5	10A5	GEORGIAN LETTER VIN	GEORGIAN CAPITAL LETTER VIN (KHUTSURI)
10D6	10A6	GEORGIAN LETTER ZEN	GEORGIAN CAPITAL LETTER ZEN (KHUTSURI)
10D7	10A7	GEORGIAN LETTER TAN	GEORGIAN CAPITAL LETTER TAN (KHUTSURI)
10D8	10A8	GEORGIAN LETTER IN	GEORGIAN CAPITAL LETTER IN (KHUTSURI)
10D9	10A9	GEORGIAN LETTER KAN	GEORGIAN CAPITAL LETTER KAN (KHUTSURI)
10DA	10AA	GEORGIAN LETTER LAS	GEORGIAN CAPITAL LETTER LAS (KHUTSURI)
10DB	10AB	GEORGIAN LETTER MAN	GEORGIAN CAPITAL LETTER MAN (KHUTSURI)

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Lowercase code } \\ \text { point }\end{array} & \begin{array}{l}\text { Uppercase code } \\ \text { point }\end{array} & \text { Lowercase character description } & \text { Uppercase character description }\end{array}\left|\begin{array}{l}\text { GEORGIAN CAPITAL LETTER NAR } \\ \text { (KHUTSURI) }\end{array}\right| \begin{array}{l}\text { GEORGIAN CAPITAL LETTER ON } \\ \text { (KHUTSURI) }\end{array}\right\}$

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
10F3	10C3	GEORGIAN LETTER WE	GEORGIAN CAPITAL LETTER WE (KHUTSURI)
10F4	10 C 4	GEORGIAN LETTER HAR	GEORGIAN CAPITAL LETTER HAR (KHUTSURI)
10F5	10C5	GEORGIAN LETTER HOE	GEORGIAN CAPITAL LETTER HOE (KHUTSURI)
1E01	1E00	LATIN SMALL LETTER A WITH RING BELOW	LATIN CAPITAL LETTER A WITH RING BELOW
1E03	1E02	LATIN SMALL LETTER B WITH DOT ABOVE	LATIN CAPITAL LETTER B WITH DOT ABOVE
1E05	1E04	LATIN SMALL LETTER B WITH DOT BELOW	LATIN CAPITAL LETTER B WITH DOT BELOW
1E07	1E06	LATIN SMALL LETTER B WITH LINE BELOW	LATIN CAPITAL LETTER B WITH LINE BELOW
1E09	1E08	LATIN SMALL LETTER C WITH CEDILLA AND ACUTE	LATIN CAPITAL LETTER C WITH CEDILLA AND ACUTE
1E0B	1E0A	LATIN SMALL LETTER D WITH DOT ABOVE	LATIN CAPITAL LETTER D WITH DOT ABOVE
1E0D	1E0C	LATIN SMALL LETTER D WITH DOT BELOW	LATIN CAPITAL LETTER D WITH DOT BELOW
1E0F	1E0E	LATIN SMALL LETTER D WITH LINE BELOW	LATIN CAPITAL LETTER D WITH LINE BELOW
1E11	1E10	LATIN SMALL LETTER D WITH CEDILLA	LATIN CAPITAL LETTER D WITH CEDILLA
1E13	1E12	LATIN SMALL LETTER D WITH CIRCUMFLEX BELOW	LATIN CAPITAL LETTER D WITH CIRCUMFLEX BELOW
1E15	1E14	LATIN SMALL LETTER E WITH MACRON AND GRAVE	LATIN CAPITAL LETTER E WITH MACRON AND GRAVE
1E17	1E16	LATIN SMALL LETTER E WITH MACRON AND ACUTE	LATIN CAPITAL LETTER E WITH MACRON AND ACUTE
1E19	1E18	LATIN SMALL LETTER E WITH CIRCUMFLEX BELOW	LATIN CAPITAL LETTER E WITH CIRCUMFLEX BELOW
1E1B	1E1A	LATIN SMALL LETTER E WITH TILDE BELOW	LATIN CAPITAL LETTER E WITH TILDE BELOW
1E1D	1E1C	LATIN SMALL LETTER E WITH CEDILLA AND BREVE	LATIN CAPITAL LETTER E WITH CEDILLA AND BREVE
1E1F	1E1E	LATIN SMALL LETTER F WITH DOT ABOVE	LATIN CAPITAL LETTER F WITH DOT ABOVE
1E21	1E20	LATIN SMALL LETTER G WITH MACRON	LATIN CAPITAL LETTER G WITH MACRON
1 E 23	1E22	LATIN SMALL LETTER H WITH DOT ABOVE	LATIN CAPITAL LETTER H WITH DOT ABOVE
1 E 25	1E24	LATIN SMALL LETTER H WITH DOT BELOW	LATIN CAPITAL LETTER H WITH DOT BELOW
1E27	1E26	LATIN SMALL LETTER H WITH DIAERESIS	LATIN CAPITAL LETTER H WITH DIAERESIS

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
1E29	1 E28	LATIN SMALL LETTER H WITH CEDILLA	LATIN CAPITAL LETTER H WITH CEDILLA
1E2B	1E2A	LATIN SMALL LETTER H WITH BREVE BELOW	LATIN CAPITAL LETTER H WITH BREVE BELOW
1E2D	1E2C	LATIN SMALL LETTER I WITH TILDE BELOW	LATIN CAPITAL LETTER I WITH TILDE BELOW
1E2F	1E2E	LATIN SMALL LETTER I WITH DIAERESIS AND ACUTE	LATIN CAPITAL LETTER I WITH DIAERESIS AND ACUTE
1E31	1E30	LATIN SMALL LETTER K WITH ACUTE	LATIN CAPITAL LETTER K WITH ACUTE
1 E 33	1 E32	LATIN SMALL LETTER K WITH DOT BELOW	LATIN CAPITAL LETTER K WITH DOT BELOW
1 E 35	1 E34	LATIN SMALL LETTER K WITH LINE BELOW	LATIN CAPITAL LETTER K WITH LINE BELOW
1 E37	1 E36	LATIN SMALL LETTER L WITH DOT BELOW	LATIN CAPITAL LETTER L WITH DOT BELOW
1E39	1 E38	LATIN SMALL LETTER L WITH DOT BELOW AND MACRON	LATIN CAPITAL LETTER L WITH DOT BELOW AND MACRON
1E3B	1E3A	LATIN SMALL LETTER L WITH LINE BELOW	LATIN CAPITAL LETTER L WITH LINE BELOW
1E3D	1E3C	LATIN SMALL LETTER L WITH CIRCUMFLEX BELOW	LATIN CAPITAL LETTER L WITH CIRCUMFLEX BELOW
1E3F	1E3E	LATIN SMALL LETTER M WITH ACUTE	LATIN CAPITAL LETTER M WITH ACUTE
1E41	1E40	LATIN SMALL LETTER M WITH DOT ABOVE	LATIN CAPITAL LETTER M WITH DOT ABOVE
1E43	1 E 42	LATIN SMALL LETTER M WITH DOT BELOW	LATIN CAPITAL LETTER M WITH DOT BELOW
1E45	1E44	LATIN SMALL LETTER N WITH DOT ABOVE	LATIN CAPITAL LETTER N WITH DOT ABOVE
1E47	1 E 46	LATIN SMALL LETTER N WITH DOT BELOW	LATIN CAPITAL LETTER N WITH DOT BELOW
1E49	1 E 48	LATIN SMALL LETTER N WITH LINE BELOW	LATIN CAPITAL LETTER N WITH LINE BELOW
1E4B	1E4A	LATIN SMALL LETTER N WITH CIRCUMFLEX BELOW	LATIN CAPITAL LETTER N WITH CIRCUMFLEX BELOW
1E4D	1E4C	LATIN SMALL LETTER O WITH TILDE AND ACUTE	LATIN CAPITAL LETTER O WITH TILDE AND ACUTE
1E4F	1E4E	LATIN SMALL LETTER O WITH TILDE AND DIAERESIS	LATIN CAPITAL LETTER O WITH TILDE AND DIAERESIS
1E51	1 E50	LATIN SMALL LETTER O WITH MACRON AND GRAVE	LATIN CAPITAL LETTER O WITH MACRON AND GRAVE
1 E53	1 E52	LATIN SMALL LETTER O WITH MACRON AND ACUTE	LATIN CAPITAL LETTER O WITH MACRON AND ACUTE
1 E 55	1E54	LATIN SMALL LETTER P WITH ACUTE	LATIN CAPITAL LETTER P WITH ACUTE

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
1E57	1E56	LATIN SMALL LETTER P WITH DOT ABOVE	LATIN CAPITAL LETTER P WITH DOT ABOVE
1 E59	1E58	LATIN SMALL LETTER R WITH DOT ABOVE	LATIN CAPITAL LETTER R WITH DOT ABOVE
1E5B	1E5A	LATIN SMALL LETTER R WITH DOT BELOW	LATIN CAPITAL LETTER R WITH DOT BELOW
1E5D	1E5C	LATIN SMALL LETTER R WITH DOT BELOW AND MACRON	LATIN CAPITAL LETTER R WITH DOT BELOW AND MACRON
1E5F	1E5E	LATIN SMALL LETTER R WITH LINE BELOW	LATIN CAPITAL LETTER R WITH LINE BELOW
1E61	1E60	LATIN SMALL LETTER S WITH DOT ABOVE	LATIN CAPITAL LETTER S WITH DOT ABOVE
1E63	1 E62	LATIN SMALL LETTER S WITH DOT BELOW	LATIN CAPITAL LETTER S WITH DOT BELOW
1E65	1E64	LATIN SMALL LETTER S WITH ACUTE AND DOT ABOVE	LATIN CAPITAL LETTER S WITH ACUTE AND DOT ABOVE
1E67	1E66	LATIN SMALL LETTER S WITH CARON AND DOT ABOVE	LATIN CAPITAL LETTER S WITH CARON AND DOT ABOVE
1E69	1E68	LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE	LATIN CAPITAL LETTER S WITH DOT BELOW AND DOT ABOVE
1E6B	1E6A	LATIN SMALL LETTER T WITH DOT ABOVE	LATIN CAPITAL LETTER T WITH DOT ABOVE
1E6D	1E6C	LATIN SMALL LETTER T WITH DOT BELOW	LATIN CAPITAL LETTER T WITH DOT BELOW
1E6F	1E6E	LATIN SMALL LETTER T WITH LINE BELOW	LATIN CAPITAL LETTER T WITH LINE BELOW
1E71	1E70	LATIN SMALL LETTER T WITH CIRCUMFLEX BELOW	LATIN CAPITAL LETTER T WITH CIRCUMFLEX BELOW
1 E 73	1 E72	LATIN SMALL LETTER U WITH DIAERESIS BELOW	LATIN CAPITAL LETTER U WITH DIAERESIS BELOW
1 E 75	1E74	LATIN SMALL LETTER U WITH TILDE BELOW	LATIN CAPITAL LETTER U WITH TILDE BELOW
1 E 77	1E76	LATIN SMALL LETTER U WITH CIRCUMFLEX BELOW	LATIN CAPITAL LETTER U WITH CIRCUMFLEX BELOW
1E79	1E78	LATIN SMALL LETTER U WITH TILDE AND ACUTE	LATIN CAPITAL LETTER U WITH TILDE AND ACUTE
1E7B	1E7A	LATIN SMALL LETTER U WITH MACRON AND DIAERESIS	LATIN CAPITAL LETTER U WITH MACRON AND DIAERESIS
1E7D	1E7C	LATIN SMALL LETTER V WITH TILDE	LATIN CAPITAL LETTER V WITH TILDE
1E7F	1E7E	LATIN SMALL LETTER V WITH DOT BELOW	LATIN CAPITAL LETTER V WITH DOT BELOW
1E81	1E80	LATIN SMALL LETTER W WITH GRAVE	LATIN CAPITAL LETTER W WITH GRAVE
1 E83	1 E 82	LATIN SMALL LETTER W WITH ACUTE	LATIN CAPITAL LETTER W WITH ACUTE

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
1E85	1E84	LATIN SMALL LETTER W WITH DIAERESIS	LATIN CAPITAL LETTER W WITH DIAERESIS
1E87	1E86	LATIN SMALL LETTER W WITH DOT ABOVE	LATIN CAPITAL LETTER W WITH DOT ABOVE
1E89	1 E88	LATIN SMALL LETTER W WITH DOT BELOW	LATIN CAPITAL LETTER W WITH DOT BELOW
1E8B	1E8A	LATIN SMALL LETTER X WITH DOT ABOVE	LATIN CAPITAL LETTER X WITH DOT ABOVE
1E8D	1E8C	LATIN SMALL LETTER X WITH DIAERESIS	LATIN CAPITAL LETTER X5 WITH DIAERESIS
1E8F	1E8E	LATIN SMALL LETTER Y WITH DOT ABOVE	LATIN CAPITAL LETTER Y WITH DOT ABOVE
1E91	1E90	LATIN SMALL LETTER Z WITH CIRCUMFLEX	LATIN CAPITAL LETTER Z WITH CIRCUMFLEX
$1 \mathrm{E93}$	1E92	LATIN SMALL LETTER Z WITH DOT BELOW	LATIN CAPITAL LETTER Z WITH DOT BELOW
1E95	1E94	LATIN SMALL LETTER Z WITH LINE BELOW	LATIN CAPITAL LETTER Z WITH LINE BELOW
1EA1	1EA0	LATIN SMALL LETTER A WITH DOT BELOW	LATIN CAPITAL LETTER A WITH DOT BELOW
1EA3	1EA2	LATIN SMALL LETTER A WITH HOOK ABOVE	LATIN CAPITAL LETTER A WITH HOOK ABOVE
1EA5	1EA4	LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND ACUTE
1EA7	1EA6	LATIN SMALL LETTER A WITH CIRCUMFLEX AND GRAVE	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND GRAVE
1EA9	1EA8	LATIN SMALL LETTER A WITH CIRCUMFLEX AND HOOK ABOVE	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND HOOK ABOVE
1EAB	1EAA	LATIN SMALL LETTER A WITH CIRCUMFLEX AND TILDE	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND TILDE
1EAD	1EAC	LATIN SMALL LETTER A WITH CIRCUMFLEX AND DOT BELOW	LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND DOT BELOW
1EAF	1EAE	LATIN SMALL LETTER A WITH BREVE AND ACUTE	LATIN CAPITAL LETTER A WITH BREVE AND ACUTE
1EB1	1EB0	LATIN SMALL LETTER A WITH BREVE AND GRAVE	LATIN CAPITAL LETTER A WITH BREVE AND GRAVE
1EB3	1EB2	LATIN SMALL LETTER A WITH BREVE AND HOOK ABOVE	LATIN CAPITAL LETTER A WITH BREVE AND HOOK ABOVE
1EB5	1EB4	LATIN SMALL LETTER A WITH BREVE AND TILDE	LATIN CAPITAL LETTER A WITH BREVE AND TILDE
1EB7	1EB6	LATIN SMALL LETTER A WITH BREVE AND DOT BELOW	LATIN CAPITAL LETTER A WITH BREVE AND DOT BELOW
1EB9	1EB8	LATIN SMALL LETTER E WITH DOT BELOW	LATIN CAPITAL LETTER E WITH DOT BELOW
1EBB	1EBA	LATIN SMALL LETTER E WITH HOOK ABOVE	LATIN CAPITAL LETTER E WITH HOOK ABOVE

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
1EBD	1EBC	LATIN SMALL LETTER E WITH TILDE	LATIN CAPITAL LETTER E WITH TILDE
1EBF	1EBE	LATIN SMALL LETTER E WITH CIRCUMFLEX AND ACUTE	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND ACUTE
1EC1	1EC0	LATIN SMALL LETTER E WITH CIRCUMFLEX AND GRAVE	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND GRAVE
1EC3	1EC2	LATIN SMALL LETTER E WITH CIRCUMFLEX AND HOOK ABOVE	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND HOOK ABOVE
1EC5	1EC4	LATIN SMALL LETTER E WITH CIRCUMFLEX AND TILDE	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND TILDE
1EC7	1EC6	LATIN SMALL LETTER E WITH CIRCUMFLEX AND DOT BELOW	LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND DOT BELOW
1EC9	1EC8	LATIN SMALL LETTER I WITH HOOK ABOVE	LATIN CAPITAL LETTER I WITH HOOK ABOVE
1ECB	1ECA	LATIN SMALL LETTER I WITH DOT BELOW	LATIN CAPITAL LETTER I WITH DOT BELOW
1ECD	1ECC	LATIN SMALL LETTER O WITH DOT BELOW	LATIN CAPITAL LETTER O WITH DOT BELOW
1ECF	1ECE	LATIN SMALL LETTER O WITH HOOK ABOVE	LATIN CAPITAL LETTER O WITH HOOK ABOVE
1ED1	1ED0	LATIN SMALL LETTER O WITH CIRCUMFLEX AND ACUTE	LATIN CAPITAL LETTER O WITH CRCUMFLEX AND ACUTE
1ED3	1ED2	LATIN SMALL LETTER O WITH CIRCUMFLEX AND GRAVE	LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND GRAVE
1ED5	1ED4	LATIN SMALL LETTER O WITH CIRCUMFLEX AND HOOK ABOVE	LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND HOOK ABOVE
1ED7	1ED6	LATIN SMALL LETTER O WITH CIRCUMFLEX AND TILDE	LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND TILDE
1ED9	1ED8	LATIN SMALL LETTER O WITH CIRCUMFLEX AND DOT BELOW	LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND DOT BELOW
1EDB	1EDA	LATIN SMALL LETTER O WITH HORN AND ACUTE	LATIN CAPITAL LETTER O WITH HORN AND ACUTE
1EDD	1EDC	LATIN SMALL LETTER O WITH HORN AND GRAVE	LATIN CAPITAL LETTER O WITH HORN AND GRAVE
1EDF	1EDE	LATIN SMALL LETTER O WITH HORN AND HOOK ABOVE	LATIN CAPITAL LETTER O WITH HORN AND HOOK ABOVE
1EE1	1EE0	LATIN SMALL LETTER O WITH HORN AND TILDE	LATIN CAPITAL LETTER O WITH HORN AND TILDE
1EE3	1EE2	LATIN SMALL LETTER O WITH HORN AND DOT BELOW	LATIN CAPITAL LETTER O WITH HORN AND DOT BELOW
1EE5	1EE4	LATIN SMALL LETTER U WITH DOT BELOW	LATIN CAPITAL LETTER U WITH DOT BELOW
1EE7	1EE6	LATIN SMALL LETTER U WITH HOOK ABOVE	LATIN CAPITAL LETTER U WITH HOOK ABOVE
1EE9	1EE8	LATIN SMALL LETTER U WITH HORN AND ACUTE	LATIN CAPITAL LETTER U WITH HORN AND ACUTE

Lowercase code point	Uppercase code point	LEEA	LATIN SMALL LETTER U WITH HORN AND GRAVE
1EEB	1EEC	LATIN SMALL LETTER U WITH HORN AND HOCK ABOVE	LATIN CAPITAL LETTER U WITH HORN AND GRAVE
1EED	1EEE	LATITAL LETTER U WITH HORIN SMALL LETTER U WITH HOR AND TILDE	LATIN CAPITAL LETTER U WITH HORN AND TILDE
1EEF	1EF0	1EF2	LATIN SMALL LETTER U WITH HORN AND DOT BELOW
1EF1	1EF4	LATIN CAPITAL LETTER U WITH HORN AND DOT BELOW	
GRAVE			

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
1F21	1F29	GREEK SMALL LETTER ETA WITH DASIA	GREEK CAPITAL LETTER ETA WITH DASIA
1F22	1F2A	GREEK SMALL LETTER ETA WITH PSILI AND VARIA	GREEK CAPITAL LETTER ETA WITH PSILI AND VARIA
1F23	1F2B	GREEK SMALL LETTER ETA WITH DASIA AND VARIA	GREEK CAPITAL LETTER ETA WITH DASIA AND VARIA
1F24	1F2C	GREEK SMALL LETTER ETA WITH PSILI AND OXIA	GREEK CAPITAL LETTER ETA WITH PSILI AND OXIA
1F25	1F2D	GREEK SMALL LETTER ETA WITH DASIA AND OXIA	GREEK CAPITAL LETTER ETA WITH DASIA AND OXIA
1F26	1F2E	GREEK SMALL LETTER ETA WITH PSILI AND PERISPOMENI	GREEK CAPITAL LETTER ETA WITH PSILI AND PERISPOMENI
1F27	1F2F	GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI	GREEK CAPITAL LETTER ETA WITH DASIA AND PERISPOMENI
1F30	1F38	GREEK SMALL LETTER IOTA WITH PSILI	GREEK CAPITAL LETTER IOTA WITH PSILI
1F31	1F39	GREEK SMALL LETTER IOTA WITH DASIA	GREEK CAPITAL LETTER IOTA WITH DASIA
1F32	1F3A	GREEK SMALL LETTER IOTA WITH PSILI AND VARIA	GREEK CAPITAL LETTER IOTA WITH PSILI AND VARIA
1F33	1F3B	GREEK SMALL LETTER IOTA WITH DASIA AND VARIA	GREEK CAPITAL LETTER IOTA WITH DASIA AND VARIA
1F34	1F3C	GREEK SMALL LETTER IOTA WITH PSILI AND OXIA	GREEK CAPITAL LETTER IOTA WITH PSILI AND OXIA
1F35	1F3D	GREEK SMALL LETTER IOTA WITH DASIA AND OXIA	GREEK CAPITAL LETTER IOTA WITH DASIA AND OXIA
1F36	1F3E	GREEK SMALL LETTER IOTA WITH PSILI AND PERISPOMENI	GREEK CAPITAL LETTER IOTA WITH PSILI AND PERISPOMENI
1F37	1F3F	GREEK SMALL LETTER IOTA WITH DASIA AND PERISPOMENI	GREEK CAPITAL LETTER IOTA WITH DASIA AND PERISPOMENI
1F40	1F48	GREEK SMALL LETTER OMICRON WITH PSILI	GREEK CAPITAL LETTER OMICRON WITH PSILI
1F41	1F49	GREEK SMALL LETTER OMICRON WITH DASIA	GREEK CAPITAL LETTER OMICRON WITH DASIA
1F42	1F4A	GREEK SMALL LETTER OMICRON WITH PSILI AND VARIA	GREEK CAPITAL LETTER OMICRON WITH PSILI AND VARIA
1F43	1F4B	GREEK SMALL LETTER OMICRON WITH DASIA AND VARIA	GREEK CAPITAL LETTER OMICRON WITH DASIA AND VARIA
1F44	1F4C	GREEK SMALL LETTER OMICRON WITH PSILI AND OXIA	GREEK CAPITAL LETTER OMICRON WITH PSILI AND OXIA
1F45	1F4D	GREEK SMALL LETTER OMICRON WITH DASIA AND OXIA	GREEK CAPITAL LETTER OMICRON WITH DASIA AND OXIA
1F51	1F59	GREEK SMALL LETTER UPSILON WITH DASIA	GREEK CAPITAL LETTER UPSILON WITH OASIS

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
1F53	1F5B	GREEK SMALL LETTER UPSILON WITH DASIA AND VARIA	GREEK CAPITAL LETTER UPSILON WITH DASIA AND VARIA
1F55	1F5D	GREEK SMALL LETTER UPSILON WITH DASIA AND OXIA	GREEK CAPITAL LETTER UPSILON WITH DASIA AND OXIA
1F57	1F5F	GREEK SMALL LETTER UPSILON WITH DASIA AND PERISPOMENI	GREEK CAPITAL LETTER UPSILON WITH DASIA AND PERISPOMENI
1F60	1F68	GREEK SMALL LETTER OMEGA WITh PSILI	GREEK CAPITAL LETTER OMEGA WITH PSILI
1F61	1F69	GREEK SMALL LETTER OMEGA WITH DASIA	GREEK CAPITAL LETTER OMEGA WITH DASIA
1F62	1F6A	GREEK SMALL LETTER OMEGA WITH PSILI AND VARIA	GREEK CAPITAL LETTER OMEGA WITH PSILI AND VARIA
1F63	1F6B	GREEK SMALL LETTER OMEGA WITH DASIA AND VARIA	GREEK CAPITAL LETTER OMEGA WITH DASIA AND VARIA
1F64	1F6C	GREEK SMALL LETTER OMEGA WITH PSILI AND OXIA	GREEK CAPITAL LETTER OMEGA WITH PSILI AND OXIA
1F65	1F6D	GREEK SMALL LETTER OMEGA WITH DASIA AND OXIA	GREEK CAPITAL LETTER OMEGA WITH DASIA AND OXIA
1F66	1F6E	GREEK SMALL LETTER OMEGA WITH PSILI AND PERISPOMENI	GREEK CAPITAL LETTER OMEGA WITH PSILI AND PERISPOMENI
1F67	1F6F	GREEK SMALL LETTER OMEGA WITH DASIA AND PERISPOMENI	GREEK CAPITAL LETTER OMEGA WITH DASIA AND PERISPOMENI
1F80	1F88	GREEK SMALL LETTER ALPHA WITH PSILI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ALPHA WITh PSILI AND PROSGEGRAMMENI
1F81	1F89	GREEK SMALL LETTER ALPHA WITH DASIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ALPHA WITH DASIA AND PROSGEGRAMMENI
1F82	1F8A	GREEK SMALL LETTER ALPHA WITH PSILI AND VARIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ALPHA WITH PSILI AND VARIA AND PROSGEGRAMMENI
1F83	1F8B	GREEK SMALL LETTER ALPHA WITH DASIA AND VARIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ALPHA WITH DASIA AND VARIA AND PROSGEGRAMMENI
1F84	1F8C	GREEK SMALL LETTER ALPHA WITH PSILI AND OXIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ALPHA WITH PSILI AND OXIA AND PROSGEGRAMMEN
1F85	1F8D	GREEK SMALL LETTER ALPHA WITH DASIA AND OXIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ALPHA WITH DASIA AND OXIA AND PROSGEGRAMMEN
1 F86	1F8E	GREEK SMALL LETTER ALPHA WITH PSILI AND PERISPOMENI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ALPHA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI
1F87	1F8F	GREEK SMALL LETTER ALPHA WITH DASIA AND PERISPOMENI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ALPHA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
1F90	1F98	GREEK SMALL LETTER ETA WITH PSILI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ETA WITH PSILI AND PROSGEGRAMMENI
1F91	1F99	GREEK SMALL LETTER ETA WITH DASIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ETA WITH DASIA AND PROSGEGRAMMENI
1F92	1F9A	GREEK SMALL LETTER ETA WITH PSILI AND VARIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ETA WITH PSILI AND VARIA AND PROSGEGRAMMENI
1F93	1F9B	GREEK SMALL LETTER ETA WITH DASIA AND VARIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ETA WITH DASIA AND VARIA AND PROSGEGRAMMENI
1F94	1F9C	GREEK SMALL LETTER ETA WITH PSILI AND OXIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ETA WITH PSILI AND OXIA AND PROSGEGRAMMENI
1F95	1F9D	GREEK SMALL LETTER ETA WITH DASIA AND OXIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ETA WITH DASIA AND OXIA AND PROSGEGRAMMENI
1F96	1F9E	GREEK SMALL LETTER ETA WITH PSILI AND PERISPOMENI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ETA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI
1F97	1F9F	GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER ETA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI
1FA0	1FA8	GREEK SMALL LETTER OMEGA WITH PSILI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER OMEGA WITH PSILI AND PROSGEGRAMMENI
1FA1	1FA9	GREEK SMALL LETTER OMEGA WITH DASIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER OMEGA WITH DASIA AND PROSGEGRAMMENI
1FA2	1FAA	GREEK SMALL LETTER OMEGA WITH PSILI AND VARIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER OMEGA WITH PSILI AND VARIA AND PROSGEGRAMMENI
1FA3	1FAB	GREEK SMALL LETTER OMEGA WITH DASIA AND VARIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER OMEGA WITH DASIA AND VARIA AND PROSGEGRAMMENI
1FA4	1FAC	GREEK SMALL LETTER OMEGA WITH PSILI AND OXIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER OMEGA WITH PSILI AND OXIA AND PROSGEGRAMMENI
1FA5	1FAD	GREEK SMALL LETTER OMEGA WITH DASIA AND OXIA AND YPOGEGRAMMENI	GREEK CAPITAL LETTER OMEGA WITH DASIA AND OXIA AND PROSGEGRAMMENI
1FA6	1FAE	GREEK SMALL LETTER OMEGA WITh PSILI AND PERISPOMENI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER OMEGA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI
1FA7	1FAF	GREEK SMALL LETTER OMEGA WITH DASIA AND PEPISPOMENI AND YPOGEGRAMMENI	GREEK CAPITAL LETTER OMECA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI
1FB0	1FB8	GREEK SMALL LETTER ALPHA WITH VRACHY	GREEK CAPITAL LETTER ALPHA WITH VRACHY

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
1FB1	1FB9	GREEK SMALL LETTER ALPHA WITH MACRON	GREEK CAPITAL LETTER ALPHA WITH MACRON
1FD0	1FD8	GREEK SMALL LETTER IOTA WITH VRACHY	GREEK CAPITAL LETTER IOTA WITH VRACHY
1FD1	1FD9	GREEK SMALL LETTER IOTA WITH MACRON	GREEK CAPITAL LETTER IOTA WITH MACRON
1FE0	1FE8	GREEK SMALL LETTER UPSILON WITH VRACHY	GREEK CAPITAL LETTER UPSILON WITH VRACHY
1FE1	1FE9	GREEK SMALL LETTER UPSILON WITH MACRON	GREEK CAPITAL LETTER UPSILON WITH MACRON
24D0	24B6	CIRCLED LATIN SMALL LETTER A	CIRCLED LATIN CAPITAL LETTER A
24D1	24B7	CIRCLED LATIN SMALL LETTER B	CIRCLED LATIN CAPITAL LETTER B
24D2	24B8		
24D3	24B9	```CIRCLED LATIN SMALL LETTER D```	
24D4	24BA	CIRCLED LATIN SMALL LETTER E	CIRCLED LATIN CAPITAL LETTER E
24D5	24BB	CIRCLED LATIN SMALL LETTER F	CIRCLED LATIN CAPITAL LETTER F
24D6	24BC	CIRCLED LATIN SMALL LETTER G	CIRCLED LATIN CAPITAL LETTER G
24D7	24BD	CIRCLED LATIN SMALL LETTER H	CIRCLED LATIN CAPITAL LETTER H
24D8	24BE	CIRCLED LATIN SMALL LETTER I	CIRCLED LATIN CAPITAL LETTER I
24D9	24BF	CIRCLED LATIN SMALL LETTER J	CIRCLED LATIN CAPITAL LETTER J
24DA	24C0	CIRCLED LATIN SMALL LETTER K	CIRCLED LATIN CAPITAL LETTER K
24DB	24C1	CIRCLED LATIN SMALL LETTER L	CIRCLED LATIN CAPITAL LETTER L
24DC	24C2	CIRCLED LATIN SMALL LETTER M	
24DD	24C3	CIRCLED LATIN SMALL LETTER N	CIRCLED LATIN CAPITAL LETTER N
24DE	24C4	CIRCLED LATIN SMALL LETTER 0	CIRCLED LATIN CAPITAL LETTER 0
24DF	24C5	CIRCLED LATIN SMALL LETTER P	CIRCLED LATIN CAPITAL LETTER P
24E0	24C6	CIRCLED LATIN SMALL LETTER Q	CIRCLED LATIN CAPITAL LETTER Q
24E1	24C7	CIRCLED LATIN SMALL LETTER R	CIRCLED LATIN CAPITAL LETTER R
24E2	24C8	CIRCLED LATIN SMALL LETTER S	CIRCLED LATIN CAPITAL LETTER S

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
24E3	24C9	CIRCLED LATIN SMALL LETTER T	CIRCLED LATIN CAPITAL LETTER T
24E4	24CA	CIRCLED LATIN SMALL LETTER U	CIRCLED LATIN CAPITAL LETTER U
24E5	24CB	CIRCLED LATIN SMALL LETTER V	CIRCLED LATIN CAPITAL LETTER v V
24E6	24CC	CIRCLED LATIN SMALL LETTER W	CIRCLED LATIN CAPITAL LETTER W
24E7	24CD	CIRCLED LATIN SMALL LETTER x	CIRCLED LATIN CAPITAL LETTER x
24E8	24CE	```M CIRCLED LATIN SMALL LETTER Y```	
24E9	24CF		
FF41	FF21	FULLWIDTH LATIN SMALL LETTER A	FULLWIDTH LATIN CAPITAL LETTER A
FF42	FF22	FULLWIDTH LATIN SMALL LETTER B	FULLWIDTH LATIN CAPITAL LETTER B
FF43	FF23	FULLWIDTH LATIN SMALL LETTER C	FULLWIDTH LATIN CAPITAL LETTER C
FF44	FF24	FULLWIDTH LATIN SMALL LETTER D	FULLWIDTH LATIN CAPITAL LETTER D
FF45	FF25	FULLWIDTH LATIN SMALL LETTER E	FULLWIDTH LATIN CAPITAL LETTER E
FF46	FF26	FULLWIDTH LATIN SMALL LETTER F	FULLWIDTH LATIN CAPITAL LETTER F
FF47	FF27	FULLWIDTH LATIN SMALL LETTER G	FULLWIDTH LATIN CAPITAL LETTER G
FF48	FF28	FULLWIDTH LATIN SMALL LETTER H	FULLWIDTH LATIN CAPITAL LETTER H
FF49	FF29	FULLWIDTH LATIN SMALL LETTER I	FULLWIDTH LATIN CAPITAL LETTER I
FF4A	FF2A	FULLWIDTH LATIN SMALL LETTER J	FULLWIDTH LATIN CAPITAL LETTER J
FF4B	FF2B	FULLWIDTH LATIN SMALL LETTER K	FULLWIDTH LATIN CAPITAL LETTER K
FF4C	FF2C	FULLWIDTH LATIN SMALL LETTER L	FULLWIDTH LATIN CAPITAL LETTER L
FF4D	FF2D	FULLWIDTH LATIN SMALL LETTER M	FULLWIDTH LATIN CAPITAL LETTER M
FF4E	FF2E	FULLWIDTH LATIN SMALL LETTER N	FULLWIDTH LATIN CAPITAL LETTER N
FF4F	FF2F	FULLWIDTH LATIN SMALL LETTER O	FULLWIDTH LATIN CAPITAL LETTER O
FF50	FF30	FULLWIDTH LATIN SMALL LETTER P	FULLWIDTH LATIN CAPITAL LETTER P

Lowercase code point	Uppercase code point	Lowercase character description	Uppercase character description
FF51	FF31	FULLWIDTH LATIN SMALL LETTER Q	FULLWIDTH LATIN CAPITAL LETTER Q
FF52	FF32	FULLWIDTH LATIN SMALL LETTER R	FULLWIDTH LATIN CAPITAL LETTER R
FF53	FF33	FULLWIDTH LATIN SMALL LETTER S	FULLWIDTH LATIN CAPITAL LETTER S
FF54	FF34	FULLWIDTH LATIN SMALL LETTER T	FULLWIDTH LATIN CAPITAL LETTER T
FF55	FF35	FULLWIDTH LATIN SMALL LETTER U	FULLWIDTH LATIN CAPITAL LETTER U
FF56	FF36	FULLWIDTH LATIN SMALL LETTER V	FULLWIDTH LATIN CAPITAL LETTER V
FF57	FF37	FULLWIDTH LATIN SMALL LETTER W	FULLWIDTH LATIN CAPITAL LETTER W
FF58	FF38	FULLWIDTH LATIN SMALL LETTER X	FULLWIDTH LATIN CAPITAL LETTER X
FF59	FF39	FULLWIDTH LATIN SMALL LETTER Y	FULLWIDTH LATIN CAPITAL LETTER Y
FF5A	FF3A	FULLWIDTH LATIN SMALL LETTER Z	FULLWIDTH LATIN CAPITAL LETTER Z

GB18030: The Chinese standard

>

GB 18030-2000 is a Chinese standard that specifies an extended code page for use in the Chinese market. This code page standard is important for the software industry because the China National Information Technology Standardization Technical Committee has mandated that any software application that is released for the Chinese market after September 1, 2001, be enabled for GB18030.

OS/400 supports this encoding with CCSID 1392. Generally, you should use Unicode instead of 1392 for complete national language support. CCSID 1392 is provided if you need to handle or interchange GB18030 encoded data. See Unicode for more information.

A brief history of major GB code pages

A common base code page standard for Chinese is GB 2312-1980. It encodes more than 6,000 frequently-used Chinese ideographs. With the growing importance of Unicode and the parallel standard ISO 10646 (which was adopted by China as GB 13000), an extension of GB 2312-1980 was created. This extension was called GBK; it encoded all 20,902 unified ideographs that are assigned in Unicode 2.1. GBK is not a formal standard, but a widely-implemented specification.

Unicode 3.0 added more than 6,000 ideographs, and version 3.1 added about 42,000 additional ideographs.

GB 18030 was created as an update of GBK for Unicode 3.0 with an extension that covers all of Unicode. It has the following general features:

- GB 18030 character assignments are backwards compatible with the GB 2312-1980 standard and the GBK specification.
- The mapping table between GB 18030 and Unicode is backwards compatible with the one between GB 2312-1980 and Unicode, and with some exceptions (with the one between GBK and Unicode), most of the changes compared to the GBK mapping table are due to updates for Unicode 3.0.
- GB 18030 specifies a mapping table that covers all Unicode code points. It is functionally similar to a UTF (Unicode Transformation Format) while maintaining compatibility of GB-encoded text with GBK and GB 2312-1980.

<

Work with CCSIDs

This topic describes how the server implements the Character Data Representation Architecture (CDRA). Using the server implementation of CDRA, you can achieve consistent representation, processing, and interchange of coded characters (data) on OS/400 and across IBM systems. The primary implementation of CDRA on OS/400 is through coded character set identifier (CCSID) support.

- Recommendations and guidelines for using CCSIDs
- OS/400 function support for CCSIDS
- Change the CCSID of a physical file
- Graphic character (data) sort implementation
- CCSID support for messages

Recommendations and guidelines for using CCSIDs

When writing global applications, the following are some recommendations to remember:

- Because the system is shipped with a default CCSID of 65535, character data conversions do not normally occur in applications. You should look over the CCSID information in this topic, however, because the system may need to participate in a multilingual environment, a network, or exchanging data at a later time.
- Applications implementing their own mapping scheme should use CCSID 65535, where a CCSID assignment is necessary. For example, depending on what an application does, it might need to use CCSID 65535 for the files, or it might need to use CCSID 65535 for the jobs. Because other applications may require CCSIDs other than 65535, consider changing such applications by replacing the mapping scheme with CCSID support.
- Correctly define fields based on their usage. If fields contain application-dependent values (for example, control characters or fields that are not used as real character fields), define the fields as hexadecimal data or character fields with CCSID 65535.
- Avoid using characters that are not in the invariant character set for names and literals in programs.

Follow these guidelines when using CCSIDs:

- Use CCSIDs in multilingual applications to maintain character integrity in database files, displays, and printed data.
- You can find a suggested CCSID for a language in Language_identifiers_and_associated_defaull CCSDD.
- If the QIGC system value is set on, set QCCSID as a mixed CCSID or 65535. For more information on QIGC, see DBCS system indicator (OlGC) system value.
- If you use DBCS support, set the job CCSID to a mixed CCSID. If you do not, set the job CCSID to a single-byte CCSID.
- Ensure that the QCHRID code page is compatible with the character set and code page of the QCCSID value, unless the QCCSID value is 65535. If the QCCSID value is changed to a value that is incompatible with the current QCHRID value, the QCHRID value is changed to a compatible value by the system.
- If you use a user-defined data stream (UDDS), remove any X'3F' values inserted by CCSID conversions. Otherwise, your data can cause the system to blank out a screen. Some CCSID conversions use a X'3F' value for a substitution character.
- If you are using any interactive jobs, such as Application Development ToolSet/400, ensure that the code page of the job CCSID matches the code page of the keyboard type. If these CCSID values do not match, or the job CCSID is 65535, unpredictable results could occur. For more information, see National language keyboard types and SBCS code pages.
- Be aware that the *JOBCCSID support is not used by any system-supplied displays or panel groups, although CHRIDCTL support is used.
- Be aware of character data that has been defined or specified as control information. For new database files, fields that contain control information should be defined as hexadecimal datatype or use CCSID 65535 instead of another CCSID.
- Because of workstation hardware restrictions, you may not see all of the characters on displays other than 3486, 3487, 3488, or Personal System/2 (PS/2 ${ }^{(\mathrm{R})}$) displays when CCSID conversion occurs. However, the character data is retained in the system.
- Be aware that when a CCSID conversion is performed, substitution characters may cause a loss of data. The situation occurs if enforced subset match conversion is performed (see Conversion of character datal).

OS/400 function support for CCSIDs

The server provides support for CCSIDs in the functions as shown in the following table:

Function	Description of support
CL commands	Some control language (CL) commands have internal functions that support CCSID conversions. For more information about CL commands that support CCSID conversions, see the CL Reference topic.
Copy	Coded character set identifier (CCSID) support is built into the copy function. The Copy File [CPYF) and Copy from Query File [CPYFRMQRYF) commands support CCSIDs. To use the CPYF command to change a physical file, see Ehanging the CCSID of a physical file, The Copy Source File [CPYSRCF command supports CCSID conversion.
Database management	Database management support provides default coded character set identifier (CCSID) values for database files on the server. See the Database management topic for details.

\(\left.$$
\begin{array}{|l|l|}\hline \text { Function } & \text { Description of support } \\
\hline \text { DDM } & \begin{array}{l}\text { Coded character set identifier (CCSID) support is built } \\
\text { into distributed data management (DDM). DDM provides } \\
\text { support to pass CCSID tags in homogeneous } \\
\text { environments. DDM passes a CCSID parameter when } \\
\text { sending files. With DDM, you can also specify a CCSID } \\
\text { when creating files on a remote system. DDM only } \\
\text { converts data to the job CCSID of the source system } \\
\text { when: } \\
\text { - The source and target systems are iSeries servers. } \\
\text { - The source and target systems are at an operating } \\
\text { system level of Version 2 Release 1.1 or later. }\end{array} \\
\text { Program-described files are always created with a CCSID } \\
\text { of } \begin{array}{l}\text { 65535 if they are created: } \\
\text { - On a target AS/400(R) system on a release level from } \\
\text { Version 2 Release 1.1 through Version 2 Release 3 }\end{array}
$$

- From a source system that is not an iSeries server

- From a source system that is an AS/400 system at a

release level before Version 2 Release 1.1\end{array}\right\}\)| You can use the Submit Remote Command |
| :--- |

$\left.\begin{array}{|l|l|}\hline \text { Function } & \text { Description of support } \\ \hline \text { Open Query File (OPNQRYF) } & \begin{array}{l}\text { Coded character set identifier (CCSID) support is built } \\ \text { into OS/400 query. You can use the Open Query File } \\ \text { (OPNORYF) command to specify a CCSID on the }\end{array} \\ \text { MAPFLD parameter. The MAPFLD parameter specifies } \\ \text { the definition of query fields that are either mapped to, or } \\ \text { derived from, other fields. } \\ \text { OS/400 query supports CCSID conversion on CHAR, } \\ \text { OPEN, EITHER, and UCS-2 graphic field operators for } \\ \text { join, record selection, group-by, and minimum or } \\ \text { maximum values functions. CCSID conversion is } \\ \text { performed whenever fields do not have the same CCSID } \\ \text { value. Once the query is opened, database management } \\ \text { support converts data read or written to the database files } \\ \text { as described in the abatabase management? topic. }\end{array}\right\}$

Database management: Database management support provides default coded character set identifier (CCSID) values for database files on the server. All database files are assigned a CCSID. At file creation time, the CCSID is either explicitly assigned through DDS, SQL, or IDDU, or it is implicitly assigned the job default CCSID (DFTCCSID).

Database files support for CCSIDs:

IBM system files and licensed program database files are created with the CCSID of choice for each of the national language versions. Only the customer files are automatically assigned the CCSID of the job creating the file. You can use the Display File Description (DSPFD) command to view the CCSID of a file.

Program-described files are assigned CCSID 65535. If a CCSID is not explicitly specified on the CRTPF or CRTSRCPF command, database source files default to the job default CCSID at file creation. For more information on job default CCSIDs, see Job default coded character set identifier (DFTCCSID). For a list of language identifiers and the DFTCCSID valued associated with those identifiers, see Language_Identifiers and Associated Default CCSIDs table.

If a database logical file is defined over several physical files, it is assigned a CCSID at the field level and assumes the CCSID value of the physical file. Logical files cannot be explicitly assigned a CCSID value.

Database fields and support for CCSIDs:

Except for numeric database fields, database fields are supported by CCSIDs. You can use the Display File Field Description (DSPFFD) command to view the CCSID of the fields in a file.

Hexadecimal fields are assigned CCSID 65535.
An implicit CCSID value is assigned to the following fields if a CCSID was not explicitly assigned through DDS, SQL, or IDDU at file creation:

- Physical-file character
- DBCS-open
- DBCS-only
- DBCS-either
- Graphic

The implicitly assigned CCSID is the job default CCSID, or a CCSID associated with the job default CCSID.

- A character field will be assigned the single-byte character set (SBCS) CCSID that is associated with the job default CCSID.
- A DBCS-open, DBCS-only, and DBCS-either field will be assigned the mixed byte CCSID.
- A Graphic field will be assigned the double-byte character set (DBCS) CCSID that is associated with the job default CCSID.

For example, if the job default CCSID is 5026 (which is a CCSID that identifies mixed data), an SBCS character field will be assigned the SBCS CCSID associated with 5026. Thus, the CCSID for that field would be 290. If there is no CCSID of the required character set type then a CCSID of 65535 will be used. See Job Default Coded Character Set Identifier (DFTCCSID) for more information on job default CCSIDs. See Language identifiers and associated default CCSIDS for a list of language identifiers and the DFTCCSID valued associated with those identifiers.

Database logical-file fields are assigned a CCSID value based on their data type and the data type of the underlying physical file field.

Database management and conversion support for CCSIDs:

Database management support converts non-graphic character data read from, or written to, database files using the file CCSID and the job CCSID.

- If data is being read from a database file and the CCSID of the file is the same as the job CCSID, no conversion is done.
- If data is being read from a database file and the CCSID of the file and the job CCSID are different, the data is converted to the CCSID of the job.
- If data is being written to a database file and the CCSID of the file is the same as the job CCSID, no conversion is done.
- If data is being written to a database file and the CCSID of the file and the job CCSID are different, the data is converted to match the CCSID of the file.

No conversion is performed if either the CCSID of the job or the CCSID of the database file is equal to 65535.

Work management: Work management support provides the function to assign or change coded character set identifier (CCSID) values at three different levels. All jobs run with a CCSID value established at one of these levels:

- Job level. A CCSID is assigned to a job.
- User profile level. A CCSID is specified in a user profile and the value is assigned to all iobs run under that user profile. The CCSID can be set or changed with the Create User Profile (CBTUSBPRF) and Change User Profile (CHGUSRPRE) commands.
- System level. The system value QCCSID is the default CCSID for all jobs running on the system. QCCSID can be set or changed with the CHGSYSVAl and WRKSYSVAL commands.

Work management support initializes the job CCSID for an interactive job to the CCSID on the user profile when the job starts. If *SYSVAL is specified for the CCSID on the user profile, work management support gets the CCSID from the system value (QCCSID). For batch jobs, the CCSID of the current job is used as the default CCSID for the submitted job.

You can change the CCSID of a job by using the Change Job (CHGJOB) command. Make a note of the current job CCSID. You can use it later to reset the job CCSID to its original value, if necessary. The new CCSID value is reflected in the job immediately. The job DFTCCSID cannot be changed. To retrieve the CCSID or DFTCCSID for a job, use the Retrieve Job Attributes (RTVJOBA) command or the Retrieve Job Information QUSRJOBل application programming interface (API). Interactively, use the Work with Job (WRKJOB) command and select the Display Job Definition Attributes option on the Work with Job display.

Workstation function management: Workstation function management involves working with:

- Display files
- Printer files
- Panel groups

All source files on the system are tagged with a coded character set identifier (CCSID).
Display files: When a display file object is created, it is tagged with the coded character set identifier (CCSID) of the source file. At compile time:

- All character data is read from the primary source file without any character conversion being performed.
- User message text (identified by the MSGCON keyword in DDS) remains the same because it is assumed to be in the same CCSID as the primary source file.

At run time, the constant data is converted based on the CHRID parameter value used to create the display file object. This conversion is optional and can occur only when the CHRID is set to *JOBCCSID or indirectly with CHRIDCTL. This conversion is from the display file CCSID to the character identifier (CHRID) of the device. The field-level keyword NOCCSID (no coded character set identifier) allows the user to specify fields within the DDS that are never to be converted.

Note: To use data management support of CCSIDs, you must change source physical files tagged with CCSID 65535 to a CCSID value that is associated with the data. See Changing the CCSID of a physical file for more information.

CHRID parameter on the Create Display File command

The CHRID parameter on the Create Display File (CRTDSPF command affects the conversion that occurs for the display file.

If the *JOBCCSID value is specified on the CHRID parameter of the CRTDSPF command:

- Input characters are converted from the device character identifier (CHRID) to the job CCSID.
- Character data is sent to output-capable fields and converted from the job CCSID to the device CHRID.
- Constant text from the display file is converted from the CCSID of the display file to the CHRID of the device.
- All message files are tagged with a CCSID. Message text is converted from the CCSID of the message file to the CHRID of the device. When message files are tagged with a CCSID of 65535 (the system default), it is assumed that the contents of the message files are already in the CHRID of the device. To ensure appropriate conversions occur, you can enable CCSID support for messages. See DلDCSC message support for more information on enabling CCSID support for messages.
- Message replacement data is converted from the CCSID of the job, or from the CCSID of the display file, to the CHRID of the device.
- All status messages that are tagged with a CCSID other than 65535 are converted to the CHRID of the device.
- Message text for messages on a message line or in a message subfile (identified by the ERRMSG, ERRMSGID SFLMSG, and SFLMSGID keywords in DDS) is converted from the message file CCSID to the device CHRID.

If a specific value is specified for the CHRID parameter on the CRTDSPF command, conversion is done between the CHRID specified on the CRTDSPF command and the CHRID of the device. This conversion affects only fields defined with the CHRID DDS keyword.

If the *DEVD value is specified on the CHRID parameter of the CRTDSPF command, no conversion is performed. This is the default setting.

Migration of display files with CCSID 65535

All source files in Version 3 of the OS/400 licensed program have an implicit CCSID value of 65535. To have appropriate CCSID support, display files must be recompiled with a source file that has a CCSID value other than 65535 if either of the following are true:

- The display file was originally compiled from a source file with a CCSID value of 65535.
- The display file was originally compiled prior to Version 2 Release 3 Modification 0 of the OS/400 licensed program.

By recompiling, the display file object is tagged and all necessary conversions take place when needed.
No conversions take place if the source files are explicitly tagged CCSID 65535.
Printer files: When a printer file object is created, it is tagged with the coded character set identifier (CCSID) of the source file. Processing of the source files for printer files is the same as for display files. At compile time, all character data is read from the primary source file without any character conversion being performed.

When printing to the device, if the *JOBCCSID value is specified on the CHRID parameter of the CRTPRT1 command:

- Constant text from an externally described printer file is converted from the CCSID of the printer file to the CCSID of the job.
- Character data sent to output fields is assumed to be already converted to the job CCSID.

If the printer data stream is tagged with the character identifier (CHRID) derived from the CCSID of the job, the CHRID value is used by the printer to interpret the data. The CHRID value is ignored for printers not supporting this function.

If a specific value is set for the CHRID parameter on the CRTPRTF command:

- For externally described printer files, fields that specify the CHRID DDS keyword use the CHRID value specified on the printer file. The remainder of the file is printed as if *DEVD was specified for the CHRID parameter on the CRTPRTF command.
- For program-described printer files, the printer data stream uses the CHRID value specified on the printer file.

If the *DEVD parameter is specified on the CHRID parameter of the CRTPRTF command, no conversion is performed.

The CHRID information is determined by either the printer hardware or by the device description. If the CHRID information is obtained from the device description, it is then sent to the printer.

User interface manager menus and panel groups: Like display files and printer files, panel group objects and user interface manager (UIM) menus are tagged with the CCSID of the primary source file. The contents of embedded source members are converted to this CCSID. When the panel group or UIM menu is created with *JOBCCSID specified for the CHRID parameter, conversion is performed at run time. Conversion is performed between the CCSIDs of the panel group or menu, the job, and the CHRID of the display or printer.

CCSID conversions of user interface manager menu and panel groups

The following CCSID conversions occur for displays of panel groups and UIM menus:

- Text in the panel group is converted from the panel group CCSID to the device CHRID.
- Text in the UIM menu is converted from the UIM menu CCSID to the CHRID of the device.
- Variables from the user job are converted from the job CCSID to the device CHRID.
- Variables from the job are converted from the CHRID of the device to the job CCSID.
- Online help information imported from a different panel group is converted from the imported panel group CCSID to the device CHRID.

CCSID conversions when printing UIM menus and panel groups

CCSID conversions for printed UIM menus and panel groups are shown in the following table. In this table, $x x x$ and $y y y$ are explicitly assigned CCSID values. For example, a printer file CHRID is explicitly assigned a value of 0069700037 . The panel group is set to *JOBCCSID. The panel group constant text is converted from the panel group primary source file tagged with CCSID 00500 to the printer file CHRID 0069700037.

Printer file CHRID is	And the panel group or menu CCSID is xxx	or *JOBCCSID	or *DEVD
yyy	No conversion occurs for panel group constant text.	Panel group constant text is converted from panel group primary source file CCSID to yyy.	No conversion occurs for panel group constant text.
	Variables with CHRID=PNLGRP on class tag are converted from xxx to yyy.	Variables with CHRID=PNLGRP on class tag are converted from job CCSID to yyy.	No conversion occurs for variables with CHRID=PNLGRP on class tag.
	No conversion occurs for variables without CHRID=PNLGRP on class tag.	Variables without CHRID=PNLGRP on class tag are converted from job CCSID to YYY.	No conversion occurs for variables without CHRID=PNLGRP on class tag.
*JOBCCSID	No conversion occurs for panel group constant text.	Panel group constant text is converted from panel group primary source file CCSID to job CCSID.	Panel group constant text is converted from panel group primary source file CCSID to job CCSID.

Printer file CHRID is	And the panel group or menu CCSID is xxx	or *JOBCCSID	or *DEVD
	Variables with CHRID=PNLGRP on class tag are converted from XXX to job CCSID.	No conversion occurs for variables with CHRID=PNLGRP on class tag.	No conversion occurs for variables with CHRID=PNLGRP on class tag.
	No conversion occurs for variables without CHRID=PNLGRP on class tag.	No conversion occurs for variables without CHRID=PNLGRP on class tag.	No conversion occurs for variables without CHRID=PNLGRP on class tag.
*DEVD	No conversion occurs for panel group constant text.	Panel group constant text is converted from panel group primary source file CCSID to job CCSID. This conversion occurs because variables are in the job CCSID and the device CHRID is unknown.	No conversion occurs for panel group constant text.
	No conversion occurs for variables with CHRID=PNLGRP on class tag.	No conversion occurs for variables with CHRID=PNLGRP on class tag.	No conversion occurs for variables with CHRID=PNLGRP on class tag.
	No conversion occurs for variables without CHRID=PNLGRP on class tag.	No conversion occurs for variables without CHRID=PNLGRP on class tag.	No conversion occurs for variables without CHRID=PNLGRP on class tag.

Change the CCSID of a physical file

You can use the Change Physical File (CHGPF) command to change the coded character set identifier (CCSID) of a physical file.

However, a physical file cannot be changed if one or more of the following conditions exist when working with a logical file defined over a physical file:

- The logical file has a sort sequence table associated with the CCSID of the physical file and the CCSID you want to change to is incompatible. That is, conversion between the original CCSID and the CCSID you want to change to is not allowed because all the characters of the original CCSID are not in the new CCSID.
- The logical file has a sort sequence table associated with the CCSID of the physical file and the CCSID you want to change to is incompatible. Additionally, the logical file has fields defined with CCSIDs that are not compatible to the new CCSID you want to change the physical file to. Again, conversion between the original CCSID and the CCSID you want to change to is not allowed because all the characters of the original CCSID of the logical file or the fields with specific CCSIDs are not in the new CCSID.
- A select/omit or join logical file, or both that performs select/omits or joins between physical file fields that have different CCSIDs.
- A join logical file with a sort sequence table such that the CCSID of the logical file's secondary access path is different than the CCSID to which the physical file is being changed.

Graphic character (data) sort implementation

The following links describe the OS/400 implementation of sorting, or sequencing, characters (data). The server allows you to customize the sequence in which single-byte and graphic characters are sorted. You can customize the sorting sequence of a set of characters using a sort sequence table.

If your application uses locales, you can use the sorting support provided by the LC COLLATE locale category.

Use the following links to find additional information about character graphic sort implementation:

- Sort_sequence_types
- Sort sequence scenarios
- Sort sequence support
- Sort sequence tables

For more information

See Sort_sequences.

Sort sequence types: A set of shared-weight and unique-weight sort sequence tables for SBCS languages is provided on servers. A shared-weight sequence is a sort sequence in which some graphic characters may have the same weight as some other characters in the sequence. Those with the same weight sort together as though they were the same character. For example, the letters a and A might both have the same value 24. This ensures that words such as able and Able are kept together in a list. In a simple sort table, a and A might share the value 24 , and b and B might share the value 25 and so on.

A unique-weight sequence is a sort sequence in which each graphic character has a weight different from the weight of every other graphic character in the sequence.

Sort sequence scenarios: The following table shows characters you can sort using a binary, a shared-weight, and a unique-weight sort sequence for the Danish code page 00277.

Character name	Character illustration	Code point in code page 277	Shared sort weight	Unique sort weight
AE ligature	ÆE	X' $^{\prime} B^{\prime}$	96	183
O slash	\varnothing	$X^{\prime} 7 C^{\prime}$	97	187
A overcircle	\AA	$X^{\prime} 5 B^{\prime}$	98	191
Latin capital N	N	X' $^{\prime} 5^{\prime}$	83	132
Latin capital Z	Z	X'E9' $^{\prime}$	95	181
O umlaut	O	X'EC' $^{\prime}$	97	189
Latin capital A	A	X'C1' $^{\prime}$	70	77

Using the information in the previous table, the characters are sorted in ascending order as shown in the following table.

Position in ascending order	Binary sort	Shared weight sort	Unique weight sort
First	A overcircle	Latin capital A	Latin capital A
Second	AE ligature	Latin capital N	Latin capital N
Third	O slash	Latin capital Z	Latin capital Z
Fourth	Latin capital A	AE ligature	AE ligature

Position in ascending order	Binary sort	Shared weight sort	Unique weight sort
Fifth	Latin capital N	O umlaut	O slash
Sixth	Latin capital Z	O slash	O umlaut
Seventh	O umlaut	A overcircle	A overcircle

The following table shows an example of a shared-weight sort sequence, a unique weight sort sequence, and the binary sort sequence for English code page 00037.

	Shared-weight sort sequence using LANGID(ENU) and SRTSEQ(*LANGIDSHR)	Unique-weight sort sequence using LANGID(ENU) and SRTSEQ(*LANGIDUNQ)
Binary sort sequence	JOHNSON, JOHN	JOHNSON, JOHN
Jones, Mary	JONES, MARTIN	Jones, Mary
JOHNSON, JOHN	Jones, Mary	JONES, MARTIN
JONES, MARTIN	SMITH, ROBERT	Smith, Ron
Smith, Ron	Smith, Ron	SMITH, ROBERT
SMITH, ROBERT		

Sort sequence support: The sort sequence support is provided in the following OS/400 functions.

- A user interface for creating new tables based on system-supplied sort sequence tables
- The Work with Tables (WRKTBL) command for creating and displaying tables
- The Create Table (CRTTBL) command for creating tables
- CL, ILE RPG IV, and ILE COBOL for compilers.
- Program support
- Work management support
- Database management support
- Other system components support

Sort sequence support in programs: You can assign sort sequences to programs used for ordering and comparing data. You assign a sort sequence to a program by specifying the sort sequence to be used at compile time. Specify the sort sequence to be used with the sort sequence (SRTSEQ) parameter and language identifier (LANGID) parameters of the create program commands. Valid SRTSEQ parameter values are:

- SRTSEQ(*HEX) means that no sort sequence should be used (hexadecimal sorting).
- SRTSEQ(*LANGIDUNQ) or SRTSEQ(*LANGIDSHR) means that the unique- or shared-weight sort sequence, determined by the LANGID parameter, should be used.
- A name for the system-supplied or user-supplied sort sequence name can be specified explicitly on the SRTSEQ parameter. If you explicitly specify a sort sequence name, the LANGID parameter is ignored.
- SRTSEQ(*JOB) or LANGID(*JOB) means that the sort sequence to be used is determined by the value associated with the job when the program is created.
- SRTSEQ(*JOBRUN) or LANGID(*JOBRUN) means that the sort sequence to be used is determined by the values from the job when the program is run.

The first three options assign the sort sequence to the program object at creation time. This sequence is always used when the program is run. Using the *JOBRUN value on the SRTSEQ or LANGID parameters, however, provides the possibility for dynamically assigning sort sequence to the program.

Sort sequence support in work management: Work management involves the assigning of the SRTSEQ value at the job level, the user profile level, and the system value level.

Sort sequence support at the job level: A sort sequence (SRTSEQ) value is assigned to a job. It is valid on the Submit Job (SBMJOB), Batch Job (BCHJOB), and the Change Job (CHGJOB) commands. If a program is created with SRTSEQ(*JOB), the sort sequence is set from the job sort sequence. If a program is created with SRTSEQ(*JOBRUN), the sort sequence is set from the job sort sequence at run time.

Sort sequence support at the user profile level: The user profile assigns a SRTSEQ value to a user and, by default, to all jobs running under this user profile. The user profile SRTSEQ value defaults to the sort sequence system value (QSRTSEQ).

Sort sequence support at the system value level: The QSRTSEQ system value defines a sort sequence that can be referred to by other objects. The QSRTSEQ system value should be set according to the requirements of the primary language used on the system. For more information on QSRTSEQ, see Sort Sequence (OSRTSEO) system value.

Sort sequence support in database management: Database management supports the SRTSEQ and LANGID parameters on the Create Physical File (CRTPF) and Create Logical File (CRTLF) commands.

The LANGID and SRTSEQ parameters determine a sort sequence table. The sort sequence table is captured at file creation time and is stored as an attribute of the file. The SRTSEQ job attribute has no effect on the processing of an existing database file. The sort sequence table associated with the file is used for key sequencing, select logic fields and omit logic fields, and for join field functions.

The ALTSEQ keyword in DDS can also be used to specify a sort sequence table. The ALTSEQ keyword applies only to the key fields, not to the select logic fields and the omit logic fields. If the SRTSEQ parameter is specified on the CRTPF command or the CRTLF commands and the ALTSEQ keyword in the DDS source file specify a sort sequence table, an error message is sent and the file is not created.

The default SRTSEQ parameter on CRTPF and CRTLF commands is *SRC, which indicates that the sort sequence table on the ALTSEQ keyword should be used. If ALTSEQ is not used in DDS, the SRTSEQ attribute of the job determines the file attributes when creating or changing the file.

How sort sequences are specified for database management

Sort sequence tables can be specified in the following areas:

- Query for iSeries support

External sort sequence tables (including those shipped with the system) and user-defined tables can be specified.

- DB2 Query Manager and SQL Development Kit for iSeries

The Create Structured Query Language xxx (CRTSQLxxx) commands and the Start Structured Query Language [STRSQL) command support the SRTSEQ and LANGID parameters.
A sort sequence table can be specified when a query object is being defined with the Work with Queries display. The sort sequence (SRTSEQ) value and language identifier (LANGID) value are specified on the Specify Sort Sequence display.

- DB2 UDB for iSeries Query Management

The Create Query Management Query (CRTOMOBY) command supports the SRTSEQ and LANGID parameters.

For more information on sort sequence support for database programming, see the $\operatorname{DB2}$ UDB for Database Programming topic.

Sort sequence support in other system components: Sort sequence support is found in the following components of the system:

- CRTCLPGM (Create Control Language Program) command

The LANGID and SRTSEQ parameters are supported.

- DSPPGM (Display Program) command

The LANGID and SRTSEQ values that were specified when the program was created are displayed.

- CRTDSPF (Create Display File) command

The LANGID and SRTSEQ parameters are supported. The values of the RANGE, VALUES, and COMP keywords are validated when the display file is compiled.

- High-level languages

Using ILE COBOL and ILE RPG IV languages, you can specify SRTSEQ and LANGID values directly on the Create Bound Program (CRTBNDXXX) commands. Original Program Model RPG and COBOL compilers use the Create Program (CRTXXXPGM) commands. With ILE C, you can also specify SRTSEQ and LANGID values when you create a locale. You can then associate the locale with a program.

- iSeries Access

The transfer function allows a sort sequence table to be specified when performing queries on database files and SQL tables.

Sort sequence tables: A sort sequence table is an object that contains the weight of each single-byte graphic character within a specified coded character set identifier (CCSID). The system-recognized identifier for the sort sequence table object type is *TBL.

Depending on your requirements, you can define a table to have either a unique weight for each graphic character or shared weights for some graphic characters. If you define a table that contains unique weights for each character within the character set, your table is known as a unique-weight table. If you define a table that contains some graphic characters that share the same weight, your table is known as a shared-weight table. For example, if you want to sort the graphic character capital letter A and the graphic character small letter a together, you would define a shared-weight table. If you want to sort these graphic characters separately, you would define a unique-weight table.

A set of sort sequence tables is shipped with the servers. This set of tables defines both unique- and shared-weight sort sequences for all SBCS languages.

Sort sequence table implementation notes

Sort sequence support does not take into consideration the following:

- Special cases of single characters that should be handled as multiple characters (such as the German character s sharp).
- Sequences of characters that should be treated as a single character (such as the Danish aa, Hungarian ly, Serbian Ij, Spanish II).
- Nonalphanumeric characters that should be ignored because they are embedded in alphanumeric strings (such as the hyphen in co-op).
- Prefixes that should be ignored (such as Van der in the name Van der Pool).
- Program-described files.
- DBCS code pages.

If a sort sequence table has a weight other than hexadecimal 40 assigned to the blank character, unpredictable results can occur when strings of unequal lengths are compared.

Sort sequence tables shipped with the system

You can use the WRKTBL command to view the contents of the sort sequence tables that are shipped with OS/400. The tables are located in the QSYS library.

When looking at these tables, consider the following:

- Several tables shipped with the system represent a single sort sequence, each encoded with a different coded character set identifier (CCSID) value. Not all of the characters in a given sort sequence exist in every CCSID in which the sort sequence is encoded.
- Use the language identifier (LANGID) parameter and the sort sequence (SRTSEQ) parameter to access the unique-weight tables (*LANGIDUNQ) or the shared-weight tables (*LANGIDSHR).
- When using the sort sequence, the relative weights shown in these tables differ from the actual weights in the sort sequence table on the system. The relative weights shown in these tables are examples only.
- The relative unique weight of a character is shown by the order of the characters in the sort sequence table. The relative unique weight is determined by assigning a weight of 1 to the first character in the sort sequence table and incrementing by 1 for each of the following characters until the end of the table is reached.
- GCGID is the graphic character global identifier.

For example, the Arabid sort sequence table shows the relative sort sequence weights for characters that are sorted using the Arabic sort sequence table.

How to build sort sequence tables

To create a user-defined sort sequence table, copy an existing sort sequence table using the Create Table (CRTTBL) command, and then modifying the copy of the table. Table functions allow you to do the following:

- Use a definition stored in a source member.
- Create a table based on another sort sequence table using an interactive interface.

You can create a sort sequence table (MYTEST) from a copy of an existing table using the following CRTTBL command:

```
CRTTBL TBL(MYTEST) SRCFILE(*PROMPT) TBLTYPE(*SRTSEQ)
BASESRTSEQ(QSYS/QLA10025S) CCSID(037)
```

This command displays a sort sequence table that you can modify. Your table is created from a function key on this display. Your resulting table has a coded character set identifier (CCSID) value of 00037. The table is named MYTEST and is stored in the current library.

The following table shows one way in which the resulting characters may be shown on the first display of the MYTEST sort sequence table. The actual panel shows characters instead of text descriptions. For example, the character shown for sequence 0100 would be a question mark (?), and the character shown for sequence 0070 would be a colon (:).

Note: The characters that you actually see on the first display of the MYTEST sort sequence table may vary, depending on the device that you use.

Sequence	Character
0010	Equal sign
0020	Overline
0030	(SHY)
0040	Hyphen
0050	Comma
0060	Semi-colon
0070	Colon
0080	Exclamation mark
0090	Inverted exclamation mark

Sequence	Character
0100	Question mark
0110	Inverted question mark
0120	Slash
0130	Period
0140	Acute accent mark
0150	Grave accent mark
0160	Caret
0170	Right square bracket
0180	Tilde
0190	Small multiply dot
0200	Comma

You can make changes to the tables to move characters in each code page to the preferred position for the national language sort sequence table. The ordering is done by increments of 10 . Therefore, the first value is 10 , then 20 , and so on. If some characters have a shared weight, these groups of characters have the same sequenced weight.

CCSID support for messages

You can use CCSID support for handling messages and message catalogs on OS/400. You can send messages tagged with one CCSID to users with a different CCSID. You can use CCSID support to handle messages by using commands and application programming interfaces.

Note: You do not need a multinational character set (MNCS) when using CCSIDs for handling messages.
For example, if you do not set CCSID support on, the following message, encoded in CCSID 00037:
Joe, I need to see you right away!
appears to a user with CCSID 00500 as
Joe, I need to see you right away]
Instead of seeing an exclamation mark (!), Joe sees a right square bracket (]). If you set CCSID support on, the text in a message encoded in CCSID 00037 is converted to CCSID 00500. Both the person sending the message and the person receiving the message see identical text.

CCSID support helps preserve data integrity in messages. As you read through this information, you will see other advantages to using CCSID support for messages.

Dbject-level CCSDD

- Message files
- Message-level support
- Message description-level support
- Message queues
- Job message queues
- System reply lists
- History log

The following topics provide detailed information about message support:

- Setting up CCSID support for message handling
- CCSID support for message catalogs
- Converted character replacement data type field
- Retrieve messages
- Receive messages
- Common questions about CCSID support for message handling

For more information

See Message catalogs for a description of general OS/400 globalization support for messages.
The following message handling commands support CCSIDs:

- CRTMSGE (Create Message File)
- CRTMSGO (Create Message Queue)
- CHGMSGO (Change Message Queue)
- ADDRPYL日 (Add Reply List Entry)
- CHGRPYIB (Change Reply List Entry)
- CHGMSGD (Change Message Description)
- BTVMSG (Retrieve Message)
- BCVMSG (Receive Message)
- SNDBBKMSG (Send Break Message)
- SNDMSG (Send Message)
- SNDPGMMSG (Send Program Message)
- SNDRPY (Send Reply)
- SNDUSRMSG (Send user Message)

Handle messages with a specific object-level CCSID: The following objects support CCSIDs:

- Message files
- Message queues
- Job message queues
- System reply lists
- History log

Each of these objects has an object-level CCSID. The object-level CCSID is the CCSID in which all the messages in that object are encoded.

See the following topics for details about object-level CCSIDs:

- Object-level coded character set identifiers 65535 and 65534
- Using a specific object-level CCSID for handling messages

Object-level coded character set identifier 65535: CCSID 65535 is the default object-level CCSID for message files and message queues. If an object has a CCSID of 65535, no conversions occur when adding messages to that object or when receiving messages from that object. Use CCSID 65535 if you do not want CCSID processing to occur.

CCSID 65535 is also known as *HEX.
Object-level coded character set identifier 65534: CCSID 65534 is the default object-level CCSID for job message queues, system reply lists, and the history log. If the CCSID of an object is 65534, each message in the object has its own CCSID. No conversion occurs when a message is added to the object. When a message is received, it is converted based on the CCSID stored with the message.

CCSID 65534 is also known as *MSG or *MSGD.
CCSID 65534 is the preferred setting for object-level CCSIDs. An object-level CCSID of 65534 requires fewer CCSID conversions. Fewer CCSID conversions of text result in better performance and improved data integrity.

Using a specific object-level CCSID for handling messages: If the CCSID of an object is any value other than 65535 or 65534, all messages in that object are considered encoded in that CCSID. The object-level CCSID overrides the CCSID stored with the messages. Use this type of object-level CCSID if both of the following are true:

- You expect the object to be sent messages or have message descriptions added in a CCSID different from the CCSID in which you would receive the messages or retrieve the message descriptions.
- You intend to receive the same message or retrieve the same message description many times.

If these conditions are true, set the object-level CCSID to the CCSID in which you will receive or retrieve the messages. When the system uses this type of object-level CCSID, the message text or data is converted at the time the message is sent or is added to the object. No conversion occurs when the message is received or retrieved because the text and data are already in the CCSID requested on the receive operation or retrieve operation.

Do not change system-supplied message files to use this type of object-level CCSID. Each system-supplied message description is tagged separately. No one object-level CCSID value can represent all of the message descriptions in the message file. Changing the object-level CCSID of a system-supplied message file to anything other than CCSID 65535 or CCSID 65534 may cause unpredictable results.

Message-level support: When a message is sent to a message queue, you must communicate the CCSID of the replacement data or the impromptu message text to the operating system. Use the CCSID parameter on any of the send message commands or APIs to communicate this CCSID to the operating system.

The default CCSID setting in the send message commands and APIs indicate that the replacement data or impromptu message text is in the CCSID of the job that is running the command or API. You can override the job default CCSID value by specifying a different CCSID value.

If the replacement data or impromptu message text supplied is not in the CCSID specified, incorrect conversion results may occur. See Can_correct the CCSID of a message? if this occurs.

Determining the CCSID of a message file

To determine the CCSID of a message file, type:
WRKMSGD MSGF (MYLIB/MYMSGF)
where MYLIB is the library in which the message file is stored and MYMSGF is the name of the message file.

Next, press F22 (Display list details).
You can also use the QMHRMFAT (Retrieve Message File Attributes) application program interface (API) to determine the CCSID of a message file.

For job message queues, system reply lists, and the history log, the object-level CCSID is always 65534. You cannot change nor display object-level CCSIDs for job message queues, system reply lists, and the history log.

How the message-level CCSID is set

See the following topics for information on how the message-level CCSID is set:

- Message-level CCSID with a message queue CCSID of 65535 or 65534
- Message-level CCSID with a specific message queue CCSID
- Message-level CCSID when a message queue CCSID conversion error occurs
- Message-level CCSID when a message is a stored message

Message-level CCSID with a message queue CCSID of 65535 or 65534: When a message is sent to the message queue and the CCSID of the message queue is 65535 or 65534 , no conversion occurs on the message. The message-level CCSID is set to the CCSID specified.

For example, message queue MYMSGQ has a CCSID of 65534. You enter the following Send Message command:
SNDMSG MSG('MSG \#1') CCSID(37) TOMSGQ(MYLIB/MYMSGQ)
The impromptu message text, MSG \#1, is not converted when added to the message queue. The message is tagged with CCSID 00037.

Message-level CCSID with a specific message queue CCSID: When a message is sent to the message queue and the CCSID of the message queue is something other than 65535 or 65534 , the replacement data or impromptu message text is converted to the CCSID of the message queue. The message is then tagged with the CCSID of the message queue.

For example, message queue MYMSGQ has a CCSID of 00277. The replacement data for TST0002 is defined as *CCHAR data. You enter the following Send Program Message command:
SNDPGMMSG MSGDTA (X'0006D4E2C7407BF2') MSGID(TST0002) MSGF (MYMSGF)
CCSID(37) TOMSGQ(MYLIB/MYMSGQ)
The replacement data is converted from CCSID 00037 to CCSID 00277 before it is sent to the message queue. X'0006' is the length required for variable-length fields. X'D4E2C7407BF2' is MSG \#2 on code page 00037. The number sign (\#), X'7B' on code page 00037, is converted to a number sign, X'4A' on code page 00277. All other code points do not change during the conversion because they are the same on both code page 00037 and code page 00277.

When the replacement data or impromptu message text of a message is 65535 and it is sent to a message queue with a CCSID other than 65535 or 65534 , no conversion occurs. However, the message is tagged with the CCSID of the message queue. Therefore, messages can be tagged with an incorrect CCSID when you send them to a message queue with a CCSID that overrides the message-level CCSID.

For example, message queue MYMSGQ has a CCSID of 00277. You enter the following Send Message command:
SNDMSG MSG('MSG \#2') TOMSGQ(MYLIB/MYMSGQ) CCSID(*HEX)
The impromptu message text MSG \#2 is not converted before it is sent to the message queue. Although the impromptu message text is not converted to CCSID 00277, it is displayed using CCSID 00277. Unless you entered the Send Message command from a device configured to support code page 00277, you lost the integrity of the impromptu message text.

Message-level CCSID when a message queue CCSID conversion error occurs: If a conversion error occurs while sending a message to a message queue, the message is still sent to the message queue.

However, the impromptu text or data of the message is not converted. A diagnostic message is sent and the message is tagged with the message-level CCSID specified on the send command or API, not with the CCSID of the message queue.

You can recover the replacement data or impromptu message text with the proper CCSID setting. First, set the message queue CCSID to 65534. Then use the Receive Message command or API to return the correct message-level CCSID.

Message-level CCSID when a message is a stored message: If a message is a stored message, the message-level CCSID applies only to *CCHAR replacement data. The CCSID of the first- and second-level text of the message is retrieved from the message file.

Replies to stored messages are never converted from one CCSID to another. Only replies to impromptu messages are affected by CCSID processing.

Message description-level support: When a message description is added to a message file, the CCSID of the message text must be communicated to the operating system. You can use the CCSID parameter on the $\triangle D D M S G D$ or the CHGMSGD command to communicate this CCSID to the operating system.

The default settings of these commands indicate that the message text is in the CCSID of the job that is running the command. You can change this value by specifying a different CCSID value. You can also change this value by indicating that no CCSID processing should occur. You indicate that no CCSID processing should occur on the message text by specifying a CCSID value of 65535 (*HEX).

If you set CCSID processing on, system-supplied display files and printer files that display or print message descriptions convert the CCSID of the message file to the CCSID of the job before displaying them or printing them. To print and display the messages correctly, your job CCSID setting must be the same as the code page portion of your device CHRID setting.

All message descriptions that existed in a message file that was created prior to V3R1 are tagged with CCSID 65535 on the first use or handling of that message description.

If the text of a message is not in the CCSID specified, incorrect conversion results may occur. See Can correct the CCSID of a message description? if this occurs.

How the CCSID of a message description is set

To set the message description-level CCSID, consider the following topics:

- Message file with a CCSID of 65535 or 65534
- Message file with a specific CCSID

How to change the CCSID of a message description

See Changing the CCSID of a message description for details.
Message file with a CCSID of 65535 or 65534: If the CCSID of the message file is 65535 or 65534, no conversion occurs on the message description when it is added to the file. The message description CCSID is set to the CCSID specified on the ADDMSGD or CHGMSGD command.

For example, a message file MYMSGF has a CCSID of 65534. The job that is running is in CCSID 00037. You enter an ADDMSGD command, as follows:

The message text, MSG \#1, is not converted when added to the message file. The message text is tagged 00037 because the CCSID parameter was not coded on the ADDMSGD command and the default CCSID parameter is *JOB.

Message file with a specific CCSID: If the CCSID of the message file is something other than 65535 or 65534, the first- and second-level text of the message description is converted from the CCSID specified to the CCSID of the message file. It is then tagged with the CCSID of the message file.

For example, message file MYMSGF has a CCSID of 00277. The job that is running is in CCSID 00037. You enter the following command:
ADDMSGD MSG('MSG \#2') MSGID(TST0002) MSGF(MYMSGF) CCSID(37)
Message 'MSG \#2' is converted from CCSID 00037 to CCSID 00277 before it is added to the message file. The number sign (\#), $X^{\prime} 7 B^{\prime}$ on code page 00037, is converted to the number sign (\#), $X^{\prime} 4 A^{\prime}$, on code page 00277. No other code points change during the conversion because they are the same on both code page 00037 and code page 00277.

When the text of a message description is specified as 65535 and it is added to a message file, no conversion occurs. If the CCSID of the message file is not 65535 or 65534 , the message text is tagged with the CCSID of the message file.

When the message file CCSID is not 65535 or 65534, the message file CCSID overrides message description CCSIDs. Keep this rule in mind when adding and changing message descriptions to a message file with a CCSID other than 65535 or 65534 . Otherwise, a message description can be marked incorrectly.

For example, message file MYMSGF has a CCSID of 00277. You enter the following command:
ADDMSGD MSG('MSG \#2') MSGID(TST0002) MSGF(MYMSGF) CCSID(*HEX)
Message text 'MSG \#2' is not converted before it is added to the message file. Because the CCSID of the message file is 00277, the message text is tagged with CCSID 00277.

If the command was run in a job CCSID where the number sign (\#) occupies a code point different than the code point for the number sign on code page 00277, the message is displayed incorrectly.

A conversion error may occur while adding or changing a message description in a message file. If a conversion error occurs, the message description is still either added to or changed in the message file. The text of the message description, however, is not converted. A diagnostic message is sent and the message description is tagged with the CCSID specified, not with the CCSID of the message file.

When a conversion error occurs, you can recover the correct CCSID tagging for the message description by setting the message file CCSID to 65534. Then you can retrieve the correct CCSID for the message description using the Retrieve Message (BTVMSG) command or the Retrieve Message (OMHRTVM) API.

The CCSID of a message description applies only to first- and second-level message text.
Change the CCSID of a message description: When you take the option to change a message description from the Work with Message Descriptions display, all current values for the selected message description are retrieved and placed on the prompt display. The first- and second-level text are converted from the CCSID of the message file to the CCSID of the job before they are put on the prompt display.
*JOB is displayed for the CCSID keyword and has two different meanings depending on what you do on the prompt display. If you change any part of the first- or second-level text, *JOB means that the text is converted from the CCSID of the job to the CCSID of the message file when you press the Enter key. If the text is unchanged, *JOB works like *SAME, and none of the following are changed:

- The first-level message text
- The second-level message text
- The CCSID of the message description

Both the first- and second-level text of a message description must be in the same CCSID. If you change the CCSID of one level, the system automatically converts the other level to match.

Example: Changing a message description

The CCSID of message file MYMSGF is 65534. The CCSID of the job that is running WRKMSGD is 00277. The CCSID of the message description is 00037.

Select option 2 to change a message description. The text of the message description is converted from CCSID 00037 to 00277 before being placed on the prompt display.

If only the first-level text is changed, the 00277-tagged text is stored in the message file. The CCSID of the message description is changed to 00277. The 00277-tagged second-level text is also stored in the message file to keep both the first- and second-level text in the same CCSID.

Message queues: If you set CCSID processing on, system-supplied display files and printer files that display or print messages convert the CCSID of the message queue to the CCSID of the job before displaying or printing the messages. To print and display the messages correctly, your job CCSID setting must be the same as the code page portion of your device CHRID setting.

All messages that existed on a message queue that was created in a release prior to V3R1 are assigned CCSID 65535 on the first use of that message.

Determining the CCSID of a message queue

To determine the CCSID of a message queue, type:
dSPMSG MSGQ(MYLIB/MYMSGQ) ASTLVL(*BASIC)
where MYLIB is the library in which the message queue is stored and MYMSGQ is the name of the message queue.

Then press F22 (Display list details).
You can also use the Retrieve Message Queue Attributes (QMHRMQAT) application program interface (API) to determine the CCSID of a message queue.

For iob message queues, system reply lists, and the history log the object-level CCSID is always 65534. You cannot change nor display object-level CCSIDs for job message queues, system reply lists, and the history log.

Job message queues: The CCSID for all job message queues is 65534. You cannot change or display this value. A job message queue CCSID of 65534 requires fewer CCSID conversions. Fewer CCSID conversions of text result in better performance and improved data integrity.

The CCSID of each message in the job log is used for CCSID processing. No conversion occurs when a message is sent to the job log.

Note: Request messages are always tagged with a CCSID of 65535 and are never converted.
If you set CCSID processing on, system-supplied display files and printer files that display or print job logs convert the CCSID of the messages to the CCSID of the job before displaying or printing the messages.

To print and display the messages correctly, your job CCSID setting must be the same as the code page portion of your device CHRID setting. Status messages that appear on line 24 of a display are converted to the CCSID of the device before they are shown.

For more information about Job message queues and CCSID support, see History
System reply list: The system reply list has a CCSID of 65534. You cannot change or display this value. The only part of the system reply list that is affected by CCSID processing is the Compare data field. If the Compare data field references replacement data that is defined as *CCHAR, the data being compared must be in a common CCSID before the comparison is done.

Any reply list entry that has compare data is tagged with the CCSID supplied on the \triangle ADRPY -1 or CHGRPYIF commands. When the system reply list is used, the replacement data is converted to the CCSID of the compare data before the comparison is made and before the message is sent to the message queue. This ensures that the data is in a common CCSID before the comparison is done.

Example: System reply list and converted-character compare data

Enter the following Add Reply List Entry command:

```
ADDRPYLE SEQNBR(101) MSGID(TST0010) CMPDTA(X'00017B') RPY(*DFT) +
```

CCSID(37)
$X^{\prime} 7 B^{\prime}$ is the number sign (\#) on code page 00037. X'0001' is the length required for variable-length fields. The compare data is not converted when added to the system reply list. It is tagged with CCSID 00037. Message TST0010 has one replacement data field that is defined as *CCHAR with (*VARY 2) for its length. Message queue MYMSGQ has a CCSID of 00278.

Send message TST0010 in a job that has the system reply list turned on using the following Send Program Message command:
SNDPGMMSG MSGID(TST0010) MSGF(MYLIB/MYMSGF) MSGTYPE(*INQ) +
TOMSGQ(MYLIB/MYMSGQ) MSGDTA(X'00014A') CCSID(277)
The replacement data is converted from CCSID 00277 to CCSID 00037 and then compared with the compare data. The conversion results in replacement data X'00017B'. A match is found and the default reply is sent when this message is added to the message queue.

When the message is added to the message queue, the replacement data is converted from CCSID 00277 to CCSID 00278. The message queue CCSID does not matter when trying to match the compare data. The replacement data is converted to X'000163' when it is sent to the message queue and tagged 00278. $X^{\prime} 63^{\prime}$ is the code point for the number sign (\#) in code page 00278.

History log: The history log is a database file that is tagged with CCSID 65535. You cannot change the CCSID of the history log. No conversions occur when you do database retrievals from the history file.

You can use CCSID processing when working with the history log. The CCSID of the replacement data or impromptu message text is added to the history log record. If the history log record is for a stored message, CCSID processing occurs only for the *CCHAR replacement data in that record.

You can retrieve a message from the history log and convert it into a specific CCSID by doing the following:

1. Obtain the input variables \&MSGFL, \&MSGF, \&MSGID, \&MSGDTA, and \&MDTACCSID, from the history log record. (See the EL_Programming

PDF for the layout of the history log record.)
2. Enter the following Retrieve Message command:

```
RTVMSG MSGF(&MSGFL/&MSGF); MSGID(&MSGID); MSGDTA(&MSGDTA); +
```

MDTACCSID (\&MDTACCSID) ; MSG(\&MSG);

If you set CCSID processing on, system-supplied display files and printer files that display or print history log records convert the CCSID of the messages to the CCSID of the job before displaying or printing the messages. To print and display the messages correctly, your job CCSID setting must be the same as the code page portion of your device CHRID setting.

Set up CCSID support for message handling: The default setting of the CCSID for creating message queues and message files is 65535 . Most message files delivered with the operating system have a CCSID of 65535.

Most message descriptions in system-supplied message files are tagged with a CCSID that corresponds to the national language version with which they are shipped.

Some message descriptions are not assigned a CCSID that corresponds to the national language version. These message descriptions are tagged 65535 and are not converted when used.

Messages sent to a message queue that has a CCSID of 65535 are not converted when placed on the queue. Message descriptions added to a message file that has a CCSID of 65535 are not converted when placed in the file. These messages and message descriptions are tagged with a CCSID associated with their text or data. By tagging them with a CCSID associated with their text or data, they are given the correct CCSID if the object-level CCSID is changed to 65534.

You can set CCSID support on for handling a specific message queue. For example, to set CCSID handling on for message queue MYMSGQ in library MYLIB, type:
CHGMSGQ MSGQ(MYLIB/MYMSGQ) CCSID(65534)
The Change Message Queue (CHGMSGQ) command also allows you to turn on CCSID support for more than one message queue at a time.

You can set CCSID support on for handling a specific message file. For example, to set CCSID handling on for message file MYMSGF in library MYLIB, type:
CHGMSGF MSGF(MYLIB/MYMSGF) CCSID(65534)
The Change Message File (CHGMSGF) command also allows you to turn on CCSID support for more than one message file at a time.

CCSID support for message catalogs: The Message catalog CCSID (CLGCCSID) parameter allows you to specify the CCSID for storing data in a message catalog. The Source file CCSID (SRCCCSID) parameter allows you to specify the CCSID of a source file. Data from the source is converted to the CCSID of the message catalog if the CCSIDs for both are not the same. This is also the default action. The source can be in any CCSID that supports conversion to any other CCSID.

The CCSID of the original message catalog is used to update the message catalog. It can be single or mixed and in extended binary-coded decimal interchange code (EBCDIC), American National Standard Code for Information Interchange (ASCII), or UCS-2. If the catalog is a QSYS source file member that does not exist, the CCSID of the existing file is used. The value that is specified on the CLGCCSID parameter is used if the CCSID of the file is 65535.

Converted character replacement data type field: A replacement data type field supports CCSID processing. This replacement data type field is called a convertible character field (*CCHAR). A *CCHAR replacement data type field is a variable-length field. This field may increase or decrease in length when the field is converted.

Example: Add a message description with CCSID support

The following example shows how to add the message description TST0006 to message file MYMSGF. The message description has 2 replacement data type fields. One field is a character field length 10. The other field is a convertible character field with varying length. Use the ADDMSGD command as follows:
ADDMSGD MSG('This is *CHAR \&1; This is *CCHAR \&2;') MSGID(TST0006) +
MSGF(MYLIB/MYMSGF) FMT((*CHAR 10) (*CCHAR *VARY 2))
Retrieve messages: The Retrieve Message (RTVMSG) command and retrieve message (OMHRTVM) application program interface (API) have a CCSID-to-convert-to parameter. This parameter determines which CCSID the first- and second-level text is converted to before the text is returned to the user. The Retrieve Message command and the Retrieve Message API also have a replacement data CCSID parameter. This parameter communicates the CCSID of the replacement data to the system. The replacement data CCSID applies only to the parts of the replacement data that correspond to *CCHAR type data. No other replacement data is converted.

The Retrieve Message command and Retrieve Message API convert the first- and second-level text from the CCSID of the message file to the CCSID on the CCSID-to convert-to parameter. Any replacement data that is *CCHAR data is converted from the replacement data CCSID to the CCSID-to-convert-to CCSID before being substituted into the correct replacement variables. The default for both parameters is *JOB, which means that the CCSID of the job is used.

Retrieve Message command CCSID return fields

Three CCSID return fields are supported by the Retrieve Message (RTVMSG) command:

- TXTCCSD
- TXTCCSTA
- MDTACCSTA

Example 1: Retrieving a message with CCSID support

Message file MYMSGF has a CCSID of 65534. The CCSID of the message description is used to determine the CCSID from which to convert the message text. The CCSID of the message description (TST0003) is 00037. The first-level text is:
'MSG \#3 is \&1;'
\&1 is defined as a *CCHAR variable field with a length of (*VARY 2). Enter the following RTVMSG (Retrieve Message) command:
RTVMSG MSGF (MYMSGF) MSGID(TST0003) MSG(\&MSG); CCSID(277) +
MDTACCSID(277) MSGDTA(X'0002D6D2')
In the message data, the first 2 bytes are a length field with a value of 2 . All *VARY fields begin with a length. The next 2 characters are the actual *CCHAR data with a value of X'D6D2'. X'D6D2' represents the characters O and K on code page 00277 .

The first-level text is converted from CCSID 00037 to CCSID 00277. The replacement data is not converted before it is substituted for \&1; because the replacement data CCSID matches the CCSID-to-convert-to parameter. As a result, the text returned in the variable \&MSG is:
'MSG \#3 is OK.'
The code point for the number sign (\#) is the only change that occurred in the conversion. The number sign was converted from code point $\mathrm{X}^{\prime} 7 \mathrm{~B}^{\prime}$ in code page 00037 to code point $\mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$ in code page 00277 . All other code points in the text of the message matched in code page 00037 and code page 00277.

Note: If the CCSID of a message file is 65535, no conversion occurs, even though the message description CCSID is 00037. The CCSID of the message file always takes precedence over the message description CCSID.

Example 2: Using return fields and converted character data

Message description TST0005 has the following first-level text:
This is *CHAR \&1; This is *CCHAR \&2;

The message description is defined in message file MYMSGF, which has a CCSID of 65535. \&1; is defined as a *CHAR field of length 1. \&2; is defined as a *CCHAR field (*VARY 2) in length. The CCSID of the message description does not matter because the CCSID of the message file is not 65534. You enter the following RTVMSG command:
RTVMSG MSGF(MYMSGF) MSGID(TST0005) MSG(\&MSG); CCSID(260) +
MDTACCSID(37) MSGDTA(X'5A00015A') TXTCCSID(\&TXTCCSID);
Note: $\mathrm{X}^{\prime} 5 \mathrm{~A}^{\prime}$ is the exclamation point (!) on code page 00037.
These are the returned values from the BTVMSG command:

- \quad MSG $=$ 'This is *CHAR. This is *CCHAR !.'

The EBCDIC value of the *CHAR character is X'5A'. X'5A' appears as an acute accent (
,
) on code page 00260. The *CHAR data did not convert because only *CCHAR data supports CCSID processing. The '\&1' stayed at X'5A', while '\&2' converted to $\mathrm{X}^{\prime} 4 \mathrm{~F}$ '. X'4F' is the exclamation point on code page 00260.

- \&TXTCCSID = 65535

The TXTCCSID variable is set to 65535 because no conversion occurred. When no conversion occurs, the CCSID (if it is not 65534) of the message file is returned.

CCSID of the text returned (TXTCCSID) return field: TXTCCSID is the CCSID of the text returned. If a conversion occurs and is successful, this value is always equal to the CCSID-to-convert-to value. If a conversion occurs and is not successful, this is the CCSID of the message file unless the CCSID of the message file is 65534. If the CCSID of the message file is 65534, the CCSID of the message description is returned.

For example, message file MYMSGF has a CCSID of 65534. Your program needs to know the CCSID of message description TST0004. Specify the RTVMSG command as follows:
RTVMSG MSGF(MYMSGF) MSGID(TST0004) CCSID(*HEX) TXTCCSID(\&TXTCCSID);

The CCSID of the message description is returned in the variable \&TXTCCSID because you specified *HEX for the CCSID-to-convert-to parameter. *HEX means no conversion is to occur. If no conversion occurs and the message file CCSID is 65534, the message description CCSID is returned.

You can also obtain the message description CCSID from the Work with Message Descriptions (WRKMSGD) display.

1. On the WRKMSGD display, select option 5 to display details.
2. From the Select Message Details to Display menu, select option 5 to display message attributes.
3. Page forward to the CCSID value. The message description CCSID is shown if the CCSID of the message file is 65534. If the CCSID of the message file is not 65534, the CCSID of the message file is shown.

CCSID conversion status indicator (TXTCCSTA) return field: TXTCCSTA is the text CCSID conversion status indicator. Return codes help you determine what happened when the system converted your
message text to the CCSID-to-convert-to parameter. Positive return code numbers indicate that your conversion was successful. A successful return code does not always indicate that a conversion occurred. Negative return code numbers indicate that a conversion error occurred.

The following list shows the available return codes:
0 No conversion was necessary. The CCSID of the text matched the CCSID that you wanted the text converted to.

1 No conversion occurred. Either the text was 65535 or the CCSID that you wanted the text converted to was 65535.

2 No conversion occurred. You did not ask for any text to be returned.
3 The text was converted to the CCSID specified. The conversion operation used the linguistic conversion tables.

4 A conversion error occurred when the conversion operation used the linguistic conversion tables. The conversion operation then used a default conversion table. The default conversion completed without error.
-1 An error occurred on both the linguistic and default conversions. The text was not converted.
Replacement data CCSID conversion status indicator (MDTACCSTA) return field: MDTACCSTA is the replacement data CCSID conversion status indicator. Return codes help you determine what happened when the system converted your replacement data to the CCSID-to-convert-to parameter.

Positive return code numbers indicate that your conversion was successful. A successful return code does not always indicate that a conversion occurred. Negative return code numbers indicate that a conversion error occurred. These return codes are similar to the TXTCCSTA return codes. The return codes apply to the conversion that takes place on any *CCHAR replacement data being converted from the replacement data CCSID to the CCSID-to-convert-to value.

The following list shows the available return codes:
0 No conversion was necessary. The CCSID of the replacement data matched the CCSID that you wanted the text converted to.

1 No conversion occurred. Either the replacement data was 65535 or the CCSID that you wanted the replacement data converted to was 65535 .

2 No conversion occurred. Either you did not ask for any replacement data to be returned or no *CCHAR replacement data fields were defined for the message description being retrieved.
3 The replacement data was converted to the CCSID specified. The conversion operation used the linguistic conversion tables.
4 A conversion error occurred when the conversion operation used the linguistic conversion tables. The conversion operation then used a default conversion table. The default conversion completed without error.
-1 An error occurred on both the linguistic and default conversions. The replacement data was not converted.

Receive messages: The Receive Message (RCVMSG) command, the Receive Nonprogram Message (OMHRCVM) API, and the Receive Program Message (OMHRCVPM) API have a CCSID-to-convert-to parameter. This parameter determines which CCSID the text or data is converted to before it is returned to the user.

The Receive Message command and APIs convert the text or data from the CCSID of the message queue or message file to the CCSID supplied on the CCSID-to-convert-to parameter. When replacement data is returned, only the *CCHAR data is converted from the CCSID of the message queue to the CCSID-to-convert-to value.

If the CCSID of the message file or message queue is 65534, the text or data is converted from the CCSID of the message description or message to the CCSID supplied on the CCSID-to-convert-to parameter.

The default for the CCSID-to-convert-to parameter is *JOB, which means that the CCSID of the job performing the receive operation is used.

Receive Message command CCSID return fields

Two CCSID return fields are supported by the Receive Message (RCVMSG) command:

- TXTCCSID
- DTACCSD

Receive Message API CCSID return fields

The Receive Message (QMHRCVM) API and the Receive Program Message (QMHRCVPM) API support the return fields defined in TXTCCSID return field for receive message command and DTACCSID return field for receive message command. The Receive Message API and the Receive Program Message API also support two additional return fields.

Example 1: Using the CCSID return fields

Message description TST0005 has the following first-level text:
This is \&CHAR \&1; This is *CCHAR \&2;
' $\& 1$ ' is defined as a *CHAR field of length 1 . ' $\& 2$ ' is defined as a *CCHAR field (*VARY 2) in length.
Message file MYMSGF has a CCSID of 65534. TST0005 is defined in message file MYMSGF. The message description CCSID is 65535 . The CCSID of message queue MYMSGQ is 65534.

You enter the following Send Program Message command:
SNDPGMMSG MSGF(MYMSGF) MSGID(TST0005) CCSID(37) TOMSGQ(MYLIB/MYMSGQ) +
MSGDTA(X'7B00017B')
The message is not converted when it is sent to message queue MYMSGQ because the message queue CCSID is 65534. The message is tagged with CCSID 00037.

You enter the following Receive Message command to receive the message just sent:

```
RCVMSG MSGQ(MYLIB/MYMSGQ) MSG(&MSG); DTACCSID(&DTACCSID); +
CCSID(277) MSGDTA(&MSGDTA); TXTCCSID(&TXTCCSID);
```

Note: $\mathrm{X}^{\prime} 7 \mathrm{~B}^{\prime}$ is the number sign (\#) on code page 00037.
Because the message description is tagged 65535, no conversion is performed when retrieving the message text of TST0005. The replacement data is tagged 00037. The *CCHAR part of the message data is converted from CCSID 00037 to CCSID 00277 before being inserted for $\& 2$; ${ }^{*}$ CHAR data is never converted.

The following table shows the returned values after the Receive Message command runs:

Value	Description
\&MSG =	This is \&CHAR . This is *CCHAR \#. The *CHAR data was not converted when substituted for \&1; The *CHAR data remains X'7B'. X'7B' is the code point on code page 00277 for A ligature ($^{\text {AE }}$). The *CCHAR data was converted to X'4A' before it was substituted for \&2; X'4A' is the code point on code page 00277 for the number sign (\#).
\&TXTCCSID =65535	The \&TXTCCSID variable was set to 65535 because no conversion occurred. When no conversion occurs, the CCSID of the message description is returned if the CCSID of the message file is 65534.
\&DTACCSID = 00277	The \&DTACCSID variable was set to 00277 because a conversion occurred.

Example 2: Receiving a message with CCSID support

Message file MYMSGF has a CCSID of 00037. Message queue MYMSGQ has a CCSID of 65534. The message being received has a message-level CCSID of 00277. CCSID 65534 uses the message-level CCSID when determining the CCSID the replacement data is to be converted from.

The message being received is a stored message. The stored message has *CCHAR replacement data. The CCSID of the job is 00278. You enter the following Receive Message command:

```
RCVMSG MSGQ(MYMSGQ) MSG(&MSG); MSGDTA(&MSGDTA);
```

The first-level text of the stored message that you receive is converted from CCSID 00037 to CCSID 00278. The replacement data of the message that you receive is converted from CCSID 00277 to CCSID 00278. Then the replacement data is substituted into the first-level text and returned in \&MSG.

Both the first-level text and the replacement data of the message that you received are converted to the CCSID of the job because the CCSID of the job is the default for the CCSID-to-convert-to parameter.

Two different conversions must occur because only the replacement data is stored in the message queue for stored messages. The text of a stored message must be retrieved from the message file. If the message contained other replacement data type fields that were not defined as *CCHAR, the non-*CCHAR data is not converted before being returned.

Note: If the CCSID of the message queue is 00278, no conversion occurs on the replacement data before the message is returned, even though the message CCSID is 00277. Remember that the message queue CCSID takes precedence over the message-level CCSID.

CCSID of the message text returned (TXTCCSID) return field: TXTCCSID is the CCSID of the message text returned. If a conversion occurs and the conversion is successful, this value is always the same as the CCSID-to-convert-to value.

For impromptu text, if the conversion is not successful, TXTCCSID is the CCSID of the message queue, unless the message queue is 65534. If the message queue is 65534 , TXTCCSID is the message-level CCSID of the impromptu text.

For a stored message, if the conversion is not successful, TXTCCSID is the CCSID of the message file that contains the stored message, unless the message file is 65534. If the CCSID of the message file is 65534, TXTCCSID is the CCSID of the message description for the stored message.

CCSID of the replacement data returned (DTACCSID) return field: DTACCSID is the CCSID of the replacement data returned. DTACCSID applies only to those parts of the replacement data defined as *CCHAR. If the message being received is an impromptu message, a value of 0 is returned. If a conversion occurs and the conversion is successful, this value is the same as the CCSID-to-convert-to value.

If the conversion is not successful, the DTACCSID returned is the CCSID of the message queue, unless the CCSID of the message queue is 65534. If the CCSID of the message queue is 65534, the DTACCSID returned is the CCSID of the message.

For example, a stored message TST0004 from message file MYMSGF is sent to message queue YOURMSGQ with replacement data. TST0004 is defined with *CCHAR replacement data. Message file MYMSGF is 65534. Message queue YOURMSGQ has a CCSID of 00037.

Your program needs to know the CCSID of the message description and the replacement data sent to message queue YOURMSGQ. You enter the following Receive Message command:
RCVMSG MSGQ(YOURMSQ) CCSID(*HEX) TXTCCSID(\&TXTCCSID); DTACCSID(\&DTACCSID);
The message description CCSID is returned in the variable \&TXTCCSID. The message description CCSID is returned because you specified *HEX for the CCSID-to-convert-to parameter. *HEX means that no conversion is to occur. If no conversion occurs and the message file CCSID tag is 65534, the CCSID of the message description is returned.

The CCSID of message queue YOURMSGQ (00037) is returned in the variable \&DTACCSID. The message queue CCSID is returned because it is not 65534.

You can also obtain the message-level CCSID using the Display Messages (DSPMSG) display.

1. From the Display Messages display, press Help to display the Additional Message Information display.
2. Then press F9 (Display Message Details).

This displays the message-level CCSID when the CCSID of the message queue that this message is on is 65534. Otherwise, the CCSID of the message queue is displayed.

Common questions about CCSID support for handling messages: Following are some common questions asked about CCSID support for handling messages.

- When is the job default CCSID used for handling messages?
- How can I determine if a message description is defined with *CCHAR?
- Can the length of *CCHAR replacement data change?
- Can I correct the CCSID of a message queue?
- Can I correct the CCSID of a message file?
- Can I correct the CCSID of a message?
- Can I correct the CCSID of a message description?

When is the job default CCSID used for handling messages?: A job default CCSID is always a CCSID with an encoding scheme of 1100 (single-byte EBCDIC) or 1301 (mixed-byte EBCDIC). The job default CCSID is used whenever both of the following are true:

- A conversion occurs from a CCSID with an encoding scheme other than 1100 or 1301 to a job CCSID.
- The job CCSID is 65535 .

For example, ASCII data must be converted to a CCSID associated with the data when asked to convert to the CCSID of a job. The job default CCSID is used because it is never CCSID 65535.

How can I determine if a message description is defined with *CCHAR?: You can use the Work with Message Description WRKMSGD command to determine if a message description is defined with
*CCHAR data. You can also use the Retrieve Message (QMHRTVM) API to return the replacement data format fields. For more information, see the System AP topic.

Can the length of *CCHAR replacement data change?: The length of *CCHAR replacement data can change. This is why *CCHAR replacement data is required to be a variable-length field. The length of the field will grow when converting from an SBCS CCSID to the UCS-2 Level-1 CCSID. The length of the field will shrink when converting from the UCS-2 Level-1 CCSID to an SBCS CCSID.

For example, you define message description TST0011 as 'Printer \&1; has error \&2;' in message file MYMSGF that has a CCSID of 65535. ' $\& 1$ ' is defined as *CCHAR data (*VARY 2) in length. This is the name of the printer. \&2; is defined as a *CHAR data with a length of 1 . This is an error code. Enter the following Send Program Message command to send this message to message queue MYMSGQ:
SNDPGMMSG MSGID(TST0011) MSGF(MYLIB/MYMSGF) TOMSGQ(MYLIB/MYMSGQ) +
MSGDTA(X'000400500030F1') CCSID(61952)
X'0004' is the length of the variable *CCHAR data. X'00500030' represents the characters P0 in CCSID 61952. If message queue MYMSGQ has a CCSID of 00037, the replacement data is converted to X'0002D7F0F1' before it is sent to the message queue. If message queue MYMSGQ has a CCSID of 65535 , the data is not converted when it is sent to the message queue.

Your application programs cannot hard-code the position of the return code in this example. When message queue MYMSGQ has a CCSID of 00037, the return code is 5 bytes into the message text. When message queue MYMSGQ has a CCSID of 65535, the return code is 7 bytes into the message text.

Can I correct the CCSID of a message queue?: You may have a message queue that has a CCSID that does not match the CCSID of the messages on it. This usually results from sending messages with a message-level CCSID of 65535 to a message queue with a CCSID that is not 65534 or 65535 .

If all of the messages on a message queue have the same message-level CCSID and you know the message-level CCSID, you can enter the following command:
CHGMSGQ MSGQ(MYMSGQ) CCSID(nnnnn)
In this example, MYMSGQ is the name of the message queue and nnnnn is the message-level CCSID.
If you do not know the CCSID of all the messages on the queue or if the messages on the queue have different CCSIDs, the message queue should have a CCSID of 65535 or 65534 . You can change the message queue CCSID to 65535 . Or, you can do the following:

1. Delete all of the messages.
2. Change the CCSID of the message queue to 65534 .
3. Send all of the messages again.

Can I correct the CCSID of a message file?: You may have a message file that has a CCSID that does not match the CCSID of the message descriptions in it. This usually results from adding message descriptions with a message-level CCSID of 65535 to a message file with a CCSID that is not 65534 or 65535.

If all of the message descriptions in a message file have the same message-level CCSID, and you know the message-level CCSID, you can enter the following command:
CHGMSGF MSGF(MYMSGF) CCSID(nnnnn)
In this example, MYMSGF is the name of the message file and nnnnn is the message-level CCSID.
If you do not know the CCSID of all the message descriptions in the file or if the message descriptions in the file have different CCSIDs, the message file should have a CCSID of 65535 or 65534. You can handle this situation in either of the following ways:

- Change the CCSID of the message file to 65535 .
- Follow these steps:

1. Change the CCSID of the message file to 65534.
2. Change the message-level CCSID of each message description to the correct value. See Cancorrect the CCSID of a message descriptiond for information on how to correct the CCSID of a message description.

Can I correct the CCSID of a message?: You cannot correct the message-level CCSID of a message. You can change the message queue CCSID to match the message-level CCSID. You can also delete the message and send it again with the correct message-level CCSID.

Can I correct the CCSID of a message description?: You can use the Change Message Description (CHGMSGD) command to change the CCSID of a message description. If you do not change the first- or second-level text at the same time that you change the message description CCSID, the text remains unchanged. Only the CCSID changes.

For example, you can enter the following Change Message Description command to correct the CCSID of a message description without changing any of the first- or second-level message text:
CHGMSGD MSGF(MYLIB/MYMSGQ) MSGID(TST0001) CCSID(37)

Work with bidirectional data

Arabic and Hebrew languages use an alphabet written and read from right to left. Numerics and Latin text imbedded in the right-to-left text are written and read from left to right; therefore, these languages are called bidirectional languages.

Because bidirectional languages are written and read from right to left, you should avoid using the terms left and right. For example, right margin in Hebrew or Arabic documents would be the beginning of the line and not the end. Use the words start and end in place of the words right and left.

Hebrew and Arabic have no case-sensitive characters. To avoid the incorrect presentation of characters, no case-sensitive checking or substitution should be performed. In addition, the Arabic language does not use abbreviations, therefore, you should use only complete words.

The following links provide additional information on Bidirectional application design:

- Bidirectional application support
- Checklist: Bidirectional support

See Code globalized applications that use bidirectional data: guidelines for information about how you can design your applications to accommodate bidirectional data.

Bidirectional application support

OS/400 provides bidirectional application support in the following ways:

- Workstation
- Display file
- UIM

Workstation support

Workstations that have the ability to display Arabic and Hebrew character sets also have the ability of right-to-left cursor movement. Right-to-left cursor movement on input fields can be achieved in one of the following ways:

- Pressing a special function key available on Hebrew and Arabic keyboards called the reverse key. This is a toggle function that moves the cursor to the other side of the field, allows for cursor movement in the opposite direction, and also changes the language layer from Latin to Hebrew or Arabic and back again.
- Using the DDS cursor control codes for display files. When the CHECK keyword is used with a cursor-controlled code, it specifies that the cursor is to move from right to left. The valid cursor control codes are:
- CHECK (RL): Moves the cursor from right to left in specified nonnumeric input fields or in all nonnumeric input fields on the display.
- CHECK (RLTB): Moves the cursor from right to left between fields.

When using these parameters, remember the following:

- Modulus check digit verification is supported, but the check digit is the byte to the extreme right of the field.
- A field for which right-to-left cursor movement is specified can occupy more than one line on the display. However, the cursor still moves from the top of the display to the bottom.
- You cannot use right-to-left cursor movement with user-defined data streams.

Note: If no cursor positioning is specified in the display file or by the program, the cursor is placed in the input-capable field to the extreme left of the top line.

See the DDS Reference: Concepts topic for more information.

Display file support

The server does not check to make sure that all display files opened to the display station are capable of right-to-left cursor movement. Therefore, it is the responsibility of application programmers to ensure that the proper display files are used.

User interface manager support

The user interface manager gives the following bidirectional support for creating online information and panels:

- BIDI= NONE | RTL | LTR

This attribute controls the directional orientation of the panels in the panel group.
RTL indicates that the panel in the panel group is bidirectional and should be displayed with a right-to-left orientation.
LTR indicates that the panel in the panel group is bidirectional and should be displayed with a
left-to-right orientation.

- :RT and :ERT

Reverse-direction-text tags indicate that the enclosed text has an orientation that is opposite to the orientation of the panel group.
For a list of UIM tags, see the Application_Display Programming

PDF.

Checklist: Bidirectional support guidelines

When creating an application with bidirectional support, you must follow some guidelines. Some of these guidelines are listed in the following table:

Complies	Not applicable	Rule
		Software design must allow for bidirectional data to be passed to applications in the same order that a speaker of the language would spell it out.
		The product design must allow for the implementation of the correct handling of bidirectional keyboard and presentation functions.
		Designing of a function that implies logical movement of cursor or characters must permit mirroring of that function.
		Keys or operations labeled with directional icons or symbols must perform according to the icon or symbol.
		Keyboard nomenclature for mirrored functions must be independent of the direction of data or text entry.
		Display functions must not assume a left-to-right orientation.
		Field attributes must contain room for directional information.
		Indicator location must be reserved for the current direction of the cursor (direction of input).
		The design must allow for independent handling of graphic and text orientation.
		Provision must be made to allow shape determination to be performed.
		The deshaping must be definable.
		A method should be provided to allow alignment of the baseline of Arabic and Latin characters (including Hindi and Arabic shapes for numerals). presentation shape for the numerals.
		Characters must be allowed to touch each other on printers and displays.
		Indicator locations should be reserved for screen and field orientation, current level of nesting, status of push (nesting mechanism), and status of symmetric swapping.
		The design should provide for a method to indicate to the user the nesting structure of a string.
	A system-wide method of deshaping Arabic characters or character strings should be provided.	

Work with DBCS data

The following topics describe how you handle DBCS data in applications that use DBCS-capable device files:

- Checklist: DBCS application design
- Develop applications that process DBCS data
- DBCS code schemes
- DBCS font tables
- DBCS font files
- DBCS sort tables
- DBCS field definition

A DBCS file is a file that contains double-byte data or is used to process double-byte data. Other files are called alphanumeric files. You can view DBCS files on display, printer, tape, diskette, and ICF devices.

You use data description specifications (DDS) to describe DBCS-capable device files. For information about using DDS, see the DDS Reference: Concepts topic.

You should indicate that a file is DBCS in one or more of the following situations:

- The file receives input, or displays or prints output, which has double-byte characters.
- The file contains double-byte literals.
- The file has double-byte literals in the DDS that are used in the file at processing time (such as constant fields and error messages).
- The DDS of the file includes DBCS keywords.
- The file stores double-byte data (database files).

DBCS strings in a mixed data stream

Usually, both single-byte characters and double-byte characters are used in a DBCS environment. For example, an accounting firm in Japan uses both English and Japanese for the spreadsheet. If both English and Japanese are being encoded as mixed SBCS and DBCS, the product must be able to understand a mixed character set that contains both single-byte coded characters and double-byte coded characters.

In IBM systems that use EBCDIC, a DBCS string is bracketed in a mixed data stream by a shift-out (SO) control character and a shift-in (SI) control character.

The following example shows the coding for a mixed string:

```
sss (S0) D1D2D (SI) ssss
```

The following example shows the coding for a mixed hexadecimal string:

```
818283 0E 41424143 0F 818283
```


Supported code ranges

OS/400 supports Japanese, Korean, Simplified Chinese, and Traditional Chinese character-set code ranges.

Using the Series Access family of products, the servers also provide support for these non-IBM personal computer DBCS code pages:

- Republic of Korea National Standard graphic character set (KS)
- Taiwan Industry Standard graphic character set (Big5)
- The People's Republic of China National Standard graphic character set (GB)

Checklist: DBCS application design

When creating an application with double-byte coded character set support, you must follow some guidelines. A complete list of these guidelines, as well as a full description of each guideline, is included in Volume 1 Designing Enabled Products, Rules and Guidelines (SE09-8001). For your convenience, a subset of these guidelines is provided in the following table.

Complies	Not applicable	Rule
		Double-byte coded character set code points in the graphic character range must be used only for graphic characters and must not be used for control purposes.
		Single-byte meaning must not be drawn from either byte of double-byte coded data.
		Double-byte coded character set character generators must be capable of producing user-accessible graphic characters.
		The ability to switch between single-byte coded character set and double-byte coded character set and the coexistence of single-byte coded character set and double-byte coded character set in the same session must be possible.
		User-interface text modules for double-byte coded character set systems must be loaded separately from the running code.

Develop applications that process DBCS data

Design your application programs for processing double-byte data in the same way you design application
programs for processing alphanumeric data, with the following additional considerations:

- Make sure that the double-byte data is always processed in a double-byte unit and does not split a double-byte character.
- Identify double-byte data used in the database files.
- Design display and printer formats that can be used with double-byte data.
- If needed, provide DBCS conversion as a means of entering double-byte data for interactive applications. Use the DDS keyword for DBCS conversion (IGCCNV) to specify DBCS conversion in display files. Because DBCS workstations provide a variety of double-byte data entry methods, you are not required to use the OS/400 DBCS conversion function to enter double-byte data.
- Create double-byte messages to be used by the program.
- Specify extended character processing so that the system prints and displays all double-byte data.
- Determine whether additional double-byte characters need to be defined. User-defined characters can be defined and maintained using the character generator utility (CGU). Information on CGU can be found in the ADTS/400: Character Generator Utility, SC09-1769-00 book.

The following topics provide more detailed information about how you can use DBCS data in your applications:

- Use of double-byte data
- DBCS coding considerations
- Process double-byte characters
- Display support
- Make DBCS-capable printer files
- Copy spooled and nonspooled DBCS files
- Change alphanumeric to DBCS programs
- DBCS text and CL commands
- DBCS conversion
- SQL and DBCS

Use of double-byte data: You can use double-byte data in the following ways:

- As data in files:
- Data in database files.
- Data entered in input-capable and data displayed in output-capable fields of display files.
- Data printed in output-capable fields in printer files.
- Data used as literals in display files and printer files.
- As the text of messages.
- As the text of object descriptions.
- As literals and constants, and as data to be processed by high-level language programs.

Double-byte data can be displayed only at DBCS displays and printed only on DBCS printers. Double-byte data can be written onto diskette, tape, disk, and optical storage.

Where you cannot use double-byte data:

You cannot use double-byte data in the following ways:

- As OS/400 object names.
- As command names or variable names in control language (CL) and other high-level languages.
- As displayed or printed output on alphanumeric workstations.

Double-byte character size:

When displayed or printed, double-byte characters usually are twice as wide as single-byte characters.
Consider the width of double-byte characters when you calculate the length of a double-byte data field because field lengths are usually identified as the number of single-byte character positions used. For more information on calculating the length of fields containing double-byte data, see the DDS Reference: Concepts topic.

DBCS coding considerations: If you plan to have your application used in a DBCS environment, you should ensure that it is DBCS-enabled. Following are some suggestions to consider when developing your general product design.

- Reserve more expansion space for DBCS textual data translation than you reserve for SBCS textual data translation. (It is possible, however, that the number of bytes used may be reduced when a SBCS sentence is being translated into DBCS.)
- Ensure programs can understand shift-out and shift-in delimiters. Otherwise, EBCDIC mixed-byte character strings cannot be handled.
- Do not enable short responses for DBCS. For short responses, it is difficult to shift in and out of DBCS. The yes and no are examples of short responses.
- Remember to use the graphic data type G where appropriate.
- Remember that the 5494 remote controller supports the graphic data type.
- Be careful when converting mixed data between DBCS-host code and DBCS-PC code, because the transition may change the data length. Losing and gaining SO and SI character pairs can upset field-length calculations.
- Make sure the double-byte data is always processed in a double-byte unit. Do not split a double-byte character.
- Design the display as well as the print format to avoid the problem of truncation of a double-byte character into two single-byte units.

See the following for additional DBCS coding considerations:

- Creating physical files
- Target physical files
- Using CCSIDs
- Using DDS keywords
- DBCS file data types
- The Katakana code page (00290)
- UCS-2 level-1 DBCS display support

Creating physical files: When creating a physical file, display file, and printer file for a DBCS environment, consider the IGCDTA parameter present in the following commands:

- Create Physical File (CRTPF command

If DBCS fields are described in DDS, the system treats the file as a DBCS file. Otherwise, specify *YES for the parameter of the CRTPF command so that the file can contain double-byte character set data.
However, the system ignores the IGCDTA parameter value when a value for the RCDLEN parameter is not specified.

- Create Display File (CRTDSPF) and Create Printer File (CRTPRTF) commands Specify *YES for the parameter when using the CRTDSPF or CRTPRTF commands to create the externally described files. Then DBCS attributes, in addition to those defined in the DDS, can be specified.

Target physical files: When the CPYSPLE DSPSPLE or WRKSPLE commands with OUTPUT(*OUTFILE) option are used under the DBCS version of the OS/400 program, the target physical file must be DBCS-enabled.

Note: The primary language of the system must support the double-byte character set to allow DBCS-enabled applications.

Use the QIGC system value to check if a DBCS version of the system is installed. Because it is set by the system, it cannot be changed. This system value can be referred to in an application program. QIGC can be:

- 0 (DBCS version is not installed)
- 1 (DBCS version is installed)

A DBCS system allows for concurrent use of SBCS and DBCS data. When the QIGC system value is 1 , you should not assume all jobs are DBCS.

Using CCSIDs: Use DBCS CCSIDs for DBCS languages. When designing an application to be used in the DBCS environment, consider the following CCSID information:

- If the QIGC system value is set on, system value QCCSID must have the value of a mixed CCSID.
- If the DBCS and SBCS language users are sharing the same system, they may want to store their data in different databases. It is possible to create DBCS-capable and SBCS-capable physical files in the same system. The CCSID parameter on the CRTPF command or the CCSID keyword on the physical file DDS definition can be used to specify the CCSID value that the data is stored in.
- If a CCSID was not explicitly assigned through DDS at file creation time, the database physical file character J (DBCS-only), E (DBCS-either), O (DBCS-open) or G (DBCS-graphic) fields are implicitly assigned a CCSID value.

Using DDS keywords: Consider the following DDS keywords so that you can specify alternative ways to enter data through display files, change input- and output-capable alphanumeric data fields to DBCS data fields, or to specify the special features of the DBCS printer output:

- CHRSIZ (Character Size)

This printer file keyword can expand the printer characters to twice the normal size (width and height).
This keyword can is valid only for IPDS printers and for printer files with a device type of *IPDS or *AFPDS specified.

- CONCAT (Concatenate)

This keyword can be used only on logical files. This keyword does not support concatenation of a character field and a data type O field.

- DFLIN (Define Line)

The printer file keyword draws horizontal and vertical lines.

- IGCALTTYP (DBCS Alternative Data Type)

This display and printer keyword is used to change input- and output-capable character fields to DBCS fields with data type O.

- IGCANKCNV (Alphanumeric-to-DBCS Conversion)

This printer file keyword converts alphanumeric SBCS characters to equivalent DBCS characters. Printed SBCS alphanumeric characters have the same appearance as printed DBCS characters. The printed DBCS characters, however, are twice as wide as the equivalent SBCS alphanumeric characters.

- IGCCDEFNT (DBCS Coded Font)

This printer file keyword specifies the DBCS coded font for printing a named or constant field (or fields).

- IGCCNV (DBCS Conversion)

This is a display file keyword that enables DBCS conversion.

- IGCCHRRTT (DBCS Character Rotation).

This printer file keyword rotates each DBCS character 90 degrees counterclockwise before printing. By rotating characters, the system prints them in reading sequence. This keyword should be used only for printer files to be printed with 5553 printers or IPDS AFP(*YES) printers.

For more information on the DDS keywords for DBCS, see the DDS Reference: Concepts topic.
DBCS file data types: The data type of a field in a physical file may be changed when it is being referred to in a logical file, as summarized in the following table:

Physical File Data Types	Logical File Data Types
J	J, O, E, H, G
O	O, H
E	E, O, H
A	A, O, E, H
H	J, O, E, A, H
G	G, O, J, E

The Katakana code page (00290): The Katakana code page (code page 00290) of Japan supports uppercase English and single-byte Katakana (phonetics) characters. The lowercase English characters are located at code points different from other code pages and the hardware may not be able to display English uppercase, lowercase, and Katakana characters concurrently. Therefore, special considerations should be taken if the application is going to support this code page:

- Avoid using the lowercase alphabet for syntactic characters.
- Avoid using the SBCS lowercase alphabet with Japanese DBCS messages.

UCS-2 level-1 support and IBM DBCS displays: OS/400 supports ISO/IEC 10646 Universal Coded Character Set 2, Level 1 (UCS-2, Level-1). IBM DBCS-capable display stations, however, do not support UCS-2 Level-1 data. If you are designing an application to handle UCS-2 Level-1 data for display on an IBM DBCS-capable display, you must convert the data to a mixed-byte CCSID before sending the data to the display station.

Process double-byte characters: Due to the large number of double-byte characters, the system needs more information to identify each double-byte character than is needed to identify each alphanumeric character.

There are two types of double-byte characters: basic and extended. These characters are usually processed by the device on which the characters are displayed or printed.

Basic double-byte characters:

Basic characters are frequently used double-byte characters that reside in the hardware of a DBCS-capable device. The number of double-byte characters stored in the device varies with the language supported and the storage size of the device. A DBCS-capable device can display or print basic characters without using the extended character processing function of the operating system.

Double-byte extended characters:

When processing extended characters, the device requires the assistance of the system. The system must tell the device what the character looks like before the device can display or print the character. Extended characters are stored in a DBCS font table, not in the DBCS-capable device. When displaying or printing extended characters, the device receives them from the DBCS font table under control of the operating system.

Extended character processing is a function of the operating system that is required to make characters stored in a DBCS font table available to a DBCS-capable device.

To request extended character processing, specify the double-byte extended character parameter, IGCEXNCHR(*YES), on the file creation command when you create a display (CBTDSPF) or create a printer file (CRTPRTF) command that processes double-byte data. Because IGCEXNCHR(*YES) is the default value, the system automatically processes extended characters unless you instruct it otherwise. You can change this file attribute by using the change file (CHGDSPF) or (CHGPRTF) command. You can override the file attribute with the override display file (OVRDSPF) or override printerfile (OVRPRTF) command. For example, to override the display file DBCSDSPF so that extended characters are processed, enter:
OVRDSPF DSPF(DBCSDSPF) IGCEXNCHR(*YES)

Notes:

1. The system ignores the IGCEXNCHR parameter when processing alphanumeric files.
2. When you use the Japanese 5583 Printer to print extended characters, you must use the Kanji print function of the Advanced DBCS Printer Support licensed program.

What happens when extended characters are not processed:

When extended characters are not processed, the following happens:

- Basic double-byte characters are displayed and printed.
- On displays, the system displays the undefined character where it would otherwise display extended characters.
- On printed output, the system prints the undefined character where it would otherwise print extended characters.
- The extended characters, though not displayed or printed, are stored correctly in the system.

Display support: The following provides useful information about displaying double-byte characters.

Inserting shift-control characters:

The system inserts shift-control characters into DBCS-only fields automatically.

To insert shift-control characters into open fields or either fields, do the following:

1. Position the cursor in the field in which you want to insert double-byte data.
2. Press the Insert Shift Control Character key (according to your DBCS display user's guide).

The system inserts a pair of shift-control characters at the same time. The system leaves the cursor under the shift-in character and puts the keyboard in insert mode. Insert double-byte characters between the shift-control characters.

To find out if a field already has the shift-control characters, press the Display Shift Control Character key.
DBCS-graphic fields store double-byte characters without requiring the use of shift control characters. Shift control characters should not be inserted in graphic fields.

Number of displayed extended characters:

The system can display up to 512 different extended characters on a Japanese display at one time. Additional extended characters are displayed as undefined characters. However, the additional extended characters are stored correctly in the system.

Number of input fields on a display:

The use of DBCS input fields affects the total number of input fields allowed on a display. For a local 5250 display, you can specify as many as 256 input fields. However, each three instances of a DBCS field reduces the maximum number of fields by one. For example, if there are 9 DBCS fields on a display, then the maximum is $256-(9 / 3)=253$ input fields.

Effects of displaying double-byte data at alphanumeric workstations:

Alphanumeric displays cannot display double-byte data correctly. If you try to display double-byte data at an alphanumeric display, the following happens:

- The system sends an inquiry message to that display, asking whether you want to continue using the program with double-byte data or to cancel it.
- If you continue using the program, the system ignores the shift-control characters and interprets the double-byte characters as though they were single-byte characters. Displayed double-byte data does not make sense.

Make printer files DBCS capable: In many cases, printer files are used by the server to produce data that will eventually be printed or displayed. In these cases, the data is first placed into a spooled file using one of the IBM-supplied printer files. The data is then taken from the spooled file and is displayed or printed based on the request of the user.

When the data involved contains double-byte characters, the printer file that is used to place the data into the spooled file must be capable of processing double-byte data. A printer file is capable of processing double-byte data when *YES is specified on the IGCDTA parameter for the file. In most cases, the system recognizes the occurrence of double-byte data and takes appropriate measures to ensure the printer file that is used is capable of processing double-byte data.

In some cases, however, the system cannot recognize the occurrence of double-byte data and may attempt to use a printer file that is not capable of processing double-byte data. If this occurs, the output at the display or printer may not be readable. This can happen when object descriptions containing double-byte characters are to be displayed or printed on an alphanumeric device.

To ensure that you receive correct results when you display or print double-byte characters, some recommendations should be followed. Action is required on your part if you have a single-byte national language installed as a secondary language. Printer files that are received as part of the DBCS version of a product are always capable of processing DBCS data.

You should complete the following recommended actions after the product or feature has been installed:

1. If all printers and display devices attached to your system are DBCS-capable, you can enable all printer files for double-byte data. For IBM-supplied printer files that are received as part of a single-byte secondary language feature, you can enable all printer files by issuing the following command:
CHGPRTF FILE(*ALL/*ALL) IGCDTA(*YES)
After this command has been completed, all printer files in all libraries will be enabled for double-byte data. The change will be permanent.
2. If all printer and display devices attached to your system are not DBCS-capable, it is recommended that you do not enable all IBM-supplied printer files.
Instead, use the library search capabilities of the system to control which printer files will be used for any particular job. When the potential exists that double-byte data will be encountered, the library list for the job should be such that the printer files that are DBCS-enabled will be found first in the library list. Conversely, if only single-byte data is expected to be encountered, the library list should be set up so the printer files that are not enabled for DBCS will be found first. In this way, the printer file capabilities will match the type of data that will be processed. The decision as to what type of printer file to use is made on the basis of what type of data will be processed. The device that will be used to actually display or print the data may also influence this decision.

In some cases it may be desirable to make the printer file only temporarily DBCS-capable instead of making a permanent change. For a specific job, you can make this temporary change by using the OVRPRTH command.

To temporarily enable a specific printer file, you can use the following command:
OVRPRTF FILE(filename) IGCDTA(*YES)
Where filename is the name of the printer file you want to enable.
Copy spooled and nonspooled DBCS files: You can copy both spooled and nonspooled DBCS files.

Copying spooled files

Copy spooled files that have double-byte data by using the Copy Spooled File (CPYSPLF) command. However, the database file to which the file is being copied must have been created with the IGCDTA(*YES) value specified.

When copying spooled files to a database file that contains double-byte data, an extra column is reserved for the shift-out character. This shift-out character is placed between the control information for the record and the user data. The following table shows the shift-out character column number, based on the value specified for the Control character (CTLCHAR) keyword:

CTLCHAR value	Column for shift-out character
${ }^{*}$ NONE	1
${ }^{*}$ FCFC	2
${ }^{*}$ PRTCTL	5
${ }^{*}$ S36FMT	10

Copying nonspooled DBCS files

You can use the Copy File command to copy double-byte data from one file to another.
When copying data from a double-byte database file to an alphanumeric database file, specify one of the following on the CPYF command:

- If both files are source files or if both files are database files, you can specify either the FMTOPT(*MAP) parameter or the FMTOPT(*NOCHK) parameter.
- If one file is a source file and the other file is a database file, specify the FMT(*CVTSRC) parameter.

When you copy DBCS files to alphanumeric files, the system sends you an informational message describing the difference in file types.

Either the FMTOPT(*MAP) or FMTOPT(*NOCHK) option of the copy file function must be specified for copies from a physical or logical file to a physical file when there are fields with the same name in the from-file and to-file, but the data type for fields is as shown in the following table:

From-file field data type	To-file field data type
A (character)	J (DBCS-only)
O (DBCS-open)	J (DBCS-only)
O (DBCS-open)	E (DBCS-either)
E (DBCS-either)	J (DBCS-only)
J (DBCS-only)	G (DBCS-graphic)
O (DBCS-open)	G (DBCS-graphic)
E (DBCS-either)	G (DBCS-graphic)
G (DBCS-graphic)	J (DBCS-only)
G (DBCS-graphic)	O (DBCS-open)
G (DBCS-graphic)	E (DBCS-either)

When you use FMTOPT(*MAP) on the CPYF command to copy data to a DBCS-only field or DBCS-graphic field, the corresponding field in the from-file must not be:

- Less than a 2-byte character field
- An odd-byte-length character field
- An odd-byte-length DBCS-open field

If you attempt to copy with one of these specified in the from-field, an error message is sent.
When you copy double-byte data from one database file to another with the FMTOPT(*MAP) parameter specified, double-byte data will be copied correctly. The system will perform correct padding and truncation of double-byte data to ensure data integrity.

When using the CPYF command with FMTOPT(*MAP) to copy a DBCS-open field to a graphic field, a conversion error occurs if the DBCS-open field contains any SBCS data (including blanks).

Change alphanumeric programs to DBCS programs: If an alphanumeric application program uses externally described files, you can change that application program to a DBCS application program by changing the externally described files. To convert an application program, do the following:

1. Create a duplicate copy of the source statements for the alphanumeric file that you want to change.
2. Change alphanumeric constants and literals to double-byte constants and literals.
3. Change fields in the file to the open (O) data type or specify the Alternative Data Type (لGCALTTYP) DDS keyword so that you can enter both double-byte and alphanumeric data in these fields. You may want to change the length of the fields as the double-byte data takes more space.
4. Store the converted file in a separate library. Give the file the same name as its alphanumeric version.
5. When you want to use the changed file in a job, change the library list, using the Change Library List (CHGLIBL) command, for the job in which the file will be used. The library in which the DBCS display file is stored is then checked before the library in which the alphanumeric version of the file is stored.

Enter DBCS text in CL commands: You can use double-byte character data anywhere in a CL command that descriptive text can be used.

Enter double-byte character text as follows:

1. Begin the double-byte character text with an apostrophe (').
2. Enter a shift-out character.
3. Enter the double-byte character text.
4. Enter a shift-in character.
5. End the double-byte character text with an apostrophe (').

For example, to enter the double-byte character literal ABC, enter the following, where SO represents the shift-out character and SI represents the shift-in character:

```
'SOABCSI'
```

Limit the length of a double-byte character text description of an object to 14 double-byte characters, plus the shift control characters, to make sure that the description is properly displayed and printed.

DBCS conversion: When you use DBCS displays to enter double-byte data, you may use the various data entry methods supported on the display, or you may choose to use the server DBCS conversion support. DBCS conversion lets you enter an alphanumeric entry or DBCS code and convert the entry or code to its related DBCS word. DBCS conversion is intended for Japanese character sets and its use is limited for application to other double-byte character sets.

Specifically, DBCS conversion lets you convert the following:

- A string of alphanumeric characters to a DBCS word
- English alphanumeric characters to double-byte alphanumeric characters
- Alphanumeric Katakana to double-byte Hiragana and Katakana letters
- A DBCS code to its corresponding double-byte character
- A DBCS number to its corresponding double-byte character

The following links provide additional information about DBCS conversion:

- Conversion dictionaries
- Work with conversion dictionaries
- Japanese DBCS conversion

Conversion dictionaries: The DBCS conversion dictionary is a collection of alphanumeric entries and their related DBCS words. The system refers to the dictionary when performing DBCS conversion.

All DBCS conversion dictionaries have an object type of *IGCDCT. A system-supplied and a user-created dictionary are used with DBCS conversion.

User-created dictionary:

A user-created dictionary contains any alphanumeric entries and related DBCS words that you choose to include. You might create a user dictionary to contain words unique to your business or words that you use regularly but that are not included in the system-supplied dictionary.

You can create one or more DBCS conversion dictionaries with any name and store them in any library. When performing DBCS conversion, however, the system only refers to the first user dictionary named QUSRIGCDCT in the user's library list, no matter how many dictionaries you have or what they are named. Make sure that the library list is properly specified so that the system checks the correct dictionary.

During DBCS conversion, the system checks QUSRIGCDCT before checking QSYSIGCDCT.

DBCS conversion dictionary commands:

You can use the following commands to perform object management functions with the DBCS conversion dictionary. Specify the OBJTYPE(*IGCDCT) parameter when entering these commands:

- CHGOBJOWN Change the owner of a DBCS conversion dictionary
- CHKOB.j. Check a DBCS conversion dictionary
- CRTDUPOBd Create a duplicate object of the dictionary
- DMPOB. Dump a DBCS conversion dictionary
- DMPSYSOB. Dump the system-supplied dictionary
- DSPOBJAUT Display a user's authority to the dictionary
- GRTOBJJUTT Grant authority to use the dictionary
- MOVOB. Move the dictionary to another library
- BNMOBJ Rename the dictionary
- BSTOBd Restore the dictionary
- RVKOBJAUT. Revoke authority to use the dictionary
- SAVOB. Save the dictionary
- SAVCHGOB. Save a changed dictionary

The system saves or restores DBCS conversion dictionaries when you use these commands:

- BSTLIB Restore a library in which the dictionary is stored
- SAVLIB Save a library in which the dictionary is stored
- SAVSYS Save QSYSIGCDCT, the system DBCS conversion dictionary, when saving the system

You can use the following commands to create, edit, display, and delete a dictionary:

- CRTIGCDCTI Create DBCS Conversion Dictionary
- EDTIGCDCT Edit DBCS Conversion Dictionary
- DSPIGCDCTi Display DBCS Conversion Dictionary
- DLTIGCDCT: Delete DBCS Conversion Dictionary

Work with conversion dictionaries: The following topics describe how you create, edit, display, print, and delete conversion dictionaries.

Create a DBCS conversion dictionary

To create a DBCS conversion dictionary, do the following:

1. Use the Create DBCS Conversion Dictionary (CRTIGCDCT) command.
2. Name the dictionary, QUSRIGCDCT, so it can be used during DBCS conversion. The system uses the dictionary if it is the first user-created dictionary found when searching a user's library list.
You might call the dictionary by another name while it is being created to prevent application programs from using it for conversion. Later, change the dictionary name using the Rename Object (RNMOBJ) command.
3. Use the EDTIGCDCT command to put entries and related words into the dictionary after creating it.

Edit a DBCS conversion dictionary

Use the Edit DBCS conversion dictionary (EDTIGCDCT) command to edit the DBCS conversion dictionary. Use editing to add user-defined characters to the dictionary, so that users can enter characters using DBCS conversion, and rearrange terms in a DBCS conversion dictionary to suit individual needs.

The display needed for use while editing the DBCS conversion dictionary depends on the value that you entered for the ENTRY parameter on the EDTIGCDCT command:

- If you specified a specific string with the ENTRY parameter or if you want to display double-byte characters, you must use a DBCS display.
- If you did not specify a specific string with the ENTRY parameter, or if you do not want to display double-byte characters, use either a DBCS display, or a 24 -row by 80 -column alphanumeric display.

You may perform the following editing operations on a user-created DBCS conversion dictionary:

- Add entries to the dictionary (including adding the first entries to the dictionary after it is created). The dictionary can contain as many as 99,999 entries.
- Delete entries from the dictionary.
- Change entries in the dictionary, such as replacing the DBCS words related to an alphanumeric entry.
- Move the DBCS words related to an alphanumeric entry to rearrange the order in which they appear during DBCS conversion.

The only editing function that you can perform with QSYSIGCDCT, the system-supplied dictionary, is to move DBCS words related to an alphanumeric entry. Move words in order to rearrange the order in which they appear during DBCS conversion.

Display and print the DBCS conversion dictionary

Use the Display DBCS Conversion Dictionary (DSPIGCDCT) command to display and print the DBCS conversion dictionary. You can display or print the entire dictionary or just a certain part of it, depending on the value you specify for the ENTRY parameter.

For example, to print the entry ABC from the dictionary QUSRIGCDCT and its related words, enter:

```
DSPIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +
ENTRY(ABC) OUTPUT(*PRINT)
```

To display all of the entries from the system-supplied dictionary QSYSIGCDCT and their related words, enter:
DSPIGCDCT IGCDCT(QSYS/QSYSIGCDCT)

Delete a DBCS conversion dictionary

Use the Delete DBCS Conversion Dictionary [DLTIGCDCT] command to delete a DBCS conversion dictionary from the system. In order to delete the dictionary, you must have object existence authority to the dictionary and object operational authorities to the library in which the dictionary is stored.

When you delete a dictionary, make sure that you specify the correct library name. It is possible that many users have their own dictionaries, each named QUSRIGCDCT, stored in their libraries. If you do not specify any library name, the system deletes the first DBCS conversion dictionary in your library list.

Japanese DBCS conversion: When you use DBCS displays to enter double-byte data, you may use the various data entry methods supported on the display, or you may choose to use the OS/400 DBCS conversion support. DBCS conversion lets you enter an alphanumeric entry or DBCS code and convert the entry or code to its related DBCS word. DBCS conversion is intended for Japanese character sets and its use is limited for application to other double-byte character sets.

Specifically, DBCS conversion lets you convert the following:

- A string of alphanumeric characters to a DBCS word
- English alphanumeric characters to double-byte alphanumeric characters
- Alphanumeric Katakana to double-byte Hiragana and Katakana letters
- A DBCS code to its corresponding double-byte character
- A DBCS number to its corresponding double-byte character

Japanese system-supplied dictionary

The QSYSIGCDCT is the system-supplied dictionary that is stored in the library, QSYS. It is a collection of entries with a Japanese pronunciation, expressed in alphanumeric characters, and the DBCS words related to those entries. The system checks this dictionary second when performing DBCS conversion.

QSYSIGCDCT contains these entries:

- Personal names
- Family names
- First names
- Organization names
- Private enterprises registered in the security market
- Public corporations
- Typical organizations in the central and local governments
- Most universities and colleges
- Addresses
- Public administration units within the prefectures
- Towns and streets in 11 major cities
- Business terms, such as department names and position titles commonly used in enterprises
- Individual double-byte characters, including basic double-byte characters, as defined by IBM

You cannot add or delete entries from this dictionary. However, you may rearrange the related DBCS words so that the words used most frequently are displayed first during DBCS conversion.

SQL and DBCS: The basic symbols of keywords and operators in the SQL language are single-byte characters that are part of all character sets supported by the IBM relational database products.
Characters of the language are classified as letters, digits, or special characters.

SQL host identifiers and double-byte characters

A host-identifier is a name declared in the host program. The rules for forming a host-identifier are the rules of the host language, except that DBCS characters cannot be used.

SQL character subtypes and double-byte characters

Each character string is further defined as one of the following:

- Bit data: Data that is not associated with a coded character set and is never converted. The CCSID for bit data is 65535 .
- SBCS data: Data in which every character is represented by a single byte. Each SBCS data character string has an associated CCSID. If necessary, an SBCS data character string is converted before it is used in an operation with a character string that has a different CCSID.
- Mixed data: Data that may contain a mixture of characters from a single-byte character set (SBCS) and a double-byte character set (DBCS). Each mixed data character string has an associated CCSID. If necessary, a mixed data character string is converted before an operation with a character string that has a different CCSID. If mixed data contains a DBCS character, it cannot be converted to SBCS data.

The database manager does not recognize subclasses of double-byte characters, and it does not assign any specific meaning to particular double-byte codes. However, if you choose to use mixed data, then two single-byte EBCDIC codes are given special meanings:

- X'OE', the "shift-out" character, is used to mark the beginning of a sequence of double-byte codes.
- $X^{\prime} 0 F$ ', the "shift-in" character, is used to mark the end of a sequence of double-byte codes.

In order for the database manager to recognize double-byte characters in a mixed data character string, the following condition must be met:

- Within the string, the double-byte characters must be enclosed between paired shift-out and shift-in characters.
The pairing is detected as the string is read from left to right. The code X^{\prime} OE' is recognized as a shift out character if $X^{\prime} O F$ ' occurs later; otherwise, it is invalid. The first $X^{\prime} O F$ ' following the $X^{\prime} O E^{\prime}$ that is on a double-byte boundary is the paired shift-in character. Any X'OF' that is not on a double-byte boundary is not recognized.
There must be an even number of bytes between the paired characters, and each pair of bytes is considered to be a double-byte character. There can be more than one set of paired shift-out and shift-in characters in the string.

The length of a mixed data character string is its total number of bytes, counting two bytes for each double-byte character and one byte for each shift-out or shift-in character.

When the job CCSID indicates that DBCS is allowed, CREATE TABLE will create character columns as DBCS-Open fields, unless FOR BIT DATA, FOR SBCS DATA, or an SBCS CCSID is specified. The SQL user will see these as character fields, but the system database support will see them as DBCS-Open fields.

For more information on SQL and DBCS, see the following:

- SQL graphic strings
- SQL assignments and comparisons
- SQL conversion rules

SQL graphic strings: A graphic string is a sequence of double-byte characters that does not include shift-out or shift-in characters. The length of the string is the number of its characters. Like character strings, graphic strings can be empty.

Every graphic string has a CCSID that identifies a double-byte coded character set. If necessary, a graphic string is converted before it is used in an operation with a graphic string that has a different CCSID.

SQL fixed-length and double-byte characters

All values of a fixed-length graphic-string column have the same length, which is determined by the length attribute of the column. The length attribute must be between 1 through 16383 inclusive.

SQL graphic-string constants

A graphic-string constant is a varying-length graphic string. The length of the specified string cannot be greater than 16370.

In the normal form, the SQL delimiters and the G or the N are SBCS characters. The SBCS apostrophe (') is the EBCDIC apostrophe, $\mathrm{X}^{\prime} 7 \mathrm{D}^{\prime}$.

In the PL/I form, the apostrophes and the G are DBCS characters. Two consecutive DBCS string delimiters are used to represent one string delimiter within the string. Notice that this PL/I form is only valid for static statements embedded in PL/I programs.

A hexadecimal graphic constant is also supported. The form of the hexadecimal graphic constant is:
GX'ssss'

In the constant, ssss represents a string from 0 to 32766 hexadecimal digits. The number of characters between the string delimiters must be an even multiple of 4 . Each group of 4 digits represents a single graphic character. The hexadecimal for shift-in and shift-out (X'OE' and X'OF') are not included in the string.

The CCSID assigned to constants is the DBCS CCSID associated with the CCSID of the source unless the source is encoded in a foreign encoding scheme (such as ASCII). In this case, the CCSID assigned to the constant is the DBCS CCSID associated with the default CCSID of the application server when the SQL statement containing the constant is prepared. If there is no DBCS CCSID associated with the CCSID of the source, the CCSID is 65535.

SQL assignments and comparisons: The basic operations of SQL are assignment and comparison. Assignment operations are performed during the running of CALL, INSERT, UPDATE, FETCH, and SELECT INTO statements. Comparison operations are performed during the running of statements that include predicates and other language elements such as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved must be compatible. The compatibility rule also applies to UNION, concatenation, and the VALUE, COALESCE, MIN, and MAX scalar functions.

SQL string assignments and double-byte characters

The basic rule for string assignments is that the length of a string assigned to a column must not be greater than the length attribute of the column. (Trailing blanks are normally included in the length of the string. For string assignment, however, trailing blanks are not included in the length of the string.)

If the string contains mixed data, the assignment rules may require truncation within a sequence of double-byte codes. To prevent the loss of the shift-in character that ends the double-byte sequence, additional characters may be truncated from the end of the string, and a shift-in character added. In the truncated result, there is always an even number of bytes between each shift-out character and its matching shift-in character.

Character, DBCS-only, DBCS-open, and DBCS-either are not compatible with graphic types for assignment.

SQL conversion rules: When two strings are compared, one of the strings is first converted, if necessary, to the coded character set of the other string. Character conversion is necessary only if all of the following are true:

- The CCSIDs of the two strings are different.
- Neither CCSID is 65535.
- The string selected for conversion is neither null nor empty.
- The CCSID conversion selection table indicates that conversion is necessary.

If one string has an SBCS CCSID and the other is the same type of operand and has a mixed data CCSID, the SBCS data character string is converted. Otherwise, the string selected for conversion depends on the type of each operand. The following table shows which operand is selected for conversion, given the operand types.

First operand	Column value (second operand)	Derived value (second operand)	Special register (second operand)	Constant (second operand)	Host variable (second operand)
Column value	Second	Second	Second	Second	Second
Derived Value	First	Second	Second	Second	Second

	Column value (second operand)	Derived value (second operand)	Special register (second operand)	Constant (second operand)	Host variable (second operand)
Special Register	First	First	Second	Second	Second
Constant	First	First	First	Second	Second
Host Variable	First	First	First	First	Second

A host variable containing data in a foreign encoding scheme is always effectively converted to the native encoding scheme before it is used in any operation. The above rules are based on the assumption that this conversion has already occurred.

An error occurs if a character of the string cannot be converted or the CCSID Conversion Selection Table is used but does not contain any information about the pair of CCSIDs. A warning occurs if a character of the string is converted to the substitution character.

DBCS code schemes

IBM supports two DBCS code schemes: one for the host systems, the other for personal computers. The DBCS code scheme for host systems has the following code-range characteristics:

- First byte: hex 41 to hex FE
- Second byte: hex 41 to hex FE
- Double-byte blank: hex 4040

Shift-control characters

When the host code scheme is used, the system uses shift-control characters to identify the beginning and end of a string of double-byte characters. The shift-out (SO) character, hex 0E, indicates the beginning of a double-byte character string. The shift-in (SI) character, hex OF, indicates the end of a double-byte character string.

Each shift-control character occupies the same amount of space as one alphanumeric character. By contrast, double-byte characters occupy the same amount of space as two alphanumeric characters.

When double-byte characters are stored in a graphic field or a variable of graphic data type, there is no need to use shift control characters to surround the double-byte characters.

Incorrect and undefined double-byte code

Incorrect double-byte code has a double-byte code value that is not in the valid double-byte code range. This is in contrast to undefined double-byte code where the double-byte code is valid, but no graphic symbol has been defined for the code.

Supported DBCS code ranges

OS/400 supports the following DBCS character-set code ranges:

- Japanese character-set code range
- Korean character-set code range
- Simplified Chinese character-set code range
- Traditional Chinese character-set code range

See Appendix A (DBCS Code Scheme) in the File_Management PDF for details.

DBCS font tables

DBCS font tables contain the images of the double-byte extended characters used on the system. The system uses these images to display and print extended characters

>

when they are not resident on the device.

<

The following DBCS font tables are objects that you can save or restore. These font tables are distributed with the DBCS national language versions of the OS/400 licensed program:

QIGC2424

A Japanese DBCS font table used to display and print extended characters in a 24-by-24 dot matrix image. The system uses the table with Japanese displays, printers attached to displays, 5227 Model 1 Printer, and the 5327 Model 1 Printer.

QIGC2424C

A Traditional Chinese DBCS font table used to print extended characters in a 24-by-24 dot matrix image. The system uses the table with the 5227 Model 3 Printer and the 5327 Model 3 Printer.

QIGC2424K

A Korean DBCS font table used to print extended characters in a 24 -by- 24 dot matrix image. The system uses the table with the 5227 Model 2 Printer and the 5327 Model 2 Printer.

QIGC2424S

A Simplified Chinese DBCS font table used to print extended characters in a 24-by-24 dot matrix image. The system uses the table with the 5227 Model 5 Printer.

QIGC3232

A Japanese DBCS font table used to print characters in a 32-by-32 dot matrix image. The system uses the table with the 5583 Printer and the 5337 Model 1 Printer.

QIGC3232S

A Simplified Chinese DBCS font table used to print characters in a 32-by-32 dot matrix image. The system uses the table with the 5337 Model R05 Printer.

All DBCS font tables have an object type of *IGCTBL. You can find instructions for adding user-defined characters to DBCS font tables in the ADTS/400: Character Generator Utility, SC09-1769-00 book.

DBCS font table commands

The following commands allow you to manage and use DBCS font tables:

- Check DBCS Font Table (CHKIGCTBL)
- Copy DBCS Font Table (CPYIGCTBل)
- Delete DBCS Font Table (DلTIGCTBL)
- Start Font Management Aid (STRFMA)

Locate an existing font table

Use the Check DBCS Font Table (CHKIGCTBL) command to find out if a DBCS font table exists in your system.

For example, to find out if the table QIGC2424 exists, enter:
CHKIGCTBL IGCTBL(QIGC2424)
If the table does not exist, the system responds with a message. If the table does exist, the system simply returns without a message.

Check for the existence of a table when adding a new type of DBCS workstation to make sure that the table used by the device exists in the system.

For more information

For additional information, see the following:

- Copy a DBCS font table
- Delete a DBCS font table

Copy a DBCS font table: Use the Copy DBCS Font Table (CPYGCTBL command to copy a DBCS font table to or from tape, diskette, or physical file.

The DBCS font tables are saved when you use the Save System (SAVSYS) command so you do not have to use the CPYIGCTBL command when performing normal system backup.

A physical file used to save and restore table information must have a minimum record length of 74 bytes.

Copying a table onto a tape, a diskette, or a physical file

You should copy a DBCS font table onto a tape, a diskette, or a physical file in the following instances:

- Before deleting that table
- After new user-defined characters are added to the tables
- When planning to use the tables on another system

To copy a DBCS font table onto a tape, a diskette, or a physical file do the following:

1. If copying a DBCS font table onto a tape or diskettes, make sure that the tape or diskettes are initialized to the *DATA format. If necessary, initialize the tape or diskettes by specifying the FMT(*DATA) parameter on the Initialize Diskette (INZDKT) command.
2. Load the initialized tape or diskette onto the system.
3. Enter the CPYIGCTBL command as follows:
a. Choose the value OPTION(*OUT).
b. Use the DEV parameter to select the device to which you want to copy the table. A value of *FILE specifies that the DBCS font table is saved to a physical file.
c. Use the SELECT and RANGE parameters to specify which portion of the table you want copied from the system. For more information on the valid codes and numbers to specify for starting and ending values of user-defined character ranges, see the .
4. Press the Enter key. The system copies the DBCS font table onto the specified medium or into a physical file.
5. Remove the tape or the diskette after the system finishes copying the table.

Copying a DBCS font table from a tape, a diskette, or a physical file

Use the Copy DBCS Font Table (CPYIGCTBL) command to copy a DBCS font table from a tape, a diskette, or a physical file onto the system. The system automatically creates the DBCS font table again when copying its contents if the following are true:

- The specified table does not already exist in the system.
- The medium or physical file from which you are copying the table contains all of the IBM-defined double-byte characters.
- SELECT(*ALL) or SELECT(*SYS) is specified on the CPYIGCTBL command.

Delete a DBCS font table: Use the Delete DBCS Font Table (DITIGCTBL) command to delete a DBCS font table from the server.

Delete an unused DBCS font table to free storage space. For example, if you do not plan to use Japanese printer 5583 or 5337 with your server, font table QIGC3232 is not needed and can be deleted.

When deleting a table, do the following:

1. If desired, copy the table onto a tape, a diskette, or a physical file. If you do not copy the table before deleting it, you will not have a copy of the table for future use.
2. Vary off all devices using that table.
3. Enter the DLTIGCTBL command. For example, to delete the DBCS font table QIGC3232, enter: dLtigCtbl igctbl(Qigc3232)
4. Press the Enter key. The system sends an inquiry message to the system operator message queue for you to confirm your intention to delete a DBCS table.
5. Respond to the inquiry message. The server sends you a message when it has deleted the table.

Note: Do not delete a DBCS font table if any device using that table is currently varied on. Also, make sure that the affected controller is not varied on. If you try to delete the table while the device and controller are varied on, the system reports any devices attached to the same controller(s) as those devices, and the controller(s) as damaged the next time you try to print or display extended characters on an affected device. If such damage is reported, do the following:
a. Vary off the affected devices, using the Vary Configuration VRYCFG command.
b. Vary off the affected controller.
c. Vary on the affected controller.
d. Vary on the affected devices.
e. Continue normal work.

DBCS font files

In addition to the system-supplied DBCS font tables, the system also provides DBCS font files. These DBCS font files are physical files which contain frequently used double-byte characters. When using the character generator utility, you can use the characters in these files as the base for a new user-defined character. These files are supplied with read-only authority as they are not to be changed. If you do not use character generator utility or the Advanced DBCS Printer Support licensed program, you may delete these files to save space. They all exist in the QSYS library.

The following DBCS font files are distributed with the DBCS national language versions of the OS/400 licensed program. They are used as a reference for the CGU and the Advanced DBCS Printer Support licensed program.

QCGF2424

A Japanese DBCS font file used to store a copy of the Japanese DBCS basic character images.

QCGF2424K

A Korean DBCS font file used to store a copy of the Korean DBCS basic character images.

QCGF2424C

A Traditional Chinese DBCS font file used to store a copy of the Traditional Chinese DBCS basic character images.

QCGF2424S

A Simplified Chinese DBCS font file used to store a copy of the Simplified Chinese DBCS basic character images.

DBCS sort tables

DBCS sort tables contain the sort information and collating sequences of all the double-byte characters used on the system. The sort utility on the system uses these tables to sort double-byte characters.

DBCS sort tables are objects that you can save, restore and delete. Using the character generator utility you can also add, delete and change entries in these tables corresponding to the image entries in the DBCS font tables. For Japanese use only, you can also copy the DBCS master sort table to and from a data file.

The following DBCS sort tables are distributed with the DBCS national language versions of OS/400 licensed program:

QCGMSTR

A Japanese DBCS master sort table used to store the sort information for the Japanese double-byte character set.

QCGACTV

A Japanese DBCS active sort table used to store the sort collating sequences for the Japanese double-byte character set.

QCGMSTRC

A Traditional Chinese DBCS master sort table used to store the sort information for the Traditional Chinese double-byte character set.

QCGACTVC

A Traditional Chinese DBCS active sort table used to store the sort collating sequences for the Traditional Chinese double-byte character set.

QCGACTVK

A Korean DBCS active sort table used to map Hanja characters to Hangeul characters with equivalent pronunciation.

QCGMSTRS

A Simplified Chinese DBCS master sort table used to store the sort information for the Simplified Chinese double-byte character set.

QCGACTVS

A Simplified Chinese DBCS active sort table used to store the sort collating sequences for the Simplified Chinese double-byte character set.

You can sort Japanese, Korean, Simplified Chinese, and Traditional Chinese double-byte characters. Each of these languages have two DBCS sort tables, a DBCS master sort table and a DBCS active sort table, except for Korean which has only a DBCS active sort table. The DBCS master sort table contains sort information for all defined DBCS characters. The DBCS active sort table for Japanese, Simplified Chinese, and Traditional Chinese is created from the master sort table information and contains the collating sequences for the double-byte characters of that given language. These collating sequences have a purpose similar to the EBCDIC and ASCII collating sequences for the single-byte alphanumeric character set. For Korean characters, the Hangeul characters are assigned both their collating sequence as well as their DBCS codes according to their pronunciation. Hence, a separate collating sequence is not required, and each of the Hanja characters is mapped to a Hangeul character of the same pronunciation using the DBCS active sort table QCGACTVK.

All DBCS sort tables have an object type of *IGCSRT.

Commands for DBCS sort tables

The following commands allow you to manage and use DBCS sort tables.

- Check Object (CHKOBJ)
- Save Object (SAVOBJ)
- Restore Object RSTOB .لl

Use existing DBCS sort tables

You can save the tables to tape or diskette, delete them from the server, and restore them to the server. The Japanese DBCS master sort table can also be copied to a data file and copied from a data file so that it can be shared with an Application System/Entry* (AS/Entry) system. You can also add sort information for each user-defined character, and add that character to the DBCS collating sequence, as you create it using the character generator utility.

Find existing DBCS sort table

Use the Check Object (CHKOBJ) command to find out if a DBCS sort table exists in your system.
For example, to find out if the table QCGMSTR exists, enter:
CHKOBJ OBJ (QSYS/QCGMSTR) OBJTYPE(*IGCSRT)
If the table does not exist, the system responds with a message. If the table does exist, the system simply returns without a message.

Check for the existence of a DBCS active sort table when you want to sort double-byte characters for the first time. The DBCS active table for the DBCS language must exist to sort the characters.

For additional information about DBCS sort tables, see the following:

- Save and restore a DBCS sort table
- Delete a DBCS sort table

Save and restore a DBCS sort table: The following topics describe how you save and restore DBCS sort tables.

Save a DBCS sort table to tape or diskette

Save a DBCS sort table onto tape or diskette in the following instances:

- Before deleting that table
- After information is added, updated, or changed in the tables using the character generator utility
- When planning to use the tables on another iSeries server

Use the Save Object (SAVOBJ) command to save a DBCS sort table onto tape or diskette. Specify *IGCSRT for the object type.

The DBCS sort tables are saved when you use the SAVSYS command so you do not have to use the SAVOBJ command when performing normal system backup.

Restore a DBCS sort table from tape or diskette

Use the BSTOB l command to restore a DBCS sort table from a tape or a diskette onto the system. The tables on the tape or diskette must previously have been saved using the SAVOBJ command. Specify *IGCSRT for the object type. The system automatically re-creates the DBCS sort table when the specified table does not already exist in the system.

These tables must be restored to the QSYS library for the system to know they exist. For that reason, RSTOBJ restores *IGCSRT objects only to the QSYS library and only if the objects do not already exist there.

Delete a DBCS sort table: Use the DLTIGCSRT command to delete a DBCS sort table from the system.
You can delete an unused DBCS sort table to free disk space, but you should always first save a copy of the table using the SAVOB, command. You should delete the DBCS master sort table for a DBCS language if either of the following are true:

- You will not be creating any new characters for that language using the character generator utility.
- You will not be using the sort utility to sort characters for that language.

You should delete the DBCS active sort table for a DBCS language if you will not be using the sort utility to sort characters for that language. The DBCS active sort table must be on the system to use the sort utility for this language.

When deleting a table, do the following:

1. If desired, save the table onto tape or diskettes. If you do not save the table onto removable media before deleting it, you will not have a copy of the table for future use.
2. Enter the DLTIGCSRT command. For example, to delete the DBCS sort table QCGACTV, enter: dLTIGCSRT IGCSRT(QCGACTV)
3. Press the Enter key. The system sends you a message when it has deleted the table.

DBCS field definition

Consider the characteristics of DBCS data when defining a DBCS field:

- Each DBCS character is 2 bytes long.
- The length of a DBCS character string is always even.
- Shift-out (SO) and shift-in (SI) control characters are required at the beginning and end of the DBCS character string, except for graphic-data type fields. Together, these characters are 2 bytes long.
- The system treats DBCS data the same as character data, and therefore cannot perform arithmetic operations on it.
- The following DBCS data types can be used to identify DBCS fields:
- J (DBCS-only) for fields that can contain only bracketed DBCS data.
- E (DBCS-either) for fields that can contain bracketed DBCS or SBCS data, but not both.
- O (DBCS-open) for fields that can contain both SBCS and bracketed DBCS data.
- G (DBCS-graphic) for fields that can contain graphic data without the SO and SI control characters.

Note: Data type O is allowed in all types of files. Data types J and E are allowed only in database and display files. Data type G is allowed in database, display, and printer files. In most cases, the OS/400 automatically inserts shift-out and shift-in characters. An exception is when data is written into a data type G field in a database file.

For more information on the DBCS data types, see the DDS Reference: Concepts topic.

Work with locales

Locales are used primarily in ILE-based application programs. Additionally, the Retrieve Locale Information (OPM, QLGRTVLC: ILE, QlgRetrieveLocaleInformation) API retrieves one or all categories of a locale. See the $\mathrm{OS} / 400 \mathrm{APD}$ topic for more information.

Benefits of using locales in global applications

Applications can be created independent of language, cultural data, or specific characters. Locales can be accessed to provide this type of support to any integrated language environment-based application.

For example, the LC_TIME category within a locale can be defined in any of the following ways, or in any combination that is convenient for the environment in which the application runs:

- HH:MM:SS
- MM:SS:HH
- SS:MM:HH

Creating locales

Locales are created using the Create Locale (CRTLOCALE) command.

\gg

The source file used to create the locale is named QLOCALESRC, in the QSYSLOCALE library. This library is loaded with option 21 of the operating system.

\ll

These source files cannot be changed. Instead, they must be copied and then edited if changes are desired.

For a list of source definition files, see System-supplied _locales and recommended CCSID. To see how to use the CRTLOCALE command, see Example: Creating_a_locale" on page 260.

Working with locales

The following topics provide more detailed information about how you can use locales:

- Locale restrictions
- Locale categories
- Locale symbolic names
- Examples: Locale programming

For more information

The following links provide additional information about locales:

- Locales
- Install and enable locales
- System-supplied locales and recommended CCSIDs

Locale restrictions

The following list contains restrictions when using locales to set job attributes:

- The locale CCSID must be an EBCDIC single-byte CCSID for an SBCS system.
- The locale CCSID must be an EBCDIC, single-byte character set (SBCS), or mixed-byte CCSID for a DBCS-capable system.
- The locale object must exist in the QSYS file system.
- The DATFMT, DATSEP, TIMSEP, and DECFMT parameters within the locale must be valid values supported as job attributes. See the Work Management topic for more information on jobs and their attributes.
- If you want sort sequence support from the locale, you must use the CPYSYSCOL keyword. See CPYSYSCOL for more detailed information.

Locale categories

The following categories are supported on OS/400.

Locale category	Description
LC_COLLATB	Defines character or string collation information
LC_CTYPE	Defines character classification, case conversion, and other character attributes.
LC_MESSAGES	Defines the format for affirmative and negative responses.
LC_MONETAR	Defines rules and symbols for formatting monetary numeric information.
LC_NUMERIC	Defines a list of rules and symbols for formatting non-monetary numeric information.
LC_TIM	Defines a list of rules and symbols for formatting time and date information.
LC_TOD	Defines rules for daylight savings time and time zone information.

Note: A locale source file cannot contain duplicate categories.

Locale category source definitions:

The category source definition consists of:

- The category header (category name), where the category name must be all uppercase characters.
- The associated keyword/value pairs that comprise the category body. Keywords may be all uppercase, all lowercase, or mixed case characters.
- The category trailer (which consists of END category-name)

For example:
LC_CTYPE
source for LC_CTYPE category
END LC_CTYPE
Lines preceding the first category header can be used to change the comment character and the escape character. The comment_char (the default is \#) and escape_char (the default is \backslash) keywords can be used to change these characters. The following example shows how to change the comment character and escape character to * and / respectively:
comment_char <asterisk>
escape_char <slash>
Note: This example uses symbolic names to represent the '*' and '/' characters.
The source for all categories is specified using the following:

Keywords

Each keyword identifies either a definition or a rule. The remainder of the statement containing the keyword contains the operands to the keyword. Operands are separated from the keyword by one or more blank characters. A statement may be continued on the next line by placing an escape_char as the last character before the newline or linefeed character that ends the line.

Lines containing the comment_char in the first column are treated as comment lines. Comment lines cannot be continued on a subsequent line using an escape character. \is the default escape character. However, the escape character can be defined to be any character by the user.

Strings

Strings must be enclosed in double-quotes. Double quotes within strings can be represented in two ways:

- Literally. The escape character can be followed by double quotes.
- A symbolic name. For example, <quotation-mark>.

A string can be continued on the next line by placing an escape_char as the last character before the newline or linefeed character that ends the line.

A string is a sequence of character symbols, or literals enclosed by double-quotation ("") characters. For example:
" $<A><C>"$

Character literals

A character literal is the character itself.

Character symbols

A character symbol begins with the < (less-than) character, followed by non-control characters, and ends with the $>$ (greater-than) character. For example, $\langle A>$ is a valid character symbol (symbolic name). Any character symbol referenced in the source file should be one of the
predefined system-supplied symbols. The system supplied symbolic names are in the source file member QLGSYMBOL in the QLOCALESRC source file in the optionally installable library QSYSLOCALE.

See System-supplied_locale source_definition files for a list of all system-supplied symbolic names.
In the event that the system does not contain a predefined symbolic name for a character, the UCS-2 level-1 format is allowed. The UCS-2 format is based on the character set defined in ISO/IEC 10646. The UCS-2 format may also be used in place of the predefined symbolic names. The following is an example of the UCS-2 symbolic name format:

<Uxxxx>

where 'xxxx' are four hexadecimal digits. For example, <U0041>. The hexadecimal number 0041 within this symbolic name is the UCS-2 code point that represents the character ' A '.

Each category must be explicitly defined in a locale definition source file is required.
See the Example: POSIX locale for a complete description of each locale category included in the POSIX locale.

LC_COLLATE category: The LC_COLLATE category defines character or string collation information. Within LC_COLLATE you can specify a sort sequence to use using the cpysyscol keyword. The cpysyscol keyword value is used in place of the LC_COLLATE category definitions.

A collation element is the unit of comparison for collation. A collation element may be a character or a sequence of characters. Every collation element in the locale has a set of weights, which determine if the collation element collates before, equal to, or after the other collation elements in the locale. Each collation element is assigned collation weights by the CRTLOCALE command when the locale definition source file is created. These collation weights are then used by applications programs that compare strings.

Every character defined in the CCSID that is specified in the CRTLOCALE command is itself a collating element. Additional collating elements can be defined using the collating-element statement. The syntax is:
collating-element character-symbol from string
The LC_COLLATE category begins with the LC_COLLATE keyword and ends with the END LC_COLLATE keyword.

The following keywords are recognized in the LC_COLLATE category:

cpysyscol

This statement specifies that a system collating sequence table is to be used for the collation information for the category. If the locale is intended to be used to set the sort sequence table for the job, then it is required that the CPYSYSCOL keyword be used. If the CPYSYSCOL keyword is specified, no other keyword may be specified. The syntax for the CPYSYSCOL keyword is:
CPYSYSCOLsort sequence path name; langid
The sort sequence path name is a string specifying a fully expanded path name of an existing sort sequence table to use as the definition for this category. The path name delimiter must be a slash (/). Other valid values are strings containing one of the following:
*JOB The sort sequence of the job.
*LANGIDUNQ
The unique-weighted sort sequence table that is associated with the language identifier requested parameter.

*LANGIDSHR

The shared-weighted sort sequence table that is associated with the language identifier requested parameter.
*HEX The sort sequence according to the hexadecimal value of the characters.
The langid is a string specifying the language identifier of the sort sequence table to be used. All langids must be in uppercase. Valid values are strings containing one of the following:
*JOB Use the language identifier of the job.
language id
A valid 3-character language identifier. For example, Danish would be DAN. See Language identifiers and associated default CCSIDs for a complete list of valid language identifiers.

Collating-element

The collating-element statement specifies multi-character collating elements. The syntax for the collating-element statement is:
collating-element symbolic-name from string
The symbolic-name value defines a collating element that is a string of one or more characters as a single collating element. The symbolic-name value cannot duplicate any system predefined symbolic name, or any other symbolic name defined in this collation definition. The string value specifies a string of two or more characters or character symbols that define the symbolic-name value. The following are examples of the syntax for the collating-element statement:
collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <11> from "<1><1>"
A symbolic-name value defined by the collating-element statement is recognized only with the LC_COLLATE category.

Order_start

The order_start statement may be followed by one or more collation order statements, assigning collation weights to collating elements. This statement is required. The syntax for the order_start statement is:
order_start sort-rules;sort-rules;...sort-rules collation-order-statements order_end
The sort-rules have the following syntax:
directive, directive,...directive
where directive is one of the directives; forward, backward, and position.
The sort-rules directives are optional. If present, they define the rules to apply during string comparison. The number of specified sort-rules directives defines the number of weights each collating element is assigned (that is, the number of collation orders in the locale). If no sort-rules directives are present, one forward directive is assumed.

If present, the first sort-rules directive applies when comparing strings using primary weight, the second when comparing strings using the secondary weight, and so on. Each set of sort-rules directives is separated by a ; (semicolon). A sort-rules directive consists of one or more comma-separated directives. The following directives are supported:

Forward

Specifies that collation weight comparisons proceed from the beginning of a string toward the end of the string.

Backward

Specifies that collation weight comparisons proceed from the end of a string toward the beginning of the string.

Position

Specifies that collation weight comparisons consider the relative position of non-ignored elements in the string. That is, if strings compare equal, the element with the shortest distance from the starting point of the string collates first.

The forward and backward directives are mutually exclusive. The following is an example of the syntax for the sort-rules directives:

```
order_start forward;backward
```


Order_end

This keyword ends collating order entries introduced by the order_start keyword.
The order of the characters and elements specified between the order_start and order_end keywords defines the character order used in range expressions and regular expressions. If no weights are assigned to the characters, then the character order also becomes the collation sequence weight.

Special symbols

Special symbols are required to be all upper case characters. The following special symbols can be used in the LC_COLLATE category:

- IGNORE

The optional operands for each collation element are used to define the primary, secondary, or subsequent weights for the collating element. The special symbol IGNORE is used to indicate a collating element that is to be ignored when strings are compared.

- UNDEFINED

All characters in the character set must be placed in the collation order, either explicitly or implicitly, by using the Undefined symbol. The UNDEFINED symbol includes all coded character set values not specified explicitly. These characters are inserted in the character collation order at the point indicated by the Undefined symbol in the order of their character code page values. If a collating weight is not explicitly specified for the UNDEFINED symbol, then by default, all of the undefined characters are assigned the same collating weight equal to the relative order of the first undefined character in the collating sequence. If no UNDEFINED special symbol exists and the collation order does not specify all collation elements from the coded character set, a warning is issued and all undefined characters are placed at the end of the character collation order and be given the same collating weight.

Example 1:

The following is an example of a collation order statement in the LC_COLLATE locale definition source file category.

The text below the LC_COLLATE keywords has been added for clarity and does not appear in the locale source file.

order_start \#	The order_start has two sort rules specified: \# forward and backward
UNDEFINED IGNORE; IGNORE $\#$ The UNDEFINED special symbol indicates that $\#$ all characters in the CCSID of the locale $\#$ that are not specified in the definition $\#$ are ignored for collation purposes. <LOW> $\#$ <LOW> is a collating symbol that is ordered $\#$ after all undefined characters. For example, if there	

```
# were only two undefined characters, then the <LOW> symbol
# would be third in the order.
# All collating elements between <space> and <a> have the
# same primary equivalence class and individual secondary
# weights based on their coded character set values.
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
# All characters between <a> and <A-grave> belong to the
# same primary equivalence class because they have the same
# primary weight.
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
# The <c><h> multi-character collating element is
# represented by the <ch> collating symbol and belongs to the
# same primary equivalence class as the <Ch> multi-character
# collating element.
<s> <s>;<s>
<eszet> "<s><s>";<s>
# A one-to-many mapping is indicated by the <eszet>
# character collated as an <s><s> string. That is, one
# <eszet> character is expanded to <s><s> characters before
# comparing.
<HIGH>
order_end
```


Example 2:

Following is an example of a CPYSYSCOL statement in the LC_COLLATE locale definition source file category.
lC_COLLATE
CPYSYSCOL "//QSYS.LIB//QLA10025S.TBL";"ENU"
END LC_COLLATE
LC_CTYPE category: The LC_CTYPE category defines character classification, case conversion, and other character attributes.

The LC_CTYPE category begins with an LC_CTYPE category header and ends with an END LC_CTYPE category trailer.

All operands for LC_CTYPE category statements are defined as lists of characters. Each list consists of one or more semicolon-separated characters or symbolic character names.

The following keywords are recognized in the LC_CTYPE category. In the descriptions, the term automatically included means that an error does not occur if the referenced characters are included or omitted. The characters are provided if they are missing and are accepted if they are present. In the event that the automatically included characters do not exist in the CCSID that you want to create the locale, a warning is issued by the CRTLOCALE command.
upper Defines uppercase letter characters. No character defined by the cntrl, digit, punct, or space keyword can be specified. At a minimum, the uppercase letters A through Z are automatically included.
lower Defines lowercase letter characters. No character defined by the cntrl, digit, punct, or space keyword can be specified. At a minimum, the lowercase letters a through z are automatically included.
alpha Defines all letter characters. No character defined by the cntrl, digit, punct, or space keyword can be specified. Characters defined by the upper and lower keywords are automatically included in this character class.
digit Defines numeric digit characters. Only the digits $0,1,2,3,4,5,6,7,8$, and 9 can be specified.
space Defines white space characters. No character defined by the upper, lower, alpha, digit, graph, or xdigit keyword can be specified. At a minimum, the <space>, <form-feed>, <newline>, <carriage return>, <tab>, <vertical-tab> characters, and any characters defined by the blank keyword, are automatically included.
cntrl Defines control characters. No character defined by the upper, lower, alpha, digit, punct, graph, print, or xdigit keywords can be specified.
punct Defines punctuation characters. A character defined as the <space> character and characters defined by the upper, lower, alpha, digit, cntrl, or xdigit keyword cannot be specified.
graph Defines printable characters, excluding the <space> character. If this keyword is not specified, characters defined by the upper, lower, alpha, digit, xdigit, and punct keywords are automatically included in this character class. No character defined by the entrl keyword can be specified.
print Defines printable characters, including the <space> character. If this keyword is not specified, the <space> character and characters defined by the upper, lower, alpha, digit, xdigit, and punct keywords are automatically included in this character class. No character defined by the cntrl keyword can be specified.
xdigit Defines hexadecimal digit characters. Only the digits $0,1,2,3,4,5,6,7,8$, and 9 and the letters $A, B, C, D, E, F, a, b, c, d, e$, and f can be specified. If not specified, the xdigit class defaults to the digits $0,1,2,3,4,5,6,7,8$, and 9 and the letters $A, B, C, D, E, F, a, b, c, d, e$, and f.
blank Defines blank characters. If this keyword is not specified, the <space> and <horizontal-tab> characters are included in this character class.

toupper

Defines the mapping of lowercase characters to uppercase characters. Operands for this keyword consist of semicolon-separated character pairs. Each character pair is enclosed in () (parentheses) and separated from the next pair by a (comma). The first character in each pair is considered lowercase; the second character is considered uppercase. Only characters defined by the lower and upper keywords can be specified.

tolower

Defines the mapping of uppercase characters to lowercase characters. Operands for this keyword consist of semicolon-separated character pairs. Each character pair is enclosed in ()
(parentheses) and separated from the next pair by a , (comma). The first character in each pair is considered uppercase; the second character is considered lowercase. Only characters defined by the lower and upper keywords can be specified.
Note: The tolower keyword is optional. If this keyword is not specified, the mapping defaults to the reverse mapping of the toupper keyword, if specified. If the toupper keyword is not specified, the mapping defaults to the \mathbf{C} locale.

Example:

The following is an example of a LC_CTYPE category in a locale definition source file:
LC_CTYPE

```
#"alpha" is by default "upper" and "lower"
```

```
#"print" is by default "alpha", "digit", "punct", and the space character
#"graph" is by default "alnum" and "punct"
#"tolower" is by default the reverse mapping of "toupper"
#
upper <A>;<B>;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;<b>;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
<n>;<0>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
<seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\
<carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\
<form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;\
<ETX>;<EOT>;<ENQ>;<ACK>;<S0>;<SI>;<DLE>;<DC1>;<DC2>;\
<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;<CAN>;<EM>;<SUB>;\
<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;<DEL>
#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\
<dollar-sign>;<percent-sign>;<ampersand>;<asterisk>;\
<apostrophe>;<left-parenthesis>;<right-parenthesis>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<circumflex>;\
<right-square-bracket>;<underline>;<grave-accent>;\
<left-curly-bracket>;<vertical-line>;<tilde>;\
<right-curly-bracket>
#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
<seven>;<eight>;<nine>;<A>;<B>;<C>;<D>;<E>;<F>;\
<a>;<b>;<c>;<d>;<e>;<f>
#
blank <space>;<tab>
#
toupper (<a>,<A>);(<b>,<B>);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<0>,<0>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<v>);(<w>,<W>);(<x>,<x>);(<y>,<Y>);\
(<z>,<Z>)
#
END LC_CTYPE
```

LC_MESSAGES category: The LC_MESSAGES category of a locale definition source file defines the format for affirmative and negative system responses. This category begins with an LC_MESSAGES category header and ends with an END LC_MESSAGES category trailer.

All operands for the LC_MESSAGES category are defined as strings or extended regular expressions enclosed by double-quotation marks ("").

Note: For additional information, see the Extended regular expressions" on page 246 topic, below. These operands are separated from the keyword they define by one or more blanks. Two adjacent double-quotation marks ("") indicate an undefined value. The following keywords are recognized in the LC_MESSAGES category:

yesexpr

Specifies an extended regular expression that describes the acceptable affirmative response to a question expecting an affirmative or negative response.

noexpr

Specifies an extended regular expression that describes the acceptable negative response to a question expecting an affirmative or negative response.
yesstr A fixed string of acceptable affirmative response.
nostr A fixed string of acceptable negative response.
Extended regular expressions: The following special characters are used to form extended regular expressions:

```
Character
+
?
|
()
{m}
{m,}
{m, n}
[String]
[^ String]
^
$
. (period)
* (asterisk)
\ (backslash)
```


Function

Specifies that a string matches if one or more occurrences of the character or extended regular expression that precedes the + (plus) are within the string.
Specifies that a string matches if zero or one occurrences of the character or extended regular expression that precedes the ? (question mark) are within the string. Specifies that a string matches if either of the strings separated by the I (vertical line) are within the string.
Groups strings together in regular expressions.
Specifies that a string matches if exactly m occurrences of the pattern are within the string.
Specifies that a string matches if at least m occurrences of the pattern are within the string.
Specifies that a string matches if between m and n, inclusive, occurrences of the pattern are within the string (where $\mathrm{m}<=\mathrm{n}$).
Signifies that the regular expression matches any characters specified by the string variable within the square brackets.
$\mathrm{A} \wedge$ (caret) within the [] (square brackets) and at the beginning of the specified string indicates that the regular expression does not match any characters within the square brackets.
Signifies the beginning of a field or record.
Signifies the end of a field or record.
Signifies any one character except the terminal new-line character at the end of a space.
Signifies zero or more of any characters.
The escape character. When preceding any of the characters that have special meaning in extended regular expressions, the escape character removes any special meaning for the character.

Character class expressions may also be specified in the extended regular expression. The following character class expressions are supported in all locales:

```
[:alnum:]
[:alpha:]
[:blank:]
[:cntrl:]
[:digit:]
[:graph:]
[:lower:]
[:print:]
[:punct:]
[:space:]
[:upper:]
[:xdigit:]
```


Example:

The following is an example of a LC_MESSAGES category in a locale definition source file:

```
LC_MESSAGES
```

\#
yesexpr "[yY]"
noexpr "[nN]"
yesstr "yes"
nostr "no"
\#
END LC_MESSAGES
LC_MONETARY category: The LC_MONETARY category of a locale definition source file defines rules and symbols for formatting monetary numeric information. This category begins with an LC_MONETARY category header and ends with an END LC_MONETARY category trailer.

All operands for the LC_MONETARY category keywords are defined as string or integer values. String values are bounded by double-quotation marks (""). All values are separated from the keyword they define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A -1 indicates an undefined integer value. The following keywords are recognized in the LC_MONETARY category:

int_curr_symbol

Specifies the string used for the international currency symbol. The operand for the int_curr_symbol keyword is a four-character string. The first three characters contain the alphabetic international-currency symbol. The fourth character specifies a character separator between the international currency symbol and a monetary quantity.

currency_symbol

Specifies the string used for the local currency symbol.

mon_decimal_point

Specifies the string used for the decimal delimiter used to format monetary quantities.

mon_thousands_sep

Specifies the string used for grouping digits to the left of the decimal delimiter in formatted monetary quantities.

mon_grouping

Defines the size of each group of digits in formatted monetary quantities. The operand for the mon_grouping keyword consists of a sequence of semicolon-separated integers. Each integer specifies the number of digits in a group. The initial integer defines the size of the group immediately to the left of the decimal delimiter. The following integers define succeeding groups to the left of the previous group. If the last digit is not -1 , subsequent grouping is performed using the previous digit. If the last digit is -1 , grouping is only performed for the number of groups specified.

The following is an example of the interpretation of the mon_grouping keyword. Assuming the value to be formatted is 123456789 and the operand for the mon_thousands_sep keyword is comma (,), the following results occur:

mon_grouping Value

Formatted Value
3;-1 123456,789
3 123,456,789
3;2 12,34,56,789
3;2;-1 1234,56,789
positive_sign
Specifies the string used to indicate a nonnegative-valued formatted monetary quantity.

negative_sign

Specifies the string used to indicate a negative-valued formatted monetary quantity.
int_frac_digits
Specifies an integer value representing the number of fractional digits (those after the decimal delimiter) to be displayed in a formatted monetary quantity using the int_curr_symbol value.

frac_digits

Specifies an integer value representing the number of fractional digits (those after the decimal delimiter) to be displayed in a formatted monetary quantity using the currency_symbol value.

p_cs_precedes

Specifies an integer value indicating whether the int_curr_symbol or currency_symbol string precedes or follows the value for a non-negative formatted monetary quantity. The following integer values are recognized:
0 Indicates that the currency symbol follows the monetary quantity.
1 Indicates that the currency symbol precedes the monetary quantity.

p_sep_by_space

Specifies an integer value indicating whether the int_curr_symbol or currency_symbol string is separated by a space from a non-negative formatted monetary quantity. The following integer values are recognized:
0 Indicates that no space separates the currency symbol from the monetary quantity.
1 Indicates that a space separates the currency symbol from the monetary quantity.
2 Indicates that a space separates the currency symbol and the positive_sign string, if adjacent.

n_cs_precedes

Specifies an integer value indicating whether the int_curr_symbol or currency_symbol string precedes or follows the value for a negative formatted monetary quantity. The following integer values are recognized:
$0 \quad$ Indicates that the currency symbol follows the monetary quantity.
1 Indicates that the currency symbol precedes the monetary quantity.
n_sep_by_space
Specifies an integer value indicating whether the int_curr_symbol or currency_symbol string is separated by a space from a negative formatted monetary quantity. The following integer values are recognized:
0 Indicates that no space separates the currency symbol from the monetary quantity.
1 Indicates that a space separates the currency symbol from the monetary quantity.
2 Indicates that a space separates the currency symbol and the negative_sign string, if adjacent.

p_sign_posn

Specifies an integer value indicating the positioning of the positive_sign string for a non-negative formatted monetary quantity. The following integer values are recognized:

0 Indicates that parenthesis enclose both the monetary quantity and the int_curr_symbol or currency_symbol string.

1 Indicates that the positive_sign string precedes the quantity and the int_curr_symbol or currency_symbol string.

2 Indicates that the positive_sign string follows the quantity and the int_curr_symbol or currency_symbol string.
3 Indicates that the positive_sign string immediately precedes the int_curr_symbol or currency_symbol string.
4 Indicates that the positive_sign string immediately follows the int_curr_symbol or currency_symbol string.

n_sign_posn

Specifies an integer value indicating the positioning of the negative_sign string for a negative formatted monetary quantity. The following integer values are recognized:

0 Indicates that parenthesis enclose both the monetary quantity and the int_curr_symbol or currency_symbol string.
1 Indicates that the negative_sign string precedes the quantity and the int_curr_symbol or currency_symbol string.
2 Indicates that the negative_sign string follows the quantity and the int_curr_symbol or currency_symbol string.

3 Indicates that the negative_sign string immediately precedes the int_curr_symbol or currency_symbol string.

4 Indicates that the negative_sign string immediately follows the int_curr_symbol or currency_symbol string.

Examples:

The following is an example of the LC_MONETARY category listed in a locale definition source file:
LC_MONETARY

```
#
int_curr_symbol "<U><S><D>"
currency_symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping - 3;-1
posītive_sign "<plus-sign>"
negative_ssign "<hyphen>"
int_frac_digits 2
frac_digits 2
p_cs_precedes 1
p_sep_by_space 2
n_cs_precedes 1
n_sep_by_space 2
p_sign_posn 3
n_sign_posn 3
#
END LC_MONETARY
```

See Example: Producing unique monetary formats for another example relating to monetary formats.

LC_NUMERIC category: Defines rules and symbols for formatting non-monetary numeric information.
The LC_NUMERIC category of a locale definition source file defines rules and symbols for formatting non-monetary numeric information. This category begins with an LC_NUMERIC category header and terminates with an END LC_NUMERIC category trailer.

All operands for the LC_NUMERIC category keywords are defined as string or integer values. String values are bounded by double-quotation marks (""). All values are separated from the keyword they define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A -1 indicates an undefined integer value. The following keywords are recognized in the LC_NUMERIC category:

decimal_point

Specifies a string containing the decimal delimiter character used to format numeric, non-monetary quantities.

thousands_sep

Specifies the string separator used for grouping digits to the left of the decimal delimiter in formatted numeric, non-monetary quantities.

grouping

Defines the size of each group of digits in formatted monetary quantities. The operand for the grouping keyword consists of a sequence of semicolon-separated integers. Each integer specifies the number of digits in a group. The initial integer defines the size of the group immediately to the left of the decimal delimiter. The following integers define succeeding groups to the left of the previous group. Grouping is performed for each integer specified for the grouping keyword. If the last digit is not -1 , subsequent grouping is performed using the previous digit. If the last digit is -1 , grouping is only performed for the number of groups specified.

The following is an example of the interpretation of the grouping statement. Assuming the value to be formatted is 123456789 and the operand for the thousands_sep keyword is comma (,), the following results occur:

```
Grouping value Formatted value
3
3;-1
3;2
3;2;-1
123,456,789
123456,789
12,34,56,789
1234,56,789
```


Example:

Following is an example of a LC_NUMERIC category in a locale definition source file:

```
LC_NUMERIC
#
decimal_point "<period>"
thousand̄s_sep "<comma>"
grouping 3;-1
#
END LC_NUMERIC
```

LC_TIME category: The LC_TIME category of a locale definition source file defines rules and symbols for formatting time and date information. This category begins with an LC_TIME category header and terminates with an END LC_TIME category trailer.

All operands for the LC_TIME category keywords are defined as string or integer values. String values are bounded by double-quotation marks (""). All values are separated from the keyword they define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A-1 indicates an
undefined integer value. Field descriptors are used by commands and subroutines that query the LC_TIME category to represent elements of time and date formats. The following keywords are recognized in the LC_TIME category:
abday Defines the abbreviated weekday names corresponding to the \%a field descriptor. Recognized values consist of seven semicolon-separated strings. The first string corresponds to the abbreviated name for the first day of the week (Sun), the second to the abbreviated name for the second day of the week, and so on.
day Defines the full spelling of the weekday names corresponding to the \%A field descriptor. Recognized values consist of seven semicolon-separated strings. The first string corresponds to the full spelling of the name of the first day of the week (Sunday), the second to the name of the second day of the week, and so on.

abmon

Defines the abbreviated month names corresponding to the \%b field descriptor. Recognized values consist of 12 semicolon-separated strings. The first string corresponds to the abbreviated name for the first month of the year (Jan), the second to the abbreviated name for the second month of the year, and so on.
mon Defines the full spelling of the month names corresponding to the \%B field descriptor. Recognized values consist of 12 semicolon-separated strings. The first string corresponds to the full spelling of the name for the first month of the year (January), the second to the full spelling of the name for the second month of the year, and so on.

d_t_fmt

Defines the string used for the standard date and time format corresponding to the \%c field descriptor. The string can contain any combination of characters, field descriptors, or escape sequences. See Escape Sequences (see page 253) for additional information.
d_fmt Defines the string used for the standard date format corresponding to the \%x field descriptor. The string can contain any combination of characters, field descriptors, or escape sequences. Following is an example of how the d_fmt keyword can be constructed:
\%D The \%D indicates a \%m/\%d/\%y date format. If you are using this format and have chosen to set the job attribute from the locale, then a ' $/$ ' is extracted for the DATSEP job attribute. *MDY is extracted for the DATFMT job attribute.
\% j The \%j indicates a Julian date format. If you are using this format and have chosen to set the job attribute from the locale, then no DATSEP job is extracted. However, ${ }^{*} J U L$ is extracted for the DATFMT job attribute.
\%d-\%m-\%y
If you are using this format and have chosen to set the job attribute from the locale, then the compiler extracts - for the DATSEP job attribute and *DMY for the DATFMT job attribute.
\%y.\%m.\%d
If you are using this format and have chosen to set the job attribute from the locale, then the compiler extracts. for the DATSEP job attribute and *YMD for the DATFMT job attribute.

\%m/\%d/\%Y

If you are using this format and have chosen to set the job attribute from the locale, then the compiler extracts / for the DATSEP job attribute. No DATFMT job attribute is extracted.

Note: If the locale is to contain a valid OS/400 date format and date separator, then the d_fmt value must be defined such that it contains valid OS/400 date format and date separators. For example, if the value was specified as: $\% m / \% d / \% y$, then *MDY would be extracted for the OS/400 date format and a / would be extracted for the OS/400 date format. A warning is issued by the CRTLOCALE command if an OS/400 date format or date separator cannot be extracted.
t_fmt Defines the string used for the standard time format corresponding to the \%X field descriptor. The string can contain any combination of characters, field descriptors, or escape sequences.
Following is an example of how the t_fmt keyword can be constructed:
\%H:\%M:\%S
The compiler extracts a : (colon) for the TIMSEP job attribute.
\%H.\%M.\%S
The compiler extracts a . (period) for the TIMSEP job attribute.

\%H \%M \%S

The compiler extracts a blank space for the TIMSEP job attribute.
\%H,\%M,\%S
The compiler extracts a , (comma) for the TIMSEP job attribute.
\%T \%T implies a \%H:\%M:\%S (hours, minutes, seconds) time format with a : (colon) as the TIMSEP job attribute.

\%H\&\%M\&\%S;

A valid TIMSEP job attribute could not be determined.
Note: If the locale is to contain a valid OS/400 time separator, then the t_fmt value must be defined such that it contains a valid OS/400 time separator. For example, if the value was specified as: $\% H: \% M: \% S$, then a : (colon) would be extracted for the OS/400 date format. A warning is issued by the CRTLOCALE command if an OS/400 time separator cannot be extracted.
am_pm
Defines the strings used to represent ante meridiem (before noon) and post meridiem (after noon) corresponding to the \%p field descriptor. Recognized values consist of two strings separated by a ; (semicolon). The first string corresponds to the ante meridiem designation, the last string to the post meridiem designation.

t_fmt_ampm

Defines the string used for the standard 12-hour time format that includes an am_pm value (\%p field descriptor). This statement corresponds to the \%r field descriptor. The string can contain any combination of characters and field descriptors.
era Defines how the years are counted and displayed for each era in a locale, corresponding to the \%E field descriptor modifier. For each era, there must be one string in the following format:
direction:offset:start_date:end_date:era_name:era_format
The variables for the era-string format are defined as follows:

direction

Specifies a - (minus sign) or + (plus sign) character. The plus character indicates that years count in the positive direction when moving from the start date to the end date. The minus character indicates that years count in the negative direction when moving from the start date to the end date.
offset Specifies a number representing the first year of the era.
start_date
Specifies the starting date of the era in the yyyy/mm/dd format, where yyyy, mm, and $d d$ are the year, month, and day, respectively. Years prior to the year AD 1 are represented as negative numbers. For example, an era beginning March 5th in the year 100 BC would be represented as -100/03/05.

end_date

Specifies the ending date of the era in the same form used for the start_date variable or one of the two special values -* or + ${ }^{*}$. A -* value indicates that the ending date of the era extends backward to the beginning of time. A +* value indicates that the ending date of the era extends forward to the end of time. Therefore, the ending date can be chronologically before or after the starting date of the era. For example, the strings for the Christian eras $A D$ and $B C$ would be entered as follows:

```
+:0:0000/01/01:+*:AD:%0 %N
+:1:-0001/12/31:-*:BC:%0 %N
```

era_name
Specifies a string representing the name of the era that is substituted for the \%EC field descriptor.
era_format
Specifies a string for formatting the \%EY field descriptor.
An era value consists of one string for each era. If more than one era is specified, each era string is separated by a; (semicolon).

era_d_fmt

Defines the string used to represent the date in alternate-era format corresponding to the \%Ex field descriptor. The string can contain any combination of characters and field descriptors.

era_t_fmt

Defines the string used to represent the time in alternate-era format corresponding to the \%EX field descriptor. The string can contain any combination of characters and field descriptors.

```
era_d_t_fmt
```

Defines the string used to represent the date and time in alternate-era format corresponding to the \%Ec field descriptor. The string can contain any combination of characters and field descriptors.

alt_digits

Defines alternate strings for digits corresponding to the \%O field descriptor. Recognized values consist of a group of strings separated by ; (semicolons). The first string represents the alternate string for zero, the second string represents the alternate string for one, and so on. A maximum of 100 alternate strings can be specified.

Escape sequences

The following are escape sequences allowed for the d_t_fmt, d_fmt, and t_fmt keyword values:

```
>
II
la
lb
If
ln
lr
lt
lv
Represents the backslash character.
Represents the alert character.
Represents the backspace character.
Represents the form-feed character.
Represents the newline character.
Represents the carriage-return character.
Represents the tab character.
Represents the vertical-tab character.
```


Example:

The following is an example of a LC_TIME category in a locale definition source file:

```
LC_TIME
#
#Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><0><n>";"<T><u><e>";"<W><e><<d>";\
        "<T><h><u>";"<F><r><i>";"<S><a><t>"
#
#Full weekday names (%A)
day "<S><u><n><d><a><y>";"<M><0><n><d><a><y>";\
"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
"<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
"<S><a><t><u><r><d><a><y>"
#
#Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e><b>";"<M><a><r>";"<A><p><r>";\
    "<M><a><y>";"<J><u><n>";"<J><u><l>";"<A><u><g>";\
    "<S><e><p>";"<0><c><t>";"<N><0><v>";"<D><e><c>"
#
#Ful1 month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><b><r><u><a><r><y>";\
"<M><a><r><c><h>";"<A><p><r><i><l>";"<M><a><y>";\
"<J><u><n><e>";"<J><u><l><y>";"<A><u><g><u><s><t>";\
"<S><e><p><t><e><m><b><e><r>";"<0><c><t><0><b><e><r>";\
"<N><0><v><e><m><b><e><r>";"<D><e><c><e><m><b><e><r>"
#
#Date and time format (%c)
d_t_fmt "%a %b %d %H:%M:%S %Y"
#-
#Date format (%x)
d_fmt "%m/%d/%y"
#-
#Time format (%X)
t_fmt "%H:%M:%S"
#
#Equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"
#
#12-hour time format (%r)
t_fmt_ampm "%I:%M:%S %p"
#
era "+:0:0000/01/01:+*:AD:%EC";\
"+:1:-0001/12/31:-*:BC:%Ey";
era_d_fmt ""
alt_d\overline{igits "<0><t><h>";"<1><s><t>";"<2><n><d>";"<3><r><d>";\}
"<4><t><h>";"<5><t><h>";"<6><t><h>";"<7><t><h>";\
"<8><t><h>";"<9><t><h>";"<1><0><t><h>"
#
END LC_TIME
```

LC_TOD category: The LC_TOD category defines the rules used to define the start and end time of daylight savings time, the difference between local time and Greenwich Mean time, the time zone name, and the daylight savings time name. This category is an IBM extension and must appear after all other category definitions in the source file.

All the operands for the LC_TOD category are defined as string or integer values. String values are bounded by double-quotation marks (""). All values are separated from the keyword they define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A 0 (zero) indicates an undefined integer value. The following keywords are recognized in the LC_TOD category.
tzdiff Specifies an integer value representing the time zone difference in minutes. It is the difference between the local time and Greenwich mean time.
tname Specifies the string used for the time zone name.

dstname

Specifies the string used for the daylight savings time name.

dststart

Specifies a set of four integers representing the start date for the daylight savings time. The operand for the dststart keyword consists of a sequence of four comma-separated integers in the following format:
month,week, day,time
The variables for the dststart format are defined as:
month
Specifies an integer value representing the month of the year when Daylight Savings Time (DST) takes effect. This value ranges from 1 to 12, with 1 corresponding to January, and 12 corresponding to December.
week Specifies an integer value representing the week of the month when DST takes effect. This value ranges from -4 to 4 , with -4 corresponding to the fourth week of the month counting from the end of the month and 4 corresponding to the fourth week of the month counting from the beginning of the month.
day Specifies an integer value representing the day of the month when DST takes effect or if the week keyword is not 0 (zero), then this is the day of the week when DST takes effect. This value ranges from 1 to the last day of the month or 1 to the last day of the week.
time Specifies an integer value representing the number of seconds after 12 midnight, local standard time, when DST takes effect. This value ranges from 0 to 86399.

dstend

Specifies a set of four integers representing the end date for the daylight savings time. The operand for the dstend keyword consists of a sequence of four comma-separated integers in the following format:
month,week, day,time
The variables for the dstend format are defined as:
month
Specifies an integer value representing the month of the year when Daylight Savings Time (DST) ends. This value ranges from 1 to 12, with 1 corresponding to January, and 12 corresponding to December.
week Specifies an integer value representing the week of the month when DST ends. This value ranges from -4 to 4 , with -4 corresponding to the fourth week of the month counting from the end of the month and 4 corresponding to the fourth week of the month counting from the beginning of the month.
day Specifies an integer value representing the day of the month when DST ends or if the week keyword is not 0 (zero), then this is the day of the week when DST ends. This value ranges from 1 to the last day of the month or 1 to the last day of the week.
time Specifies an integer value representing the number of seconds after 12 midnight, local standard time, when DST takes effect. This value ranges from 0 to 86399.

dstshift

Specifies an integer value representing the daylight savings time shift in seconds.

Example:

The following is an example of a LC_TOD category in a locale definition source file:

```
LC_TOD
#-
tzdiff -360
tname "<C><e><n><t><r><a><1>"
dstname "<C><D><T>"
#Set daylight savings time to start on 3rd week of October at
#midnight on Saturday.
dststart 10,3,6,0
#Set daylight savings time to end on April 23, at midnight.
```

```
dstend 4,0,23,0
```

dstend 4,0,23,0
dstshift 3600
dstshift 3600

END LC_TOD

```
END LC_TOD
```


\ll

Locale symbolic names

OS/400 supports locale symbolic names based on predefined names from the X/Open Standard portable character sell. In addition, OS/400 supports a 5-character alphanumeric symbolic name for all characters, where:

- The first character of the symbolic name is a Latin capital letter U . This character identifies that the name is derived from the ISO/IEC 10646 Universal Coded Character Set.
- The second through fifth characters of the symbolic name represent the code point of the character in the ISO/IEC 10646 Universal Coded Character Set 2 Level 1. This portion of the symbolic name is assigned by code point for ease of creating and changing locales.

As an example, the question mark (?) character provides the following correlation between symbolic naming, UCS2-1 code point, and an IBM-assigned code point:

- The ? character is symbolically represented by <question-mark>
- It is at code point U003F in the ISO 10646 code page
- It is at code point 6 F in IBM code page 500.

Mapping of locale symbolic names provides a list of all symbolic names supported on OS/400. The table also provides the UCS2-1 (ISO 10646) code points, their corresponding IBM code page or code points, and a graphic representation of each character.

Examples: Locale programming

In addition to the following examples, Locale categories provides programming examples for each of the different locale categories:

- Example: How locales work
- Example: Creating locales
- Example: Producing unique monetary formats
- Example: Locales as part of a multilingual environment
- Example: POSIX locale
- Example: EN US locale

Example: How locales work: Following are two examples that focus on the LOCALE and SETJOBATR parameter values specified on the user profile.

The first example illustrates using locales to establish job attributes. The user profile parameters LOCALE and SETJOBATR have values of *SYSVAL. This means that the job attributes at job start up time come from the QLOCALE value based on the values in QSETJOBATR.

Job attributes (from user profile)

- CCSID = From locale XYZ
- TIMSEP = From locale XYZ
- DATFMT = From locale XYZ
- DATSEP = From locale XYZ
- SRTSEQ = From locale XYZ

Environment variable

- LANG = /QSYS.LIB/MYLIB.LIB/ XYZ.LOCALE

User profile parameters

- LOCALE = *SYSVAL
- SETJOBATR = *SYSVAL

System values

- QLOCALE = /QSYS.LIB/MYLIB. LIB.IXYZ.LOCALE
- QSETJOBATR = *CCSID, *DATFMT,
*DATSEP,
*TIMSEP,
*SRTSEQ
- QCCSID = 00037

If a job ran based on the information in the figure, the following would be true:

- The locale used would be XYZ.

This is because the user profile parameter value for LOCALE was *SYSVAL. The *SYSVAL value is XYZ.

- The CCSID would be based on the value specified when locale XYZ was created.

This value is specified when the LOCALE object is created using the CRTLOCALE command.

- The time separator would be derived from locale XYZ.

This value is derived from the LC_TIME category specified in LOCALE XYZ.

- The date format separator would be derived from locale XYZ.

This value is derived from the LC_TIME category specified in LOCALE XYZ.

- The data separator would be derived from locale XYZ.

This value is derived from the LC_TIME category specified in LOCALE XYZ.

- The decimal format character would be derived from locale XYZ.

This value is derived from the LC_NUMERIC category specified in LOCALE XYZ.
In the second example the user profile LOCALE parameter value is *SYSVAL and the SETJOBATR parameter values is *NONE. This means that the LOCALE value is determined by looking at the system value QLOCALE. When the SETJOBATR value is *NONE, job attributes are determined by the values in the user profile.

Remember, because the user profile SETJOBATR parameter was *NONE, the system's search resulted in using the values specified for QCCSID, QTIMSEP, QDATFMT, QSRTSEQ, and QDATSEP.

Job attributes (from user profile)

- CCSID = From QCCSID
- TIMSEP $=$ From QTIMSEP
- DATFMT = From QDATFMT
- DATSEP = From QDATSEP
- SRTSEQ = From QSRTSEQ

Environment variable

- LANG $\begin{aligned}= & \text { /QSYS.LIB/MYLIB.LIB/ } \\ & \text { XYZ.LOCALE }\end{aligned}$

User profile parameters

$$
\begin{array}{ll}
\text { - LOCALE } & ={ }^{*} \text { SYSVAL } \\
\text { - SETJOBATR } & ={ }^{*} \text { NONE } \\
\text { - CCSID } & ={ }^{*} \text { SYSVAL } \\
\text { - SRTSEQ } & =\text { *SYSVAL }
\end{array}
$$

System values

- QLOCALE = xyz
- QSETJOBATR = *CCSID,
*DATFMT,
*DATSEP,
*TIMSEP,
*SRTSEQ
- QCCSID $=00037$
- QTIMSEP $=$:

If a job ran based on the information in this example, the following would be true:

- The locale used would be XYZ.

This is because the user profile parameter value for LOCALE was *SYSVAL. The *SYSVAL value is XYZ.

- The CCSID is 00037.

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QCCSID being used.

- The time separator is a colon (:).

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QTIMSEP being used.

- The date format separator is a slash (/).

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QDATSEP being used.

- The date format is month/day/year (MDY).

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QDATFMT being used.

- The decimal format character is a period. Zero suppression is performed.

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QDECFMT being used.

Example: Creating a locale: This example contains the steps necessary for creating a locale. The example also shows how to enable the locale. The steps are:

1. Create (or have) a library and a source physical file.
2. Copy an existing locale source file definition member (to a library and source physical file).
3. Edit the copied locale source file member if you need to customize any of the categories within the locale source.
4. Create the locale object.
5. Enable the locale object by using system values or parameters on the user profile.

Step 1. Create a library and source physical file

The library and source physical file are needed to store the locale source file member. See System-supplied locale source definition files for a list of the locale source file members that are shipped with OS/400.

1. Type CRTLIB and press the F4 (prompt) key.
2. Type localelib for the name of the library and press the Enter key.

There is now a library called localelib.
Next, create a source physical file.

1. Type CRTSRCPF and press the F4 (prompt) key.
2. Type localesrc for the file name and press the Enter key.

There is now a source physical file (localesrc) created in library localelib.

Step 2. Copy an existing locale source definition

IBM-supplied locale source definition file members are located in library QSYSLOCALE, source physical file QLOCALESRC. See System-supplied locale source definition files for a list of all IBM-supplied locale source files. In this example we will copy member EN_US, a locale for the English language.

1. Type CPYF and press the F4 (prompt) key.
2. Type the values shown on the following display.

Copy File (CPYF)		
Type choices, press Enter.		
From file	QLOCALESRC	Name
Library	QSYSLOCALE	Name, *LIBL, *CURLIB
To file	LOCALESRC_	Name, *PRINT
Library	LOCALELIB_	Name, *LIBL, *CURLIB
From member	EN_US	Name, generic*, *FIRST, *ALL
To member or label . .	EN_US	Name, *FIRST, *FROMMBR
Replace or add records	*ADD	*NONE, *ADD, *REPLACE
Create file	*YES	*NO, *YES
Record format field mapping	*MAP	*NONE, *NOCHK, *CVTSRC

The values entered copy the EN_US member to the source physical file localesrc in library localelib.
Note: When you copy a file that is tagged with a CCSID, you need to use the FMTOPT(*MAP) parameter to ensure that the copied source is converted to the CCSID of the "to file". The FMTOPT parameter can be seen by scrolling ahead.

Step 3. Edit the copied locale source definition

If you want to use the IBM-supplied locale as it is shipped, you do not need to change it. You can go to the next step, create the locale object. However, in this example we will edit the EN_US member to set the time-of-day keywords used in the LC_TOD category.

Note: The LC_TOD category is shipped with the keywords having no values. See the LC_TOD Category to view the LC_TOD source as shipped by IBM.

In this example, we are using Source Entry Utility (SEU) to edit the locale. You can use SEU or an equivalent editor.

1. Type STRSEU (Start Source Entry Utility) and press the F4 (prompt) key.
2. Type the source file name (localesrc), library name (localelib), and source member name (EN_US) as shown on the following display.

3. Press the Enter key. The following display appears:

```
5970.00 %
5971.00 % 5716SS1 (C) COPYRIGHT IBM CORP. 1991,1996
5972.00 % ALL RIGHTS RESERVED.
5973.00 % US GOVERNMENT USERS RESTRICTED RIGHTS -
5974.00 % USE, DUPLICATION OR DISCLOSURE RESTRICTED
5975.00 % BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
5976.00 %
5977.00 % LICENSED MATERIALS-PROPERTY OF IBM
5978.00 %
5979.00 % FILE NAME : EN_US
5980.00 %
5981.00 % COUNTRY/REGION: UNITED STATES
5982.00 %
F3=EXIT F4=PROMPT F5=REFRESH F9=RETRIEVE F10=CURSOR F11=TOGGLE
F16=REPEAT FIND F17=REPEAT CHANGE F24=MORE KEYS
```

(C) COPYRIGHT IBM CORP. 1981, 1996.
4. Use the SEU search function to locate LC_TOD. After the search completes, the display below appears.
As you can see, all LC_TOD category keywords have values of 0 and no descriptive names declared for tname and dstname.

5. Type the following values for the LC_TOD keywords. If you need more detailed information about this category, see LC_TOD Category
tzdiff Time zone difference in minutes. Type -360 . This is the difference in the number of minutes between Greenwich mean time and the central time zone of the United States.
tname Specifies the string used for the time zone name. Type "<C><E><N><T><R><A><L>".

dstname

The string used for the daylight savings time name. Type "<C><D><T>" to mean Central Daylight Time.

dststart

Four integers representing the start date for daylight savings time. Type 4,0,23,0. This string of integers means that daylight savings time starts the fourth month of the year, the twenty-third day of the month, and 0 seconds after midnight local standard time.

dstend

Four integers representing the end date for daylight savings time. Type 10,3,6,0. This string of integers means that daylight savings time ends the tenth month of the year, the beginning of the third week, the sixth day of the week, and 0 seconds after midnight local standard time.

dstshift

An integer value representing the daylight savings time shift in seconds. Type 3600
The SEU edit screen should match the screen below.
6. Press the Enter key to make the changes to the EN_US locale member.

7. Save the member and exit SEU.

You have now copied the IBM-supplied locale source member and customized the LC_TOD category.

Step 4. Create the locale object

1. Type CRTLOCALE on any command line and press the F4 (prompt) key. The Create Locale (CRTLOCALE) screen appears.
2. Type the locale path name (path name includes the location of as well as the name of the locale source member) in the locale name field.
3. Next, type the source file path name (location and name of the source physical file and the member name) in the source file path name field.

Notes:

a. Make sure that the locale source file you are using has the same characters defined as does the CCSID you specify on the CRTLOCALE command. If they do not have the same characters available, unpredictable results can occur. For example, the EN_US source file has lower case letters defined. However, the lower case letters are not available in CCSID 290.
b. When creating locale objects, it is recommended to make the CCSID part of the locale object name. For example, EN_US created with CCSID 37 could be named EN_US37.

```
Create Locale (CRTLOCALE)
Type choices, press Enter.
```


4. Press the Enter key to complete the creation of the locale object named EN_US in the library LOCALELIB

Step 5. Enable the locale object

Locales can be enabled system-wide using the QLOCALE system value or for individual users by changing their user profile. To enable system-wide, make EN_US the value for QLOCALE. In this example we will enable locale support for one user.

1. Type CHGUSRPRF and press the F4 (prompt) key.
2. Specify your userid and then press the Enter key.

In the portion of the Change User Profile display shown below, the LOCALE parameter now has a value indicating that EN_US is the specified locale to be used by your userid.

After your user profile has been changed, any jobs initiated by your userid have the EN_US locale associated with those jobs. The LANG environment variable is also initialized to the name of the locale.

Example: Producing unique monetary formats: A unique customized monetary format can be produced by changing the value of a single statement. For example, the following table shows the results of using all combinations of defined values for the p_cs_precedes, p_sep_by_space, and p_sign_posn statements:

p_cs_precedes value	p_sign_posn value	p_sep_by_space=2	p_sep_by_space=3	p_sep_by_space=4
p_cs_precedes = 1	p_sign_posn $=0$	$(\$ 1.25)$	$(\$ 1.25)$	$(\$ 1.25)$
	p_sign_posn $=1$	$+\$ 1.25$	$+\$ 1.25$	$+\$ 1.25$
	p_sign_posn $=2$	$\$ 1.25+$	$\$ 1.25+$	$\$ 1.25+$
	p_sign_posn $=3$	$+\$ 1.25$	$+\$ 1.25$	$+\$ 1.25$
	p_sign_posn $=4$	$\$+1.25$	$\$+1.25$	$\$+1.25$

p_cs_precedes value	p_sign_posn value	p_sep_by_space=2	p_sep_by_space=3	p_sep_by_space=4
p_cs_precedes = 0	p_sign_posn $=0$	$(1.25 \$)$	$(1.25 \$)$	$(1.25 \$)$
	p_sign_posn $=1$	$+1.25 \$$	$+1.25 \$$	$+1.25 \$$
	p_sign_posn $=2$	$1.25 \$+$	$1.25 \$+$	$1.25 \$+$
	p_sign_posn $=3$	$1.25+\$$	$1.25+\$$	$1.25+\$$
	p_sign_posn $=4$	$1.25 \$+$	$1.25 \$+$	$1.25 \$+$

Example: Locales as part of a multilingual environment: OS/400, through the use of locales, user profiles, and subsystems, can provide a multilingual environment. Users of a system setup for multilingual environments work with their national language and all its cultural conventions (for example, the character used to separate hours, minutes, and seconds).

Assume the system used in this example has its primary language defined as English and the secondary national language versions (NLVs) for French and Spanish have been installed.

Follow the steps in this example to:

- Create the locales for English, French, and Spanish
- Create user profiles for users named: English, French, and Spanish
- Create separate subsystems for French and Spanish language users.

Step 1. Create locales

1. Type CRTLOCALE and press the Prompt key (F4).
2. Enter the following values for the fields listed below:

- Locale name: qsys.lib/localelib.lib/en_us.locale
- Source file path name: qsys.lib/qsyslocale.lib/qlocalesrc.file/en_us.mbr
- Coded character set ID: 37
- Generation severity level: 20
- Text 'description': US English locale

3. Press Enter.

Repeat the CRTLOCALE command for the FRENCH and SPANISH locales, using the following values for the fields listed below.

For the French locale:

- Locale name: qsys.lib/localelib.lib/fr_fr.locale
- Source file path name: qsys.lib/qsyslocale.lib/qlocalesrc.file/fr_fr.mbr
- Coded character set ID: 297
- Generation severity level: 20
- Text 'description': French locale

For the Spanish locale:

- Locale name: qsys.lib/localelib.lib/es_es.locale
- Source file path name: qsys.lib/qsyslocale.lib/qlocalesrc.file/es_es.mbr
- Coded character set ID: 284
- Generation severity level: 20
- Text 'description': Spanish locale

You have created three locales (EN_US (English US), FR_FR (French), and ES_ES (Spanish). They are stored in library localelib.lib.

Step 2. Create the user profile

In this example three user profiles are created; each one will use one of locales we just created. The user profile names are: English, French, and Spanish.

1. Type CRTUSRPRF and prompt (F4).
2. Type ENGLISH for the User profile parameter value
3. Scroll forward until you see the Locale job attributes parameter and the Locale parameter.
4. Type:

- /qsys.lib/localelib.lib/en_us.locale for the Locale parameter value.
- Type + for the Locale job attributes parameter value and press Enter. Type:

```
*CCSID
*DATFMT
*DATSEP
*TIMSEP
*SRTSEQ
*DECFMT
```

Note: At job start up the system finds the actual job attribute values defined in the locale object. The job attributes found in the locale override the values specified in the user profile fields for the CCSID and SRTSEQ parameters. They also override the Date Format, Date Separator, and Time Separator job attributes specified in any system value.
5. Press Enter. You have now created the user profile for a user named ENGLISH.

Repeat the CRTUSRPRF command for user IDs FRENCH and SPANISH. The next two displays provide the correct Locale parameter and Locale job attribute information for creating the user profiles for FRENCH and SPANISH.

+--1
Locale job attributes > *CCSID *SYSVAL, *NONE, *CCSID...
> *DATFMT
$>$ *DATSEP
> *TIMSEP
> *SRTSEQ
Locale > '/qsys.lib/localelib.lib/es_es.locale'

Step 3. Creating subsystems for each national language version

Subsystems can be tailored to provide users an environment in which they see their own national language with data presented in the cultural format and conventions they are used to seeing.

Note: Since the primary language of the system is English, we do not need to create a subsystem for English.

1. Type CRTSBSD and prompt (F4).
2. Specify values for the following parameters to ensure that the subsystem is enabled for a specific national language (such as French and Spanish in our example).

- Subsystem description

This can be any name you choose.

- Text 'description'

The description can be anything you want it to be.

- Sign-on display file and Library

This often is QDSIGNON. The important information here is to know the name of the library where the national language version (French in this example) is stored.

- Subsystem library

Specifies a library that is entered ahead of other libraries in the library list of jobs started in this subsystem. This parameter allows you to use a secondary language library causing messages and displays to appear in your spoken language.

Note: The correct values for Sign-on display file library and Subsystem library parameters are determined by adding QSYS to the national language version feature code. For example: the French national language library is named QSYS2928.

See Nationallanguage version feature codes for a listing of all supported language versions.
The screen below shows the correct values to ensure that users of the FRENCH subsystem interact with the computer in the French language.

3. Press Enter.

Step 4. More information about subsystems

Creation of a subsystem requires additional work such as:

- Setting subsystem attributes
- Adding workstation entires
- Adding job queue entries
- Adding communications entires (if your national language users are attached over communications lines)
- Adding autostart job entires if you want to use this feature
- Adding prestart job entires if you want to use this feature
- Creating a class
- Adding routing entries

How to perform the tasks in the list above is not described in this example. For more information about Subsystems, see the Work Management topic in the Information Center.

Example: POSIX Iocale: The POSIX (or C) locale follows. It is published in its entirety because:

- It provides a locale example with source provided for all categories.
- If you have not set a locale value in your C application program, the default POSIX locale is then used.

In either case, in the listing below, you are able to look at the locale categories and view the source.

```
comment_char <percent-sign>
escape_char <slash>
```

$\%$
\% 5716SS1 (C) COPYRIGHT IBM CORP. 1991,1996
\% ALL RIGHTS RESERVED.
\% US GOVERNMENT USERS RESTRICTED RIGHTS -
\% USE, DUPLICATION OR DISCLOSURE RESTRICTED
BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
\%
\% LICENSED MATERIALS-PROPERTY OF IBM
$\%$
\% FILE NAME : POSIX
$\%$
\% COUNTRY/REGION: POSIX DEFAULT LOCALE
\%
\% LANGUAGES(S): NOT SPECIFIED
\% DESCRIPTION: LOCALE SOURCE DEFINITION FILE.
$\%$
LC_CTYPE
upper <A>; ; <C>; <D>; <E>; <F>; <G>; <H>; <I>; <J>; <K>; <L>; <M>; /
$<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>$
lower <a>; ; <c>; <d>; <e>; <f>; <g>; <h>; <i>; <j>; <k>; <l>; <m>; /
<n>; <0>; < $\mathrm{p}>$; <q>; <r>; <s>; <t>; <u>; <v>; <w>; <x>; <y>; < $<$;
space <tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;/
<space>
cntrl <NUL>; <SOH>; <STX>; <ETX>; <EOT>; <ENQ>; <ACK>; <alert>; <backspace>; /
<tab>; <newline>; <vertical-tab>;<form-feed>; <carriage-return>; /
<SO>; <SI>; <DLE>; <DC1>; <DC2>; <DC3>; <DC4>; <NAK>; <SYN>; <ETB>; /
$<$ CAN>; ; <SUB>; <ESC>; <IS4>; <IS3>; <IS2>; <IS1>;
punct <exclamation-mark>; <quotation-mark>; <number-sign>; /
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;/
<left-parenthesis>;<right-parenthesis>;<asterisk>;<plus-sign>;/
<comma>; <hyphen>; <period>;<slash>;/
<colon>;<semicolon>;<less-than-sign>;/
<equals-sign>; <greater-than-sign>;<question-mark>;/
<commercial-at>;/
<left-square-bracket>; <backslash>;/
<right-square-bracket>; <circumflex>;/

```
<underscore>;<grave-accent>;/
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;/
<tilde>
digit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>
xdigit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>;/
<A>;<B>;<C>;<D>;<E>;<F>;/
<a>;<b>;<c>;<d>;<e>;<f>
blank <space>;/
<tab>
toupper (<a>,<A>);(<b>,<B>);(<c>,<C>);(<d>,<D>);(<e>,<E>);/
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);/
(<k>,<k>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<0>,<0>);/
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);/
(<u>,<U>);(<v>,<v>);(<w>,<W>);(<x>,<x>); (<y>,<<Y>);/
(<z>,<Z>)
tolower (<A>,<a>);(<B>,<b>);(<C>,<c>);(<D>,<d>);(<E>,<e>);/
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);/
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>); (<0>,<0>);/
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>); (<T>,<t>);/
(<U>,<u>);(<V>,<v>);(<W>,<W>);(<x>,<x>);(<Y>,<y>);/
(<Z>,<z>)
END LC_CTYPE
LC_COLLATE
order_start
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>
<CAN>
<EM>
<SUB>
<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
```

```
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>
<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>
<B>
<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>
<M>
<N>
<0>
<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>
<b>
```

```
<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>
<k>
<1>
<m>
<n>
<0>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>
<DEL>
UNDEFINED
order_end
END LC_COLLATE
LC_MONETARY
int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping -1
positive_sign ""
negative_sign ""
int frac digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1
END LC_MONETARY
LC_NUMERIC
decimal_point "<period>" thousands_sep
"" grouping -1
END LC_NUMERIC
LC_TIME
abday "<S><u><n>";/
"<M><0><n>";/
"<T><u><e>";/
```

```
"<W><e><<d>";/
"<T><h><u>";/
"<F><r><<i>";/
"<S><a><t>"
```

day "<S><u><n><d><a><y>"; /
"<M><0><n><d><a><y>"; /
"<T><u><e><s><d><a><y>"; /
" $<W><e><d><n><e><s><d><a><y>" ; /$
" $<T><h><u><r><s><d><a><y>" ; /$
" $<F><r><i><d><a><y>" ; /$
"<S><a><t><u><r><d><a><y>"
abmon "<J><a><n>"; /
" $<F><e>" ; /$
" $<M><a><r>"$; /
" $<A><p><r>" ; /$
" $<M><a><y>" ; /$
"<J><u><n>"; /
" <J><u><1>"; /
" $<A><u><g>$ "; /
" $<S><e><p>" ; /$
" $<0><c><t>" ; /$
"<N><0><v>";/
" $<D><e><c>$ "
mon "<J><a><n><u><a><r><y>"; /
"<F><e><r><u><a><r><y>";/
" $<M><a><r><c><h>" ; /$
" $<A><p><r><i><1>" ; /$
" $<M><a><y>$ "; /
"<J><u><n><e>"; /
"<J><u><1><y>";/
" $<A><u><g><u><s><t>" ; /$
" $<S><e><p><t><e><m><e><r>" ; /$
" $<0><c><t><0><e><r>" ; /$
" $<N><0><v><e><m><e><r>" ; /$
" $<D><e><c><e><m><e><r>"$
d_t_fmt "\%a \%b \%d \%H:\%M:\%S \%Z \%Y"
d_fmt "\%m//\%d//\%y"
t_fmt "\%H:\%M:\%S"
am_pm "<A><M>";"<P><M>"
t_fmt_ampm "\%I: \%M: \%S \%p"
END LC_TIME
LC_MESSAGES
yesexpr "[yY][eE][sS]|[yY]"
noexpr "[nN][00]|[nN]"
yesstr "yes"
nostr "no"
END LC_MESSAGES
LC_TOD
tzdiff 0
tname ""

```
dstname ""
dststart 0,0,0,0
dstend 0,0,0,0
dstshift 0
END LC_TOD
Example: EN_US locale: The EN-US locale follows. In the example below, you can look at the locale categories and view the source.
```

```
comment_char <percent-sign>
```

comment_char <percent-sign>
escape_char <slash>
escape_char <slash>
%
%
% 5716SS1 (C) COPYRIGHT IBM CORP. 1991,1996
% 5716SS1 (C) COPYRIGHT IBM CORP. 1991,1996
% ALL RIGHTS RESERVED.
% ALL RIGHTS RESERVED.
% US GOVERNMENT USERS RESTRICTED RIGHTS -
% US GOVERNMENT USERS RESTRICTED RIGHTS -
% USE, DUPLICATION OR DISCLOSURE RESTRICTED
% USE, DUPLICATION OR DISCLOSURE RESTRICTED
% BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
% BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
%
%
% LICENSED MATERIALS-PROPERTY OF IBM
% LICENSED MATERIALS-PROPERTY OF IBM
%
%
% FILE NAME : EN_US
% FILE NAME : EN_US
% COUNTRY/REGION: UNITED STATES
% COUNTRY/REGION: UNITED STATES
%
%
% LANGUAGES(S): ENGLISH
% LANGUAGES(S): ENGLISH
%
%
% DESCRIPTION: LOCALE SOURCE DEFINITION FILE.
% DESCRIPTION: LOCALE SOURCE DEFINITION FILE.
%
%
LC_CTYPE
upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/
<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>;/
<A-acute>;<A-grave>;<A-circumflex>;<A-diaresis>;/
<A-tilde>;<A-ring>;<AE>;<C-cedilla>;<Eth>;<E-acute>;/
<E-grave>;<E-circumflex>;<E-diaresis>;<I-acute>;/
<I-grave>;<I-circumflex>;<I-diaresis>;<N-tilde>;/
<0-acute>;<0-grave>;<0-circumflex>;<0-diaresis>;/
<0-tilde>;<0-slash>;<Thorn>;<U-acute>;<U-grave>;/
<U-circumflex>;<U-diaresis>;<Y-acute>
lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<0>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;/
<a-acute>;<a-grave>;<a-circumflex>;<a-diaresis>;/
<a-tilde>;<a-ring>;<ae>;<c-cedilla>;<eth>;<e-acute>;/
<e-grave>;<e-circumflex>;<e-diaresis>;<i-acute>;/
<i-grave>;<i-circumflex>;<i-diaresis>;<n-tilde>;/
<0-acute>;<0-grave>;<0-circumflex>;<0-diaresis>;/
<0-tilde>;<0-slash>;<s-sharp>;<thorn>;<u-acute>;/
<u-grave>;<u-circumflex>;<u-diaresis>;<y-acute>;/
<y-diaresis>
space <tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;/
<space>
cntrl <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<alert>;<backspace>;/
<tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;/
<SO>;<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;/
<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;;/
<DS>;<SOS>;<FS>;<WUS>;<BYP>;<NL>;<RNL>;<POC>;<SA>;<SFE>;<SM>;/
<CSP>;<MFA>;<SPS>;<RPT>;<CU1>;<DCS>;<PU1>;<UBS>;<IR>;<PP>;/
<TRN>;<NBS>;<GE>;<SBS>;<IT>;<RFF>;<CU3>;<SEL>;<RES>;<PM>;<E0>
graph <exclamation-mark>;<quotation-mark>;<number-sign>; /

```
```

<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>; /
<left-parenthesis>;<right-parenthesis>;<asterisk>;<plus-sign>;/
<comma>;<hyphen-minus>;<period>;<slash>;/
<zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;/
<eight>;<nine>;<colon>;<semicolon>;<less-than-sign>; /
<equals-sign>;<greater-than-sign>;<question-mark>;/
<commercial-at>;<A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;/
<L>;<M>;<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;;<Y>;<Z>;/
<left-square-bracket>;<backslash>;/
<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;/
<a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<0>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;/
<left-brace>;<vertical-line>;<right-brace>;/
<tilde>;<C-cedilla>;<u-diaresis>;<e-acute>;<a-circumflex>;/
<a-diaresis>;<a-grave>;<a-ring>;<c-cedilla>;<e-circumflex>;/
<e-diaresis>;<e-grave>;<i-diaresis>;<i-circumflex>;/
<i-grave>;<A-diaresis>;<A-ring>;<E-acute>;<ae>;<AE>;/
<0-circumflex>;<0-diaresis>;<0-grave>;<u-circumflex>;/
<u-grave>;<y-diaresis>;<0-diaresis>;<U-diaresis>;<0-slash>;/
<sterling>;<0-slash>;<multiply>;<a-acute>;<i-acute>;/
<o-acute>;<u-acute>;<n-tilde>;<N-tilde>;<feminine>;/
<masculine>;<question-down>;<registered>;<not>;<one-half>;/
<one-quarter>;<exclamation-down>;<guillemot-left>;/
<guillemot-right>;<A-acute>;<A-circumflex>;<A-grave>;/
<copyright>;<cent>;<yen>;<a-tilde>;<A-tilde>;<currency>;/
<eth>;<Eth>;<E-circumflex>;<E-diaresis>;<E-grave>;/
<I-acute>;<I-circumflex>;<I-diaresis>;<broken-bar>;/
<I-grave>;<0-acute>;<s-sharp>;<0-circumflex>;/
<0-grave>;<0-tilde>;<0-tilde>;<mu>;<thorn>;<Thorn>;<U-acute>;/
<U-circumflex>;<U-grave>;<y-acute>;<Y-acute>;<macron>;/
<acute>;<hyphen>;<plus-minus>;<three-quarters>;<paragraph>;/
<section>;<divide>;<cedilla>;<degree>;<diaresis>;<dot>;/
<one-superior>;<three-superior>;<two-superior>
print <space>;<exclamation-mark>;<quotation-mark>;<number-sign>; /
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>; /
<left-parenthesis>;<right-parenthesis>;<asterisk>;<plus-sign>;/
<comma>;<hyphen-minus>;<period>;<slash>;/
<zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;/
<eight>;<nine>;<colon>;<semicolon>;<less-than-sign>; /
<equals-sign>;<greater-than-sign>;<question-mark>;/
<commercial-at>;<A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;/
<L>;<M>;<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>;/
<left-square-bracket>;<backslash>;/
<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;/
<a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<0>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;/
<left-brace>;<vertical-1ine>;<right-brace>;/
<tilde>;<C-cedilla>;<u-diaresis>;<e-acute>;<a-circumflex>;/
<a-diaresis>;<a-grave>;<a-ring>;<c-cedilla>;<e-circumflex>;/
<e-diaresis>;<e-grave>;<i-diaresis>;<i-circumflex>;/
<i-grave>;<A-diaresis>;<A-ring>;<E-acute>;<ae>;<AE>;/
<0-circumflex>;<0-diaresis>;<0-grave>;<u-circumflex>;/
<u-grave>;<y-diaresis>;<0-diaresis>;<U-diaresis>;<0-slash>;/
<sterling>;<0-slash>;<multiply>;<a-acute>;<i-acute>;/
<0-acute>;<u-acute>;<n-tilde>;<N-tilde>;<feminine>;/
<masculine>;<question-down>;<registered>;<not>;<one-half>;/
<one-quarter>;<exclamation-down>;<guillemot-left>;/
<guillemot-right>;<A-acute>;<A-circumflex>;<A-grave>;/
<copyright>;<cent>;<yen>;<a-tilde>;<A-tilde>;<currency>;/
<eth>;<Eth>;<E-circumflex>;<E-diaresis>;<E-grave>;/
<I-acute>;<I-circumflex>;<I-diaresis>;<broken-bar>;/
<I-grave>;<0-acute>;<s-sharp>;<0-circumflex>;/
<0-grave>;<0-tilde>;<0-tilde>;<mu>;<thorn>;<Thorn>;<U-acute>;/
<U-circumflex>;<U-grave>;<y-acute>;<Y-acute>;<macron>;/

```
```

<acute>;<hyphen>;<plus-minus>;<three-quarters>;<paragraph>;/
<section>;<divide>;<cedilla>;<degree>;<diaresis>;<dot>;/
<one-superior>;<three-superior>;<two-superior>
punct <exclamation-mark>;<quotation-mark>;<number-sign>; /
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>; /
<left-parenthesis>;<right-parenthesis>;<asterisk>;<plus-sign>;/
<comma>;<hyphen-minus>;<period>;<slash>;/
<colon>;<semicolon>;<less-than-sign>; /
<equals-sign>;<greater-than-sign>;<question-mark>;/
<commercial-at>;/
<left-square-bracket>;<backslash>;/
<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;/
<left-brace>;<vertical-line>;<right-brace>;/
<tilde>
digit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>
xdigit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>;/
<A>;;<C>;<D>;<E>;<F>;/
<a>;;<c>;<d>;<e>;<f>
blank <space>;/
<tab>
toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);/
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>); (<j>,<J>);/
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<0>,<0>);/
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);/
(<u>,<U>);(<v>,<v>);(<w>,<W>);(<x>,<x>);(<y>,<Y>);/
(<z>,<Z>);(<a-acute>,<A-acute>);(<a-grave>,<A-grave>);/
(<a-circumflex>,<A-circumflex>);(<a-diaresis>,<A-diaresis>);/
(<a-tilde>,<A-tilde>);(<a-ring>,<A-ring>);(<ae>,<AE>);/
(<c-cedilla>,<C-cedilla>);(<eth>,<Eth>);(<e-acute>,<E-acute>);/
(<e-grave>,<E-grave>); (<e-circumflex>,<E-circumflex>);/
(<e-diaresis>,<E-diaresis>);(<i-acute>,<I-acute>);/
(<i-grave>,<I-grave>);(<i-circumflex>,<I-circumflex>);/
(<i-diaresis>,<I-diaresis>);(<n-tilde>,<N-tilde>);/
(<0-acute>,<0-acute>); (<0-grave>,<0-grave>);/
(<0-circumflex>,<0-circumflex>);(<0-diaresis>,<0-diaresis>);/
(<0-tilde>,<0-tilde>);(<0-slash>,<0-slash>);(<thorn>,<Thorn>);/
(<u-acute>,<U-acute>); (<u-grave>,<U-grave>);/
(<u-circumflex>,<U-circumflex>);(<u-diaresis>,<U-diaresis>);/
(<y-acute>,<Y-acute>);(<y-diaresis>,<\gamma>)
tolower (<A>, <a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);/
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>); (<J>,<j>);/
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<0>,<0>);/
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);/
(<U>,<u>);(<V>,<v>);(<W>,<L>); (<x>,<x>); (<Y>,<<y>);/
(<Z>,<z>);(<A-acute>,<a-acute>);(<A-grave>,<a-grave>);/
(<A-circumflex>,<a-circumflex>);(<A-diaresis>,<a-diaresis>);/
(<A-tilde>,<a-tilde>); (<A-ring>,<a-ring>); (<AE>,<ae>);/
(<C-cedilla>,<c-cedilla>);(<Eth>,<eth>);(<E-acute>,<e-acute>);/
(<E-grave>,<e-grave>);(<E-circumflex>,<e-circumflex>);/
(<E-diaresis>,<e-diaresis>);(<I-acute>,<i-acute>);/
(<I-grave>,<i-grave>);(<I-circumflex>,<i-circumflex>);/
(<I-diaresis>,<i-diaresis>);(<N-tilde>,<n-tilde>);/
(<0-acute>,<0-acute>); (<0-grave>,<0-grave>);/
(<0-circumflex>,<0-circumflex>);(<0-diaresis>,<0-diaresis>);/
(<0-tilde>,<0-tilde>);(<0-slash>,<0-slash>);(<Thorn>,<thorn>);/
(<U-acute>,<u-acute>); (<U-grave>,<u-grave>);/
(<U-circumflex>,<u-circumflex>);(<U-diaresis>,<u-diaresis>);/
(<Y-acute>,<y-acute>)

```

END LC_CTYPE

LC_COLLATE
order_start
<NUL>
<SOH>
<STX>
<ETX>
<SEL>
<tab>
<RNL>
<DEL>
<GE>
<SPS>
<RPT>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<RES>
<NL>
<backspace>
<POC>
<CAN>
<EM>
<UBS>
<CU1>
<IS4>
<IS3>
<IS2>
<IS1>
<DS>
<SOS>
<FS>
<WUS>
<BYP>
<newline>
<ETB>
<ESC>
<SA>
<SFE>
<SM>
<CSP>
<MFA>
<ENQ>
<ACK>
<alert>
<SYN>
<IR>
<PP>
<TRN>
<NBS>
<EOT>
<SBS>
<IT>
<RFF>
<CU3>
<DC4>
```

<NAK>
<SUB>
<EO>
<space>
<underscore>
<macron>
<hyphen>
<hyphen-minus>
<comma>
<semicolon>
<colon>
<exclamation-mark>
<exclamation-down>
<question-mark>
<question-down>
<slash>
<period>
<acute>
<grave-accent>
<circumflex>
<diaresis>
<tilde>
<dot>
<cedilla>
<apostrophe>
<quotation-mark>
<guillemot-left>
<guillemot-right>
<left-parenthesis>
<right-parenthesis>
<left-square-bracket>
<right-square-bracket>
<left-brace>
<right-brace>
<section>
<paragraph>
<copyright>
<registered>
<commercial-at>
<currency>
<cent>
<dollar-sign>
<sterling>
<yen>
<asterisk>
<backslash>
<ampersand>
<number-sign>
<percent-sign>
<plus-sign>
<plus-minus>
<divide>
<multiply>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<not>
<vertical-line>
<broken-bar>
<degree>
<mu>
<nobreakspace>
<zero>
<one-quarter>
<one-half>
<three-quarters>
<one>

```
```

<one-superior>
<two>
<two-superior>
<three>
<three-superior>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<a>
<A>
<a-acute>
<A-acute>
<feminine>
<a-grave>
<A-grave>
<a-circumflex>
<A-circumflex>
<a-ring>
<A-ring>
<a-diaresis>
<A-diaresis>
<a-tilde>
<A-tilde>
<ae>
<AE>

<C>
<C>
<c-cedilla>
<C-cedilla>
<d>
<D>
<eth>
<Eth>
<e>
<E>
<e-acute>
<E-acute>
<e-grave>
<E-grave>
<e-circumflex>
<E-circumflex>
<e-diaresis>
<E-diaresis>
<f>
<F>
<g>
<G>
<h>
<H>
<i-dotless>
<i>
<I>
<i-acute>
<I-acute>
<i-grave>
<I-grave>
<i-circumflex>
<I-circumflex>
<i-diaresis>
<I-diaresis>
<j>
<J>

```
```

<k>
<K>
<l>
<L>
<m>
<M>
<n>
<N>
<n-tilde>
<N-tilde>
<0>
<0>
<masculine>
<o-acute>
<0-acute>
<o-grave>
<0-grave>
<o-circumflex>
<0-circumflex>
<0-diaresis>
<0-diaresis>
<o-tilde>
<0-tilde>
<0-slash>
<0-slash>
<p>
<q>
<Q>
<r>
<R>
<s>
<S>
<s-sharp>
<t>
<T>
<thorn>
<Thorn>
<u>
<U>
<u-acute>
<U-acute>
<u-grave>
<U-grave>
<u-circumflex>
<U-circumflex>
<u-diaresis>
<U-diaresis>
<v>
<V>
<w>
<W>
<x>
<x>
<y>
<Y>
<y-acute>
<Y-acute>
<y-diaresis>
<z>
<Z>
UNDEFINED
order_end
END LC_COLLATE

```

LC_MONETARY
\begin{tabular}{ll} 
int_curr_symbol & "<U><S><D><space>" \\
currency_symbol & "<dollar_sign>"
\end{tabular}

END LC_MONETARY

LC_NUMERIC
\begin{tabular}{ll} 
decimal_point & "<period>" \\
thousands_sep & "<comma>" \\
grouping & 3
\end{tabular}

END LC_NUMERIC

LC_TIME
abday "<S><u><n>"; /
"<M><0><n>"; /
"<T><u><e>"; /
"<h><e><d>";/
"<T><h><u>";/
"<F><r><i>";/
" \(<\) S><a><t>"
day " \(<\) S \(><u><n><d><a><y>" ; /\)
" \(<M><0><n><d><a><y>" ; /\)
"<T><u><e><s><d><a><y>";/
"<h><e><d><n><e><s><d><a><y>"; /
"<T><h><u><r><s><d><a><y>";/
"<F><r><i><d><a><y>";/
" \(<S><a><t><u><r><d><a><y>"\)
abmon "<J><a><n>";/
"<F><e><b>"; /
"<M><a><r>";/
"<A><p><r>"; /
"<M><a><y>";/
"<J><u><n>"; /
"<J><u><1>"; /
"<A><u><g>"; /
"<S><e><p>"; /
"<0><c><t>";/
"<N><0><v>"; /
" \(<\) D><e><c>"
mon "<J><a><n><u><a><r><y>";/
"<F><e><b><r><u><a><r><y>";/
"<M><a><r><c><h>";/
" \(<A><p><r><i><1>" ; /\)
"<M><a><y>"; /
"<J><u><n><e>";/
```

"<J><u><1><y>";/
"<A><u><g><u><s><t>";/
"<S><e><p><t><e><m><e><r>";/
"<0><c><t><0><e><r>";/
"<N><0><v><e><m><e><r>";/
"<D><e><c><e>><m><e><r>"
d_t_fmt "%a %b %e %H:%M:%S %Z %Y"
d_fmt "%m//%d//%y"
t_fmt "%H:%M:%S"
am_pm "<A><M>";"<P><M>"
END LC_TIME
LC_MESSAGES
yesexpr "[yY][eE][sS]|[yY]"
noexpr "[nN][00]|[nN]"
yesstr "yes:y:Y"
nostr "no:n:N"
END LC_MESSAGES
LC_TOD
tzdiff 0
tname ""
dstname ""
dststart 0,0,0,0
dstend 0,0,0,0
dstshift 0
END LC_TOD

```

\section*{Globalization reference information}

This topic provides a comprehensive collection of supporting information about the concepts and tasks described in the Globalization category.
- NLV feature codes
- Country/region identifiers
- Default system values for national language versions
- System values for languages that do not have a national language version
- Keyboards
- Keyboard layouts
- SBCS keyboard and display part numbers by language
- Special-character keyboard set
- Keyboard types and SBCS code pages
- Code pages
- Character sets
- Country extended character set 00697
- Graphic character conversion tables.
- International DP 9400103 (ASCll)
- International alphabet 501169
- Invariant character set
- Monocase tables
- Portable character set
- Syntactic and invariant character set 00640
- 7.61 character set 01252
- T61 character repertoire 01253
- T.61 graphic character conversions
- CCSIDs
- CCSID values defined on OS/400
- Supported CCSID mappings
- Associated CCSID values
- Encoding_schemes for CCSIDS
- Language identifiers and associated default CCSIDS
- Locales
- System-supplied locales and recommended CCSSD.
- Mapping_of Jocale symbolic names
- REXX extension characters
- Axxxxxxxx GCGIDS
- Bxxyxxxyx GCGIDS
- Gxxxxxxxx GCGIDs
- Hxxxxxxxx GCGDD
- Jxxxxxxxx GCGIDs
- Kxxxxxxxx GCGIDs
- Lxxxxxxxx GCGIDs
- Nxxxxxxxx GCGDD
- Oxxxxyxxx GCGIDS
- Sxxxxxxxy GCGIDS

\section*{National language version feature codes}

The following table lists the available national language version feature codes. See the Software Installation

PDF for more information.
\begin{tabular}{|l|c|c|}
\hline National language version & \begin{tabular}{c} 
Primary language \\
feature code
\end{tabular} & \begin{tabular}{c} 
Secondary language \\
feature code
\end{tabular} \\
\hline Albanian & 2995 & 5595 \\
\hline Arabic & 2954 & 5554 \\
\hline Belgian English & 2909 & 5509 \\
\hline Belgian Dutch & 2963 & 5563 \\
\hline Belgian French & 2966 & 5566 \\
\hline Brazilian Portuguese & 2980 & 5580 \\
\hline Bulgarian & 2974 & 5574 \\
\hline Canadian French & 2981 & 5581 \\
\hline Croatian & 2912 & 5512 \\
\hline Czech & 2975 & 5575 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline National language version & Primary language feature code & Secondary language feature code \\
\hline Danish & 2926 & 5526 \\
\hline Dutch Netherlands & 2923 & 5523 \\
\hline English & 2924 & 5524 \\
\hline English Uppercase Support for Double-Byte Character Set (DBCS) & 2938 & 5538 \\
\hline English Uppercase & 2950 & 5550 \\
\hline English Uppercase and Lowercase Support for Double-Byte Character Set (DBCS) & 2984 & 5584 \\
\hline Estonian & 2902 & 5502 \\
\hline Farsi & 2998 & 5598 \\
\hline Finnish & 2925 & 5525 \\
\hline French & 2928 & 5528 \\
\hline French Multinational Character Set & 2940 & 5540 \\
\hline German & 2929 & 5529 \\
\hline German Multinational Character Set & 2939 & 5539 \\
\hline Greek & 2957 & 5557 \\
\hline Hebrew & 2961 & 5561 \\
\hline Hungarian & 2976 & 5576 \\
\hline Icelandic & 2958 & 5558 \\
\hline Italian & 2932 & 5532 \\
\hline Italian Multinational Character Set & 2942 & 5542 \\
\hline Japanese Double-Byte Character Set (DBCS) & 2962 & 5562 \\
\hline Korean Double-Byte Character Set (DBCS) & 2986 & 5586 \\
\hline Lao & 2906 & 5506 \\
\hline Latvian & 2904 & 5504 \\
\hline Lithuanian & 2903 & 5503 \\
\hline Macedonian & 2913 & 5513 \\
\hline Norwegian & 2933 & 5533 \\
\hline Polish & 2978 & 5578 \\
\hline Portuguese & 2922 & 5522 \\
\hline Portuguese Multinational Character Set & 2996 & 5596 \\
\hline Romanian & 2992 & 5592 \\
\hline Russian & 2979 & 5579 \\
\hline Serbian Cyrillic & 2914 & 5514 \\
\hline Simplified Chinese Double-Byte Character Set (DBCS) & 2989 & 5589 \\
\hline Slovakian & 2994 & 5594 \\
\hline Slovenian & 2911 & 5511 \\
\hline Spanish & 2931 & 5531 \\
\hline Swedish & 2937 & 5537 \\
\hline Thai & 2972 & 5572 \\
\hline Traditional Chinese Double-Byte Character Set (DBCS) & 2987 & 5587 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline National language version & \begin{tabular}{c} 
Primary language \\
feature code
\end{tabular} & \begin{tabular}{c} 
Secondary language \\
feature code
\end{tabular} \\
\hline Turkish & 2956 & 5556 \\
\hline Vietnamese & 2905 & 5505 \\
\hline
\end{tabular}

\section*{Country/region identifiers}
\begin{tabular}{|c|c|}
\hline Country/Region Name & Country/Region ID \\
\hline Afghanistan & AF \\
\hline Albania & AL \\
\hline Algeria & DZ \\
\hline American Samoa & AS \\
\hline Andorra & AD \\
\hline Angola & AO \\
\hline Anguilla & AI \\
\hline Antarctica & AQ \\
\hline Antigua and Barbuda & AG \\
\hline Arabic speaking countries & AA \\
\hline Argentina & AR \\
\hline Armenia & AM \\
\hline Aruba & AW \\
\hline Australia & AU \\
\hline Austria & AT \\
\hline Azerbaijan & AZ \\
\hline Bahamas & BS \\
\hline Bahrain & BH \\
\hline Bangladesh & BD \\
\hline Barbados & BB \\
\hline Belarus & BY \\
\hline Belgium & BE \\
\hline Belize & BZ \\
\hline Benin & BJ \\
\hline Bermuda & BM \\
\hline Bhutan & BT \\
\hline Bolivia & BO \\
\hline Bosnia/Herzegovina & BA \\
\hline Botswana & BW \\
\hline Bouvet Island & BV \\
\hline Brazil & BR \\
\hline British Indian Ocean Territory & 10 \\
\hline Brunei Darussalam & BN \\
\hline Bulgaria & BG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Country/Region Name & Country/Region ID \\
\hline Burkina Faso & BF \\
\hline Burundi & BI \\
\hline Burma & BU \\
\hline Cambodia & KH \\
\hline Cameroon, United Republic of & CM \\
\hline Canada & CA \\
\hline Cape Verde & CV \\
\hline Cayman Islands & KY \\
\hline Central African Republic & CF \\
\hline Chad & TD \\
\hline Chile & CL \\
\hline China & CN \\
\hline China (Hong Kong S.A.R.) & HK \\
\hline China (Macau S.A.R.) & MO \\
\hline Christmas Island & CX \\
\hline Cocos (Keeling) Islands & CC \\
\hline Colombia & CO \\
\hline Comoros & KM \\
\hline Congo & CG \\
\hline Cook Islands & CK \\
\hline Costa Rica & CR \\
\hline Ivory Coast & Cl \\
\hline Croatia & HR \\
\hline Cuba & CU \\
\hline Cyprus & CY \\
\hline Czech Republic & CZ \\
\hline Denmark & DK \\
\hline Djibouti & DJ \\
\hline Dominica & DM \\
\hline Dominican Republic & DO \\
\hline East Timor & TP \\
\hline Ecuador & EC \\
\hline Egypt & EG \\
\hline El Salvador & SV \\
\hline Equatorial Guinea & GQ \\
\hline Estonia & EE \\
\hline Ethiopia & ET \\
\hline Falkland Islands (Malvinas) & FK \\
\hline Faroe Islands & FO \\
\hline Fiji & FJ \\
\hline Finland & FI \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Country/Region Name & Country/Region ID \\
\hline France & FR \\
\hline French Guiana & GF \\
\hline French Polynesia & PF \\
\hline French Southern Territories & TF \\
\hline Gabon & GA \\
\hline Gambia & GM \\
\hline Georgia & GE \\
\hline Germany & DE \\
\hline Ghana & GH \\
\hline Gibraltar & GI \\
\hline Greece & GR \\
\hline Greenland & GL \\
\hline Grenada & GD \\
\hline Guadeloupe & GP \\
\hline Guam & GU \\
\hline Guatemala & GT \\
\hline Guinea & GN \\
\hline Guinea-Bissau & GW \\
\hline Guyana & GY \\
\hline Haiti & HT \\
\hline Heard and McDonald Islands & HM \\
\hline Honduras & HN \\
\hline Hungary & HU \\
\hline Iceland & IS \\
\hline India & IN \\
\hline Indonesia & ID \\
\hline Iran (Islamic Republic of) & IR \\
\hline Iraq & IQ \\
\hline Ireland & IE \\
\hline Israel & IL \\
\hline Italy & IT \\
\hline Jamaica & JM \\
\hline Japan & JP \\
\hline Jordan & JO \\
\hline Kazakhstan & KK \\
\hline Kenya & KE \\
\hline Kiribati & KI \\
\hline Korea, Democratic People's Republic of & KP \\
\hline Korea, Republic of & KR \\
\hline Kuwait & KW \\
\hline Kyrgyzstan & KG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Country/Region Name & Country/Region ID \\
\hline Lao People's Democratic Republic & LA \\
\hline Latvia & LV \\
\hline Lebanon & LB \\
\hline Lesotho & LS \\
\hline Liberia & LR \\
\hline Libyan Arab Jamahiriya & LY \\
\hline Liechtenstein & LI \\
\hline Lithuania & LT \\
\hline Luxembourg & LU \\
\hline Macedonia & MK \\
\hline Madagascar & MG \\
\hline Malawi & MW \\
\hline Malaysia & MY \\
\hline Maldives & MV \\
\hline Mali & ML \\
\hline Malta & MT \\
\hline Marshall Islands & MH \\
\hline Martinique & MQ \\
\hline Mauritania & MR \\
\hline Mauritius & MU \\
\hline Mexico & MX \\
\hline Micronesia & FM \\
\hline Moldava, Republic of & MD \\
\hline Monaco & MC \\
\hline Mongolia & MN \\
\hline Montenegro & ME \\
\hline Montserrat & MS \\
\hline Morocco & MA \\
\hline Mozambique & MZ \\
\hline Myanmar & MM \\
\hline Namibia & NA \\
\hline Nauru & NR \\
\hline Nepal & NP \\
\hline Netherlands & NL \\
\hline Netherlands Antilles & AN \\
\hline New Caledonia & NC \\
\hline Neutral Zone & NT \\
\hline New Zealand & NZ \\
\hline Nicaragua & NI \\
\hline Niger & NE \\
\hline Nigeria & NG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Country/Region Name & Country/Region ID \\
\hline Niue & NU \\
\hline Norfolk Island & NF \\
\hline Northern Mariana Islands & MP \\
\hline Norway & NO \\
\hline Oman & OM \\
\hline Pakistan & PK \\
\hline Palau & PW \\
\hline Panama & PA \\
\hline Papua New Guinea & PG \\
\hline Paraguay & PY \\
\hline Peru & PE \\
\hline Philippines & PH \\
\hline Pitcairn & PN \\
\hline Poland & PL \\
\hline Portugal & PT \\
\hline Puerto Rico & PR \\
\hline Qatar & QA \\
\hline Reunion & RE \\
\hline Romania & RO \\
\hline Russia & RU \\
\hline Rwanda & RW \\
\hline Saint. Helena & SH \\
\hline Saint Kitts and Nevis & KN \\
\hline Saint Lucia & LC \\
\hline Saint Pierre and Miquelon & PM \\
\hline Saint Vincent and the Grenadines. & VC \\
\hline Western Samoa & WS \\
\hline San Marino & SM \\
\hline Sao Tome and Principe & ST \\
\hline Saudi Arabia & SA \\
\hline Senegal & SN \\
\hline Seychelles & SC \\
\hline Sierra Leone & SL \\
\hline Serbia & SQ \\
\hline Singapore & SG \\
\hline Slovakia & SK \\
\hline Slovenia & SI \\
\hline Solomon Islands & SB \\
\hline Somalia & SO \\
\hline South Africa & ZA \\
\hline Spain & ES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Country/Region Name & Country/Region ID \\
\hline Sri Lanka & LK \\
\hline Sudan & SD \\
\hline Suriname & SR \\
\hline Svalbard and Jan Mayen IsInds & SJ \\
\hline Swaziland & SZ \\
\hline Sweden & SE \\
\hline Switzerland & CH \\
\hline Syrian Arab Republic & SY \\
\hline Taiwan & TW \\
\hline Tajikistan & TJ \\
\hline Tanzania, United Republic of & TZ \\
\hline Thailand & TH \\
\hline Togo & TG \\
\hline Tokelau & TK \\
\hline Tonga & TO \\
\hline Trinidad and Tobago & TT \\
\hline Tunisia & TN \\
\hline Turkmenistan & TM \\
\hline Turkey & TR \\
\hline Turks and Caicos Islands & TC \\
\hline Tuvalu & TV \\
\hline Uganda & UG \\
\hline Ukraine & UA \\
\hline United Arab Emirates & AE \\
\hline United Kingdom & GB \\
\hline United States Minor Outlying Islands & UM \\
\hline United States of America & US \\
\hline Uruguay & UY \\
\hline Uzbekistan & UZ \\
\hline Vanuatu & VU \\
\hline Vatican City State & VA \\
\hline Venezuela & VE \\
\hline Vietnam & VN \\
\hline Virgin Islands (British) & VG \\
\hline Virgin Islands (U.S.) & VI \\
\hline Wallis and Futuna Islands & WF \\
\hline Western Sahara & EH \\
\hline Yemen, Republic of & YE \\
\hline Countries of the former Yugoslavia & YU \\
\hline Zaire & ZR \\
\hline Zambia & ZM \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Country/Region Name & Country/Region ID \\
\hline Zimbabwe & ZW \\
\hline
\end{tabular}

\section*{Default system values for national language versions}

System values are the default values for jobs and functions on the system. The following links are to tables that show some of the system values associated with each national language version. The values shown for each version are listed by keyword. These are the values you see when you display the CPX8416 message for a particular language library. For an explanation of each keyword, see the System values topic. The tables contain Internet values that are needed to configure a Web browser for a specific language. The Internet values are also listed by keyword.

See System values for other languages that do not have_ a national_language version for related information.
- Albanian (Feature 2995)
- Arabic (Feature 2954)
- Belgian Dutch MNCS (Feature 2963)
- Belgium English (Feature 2909)
- Belgian French MNCS (Feature 2966)
- Brazilian Portuguese (Feature 2980)
- Bulgarian (Feature 2974)
- Canadian French MNCS (Feature 2981)
- Croatian (Feature 2912)
- Czech (Feature 2975)
- Danish (Feature 2926)
- Dutch Netherlands (Feature 2923)
- English Uppercase (Feature 2950)
- English Uppercase and Lowercase (Feature 2924)
- English Uppercase DBCS (Feature 2938)
- English Uppercase and Lowercase DBCS (Feature 2984)
- Estonian (Feature 2902)
- Farsi (Feature 2998)
- Finnish (Feature 2925)
- French (Feature 2928)
- French MNCS (Feature 2940)
- German (Feature 2929)
- German MNCS (Feature_2939)
- Greek (Feature_2957)
- Hebrew (Feature 2961)
- Hungarian (Feature 2976)
- Icelandic (Feature_2958)
- Italian_(Feature_2932)
- Utalian MNCS (Feature 2942)
- Japanese (Katakana) DBCS (Feature 2962)
- Korean DBCS (Feature 2986)
- Laotian (Feature 2906)
- Latvian (Feature 2904)
- Lithuania (Feature 2903)
- Macedonian (Feature 2913)
- Norwegian (Feature 2933)
- Polish (Feature 2978)
- Portuguese (Feature 2922)
- Portuguese MNCS (Feature 2996)
- Romanian (Feature 2992)
- Bussian (Feature 2979)
- Serbian (Feature 2914)
- Simplified Chinese DBCS (Feature 2989)
- Slovakian (Feature 2994)
- Slovenian (Feature 2911)
- Spanish (Feature 2931)
- Swedish (Feature 2937)
- Thai (Feature 2972)
- Traditional Chinese DBCS (Feature 2987)
- Turkish (Feature 2956)

Values that are provided in the tables:
\begin{tabular}{|l|l|}
\hline Keyword & Description \\
\hline QCCSID & \begin{tabular}{l} 
Character set identifier. This is the recommended \\
QCCSID value if you want to use CDRA support. For all \\
national language versions (NLVs), the default QCCSID \\
value is 65535 unless otherwise indicated.
\end{tabular} \\
\hline QCHRID & Character set and code page \\
\hline QCNTRYID & Country or region identifier \\
\hline QCURSYM & \begin{tabular}{l} 
Currency symbol. The values given are accurate; \\
however, the system supports only 1 character in that \\
return field.
\end{tabular} \\
\hline QDATFMT & Date format \\
\hline QDATSEP & Date separator \\
\hline QDECFMT & Decimal format \\
\hline QIGC & DBCS version indicator \\
\hline QIGCCDEFNT & LBCS font name \\
\hline QKBDTYPE & Layboard type \\
\hline QLANGID & Leap year adjustment \\
\hline QLEAPADJ & Sort sequence \\
\hline QSRTSEQ & Time separator \\
\hline QTIMSEP & Client character set environment. \\
\hline Internet CCSID & \begin{tabular}{l} 
NLTC (National Language Technical Center) value and \\
Document Encoding. Client encoding nomenclature \\
provides a guideline for configuring a client for a specific \\
language and setting up your internet web browser.
\end{tabular} \\
\hline Client encoding nomenclature & \begin{tabular}{l} 
Lantier \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Albanian (Feature 2995)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & J & ALI & Lek & - & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & colon \((:)\) & 00500 & AL & SQI & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

Arabic (Feature 2954)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0023500420 & J & CLB & Dollar \((\$)\) & Slash \((/)\) & 01089 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Comma (,) & 00420 & AA & ARA & ISO-8859-6 \\
\hline
\end{tabular}

\section*{Belgian Dutch MNCS (Feature 2963)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & J & BLI & F & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00500 & BE & NLB & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Belgium English (Feature 2909)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & J & BLI & F & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00500 & BE & ENB & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Belgian French MNCS (Feature 2966)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & J & BLI & F & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00500 & BE & FRB & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Brazilian Portuguese (Feature 2980)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700037 & J & BRB & Cruzeiro \((\$)\) & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00037 & BR & PTB & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Bulgarian (Feature 2974)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0115001025 & J & BGB & Lv & - & 00915 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & colon \((:)\) & 01025 & BG & BGR & ISO-8859-5 \\
\hline
\end{tabular}

Canadian French MNCS (Feature 2981)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & J & CAI & Dollar (\$) & Hyphen (-) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00500 & CA & FRC & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

Croatian (Feature 2912)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0095900870 & Blank & YGI & Croatian Kuna (K) & Hyphen (-) & 00912 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00870 & HR & HRV & ISO-8859-2Latin 2 \\
\hline
\end{tabular}

Czech (Feature 2975)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0095900870 & J & CSB & Ceske Koruna (K) & Hyphen (-) & 00912 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00870 & CZ & CSY & ISO-8859-2Latin 2 \\
\hline
\end{tabular}

\section*{Danish (Feature 2926)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700277 & J & DMB & Colon \((:)\) & Hyphen \((-)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Period (.) & 00277 & DK & DAN & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

Dutch Netherlands (Feature 2923)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700037 & J & NEB & Dollar \$ & Hyphen (-) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00037 & NL & NLD & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{English Uppercase (Feature 2950)}

If English Uppercase is installed, you must respond to messages in uppercase rather than lowercase.
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700037 & Blank & USB & Dollar \((\$)\) & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline MDY & Colon \((:)\) & 00037 & GB & ENP & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{English Uppercase and Lowercase (Feature 2924)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700037 & Blank & USB & Dollar (\$) & Slash (/) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline MDY & Colon \((:)\) & 00037 & US & ENU & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{English Uppercase DBCS (Feature 2938)}

If English Uppercase is installed, you must respond to messages in uppercase rather than lowercase.
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700037 & Blank & JKB & Yen sign & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID \(^{\mathbf{2}}\) & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline MDY & Colon \((:)\) & 65535 & US & ENP & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Note:}
1. The QIGC value is set to 1 .
2. Because this national language version is not specific to any country or region, 65535 is used. You should change this system value to an appropriate CCSID after installing your system, or change the job or user profile CCSID attribute. Here are the recommended CCSID values and CHRID changes that occur.
- 05026 is the CCSID for Japanese with no lowercase characters. The CHRID is set to 1172290.
- 01399 is the CCSID for Japanese with both uppercase and lowercase characters. The CHRID is set to 0117201027.

System and product files not explicitly assigned a CCSID value will be assigned CCSID 05035 if DBCS capable and CCSID 01027 for SBCS only files.

\section*{English Uppercase and Lowercase DBCS (Feature 2984)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0117500037 & Blank & TAB & Dollar (\$) & Slash (/) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID \(^{2}\) & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline MDY & Colon \((:)\) & 65535 & US & ENU & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Note:}
1. The QIGC value is set to 1 .
2. Because this national language version is not specific to any country or region, 65535 is used. You should change this system value to an appropriate CCSID after installing your system, or change the job or user profile CCSID attribute. Here are the recommended CCSID values and CHRID changes.
- 00937 is the CCSID for Traditional Chinese. The CHRID is set to 117500037
- 00935 is the CCSID for Simplified Chinese. The CHRID is set to 0117400836.
- 00933 is the CCSID for Korean. The CHRID is set to 0117300833.

\section*{Estonian (Feature 2902)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0130701122 & J & ESB & kr & - & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 01122 & EE & EST & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Farsi (Feature 2998)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0121901097 & J & IRB & Farsi Riyal & Slash \((/)\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 01097 & IR & FAR & - \\
\hline
\end{tabular}

\section*{Finnish (Feature 2925)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700278 & J & FNB & F & Period (.) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Period (.) & 00278 & FI & FIN & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

French (Feature 2928)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700297 & J & FAB & F & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00297 & FR & FRA & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

French MNCS (Feature 2940)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & J & SFI & F & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00500 & CH & FRS & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{German (Feature 2929)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700273 & J & AGB & Dollar (\$) & Period (.) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00273 & DE & DEU & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{German MNCS (Feature 2939)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & J & AGI & Dollar (\$) & Period (.) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Comma (,) & 00500 & CH & DES & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

Greek (Feature 2957)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0092500875 & J & GNB & Dollar (\$) & Slash (/) & 00813 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00875 & GR & ELL & ISO-8859-7 Greek \\
\hline
\end{tabular}

\section*{Hebrew (Feature 2961)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0094100424 & Blank & NCB & \begin{tabular}{l} 
Shin (GCGID \\
HS210000, code \\
point X'69' on \\
code page 00424)
\end{tabular} & Slash (/) & 00916 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00424 & IL & HEB & ISO-8859-8 \\
\hline
\end{tabular}

\section*{Hungarian (Feature 2976)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0095900870 & J & HNB & Forint (F) & Hyphen (-) & 00912 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00870 & HU & HUN & ISO-8859-2 Latin 2 \\
\hline
\end{tabular}

Icelandic (Feature 2958)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700871 & J & ICB & Dollar \((\$)\) & Hyphen \((-)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00871 & IS & ISL & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

Italian (Feature 2932)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700280 & Blank & ITB & Lira sign & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Period (.) & 00280 & IT & ITA & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

Italian MNCS (Feature 2942)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & Blank & ITI & Lira sign & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Comma (,) & 00500 & CH & ITS & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Japanese (Katakana) DBCS (Feature 2962)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0117200290 & Blank & JKB & Yen sign & Hyphen \((-)\) & 00942 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID \(^{2}\) & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 05026 & JP & JPN & ShiftJIS \\
\hline
\end{tabular}

Notes:
1. The QIGC system value is set to 1 .
2. This is the recommended QCCSID value if you want to use CDRA support. For all NLVs, the default QCCSID value is 65535 .

\section*{Korean DBCS (Feature 2986)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0117300833 & Blank & KOB & WON sign & Period (.) & 00949 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID \(^{\mathbf{2}}\) & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00933 & KR & KOR & EUC Korean \\
\hline
\end{tabular}

Notes:
1. The QIGC system value is set to 1 .
2. This is the recommended QCCSID value if you want to use CDRA support. For all NLVs, the default QCCSID value is 65535 .

\section*{Laotian (Feature 2906)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 13411132 & J & LAB & KIP & Slash (/) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 01132 & LA & LAO & \\
\hline
\end{tabular}

\section*{Latvian (Feature 2904)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0130501112 & J & LVB & Ls & Period (.) & 00921 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 01112 & LV & LVA & ISO-8859-4 \\
\hline
\end{tabular}

\section*{Lithuania (Feature 2903)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0130501112 & J & LTB & Lt & Period (.) & 00921 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 01112 & LT & LTU & ISO-8859-4 \\
\hline
\end{tabular}

\section*{Macedonian (Feature 2913)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0115001025 & J & MKB & Den & - & 00915 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 01025 & MK & MKD & Cyrillic (Win1251) \\
\hline
\end{tabular}

Norwegian (Feature 2933)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700277 & J & NWB & Dollar (\$) & Period (.) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00277 & NO & NON & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Polish (Feature 2978)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0095900870 & J & PLB & Polish Zloty \((Z)\) & Hyphen (-) & 00912 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00870 & PL & PLK & ISO-8859-2Latin 2 \\
\hline
\end{tabular}

\section*{Portuguese (Feature 2922)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700037 & J & PRB & Escudo \((\$)\) & Slash \((/)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00037 & PT & PTG & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

Portuguese MNCS (Feature 2996)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700500 & J & PRI & Escudo \((\$)\) & Hyphen \((-)\) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00500 & PT & PTG & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Romanian (Feature 2992)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0095900870 & J & RMB & lei & Period (.) & 00912 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00870 & RO & ROM & ISO-8859-2Latin 2 \\
\hline
\end{tabular}

\section*{Russian (Feature 2979)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0115001025 & J & RUB & \begin{tabular}{l} 
Ruble (GCGID \\
KR02000- \\
character X'DE' \\
on code page \\
\(1025)\)
\end{tabular} & Slash (/) & 1251 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Period (.) & 01025 & RU & RUS & Cyrillic (Win1251) \\
\hline
\end{tabular}

\section*{Serbian (Feature 2914)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0115001025 & J & SQB & Din & - & 00915 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Period (.) & 01025 & SQ & SRB & ISO-8859-5 \\
\hline
\end{tabular}

\section*{Simplified Chinese DBCS (Feature 2989)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID \(^{2}\) & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0117400836 & Blank & RCB & Dollar \((\$)\) & Period \(()\). & 01381 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID \(^{\mathbf{3}}\) & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00935 & CN & CHS & GB SimpChin \\
\hline
\end{tabular}

Notes:
1. The QIGC value is set to 1 .
2. For Version 1 Release 2 and Release 3, the character set and code page is 0010100037.
3. This is the recommended QCCSID value if you want to use CDRA support.

\section*{Slovakian (Feature 2994)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0095900870 & J & SKB & Slovak Koruna (K) & Hyphen (-) & 00912 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00870 & SK & SKY & ISO-8859-2Latin 2 \\
\hline
\end{tabular}

\section*{Slovenian (Feature 2911)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0095900870 & Blank & YGI & Slovenian Tolar (T) & Hyphen (-) & 00912 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00870 & SI & SLO & ISO-8859-2Latin 2 \\
\hline
\end{tabular}

Spanish (Feature 2931)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700284 & J & SPB & Dollar (\$) & Slash (/) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 00284 & ES & ESP & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Swedish (Feature 2937)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0069700278 & J & SWB & Dollar (\$) & Hyphen (-) & 00819 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Period (.) & 00278 & SE & SVE & ISO-8859-1 Latin 1 \\
\hline
\end{tabular}

\section*{Thai (Feature 2972)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0127900838 & Blank & THB & Baht sign & Slash \((/)\) & 01066 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 09030 & TH & THA & IBM 874 \\
\hline
\end{tabular}

\section*{Traditional Chinese DBCS (Feature 2987)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0117500037 & Blank & TAB & Dollar (\$) & Slash (/) & 00950 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID \(^{2}\) & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline YMD & Colon \((:)\) & 00937 & TW & CHT & BIG5 \\
\hline
\end{tabular}

Notes:
1. The QIGC system value is set to 1 .
2. This is the recommended QCCSID value if you want to use CDRA support. For all NLVs, the default QCCSID value is 65535 .

Turkish (Feature 2956)
\begin{tabular}{|l|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP & Internet CCSID \\
\hline 0115201026 & J & TKB & Dollar (\$) & Slash (/) & 00920 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID & Client Encoding Nomenclature \\
\hline DMY & Colon \((:)\) & 01026 & TR & TRK & ISO-8859-9 Turkish \\
\hline
\end{tabular}

\section*{System values for other languages with no national language version}

The following tables show some of the system values associated with languages and countries that do not have a national language version. The system values must be set immediately after receiving the system or after initially installing the operating system.

You also have to change the message, CPX8416, in the QCPFMSG message file in library QSYS to reflect the changed system values.

Afrikaans (South Africa) (see page 302)
Australian English (Australia) (see page 302) Byelorussia (Belarus) (see page 302) Irish Gaelic (Ireland) (see page 302)

Serbian Latin (Serbia) (see page 303)
Spanish (Argentina) (see page 303)
UK English (United Kingdom) (see page 303)
Vietnamese (Feature 2905) (see page 303)

\section*{Afrikaans (South Africa)}
\begin{tabular}{|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP \\
\hline 0069700037 & J & USB & rand & hyphen (-) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID \\
\hline YMD & colon \((:)\) & 00037 & ZA & AFR \\
\hline
\end{tabular}

\section*{Australian English (Australia)}
\begin{tabular}{|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP \\
\hline 0069700037 & \(J\) & USB & dollar & slash \((/)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID \\
\hline DMY & period (.) & 00037 & AU & ENA \\
\hline
\end{tabular}

\section*{Byelorussia (Belarus)}
\begin{tabular}{|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP \\
\hline 0115001025 & & RUB & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID \\
\hline & & 01025 & BY & BEL \\
\hline
\end{tabular}

\section*{Irish Gaelic (Ireland)}
\begin{tabular}{|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP \\
\hline 0069700285 & J & UKB & punt & slash \((/)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID \\
\hline DMY & colon \((:)\) & 00285 & IE & GAE \\
\hline
\end{tabular}

\section*{Serbian Latin (Serbia)}
\begin{tabular}{|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP \\
\hline 0085900870 & blank & YGI & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID \\
\hline & & 00870 & SQ & SRL \\
\hline
\end{tabular}

\section*{Spanish (Argentina)}
\begin{tabular}{|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP \\
\hline 0069700284 & J & SSB & Austral \((\$)\) & slash \((/)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID \\
\hline DMY & period (.) & 00284 & AR & ESP \\
\hline
\end{tabular}

\section*{UK English (United Kingdom)}
\begin{tabular}{|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP \\
\hline 0069700285 & \(J\) & UKB & pound & slash \((/)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID \\
\hline DMY & colon \((:)\) & 00285 & GB & ENG \\
\hline
\end{tabular}

Vietnamese (Feature 2905)
\begin{tabular}{|l|l|l|l|l|}
\hline QCHRID & QDECFMT & QKBDTYPE & QCURSYM & QDATSEP \\
\hline 13361130 & J & VNB & DONG & Slash (/) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline QDATFMT & QTIMSEP & QCCSID & QCNTRYID & QLANGID \\
\hline DMY & colon \((:)\) & 01130 & VN & VNM \\
\hline
\end{tabular}

\section*{Keyboard reference information}

The following topics provide useful information about keyboards for use with iSeries servers:
- Keyboard layouts
- SBCS keyboard and display part numbers by language
- Special-character keyboard set
- Keyboard types and SBCS code pages

\section*{Keyboard layouts}

The following keyboard layout samples are provided for your information. The special-character keyboard set is available only with the enhanced keyboard.
- Albanian
- Arabid
- Austrian German
- Belgian Multinational
- Brazilian Portuguese
- Bulgarian Cyrillid
- Canadian French
- Croatian IBM enhanced
- Czech
- Danish
- Dutch
- Earsi
- Finnish/Swedish
- Erench (Azerty)
- Greek
- Hebrew
- Hebrew, Latin
- Hungarian
- Italian
- Japanese
- Korean
- Macedonian
- Norwegian
- Polish
- Portuguese
- Bomanian
- Bussian
- Serbian Cyrillic
- Slovakian
- Slovenian
- Spanish-speaking
- Spanish IBM enhanced
- Swiss-bilingual-French
- Swiss-bilingual-German
- Traditional Chinese
- Turkish
- UK. Fnglish
- U.S. English


\section*{Arabic IBM Enhanced Keyboard:}


\section*{Austrian German IBM Enhanced Keyboard:}


\section*{Belgian Multinational IBM Enhanced Keyboard:}


\section*{Brazilian Portuguese IBM Enhanced Keyboard:}


This U.S. keyboard is used to enter Brazilian Portuguese characters. Accented characters for use in Brazil are generated using key combinations as shown in the following table. To produce the accented characters, press the key and character at the same time.
\begin{tabular}{|l|l|l|l|}
\hline Accent & Key & Valid characters & Example result \\
\hline \begin{tabular}{l} 
Accent acute \\
' (apostrophe)
\end{tabular} & a, e, i, o, u, A, E, I, O, U & á \\
\hline Accent grave ` (accent grave) & a, e, i, o, u, A, E, I, O, U & à \\
\hline \begin{tabular}{l} 
Diaeresis \\
.
\end{tabular} & " (double quote) & a, e, i, o, u, A, E, I, O, U & ä \\
\hline Tilde \(\sim\) & \(\sim\) (tilde) & a, o, n, A, O, N & ã \\
\hline Circumflex \(\wedge\) & \(\wedge^{\wedge}\) (caret) & a, e, i, o, u, A, E, I, O, U & å \\
\hline
\end{tabular}


\section*{Canadian French IBM Enhanced Keyboard:}


\section*{Croatian IBM Enhanced Keyboard:}



Danish IBM Enhanced Keyboard:


Dutch IBM Enhanced Keyboard:


Farsi IBM Enhanced Keyboard:


Finnish/Swedish IBM Enhanced Keyboard:


French (AZERTY) IBM Enhanced Keyboard:


\section*{Greek IBM Enhanced Keyboard:}


\section*{Hebrew IBM Enhanced Keyboard:}


Hebrew, Latin IBM Enhanced Keyboard:



\section*{Italian IBM Enhanced Keyboard:}


\section*{Japanese IBM Enhanced Keyboard:}



\section*{Macedonian IBM Enhanced Keyboard:}


\section*{Norwegian IBM Enhanced Keyboard:}


Polish IBM Enhanced Keyboard:


\section*{Portuguese IBM Enhanced Keyboard:}


\section*{Romanian IBM Enhanced Keyboard:}



\section*{Serbian Cyrillic IBM Enhanced Keyboard:}


\section*{Slovakian IBM Enhanced Keyboard:}



Spanish-Speaking IBM Enhanced Keyboard:


\section*{Spanish IBM Enhanced Keyboard:}



\section*{Swiss-Bilingual-German IBM Enhanced Keyboard:}


\section*{Traditional Chinese IBM Enhanced Keyboard:}


\section*{Turkish IBM Enhanced Keyboard:}


\section*{U.K. English IBM Enhanced Keyboard:}


\section*{U.S. English IBM Enhanced Keyboard:}


\section*{SBCS keyboard and display part numbers by language}

The following tables list the part numbers of the SBCS displays and keyboards that should be used for each language or country supported by iSeries servers. Users of a particular national language version can verify if they have the correct display and keyboard by checking part numbers. The keyboard numbers are printed on the bottom of the keyboards. If the keyboard or display for that language is not correct, the characters displayed may not be correct.

The following topics are provided:
- 3477 and 3476 keyboard and display part numbers (see page 318)
- 3486, 3487, 3488 Model V, and 3489 keyboard and display part numbers by language (see page 320)
- Keyboard support for other devices (see page 329)

\section*{Determining display part numbers}

To determine the part number for the model-unique Licensed Internal Code of the display, use the following procedure:
1. Press and hold any key on the keyboard while powering the display on.
2. Move the cursor to

Test Workstation
and press the Enter key.

Note: The text on the display contains a 7-digit number. This is the part number.

\section*{3477 and 3476 keyboard and display part numbers}

The following table lists the part numbers for the 3477 and 3476 displays.
General list of displays: Most languages use the following set of displays. Differences are noted in the table.
\begin{tabular}{|c|c|c|}
\hline - 38F5835 & - 64F9705 & - 95F5943 \\
\hline - 38F5843 & - 95F5908 & - 07G2172 \\
\hline - 38F5845 & - 79F5064 & - 07G2174 \\
\hline - 56F8934 & - 95F5911 & - 07G2176 \\
\hline - 65F2987 & - 79F7019 & - 38F7998 \\
\hline - 65F2995 & - 79F7020 & - 38F7999 \\
\hline - 79F2020 & - 79F7022 & - 23F1574 \\
\hline - 79F2029 & - 79F7025 & - 23F1585 \\
\hline - 79F2032 & - 95F4144 & - 56F9556 \\
\hline - 95F4167 & - 95F4146 & - 56F9557 \\
\hline - 95F4171 & - 07G2170 & - 56F9604 \\
\hline - 95F4174 & - 95F5941 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Language & \begin{tabular}{l} 
KBDTYPE \\
Parameter
\end{tabular} & \begin{tabular}{l} 
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Arabic & CLB & 1394332 & 1394436 & \begin{tabular}{l} 
38F5818, 56F8919, 65F2991, 65F2999, \\
79F2045, 79F2047, 95F4178, 95F5896, \\
79F7084, 79F7100, 95F5971, 95F5983, \\
23F1581, 56F9585, 38F8008
\end{tabular} \\
\hline Austrian/German & AGB & 1394312 & 1394416 & See general list \\
\hline Austrian/German MNCS & AGI & 1394312 & 1394416 & See general list \\
\hline Belgian MNCS & BLI & 1394313 & 1394417 & See general list \\
\hline Brazilian Portuguese & BRB & 1394319 & 1394423 & See general list \\
\hline Canadian French & CAB & 1395662 & 1395567 & See general list \\
\hline Canadian French MNCS & CAI & 1395662 & 1395567 & See general list \\
\hline Cyrillic & CYB & 1394329 & 1394433 & \begin{tabular}{l} 
38F5824, 56F8925, 65F2993, \\
65F3001,79F5045, 79F5047, 95F5893, \\
95F5905, 79F7097, 95F4108, 95F5980, \\
07G2167, 23F1584, 56F9596
\end{tabular} \\
\hline & & & & See general list \\
\hline Danish & & & & See general list \\
\hline Danish MNCS & DMI & 1394314 & 1394418 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & KBDTYPE Parameter & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Finnish/Swedish & FNB & 1394315 & 1394419 & See general list \\
\hline Finnish/Swedish MNCS & FAB & 1394315 & 1394419 & See general list \\
\hline French (Azerty) & FAB & 1394316 & 1394420 & See general list \\
\hline French (Azerty) MNCS & FAI & 1394316 & 1394420 & See general list \\
\hline Greek (Code Page 00875) & GNB & 1396767 & 1396768 & 56F9587, 79F7039, 79F7048, 79F7040, 79F7049, 95F5922, 95F5925, 95F5923, 95F5926 \\
\hline Greek (Code Page 00423) & GKB & 1394325 & 1394429 & 56F9587, 23F1582, 56F8958, 56F8960, 56F8959, 56F8961, 79F2049, 79F5043, 79F2050, 79F5044, 95F5885, 95F5899, 95F5886, 95F5900 \\
\hline Hebrew & NCB & 1394331 & 1394435 & ```
23F1583, 56F9595, 79F7094, 95F4105,
95F5977, 07G2164, 38F5822,
56F8923, 65F2989, 65F2997, 79F2041,
79F2043, 95F5889, 95F5902
``` \\
\hline Icelandic & ICB & 1394330 & 1394434 & 38F5820, 56F8921, 56F8958, 56F8960, 79F5043, 79F2049, 95F5885, 95F5899, 23F1582, 56F9587, 79F7087, 95F4102, 95F5974, 07G2161 \\
\hline Icelandic MNCS & ICI & 1394330 & 1394434 & Same as Icelandic \\
\hline Italian & ITB & 1394317 & 1394421 & See general list \\
\hline Italian MNCS & ITI & 1394317 & 1394421 & See general list \\
\hline Japanese Katakana & KAB & 1395664 & 1395669 & See general list \\
\hline Latin 2 & ROB & 1394328 & 1394432 & \[
\begin{aligned}
& \text { 38F5824, 56F8925, 65F2993, } \\
& \text { 65F3001,79F5045, 79F5047 95F5893, } \\
& \text { 95F5905, 79F7097, 95F4108, 95F5980, } \\
& \text { 07G2167, 23F1584, 56F9596 }
\end{aligned}
\] \\
\hline Dutch (Netherlands) & NEB & & 1394427 & See general list \\
\hline Dutch (Netherlands) MNCS & NEI & & 1394427 & See general list \\
\hline Norwegian & NWB & 1394318 & 1394422 & See general list \\
\hline Norwegian MNCS & NWI & 1394318 & 1394422 & See general list \\
\hline Portuguese & PRB & 1394319 & 1394423 & See general list \\
\hline Portuguese MNCS & PRI & 1394319 & 1394423 & See general list \\
\hline Spanish & SPB & 1394320 & 1394424 & See general list \\
\hline Spanish MNCS & SPI & 1394320 & 1394424 & See general list \\
\hline Spanish Speaking & SSB & 1395663 & 1395668 & See general list \\
\hline Spanish Speaking MNCS & SSI & 1395663 & 1395668 & See general list \\
\hline Swedish & SWB & 1394315 & 1394419 & See general list \\
\hline Swedish MNCS & SWI & 1394315 & 1394419 & See general list \\
\hline French (Switzerland) MNCS & SFI & 1394321 & 1394425 & See general list \\
\hline German (Switzerland) MNCS & SGI & 1394322 & 1394426 & See general list \\
\hline Thai & THB & & 1395670 & 56F9597 \\
\hline English (United Kingdom) & UKB & 1394324 & 1394428 & See general list \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Language & \begin{tabular}{l}
KBDTYPE \\
Parameter
\end{tabular} & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline \begin{tabular}{l}
English (United Kingdom) \\
MNCS
\end{tabular} & UKI & 1394324 & 1394428 & See general list \\
\hline \begin{tabular}{l}
English (United \\
States/Canada)
\end{tabular} & USB & 1395661, & 1395666, & See general list \\
\hline \begin{tabular}{l}
English (United \\
States/Canada) MNCS
\end{tabular} & USI & 1395660 & 1395665 & \\
\hline
\end{tabular}

3486, 3487, 3488 Model V, and 3489 keyboard and display part numbers by language
The following table lists the part numbers of the 3486, 3487, 3488 Model V, and 3489 displays and keyboards that should be used for each language or country supported by the iSeries server. Blank entries in the keyboard columns mean that keyboard part numbers are not available at this time.
\begin{tabular}{|c|c|c|c|c|}
\hline Language & \begin{tabular}{l}
KBDTYPE \\
Para- meter
\end{tabular} & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Arabic & CLB & 1394332 & 1394436 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Austrian/German & AGB & 1394312 & 1394416 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Austrian/German MNCS & AGI & 1394312 & 1394416 & Same as Austrian/German \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & \begin{tabular}{l}
KBDTYPE \\
Para- meter
\end{tabular} & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Belgian MNCS & BLI & 1394313 & 1394417 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Bulgarian & BGB & & 35G4741 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline French (Canada) & CAB & 1395662 & 1395567 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline French (Canada) MNCS & CAI & 1395662 & 1395567 & Same as French (Canada) \\
\hline Croatian & YGI & 1394327 & 1394431 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & \begin{tabular}{l}
KBDTYPE \\
Para- meter
\end{tabular} & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Czech & CSB & & 35G4743 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Danish & DMB & 1394314 & 1394418 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Danish MNCS & DMI & 1394314 & 1394418 & Same as Danish \\
\hline Finnish/Swedish & FNB & 1394315 & 1394419 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Finnish/Swedish MNCS & FNI & 1394315 & 1394419 & Same as Finnish/Swedish \\
\hline French (Azerty) & FAB & 1394316 & 1394420 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline French (Azerty) MNCS & FAI & 1394316 & 1394420 & Same as French (Azerty) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & \begin{tabular}{l}
KBDTYPE \\
Para- meter
\end{tabular} & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Greek (Code Page 00875) & GNB & 1396767 & 1396768 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Greek (Code Page 00423) & GKB & 1394325 & 1394429 & Same as Greek (Code Page 00875) \\
\hline Hebrew & NCB & 1394331 & 1394435 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Hungarian & HNB & & 35G4745 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Farsi (Iran) & IRB & 53G9084 & 53G9085 & 66G1721, 66G1727 \\
\hline Italian & ITB & 1394317 & 1394421 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & KBDTYPE Para- meter & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Italian MNCS & ITI & 1394317 & 1394421 & Same as Italian \\
\hline Japanese-Katakana & KAB & 1395664 & 1395669 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Macedonian & MKB & & 35G4740 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Dutch (Netherlands) & NEB & & 1394427 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Dutch (Netherlands) MNCS & NEI & & 1394427 & Same as Dutch (Netherlands) \\
\hline Norwegian & NWB & 1394318 & 1394422 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Norwegian MNCS & NWI & 1394318 & 1394422 & Same as Norwegian \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & \begin{tabular}{l}
KBDTYPE \\
Para- meter
\end{tabular} & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Polish & PLB & & 35G4746 & 66G1721, 66G1727 \\
\hline Portuguese & PRB & 1394319 & 1394423 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Portuguese MNCS & PRI & 1394319 & 1394423 & Same as Portuguese \\
\hline Romanian & RMB & & 35G4747 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Russian & RUB & & 35G4742 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Serbian, Cyrillic & SQB & & 35G4740 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & \begin{tabular}{l}
KBDTYPE \\
Para- meter
\end{tabular} & 1A (122-Key) Keyboard & G Keyboard & Displays \\
\hline Serbian, Latin & YGI & 1394327 & 1394431 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Slovakian & SKB & & 35G4744 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Slovenian & YGI & 1394327 & 1394431 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Spanish & SPB & 1394320 & 1394424 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Spanish MNCS & SPI & 1394320 & 1394424 & Same as Spanish \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & \begin{tabular}{l}
KBDTYPE \\
Para- meter
\end{tabular} & \begin{tabular}{l}
1A (122-Key) \\
Keyboard
\end{tabular} & G Keyboard & Displays \\
\hline Spanish Speaking & SSB & 1395663 & 1395668 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Spanish Speaking MNCS & SSI & 1395663 & 1395668 & Same as Spanish Speaking \\
\hline Swedish & SWB & 1394315 & 1394419 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Swedish MNCS & SWI & 1394315 & 1394419 & Same as Swedish \\
\hline French (Switzerland) MNCS & SFI & 1394321 & 1394425 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline German (Switzerland) MNCS & SGI & 1394322 & 1394426 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Thai & THB & & 1395670 & 07G8571, 06G5322, 06G5312 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & KBDTYPE Para- meter & 1A (122-Key) Keyboard & G Keyboard & Displays \\
\hline Turkish (F) & TRB & 35G4748 & 35G4749 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline Turkish (QWERTY) & TKB & 1394326 & 1394430 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline English (United Kingdom) & UKB & 1394324 & 1394428 & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline English (United Kingdom) MNCS & UKI & 1394324 & 1394428 & Same as English (United Kingdom) \\
\hline English (United States/Canada) & USB & \[
\begin{aligned}
& 1395661, \\
& 1395660
\end{aligned}
\] & \[
\begin{aligned}
& 1395666, \\
& 1395665
\end{aligned}
\] & 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 \\
\hline English (United States/Canada) MNCS & USI & 1394167 & 1394193 & Same as United States/Canada \\
\hline
\end{tabular}

\section*{Keyboard support for other devices}
- Enhanced G and 122-key keyboards are not available for 5251, 5291, and 5292 display stations. These display stations use only the F keyboard (similar to the 122-key keyboard).
- The 3180 display station supports the 122-key keyboard but not the enhanced keyboard. The 3179, 3196 , and 3197 support the 122-keyboard and the enhanced keyboard.
- The 3486 , 3487 , 3488 Model V, and 3489 display stations support all languages listed in 3477 and 3476 keyboard and display part numbers (see page 318) (except for Thai) on all base levels of hardware. No checking of the part numbers for the display stations is necessary.
Note: The 3488 Model V display station requires a special monitor to support some languages. The 3489 display station may also require a special monitor to support some languages.
- The 3486 , 3487,3488 Model V, and 3489 display stations do not need the correct language keyboard to show the code page for a language. The code page used by the display station matches what is specified in the configuration record. The 3488 Model \(V\) and 3489 display stations require a special monitor to support some languages.
- The 3488 Model H display station supports the following languages or countries on all levels of hardware. No checking of part numbers is necessary. The 3488 Model H display station does not need the correct language keyboard to show a code page for one of the supported languages. The code page used must match the one in the configuration record as long as it is among the supported languages.

\section*{Austrian/German}

Belgian
French (Canada)
Danish
Dutch
Finnish/Swedish
French (with AZERTY keyboard)
Italian
Norwegian
Portuguese
Spanish
Swiss-French
Swiss-German
U.K. English
U.S. English
- The \(3476,3486,3487,3488\), and 3489 display stations support the U.S. data entry keyboard (part numbers 35G4750 and 35G4751).
- The 3488 Model V and 3489 display stations also support the Brazilian Portuguese G keyboard (part number 63F1403).

\section*{Special-character keyboard set}

The special-character keyboard set is available with the enhanced keyboard on most display stations. It allows a user to enter special characters that otherwise might not be available (labeled) on the keyboard. The following figure shows all the characters in the special keyboard set and the keys on the enhanced keyboard to which each character is assigned. A special character may be assigned to a lowercase, uppercase, or ALT position on a key.

You can order a special template package, SCX21-9950, that contains the special-character keyboard set.

The special characters on the enhanced keyboard are used for this group of languages: Belgium, German, French, English, Icelandic, Italian, Spanish, Austrian, Danish, Portuguese, Swedish, Norwegian, Swiss/French, Swiss/German, Spanish Speaking, and Netherlands (Dutch).

\section*{Creating a special character}

To create a special character, you press and hold the ALT key, and then press the Shift key. Next you press the key to which a special character is assigned. If a special character is assigned to an uppercase or ALT position, the shift or ALT key must be pressed in combination with the key assigned to the special character. The special-character keyboard function is active for only one special character at a time. The ALT and shift key sequence must be pressed prior to the entry of each special character.

The following figure highlights those special characters assigned to the lowercase positions.

The following figure highlights the special characters assigned to the uppercase position.

The following figure highlights the special characters assigned to the ALT key positions.

Example: Special character
For example, if you wanted to create the

\section*{A}
for German on an English keyboard, you should do the following:
1. Press and hold the ALT key, and then press the Shift key.
2. Press the Shift key with the

RV2C057-1
key. The Diacritic mode symbol appears at the bottom of the screen and is waiting for the next keystroke to complete the character.
3. You now press the Shift key and the

RV2C056-0
key.

\section*{This produces the}

\section*{\(\AA\)}
. If you press this key without also pressing the shift key, you would get
å
. The system accepts only uppercase or lowercase A.

\section*{National language keyboard types and SBCS code pages}

The following table lists the keyboard types and code pages for each national language supported by the system. The Create Device Display (CRTDFVDSD) command uses the KBDTYPE parameter.
\begin{tabular}{|c|c|c|c|c|}
\hline Language & KBDTYPE & EBCDIC character set & EBCDIC SBCS code page & EBCDIC CCSID \\
\hline Albanian & ALI & 00697 & 00500 & 00500 \\
\hline Arabic & CLB & 00235 & 00420 & 00420 \\
\hline Austrian/ German & AGB & 00697 & 00273 & 00273 \\
\hline Austrian/German (MNCS) & AGI & 00697 & 00500 & 00500 \\
\hline Belgian MNCS & BLI & 00697 & 00500 & 00500 \\
\hline Brazilian Portuguese & BRB & 00697 & 00037 & 00037 \\
\hline Bulgarian & BGB & 01150 & 01025 & 01025 \\
\hline Canadian French & CAB & 00341 & 00260 & 65535 \\
\hline Canadian French MNCS & CAI & 00697 & 00500 & 00500 \\
\hline Croatian & YGI & 00959 & 00870 & 00870 \\
\hline Cyrillic & CYB & 00960 & 00880 & 00880 \\
\hline Czech & CSB & 00959 & 00870 & 00870 \\
\hline Danish & DMB & 00697 & 00277 & 00277 \\
\hline Danish MNCS & DMI & 00697 & 00500 & 00500 \\
\hline Finnish/Swedish & FNB & 00697 & 00278 & 00278 \\
\hline Finnish/Swedish MNCS & FNI & 00697 & 00500 & 00500 \\
\hline French (Azerty) & FAB & 00697 & 00297 & 00297 \\
\hline French (Azerty) MNCS & FAI & 00697 & 00500 & 00500 \\
\hline French (Qwerty) & FQB & 00697 & 00297 & 00297 \\
\hline French (Qwerty) MNCS & FQI & 00697 & 00500 & 00500 \\
\hline Greek (See note 2.) & GNB & 00925 & 00875 & 00875 \\
\hline Hebrew & NCB & 00941 & 00424 & 00424 \\
\hline Hungarian & HNB & 00959 & 00870 & 00870 \\
\hline Icelandic & ICB & 00697 & 00871 & 00871 \\
\hline Icelandic MNCS & ICI & 00697 & 00500 & 00500 \\
\hline International & INB & 00697 & 00500 & 00500 \\
\hline International MNCS & INB & 00697 & 00500 & 00500 \\
\hline Farsi (Iran) & IRB & 01219 & 01097 & 01097 \\
\hline Italian & ITB & 00697 & 00280 & 00280 \\
\hline Italian MNCS & ITI & 00697 & 00500 & 00500 \\
\hline Japanese-English & JEB & 00697 & 00281 & 65535 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Language & KBDTYPE & EBCDIC character set & EBCDIC SBCS code page & EBCDIC CCSID \\
\hline Japanese- English MNCS & JEI & 00697 & 00500 & 00500 \\
\hline Japanese Kanji and Katakana & JKB & 01172 & 00290 & 05026 \\
\hline Japanese Kanji and US English & JUB & 00697 & 00037 & See note 3. \\
\hline Japanese Katakana & KAB & 00332 & 00290 & 00290 \\
\hline Japanese Latin Extended & JPB & 01172 & 01027 & 01027 \\
\hline Korean & KOB & 01173 & 00833 & 00833 \\
\hline Latin 2 & ROB & 00959 & 00870 & 00870 \\
\hline Macedonian & MKB & 01150 & 01025 & 01025 \\
\hline Dutch (Netherlands) & NEB & 00697 & 00037 & 00037 \\
\hline Dutch (Netherlands) MNCS & NEI & 00697 & 00500 & 00500 \\
\hline Norwegian & NWB & 00697 & 00277 & 00277 \\
\hline Norwegian MNCS & NWI & 00697 & 00500 & 00500 \\
\hline Polish & PLB & 00959 & 00870 & 00870 \\
\hline Portuguese & PRB & 00697 & 00037 & 00037 \\
\hline Portuguese MNCS & PRI & 00697 & 00500 & 00500 \\
\hline Romanian & RMB & 00959 & 00870 & 00870 \\
\hline Russian & RUB & 01150 & 01025 & 01025 \\
\hline Serbian, Cyrillic & SQB & 01150 & 01025 & 01025 \\
\hline Serbian, Latin & YGI & 00959 & 00870 & 00870 \\
\hline Simplified Chinese & RCB & 01174 & 00836 & 00836 \\
\hline Slovakian & SKB & 00959 & 00870 & 00870 \\
\hline Slovenian & YGI & 00959 & 00870 & 00870 \\
\hline Spanish & SPB & 00697 & 00284 & 00284 \\
\hline Spanish MNCS & SPI & 00697 & 00500 & 00500 \\
\hline Spanish Speaking & SSB & 00697 & 00284 & 00284 \\
\hline Spanish Speaking MNCS & SSI & 00697 & 00500 & 00500 \\
\hline Swedish & SWB & 00697 & 00278 & 00278 \\
\hline Swedish MNCS & SWI & 00697 & 00500 & 00500 \\
\hline French (Switzerland) MNCS & SFI & 00697 & 00500 & 00500 \\
\hline German (Switzerland) MNCS & SGI & 00697 & 00500 & 00500 \\
\hline Thai & THB & 01176 & 00838 & 00838 \\
\hline Traditional Chinese & TAB & 01175 & 00037 & 00937 \\
\hline Turkish (Qwerty) & TKB & 01152 & 01026 & 01026 \\
\hline Turkish (F) & TRB & 01152 & 01026 & 01026 \\
\hline English (United Kingdom) & UKB & 00697 & 00285 & 00285 \\
\hline English (United Kingdom) MNCS & UKI & 00697 & 00500 & 00500 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Language & KBDTYPE & \begin{tabular}{l}
EBCDIC character \\
set
\end{tabular} & \begin{tabular}{l}
EBCDIC SBCS \\
code page
\end{tabular} & EBCDIC CCSID \\
\hline \begin{tabular}{l}
English (United States \\
and Canada)
\end{tabular} & USB & 00697 & 00037 & 00037 \\
\hline \begin{tabular}{l}
English (United States \\
and Canada) MNCS
\end{tabular} & USI & 00697 & 00500 & 00500 \\
\hline
\end{tabular}

\section*{Notes:}
1. For KBDTYPE GKB, the EBCDIC code page is 00423 .
2. Recommend SBCS CCSID 00037.

\section*{Code pages}

You can find a list of current code pages on the iSeries globalization

Web site (http://www-1.ibm.com/servers/eserver/iseries/software/globalization).
Several of the IBM code pages match the International Standard ISO/IEC 8859. ISO/IEC 8859 consists of the following parts, under the general title Information processing - 8-bit single-byte coded graphic character sets:

Part 1: Latin alphabet No. 1, 8859-1
Part 2: Latin alphabet No. 2, 8859-2
Part 3: Latin alphabet No. 3, 8859-3
Part 4: Latin alphabet No. 4, 8835-4
Part 5: Latin/Cyrillic alphabet, 8859-5
Part 6: Latin/Arabic alphabet, 8858-6
Part 7: Latin/Greek alphabet, 8859-7
Part 8: Latin/Hebrew alphabet, 8859-8
Part 9: Latin alphabet No. 5, 8859-9
OS/400 supports Parts 1, 2, and 9 of the ISO Standard with equivalent IBM code pages. Equivalent IBM code pages have characters that map to the ISO Standard. The equivalent IBM code pages contain all of the characters that are contained in the ISO standard. Equivalent IBM code pages are not identical to the ISO Standard. Some of the characters in the equivalent IBM code pages are at different code points than the same characters in the ISO standard.

OS/400 supports Parts 1, 2, 5, 7, 8, and 9 of the ISO Standard with identical IBM code pages. Identical IBM code pages are the same as the ISO standard.

\section*{ISO standards and IBM EBCDIC code pages}
\begin{tabular}{|l|l|}
\hline Equivalent EBCDIC Code Page & ISO Standard \\
\hline \(00037,00273,00277,00278,00280,00284,00285,00297,00500,00819,00871\) & \(8859-1\) \\
\hline 00870 & \(8859-2\) \\
\hline 00905 & \(8859-9\) \\
\hline 01026 & \(8859-9\) \\
\hline
\end{tabular}

ISO standards and IBM ASCII code pages
\begin{tabular}{|l|l|}
\hline Equivalent ASCII Code Page & ISO Standard \\
\hline 00852 & \(8859-2\) \\
\hline 00857 & \(8859-5\) \\
\hline
\end{tabular}

ISO standards and identical IBM code page
\begin{tabular}{|l|l|}
\hline Identical ASCII Code Page & ISO Standard \\
\hline 00813 & \(8859-7\) \\
\hline 00819 & \(8859-1\) \\
\hline 00916 & \(8859-8\) \\
\hline 00920 & \(8859-9\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Hexadecimal value 40 represents the space character on the EBCDIC code pages.
2. Hexadecimal value 20 represents the space character on the PC code pages.
3. Hexadecimal value FF represents the eight ones (11111111) control character.
4. The 8 -digit alphanumeric label under each character in the code page chart is the graphic character global identifier (GCGID). The label is used with Sort sequence tables.

\section*{Character sets}

The following topics provide useful information about various character sets:
- Country extended character set 00697
- Graphic character conversion tables
- International DP 9400103 (ASCII)
- International alphabet 501169
- Invariant character set
- Monocase tables
- Portable character set
- Syntactic and invariant character set 00640
- T. 61 character set 01252
- T. 61 character repertoire 01253
- T. 61 graphic character conversions

\section*{Country extended character set 00697}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & \[
\underset{\text { LB02000 }}{B}
\] & \[
\underset{\text { LC020000 }}{\mathrm{C}}
\] & \[
\underset{\text { LDO20000 }}{\mathrm{D}}
\] & \[
\underset{\text { LE020000 }}{E}
\] & \[
\underset{\text { LFF20000 }}{\mathrm{F}}
\] & \[
\underset{L 6020000}{G}
\] & \[
\underset{\text { LH020000 }}{\mathrm{H}}
\] & \[
\begin{gathered}
\text { I } \\
\text { L02000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{J} \\
\text { Lov2000 }
\end{gathered}
\] & \[
\underset{\text { LK0220000 }}{\mathrm{K}}
\] & \[
\underset{\text { LLor20000 }}{\mathrm{L}}
\] & \[
\underset{\text { LM020000 }}{M}
\] \\
\hline \[
\begin{aligned}
& \mathrm{N} \\
& \hline \text { LNO20000 }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{O} \\
\hline \text { L0020000 }
\end{gathered}
\] & \[
\underset{\text { LP020000 }}{\mathrm{P}}
\] & \[
\underset{\mathrm{LQ}, \mathrm{Q}_{2000}}{ }
\] & \[
\begin{gathered}
\mathrm{R} \\
\text { LR02000 } \\
\hline
\end{gathered}
\] & & \[
\mathrm{T}_{\text {LTO20000 }}
\] & \[
\underset{\text { LuO20000 }}{\mathrm{U}}
\] & \[
\begin{gathered}
\mathrm{V} \\
\text { LVo20000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{W} \\
\text { Lwo20000 }
\end{gathered}
\] & \[
\underset{\text { Lx020000 }}{\mathrm{X}}
\] & \[
\underset{\text { LYo20000 }}{\mathrm{Y}}
\] & \[
\underset{\mathrm{Z}}{\mathrm{Z} 200000}
\] \\
\hline \[
\underset{\text { LAO10000 }}{\mathrm{a}}
\] & \[
\begin{gathered}
\mathrm{b} \\
\text { LB010000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{c} \\
\text { Lco10000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{d} \\
\text { LDO10000 }
\end{gathered}
\] & \[
\underset{\text { LEOO }}{\substack{\mathrm{e} \\ \hline}}
\] & \[
\mathrm{f}_{\text {LFO10000 }}
\] & \[
\underset{\text { L6010000 }}{\mathrm{g}}
\] & \[
\begin{gathered}
\mathrm{h} \\
\text { LH010000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{i} \\
\text { L010000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { Lu010000 }}{j}
\] & \[
\underset{\text { LK010000 }}{\mathrm{k}}
\] & \[
\begin{gathered}
1 \\
\text { LL010000 }
\end{gathered}
\] & \[
\mathrm{m}_{\text {LM010000 }}
\] \\
\hline \[
\begin{gathered}
\mathrm{n} \\
\text { Lnovoroon }
\end{gathered}
\] & \[
\underset{\substack{0 \\ \text { Lo010000 }}}{ }
\] & \[
\mathrm{p}_{\text {Lpo10000 }}
\] & \[
\underset{\text { LQ0010000 }}{q}
\] & \[
\begin{gathered}
\mathrm{r} \\
\text { LR00000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { S } \\
\text { Lso10000 }
\end{gathered}
\] & \[
\underset{\text { LT010000 }}{\mathrm{t}}
\] & \[
\underset{\text { Lu010000 }}{\text { U }}
\] & \[
\stackrel{V}{\mathrm{~V} v 01000}
\] & \[
\stackrel{\text { Wworoon }}{\text { LW0100 }}
\] & \[
\underset{\underbrace{}}{\text { Lx00000 }}
\] & \[
\begin{array}{|c|c|c|c|c|c}
y^{\text {Lyro00 }}
\end{array}
\] & \[
\underset{{ }_{\mathrm{L}}^{\mathrm{Z}} \mathrm{Z} 10000}{ }
\] \\
\hline Á La12000 & \[
\underset{\text { LA140000 }}{\bar{A}}
\] & \[
\underset{\text { LA160000 }}{\widehat{A}}
\] & \[
\underset{\text { LAAB0000 }}{\ddot{\mathrm{A}}}
\] & \[
\underset{\text { LA2000000 }}{\tilde{\mathrm{A}}}
\] & \[
\underset{\text { LAR80000 }}{\AA}
\] & \[
\underset{\text { LA520000 }}{\underset{E}{E}}
\] & & \[
\underset{\substack{\text { L0620000 }}}{ }
\] & \[
\underset{\text { LE120000 }}{\mathbf{E}^{2}}
\] & \[
\underset{\text { LE140000 }}{\underset{\text { E }}{2}}
\] & \[
\underset{\mathrm{LE} 160000}{\hat{\mathrm{E}}^{2}}
\] & \[
\underset{\mathrm{LE} 180000}{\ddot{\mathrm{E}}}
\] \\
\hline \[
\begin{gathered}
\hline \text { Lí } \\
\text { L120000 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{I} \\
\text { L140000 }
\end{gathered}
\] & \[
\begin{gathered}
\hat{\mathrm{I}} \\
\text { Lu60000 }
\end{gathered}
\] & \[
\begin{gathered}
\ddot{\mathrm{I}} \\
\text { L148000 }
\end{gathered}
\] & \[
\underset{\text { LN200000 }}{\tilde{\mathbf{N}}}
\] & \[
\begin{gathered}
\hline \text { Ó } \\
\text { L012000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ò } \\
\text { Lo440000 }
\end{gathered}
\] & \[
\begin{gathered}
\hat{\mathrm{O}} \\
\text { Lo160000 }
\end{gathered}
\] & \[
\underset{\mathrm{L}}{\mathrm{O}}
\] & \[
\underset{\sim}{\widetilde{\mathrm{O}}}
\] & \[
\underset{\text { LO620000 }}{\varnothing}
\] & \[
\begin{gathered}
\mathbf{B} \\
\text { LTB40000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ú } \\
\text { LU120000 }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\text { Uे } \\
\text { Lu4400000 }
\end{gathered}
\] & \[
\begin{gathered}
\hat{\mathrm{U}} \\
\text { Lut100000 }
\end{gathered}
\] & \[
\begin{gathered}
\ddot{U} \\
\text { LU180000 }
\end{gathered}
\] & \[
\underset{\text { LYY } 20000}{ }
\] & & & & & & & & & \\
\hline \[
\begin{array}{|c|c|}
\hline \text { Lá10000 } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Là } \\
\text { LA130000 }
\end{gathered}
\] & \[
\underset{\substack{\hat{a} \\ \text { LA150000 }}}{ }
\] & \[
\underset{\text { LA170000 }}{\square}
\] & \[
\begin{gathered}
\tilde{\mathrm{a}} \\
\text { LA190000 }
\end{gathered}
\] & \[
\underset{\text { LA } 270000}{ }
\] & \[
\underset{\text { LA510000 }}{\mathfrak{x}}
\] & \[
\underset{\text { Lc410000 }}{\substack{c}}
\] & \[
\begin{gathered}
\searrow \\
\hline \text { LD850000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { É } \\
\text { LE110000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{e} \mathrm{e} \\
\text { LE130000 }
\end{gathered}
\] & \[
\underset{{ }_{\text {LEE } 150000}^{e}}{\hat{e}}
\] & \[
\underset{\substack{\text { LE170000 }}}{ }
\] \\
\hline \[
\begin{gathered}
11 \\
\text { L410000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1 \grave{1} \\
\text { Lᄂ130000 }
\end{gathered}
\] & \[
\begin{gathered}
\hat{1} \\
\text { Lᄂ150000 }
\end{gathered}
\] & \[
\begin{gathered}
i \\
\text { L170000 }
\end{gathered}
\] & \[
\begin{gathered}
\tilde{\mathrm{n}} \\
\text { LN190000 }
\end{gathered}
\] & \[
\begin{gathered}
\dot{O} \\
\text { L01110000 }
\end{gathered}
\] & \[
\begin{gathered}
\substack{\grave{c} \\
\text { Lo130000 } \\
\hline}
\end{gathered}
\] & \[
\begin{gathered}
\hat{\hat{0}} \\
\text { L0150000 }
\end{gathered}
\] & \[
\begin{gathered}
\ddot{\partial} \\
\text { L017000 }
\end{gathered}
\] & \[
\begin{gathered}
\tilde{o} \\
\text { Lo190000 }
\end{gathered}
\] & \[
\begin{array}{|c}
\varnothing \\
\hline \text { L061000 }
\end{array}
\] & \[
\begin{gathered}
B \\
\text { LS61000 }
\end{gathered}
\] & \[
\begin{gathered}
p \\
\underline{L T B 58000}
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\hline \mathbf{u} \\
\text { Lu110000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{u} \\
\text { Lun } 30000
\end{gathered}
\] & \[
\begin{gathered}
\hat{\mathrm{u}} \\
\text { Lu150000 }
\end{gathered}
\] & \[
\begin{gathered}
\ddot{\mathrm{u}} \\
\text { Lu170000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{y ́}^{\prime} \\
\text { Ly110000 }
\end{gathered}
\] & \[
\underset{\text { Ly170000 }}{ } \ddot{y}^{2}
\] & & & & & & & \\
\hline \[
\underset{\text { ND100000 }}{0}
\] & \[
\underset{\text { NDO10000 }}{1}
\] & \[
\underset{\text { HDO20000 }}{2}
\] & \[
\begin{gathered}
3 \\
\text { NnD03000 }
\end{gathered}
\] & \[
\underset{\text { NDO4000 }}{4}
\] & \[
\underset{\text { NDO50000 }}{5}
\] & \[
\underset{\text { NDO60000 }}{6}
\] & \[
\begin{gathered}
7 \\
\text { ND070000 }
\end{gathered}
\] & \[
\underset{\text { NDO80000 }}{8}
\] & \[
\begin{gathered}
9 \\
\text { NoD90000 }
\end{gathered}
\] & & & \\
\hline & \[
\begin{gathered}
2 \\
\text { NDO21000 }
\end{gathered}
\] & \[
\begin{gathered}
3 \\
\text { HDO31000 }
\end{gathered}
\] & \[
\begin{gathered}
1 / 2 \\
\text { NF00000 }
\end{gathered}
\] & \(1 / 4\) NF04000 & \[
3 / 4
\]
NF050000 & \[
\underset{\text { SAO } 10000}{+}
\] & \[
\stackrel{ \pm}{\text { SAO20000 }}
\] & \[
\underset{\text { SAOB0000 }}{<}
\] & \[
\begin{gathered}
= \\
\text { SAC04000 }
\end{gathered}
\] & \[
\underset{\text { SAO50000 }}{>}
\] & & \[
\underset{\text { sA0070000 }}{\times}
\] \\
\hline \[
\underset{\text { sconocoo }}{ }
\] & \[
\underset{\text { sco20000 }}{£}
\] & \[
\begin{gathered}
\$ \\
\text { scosocoon }
\end{gathered}
\] & \[
\underset{\text { sco40000 }}{\&}
\] & \[
\underset{\text { sco50000 }}{Y}
\] & & & & SD170000 & & SD4tiouoo & & \# SM010000 \\
\hline \[
\begin{array}{|c|}
\hline \% \\
\text { Sm020000 }
\end{array}
\] & \[
\underset{\text { smo30000 }}{\&}
\] & & @ SM050000 & smo60000 & \[
\begin{gathered}
\text { ! } \\
\text { smo70000 }
\end{gathered}
\] & \[
\underset{\text { smoboono }}{]}
\] & \[
\begin{gathered}
\{ \\
\operatorname{sm110000}
\end{gathered}
\] & \[
\begin{gathered}
1 \\
\text { sm130000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { sm140000 }
\end{gathered}
\] & & \[
\underset{\operatorname{smi} 170000}{\mu}
\] & SM190000 \\
\hline & & \[
\underset{\text { sm240000 }}{\S}
\] & & (C) sm520000 & & & & \[
\begin{aligned}
& ! \\
& \text { spo20000 }
\end{aligned}
\] & \[
\underset{\text { spos3000 }}{i}
\] & & & \[
\underset{\text { sposb000 }}{(}
\] \\
\hline \[
\begin{gathered}
)_{\text {SP070000 }} \\
\hline
\end{gathered}
\] & spogo0000 & spo90000 & SP100000 & SP110000 & \[
\begin{gathered}
! \\
\text { SP120000 }
\end{gathered}
\] & & sP140000 & \[
\begin{gathered}
? \\
\text { SPP15000 }
\end{gathered}
\] & \[
\underset{\text { SP160000 }}{\dot{b}}
\] & \[
\stackrel{\text { " }}{\text { SP17000 }}
\] & \[
\underset{\text { sp180000 }}{\gg}
\] & \[
\begin{aligned}
& (\text { RSP }) \\
& \text { SP300000 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Character Set 00697}

\section*{Graphic character conversion tables}

\section*{>}

Table (*TBL) objects support non-CCSID conversions from one code page to another. The system-supplied table objects are located in the QUSRSYS library.

To see the supported code pages, run the following command:
WRKOBJ OBJ (QUSRSYS/*ALL) OBJTYPE (*TBL)
The table description shows the from code page and the to code page and character set. For example, if the from code page is 1112 and the to code page is 500 , the description would be show the following text: CHRID (*N 1112) to CHRID (697 500)

This conversion method is supported on OS/400, but is not being enhanced. See Job default coded character set identifier (DFTCCSID) for information about how OS/400 determines default CCSIDs.
<
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline QA3R & (*N 1025) & Cyrillic, Multilingual & Uppercase table & \\
\hline QA3S & (*N 1026) & Turkey Latin 5 & Uppercase table & \\
\hline QA3T & (*N 1027) & Japan extended & Uppercase table & \\
\hline QA5R & (*N 1097) & Farsi & Uppercase table & \\
\hline QA57 & (*N 1112) & Baltic, Multilingual & Uppercase table & \\
\hline QA6G & (*N 1122) & Estonian & Uppercase table & \\
\hline QA6O & (*N 1130) & Vietnamese & Uppercase table & \\
\hline QA6Q & (*N 1133) & Lao & Uppercase table & \\
\hline Q037 & (*N 037) & USA/Canada & Uppercase table & \\
\hline Q256 & (*N 256) & Multinational \#1 & Uppercase table & \\
\hline Q260 & (*N 260) & Canada French & Uppercase table & \\
\hline Q273 & (*N 273) & Austria/Germany & Uppercase table & \\
\hline Q277 & (*N 277) & Denmark/Norway & Uppercase table & \\
\hline Q278 & (*N 278) & Finland/Sweden & Uppercase table & \\
\hline Q280 & (*N 280) & Italy & Uppercase table & \\
\hline Q281 & (*N 281) & Japan (Latin) & Uppercase table & \\
\hline Q284 & (*N 284) & Spain/Latin America & Uppercase table & \\
\hline Q285 & (*N 285) & United Kingdom & Uppercase table & \\
\hline Q290 & (*N 290) & Japan Katakana & Uppercase table & \\
\hline Q297 & (*N 297) & France & Uppercase table & \\
\hline Q420 & (*N 420) & Arabic Bilingual & Uppercase table & \\
\hline Q423 & (*N 423) & Greece & Uppercase table & \\
\hline Q424 & (*N 424) & Israel (Hebrew) & Uppercase table & \\
\hline Q437 & (*N 437) & PC-USA & Uppercase table & \\
\hline Q500 & (*N 500) & Multinational \#5 & Uppercase table & \\
\hline Q833 & (*N 833) & Korea & Uppercase table & \\
\hline Q836 & (*N 836) & People's Republic of China & Uppercase table & \\
\hline Q838 & (*N 838) & Thai Extended & Uppercase table & \\
\hline Q850 & (*N 850) & PC-Multilingual & Uppercase table & \\
\hline Q851 & (*N 851) & PC-Greece (old) & Uppercase table & \\
\hline Q857 & (*N 857) & PC-Turkey & Uppercase table & \\
\hline Q860 & (*N 860) & PC-Portugal & Uppercase table & \\
\hline Q861 & (*N 861) & PC-Iceland & Uppercase table & \\
\hline Q862 & (*N 862) & PC-Israel & Uppercase table & \\
\hline Q863 & (*N 863) & PC-Canadian French & Uppercase table & \\
\hline Q864 & (*N 864) & PC-Arabic & Uppercase table & \\
\hline Q865 & (*N 865) & PC-Nordic & Uppercase table & \\
\hline Q870 & (*N 870) & Latin 2, Multilingual & Uppercase table & \\
\hline Q871 & (*N 871) & Iceland & Uppercase table & \\
\hline Q875 & (*N 875) & Greece & Uppercase table & \\
\hline Q880 & (*N 880) & Cyrillic, Multilingual (old) & Uppercase table & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q891 & (*N 891) & PC-Korea & Uppercase table & \\
\hline Q897 & (*N 897) & PC-Japan & Uppercase table & \\
\hline Q903 & (*N 903) & PC-People's Republic of China & Uppercase table & \\
\hline Q904 & (*N 904) & PC-People's Republic of China & Uppercase table & \\
\hline Q905 & (*N 905) & PC-Turkey & Uppercase table & \\
\hline Q037A0MA5K & (*N 037) & USA/Canada & (1272 1090) & VT100 Line drawing set \\
\hline Q037A05A5U & (*N 037) & USA/Canada & (1290 1100) & VT220 Multinational \\
\hline Q037A6G897 & (*N 037) & USA/Canada & (1122 897) & PC-Japan \\
\hline Q037A69A3R & (*N 037) & USA/Canada & (1150 1025) & Cyrillic, Multilingual \\
\hline Q037A7AA3§ & (*N 037) & USA/Canada & (1152 1026) & Turkey Latin 5 \\
\hline Q037A7RA3B & (*N 037) & USA/Canada & (1169 1009) & International Alphabet 5 \\
\hline Q037A7UA3T & (*N 037) & USA/Canada & (1172 1027) & Japan extended \\
\hline Q037A7U290 & (*N 037) & USA/Canada & (1172 290) & Japan Katakana \\
\hline Q037A7V833 & (*N 037) & USA/Canada & (1173 833) & Korea \\
\hline Q037A7W836 & (*N 037) & USA/Canada & (1174 836) & People's Republic of China \\
\hline Q037A7Y838 & (*N 037) & USA/Canada & (1176 838) & Thai Extended \\
\hline Q037A7Y874 & (*N 037) & USA/Canada & (1176 874) & PC-Thai Extended \\
\hline Q037A86A5R & (*N 037) & USA/Canada & (1219 1097) & Farsi \\
\hline Q037BAJA57 & (*N 037) & USA/Canada & (1305 1112) & Baltic, Multilingual \\
\hline Q037BALA6 6 & (*N 037) & USA/Canada & (1307 1122) & Estonian \\
\hline Q037BBEA6 \({ }^{\text {Q }}\) & (*N 037) & USA/Canada & (1336 1130) & Vietnamese \\
\hline Q037BBJA6Q & (*N 037) & USA/Canada & (1341 1133) & Lao \\
\hline Q037101037 & (*N 037) & USA/Canada & (101 037) & USA/Canada \\
\hline Q037103A59 & (*N 037) & USA/Canada & (103 1114) & Taiwan Industry (Big 5) code \\
\hline Q037235420 & (*N 037) & USA/Canada & (235 420) & Arabic Bilingual \\
\hline Q037337256 & (*N 037) & USA/Canada & (337 256) & Multinational \#1 \\
\hline Q037337437 & (*N 037) & USA/Canada & (337 437) & PC-USA \\
\hline Q037337850 & (*N 037) & USA/Canada & (337850) & PC-Multilingual \\
\hline Q037337860 & (*N 037) & USA/Canada & (337860) & PC-Portugal \\
\hline Q037337863 & (*N 037) & USA/Canada & (337863) & PC-Canadian French \\
\hline Q037337904 & (*N 037) & USA/Canada & (337 904) & PC-People's Republic of China \\
\hline Q037936836 & (*N 037) & USA/Canada & (936 836) & People's Republic of China \\
\hline Q037941424 & (*N 037) & USA/Canada & (941 424) & Israel (Hebrew) \\
\hline Q037959870 & (*N 037) & USA/Canada & (959 870) & Latin 2, Multilingual \\
\hline Q037960880 & (*N 037) & USA/Canada & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q037965905 & (*N 037) & USA/Canada & (965 905) & PC-Turkey \\
\hline Q038337256 & (*N 038) & USA/ASCII & (337 256) & Multinational \#1 \\
\hline Q256A69A3R & (*N 256) & Multinational \#1 & (1150 1025) & Cyrillic, Multilingual \\
\hline Q256A7AA3\$ & (*N 256) & Multinational \#1 & (1152 1026) & Turkey Latin 5 \\
\hline Q256A7V833 & (*N 256) & Multinational \#1 & (1173 833) & Korea \\
\hline Q256A7W83¢ & (*N 256) & Multinational \#1 & (1174 836) & People's Republic of China \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q256A7X037 & (*N 256) & Multinational \#1 & (1175037) & USA/Canada \\
\hline Q256001256 & (*N 256) & Multinational \#1 & (001 256) & Multinational \#1 \\
\hline Q256101037 & (*N 256) & Multinational \#1 & (101 037) & USA/Canada \\
\hline Q256101367 & (*N 256) & Multinational \#1 & (101367) & ASCII \\
\hline Q256103038 & (*N 256) & Multinational \#1 & (103 038) & USA/ASCII \\
\hline Q256218423 & (*N 256) & Multinational \#1 & (218 423) & Greece \\
\hline Q256265273 & (*N 256) & Multinational \#1 & (265 273) & Austria/Germany \\
\hline Q256269274 & (*N 256) & Multinational \#1 & (269 274) & Belgium \\
\hline Q256273275 & (*N 256) & Multinational \#1 & (273 275) & Brazil \\
\hline Q256277276 & (*N 256) & Multinational \#1 & (277 276) & Canada (French) \\
\hline Q256281277 & (*N 256) & Multinational \#1 & (281 277) & Denmark/Norway \\
\hline Q256285278 & (*N 256) & Multinational \#1 & (285 278) & Finland/Sweden \\
\hline Q256288297 & (*N 256) & Multinational \#1 & (288 297) & France \\
\hline Q256289279 & (*N 256) & Multinational \#1 & (289 279) & France \\
\hline Q256293280 & (*N 256) & Multinational \#1 & (293 280) & Italy \\
\hline Q256297281 & (*N 256) & Multinational \#1 & (297 281) & Japan (Latin) \\
\hline Q256301282 & (*N 256) & Multinational \#1 & (301 282) & Portugal \\
\hline Q256305283 & (*N 256) & Multinational \#1 & (305 283) & Spain \\
\hline Q256309284 & (*N 256) & Multinational \#1 & (309 284) & Spain/Latin America \\
\hline Q256313285 & (*N 256) & Multinational \#1 & (313 285) & United Kingdom \\
\hline Q256332290 & (*N 256) & Multinational \#1 & (332 290) & Japan Katakana \\
\hline Q256337037 & (*N 256) & Multinational \#1 & (337 037) & USA/Canada \\
\hline Q256337273 & (*N 256) & Multinational \#1 & (337 273) & Austria/Germany \\
\hline Q256337274 & (*N 256) & Multinational \#1 & (337 274) & Belgium \\
\hline Q256337275 & (*N 256) & Multinational \#1 & (337275) & Brazil \\
\hline Q256337276 & (*N 256) & Multinational \#1 & (337 276) & Canada (French) \\
\hline Q256337277 & (*N 256) & Multinational \#1 & (337 277) & Denmark/Norway \\
\hline Q256337278 & (*N 256) & Multinational \#1 & (337278) & Finland/Sweden \\
\hline Q256337280 & (*N 256) & Multinational \#1 & (337 280) & Italy \\
\hline Q256337281 & (*N 256) & Multinational \#1 & (337 281) & Japan (Latin) \\
\hline Q256337282 & (*N 256) & Multinational \#1 & (337 282) & Portugal \\
\hline Q256337283 & (*N 256) & Multinational \#1 & (337 283) & Spain \\
\hline Q256337284 & (*N 256) & Multinational \#1 & (337 284) & Spain/Latin America \\
\hline Q256337285 & (*N 256) & Multinational \#1 & (337 285) & United Kingdom \\
\hline Q256337297 & (*N 256) & Multinational \#1 & (337 297) & France \\
\hline Q256337420 & (*N 256) & Multinational \#1 & (337 420) & Arabic Bilingual \\
\hline Q256337833 & (*N 256) & Multinational \#1 & (337833) & Korea \\
\hline Q256338257 & (*N 256) & Multinational \#1 & (338257) & Multinational \#2 \\
\hline Q256339258 & (*N 256) & Multinational \#1 & (339 258) & Multinational \#3 \\
\hline Q256340259 & (*N 256) & Multinational \#1 & (340 259) & Symbols, Set \#7 \\
\hline Q256341260 & (*N 256) & Multinational \#1 & (341 260) & Canada French \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q256697871 & (*N 256) & Multinational \#1 & (697871) & Iceland \\
\hline Q256925875 & (*N 256) & Multinational \#1 & (925 875) & Greece \\
\hline Q256933833 & (*N 256) & Multinational \#1 & (933 833) & Korea \\
\hline Q256936836 & (*N 256) & Multinational \#1 & (936836) & People's Republic of China \\
\hline Q256938838 & (*N 256) & Multinational \#1 & (938838) & Thai Extended \\
\hline Q256941424 & (*N 256) & Multinational \#1 & (941 424) & Israel (Hebrew) \\
\hline Q256959870 & (*N 256) & Multinational \#1 & (959 870) & Latin 2, Multilingual \\
\hline Q256960880 & (*N 256) & Multinational \#1 & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q257337256 & (*N 257) & Multinational \#2 & (337 256) & Multinational \#1 \\
\hline Q258337256 & (*N 258) & Multinational \#3 & (337 256) & Multinational \#1 \\
\hline Q259337256 & (*N 259) & Symbols, Set \#7 & (337 256) & Multinational \#1 \\
\hline Q260337256 & (*N 260) & Canada French & (337 256) & Multinational \#1 \\
\hline Q273A7RA3B & (*N 273) & Austria/Germany & (1169 1009) & International Alphabet 5 \\
\hline Q273337256 & (*N 273) & Austria/Germany & (337 256) & Multinational \#1 \\
\hline Q273337437 & (*N 273) & Austria/Germany & (337 437) & PC-USA \\
\hline Q273337850 & (*N 273) & Austria/Germany & (337850) & PC-Multilingual \\
\hline Q274337256 & (*N 274) & Belgium & (337 256) & Multinational \#1 \\
\hline Q275337256 & (*N 275) & Brazil & (337 256) & Multinational \#1 \\
\hline Q276337256 & (*N 276) & Canada (French) & (337 256) & Multinational \#1 \\
\hline Q277A7RA3B & (*N 277) & Denmark/Norway & (1169 1009) & International Alphabet 5 \\
\hline Q277337256 & (*N 277) & Denmark/Norway & (337 256) & Multinational \#1 \\
\hline Q277337850 & (*N 277) & Denmark/Norway & (337850) & PC-Multilingual \\
\hline Q277337865 & (*N 277) & Denmark/Norway & (337865) & PC-Nordic \\
\hline Q277697284 & (*N 277) & Denmark/Norway & (697 284) & Spain/Latin America \\
\hline Q278A7RA3B & (*N 278) & Finland/Sweden & (1169 1009) & International Alphabet 5 \\
\hline Q278337256 & (*N 278) & Finland/Sweden & (337 256) & Multinational \#1 \\
\hline Q278337437 & (*N 278) & Finland/Sweden & (337 437) & PC-USA \\
\hline Q278337850 & (*N 278) & Finland/Sweden & (337850) & PC-Multilingual \\
\hline Q279337256 & (*N 279) & France & (337 256) & Multinational \#1 \\
\hline Q280A7RA3B & (*N 280) & Italy & (1169 1009) & International Alphabet 5 \\
\hline Q280337256 & (*N 280) & Italy & (337 256) & Multinational \#1 \\
\hline Q280337437 & (*N 280) & Italy & (337 437) & PC-USA \\
\hline Q280337850 & (*N 280) & Italy & (337850) & PC-Multilingual \\
\hline Q281337256 & (*N 281) & Japan (Latin) & (337 256) & Multinational \#1 \\
\hline Q282337256 & (*N 282) & Portugal & (337 256) & Multinational \#1 \\
\hline Q282337850 & (*N 282) & Portugal & (337850) & PC-Multilingual \\
\hline Q282337860 & (*N 282) & Portugal & (337860) & PC-Portugal \\
\hline Q283337256 & (*N 283) & Spain & (337 256) & Multinational \#1 \\
\hline Q284A7RA3B & (*N 284) & Spain/Latin America & (1169 1009) & International Alphabet 5 \\
\hline Q284A7W836 & (*N 284) & Spain/Latin America & (1174 836) & People's Republic of China \\
\hline Q284337256 & (*N 284) & Spain/Latin America & (337 256) & Multinational \#1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q284337437 & (*N 284) & Spain/Latin America & (337 437) & PC-USA \\
\hline Q284337850 & (*N 284) & Spain/Latin America & (337850) & PC-Multilingual \\
\hline Q284697277 & (*N 284) & Spain/Latin America & (697 277) & Denmark/Norway \\
\hline Q285337256 & (*N 285) & United Kingdom & (337 256) & Multinational \#1 \\
\hline Q285337437 & (*N 285) & United Kingdom & (337 437) & PC-USA \\
\hline Q285337850 & (*N 285) & United Kingdom & (337 850) & PC-Multilingual \\
\hline Q290A7RA3B & (*N 290) & Japan Katakana & (1169 1009) & International Alphabet 5 \\
\hline Q290A7UA3T & (*N 290) & Japan Katakana & (1172 1027) & Japan extended \\
\hline Q290A7UA38 & (*N 290) & Japan Katakana & (1172 1041) & PC-Japan extended \\
\hline Q290337256 & (*N 290) & Japan Katakana & (337 256) & Multinational \#1 \\
\hline Q290337897 & (*N 290) & Japan Katakana & (337 897) & PC-Japan \\
\hline Q290697037 & (*N 290) & Japan Katakana & (697 037) & USA/Canada \\
\hline Q290697500 & (*N 290) & Japan Katakana & (697500) & Multinational \#5 \\
\hline Q297A7RA3B & (*N 297) & France & (1169 1009) & International Alphabet 5 \\
\hline Q297337256 & (*N 297) & France & (337 256) & Multinational \#1 \\
\hline Q297337437 & (*N 297) & France & (337 437) & PC-USA \\
\hline Q297337850 & (*N 297) & France & (337 850) & PC-Multilingual \\
\hline Q367A7RA3B & (*N 367) & ASCII & (1169 1009) & International Alphabet 5 \\
\hline Q367337256 & (*N 367) & ASCII & (337 256) & Multinational \#1 \\
\hline Q367697500 & (*N 367) & ASCII & (697 500) & Multinational \#5 \\
\hline Q420235864 & (*N 420) & Arabic Bilingual & (235 864) & PC-Arabic \\
\hline Q420337256 & (*N 420) & Arabic Bilingual & (337 256) & Multinational \#1 \\
\hline Q420697037 & (*N 420) & Arabic Bilingual & (697 037) & USA/Canada \\
\hline Q420697500 & (*N 420) & Arabic Bilingual & (697500) & Multinational \#5 \\
\hline Q423A7RA3B & (*N 423) & Greece & (1169 1009) & International Alphabet 5 \\
\hline Q423218851 & (*N 423) & Greece & (218 851) & PC-Greece (old) \\
\hline Q423697256 & (*N 423) & Greece & (697 256) & Multinational \#1 \\
\hline Q423925875 & (*N 423) & Greece & (925 875) & Greece \\
\hline Q423998869 & (*N 423) & Greece & (998869) & PC-Greece \\
\hline Q424697037 & (*N 424) & Israel (Hebrew) & (697 037) & USA/Canada \\
\hline Q424697256 & (*N 424) & Israel (Hebrew) & (697 256) & Multinational \#1 \\
\hline Q424697500 & (*N 424) & Israel (Hebrew) & (697500) & Multinational \#5 \\
\hline Q424941862 & (*N 424) & Israel (Hebrew) & (941 862) & PC-Israel \\
\hline Q437A0ZA5S & (*N 437) & PC-USA & (1285 1098) & PC-Farsi \\
\hline Q437A69A3R & (*N 437) & PC-USA & (1150 1025) & Cyrillic, Multilingual \\
\hline Q437A69915 & (*N 437) & PC-USA & (1150 915) & 8-bit ASCII/ISO Cyrillic \\
\hline Q437A7X037 & (*N 437) & PC-USA & (1175 037) & USA/Canada \\
\hline Q437A8C866 & (*N 437) & PC-USA & (1190 866) & PC-Cyrillic \#2 \\
\hline Q437A91852 & (*N 437) & PC-USA & (1232 852) & PC-Latin 2 \\
\hline Q437A9L855 & (*N 437) & PC-USA & (1235 855) & PC-Cyrillic \\
\hline Q437A9N857 & (*N 437) & PC-USA & (1237 857) & PC-Turkey \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q437101037 & (*N 437) & PC-USA & (101 037) & USA/Canada \\
\hline Q437337A5R & (*N 437) & PC-USA & (337 1097) & Farsi \\
\hline Q437337037 & (*N 437) & PC-USA & (337 037) & USA/Canada \\
\hline Q437337273 & (*N 437) & PC-USA & (337 273) & Austria/Germany \\
\hline Q437337278 & (*N 437) & PC-USA & (337 278) & Finland/Sweden \\
\hline Q437337280 & (*N 437) & PC-USA & (337 280) & Italy \\
\hline Q437337284 & (*N 437) & PC-USA & (337 284) & Spain/Latin America \\
\hline Q437337285 & (*N 437) & PC-USA & (337 285) & United Kingdom \\
\hline Q437337297 & (*N 437) & PC-USA & (337 297) & France \\
\hline Q437337500 & (*N 437) & PC-USA & (337500) & Multinational \#5 \\
\hline Q437959870 & (*N 437) & PC-USA & (959 870) & Latin 2, Multilingual \\
\hline Q437960880 & (*N 437) & PC-USA & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q500A0MA5K & (*N 500) & Multinational \#5 & (1272 1090) & VT100 Line drawing set \\
\hline Q500A00A5Z & (*N 500) & Multinational \#5 & (1295 1105) & VT220 Norwegian/Danish \\
\hline Q500A05A5U & (*N 500) & Multinational \#5 & (1290 1100) & VT220 Multinational \\
\hline Q500A06A5 & (*N 500) & Multinational \#5 & (1291 1101) & VT220 British \\
\hline Q500A07A5W & (*N 500) & Multinational \#5 & (1292 1102) & VT220 Dutch \\
\hline Q500A08A5X & (*N 500) & Multinational \#5 & (1293 1103) & VT220 Finnish \\
\hline Q500A69A3R & (*N 500) & Multinational \#5 & (1150 1025) & Cyrillic, Multilingual \\
\hline Q500A7AA3S & (*N 500) & Multinational \#5 & (1152 1026) & Turkey Latin 5 \\
\hline Q500A7RA3B & (*N 500) & Multinational \#5 & (1169 1009) & International Alphabet 5 \\
\hline Q500A7UA3T & (*N 500) & Multinational \#5 & (1172 1027) & Japan extended \\
\hline Q500A7U290 & (*N 500) & Multinational \#5 & (1172 290) & Japan Katakana \\
\hline Q500A7W836 & (*N 500) & Multinational \#5 & (1174 836) & People's Republic of China \\
\hline Q500A7X037 & (*N 500) & Multinational \#5 & (1175037) & USA/Canada \\
\hline Q500A7Y838 & (*N 500) & Multinational \#5 & (1176 838) & Thai Extended \\
\hline Q500A7Y874 & (*N 500) & Multinational \#5 & (1176 874) & PC-Thai Extended \\
\hline Q500A8EA3M & (*N 500) & Multinational \#5 & (1192 1020) & VT220 Canadian/French \\
\hline Q500A8FA3N & (*N 500) & Multinational \#5 & (1193 1021) & VT220 Switzerland \\
\hline Q500A8HA3P & (*N 500) & Multinational \#5 & (1195 1023) & VT220 Spain \\
\hline Q500A86A5R & (*N 500) & Multinational \#5 & (1219 1097) & Farsi \\
\hline Q500BAAA5 & (*N 500) & Multinational \#5 & (1296 1106) & VT220 Swedish \\
\hline Q500BABA52 & (*N 500) & Multinational \#5 & (1297 1107) & VT220 Norwegian/Danish Alt \\
\hline Q500BAJA57 & (*N 500) & Multinational \#5 & (1305 1112) & Baltic, Multilingual \\
\hline Q500BALA6G & (*N 500) & Multinational \#5 & (1307 1122) & Estonian \\
\hline Q500BBEA6 \({ }^{\text {Q }}\) & (*N 500) & Multinational \#5 & (1336 1130) & Vietnamese \\
\hline Q500BBJA6 \({ }^{\text {Q }}\) & (*N 500) & Multinational \#5 & (1341 1133) & Loa \\
\hline Q500103367 & (*N 500) & Multinational \#5 & (103 367) & ASCII \\
\hline Q500235420 & (*N 500) & Multinational \#5 & (235 420) & Arabic Bilingual \\
\hline Q500265A3D & (*N 500) & Multinational \#5 & (265 1011) & VT220 Germany \\
\hline Q500289A5Y & (*N 500) & Multinational \#5 & (289 1104) & VT220 French \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q500293A3E & (*N 500) & Multinational \#5 & (293 1012) & VT220 Italy \\
\hline Q500337437 & (*N 500) & Multinational \#5 & (337 437) & PC-USA \\
\hline Q500337836 & (*N 500) & Multinational \#5 & (337 836) & People's Republic of China \\
\hline Q500337850 & (*N 500) & Multinational \#5 & (337850) & PC-Multilingual \\
\hline Q500337860 & (*N 500) & Multinational \#5 & (337860) & PC-Portugal \\
\hline Q500337861 & (*N 500) & Multinational \#5 & (337861) & PC-Iceland \\
\hline Q500337863 & (*N 500) & Multinational \#5 & (337863) & PC-Canadian French \\
\hline Q500337865 & (*N 500) & Multinational \#5 & (337 865) & PC-Nordic \\
\hline Q500697037 & (*N 500) & Multinational \#5 & (697 037) & USA/Canada \\
\hline Q500697280 & (*N 500) & Multinational \#5 & (697 280) & Italy \\
\hline Q500925875 & (*N 500) & Multinational \#5 & (925 875) & Greece \\
\hline Q500936836 & (*N 500) & Multinational \#5 & (936836) & People's Republic of China \\
\hline Q500941424 & (*N 500) & Multinational \#5 & (941 424) & Israel (Hebrew) \\
\hline Q500959870 & (*N 500) & Multinational \#5 & (959 870) & Latin 2, Multilingual \\
\hline Q500960880 & (*N 500) & Multinational \#5 & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q500965905 & (*N 500) & Multinational \#5 & (965 905) & PC-Turkey \\
\hline Q500981851 & (*N 500) & Multinational \#5 & (981851) & PC-Greece (old) \\
\hline Q500998869 & (*N 500) & Multinational \#5 & (998869) & PC-Greece \\
\hline Q813998869 & (*N 813) & 8-bit ASCII/ISO Greece & (998 869) & PC-Greece \\
\hline Q819BBEA60 & (*N 819) & 8-bit ASCII/ISO Latin 1 & (1336 1130) & Vietnamese \\
\hline Q819BBJA6Q & (*N 819) & 8-bit ASCII/ISO Latin 1 & (1341 1133) & Lao \\
\hline Q833A0SA5I & (*N 833) & Korea & (1278 1088) & PC-Korean \\
\hline Q833A7RA3B & (*N 833) & Korea & (1169 1009) & International Alphabet 5 \\
\hline Q833337256 & (*N 833) & Korea & (337 256) & Multinational \#1 \\
\hline Q833337891 & (*N 833) & Korea & (337 891) & PC-Korea \\
\hline Q833933256 & (*N 833) & Korea & (933 256) & Multinational \#1 \\
\hline Q836A7RA3B & (*N 836) & People's Republic of China & (1169 1009) & International Alphabet 5 \\
\hline Q836A7V833 & (*N 836) & People's Republic of China & (1173 833) & Korea \\
\hline Q836A7X037 & (*N 836) & People's Republic of China & (1175 037) & USA/Canada \\
\hline Q836101037 & (*N 836) & People's Republic of China & (101 037) & USA/Canada \\
\hline Q836103A50 & (*N 836) & People's Republic of China & (103 1115) & People's Republic of China GB \\
\hline Q836337256 & (*N 836) & People's Republic of China & (337 256) & Multinational \#1 \\
\hline Q836337500 & (*N 836) & People's Republic of China & (337 500) & Multinational \#5 \\
\hline Q836337903 & (*N 836) & People's Republic of China & (337 903) & PC-People's Republic of China \\
\hline Q836697037 & (*N 836) & People's Republic of China & (697 037) & USA/Canada \\
\hline Q836697284 & (*N 836) & People's Republic of China & (697 284) & Spain/Latin America \\
\hline Q836936500 & (*N 836) & People's Republic of China & (936 500) & Multinational \#5 \\
\hline Q838A7Y874 & (*N 838) & Thai Extended & (1176 874) & PC-Thai Extended \\
\hline Q838337037 & (*N 838) & Thai Extended & (337 037) & USA/Canada \\
\hline Q838697500 & (*N 838) & Thai Extended & (697500) & Multinational \#5 \\
\hline Q850A0ZA5S & (*N 850) & PC-Multilingual & (1285 1098) & PC-Farsi \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q850A6G897 & (*N 850) & PC-Multilingual & (1122 897) & PC-Japan \\
\hline Q850A69A3R & (*N 850) & PC-Multilingual & (1150 1025) & Cyrillic, Multilingual \\
\hline Q850A69915 & (*N 850) & PC-Multilingual & (1150 915) & 8-bit ASCII/ISO Cyrillic \\
\hline Q850A7UA38 & (*N 850) & PC-Multilingual & (1172 1041) & PC-Japan extended \\
\hline Q850A7Y874 & (*N 850) & PC-Multilingual & (1176 874) & PC-Thai Extended \\
\hline Q850A8C866 & (*N 850) & PC-Multilingual & (1190 866) & PC-Cyrillic \#2 \\
\hline Q850A84862 & (*N 850) & PC-Multilingual & (1217 862) & PC-Israel \\
\hline Q850A91852 & (*N 850) & PC-Multilingual & (1232 852) & PC-Latin 2 \\
\hline Q850A9L855 & (*N 850) & PC-Multilingual & (1235 855) & PC-Cyrillic \\
\hline Q850A9N857 & (*N 850) & PC-Multilingual & (1237 857) & PC-Turkey \\
\hline Q850A9U864 & (*N 850) & PC-Multilingual & (1244 864) & PC-Arabic \\
\hline Q850BBEA6 & (*N 850) & PC-Multilingual & (1336 1130) & Vietnamese \\
\hline Q850BBJA6 \({ }^{\text {Q }}\) & (*N 850) & PC-Multilingual & (1341 1133) & Lao \\
\hline Q850337A5R & (*N 850) & PC-Multilingual & (337 1097) & Farsi \\
\hline Q850337037 & (*N 850) & PC-Multilingual & (337 037) & USA/Canada \\
\hline Q850337273 & (*N 850) & PC-Multilingual & (337 273) & Austria/Germany \\
\hline Q850337277 & (*N 850) & PC-Multilingual & (337 277) & Denmark/Norway \\
\hline Q850337278 & (*N 850) & PC-Multilingual & (337 278) & Finland/Sweden \\
\hline Q850337280 & (*N 850) & PC-Multilingual & (337 280) & Italy \\
\hline Q850337282 & (*N 850) & PC-Multilingual & (337 282) & Portugal \\
\hline Q850337284 & (*N 850) & PC-Multilingual & (337 284) & Spain/Latin America \\
\hline Q850337285 & (*N 850) & PC-Multilingual & (337 285) & United Kingdom \\
\hline Q850337297 & (*N 850) & PC-Multilingual & (337 297) & France \\
\hline Q850337500 & (*N 850) & PC-Multilingual & (337 500) & Multinational \#5 \\
\hline Q850337871 & (*N 850) & PC-Multilingual & (337871) & Iceland \\
\hline Q850959870 & (*N 850) & PC-Multilingual & (959 870) & Latin 2, Multilingual \\
\hline Q850960880 & (*N 850) & PC-Multilingual & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q851218423 & (*N 851) & PC-Greece (old) & (218 423) & Greece \\
\hline Q851925875 & (*N 851) & PC-Greece (old) & (925 875) & Greece \\
\hline Q852A51850 & (*N 852) & PC-Latin 2 & (1106 850) & PC-Multilingual \\
\hline Q852A69A3R & (*N 852) & PC-Latin 2 & (1150 1025) & Cyrillic, Multilingual \\
\hline Q852A8Y437 & (*N 852) & PC-Latin 2 & (1212 437) & PC-USA \\
\hline Q852959870 & (*N 852) & PC-Latin 2 & (959 870) & Latin 2, Multilingual \\
\hline Q852960880 & (*N 852) & PC-Latin 2 & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q853965905 & (*N 853) & PC-Latin 3 & (965 905) & PC-Turkey \\
\hline Q855A51850 & (*N 855) & PC-Cyrillic & (1106 850) & PC-Multilingual \\
\hline Q855A69A3R & (*N 855) & PC-Cyrillic & (1150 1025) & Cyrillic, Multilingual \\
\hline Q855A69915 & (*N 855) & PC-Cyrillic & (1150 915) & 8-bit ASCII/ISO Cyrillic \\
\hline Q855A8Y437 & (*N 855) & PC-Cyrillic & (1212 437) & PC-USA \\
\hline Q855959870 & (*N 855) & PC-Cyrillic & (959 870) & Latin 2, Multilingual \\
\hline Q855960880 & (*N 855) & PC-Cyrillic & (960 880) & Cyrillic, Multilingual (old) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q857A51850 & (*N 857) & PC-Turkey & (1106 850) & PC-Multilingual \\
\hline Q857A7AA3S & (*N 857) & PC-Turkey & (1152 1026) & Turkey Latin 5 \\
\hline Q857A8Y437 & (*N 857) & PC-Turkey & (1212 437) & PC-USA \\
\hline Q857965905 & (*N 857) & PC-Turkey & (965 905) & PC-Turkey \\
\hline Q860337037 & (*N 860) & PC-Portugal & (337 037) & USA/Canada \\
\hline Q860337282 & (*N 860) & PC-Portugal & (337 282) & Portugal \\
\hline Q860337500 & (*N 860) & PC-Portugal & (337500) & Multinational \#5 \\
\hline Q861337500 & (*N 861) & PC-Iceland & (337500) & Multinational \#5 \\
\hline Q861337871 & (*N 861) & PC-Iceland & (337 871) & Iceland \\
\hline Q862A51850 & (*N 862) & PC-Israel & (1106 850) & PC-Multilingual \\
\hline Q862941424 & (*N 862) & PC-Israel & (941 424) & Israel (Hebrew) \\
\hline Q863337037 & (*N 863) & PC-Canadian French & (337 037) & USA/Canada \\
\hline Q863337500 & (*N 863) & PC-Canadian French & (337500) & Multinational \#5 \\
\hline Q864A51850 & (*N 864) & PC-Arabic & (1106 850) & PC-Multilingual \\
\hline Q864235420 & (*N 864) & PC-Arabic & (235 420) & Arabic Bilingual \\
\hline Q865337277 & (*N 865) & PC-Nordic & (337 277) & Denmark/Norway \\
\hline Q865337500 & (*N 865) & PC-Nordic & (337 500) & Multinational \#5 \\
\hline Q866A51850 & (*N 866) & PC-Cyrillic \#2 & (1106 850) & PC-Multilingual \\
\hline Q866A69A3R & (*N 866) & PC-Cyrillic \#2 & (1150 1025) & Cyrillic, Multilingual \\
\hline Q866A8Y437 & (*N 866) & PC-Cyrillic \#2 & (1212 437) & PC-USA \\
\hline Q869218423 & (*N 869) & PC-Greece & (218 423) & Greece \\
\hline Q869337256 & (*N 869) & PC-Greece & (337 256) & Multinational \#1 \\
\hline Q869337500 & (*N 869) & PC-Greece & (337500) & Multinational \#5 \\
\hline Q869925813 & (*N 869) & PC-Greece & (925 813) & 8-bit ASCII/ISO Greece \\
\hline Q869925875 & (*N 869) & PC-Greece & (925 875) & Greece \\
\hline Q869981851 & (*N 869) & PC-Greece & (981851) & PC-Greece (old) \\
\hline Q870A69A3R & (*N 870) & Latin 2, Multilingual & (1150 1025) & Cyrillic, Multilingual \\
\hline Q870A69855 & (*N 870) & Latin 2, Multilingual & (1150 855) & PC-Cyrillic \\
\hline Q870A69915 & (*N 870) & Latin 2, Multilingual & (1150 915) & 8-bit ASCII/ISO Cyrillic \\
\hline Q870A7RA3B & (*N 870) & Latin 2, Multilingual & (1169 1009) & International Alphabet 5 \\
\hline Q870A91852 & (*N 870) & Latin 2, Multilingual & (1232 852) & PC-Latin 2 \\
\hline Q870337256 & (*N 870) & Latin 2, Multilingual & (337 256) & Multinational \#1 \\
\hline Q870697037 & (*N 870) & Latin 2, Multilingual & (697 037) & USA/Canada \\
\hline Q870697500 & (*N 870) & Latin 2, Multilingual & (697500) & Multinational \#5 \\
\hline Q870697850 & (*N 870) & Latin 2, Multilingual & (697850) & PC-Multilingual \\
\hline Q870919437 & (*N 870) & Latin 2, Multilingual & (919 437) & PC-USA \\
\hline Q870959852 & (*N 870) & Latin 2, Multilingual & (959 852) & PC-Latin 2 \\
\hline Q870959912 & (*N 870) & Latin 2, Multilingual & (959 912) & 8-bit ASCII/ISO Latin 2 \\
\hline Q870960880 & (*N 870) & Latin 2, Multilingual & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q871A7RA3B & (*N 871) & Iceland & (1169 1009) & International Alphabet 5 \\
\hline Q871337850 & (*N 871) & Iceland & (337850) & PC-Multilingual \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q871337861 & (*N 871) & Iceland & (337861) & PC-Iceland \\
\hline Q871697256 & (*N 871) & Iceland & (697 256) & Multinational \#1 \\
\hline Q874A51850 & (*N 874) & PC-Thai Extended & (1106 850) & PC-Multilingual \\
\hline Q874A7Y500 & (*N 874) & PC-Thai Extended & (1176 500) & Multinational \#5 \\
\hline Q874A7Y838 & (*N 874) & PC-Thai Extended & (1176 838) & Thai Extended \\
\hline Q874337037 & (*N 874) & PC-Thai Extended & (337 037) & USA/Canada \\
\hline Q875A7RA3B & (*N 875) & Greece & (1169 1009) & International Alphabet 5 \\
\hline Q875218423 & (*N 875) & Greece & (218 423) & Greece \\
\hline Q875337256 & (*N 875) & Greece & (337 256) & Multinational \#1 \\
\hline Q875337500 & (*N 875) & Greece & (337 500) & Multinational \#5 \\
\hline Q875925813 & (*N 875) & Greece & (925 813) & 8-bit ASCII/ISO Greece \\
\hline Q875981851 & (*N 875) & Greece & (981851) & PC-Greece (old) \\
\hline Q875998869 & (*N 875) & Greece & (998 869) & PC-Greece \\
\hline Q880A69A3R & (*N 880) & Cyrillic, Multilingual (old) & (1150 1025) & Cyrillic, Multilingual \\
\hline Q880A69855 & (*N 880) & Cyrillic, Multilingual (old) & (1150 855) & PC-Cyrillic \\
\hline Q880A69915 & (*N 880) & Cyrillic, Multilingual (old) & (1150 915) & 8-bit ASCII/ISO Cyrillic \\
\hline Q880A7RA3B & (*N 880) & Cyrillic, Multilingual (old) & (1169 1009) & International Alphabet 5 \\
\hline Q880337256 & (*N 880) & Cyrillic, Multilingual (old) & (337 256) & Multinational \#1 \\
\hline Q880697037 & (*N 880) & Cyrillic, Multilingual (old) & (697 037) & USA/Canada \\
\hline Q880697500 & (*N 880) & Cyrillic, Multilingual (old) & (697500) & Multinational \#5 \\
\hline Q880697850 & (*N 880) & Cyrillic, Multilingual (old) & (697850) & PC-Multilingual \\
\hline Q880919437 & (*N 880) & Cyrillic, Multilingual (old) & (919 437) & PC-USA \\
\hline Q880959852 & (*N 880) & Cyrillic, Multilingual (old) & (959 852) & PC-Latin 2 \\
\hline Q880959870 & (*N 880) & Cyrillic, Multilingual (old) & (959 870) & Latin 2, Multilingual \\
\hline Q880959912 & (*N 880) & Cyrillic, Multilingual (old) & (959 912) & 8-bit ASCII/ISO Latin 2 \\
\hline Q891337833 & (*N 891) & PC-Korea & (337833) & Korea \\
\hline Q897A51850 & (*N 897) & PC-Japan & (1106 850) & PC-Multilingual \\
\hline Q897A7UA3T & (*N 897) & PC-Japan & (1172 1027) & Japan extended \\
\hline Q897337290 & (*N 897) & PC-Japan & (337 290) & Japan Katakana \\
\hline Q897358037 & (*N 897) & PC-Japan & (358 037) & USA/Canada \\
\hline Q897640037 & (*N 897) & PC-Japan & (640 037) & USA/Canada \\
\hline Q897697037 & (*N 897) & PC-Japan & (697 037) & USA/Canada \\
\hline Q903A7W836 & (*N 903) & PC-People's Republic of China & (1174 836) & People's Republic of China \\
\hline Q903337836 & (*N 903) & PC-People's Republic of China & (337 836) & People's Republic of China \\
\hline Q904337037 & (*N 904) & PC-People's Republic of China & (337 037) & USA/Canada \\
\hline Q905A7AA3 & (*N 905) & PC-Turkey & (1152 1026) & Turkey Latin 5 \\
\hline Q905337037 & (*N 905) & PC-Turkey & (337 037) & USA/Canada \\
\hline Q905697500 & (*N 905) & PC-Turkey & (697500) & Multinational \#5 \\
\hline Q905965853 & (*N 905) & PC-Turkey & (965 853) & PC-Latin 3 \\
\hline Q905965857 & (*N 905) & PC-Turkey & (965 857) & PC-Turkey \\
\hline Q912A69A3R & (*N 912) & 8-bit ASCII/ISO Latin 2 & (1150 1025) & Cyrillic, Multilingual \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline Q912959870 & (*N 912) & 8-bit ASCII/ISO Latin 2 & (959 870) & Latin 2, Multilingual \\
\hline Q912960880 & (*N 912) & 8-bit ASCII/ISO Latin 2 & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q915A51850 & (*N 915) & 8-bit ASCII/ISO Cyrillic & (1106 850) & PC-Multilingual \\
\hline Q915A69A3R & (*N 915) & 8-bit ASCII/ISO Cyrillic & (1150 1025) & Cyrillic, Multilingual \\
\hline Q915A8Y437 & (*N 915) & 8-bit ASCII/ISO Cyrillic & (1212 437) & PC-USA \\
\hline Q915A9L855 & (*N 915) & 8-bit ASCII/ISO Cyrillic & (1235 855) & PC-Cyrillic \\
\hline Q915959870 & (*N 915) & 8-bit ASCII/ISO Cyrillic & (959 870) & Latin 2, Multilingual \\
\hline Q915960880 & (*N 915) & 8-bit ASCII/ISO Cyrillic & (960 880) & Cyrillic, Multilingual (old) \\
\hline Q920A7AA3S & (*N 920) & ASCII-Turkey & (1152 1026) & Turkey Latin 5 \\
\hline QA3BA69A3R & (*N 1009) & International Alphabet 5 & (1150 1025) & Cyrillic, Multilingual \\
\hline QA3BA7AA3S & (*N 1009) & International Alphabet 5 & (1152 1026) & Turkey Latin 5 \\
\hline QA3BA7W836 & 6*N 1009) & International Alphabet 5 & (1174 836) & People's Republic of China \\
\hline QA3B103367 & (*N 1009) & International Alphabet 5 & (103 367) & ASCII \\
\hline QA3B218423 & (*N 1009) & International Alphabet 5 & (218 423) & Greece \\
\hline QA3B332290 & (*N 1009) & International Alphabet 5 & (332 290) & Japan Katakana \\
\hline QA3B697037 & (*N 1009) & International Alphabet 5 & (697 037) & USA/Canada \\
\hline QA3B697273 & (*N 1009) & International Alphabet 5 & (697 273) & Austria/Germany \\
\hline QA3B697277 & (*N 1009) & International Alphabet 5 & (697 277) & Denmark/Norway \\
\hline QA3B697278 & (*N 1009) & International Alphabet 5 & (697 278) & Finland/Sweden \\
\hline QA3B697280 & (*N 1009) & International Alphabet 5 & (697 280) & Italy \\
\hline QA3B697284 & (*N 1009) & International Alphabet 5 & (697 284) & Spain/Latin America \\
\hline QA3B697297 & (*N 1009) & International Alphabet 5 & (697 297) & France \\
\hline QA3B697500 & (*N 1009) & International Alphabet 5 & (697500) & Multinational \#5 \\
\hline QA3B697871 & (*N 1009) & International Alphabet 5 & (697871) & Iceland \\
\hline QA3B925875 & (*N 1009) & International Alphabet 5 & (925 875) & Greece \\
\hline QA3B933833 & (*N 1009) & International Alphabet 5 & (933 833) & Korea \\
\hline QA3B936836 & (*N 1009) & International Alphabet 5 & (936 836) & People's Republic of China \\
\hline QA3B959870 & (*N 1009) & International Alphabet 5 & (959 870) & Latin 2, Multilingual \\
\hline QA3B960880 & (*N 1009) & International Alphabet 5 & (960 880) & Cyrillic, Multilingual (old) \\
\hline QA3D697500 & (*N 1011) & VT220 Germany & (697500) & Multinational \#5 \\
\hline QA3E697500 & (*N 1012) & VT220 Italy & (697500) & Multinational \#5 \\
\hline QA3M697500 & (*N 1020) & VT220 Canadian/French & (697500) & Multinational \#5 \\
\hline QA3N697500 & (*N 1021) & VT220 Switzerland & (697500) & Multinational \#5 \\
\hline QA3P697500 & (*N 1023) & VT220 Spain & (697500) & Multinational \#5 \\
\hline QA3QA93A33 & (*N 1024) & CCITT T. 61 (EBCDIC) & (1252 1036) & CCITT T. 61 IBM PC \\
\hline QA3RA69855 & (*N 1025) & Cyrillic, Multilingual & (1150 855) & PC-Cyrillic \\
\hline QA3RA69915 & (*N 1025) & Cyrillic, Multilingual & (1150 915) & 8-bit ASCII/ISO Cyrillic \\
\hline QA3RA7RA3B & (*N 1025) & Cyrillic, Multilingual & (1169 1009) & International Alphabet 5 \\
\hline QA3RA8C866 & (*N 1025) & Cyrillic, Multilingual & (1190 866) & PC-Cyrillic \#2 \\
\hline QA3RA9L855 & (*N 1025) & Cyrillic, Multilingual & (1235 855) & PC-Cyrillic \\
\hline QA3R337256 & (*N 1025) & Cyrillic, Multilingual & (337 256) & Multinational \#1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From & From text & To & To text \\
\hline QA3R697037 & (*N 1025) & Cyrillic, Multilingual & (697 037) & USA/Canada \\
\hline QA3R697500 & (*N 1025) & Cyrillic, Multilingual & (697500) & Multinational \#5 \\
\hline QA3R697850 & (*N 1025) & Cyrillic, Multilingual & (697850) & PC-Multilingual \\
\hline QA3R919437 & (*N 1025) & Cyrillic, Multilingual & (919 437) & PC-USA \\
\hline QA3R959852 & (*N 1025) & Cyrillic, Multilingual & (959 852) & PC-Latin 2 \\
\hline QA3R959870 & (*N 1025) & Cyrillic, Multilingual & (959 870) & Latin 2, Multilingual \\
\hline QA3R959912 & (*N 1025) & Cyrillic, Multilingual & (959 912) & 8-bit ASCII/ISO Latin 2 \\
\hline QA3R960880 & (*N 1025) & Cyrillic, Multilingual & (960 880) & Cyrillic, Multilingual (old) \\
\hline QA3SA7A85才 & (*N 1026) & Turkey Latin 5 & (1152 857) & PC-Turkey \\
\hline QA3SA7A920 & (*N 1026) & Turkey Latin 5 & (1152 920) & ASCII-Turkey \\
\hline QA3SA7RA3B & (*N 1026) & Turkey Latin 5 & (1169 1009) & International Alphabet 5 \\
\hline QA3S337037 & (*N 1026) & Turkey Latin 5 & (337 037) & USA/Canada \\
\hline QA3S337256 & (*N 1026) & Turkey Latin 5 & (337 256) & Multinational \#1 \\
\hline QA3S337500 & (*N 1026) & Turkey Latin 5 & (337500) & Multinational \#5 \\
\hline QA3S965905 & (*N 1026) & Turkey Latin 5 & (965 905) & PC-Turkey \\
\hline QA3TA6G89才 & (*N 1027) & Japan extended & (1122 897) & PC-Japan \\
\hline QA3TA7UA38 & (*N 1027) & Japan extended & (1172 1041) & PC-Japan extended \\
\hline QA3TA7U290 & (*N 1027) & Japan extended & (1172 290) & Japan Katakana \\
\hline QA3T697037 & (*N 1027) & Japan extended & (697 037) & USA/Canada \\
\hline QA3T697500 & (*N 1027) & Japan extended & (697 500) & Multinational \#5 \\
\hline QA33A93A3Q & (*N 1036) & CCITT T. 61 IBM PC & (1252 1024) & CCITT T. 61 (EBCDIC) \\
\hline QA38A51850 & (*N 1041) & PC-Japan extended & (1106 850) & PC-Multilingual \\
\hline QA38A7UA3 & (*N 1041) & PC-Japan extended & (1172 1027) & Japan extended \\
\hline QA38A7U299 & (*N 1041) & PC-Japan extended & (1172 290) & Japan Katakana \\
\hline QA5IA7V833 & (*N 1088) & PC-Korean & (1173 833) & Korea \\
\hline QA5KA7X037 & (*N 1090) & VT100 Line drawing set & (1175037) & USA/Canada \\
\hline QA5K697037 & (*N 1090) & VT100 Line drawing set & (697 037) & USA/Canada \\
\hline QA5K697500 & (*N 1090) & VT100 Line drawing set & (697500) & Multinational \#5 \\
\hline QA5RA0ZA5 & (*N 1097) & Farsi & (1285 1098) & PC-Farsi \\
\hline QA5R337437 & (*N 1097) & Farsi & (337 437) & PC-USA \\
\hline QA5R337850 & (*N 1097) & Farsi & (337850) & PC-Multilingual \\
\hline QA5R697037 & (*N 1097) & Farsi & (697 037) & USA/Canada \\
\hline QA5R697500 & (*N 1097) & Farsi & (697500) & Multinational \#5 \\
\hline QA5SA86A5R & (*N 1098) & PC-Farsi & (1219 1097) & Farsi \\
\hline QA5S919437 & (*N 1098) & PC-Farsi & (919 437) & PC-USA \\
\hline QA5S980850 & (*N 1098) & PC-Farsi & (980 850) & PC-Multilingual \\
\hline QA5UA7X037 & (*N 1100) & VT220 Multinational & (1175 037) & USA/Canada \\
\hline QA5U697037 & (*N 1100) & VT220 Multinational & (697 037) & USA/Canada \\
\hline QA5U697500 & (*N 1100) & VT220 Multinational & (697500) & Multinational \#5 \\
\hline QA5V697500 & (*N 1101) & VT220 British & (697500) & Multinational \#5 \\
\hline QA5W69750¢ & (*N 1102) & VT220 Dutch & (697500) & Multinational \#5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Table Name From & From text & To & To text \\
\hline QA5X697500 (*N 1103) & VT220 Finnish & (697500) & Multinational \#5 \\
\hline QA5Y697500 (*N 1104) & VT220 French & (697500) & Multinational \#5 \\
\hline QA5Z697500 (*N 1105) & VT220 Norwegian/Danish & (697500) & Multinational \#5 \\
\hline QA50A7W836(*N 1115) & People's Republic of China GB & (1174 836) & People's Republic of China \\
\hline QA51697500 (*N 1106) & VT220 Swedish & (697500) & Multinational \#5 \\
\hline QA52697500 (*N 1107) & VT220 Norwegian/Danish Alt & (697500) & Multinational \#5 \\
\hline QA57697037 (*N 1112) & Baltic, Multilingual & (697 037) & USA/Canada \\
\hline QA57697500 (*N 1112) & Baltic, Multilingual & (697500) & Multinational \#5 \\
\hline QA59697037 (*N 1114) & Taiwan Industry (Big 5) code & (697 037) & USA/Canada \\
\hline QA6G697037 (*N 1122) & Estonian & (697 037) & USA/Canada \\
\hline QA6G697500 (*N 1122) & Estonian & (697500) & Multinational \#5 \\
\hline QA6OA51850 (*N 1130) & Vietnamese & (1106 850) & PC-Multilingual \\
\hline QA6OBC8A99(*N 1130) & Vietnamese & (BC8 1258) & MS Window, Vietnamese \\
\hline QA6O697037 (*N 1130) & Vietnamese & (697 037) & USA/Canada \\
\hline QA6O697500 (*N 1130) & Vietnamese & (697500) & Multinational \#5 \\
\hline QA6O697819 (*N 1130) & Vietnamese & (697819) & 8-bit ASCII/ISO Latin 1 \\
\hline QA6QA51850 (*N 1133) & Lao & (1106850) & PC-Multilingual \\
\hline QA6QBBJA6R(*N 1133) & Lao & (1341 1133) & 8-bit ASCII/ISO Lao \\
\hline QA6Q697037 (*N 1133) & Lao & (697 037) & USA/Canada \\
\hline QA6Q697500 (*N 1133) & Lao & (697 500) & Multinational \#5 \\
\hline QA6Q697819 (*N 1133) & Lao & (697819) & 8-bit ASCII/ISO Latin 1 \\
\hline QA6RBBJA6Q*N 1133) & 8-bit ASCII/ISO Lao & (1341 1133) & Lao \\
\hline QA99BBEA6O*N 1258) & MS Window, Vietnamese & (1336 1130) & Vietnamese \\
\hline
\end{tabular}

\section*{International DP 9400103 (ASCII)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { LA020000 }}{\text { A }}
\] & \[
\underset{\text { LB020000 }}{\text { B }}
\] & \[
\mathrm{LCOLO}_{200}
\] & \[
\mathrm{D}_{\text {LD020000 }}
\] & \[
\underset{\text { LE020000 }}{\mathrm{E}}
\] & \[
\underset{\text { LF020000 }}{\mathrm{F}}
\] & \[
\underset{\text { LG020000 }}{G_{0}}
\] & \[
\underset{\text { LH020000 }}{\mathbf{H}}
\] & \[
\underset{\text { LIO20000 }}{\mathbf{I}}
\] & \[
\mathbf{J}_{\text {LJ020000 }}
\] & \[
\underset{\text { LK020000 }}{\mathbf{K}}
\] & \[
\mathrm{L}_{\text {LL020000 }}
\] & \begin{tabular}{l}
M \\
LM020000
\end{tabular} \\
\hline \begin{tabular}{l}
N \\
LN020000
\end{tabular} & \[
\mathrm{O}_{\mathrm{LO} 020000}
\] & \[
\underset{\text { LP020000 }}{\mathrm{P}}
\] & \[
Q_{\text {LQ020000 }}
\] & \[
\underset{\text { LR020000 }}{\mathbf{R}}
\] & \[
\underset{\text { LS020000 }}{\mathbf{S}}
\] & \[
\underset{\text { LT020000 }}{T}
\] & \[
\mathrm{U}_{\mathrm{LU} 020000}
\] & \[
\underset{\text { LV020000 }}{\mathbf{V}}
\] & \[
\begin{gathered}
\text { W } \\
\text { LW020000 }
\end{gathered}
\] & \[
\underset{\text { LX020000 }}{\mathbf{X}}
\] & \[
\underset{\text { LY020000 }}{\mathbf{Y}}
\] & \[
\prod_{\text {LZ020000 }}^{7}
\] \\
\hline \[
\underset{\text { LA010000 }}{\mathrm{a}}
\] & \[
\underset{\text { LB010000 }}{\mathrm{b}}
\] & \[
\underset{\text { CC010000 }}{\text { C }}
\] & \[
\underset{\text { LD010000 }}{\text { d }}
\] & \[
\underset{\text { LE010000 }}{\text { e }}
\] & \[
\begin{gathered}
f \\
\text { LF010000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { LG010000 }}{\underline{\mathrm{g}}}
\] & \begin{tabular}{l}
h \\
LH010000
\end{tabular} & \[
\begin{gathered}
i \\
\text { ㄴI010000 } \\
\hline
\end{gathered}
\] & \[
{\underset{\text { LJ010000 }}{j}}^{\text {j }}
\] & \[
\underset{\text { LK010000 }}{\substack{\text { LK } \\ \hline}}
\] & \[
\frac{1}{\text { LL010000 }}
\] & \begin{tabular}{l}
m \\
LM010000
\end{tabular} \\
\hline \begin{tabular}{l}
n \\
LN010000
\end{tabular} & \[
\begin{gathered}
\mathrm{O} \\
\text { LO010000 }
\end{gathered}
\] & \[
\mathrm{P}_{\mathrm{LP} 010000}^{\mathrm{P}}
\] & \[
\begin{gathered}
9 \\
\text { LQ010000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{r} \\
\text { LR010000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
S \\
\text { LS010000 }
\end{gathered}
\] & \[
\begin{gathered}
t \\
\text { LT010000 }
\end{gathered}
\] & \[
\mathbf{u}_{\text {LU010000 }}
\] & \begin{tabular}{l}
V \\
LV010000
\end{tabular} & \begin{tabular}{l}
W \\
LW010000
\end{tabular} & \begin{tabular}{l}
X \\
LX010000
\end{tabular} & \[
\underset{\text { LY010000 }}{\text { Y }}
\] & \[
\begin{gathered}
\text { Z } \\
\text { LZ010000 } \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{gathered}
0 \\
\text { ND100000 }
\end{gathered}
\] & \[
\frac{1}{\text { ND010000 }}
\] & \[
\begin{gathered}
2 \\
\text { ND020000 }
\end{gathered}
\] & \[
\begin{gathered}
3 \\
\text { ND030000 }
\end{gathered}
\] & \[
\begin{gathered}
4 \\
\text { ND040000 }
\end{gathered}
\] & \[
\begin{gathered}
5 \\
\text { ND050000 }
\end{gathered}
\] & \[
\begin{gathered}
6 \\
\text { ND060000 }
\end{gathered}
\] & \[
\begin{gathered}
7 \\
\text { ND070000 }
\end{gathered}
\] & \begin{tabular}{l}
8 \\
ND080000
\end{tabular} & \[
\begin{gathered}
9 \\
\text { ND090000 }
\end{gathered}
\] & & & \\
\hline \[
\underset{\text { SA010000 }}{+}
\] & \[
\underset{\text { SA030000 }}{<}
\] & \[
\begin{gathered}
= \\
\text { SA040000 }
\end{gathered}
\] & SA050000 & \[
\underset{\mathrm{SC} 030000}{\$}
\] & SD130000 & SD150000 & SD190000 & & & & & \\
\hline \[
\begin{gathered}
\# \\
\text { SM010000 }
\end{gathered}
\] & \[
\begin{gathered}
0 / 0 \\
\text { SM020000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { SM030000 }}{\boldsymbol{\&}}
\] & *
SM040000 & \[
\underbrace{(\text { d }}_{\text {SM050000 }}
\] & \[
{ }_{\text {SM060000 }}
\] & \[
\underbrace{}_{\text {SM070000 }}
\] & \[
]_{\mathrm{SM} 080000}
\] & \[
\left\{_{\text {SM110000 }}\right.
\] & & \[
\}_{\text {SM140000 }}
\] & \[
\begin{gathered}
! \\
\text { SP020000 }
\end{gathered}
\] & \[
\begin{gathered}
11 \\
\text { SP040000 } \\
\hline
\end{gathered}
\] \\
\hline SP050000 & SP060000 & \[
)_{\mathrm{SP} 070000}
\] & \[
\stackrel{?}{\mathrm{SP} 080000}
\] & SP090000 & SP100000 & SP110000 & \[
/_{\text {SP120000 }}
\] & \[
\begin{gathered}
\vdots \\
\text { SP130000 }
\end{gathered}
\] & \[
\begin{gathered}
\dot{\text { SP140000 }}
\end{gathered}
\] & \[
\begin{gathered}
? \\
\text { SP150000 }
\end{gathered}
\] & & \\
\hline
\end{tabular}

\section*{Character Set 00103}

\section*{Character set 01169 (International Alphabet 5)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A La020000 & \[
\begin{gathered}
\mathrm{B} \\
\text { LBB20000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{C} \\
\text { LCo20000 }
\end{gathered}
\] & \[
\mathrm{LDODOOOO}^{\mathrm{D}}
\] & \[
\underset{\text { LE020000 }}{E}
\] & \[
\underset{\text { LFO20000 }}{F}
\] & \[
\underset{\substack{\mathrm{G} \\ \underline{L 620000}}}{ }
\] & \[
\underset{\substack{\mathrm{H} \\ \text { LH202000 }}}{ }
\] & \[
\begin{gathered}
\text { I } \\
\text { Li02000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{J} \\
\text { LJo2000 }
\end{gathered}
\] & \[
\underset{\text { LKо20000 }}{\mathrm{K}}
\] & \[
\underset{\underline{L}}{\underline{L}}
\] & \[
\underset{\text { LM020000 }}{\mathbf{M}}
\] \\
\hline \[
\underset{\substack{\mathrm{N} \\ \text { LNo20000 }}}{ }
\] & \[
\underset{\text { Lo020000 }}{\mathrm{O}}
\] & \[
\underset{\text { LPO20000 }}{\mathrm{P}}
\] & \[
\underset{\text { LQo20000 }}{\mathrm{Q}}
\] & \[
\underset{\substack{\text { LRo20000 }}}{ }
\] & \[
\underset{\text { LS020000 }}{\mathbf{S}}
\] & \[
\underset{\text { LTo20000 }}{\mathrm{T}}
\] & \[
\begin{gathered}
\mathrm{U} \\
\text { Lu020000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} \\
\text { LVo20000 }
\end{gathered}
\] & \[
\underset{\text { LW020000 }}{\mathrm{W}}
\] & \[
\underset{\text { Lx0200000 }}{\mathrm{X}}
\] & \[
\underset{\text { LYyo20000 }}{\mathrm{Y}}
\] & \[
\mathrm{Z}
\]
\[
2020000
\] \\
\hline a 0010000 & \[
\begin{gathered}
b \\
\text { LBBO1000 }
\end{gathered}
\] & \[
\underset{\text { LC000000 }}{\text { C }}
\] & \[
\underset{\text { LD010000 }}{\mathrm{d}}
\] & \[
\underset{\text { LEO10000 }}{\mathrm{e}}
\] & \[
\underset{\substack{\mathrm{LF} 010000}}{\mathrm{f}}
\] & \[
\underset{\text { L6010000 }}{\mathrm{g}}
\] & \[
\begin{gathered}
\mathrm{h} \\
\text { LH010000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { i } \\
\text { L1010000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { Lut10000 }}{j}
\] & \[
\underset{\underline{\text { LK010000 }}}{\substack{k \\ \hline}}
\] & \[
\begin{gathered}
1 \\
\text { LL010000 } \\
\hline
\end{gathered}
\] & \[
\mathrm{m}_{\text {LM010000 }}
\] \\
\hline \[
\underset{L}{\text { Ln010000 }}
\] & L0010000 & \[
\stackrel{\text { Lpol10000 }}{ }^{2}
\] & \[
\begin{gathered}
\text { LQ10000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { r } \\
\text { LRO00000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{S} \\
\text { Lso10000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{t} \\
\text { LT010000 }
\end{gathered}
\] & \[
\underset{\text { Lu010000 }}{\mathbf{u}}
\] & Lvo10000 & \[
\stackrel{\mathrm{W}}{\mathrm{~W}} \mathrm{~W} 10000
\] & \[
\underset{\text { Lx010000 }}{\mathrm{X}}
\] & \[
y_{0} y_{000}
\] & \[
{ }^{0100000}
\] \\
\hline \[
\begin{gathered}
0 \\
\text { ND100000 }
\end{gathered}
\] & \[
\underset{\text { NDO } 10000}{ }
\] & \[
\underset{\text { NDO20000 }}{2}
\] & \[
\begin{gathered}
3 \\
\text { nodosoon }
\end{gathered}
\] & \[
\begin{gathered}
4 \\
\text { NDoa000 }
\end{gathered}
\] & \[
\underset{\text { NDo50000 }}{5}
\] & \[
\stackrel{6}{\text { nobsoon }}
\] & \[
\begin{gathered}
7 \\
\text { ND070000 }
\end{gathered}
\] & \[
\begin{gathered}
8 \\
\text { NDD8000 }
\end{gathered}
\] & \[
\begin{gathered}
9 \\
\text { NoDo0000 }
\end{gathered}
\] & & & \\
\hline \[
\begin{gathered}
+ \\
\text { sA0010000 }
\end{gathered}
\] & \[
\stackrel{<}{<}
\] & \[
\begin{gathered}
= \\
\text { SA040000 }
\end{gathered}
\] & \[
\underset{\text { sA050000 }}{>}
\] & \[
\underset{\text { aco10000 }}{\substack{0}}
\] & SD130000 & & SD190000 & \[
\begin{gathered}
\# \\
\text { sm01000 }
\end{gathered}
\] & \[
\begin{gathered}
\% \\
\text { \%M20000 }
\end{gathered}
\] & \[
\underset{\text { smosacooo }}{\&}
\] & \[
\begin{gathered}
* \\
\text { sm04000 }
\end{gathered}
\] & @ SM050000 \\
\hline \[
{ }_{\text {smo60000 }}^{[}
\] & & \[
\begin{gathered}
] \\
\text { smoso000 }
\end{gathered}
\] & & & \[
\underset{\text { sm140000 }}{\}}
\] & \[
\begin{gathered}
! \\
\text { SPO20000 }
\end{gathered}
\] & & SP050000 & \[
\underset{\text { Spob0000 }}{(}
\] & \[
\underset{\text { spopro000 }}{(}
\] & sposo000 & spogooon \\
\hline SP100000 & SP110000 & & & SP490000 & \[
\begin{gathered}
? \\
\text { SP150000 }
\end{gathered}
\] & & & & & & & \\
\hline
\end{tabular}

\section*{Character Set 01169}

\section*{Invariant character set}

The following table illustrates the invariant character set (character set 00640).
With only a few exceptions, each EBCDIC code page contains a common set of graphic characters. Within an encoding scheme, the common characters can be found at the same code points. The exceptions are as follows:
- EBCDIC code page 290 has Katakana characters at the code points where lowercase a through z are in the invariant character set
- EBCDIC code page 905 where the quotation mark (") is not at the same code point as it is in the invariant character set
- EBCDIC code page 1026 where the quotation mark (") is not at the same code point as it is in the invariant character set
- EBCDIC code page 420 does not contain the invariant character SM040000 (asterisk (*)). However, code page 420 has a similar character named SM040007 (

\section*{*}
) at the same code point where SM040000 normally exists.
- EBCDIC code page 420 does not contain the invariant character SM020000 (percent sign (\%)). However, code page 420 has a similar character named SM020007 (

\section*{\%}
) at the same code point where SM020000 normally exists.

\section*{Invariant character set symbols}
\begin{tabular}{|l|l|l|}
\hline GCGID & Description & Graphic character \\
\hline LA010000 & Latin small letter a & a \\
\hline LA020000 & Latin capital letter A & A \\
\hline LB010000 & Latin small letter b & b \\
\hline LB020000 & Latin capital letter B & B \\
\hline LC010000 & Latin small letter c & c \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GCGID & Description & Graphic character \\
\hline LC020000 & Latin capital letter C & C \\
\hline LD010000 & Latin small letter d & d \\
\hline LD020000 & Latin capital letter D & D \\
\hline LE010000 & Latin small letter e & e \\
\hline LE020000 & Latin capital letter E & E \\
\hline LF010000 & Latin small letter f & f \\
\hline LF020000 & Latin capital letter F & F \\
\hline LG010000 & Latin small letter g & g \\
\hline LG020000 & Latin capital letter G & G \\
\hline LH010000 & Latin small letter h & h \\
\hline LH020000 & Latin capital letter H & H \\
\hline LI010000 & Latin small letter i & i \\
\hline LI020000 & Latin capital letter I & 1 \\
\hline LJ010000 & Latin small letter j & j \\
\hline LJ020000 & Latin capital letter J & J \\
\hline LK010000 & Latin small letter k & k \\
\hline LK020000 & Latin capital letter K & K \\
\hline LL010000 & Latin small letter I & I \\
\hline LL020000 & Latin capital letter L & L \\
\hline LM010000 & Latin small letter m & m \\
\hline LM020000 & Latin capital letter M & M \\
\hline LN010000 & Latin small letter n & n \\
\hline LN020000 & Latin capital letter N & N \\
\hline LO010000 & Latin small letter o & 0 \\
\hline LO020000 & Latin capital letter O & 0 \\
\hline LP010000 & Latin small letter p & p \\
\hline LP020000 & Latin capital letter P & P \\
\hline LQ010000 & Latin small letter q & q \\
\hline LQ020000 & Latin capital letter Q & Q \\
\hline LR010000 & Latin small letter r & r \\
\hline LR020000 & Latin capital letter R & R \\
\hline LS010000 & Latin small letter s & s \\
\hline LS020000 & Latin capital letter S & S \\
\hline LT010000 & Latin small letter t & t \\
\hline LT020000 & Latin capital letter T & T \\
\hline LU010000 & Latin small letter u & u \\
\hline LU020000 & Latin capital letter U & U \\
\hline LV010000 & Latin small letter v & v \\
\hline LV020000 & Latin capital letter V & V \\
\hline LW010000 & Latin small letter w & w \\
\hline LW020000 & Latin capital letter W & W \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GCGID & Description & Graphic character \\
\hline LX010000 & Latin small letter x & X \\
\hline LX020000 & Latin capital letter X & X \\
\hline LY010000 & Latin small letter y & y \\
\hline LY020000 & Latin capital letter Y & Y \\
\hline LZ010000 & Latin small letter z & z \\
\hline LZ020000 & Latin capital letter Z & Z \\
\hline ND100000 & Arabic number zero & 0 \\
\hline ND010000 & Arabic number one & 1 \\
\hline ND020000 & Arabic number two & 2 \\
\hline ND030000 & Arabic number three & 3 \\
\hline ND040000 & Arabic number four & 4 \\
\hline ND050000 & Arabic number five & 5 \\
\hline ND060000 & Arabic number six & 6 \\
\hline ND070000 & Arabic number seven & 7 \\
\hline ND080000 & Arabic number eight & 8 \\
\hline ND090000 & Arabic number nine & 9 \\
\hline SA010000 & Plus sign & + \\
\hline SA030000 & Less than sign & < \\
\hline SA040000 & Equal sign & \(=\) \\
\hline SA050000 & Greater than sign & > \\
\hline SM020000 & Percent sign & \% \\
\hline SM030000 & Ampersand & \& \\
\hline SM040000 & Asterisk & * \\
\hline SP040000 & Straight double quote & " \\
\hline SP050000 & Straight single quote & , \\
\hline SP060000 & Left parenthesis & (\\
\hline SP070000 & Right parenthesis &) \\
\hline SP080000 & Comma & , \\
\hline SP090000 & Underscore & - \\
\hline SP100000 & Hyphen & - \\
\hline SP110000 & Period & . \\
\hline SP120000 & Slash right & 1 \\
\hline SP130000 & Colon & : \\
\hline SP140000 & Semicolon & ; \\
\hline SP150000 & Question mark & ? \\
\hline
\end{tabular}

\section*{Monocase tables}

The following is a list of monocase tables on OS/400.
\begin{tabular}{|c|c|l|}
\hline Code Page & Table Object for Monocase & Description \\
\hline 00037 & Q037 & USA/Canada (EBCDIC) \\
\hline 00256 & Q256 & International 1 (EBCDIC) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code Page & Table Object for Monocase & Description \\
\hline 00260 & Q260 & Canadian French (EBCDIC) \\
\hline 00273 & Q273 & Germany/Austria (EBCDIC) \\
\hline 00277 & Q277 & Denmark, Norway (EBCDIC) \\
\hline 00278 & Q278 & Finland, Sweden (EBCDIC) \\
\hline 00280 & Q280 & Italy (EBCDIC) \\
\hline 00281 & Q281 & Japan Latin (EBCDIC) \\
\hline 00284 & Q284 & Spain/Latin America (EBCDIC) \\
\hline 00285 & Q285 & United Kingdom (EBCDIC) \\
\hline 00290 & Q290 & Japanese Katakana extended \\
\hline 00297 & Q297 & France (EBCDIC) \\
\hline 00420 & Q420 & Arabic Bilingual (EBCDIC) \\
\hline 00423 & Q423 & Greece (EBCDIC) \\
\hline 00424 & Q424 & Israel (Hebrew) \\
\hline 00437 & Q437 & USA (IBM Personal Computer) \\
\hline 00500 & Q500 & Multilingual \#5 \\
\hline 00833 & Q833 & Korean Extended (EBCDIC) \\
\hline 00836 & Q836 & Simplified Chinese Extended (EBCDIC) \\
\hline 00838 & Q838 & Thai Extended (EBCDIC) \\
\hline 00850 & Q850 & Multilingual (IBM Personal Computer) \\
\hline 00851 & Q851 & Greece (IBM Personal Computer) \\
\hline 00857 & Q857 & Turkey (ISO 8859-5) \\
\hline 00860 & Q860 & Portugal (IBM Personal Computer) \\
\hline 00861 & Q861 & Iceland (IBM Personal Computer) \\
\hline 00862 & Q862 & Israel (IBM Personal Computer) \\
\hline 00863 & Q863 & Canadian French (IBM Personal Computer) \\
\hline 00864 & Q864 & Arabic (IBM Personal Computer) \\
\hline 00865 & Q865 & Nordic (IBM Personal Computer) \\
\hline 00870 & Q870 & Multilingual (ISO 8859-2) \\
\hline 00871 & Q871 & Iceland (EBCDIC) \\
\hline 00875 & Q875 & Greece (EBCDIC) \\
\hline 00880 & Q880 & Cyrillic, Multilingual \\
\hline 00891 & Q891 & Korea (IBM Personal Computer) \\
\hline 00897 & Q897 & Japan PC \#1 (IBM Personal Computer) \\
\hline 00903 & Q903 & People's Republic of China (IBM Personal Computer) \\
\hline 00904 & Q904 & Taiwan (IBM Personal Computer) \\
\hline 00905 & Q905 & PC-Turkey (ISO 8859-9) \\
\hline 01025 & QA3R & Cyrillic, Multilingual (EBCDIC) \\
\hline 01026 & QA3S & Turkey (ISO 8859-9) \\
\hline 01027 & QA3T & Japanese (Latin) Extended (EBCDIC) \\
\hline 01097 & QA5R & Farsi Bilingual (EBCDIC) \\
\hline
\end{tabular}

\section*{Portable character set}

The X/Open portable character set is a superset of the IBM invariant character set (00640). The portable character set includes the following 13 symbols that are not represented in the IBM invariant character set 00640:
\begin{tabular}{|l|l|l|}
\hline GCGID & Description & Graphic character \\
\hline SC030000 & Dollar & \(\$\) \\
\hline SD110000 & Accent acute &, \\
\hline SD150000 & Caret & \(\wedge\) \\
\hline SD190000 & Tilde & \(\sim\) \\
\hline SM010000 & Number sign & \(\#\) \\
\hline SM050000 & At sign & @ \\
\hline SM060000 & Left bracket & [\\
\hline SM070000 & Back slash & I \\
\hline SM080000 & Right bracket & \(\{\) \\
\hline SM110000 & Left brace & I \\
\hline SM130000 & Logical or & \(\}\) \\
\hline SM140000 & Right brace & \(!\) \\
\hline SP020000 & Exclamation point & \\
\hline
\end{tabular}

The portable character set also includes the space character and control characters representing the horizontal tab, the vertical tab, and form feed.

\section*{Syntactic/invariant character set 00640}

With only a few exceptions, each EBCDIC code page contains a common set of graphic characters. Within an encoding scheme, the common characters can be found at the same code points. The exceptions are as follows:
- EBCDIC code page 290 has Katakana characters at the code points where lowercase a through z are in the invariant character set
- EBCDIC code page 905 where the quotation mark (") is not at the same code point as it is in the invariant character set
- EBCDIC code page 1026 where the quotation mark (") is not at the same code point as it is in the invariant character set
- EBCDIC code page 420 does not contain the invariant character SM040000 (asterisk (*)). However, code page 420 has a similar character named SM040007 (
*
) at the same code point where SM040000 normally exists
- EBCDIC code page 420 does not contain the invariant character SM020000 (percent sign (\%)). However, code page 420 has a similar character named SM020007 (
\(\%\)
) at the same code point where SM020000 normally exists
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { LAO20000 }}{\mathrm{A}}
\] & \[
\begin{gathered}
\text { B } \\
\text { LB020000 }
\end{gathered}
\] & \[
\underset{\text { LC020000 }}{C}
\] & \[
\begin{gathered}
\mathrm{D} \\
\text { LD020000 }
\end{gathered}
\] & \[
\begin{gathered}
E \\
\text { LE020000 }
\end{gathered}
\] & \[
\underset{\text { LFO20000 }}{F}
\] & \[
\underset{\text { LG020000 }}{\mathrm{G}}
\] & \[
\underset{\text { LH020000 }}{\mathrm{H}}
\] & \[
\begin{gathered}
\text { I } \\
\text { Li02000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{J} \\
\text { Lu20000 }
\end{gathered}
\] & \[
\underset{\text { LK020000 }}{\mathrm{K}}
\] & \[
\begin{gathered}
\mathrm{L} \\
\text { Lo20000 }
\end{gathered}
\] & \[
\underset{\substack{\mathrm{M} \\ \text { LM020000 }}}{ }
\] \\
\hline \[
\underset{\text { Lno20000 }}{\mathbf{N}}
\] & \[
\underset{\text { L0020000 }}{\mathrm{O}}
\] & \[
\underset{\text { LP020000 }}{\mathrm{P}}
\] & \[
\underset{\mathrm{LQO20000}}{\mathrm{Q}}
\] & \[
\underset{\text { LRo20000 }}{\mathbf{R}}
\] & \[
\underset{\text { Lso20000 }}{\mathrm{S}}
\] & \[
\underset{\text { LTO20000 }}{\mathrm{T}}
\] & \[
\underset{\text { LU020000 }}{\mathrm{U}}
\] & \[
\underset{\text { LV020000 }}{\text { V }}
\] & \[
\underset{\substack{\mathrm{W} \\ \text { LW020000 }}}{ }
\] & \[
\underset{\text { Lx020000 }}{\mathrm{X}}
\] & \[
\underset{\text { LYozo0000 }}{\mathbf{Y}}
\] & \[
\mathrm{Z}
\] \\
\hline \[
\underset{\text { La010000 }}{\mathrm{a}}
\] & \[
\begin{gathered}
\mathrm{b} \\
\text { LBB00000 }
\end{gathered}
\] & \[
\underset{\substack{\mathrm{c} \\ \text { Lco1000 } \\ \hline}}{ }
\] & \[
\underset{\text { LDO10000 }}{d}
\] & \[
\underset{\substack{\mathrm{e} \\ \text { LE010000 }}}{ }
\] & \[
\mathrm{f}_{\text {LFO10000 }}
\] & \[
\underset{\text { L6010000 }}{\mathrm{g}}
\] & \[
\underset{\text { LH010000 }}{\mathrm{h}}
\] & \[
\underset{\text { Li010000 }}{\mathrm{i}}
\] & \[
\underset{\text { Lu010000 }}{j}
\] & \[
\underset{\substack{\mathrm{LK} 010000 \\ \hline}}{\substack{\text { n }}}
\] & \[
\begin{gathered}
1 \\
\text { LL010000 } \\
\hline
\end{gathered}
\] & \[
\mathrm{m}_{\text {LMO10000 }}
\] \\
\hline Lno10000 & \[
\underset{\text { L0010000 }}{0}
\] & \[
\mathrm{p}_{\text {LPO10000 }}
\] & \[
\underset{L \text { LQ010000 }}{q_{0}}
\] & \[
\stackrel{\mathrm{r}}{\text { LRO10000 }}
\] & \[
\begin{gathered}
\text { S } \\
\text { Lso10000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{t} \\
\text { LTo10000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{u} \\
\text { Lu010000 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LV010000 }
\end{aligned}
\] & LW010000 & \[
\underset{\underset{\text { Lx010000 }}{\mathrm{X}}}{ }
\] & LY010000 & \[
\begin{gathered}
\mathrm{Z} \\
\text { Z } 200000
\end{gathered}
\] \\
\hline \[
\begin{array}{|c|}
\hline 0 \\
\text { ND100000 }
\end{array}
\] & \[
\begin{gathered}
1 \\
\text { NDO } 10000
\end{gathered}
\] & \[
\begin{gathered}
2 \\
\text { NDO20000 }
\end{gathered}
\] & \[
\begin{gathered}
3 \\
3 \\
\text { Nobso000 }
\end{gathered}
\] & \[
\begin{gathered}
4 \\
4 \\
\text { NDDa0000 }
\end{gathered}
\] & \[
\begin{gathered}
5 \\
\text { NDO50000 }
\end{gathered}
\] & \[
\begin{gathered}
6 \\
\text { Noob0000 }
\end{gathered}
\] & \[
\begin{gathered}
7 \\
\text { ND070000 }
\end{gathered}
\] & \[
\begin{gathered}
8 \\
\text { N008000 }
\end{gathered}
\] & \[
\begin{gathered}
\hline 9 \\
\text { No090000 }
\end{gathered}
\] & & & \\
\hline \[
\begin{gathered}
+ \\
\text { SAO10000 }
\end{gathered}
\] & \[
\underset{\text { sA030000 }}{<}
\] & \[
\begin{gathered}
= \\
\text { SAO40000 }
\end{gathered}
\] & \[
\underset{\text { SAO50000 }}{>}
\] & \[
\begin{gathered}
\% \\
\text { smo20000 }
\end{gathered}
\] & \[
\underset{\text { smosa000 }}{\&}
\] & & & & (& \[
\underset{\text { sporvooo }}{)_{i}}
\] & spo80000 & spagaooo \\
\hline & SP110000 & & \[
\underset{\text { Sp130000 }}{\vdots}
\] & & \[
\begin{gathered}
? \\
\text { SP150000 }
\end{gathered}
\] & & & & & & & \\
\hline
\end{tabular}

\section*{Character Set 00640}

\section*{T. 61 Character Set 01252}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
A \\
LA020000
\end{tabular} & \[
\underset{\text { LB020000 }}{\text { B }}
\] & \[
\underset{L C 020000}{C}
\] & \[
\underset{\text { LD020000 }}{\mathrm{D}}
\] & \[
\underset{\text { LE020000 }}{\mathrm{E}}
\] & \[
\underset{\text { LF020000 }}{\mathrm{F}}
\] & \[
\underset{L G 020000}{G_{1}}
\] & \begin{tabular}{l}
H \\
LH020000
\end{tabular} & \[
\underset{\text { LIO20000 }}{\mathbf{I}}
\] & \[
\underset{\text { LJ020000 }}{\mathbf{J}}
\] & \begin{tabular}{l}
K \\
LK020000
\end{tabular} & \[
\mathbf{L}_{\text {LL020000 }}
\] & \begin{tabular}{l}
 \\
LM020000
\end{tabular} \\
\hline \begin{tabular}{l}
N \\
LN020000
\end{tabular} & \[
\mathrm{O}_{20020000}
\] & \[
\begin{gathered}
\mathrm{P} \\
\text { LP020000 }
\end{gathered}
\] & \[
\bigotimes_{\text {LQ020000 }}
\] & \begin{tabular}{l}
R \\
LR020000
\end{tabular} & \[
\begin{gathered}
\mathbf{S} \\
\text { LS020000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{T} \\
\text { LT020000 }
\end{gathered}
\] & \begin{tabular}{l}
U \\
LU020000
\end{tabular} & \[
\underset{\text { LV020000 }}{\mathbf{V}}
\] & \[
\begin{gathered}
\mathbf{W} \\
\text { LW020000 }
\end{gathered}
\] & \begin{tabular}{l}
X \\
LX020000
\end{tabular} & \[
\underset{\text { LY020000 }}{\mathbf{Y}}
\] & \[
\prod_{\text {LZO20000 }}^{7}
\] \\
\hline \[
\underset{\text { LA010000 }}{\mathfrak{a}}
\] & \begin{tabular}{l}
b \\
LB010000
\end{tabular} & \[
\begin{gathered}
\mathrm{C} \\
\mathrm{LC010000}
\end{gathered}
\] & \[
\underset{\text { LD010000 }}{\mathrm{d}}
\] & \begin{tabular}{l}
e \\
LE010000
\end{tabular} & \[
\begin{gathered}
f \\
\text { LF010000 }
\end{gathered}
\] & & \begin{tabular}{l}
h \\
LH010000
\end{tabular} & \[
\begin{gathered}
\text { i } \\
\text { ㄴI010000 }
\end{gathered}
\] & \[
\underset{\text { LJ010000 }}{\mathfrak{j}}
\] & \begin{tabular}{l}
k \\
LK010000
\end{tabular} & \[
\begin{gathered}
1 \\
\text { LL010000 } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
m \\
LM010000
\end{tabular} \\
\hline \[
\mathbf{n N O M O 0 0 0}^{\mathbf{n}}
\] & \[
\begin{gathered}
\mathrm{O} \\
\text { LO010000 }
\end{gathered}
\] & \[
\underset{L P 010000}{\mathrm{P}}
\] & \[
\underset{\text { LQ010000 }}{\text { q. }}
\] & \[
\begin{gathered}
\text { r } \\
\text { LR010000 }
\end{gathered}
\] & \[
\begin{gathered}
S \\
\text { LS010000 }
\end{gathered}
\] & \[
\underset{\text { LT010000 }}{\substack{\text { an }}}
\] & \[
\mathbf{U}_{\text {LU010000 }}
\] & \begin{tabular}{l}
V \\
LV010000
\end{tabular} & \[
\begin{gathered}
\text { W } \\
\text { LW010000 }
\end{gathered}
\] & \begin{tabular}{l}
X \\
LX010000
\end{tabular} & \[
\underset{\text { LY010000 }}{\text { Y }}
\] & \[
\begin{gathered}
\mathbf{Z} \\
\text { LZ010000 }
\end{gathered}
\] \\
\hline \[
\underset{\text { LA520000 }}{A E}
\] & \[
\underset{\text { LD620000 }}{\boldsymbol{D}}
\] & \[
\underset{\text { LH620000 }}{\text { F }}
\] & \[
\mathbf{I J}_{\text {LI520000 }}
\] & \[
\underset{\text { LL620000 }}{ \pm}
\] & \[
\underset{\text { LL640000 }}{\mathrm{I}_{2}}
\] & \[
\bigcap_{\text {LN620000 }}
\] & \[
\underset{\text { LO520000 }}{\text { C }}
\] & \[
\underset{\text { LO620000 }}{\nrightarrow}
\] & \[
\underset{\text { LT620000 }}{\mathbf{F}}
\] & \[
\underset{\text { LT } 640000}{\mathbf{G}}
\] & & \\
\hline \[
\begin{gathered}
\mathfrak{\alpha} \\
\text { LA510000 }
\end{gathered}
\] & LD610000 & \begin{tabular}{l}
б \\
LD630000
\end{tabular} & \begin{tabular}{l}
ћ \\
LH610000
\end{tabular} & \[
\ddot{\mathrm{ij}}_{\text {LI510000 }}
\] & \[
\begin{gathered}
1 \\
\text { LI } 610000
\end{gathered}
\] & \[
\underset{\text { LK610000 }}{\text { K }}
\] & \[
\begin{gathered}
1 \\
\text { LL610000 }
\end{gathered}
\] & \[
\frac{1 \cdot}{\text { LL630000 }}
\] & LN610000 & \begin{tabular}{l}
'n \\
LN630000
\end{tabular} & \[
\begin{gathered}
\mathbf{\alpha} \\
L 0510000
\end{gathered}
\] & \[
\begin{gathered}
\varnothing \\
\text { LO610000 }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
B \\
LS610000
\end{tabular} & \begin{tabular}{l}
毛 \\
LT610000
\end{tabular} & \[
\underset{\text { LT } 630000}{\mathrm{p}}
\] & & & & & & & & & & \\
\hline \[
\begin{gathered}
0 \\
\text { ND100000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1 \\
\text { ND010000 }
\end{gathered}
\] & \[
\begin{gathered}
2 \\
\text { ND020000 }
\end{gathered}
\] & \[
\begin{gathered}
3 \\
\text { ND030000 }
\end{gathered}
\] & \[
\begin{gathered}
4 \\
\text { ND040000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
5 \\
\text { ND050000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
6 \\
\text { ND060000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
7 \\
\text { ND070000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
8 \\
\text { ND080000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
9 \\
\text { ND090000 } \\
\hline
\end{gathered}
\] & & & \\
\hline \[
\begin{gathered}
2 \\
\text { ND021000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
\text { ND031000 }
\end{gathered}
\] & \[
\begin{gathered}
1 / 2 \\
\text { NF010000 }
\end{gathered}
\] & \[
\begin{gathered}
1 / 4 \\
\text { NF040000 }
\end{gathered}
\] & \[
\begin{gathered}
3 / 4 \\
\text { NF050000 }
\end{gathered}
\] & \[
\underset{\text { SA010000 }}{+}
\] & \[
\underset{\mathrm{SA} 020000}{\text { 士 }}
\] & SA030000 & \[
\begin{gathered}
= \\
\text { SA040000 }
\end{gathered}
\] & \[
\underset{\text { SA050000 }}{>}
\] & SA060000 & SA. 070000 & \[
\zeta_{S C 010000}^{Y}
\] \\
\hline \[
\begin{gathered}
\mathcal{E} \\
\mathrm{sc} 020000
\end{gathered}
\] & \[
\underset{\mathrm{SC} 030000}{\$}
\] & \[
\begin{gathered}
\notin \\
\text { SC040000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{Y} \\
\mathrm{SC050000}
\end{gathered}
\] & SD118000 & SD138000 & SD158000 & SD178000 & SD198000 & SD218000 & SD238000 & SD258000 & SD278000 \\
\hline SD298000 & SD318000 & SD4 & SD438000 & SD630000 & \[
\begin{gathered}
\# \\
\text { SM010000 }
\end{gathered}
\] & \[
\begin{gathered}
0 / 0 \\
\text { SM020000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\boldsymbol{\&} \\
\text { SM030000 } \\
\hline
\end{gathered}
\] & SM040000 & \[
\underbrace{(a)}_{\text {SM050000 }}
\] & & & SM130000 \\
\hline \[
\underset{\text { sM170000 }}{\mu}
\] & \[
\begin{gathered}
\Omega \\
\text { SM180000 }
\end{gathered}
\] & SM190000 & \[
\begin{gathered}
\underline{o} \\
\text { SM200000 }
\end{gathered}
\] & \begin{tabular}{l}
a \\
SM210000
\end{tabular} & \[
\oint_{\text {SM240000 }}
\] & & \[
\begin{gathered}
! \\
\text { SP020000 }
\end{gathered}
\] & \[
\underset{\text { SP030000 }}{i}
\] & \[
\begin{gathered}
11 \\
\text { SP040000 }
\end{gathered}
\] & SP050000 & SP060000 & \[
)_{\text {SP070000 }}
\] \\
\hline SP080000 & SP090000 & SP098000 & SP100000 & SP110000 & \[
/_{\text {SP120000 }}
\] & SP130000 & \[
\stackrel{\dot{F}}{\text { SP140000 }}
\] & \[
\begin{gathered}
? \\
\text { SP150000 }
\end{gathered}
\] & \[
\underset{\text { SP160000 }}{\dot{\dot{C}}}
\] & \[
\begin{gathered}
\ll \\
\text { SP170000 }
\end{gathered}
\] & \[
\begin{gathered}
\gg \\
\text { SP180000 }
\end{gathered}
\] & \\
\hline
\end{tabular}

\section*{Character Set 01252}
T. 61 Character Repertoire 01253
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { LA AO2000 }}{\mathrm{A}}
\] & \[
\underset{\text { LB020000 }}{\mathrm{B}}
\] & \[
\underset{\text { LC020000 }}{\text { C }}
\] & \[
\underset{\text { LDo20000 }}{\mathbf{L}^{2}}
\] & \[
\underset{\text { LE020000 }}{\mathrm{E}}
\] & \[
\underset{\text { LFF20000 }}{\mathrm{F}}
\] & \[
\underset{\text { LG020000 }}{\mathrm{G}}
\] & \[
\underset{\text { LНно20000 }}{\mathrm{H}}
\] & \[
\begin{gathered}
\text { I } \\
\text { L1020000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{J} \\
\text { L.020000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { LK020000 }}{\mathrm{K}}
\] & \[
\underset{L}{\mathrm{~L}} \underset{\underline{L 020000}}{ }
\] & \[
\underset{\text { LMM20000 }}{\mathbf{M}}
\] \\
\hline & \[
\begin{gathered}
\mathrm{O} \\
\text { L.002000 }
\end{gathered}
\] & LP020000 & \[
\underset{\text { LQQ20000 }}{\mathrm{Q}}
\] & \[
\underset{\text { LRo20000 }}{R}
\] & & \[
\underset{\text { LTO20000 }}{T}
\] & & \[
\underset{\text { LV020000 }}{\mathbf{V}}
\] & \[
\underset{\substack{\mathrm{W} \\ \text { LW200000 }}}{ }
\] & \[
\underset{\text { Lx020000 }}{\mathrm{X}}
\] & \[
\underset{\text { LYozoono }}{\mathbf{Y}}
\] & \[
\underset{\mathrm{Z}}{\mathrm{Z} 200000}
\] \\
\hline \[
\underset{\text { La010000 }}{\mathrm{a}}
\] & b LB010000 & \[
\underset{\substack{\text { CLC010000 }}}{ }
\] & \[
\begin{gathered}
\mathrm{d} \\
\text { LD0 } 10000
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{e} \\
\text { LE000000 }
\end{gathered}
\] & \[
\mathrm{f}_{\text {LFO10000 }}
\] & \[
\underset{\text { L6010000 }}{g}
\] & \[
\underset{\text { LH010000 }}{\mathrm{h}}
\] & \[
\begin{gathered}
\mathrm{i} \\
\text { L100000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{j} \\
\text { Loitooo }
\end{gathered}
\] & \[
\underset{\text { LK010000 }}{\substack{2 \\ \hline}}
\] & \[
\begin{gathered}
1 \\
\text { L.0010000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { LM0010000 }}{m}
\] \\
\hline LNo10000 & \[
\begin{gathered}
0 \\
\text { LOOO10000 }
\end{gathered}
\] & \[
\underset{\text { Lpo10000 }}{ }
\] & LQ010000 & \[
\underset{\text { LRO10000 }}{\text { LR }}
\] & \[
\underset{\text { Lso10000 }}{S}
\] & \[
\] & \[
\begin{gathered}
u \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { V } \\
\text { Lvo10000 }
\end{gathered}
\] & & \[
\underset{\text { Lx010000 }}{\text { X }}
\] & & \[
\underset{\text { LZ010000 }}{\text { Z }}
\] \\
\hline \[
\underset{\text { LA120000 }}{ }
\] & \[
\underset{\text { LA1400000 }}{\grave{A}}
\] & LAA160000 & \[
\underset{\text { LA180000 }}{\ddot{\mathrm{A}}}
\] & \[
\underset{\text { LA200000 }}{\tilde{\mathrm{A}}}
\] & \[
\underset{\text { LA240000 }}{ }
\] & \[
\underset{\text { LA280000 }}{\AA}
\] & \[
\underset{\text { LAB20000 }}{\overline{\mathrm{A}}}
\] & \[
\underset{\text { LA440000 }}{\mathrm{A}}
\] & \[
\underset{\text { Las20000 }}{\mathbb{E}}
\] & \[
\begin{gathered}
\text { Ć } \\
\text { LC120000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { LC160000 }}{\hat{\mathrm{C}}}
\] & \[
\begin{gathered}
\stackrel{\text { C }}{\text { LC220000 }}
\end{gathered}
\] \\
\hline \[
\underset{\text { LCc300000 }}{\dot{\mathrm{C}}}
\] & \[
C_{\text {LC420000 }}
\] & LD220000 & \[
\underset{\text { LD620000 }}{\boldsymbol{\oplus}}
\] & \[
\underset{\text { LE120000 }}{\mathrm{E}}
\] & \[
\underset{\text { LE140000 }}{\text { È }}
\] & \[
\underset{\text { LE160000 }}{\hat{\mathrm{E}}}
\] & \[
\underset{\text { LE180000 }}{\stackrel{\ddot{E}}{2}}
\] & \[
\underset{\text { LE220000 }}{\text { Ěi }}
\] & \[
\underset{\text { LEE300000 }}{\dot{\mathrm{E}}}
\] & \[
\underset{\mathrm{L}}{\mathrm{~L}=320000}
\] & \[
\underset{\text { Let40000 }}{\mathrm{E}}
\] & \[
\hat{\mathrm{LG} 160000}
\] \\
\hline \[
\underset{\text { LG240000 }}{ }
\] & \[
\dot{\mathrm{G}}
\]
LG300000 & LG420000 & LH160000 & & \[
\stackrel{L 1}{120000}^{1}
\] & \[
\begin{gathered}
1 \\
\hline \text { Lu440000 }
\end{gathered}
\] & LL160000 & \[
{ }_{\text {LL180000 }}
\] & \[
\stackrel{1}{\text { L1200000 }}
\] & \[
\begin{aligned}
& \text { LI } 1300000
\end{aligned}
\] & \[
\stackrel{\text { LI I }}{\text { L32000 }}
\] & \[
\mathrm{I}
\] \\
\hline & \[
\underset{\text { Lu160000 }}{J}
\] & \[
\underset{\text { LK420000 }}{\mathrm{K}}
\] & \[
\underset{\underline{L u 200000}}{L_{1}}
\] & \[
\begin{gathered}
\breve{\mathrm{L}} \\
\text { L2220000 }
\end{gathered}
\] & \[
\underset{\underset{L L 420000}{\mathrm{~L}}}{ }
\] & \[
\underset{L 62000}{\downarrow}
\] & \[
\underset{\text { L64000 }}{\mathrm{E}}
\] & \[
\stackrel{\text { Ń }}{\text { LN120000 }}
\] & N LW200000 & \[
\stackrel{\check{N}}{\substack{2}}
\] & \[
\underset{\text { LNA20000 }}{\mathbf{N}}
\] & \[
\underset{\text { N }}{\mathrm{N}} \mathrm{~V}
\] \\
\hline \[
\begin{gathered}
\hline \text { Ó } \\
\mathbf{0 1 2 0 0 0 0}
\end{gathered}
\] & \[
\begin{gathered}
\text { ¿̀̀ } \\
\text { LO140000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hat{\mathrm{O}} \\
\text { L0160000 }
\end{gathered}
\] & \[
\underset{\text { Ö }}{\substack{0180000}}
\] & \[
\underset{\text { LO200000 }}{\widetilde{\mathrm{O}}}
\] & \[
\underset{\text { Lo260000 }}{\text { Ón }}
\] & Lo320000 & \[
\underset{\text { Lo520000 }}{\mathbb{E}}
\] & \[
\begin{gathered}
\varnothing \\
\text { L0620000 }
\end{gathered}
\] & \[
\underset{\text { LR120000 }}{ }
\] & \[
\underset{\text { LR220000 }}{\check{\mathrm{R}}}
\] & & \[
\underset{\text { LS120000 }}{\text { Śs }}
\] \\
\hline \[
\underset{\text { Lsi60000 }}{\hat{S}}
\] & \[
\underset{\text { LS220000 }}{\breve{\mathrm{S}}}
\] & \[
\underset{\text { Ls420000 }}{\mathrm{S}}
\] & \[
\begin{gathered}
\check{\mathrm{T}} \\
\text { LT220000 }
\end{gathered}
\] & \[
\mathrm{T}_{\mathrm{LT} 420000}
\] & \[
\underset{\substack{\boldsymbol{L T} 62000}}{ }
\] & \[
\underset{\substack{\mathbf{L T} 640000}}{\mathbf{b}}
\] & \[
\begin{gathered}
\text { Ú } \\
\text { LU120000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ù } \\
\text { LU1400000 }
\end{gathered}
\] & \[
\begin{gathered}
\hat{\mathrm{U}} \\
\text { Lu60000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ü } \\
\text { LU180000 }
\end{gathered}
\] & U LU200000 & \[
\begin{gathered}
\text { LU24000 } \\
\hline
\end{gathered}
\] \\
\hline & Ú LU280000 & \[
\underset{\text { Lu320000 }}{\text { Uu }}
\] & \[
\underset{\text { Lu440000 }}{\mathrm{U}}
\] & \[
\underset{\substack{\mathrm{L} 160000}}{ }
\] & \[
\begin{gathered}
Y_{1} \\
\text { LYY } 20000
\end{gathered}
\] & \[
\underset{\substack{\text { LYY } \\ \hline 160000}}{ }
\] & \[
\underset{\text { LYY }}{\mathbf{Y}}
\] & Z2120000 & \[
\begin{gathered}
\text { L2020000000 }
\end{gathered}
\] & \[
\underset{\underline{\text { Z }}}{\substack{2300000}}
\] & & \\
\hline LA110000 & LA130000 & LA150000 & LA170000 & LA190000 & \[
\underset{\text { LA230000 }}{\stackrel{a}{2}}
\] & \[
\begin{gathered}
\stackrel{\mathrm{a}}{2} \\
\text { LA270000 }
\end{gathered}
\] & \[
\underset{\text { LA310000 }}{\overline{\mathrm{a}}}
\] & \[
\underset{\text { LaA30000 }}{\substack{a}}
\] & \[
\begin{gathered}
\mathfrak{x} \\
\text { LAS10000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ć } \\
\text { LC110000 }
\end{gathered}
\] & \[
\begin{gathered}
\hat{\mathrm{c}} \\
\text { LCC150000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { ĽC210000 } \\
\text { LCO }
\end{gathered}
\] \\
\hline & \[
\underset{\text { Lc410000 }}{\substack{c}}
\] & \[
\begin{gathered}
\text { či } \\
\text { LD210000 }
\end{gathered}
\] & \[
\begin{gathered}
\underset{\text { LD61000 }}{ } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
ð \\
\text { LD630000 }
\end{gathered}
\] & \[
\underset{\text { LE110000 }}{\text { é }}
\] & \[
\begin{gathered}
\grave{\mathrm{e}} \\
\text { LE130000 }
\end{gathered}
\] & \[
\begin{gathered}
\hat{\mathrm{e}} \\
\text { LE150000 }
\end{gathered}
\] & \[
\begin{gathered}
\ddot{\mathrm{e}} \\
\text { LE170000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { と̌ } \\
\text { LE210000 }
\end{gathered}
\] & \[
\begin{array}{|c}
\dot{\text { Le }} \\
\underline{\text { LE 290000 }}
\end{array}
\] & \[
\underset{\underset{\text { LE3 } 31000}{\overline{\mathrm{e}}}}{ }
\] & \[
\underset{\text { LEL350000 }}{\mathrm{e}^{2}}
\] \\
\hline \[
\underset{\text { LG150000 }}{\substack{\hat{g} \\ \hline}}
\] & \[
\underset{\text { L6230000 }}{\breve{\mathrm{g}}}
\] & \[
\underset{\text { LG290000 }}{\mathrm{g}}
\] & \[
\begin{gathered}
\dot{g} \\
\text { L6410000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { LH150000 }}{\hat{h}}
\] & \[
\underset{\text { LH660000 }}{\hbar}
\] & \[
\begin{gathered}
1 \\
\text { L110000 }
\end{gathered}
\] & \[
\begin{gathered}
\grave{̀} \\
\text { Lu } 130000 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hat{1} \\
\underline{L 1150000} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{i} \\
\text { Ln70000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\tilde{1} \\
\text { Ln90000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\overline{1} \\
\text { L1310000 } \\
\hline
\end{gathered}
\] & \[
\underset{\substack{\text { L4430000 }}}{ }
\] \\
\hline \[
\begin{gathered}
\mathrm{ij}_{\mathrm{ij}}^{\mathrm{Ls} 10000}
\end{gathered}
\] & LI610000 & L150000 & டк410000 & \[
\underset{\text { LK610000 }}{K}
\] & L110000 & \[
\begin{gathered}
\check{1} \\
\text { LL210000 }
\end{gathered}
\] & \[
\stackrel{1}{1}
\] & \[
\stackrel{1}{1} \underset{\substack{\text { L60000 }}}{ }
\] & L6630000 & LN110000 & \[
\underset{\text { LN190000 }}{ }
\] & \[
\stackrel{\text { ň1000 }}{\text { LN21000 }}
\] \\
\hline & \[
\underset{\text { LN610000 }}{7}
\] & & L0110000 & \[
\begin{gathered}
\grave{o} \\
\text { Lo130000 }
\end{gathered}
\] & \[
\begin{gathered}
\hat{0} \\
\text { Lo150000 }
\end{gathered}
\] & \[
\begin{gathered}
\ddot{\mathrm{O}} \\
\text { L0170000 }
\end{gathered}
\] & \[
\begin{gathered}
\tilde{\tilde{o}} \\
\text { Lo190000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ő } \\
\text { L025000 }
\end{gathered}
\] & & & \[
\underset{\text { Lobivoro }}{\varnothing}
\] & \[
\begin{gathered}
\mathrm{r}_{1} \\
\text { LR110000 }
\end{gathered}
\] \\
\hline LR210000 & \[
\underset{\text { Lr410000 }}{\text { Lit }}
\] & LS110000 & LS150000 & \[
\begin{gathered}
\mathrm{L} \mathrm{~S} 210000 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { S. } \\
\text { Ls410000 }
\end{gathered}
\] & \[
\begin{gathered}
B \\
\text { Ls610000 }
\end{gathered}
\] & \[
\begin{gathered}
\check{\mathrm{t}} \\
\text { LT210000 }
\end{gathered}
\] & \[
\begin{gathered}
t \\
\text { LT40000 }
\end{gathered}
\] & \[
\begin{gathered}
\text { f } \\
\text { LT86000 } \\
\hline
\end{gathered}
\] & \[
\underset{\text { LTB85000 }}{\mathrm{p}}
\] & \[
\begin{gathered}
\text { ú } \\
\text { Lu110000 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Lu } \\
\text { LU13000 }
\end{gathered}
\] \\
\hline \[
\underset{\text { Lu150000 }}{\hat{\mathrm{u}}}
\] & \[
\underset{\text { Lu170000 }}{\ddot{u}}
\] & \[
\underset{\text { Lu990000 }}{ }
\] & \[
\begin{gathered}
\substack{\mathrm{L} \\
\text { Lu230000 }} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { un } \\
\text { Lu250000 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{u} \\
\text { Lu27000 } \\
\hline
\end{gathered}
\] & & \[
\underset{\substack{\mathrm{L}_{4} \mathrm{U} 3000}}{ }
\] & \[
\underset{\substack{\hat{W} \\ \text { LW50000 }}}{ }
\] & \[
\begin{gathered}
\text { ý } \\
\text { LY110000 }
\end{gathered}
\] & \[
\underset{\text { LYY } 150000}{\hat{\mathrm{O}}_{2}}
\] & \[
\underset{\text { LYY } 170000}{\ddot{y}}
\] & \[
\begin{gathered}
\text { Ĺ } \\
\text { Lz110000 }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\text { Ž2 } \\
\text { Lz21000 }
\end{gathered}
\] & \[
\underset{\substack{\dot{\mathbf{Z}} \\ \text { Lz290000 }}}{ }
\] & \[
\begin{gathered}
0 \\
\text { ND100000 }
\end{gathered}
\] & \[
\begin{gathered}
1 \\
\text { ND0 } 10000
\end{gathered}
\] & \[
\underset{\substack{2 \\ \text { NDO20000 }}}{2}
\] & \[
\begin{gathered}
3 \\
\text { NDOs0000 }
\end{gathered}
\] & \[
\begin{gathered}
4 \\
\text { NDD40000 }
\end{gathered}
\] & \[
\begin{gathered}
5 \\
\text { NDO50000 }
\end{gathered}
\] & \[
\begin{gathered}
6 \\
\text { ND060000 }
\end{gathered}
\] & \[
\begin{gathered}
7 \\
\text { N007000 }
\end{gathered}
\] & \[
\begin{gathered}
8 \\
\text { ND080000 }
\end{gathered}
\] & \[
\begin{gathered}
9 \\
\text { Nova0000 }
\end{gathered}
\] & \\
\hline \[
\begin{array}{|c}
\hline 2 \\
\text { ND021000 } \\
\hline
\end{array}
\] & \[
\begin{gathered}
3 \\
\text { NDO31000 }
\end{gathered}
\] & \[
\begin{gathered}
1 / 2 \\
\text { NFF010000 }
\end{gathered}
\] & \[
\begin{gathered}
1 / 4 \\
\text { NFF04000 }
\end{gathered}
\] & \[
\begin{gathered}
3 / 4 \\
\text { NFO50000 }
\end{gathered}
\] & \[
\begin{gathered}
+ \\
\text { SA010000 }
\end{gathered}
\] & \[
\stackrel{ \pm}{\text { SAO20000 }}
\] & \[
\underset{\text { SAOB3000 }}{<}
\] & \[
\underset{\text { SAA040000 }}{=}
\] & \[
\underset{\text { SA005000 }}{>}
\] & & \[
\underset{\substack{\times \text { AAOr0000 }}}{\times}
\] & \\
\hline \[
\begin{array}{|c}
a \\
\text { sco10000 }
\end{array}
\] & \[
\begin{gathered}
£ \\
\text { sco20000 }
\end{gathered}
\] & \[
\begin{gathered}
\$ \\
\text { scoso000 }
\end{gathered}
\] & \[
\begin{gathered}
\nmid \\
\text { sco40000 }
\end{gathered}
\] & \[
\begin{gathered}
\underset{Y}{Y} \\
\text { sco50000 } \\
\hline
\end{gathered}
\] & SD110000 & SD130000 & \[
\hat{\text { sD150000 }}
\] & SD1700 & & & & \\
\hline SD270000 & SD290000 & SD310000 & sD4i0000 & sDasaoooo & \[
{ }_{\text {SD630000 }}
\] & & & & & & & \\
\hline \[
\begin{array}{|c}
\# \\
\text { sm010000 }
\end{array}
\] & \[
\begin{gathered}
\% \\
\text { smo20000 }
\end{gathered}
\] & \[
\begin{gathered}
\& \\
\text { sm030000 }
\end{gathered}
\] & SM040000 & @ & smo60000 & \[
\underset{\text { smo80000 }}{]}
\] & \[
\begin{aligned}
& 1 \\
& \text { sm130000 }
\end{aligned}
\] & \[
\underset{\text { sm170000 }}{\mu}
\] & \[
\underset{\text { sm1 } 180000}{\Omega}
\] & SM190000 & SM200000 & \begin{tabular}{l}
a \\
SM210000
\end{tabular} \\
\hline \[
\underset{\text { sm24000 }}{\S}
\] & & & & & & \[
\underset{\text { spob0000 }}{(}
\] & \[
\underset{\text { spo70000 }}{(})
\] & sposocooo & spo90000 & SP100000 & SP110000 & spl20000 \\
\hline
\end{tabular}

Character Set 01253 (Sheet 1 of 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline SP130000 & \[
\stackrel{\dot{\text { SP }}}{\text { SP140000 }}
\] & \[
\begin{gathered}
? \\
\text { SP150000 }
\end{gathered}
\] & \[
\underset{\text { SP160000 }}{\dot{\text { S }}}
\] & SP170000 & \[
\begin{gathered}
\gg \\
\text { SP180000 }
\end{gathered}
\] \\
\hline
\end{tabular}

Character Set 01253 (Sheet 2 of 2)

\section*{T. 61 graphic character conversions}

The following table is a list of T. 61 conversions supported on OS/400. It gives the table name and the description and value of the character set and code page converted from and converted to. The *N character in the From Value field means any character set is used.

These conversion tables are used to convert data to and from character set 01253 on code page 01024 to another supported character set and code page.
\begin{tabular}{|c|c|c|c|c|}
\hline Table Name & From Description & From Value & To Description & To Value \\
\hline International Alphabet 5 & (*N 01009) & CCITT T. 61 (EBCDIC) & (01253 01024) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Cyrillic, Multilingual & (01150 01025) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Turkey EBCDIC & (01152 01026) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & International Alphabet 5 & (01169 01009) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & People's Republic of China & (01174 00836) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & ASCII & (00103 00367) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Greece & (00218 00423) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Japan Katakana & (00332 00290) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & USA/Canada & (00697 00037) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Austria/Germany & (00697 00273) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Denmark/Norway & (00697 00277) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Finland/Sweden & (00697 00278) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Italy & (00697 00280) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Spain/Latin America & (00697 00284) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & France & (00697 00297) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Multinational \#5 & (00697 00500) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Iceland & (00697 00871) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Greece & (00925 00875) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Korea & (00933 00833) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & People's Republic of China & (00936 00836) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Latin 2, Multilingual & (00959 00870) & \\
\hline CCITT T. 61 (EBCDIC) & (*N 01024) & Cyrillic, Multilingual (old) & (00960 00880) & \\
\hline Cyrillic, Multilingual & (*N 01025) & CCITT T. 61 (EBCDIC) & (01253 001024) & \\
\hline Turkey EBCDIC & (*N 01026) & CCITT T. 61 (EBCDIC) & (01253 01024) & \\
\hline USA/Canada & (*N 00037) & CCITT T. 61 (EBCDIC) & (01253 01024) & \\
\hline Austria/Germany & (*N 00273) & CCITT T. 61 (EBCDIC) & (01253 01024) & \\
\hline Denmark/Norway & (*N 00277) & CCITT T. 61 (EBCDIC) & (01253 01024) & \\
\hline Finland/Sweden & (*N 00278) & CCITT T. 61 (EBCDIC) & (01253 01024) & \\
\hline Italy & (*N 00280) & CCITT T. 61 (EBCDIC) & (01253 01024) & \\
\hline Spain/Latin America & (*N 00284) & CCITT T. 61 (EBCDIC) & (01253 01024) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Table Name & From Description & From Value & To Description & To Value \\
\hline Japan Katakana & (*N 00290) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline France & (*N 00297) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline ASCII & (*N 00367) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline Greece & (*N 00423) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline Multinational \#5 & (*N 00500) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline Korea & (*N 00833) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline People's Republic of China & (*N 00836) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline Latin 2, Multilingual & (*N 00870) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline Iceland & (*N 00871) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline Greece & (*N 00875) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline Cyrillic, Multilingual (old) & (*N 00880) & CCITT T.61 (EBCDIC) & \((0125301024)\) & \\
\hline
\end{tabular}

\section*{CCSID reference information}

The following topics provide useful information about CCSIDs on OS/400:
- CCSID values defined on OS/400
- Supported CCSID mappings
- Associated CCSID values
- Encoding_schemes for CCSIDS
- Language identifiers and associated default CCSIDS

\section*{CCSID values defined on OS/400}

The following table lists the coded character set identifiers (CCSIDs) that are defined on OS/400.
\begin{tabular}{|l|l|l|}
\hline CCSID & Encoding & Description \\
\hline 00037 & 1100 & US, Canada, Netherlands, Portugal, Brazil, New Zealand, Australia \\
\hline 00256 & 1100 & Netherlands \\
\hline 00273 & 1100 & Austria, Germany \\
\hline 00277 & 1100 & Denmark, Norway \\
\hline 00278 & 1100 & Finland, Sweden \\
\hline 00280 & 1100 & Italy \\
\hline 00284 & 1100 & Spanish, Latin America \\
\hline 00285 & 1100 & United Kingdom \\
\hline 00290 & 1100 & Japan Katakana \\
\hline 00297 & 1100 & France \\
\hline 00300 & 1200 & Japan English \\
\hline 00301 & 2200 & Japanese PC Data \\
\hline 00367 & 5100 & ANSI X3.4 ASCII standard; USA \\
\hline 00420 & 1100 & Arabic-speaking countries \\
\hline 00423 & 1100 & Greece \\
\hline 00424 & 1100 & Hebrew \\
\hline 00425 & 1100 & Arabic-speaking countries \\
\hline 00437 & 2100 & PC Data; PC Base; USA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline 00500 & 1100 & Belgium, Canada, Switzerland, International Latin-1 \\
\hline \[
\begin{aligned}
& \gg \\
& 00720
\end{aligned}
\] & 2100 & MS-DOS Arabic \\
\hline 00737 & 2100 & MS-DOS Greek PC-Data \\
\hline 00775 & 2100 & MS-DOS Baltic PC-Data \\
\hline 00813 & 4100 & ISO 8859-7; Greek/Latin \\
\hline 00819 & 4100 & ISO 8859-1; Latin Alphabet No. 1 \\
\hline 00833 & 1100 & Korea (extended range) \\
\hline 00834 & 1200 & Korea host double byte (including 1880 UDC) \\
\hline 00835 & 1200 & Traditional Chinese host double byte (including 6204 UDC) \\
\hline 00836 & 1100 & Simplified Chinese (extended range) \\
\hline 00837 & 1200 & Simplified Chinese \\
\hline 00838 & 1100 & Thailand (extended range) \\
\hline 00850 & 2100 & PC Data; MLP 222 Latin Alphabet 1 \\
\hline 00851 & 2100 & PC Data; Greek \\
\hline 00852 & 2100 & PC Data; Latin-2 Multilingual \\
\hline 00855 & 2100 & PC Data; ROECE Cyrillic \\
\hline 00857 & 2100 & PC Data; Turkey Latin \#5 \\
\hline \[
\begin{aligned}
& \gg \\
& 00858
\end{aligned}
\] & 2100 & PC Data: MLP 222; Latin Alphabet Number 1 w/euro; Latin-1 Countries \\
\hline 00860 & 2100 & PC Data; Portugal \\
\hline 00861 & 2100 & PC Data; Iceland \\
\hline 00862 & 2100 & PC Data; Hebrew \\
\hline 00863 & 2100 & PC Data; Canada \\
\hline 00864 & 2100 & PC Data; Arabic \\
\hline 00865 & 2100 & PC Data; Denmark, Norway \\
\hline 00866 & 2100 & PC Data; Cyrillic \#2 - Personal Computer \\
\hline \[
\begin{aligned}
& \gg \\
& 00868 \\
& \hline
\end{aligned}
\] & 2100 & PC Data: Urdu \(\ll\) \\
\hline 00869 & 2100 & PC Data; Greek \\
\hline 00870 & 1100 & Latin-2 Multilingual \\
\hline 00871 & 1100 & Iceland \\
\hline 00874 & 2100 & Thai PC Data \\
\hline 00875 & 1100 & Greece \\
\hline \[
\begin{aligned}
& \gg \\
& 00878
\end{aligned}
\] & 4105 & Russian Internet KOI8-R Cyrillic \(\ll\) \\
\hline 00880 & 1100 & Cyrillic Multilingual \\
\hline 00891 & 2100 & Korean PC Data (non-extended) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline 00897 & 2100 & Japanese PC Data (non-extended) \\
\hline 00903 & 2100 & Simplified Chinese PC Data (non-extended) \\
\hline 00904 & 2100 & Traditional Chinese PC Data \\
\hline 00905 & 1100 & Turkey Latin-3 \\
\hline 00912 & 4100 & ISO 8859-2; ROECE Latin-2 Multilingual \\
\hline \[
\begin{aligned}
& \gg \\
& 00914
\end{aligned}
\] & 4100 & \[
\begin{aligned}
& \text { Latin } 4 \text { - ISO 8859-4 } \\
& \text { < }
\end{aligned}
\] \\
\hline 00915 & 4100 & ISO 8859-5; Cyrillic; 8-bit ISO \\
\hline 00916 & 4100 & ISO 8859-8; Hebrew \\
\hline \[
\begin{aligned}
& \gg \\
& 00918
\end{aligned}
\] & 1100 & Urdu EBCDIC \(\ll\) \\
\hline 00920 & 4100 & ISO 8859-9; Latin 5 \\
\hline \[
\begin{array}{|l}
\hline> \\
00921 \\
\hline
\end{array}
\] & 4100 & Baltic, 8-bit (ISO 8859-13)
\[
\ll
\] \\
\hline \[
\begin{aligned}
& \gg \\
& 00922
\end{aligned}
\] & 4100 & \[
\begin{aligned}
& \text { Estonia, 8-bit (ISO) } \\
& \text { < }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \gg \\
& 00923 \\
& \hline
\end{aligned}
\] & 4100 & ISO 8859-15: Latin Alphabet with euro \\
\hline \[
\begin{aligned}
& \gg \\
& 00924
\end{aligned}
\] & 1100 & Latin 9 EBCDIC \(\ll\) \\
\hline 00926 & 2200 & Korean PC Data DBCS, UDC 1880 \\
\hline 00927 & 2200 & Traditional Chinese PC Data DBCS, UDC 6204 \\
\hline 00928 & 2200 & Simplified Chinese PC Data DBCS, UDC 1880 \\
\hline 00930 & 1301 & Japan Katakana (extended range) 4370 UDC (User Defined Characters) \\
\hline 00932 & 2300 & Japan PC Data Mixed \\
\hline 00933 & 1301 & Korea (extended range), 1880 UDC \\
\hline 00934 & 2300 & Korean PC Data \\
\hline 00935 & 1301 & Simplified Chinese (extended range) \\
\hline 00936 & 2300 & Simplified Chinese (non-extended) \\
\hline 00937 & 1301 & Traditional Chinese (extended range) \\
\hline 00938 & 2300 & Traditional Chinese (non-extended) \\
\hline 00939 & 1301 & Japan English (extended range) 4370 UDC \\
\hline \[
\begin{aligned}
& \gg \\
& 00941
\end{aligned}
\] & 2200 & Japanese DBCS PC for Open environment (Multi-vendor code): 6878 JIS X 0208-1990 characters, 386 IBM selected characters, 1880 IBM UDC (X'F040' to X'F9FC') \\
\hline 00942 & 2300 & Japanese PC Data Mixed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline \[
\begin{aligned}
& \gg \\
& 00943
\end{aligned}
\] & 2300 & Japanese PC Data Mixed for Open environment (Multi-vendor code): 6878 JIS X 0208-1990 characters, 386 IBM selected DBCS characters, 1880 UDC (X'F040' to X'F9FC') \\
\hline 00944 & 2300 & Korean PC Data Mixed \\
\hline 00946 & 2300 & Simplified Chinese PC Data Mixed \\
\hline 00947 & 2200 & ASCII Double-byte \\
\hline 00948 & 2300 & Traditional Chinese PC Data Mixed 6204 UDC (User Defined Characters) \\
\hline 00949 & 2300 & Republic of Korea National Standard Graphic Character Set (KS) PC Data mixed-byte including 1800 UDC \\
\hline 00950 & 2300 & Traditional Chinese PC Data Mixed for Big5 \\
\hline 00951 & 2200 & Republic of Korea National Standard Graphic Character Set (KS) PC Data double-byte including 1800 UDC \\
\hline \[
\begin{aligned}
& \gg \\
& 00954
\end{aligned}
\] & 4403 & Japanese EUC; G0 - JIS X201 Roman set (00895); G1 - JIS X208-1990 set (00952); G2 - JIS X201 Katakana set (04992); G3 - JIS X212 set (00953) \\
\hline 00956 & 5404 & JIS X201 Roman for CP 00895; JIS X208-1983 for CP 00952 \\
\hline 00957 & 5404 & JIS X201 Roman for CP 00895; JIS X208-1978 for CP 00955 \\
\hline 00958 & 5404 & ASCII for CP 00367; JIS X208-1983 for CP 00952 \\
\hline 00959 & 5404 & ASCII for CP 00367; JIS X208-1978 for CP 00955 \\
\hline 00964 & 4403 & G0-ASCII for CP 00367; G1- CNS 11643 plane 1 for CP 960 \\
\hline 00965 & 5404 & ASCII for CP 00367; CNS 11643 plane 1 for CP 960 \\
\hline 00970 & 4403 & G0 ASCII for CP 00367; G1 KSC X5601-1989 (including 188 UDCs) for CP 971 \\
\hline \[
\begin{aligned}
& \gg \\
& 00971 \\
& \hline
\end{aligned}
\] & 8200 & Korean EUC, G1 - KS C5601-1989 (including 188 UDC) \\
\hline 01008 & 4100 & Arabic 8-bit ISO/ASCII \\
\hline 01009 & 5100 & IS0-7: IRV \\
\hline 01010 & 5100 & ISO-7; France \\
\hline 01011 & 5100 & ISO-7; Germany \\
\hline 01012 & 5100 & ISO-7; Italy \\
\hline 01013 & 5100 & ISO-7; United Kingdom \\
\hline 01014 & 5100 & ISO-7; Spain \\
\hline 01015 & 5100 & ISO-7; Portugal \\
\hline 01016 & 5100 & ISO-7; Norway \\
\hline 01017 & 5100 & ISO-7; Denmark \\
\hline 01018 & 5100 & ISO-7; Finland and Sweden \\
\hline 01019 & 5100 & ISO-7; Belgium and Netherlands \\
\hline 01025 & 1100 & Cyrillic Multilingual \\
\hline 01026 & 1100 & Turkey Latin 5 CECP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline 01027 & 1100 & Japan English (extended range) \\
\hline 01040 & 2100 & Korean Latin PC Data extended \\
\hline 01041 & 2100 & Japanese PC Data extended \\
\hline 01042 & 2100 & Simplified Chinese PC Data extended \\
\hline 01043 & 2100 & Traditional Chinese PC Data extended \\
\hline 01046 & 2100 & PC Data - Arabic Extended \\
\hline \[
01051
\] & 4100 & HP Emulation(for use with Latin 1). GCGID SF150000 is mapped to a control \(X^{\prime} 7 F^{\prime}\) \\
\hline 01088 & 2100 & Korean PC Data single-byte \\
\hline \[
\begin{aligned}
& \gg \\
& 01089
\end{aligned}
\] & 4100 & ISO 8859-6: Arabic (string type 5) \\
\hline 01097 & 1100 & Farsi \\
\hline 01098 & 2100 & Farsi (IBM-PC) \\
\hline 01112 & 1100 & Baltic, Multilingual \\
\hline 01114 & 2100 & Traditional Chinese, Taiwan Industry Graphic Character Set (Big5) \\
\hline 01115 & 2100 & Simplified Chinese National Standard (GB), personal computer SBCS \\
\hline 01122 & 1100 & Estonia \\
\hline & 1100 & Cyrillic Ukraine EBCDIC \\
\hline \[
\begin{aligned}
& \gg \\
& 01124
\end{aligned}
\] & 4100 & Cyrillic Ukraine 8-Bit \(\ll\) \\
\hline \[
01125
\] & 2100 & Cyrillic Ukraine PC-Data \\
\hline \[
\begin{array}{|l|}
\hline \gg \\
01126 \\
\hline
\end{array}
\] & 2100 & Windows Korean PC Data Single-Byte \\
\hline \[
\begin{aligned}
& \$> \\
& 01129 \\
& \hline
\end{aligned}
\] & 4100 & ISO-8 Vietnamese《 \\
\hline \[
\begin{aligned}
& \gg \\
& 01130
\end{aligned}
\] & 1100 & EBCDIC Vietnamese \\
\hline \[
\begin{aligned}
& \gg \\
& 01131 \\
& \hline
\end{aligned}
\] & 2100 & Cyrillic Belarus PC-Data \\
\hline \[
01132
\] & 1100 & EBCDIC Lao《 \\
\hline \[
\begin{aligned}
& \gg \\
& 01133
\end{aligned}
\] & 4100 & \[
\begin{aligned}
& \text { ISO-8 Lao } \\
& \text { < }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline \[
01137
\] & 1100 & Devanagari EBCDIC《 \\
\hline \[
01140
\] & 1100 & ECECP：USA，Canada，Netherlands，Portugal，Brazil，Australia， New Zealand ＜ \\
\hline \[
01141
\] & 1100 & ECECP：Austria，Germany ＜ \\
\hline \[
01142
\] & 1100 & ECECP：Denmark，Norway ＜ \\
\hline \[
01143
\] & 1100 & ECECP：Finland，Sweden ＜ \\
\hline \[
01144
\] & 1100 & \[
\begin{aligned}
& \text { ECECP: Italy } \\
& \ll
\end{aligned}
\] \\
\hline \[
01145
\] & 1100 & ECECP：Spain，Latin America（Spanish）《 \\
\hline & 1100 & ECECP：United Kingdom ＜ \\
\hline & 1100 & ECECP：France ＜ \\
\hline \[
01148
\] & 1100 & ECECP：International 1 ＜ \\
\hline \[
01149
\] & 1100 & ECECP：Iceland ＜ \\
\hline \[
01153
\] & 1100 & Latin－2－EBCDIC Multilingual with euro ＜ \\
\hline & 1100 & Cyrillic Multilingual with euro《 \\
\hline \[
01155
\] & 1100 & Turkey Latin 5 with euro ＜ \\
\hline & 1100 & Baltic，Multilingual with euro《 \\
\hline & 1100 & Estonia EBCDIC with euro ＜ \\
\hline \[
01158
\] & 1100 & Cyrillic Ukraine EBCDIC with euro ＜ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline \[
\begin{aligned}
& \gg \\
& 01160
\end{aligned}
\] & 1100 & Thai host with euro \(\ll\) \\
\hline \[
\begin{aligned}
& \gg \\
& 01164
\end{aligned}
\] & 1100 & EBCDIC Vietnamese with euro《 \\
\hline \[
\begin{array}{|l}
\gg \\
01208 \\
\hline
\end{array}
\] & 7807 & \[
\begin{aligned}
& \text { UTF-8 } \\
& \text { < }
\end{aligned}
\] \\
\hline 01250 & 4105 & Windows \({ }^{(\mathrm{R})}\) ，Latin 2 \\
\hline 01251 & 4105 & Windows，Cyrillic \\
\hline 01252 & 4105 & Windows，Latin 1 \\
\hline 01253 & 4105 & Windows，Greek \\
\hline 01254 & 4105 & Windows，Turkish \\
\hline 01255 & 4105 & Windows，Hebrew \\
\hline 01256 & 4105 & Windows，Arabic \\
\hline 01257 & 4105 & Windows，Baltic Rim \\
\hline \[
\begin{aligned}
& \gg \\
& 01258 \\
& \hline
\end{aligned}
\] & 4105 & MS Windows，Vietnamese ＜ \\
\hline \[
\begin{aligned}
& \gg \\
& 01275 \\
& \hline
\end{aligned}
\] & 4105 & Apple Latin－1 ＜ \\
\hline \[
01280
\] & 4105 & Apple Greek ＜ \\
\hline \[
\begin{array}{|l}
\hline \gg \\
01281 \\
\hline
\end{array}
\] & 4105 & Apple Turkey《 \\
\hline \[
\left\lvert\, \begin{aligned}
& \gg \\
& 01282
\end{aligned}\right.
\] & 4105 & Apple Central European（Latin－2） ＜ \\
\hline \[
\begin{aligned}
& \$> \\
& 01283 \\
& \hline
\end{aligned}
\] & 4105 & Apple Cyrillic ＜ \\
\hline \[
\begin{aligned}
& \gg \\
& 01362
\end{aligned}
\] & 2200 & Windows Korean PC DBCS－PC，including 11，172 full hangul ＜ \\
\hline \[
01363
\] & 2300 & Windows Korean PC Mixed，including 11，172 full hangul ＜ \\
\hline \[
\begin{array}{|l}
\hline \gg \\
01364 \\
\hline
\end{array}
\] & 1301 & Korean host mixed extended including 11，172 full hangul《 \\
\hline 01380 & 2200 & Simplified Chinese，People＇s Republic of China National Standard （GB），personal computer DBCS \\
\hline 01381 & 2300 & Simplified Chinese，People＇s Republic of China National Standard （GB）personal computer mixed SBCS and DBCS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline \[
\begin{aligned}
& \gg \\
& 01382
\end{aligned}
\] & 8200 & Simplified Chinese DBCS PC GB 2312-80 set, including 31 IBM selected and 1360 UDC. \\
\hline 01383 & 4403 & \begin{tabular}{l}
Simplified Chinese, EUC \\
- G0 set; ASCII \\
- G1 set; GB 2312-80 set (1382)
\end{tabular} \\
\hline \[
\left\lvert\, \begin{aligned}
& \gg \\
& 01385
\end{aligned}\right.
\] & 2200 & Simplified Chinese DBCS-PC GBK, all GBK character set and others \\
\hline \[
01386
\] & 2300 & Simplified Chinese PC Data GBK mixed, all GBK character set and others \\
\hline \[
\left\lvert\, \begin{aligned}
& \gg \\
& 01388
\end{aligned}\right.
\] & 1301 & Simplified Chinese DBCS- GB 18030 Host with UDCs and Uygur extension. \\
\hline \[
\begin{aligned}
& \gg \\
& 01399
\end{aligned}
\] & 1301 & Japanese Latin-Kanji Host Mixed including 4370 UDC, Extended SBCS (includes SBCS and DBCS euro) \\
\hline 04396 & 1200 & Japanese Host DB including 1880 \\
\hline \[
\begin{aligned}
& \gg \\
& 04930
\end{aligned}
\] & 1200 & Korean DBCS-Host extended including 11,172 full hangul《 \\
\hline \[
\begin{aligned}
& \gg \\
& 04933
\end{aligned}
\] & 1200 & Simplified Chinese DBCS Host (GBK), all GBK character set and others \\
\hline 04948 & 2100 & Latin 2 PC Data Multilingual \\
\hline 04951 & 2100 & Cyrillic PC Data Multilingual \\
\hline 04952 & 2100 & Hebrew PC Data \\
\hline 04953 & 2100 & Turkey PC Data Latin 5 \\
\hline 04960 & 2100 & Arabic PC Data \\
\hline 04965 & 2100 & Greek PC Data \\
\hline \[
\begin{array}{|l}
\$ \\
04970 \\
\hline
\end{array}
\] & 2100 & Thai PC Data Single-Byte < \\
\hline \[
\begin{aligned}
& \gg \\
& 04971
\end{aligned}
\] & 1100 & Greek (including euro)《 \\
\hline 05026 & 1301 & Japan Katakana (extended range) 1880 UDC \\
\hline 05035 & 1301 & Japan English (extended range) 1880 UDC \\
\hline 05050 & 4403 & G0-JIS X201 Roman for CP 895; G1 JIS X208-1990 for CP 952 \\
\hline 05052 & 5404 & JIS X201 Roman for CP 895; JIS X208-1983 for CP 952 \\
\hline 05053 & 5404 & JIS X201 Roman for CP 895; JIS X208-1978 for CP 955 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline 05054 & 5404 & ASCII for CP 367; JIS X208-1983 for CP 952 \\
\hline 05055 & 5404 & ASCII for CP 367; JIS X208-1978 for CP 955 \\
\hline \[
\begin{aligned}
& \gg \\
& 05123
\end{aligned}
\] & 1100 & Japanese Latin Host Extended SBCS (includes euro) \\
\hline \[
\begin{aligned}
& \gg \\
& 05210
\end{aligned}
\] & 2100 & Simplified Chinese PC Data Single-Byte (GBK), growing CS \\
\hline 08612 & 01100 & Arabic (base shapes only) \\
\hline 09030 & 1100 & Thai Host Extended SBCS \\
\hline 09056 & 2100 & PC Data: Arabic PC Storage/Interchange \\
\hline 09066 & 2100 & Thai PC Data Extended SBCS \\
\hline \[
\begin{aligned}
& \$ \\
& 12708
\end{aligned}
\] & 1100 & Arabic (base shapes, Lamaleph ligatures and Hindi digits) (string type 7) \\
\hline \[
\begin{aligned}
& \gg \\
& 13121
\end{aligned}
\] & 1100 & Korean Host Extended SBCS \\
\hline \[
\begin{aligned}
& > \\
& 13124
\end{aligned}
\] & 1100 & Simplified Chinese Host Data Single-Byte (GBK) equivalent to Simplified Chinese Host Data Single-Byte (GB) except growing CS < \\
\hline 13488 & 7200 & ISO/IEC 10646 Universal Coded Character Set Level 2 (UCS-2) \\
\hline \[
\left\lvert\, \begin{aligned}
& \gg \\
& 16684
\end{aligned}\right.
\] & 1200 & Japanese Latin Host Double-Byte including 4370 UDC (includes euro) \\
\hline 17354 & 5404 & G0 - ASCII for CP 00367; G1 - KSC X5601-1989 (including 188 UDCs) for CP 00971 \\
\hline \[
25546
\] & 5409 & Korean 2022-KR TCP, ASCII, KS C5601-1989 (includes 188 UDC, RFC1557 using SO/SI) \\
\hline 28709 & 1100 & Traditional Chinese (extended range) \\
\hline 33722 & 4403 & \begin{tabular}{l}
Japanese EUC \\
- G0; JIS X201 Roman set (00895) \\
- G1; JIS X208-1990 set (00952) \\
- G2; JIS X201 Katakana set (04992) \\
- G3; JIS X212 set (09145)
\end{tabular} \\
\hline 57345 & 5404 & All Japanese 2022 characters \\
\hline 61952 & 7200 & OS/400 specific (old CCSID for UCS). Use of 13488 is recommended instead. \\
\hline \[
\begin{aligned}
& \gg \\
& 62210
\end{aligned}
\] & 4100 & OS/400 specific ISO 8859-8; Hebrew, string type 4. \(\ll\) \\
\hline \[
\begin{aligned}
& \gg \\
& 62211
\end{aligned}
\] & 1100 & OS/400 specific EBCDIC; Hebrew, string type 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CCSID & Encoding & Description \\
\hline \[
\begin{aligned}
& \gg \\
& 62215
\end{aligned}
\] & 4105 & OS／400 specific MS Windows；Hebrew，string type 4 ＜ \\
\hline \[
\begin{aligned}
& > \\
& 62218
\end{aligned}
\] & 2100 & OS／400 specific PC data；Arabic，string type 4《 \\
\hline \[
\begin{aligned}
& \gg \\
& 62222
\end{aligned}
\] & 4100 & OS／400 specific ISO 8859－9；Hebrew，string type 6 ＜ \\
\hline \[
\begin{aligned}
& \gg \\
& 62223
\end{aligned}
\] & 4105 & OS／400 specific MS Windows；Hebrew，string type 6 ＜ \\
\hline 62224 & 1100 & OS／400 specific EBCDIC；Arabic，string type 6《 \\
\hline \[
\begin{aligned}
& \gg \\
& 62228
\end{aligned}
\] & 4105 & OS／400 specific MS Windows；Arabic，string type 6《 \\
\hline \[
\begin{aligned}
& \gg \\
& 62235
\end{aligned}
\] & 1100 & OS／400 specific EBCDIC；Hebrew，string type 6《 \\
\hline \[
\begin{aligned}
& \gg \\
& 62238
\end{aligned}
\] & 4100 & OS／400 specific ISO 8859－9；Hebrew，string type 10 ＜ \\
\hline \[
\begin{aligned}
& \gg \\
& 62239
\end{aligned}
\] & 4105 & OS／400 specific MS Windows；Hebrew，string type 10《 \\
\hline \[
\begin{array}{|l|}
\hline \gg \\
62245 \\
\hline
\end{array}
\] & 1100 & OS／400 specific EBCDIC；Hebrew，string type 10《 \\
\hline 65534 & & Look at lower level CCSID \\
\hline 65535 & & Special value indicating data is hex and should not be converted． This is the default for the QCCSID system value． \\
\hline
\end{tabular}

\section*{Supported CCSID mappings}

The following CCSID mappings are supported on OS／400．
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 00037 & 00256，00273，00277，00278，00280，00284，00285，00290，00297，00367，00420，00423， 00424，00425，00437，00500，00720，00737，00775，00813，00819，00833，00836，00838， 00850，00852，00855，00857，00860，00861，00862，00863，00864，00865，00866，00869， 00870，00871，00874，00875，00880，00897，00903，00904，00905，00912，00914，00915， 00916，00918，00920，00921，00922，00924，00930，00933，00935，00937，00939，00948， 01025，01026，01027，01041，01043，01051，01088，01089，01097，01098，01112，01114， 01115，01122，01124，01126，01130，01131，01132，01137，01140，01141，01142，01143，01144， 01145，01146，01147，01148，01149，01153，01154，01155，01156，01157，01158，01160，01164， 01208，01250，01251，01252，01253，01254，01255，01256，01257，01258，01275，01280， 01281，01282，01283，01364，01388，01399，04970，04971，05026，05035，05123，08612， 09030，12708，13121，13124，13488，28709，61952，62211，62224，62235，62245， 62251 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 00256 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00500, 00737, 00775, 00819, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01112, 01122, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 08612, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00273 & 00037, 00256, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01250, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00277 & 00037, 00256, 00273, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00278 & 00037, 00256, 00273, 00277, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00280 & 00037, 00256, 00273, 00277, 00278, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00284 & 00037, 00256, 00273, 00277, 00278, 00280, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00285 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00290 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00737, 00775, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00930, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 01025, 01027, 01041, 01112, 01122, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00297 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00300 & 00930, 00939, 00941, 01208, 04396, 05026, 05035, 13488, 61952 \\
\hline 00301 & 00300, 01208, 04396, 13488, 16684, 61952 \\
\hline 00367 & 00037, 00500, 00833, 01208, 13121, 13124, 13488, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 00420 & 00037, 00256, 00425, 00500, 00720, 00737, 00775, 00819, 00850, 00864, 00937, 01008, 01046, 01089, 01112, 01122, 01208, 01256, 04960, 08612, 09030, 09056, 12708, 13488, 28709, 61952, 62218, 62224, 62228, 62251 \\
\hline 00423 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01042, 01043, 01112, 01122, 01208, 01253, 04965, 04971, 05123, 09030, 13488, 28709, 61952 \\
\hline 00424 & 00037, 00256, 00500, 00737, 00775, 00819, 00850, 00862, 00916, 00937, 01112, 01122, 01208, 01255, 04952, 09030, 13488, 28709, 61952, 62210, 62211, 62215, 62222, 62223, 62235, 62238, 62239, 62245 \\
\hline 00425 & 00037, 00420, 00500, 00819, 00864, 01046, 01089, 01140, 01148, 01208, 01252, 01256, 08612, 12708, 13488, 61952, 62224, 62228 \\
\hline 00437 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00852, 00855, 00857, 00860, 00861, 00863, 00865, 00866, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00937, 01025, 01026, 01027, 01042, 01051, 01097, 01098, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01252, 01257, 01275, 01280, 01281, 01282, 01283, 04971, 05123, 13121, 13124, 13488, 28709, 61952 \\
\hline 00500 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00367, 00420, 00423, 00424, 00425, 00437, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00869, 00870, 00871, 00875, 00880, 00891, 00897, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00924, 00930, 00933, 00935, 00937, 00939, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01051, 01088, 01089, 01097, 01098, 01112, 01114, 01115, 01122, 01124, 01126, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01250, 01251, 01252, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01364, 01388, 01399, 04970, 04971, 05026, 05035, 05123, 08612, 09030, 12708, 13121, 13124, 13488, 28709, 61952, 62211, 62224, 62235, 62245, 62251 \\
\hline 00720 & 00037, 00420, 00864, 01208, 01256, 13488, 61952 \\
\hline 00737 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00833, 00836, 00838, 00850, 00869, 00870, 00871, 00875, 00880, 00905, 01025, 01026, 01027, 01097, 01208, 01252, 01253, 04971, 05123, 13121, 13124, 13488, 28709, 61952 \\
\hline 00775 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 01025, 01026, 01027, 01097, 01112, 01122, 01208, 01252, 01257, 05123, 13121, 13124, 13488, 28709, 61952 \\
\hline 00813 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01208, 04971, 05123, 13488, 28709, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 00819 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00425, 00437, 00500, 00813, 00833, 00836, 00838, 00850, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01041, 01042, 01043, 01051, 01088, 01089, 01097, 01098, 01112, 01114, 01122, 01126, 01130, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01364, 01388, 01399, 04971, 05026, 05035, 05123, 13121, 13124, 13488, 28709, 61952, 62211, 62235, 62245, 62251 \\
\hline 00833 & \(00037,00256,00273,00277,00278,00280,00284,00285,00290,00297,00367,00437\),
\(00500,00737,00775,00819,00836,00850,00871,00891,00930,00933,00935,00937\),
\(00939,00944,00949,01027,01040,01088,01112,01122,01126,01208,01252,01363\),
\(01364,01388,01399,05026,05035,05123,09030,13121,13124,13488,28709,61952\) \\
\hline 00834 & 00926, 00933, 00951, 01208, 01362, 01364, 04930, 13488, 61952 \\
\hline 00835 & 00927, 00937, 00947, 01208, 13488, 61952 \\
\hline 00836 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00437, 00500, 00737, 00775, 00819, 00833, 00850, 00871, 00903, 00930, 00933, 00935, 00937, 00939, 00946, 01027, 01042, 01112, 01114, 01115, 01122, 01208, 01252, 01364, 01381, 01386, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00837 & 00928, 00935, 01208, 01380, 01382, 01385, 01388, 13488, 61952 \\
\hline 00838 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01042, 01043, 01112, 01122, 01160, 01208, 04970, 05123, 09030, 13488, 28709, 61952 \\
\hline 00850 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01041, 01051, 01089, 01097, 01098, 01112, 01122, 01130, 01132, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01250, 01251, 01252, 01254, 01255, 01256, 01257, 01275, 01280, 01281, 01282, 01283, 01364, 01388, 01399, 04971, 05026, 05035, 05123, 08612, 09030, 09056, 13121, 13124, 13488, 28709, 61952, 62211, 62235, 62245 \\
\hline 00851 & 01208, 13488, 61952 \\
\hline 00852 & 00037, 00273, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00869, 00870, 00874, 00875, 00897, 00903, 00912, 01208, 01252, 04948, 13488, 61952 \\
\hline 00855 & 00037, 00437, 00500, 00819, 00850, 00915, 01025, 01208, 01252, 13488, 61952 \\
\hline 00857 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00905, 00912, 00916, 01025, 01026, 01042, 01208, 01252, 04953, 13488, 28709, 61952 \\
\hline 00858 & 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01399, 04971, 05123 \\
\hline 00860 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00861, 00863, 00865, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01027, 01041, 01042, 01043, 01208, 05123, 13488, 28709, 61952 \\
\hline 00861 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00860, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01149, 01208, 05123, 13488, 28709, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 00862 & 00037, 00424, 00500, 00819, 00850, 00916, 01208, 01252, 01255, 13488, 61952, 62211, 62235, 62245 \\
\hline 00863 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00857, 00860, 00861, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01042, 01043, 01208, 05123, 13488, 28709, 61952 \\
\hline 00864 & 00037, 00420, 00425, 00500, 00720, 00819, 00850, 01208, 01252, 08612, 09056, 13488, 61952, 62251 \\
\hline 00865 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00860, 00863, 00871, 00937, 01208, 13488, 28709, 61952 \\
\hline 00866 & 00037, 00437, 00500, 00819, 00850, 01025, 01208, 01252, 13488, 61952 \\
\hline 00868 & 00918, 01208, 13488, 61952 \\
\hline 00869 & 00037, 00423, 00500, 00737, 00813, 00819, 00838, 00850, 00852, 00870, 00874, 00875, 00880, 00897, 00903, 00912, 01025, 01027, 01041, 01042, 01043, 01208, 01252, 04971, 05123, 13488, 28709, 61952 \\
\hline 00870 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00852, 00857, 00861, 00863, 00869, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00915, 00916, 00920, 00937, 01025, 01026, 01112, 01122, 01147, 01153, 01208, 01250, 01252, 01282, 04948, 04951, 09030, 13488, 28709, 61952 \\
\hline 00871 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 00874 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01208, 05123, 13488, 28709, 61952 \\
\hline 00875 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01043, 01112, 01122, 01208, 01253, 01280, 04965, 04971, 05123, 09030, 13488, 28709, 61952 \\
\hline 00878 & 01208, 13488, 61952 \\
\hline 00880 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00897, 00903, 00912, 00915, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01042, 01043, 01112, 01122, 01208, 01251, 01283, 04948, 04951, 05123, 09030, 13488, 28709, 61952 \\
\hline 00891 & 00500, 00833, 01208, 13121, 13488, 61952 \\
\hline 00897 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00903, 00912, 00916, 00920, 00930, 00939, 01025, 01026, 01027, 01042, 01043, 01208, 01252, 01399, 05026, 05035, 05123, 13488, 28709, 61952 \\
\hline 00903 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00813, 00819, 00836, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00912, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 05123, 13124, 28709 \\
\hline 00904 & 00037, 28709 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 00905 & 00037, 00256, 00500, 00737, 00775, 00819, 00850, 00857, 00920, 00937, 01026, 01112, 01122, 01208, 01254, 04953, 09030, 13488, 28709, 61952 \\
\hline 00912 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01153, 01208, 05123, 13488, 28709, 61952 \\
\hline 00914 & 00037, 00437, 00500, 00819, 00850, 01208, 01252, 01257, 13488, 61952 \\
\hline 00915 & \[
\begin{aligned}
& 00037,00437,00500,00819,00850,00855,00870,00880,01025,01208,01252,13488, \\
& 61952
\end{aligned}
\] \\
\hline 00916 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00424, 00437, 00500, 00813, 00819, 00838, 00850, 00857, 00860, 00861, 00862, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01208, 01255, 05123, 13488, 28709, 61952, 62211, 62235, 62245 \\
\hline 00918 & 00037, 00437, 00500, 00819, 00850, 00868, 01208, 01252, 13488, 61952 \\
\hline 00920 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00860, 00861, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00905, 00912, 00916, 01025, 01026, 01155, 01208, 13488, 28709, 61952 \\
\hline 00921 & 00037, 00437, 00500, 00819, 00850, 01112, 01208, 01252, 01257, 13488, 61952 \\
\hline 00922 & 00037, 00437, 00500, 00819, 00850, 01122, 01208, 01252, 01257, 13488, 61952 \\
\hline 00923 & 00924, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 04971, 13488, 61952 \\
\hline 00924 & 00037, 00500, 00923, 01208, 13488, 61952 \\
\hline 00926 & 00834, 01208, 13488, 61952 \\
\hline 00927 & 00835, 01208, 13488, 61952 \\
\hline 00928 & 00837, 01208, 13488, 61952 \\
\hline 00930 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00932, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 00956, 00957, 00958, 00959, 01027, 01041, 01208, 01364, 01388, 01399, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 13121, 13124, 13488, 28709, 33722, 61952 \\
\hline 00932 & 00290, 00930, 00939, 01027, 01208, 01399, 05026, 05035, 13488, 61952 \\
\hline 00933 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00871, 00930, 00934, 00935, 00937, 00939, 00944, 00949, 00970, 01027, 01040, 01208, 01363, 01364, 01388, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 17354, 25546, 28709, 61952 \\
\hline 00934 & 00833, 00933, 01208, 01364, 13488, 61952 \\
\hline 00935 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00871, 00930, 00933, 00936, 00937, 00939, 00946, 01027, 01042, 01208, 01364, 01381, 01383, 01386, 01388, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 28709, 61952 \\
\hline 00936 & 00836, 00935, 01388, 13124 \\
\hline 00937 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00819, 00833, 00836, 00838, 00850, 00860, 00863, 00865, 00870, 00871, 00875, 00880, 00905, 00930, 00933, 00935, 00938, 00939, 00948, 00950, 00964, 00965, 01025, 01026, 01027, 01043, 01140, 01208, 01364, 01388, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 28709, 61952 \\
\hline 00938 & 00937, 01208, 13488, 28709, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 00939 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00930, 00932, 00933, 00935, 00937, 00942, 00943, 00954, 00956, 00957, 00958, 00959, 01027, 01041, 01208, 01364, 01388, 01399, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 13121, 13124, 13488, 28709, 33722, 61952 \\
\hline 00941 & 00300, 01208, 04396, 13488, 16684, 61952 \\
\hline 00942 & 00290, 00930, 00939, 01027, 01041, 01208, 01399, 05026, 05035, 05123, 13488, 61952 \\
\hline 00943 & 00290, 00930, 00939, 01027, 01208, 01399, 05026, 05035, 05123, 13488, 61952 \\
\hline 00944 & 00833, 00933, 01040, 01208, 01364, 13121, 13488, 61952 \\
\hline 00946 & 00836, 00935, 01042, 01208, 01388, 13124, 13488, 61952 \\
\hline 00947 & 00835, 01208, 13488, 61952 \\
\hline 00948 & 00037, 00937, 01043, 01208, 13488, 28709, 61952 \\
\hline 00949 & 00833, 00933, 01208, 01364, 13121, 13488, 61952 \\
\hline 00950 & 00937, 01208, 13488, 28709, 61952 \\
\hline 00951 & 00834, 01208, 04930, 13488, 61952 \\
\hline 00954 & 00290, 00930, 00939, 01027, 01208, 01399, 05026, 05035, 13488, 61952 \\
\hline 00956 & 00930, 00939, 01208, 05026, 05035, 13488, 61952 \\
\hline 00957 & 00930, 00939, 01208, 05026, 05035, 13488, 61952 \\
\hline 00958 & 00930, 00939, 01208, 05026, 05035, 13488, 61952 \\
\hline 00959 & 00930, 00939, 01208, 05026, 05035, 13488, 61952 \\
\hline 00964 & 00937, 01208, 13488, 61952 \\
\hline 00965 & 00937, 01208, 13488, 61952 \\
\hline 00970 & 00933, 01208, 01364, 13488, 61952 \\
\hline 00971 & 00834, 04930 \\
\hline 01008 & 00420, 08612 \\
\hline 01009 & 01208, 13488, 61952 \\
\hline 01010 & 00500, 01208, 13488, 61952 \\
\hline 01011 & 00500, 01208, 13488, 61952 \\
\hline 01012 & 00500, 01208, 13488, 61952 \\
\hline 01013 & 00500, 01208, 13488, 61952 \\
\hline 01014 & 00500, 01208, 13488, 61952 \\
\hline 01015 & 00500, 01208, 13488, 61952 \\
\hline 01016 & 00500, 01208, 13488, 61952 \\
\hline 01017 & 00500, 01208, 13488, 61952 \\
\hline 01018 & 00500, 01208, 13488, 61952 \\
\hline 01019 & 00500, 01208, 13488, 61952 \\
\hline 01025 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00855, 00857, 00860, 00861, 00863, 00866, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00915, 00916, 00920, 00937, 01026, 01027, 01042, 01112, 01122, 01131, 01154, 01208, 01251, 01283, 04948, 04951, 05123, 09030, 13488, 28709, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 01026 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00857, 00861, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00905, 00912, 00916, 00920, 00937, 01025, 01042, 01112, 01122, 01155, 01208, 01254, 01281, 04953, 09030, 13488, 28709, 61952 \\
\hline 01027 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00860, 00861, 00863, 00869, 00871, 00874, 00875, 00880, 00895, 00897, 00903, 00912, 00916, 00930, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 01025, 01041, 01042, 01112, 01122, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 01040 & 00833, 00933, 00944, 01364, 13121 \\
\hline 01041 & 00037, 00290, 00423, 00813, 00819, 00838, 00850, 00860, 00861, 00863, 00869, 00874, 00875, 00880, 00903, 00912, 00916, 00930, 00939, 00942, 01027, 01042, 01399, 05026, 05035, 05123 \\
\hline 01042 & 00423, 00437, 00813, 00819, 00836, 00838, 00857, 00860, 00861, 00863, 00869, 00874, 00880, 00897, 00903, 00912, 00916, 00935, 00946, 01025, 01026, 01027, 01041, 01043, 01388, 05123, 13124 \\
\hline 01043 & 00037, 00423, 00813, 00819, 00838, 00860, 00861, 00863, 00869, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00937, 00948, 01042, 28709 \\
\hline 01046 & 00420, 00425, 01208, 08612, 13488, 61952, 62251 \\
\hline 01051 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00871, 01208, 01252, 13488, 61952 \\
\hline 01088 & 00037, 00500, 00819, 00833, 13121, 28709 \\
\hline 01089 & 00037, 00420, 00425, 00500, 00819, 00850, 01208, 13488, 61952, 62251 \\
\hline 01097 & 00037, 00437, 00500, 00737, 00775, 00819, 00850, 01098, 01112, 01122, 01208, 01256, 09030, 13488, 61952 \\
\hline 01098 & 00037, 00437, 00500, 00819, 00850, 01097, 01208, 01252, 13488, 61952 \\
\hline 01112 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00500, 00775, 00819, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 00921, 01025, 01026, 01027, 01097, 01122, 01156, 01208, 01257, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 01114 & 00037, 00500, 00819, 00836, 13124, 28709 \\
\hline 01115 & 00037, 00500, 00836, 13124 \\
\hline 01122 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00500, 00775, 00819, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 00922, 01025, 01026, 01027, 01097, 01112, 01157, 01208, 01257, 05123, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 01123 & 01124, 01125, 01158, 01208, 01251, 13488, 61952 \\
\hline 01124 & 00037, 00500, 01123, 01208, 13488, 61952 \\
\hline 01125 & 01123, 01208, 13488, 61952 \\
\hline 01126 & 00037, 00500, 00819, 00833, 13121 \\
\hline 01129 & 01208, 13488, 61952 \\
\hline 01130 & 00037, 00500, 00819, 00850, 01164, 01208, 01258, 13488, 61952 \\
\hline 01131 & 00037, 00500, 01025, 01208, 13488, 61952 \\
\hline 01132 & 00037, 00500, 00819, 00850, 01133, 01208, 13488, 61952 \\
\hline 01133 & 01132 \\
\hline 01137 & 00037, 00500, 00819, 01208, 13488, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 01140 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00425, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 00937, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488, 61952, 62251 \\
\hline 01141 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488, 61952 \\
\hline 01142 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01141, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488, 61952 \\
\hline 01143 & ```
00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850,
00858, 00871, 00923, 01140, 01141, 01142, 01144, 01145, 01146, 01147, 01148, 01149, 01153,
01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488,
61952
``` \\
\hline 01144 & ```
00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850,
00858, 00871, 00923, 01140, 01141, 01142, 01143, 01145, 01146, 01147, 01148, 01149, 01153,
01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488,
6 1 9 5 2
``` \\
\hline 01145 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488, 61952 \\
\hline 01146 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488, 61952 \\
\hline 01147 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00870, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488, 61952 \\
\hline 01148 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00425, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488, 61952, 62251 \\
\hline 01149 & 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00861, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01252, 01399, 04971, 05123, 13488, 61952 \\
\hline 01153 & 00037, 00500, 00870, 00912, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01250, 04971, 13488, 61952 \\
\hline 01154 & 00037, 00500, 01025, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01251, 04971, 05123, 13488, 61952 \\
\hline 01155 & 00037, 00500, 00920, 01026, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01254, 04971, 13488, 61952 \\
\hline 01156 & 00037, 00500, 01112, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01257, 04971, 05123, 13488, 61952 \\
\hline 01157 & 00037, 00500, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01257, 04971, 05123, 13488, 61952 \\
\hline 01158 & 00037, 00500, 01123, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01251, 13488, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 01160 & 00037, 00500, 00838, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 05123, 13488, 61952 \\
\hline 01164 & 00037, 00500, 01130, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01258, 13488, 61952 \\
\hline 01200 & 01392 \\
\hline 01208 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00301, 00367, 00420, 00423, 00424, 00425, 00437, 00500, 00720, 00737, 00775, 00813, 00819, 00833, 00834, 00835, 00836, 00837, 00838, 00850, 00851, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00868, 00869, 00870, 00871, 00874, 00875, 00878, 00880, 00891, 00897, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00923, 00924, 00926, 00927, 00928, 00930, 00932, 00933, 00934, 00935, 00937, 00938, 00939, 00941, 00942, 00943, 00944, 00946, 00947, 00948, 00949, 00950, 00951, 00954, 00956, 00957, 00958, 00959, 00964, 00965, 00970, 01009, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01046, 01051, 01089, 01097, 01098, 01112, 01122, 01123, 01124, 01125, 01129, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01362, 01363, 01364, 01380, 01381, 01383, 01385, 01386, 01388, 01392, 01399, 04930, 04933, 04948, 04951, 04952, 04960, 04971, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 08612, 09030, 09056, 09066, 12708, 13121, 13124, 13488, 16684, 17354, 28709, 33722, 62211, 62224, 62235, 62245, 62251 \\
\hline 01250 & 00037, 00273, 00500, 00819, 00850, 00870, 01153, 01208, 01252, 01282, 13488, 61952 \\
\hline 01251 & 00037, 00500, 00819, 00850, 00880, 01025, 01123, 01154, 01158, 01208, 01252, 01283, 13488, 61952 \\
\hline 01252 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00425, 00437, 00500, 00737, 00775, 00819, 00833, 00836, 00850, 00852, 00855, 00857, 00862, 00864, 00866, 00869, 00870, 00871, 00897, 00914, 00915, 00918, 00921, 00922, 01027, 01051, 01098, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01250, 01251, 01254, 01255, 01256, 01257, 01275, 01280, 01281, 01282, 01283, 04971, 05123, 13121, 13124, 13488, 28709, 61952, 62251 \\
\hline 01253 & 00037, 00423, 00737, 00819, 00875, 01208, 01280, 04971, 13488, 61952 \\
\hline 01254 & 00037, 00500, 00819, 00850, 00905, 01026, 01155, 01208, 01252, 13488, 61952 \\
\hline 01255 & \[
\begin{aligned}
& \text { 00037, 00424, 00500, 00819, 00850, 00862, 00916, 01208, 01252, 01281, 13488, 61952, } \\
& 62211,62235,62245
\end{aligned}
\] \\
\hline 01256 & \[
\begin{aligned}
& \text { 00037, 00420, 00425, 00500, 00720, 00819, 00850, 01097, 01208, 01252, 08612, 12708, } \\
& 13488,61952,62224,62251
\end{aligned}
\] \\
\hline 01257 & 00037, 00437, 00500, 00775, 00819, 00850, 00914, 00921, 00922, 01112, 01122, 01156, 01157, 01208, 01252, 13488, 61952 \\
\hline 01258 & 00037, 00500, 00819, 01130, 01164, 01208, 13488, 61952 \\
\hline 01275 & 00037, 00437, 00500, 00819, 00850, 01208, 01252, 13488, 61952 \\
\hline 01280 & 00037, 00437, 00500, 00819, 00850, 00875, 01208, 01252, 01253, 13488, 61952 \\
\hline 01281 & 00037, 00437, 00500, 00819, 00850, 01026, 01208, 01252, 01255, 13488, 61952 \\
\hline 01282 & 00037, 00437, 00500, 00819, 00850, 00870, 01208, 01250, 01252, 13488, 61952 \\
\hline 01283 & 00037, 00437, 00500, 00819, 00850, 00880, 01025, 01208, 01251, 01252, 13488, 61952 \\
\hline 01362 & 00834, 01208, 04930, 13488, 61952 \\
\hline 01363 & 00833, 00933, 01208, 01364, 13488, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 01364 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00871, 00930, 00933, 00934, 00935, 00937, 00939, 00944, 00949, 00970, 01027, 01040, 01208, 01363, 01388, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 28709, 61952 \\
\hline 01380 & 00837, 01208, 04933, 13488, 61952 \\
\hline 01381 & 00836, 00935, 01208, 01388, 13488, 61952 \\
\hline 01382 & 00837, 04933 \\
\hline 01383 & 00935, 01208, 01388, 13488, 61952 \\
\hline 01385 & 00837, 01208, 04933, 13488, 61952 \\
\hline 01386 & 00836, 00935, 01208, 01388, 13124, 13488, 61952 \\
\hline 01388 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00871, 00930, 00933, 00935, 00936, 00937, 00939, 00946, 01027, 01042, 01208, 01364, 01381, 01383, 01386, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 28709, 61952 \\
\hline 01392 & 01200, 01208, 13488 \\
\hline 01399 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00858, 00871, 00895, 00897, 00930, 00932, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 01027, 01041, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01208, 01364, 01388, 05026, 05035, 05050, 05123, 13121, 13124, 13488, 28709, 33722, 61952 \\
\hline 04396 & 00300, 00301, 00930, 00939, 00941, 05026, 05035, 16684 \\
\hline 04930 & 00834, 00951, 00971, 01208, 01362, 13488, 61952 \\
\hline 04933 & 01208, 01380, 01382, 01385, 13488, 61952 \\
\hline 04948 & 00852, 00870, 00880, 01025, 01208, 13488, 61952 \\
\hline 04951 & 00870, 00880, 01025, 01208, 13488, 61952 \\
\hline 04952 & 00424, 01208, 13488, 61952 \\
\hline 04953 & 00857, 00905, 01026 \\
\hline 04960 & 00420, 01208, 08612, 13488, 61952 \\
\hline 04965 & 00423, 00875 \\
\hline 04970 & 00037, 00500, 00838 \\
\hline 04971 & 00037, 00423, 00437, 00500, 00737, 00813, 00819, 00850, 00858, 00869, 00875, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01208, 01252, 01253, 13488, 61952 \\
\hline 05026 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00930, 00932, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 00956, 00957, 00958, 00959, 01027, 01041, 01208, 01364, 01388, 01399, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 13121, 13124, 13488, 28709, 33722, 61952 \\
\hline 05035 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00930, 00932, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 00956, 00957, 00958, 00959, 01027, 01041, 01208, 01364, 01388, 01399, 05026, 05050, 05052, 05053, 05054, 05055, 05123, 13121, 13124, 13488, 28709, 33722, 61952 \\
\hline 05050 & 00930, 00939, 01208, 01399, 05026, 05035, 13488, 61952 \\
\hline 05052 & 00930, 00939, 01208, 05026, 05035, 13488, 61952 \\
\hline 05053 & 00930, 00939, 01208, 05026, 05035, 13488, 61952 \\
\hline 05054 & 00930, 00939, 01208, 05026, 05035, 13488, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 05055 & 00930, 00939, 01208, 05026, 05035, 13488, 61952 \\
\hline 05123 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00858, 00860, 00861, 00863, 00869, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00930, 00933, 00935, 00937, 00939, 00942, 00943, 01025, 01027, 01041, 01042, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01154, 01156, 01157, 01160, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 09030, 13121, 13124, 13488, 28709, 61952 \\
\hline 05210 & 13124 \\
\hline 08612 & 00037, 00256, 00420, 00425, 00500, 00850, 00864, 01008, 01046, 01208, 01256, 04960, 12708, 13488, 28709, 61952, 62224, 62251 \\
\hline 09030 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00500, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 01025, 01026, 01027, 01097, 01112, 01122, 01208, 05123, 09066, 13121, 13488, 28709, 61952 \\
\hline 09056 & 00420, 00850, 00864, 01208, 13488, 61952 \\
\hline 09066 & 01208, 09030, 13488, 61952 \\
\hline 12708 & 00037, 00420, 00425, 00500, 01208, 01256, 08612, 13488, 61952, 62224, 62251 \\
\hline 13121 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00367, 00437, 00500, 00737, 00775, 00819, 00833, 00836, 00850, 00871, 00891, 00930, 00933, 00935, 00937, 00939, 00944, 00949, 01027, 01040, 01088, 01112, 01122, 01126, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13124, 13488, 28709, 61952 \\
\hline 13124 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00367, 00437, 00500, 00737, 00775, 00819, 00833, 00836, 00850, 00871, 00903, 00930, 00933, 00935, 00937, 00939, 00946, 01027, 01042, 01112, 01114, 01115, 01122, 01208, 01252, 01364, 01386, 01388, 01399, 05026, 05035, 05123, 05210, 13121, 13488, 28709, 61952 \\
\hline 13488 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00301, 00367, 00420, 00423, 00424, 00425, 00437, 00500, 00720, 00737, 00775, 00813, 00819, 00833, 00834, 00835, 00836, 00837, 00838, 00850, 00851, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00868, 00869, 00870, 00871, 00874, 00875, 00878, 00880, 00891, 00897, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00923, 00924, 00926, 00927, 00928, 00930, 00932, 00933, 00934, 00935, 00937, 00938, 00939, 00941, 00942, 00943, 00944, 00946, 00947, 00948, 00949, 00950, 00951, 00954, 00956, 00957, 00958, 00959, 00964, 00965, 00970, 01009, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01046, 01051, 01089, 01097, 01098, 01112, 01122, 01123, 01124, 01125, 01129, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01362, 01363, 01364, 01380, 01381, 01383, 01385, 01386, 01388, 01392, 01399, 04930, 04933, 04948, 04951, 04952, 04960, 04971, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 08612, 09030, 09056, 09066, 12708, 13121, 13124, 16684, 17354, 28709, 33722, 61952, 62211, 62224, 62235, 62245, 62251 \\
\hline 16684 & 00930, 00939, 00941, 01208, 01399, 04396, 05026, 05035, 13488, 61952 \\
\hline 17354 & 00933, 01208, 13488, 61952 \\
\hline 25546 & 00933 \\
\hline 28709 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00904, 00905, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 00948, 00950, 01025, 01026, 01027, 01043, 01088, 01112, 01114, 01122, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 08612, 09030, 13121, 13124, 13488, 61952 \\
\hline 33722 & 00930, 00939, 01208, 01399, 05026, 05035, 13488, 61952 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From CCSID & To CCSID \\
\hline 57345 & 00930, 00939, 05026, 05035 \\
\hline 61952 & 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00301, 00367, 00420, 00423, 00424, 00425, 00437, 00500, 00720, 00737, 00775, 00813, 00819, 00833, 00834, 00835, 00836, 00837, 00838, 00850, 00851, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00868, 00869, 00870, 00871, 00874, 00875, 00878, 00880, 00891, 00897, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00923, 00924, 00926, 00927, 00928, 00930, 00932, 00933, 00934, 00935, 00937, 00938, 00939, 00941, 00942, 00943, 00944, 00946, 00947, 00948, 00949, 00950, 00951, 00954, 00956, 00957, 00958, 00959, 00964, 00965, 00970, 01009, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01046, 01051, 01089, 01097, 01098, 01112, 01122, 01123, 01124, 01125, 01129, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01362, 01363, 01364, 01380, 01381, 01383, 01385, 01386, 01388, 01399, 04930, 04933, 04948, 04951, 04952, 04960, 04971, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 08612, 09030, 09056, 09066, 12708, 13121, 13124, 13488, 16684, 17354, 28709, 33722, 62211, 62224, 62235, 62245, 62251 \\
\hline 62209 & 62211, 62235, 62245 \\
\hline 62210 & 00424, 62211, 62235, 62245 \\
\hline 62211 & 00037, 00424, 00500, 00819, 00850, 00862, 00916, 01208, 01255, 13488, 61952, 62209, 62210, 62213, 62215, 62222, 62223, 62235, 62245 \\
\hline 62213 & 62211 \\
\hline 62215 & 00424, 62211, 62235, 62245 \\
\hline 62218 & 00420 \\
\hline 62221 & 62235 \\
\hline 62222 & 00424, 62211, 62235, 62245 \\
\hline 62223 & 00424, 62211, 62235, 62245 \\
\hline 62224 & 00037, 00420, 00425, 00500, 01208, 01256, 08612, 12708, 13488, 61952, 62251 \\
\hline 62228 & 00420, 00425, 62251 \\
\hline 62235 & 00037, 00424, 00500, 00819, 00850, 00862, 00916, 01208, 01255, 13488, 61952, 62209, 62210, 62211, 62215, 62221, 62222, 62223, 62245 \\
\hline 62238 & 00424, 62245 \\
\hline 62239 & 00424, 62245 \\
\hline 62245 & 00037, 00424, 00500, 00819, 00850, 00862, 00916, 01208, 01255, 13488, 61952, 62209, 62210, 62211, 62215, 62222, 62223, 62235, 62238, 62239 \\
\hline 62251 & 00037, 00420, 00500, 00819, 00864, 01046, 01089, 01140, 01148, 01208, 01252, 01256, 08612, 12708, 13488, 61952, 62224, 62228 \\
\hline
\end{tabular}

\section*{Associated CCSIDs}

The following table shows the associated CCSIDs for a given CCSID value and encoding scheme. If a CCSID does not have an associated CCSID value for an encoding scheme, - (not defined) is shown in the table.

Although not represented in the table, if you request an encoding scheme that is the same as the input CCSID, you will get back the input CCSID. For example, if you request the associated CCSID of CCSID 00037 with an encoding scheme of 01100, you will get back 00037.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input CCSID & 1100 & 1200 & 1301 & 2100 & 2200 & 2300 & 4100 & 4105 & 4403 & 5100 & 5404 \\
\hline 00037 & - & 00835 & 00937 & 00437 & 00947 & 00950 & 00819 & 01252 & - & 00367 & - \\
\hline 00256 & - & - & - & 00437 & - & - & 00819 & 01252 & - & 00367 & - \\
\hline 00273 & - & - & - & 00850 & - & - & 00819 & 01252 & - & - & - \\
\hline 00277 & - & - & - & 00865 & - & - & 00819 & 01252 & - & - & - \\
\hline 00278 & - & - & - & 00865 & - & - & 00819 & 01252 & - & - & - \\
\hline 00280 & - & - & - & 00850 & - & - & 00819 & 01252 & - & - & - \\
\hline 00284 & - & - & - & 00850 & - & - & 00819 & 01252 & - & - & - \\
\hline 00285 & - & - & - & 00850 & - & - & 00819 & 01252 & - & - & - \\
\hline 00290 & - & 04396 & 05026 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 00297 & - & - & - & 00850 & - & - & 00819 & 01252 & - & - & - \\
\hline 00300 & 00290 & - & 00930 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 00301 & 00290 & 04396 & 05026 & 01041 & - & 00942 & - & - & - & - & - \\
\hline 00367 & 00500 & - & - & 00850 & - & - & 00819 & 01252 & - & - & - \\
\hline 00420 & - & - & - & 00864 & - & - & 01089 & 01256 & - & - & - \\
\hline 00423 & - & - & - & 00869 & - & - & 00813 & 01253 & - & - & - \\
\hline 00424 & - & - & - & 00862 & - & - & 00916 & 01255 & - & - & - \\
\hline 00437 & 00037 & - & - & - & - & - & 00819 & 01252 & - & - & - \\
\hline 00500 & - & - & - & 00850 & - & - & 00819 & 01252 & - & 00367 & - \\
\hline 00720 & 00420 & - & - & - & - & - & 01089 & 01256 & - & - & - \\
\hline 00737 & 00875 & - & - & - & - & - & 00813 & 01253 & - & - & - \\
\hline 00775 & 01112 & - & - & - & - & - & 00921 & 01257 & - & - & - \\
\hline 00813 & 00875 & - & - & - & - & - & - & 01253 & - & - & - \\
\hline 00819 & 00500 & - & - & 00850 & - & - & - & 01252 & - & 00367 & - \\
\hline 00833 & - & 00834 & 00933 & 01088 & 00951 & 00949 & - & - & - & - & - \\
\hline 00834 & 00833 & - & 00933 & 01088 & 00951 & 00949 & - & - & - & - & - \\
\hline 00835 & 28709 & - & 00937 & 01043 & 00927 & 00950 & - & - & - & - & - \\
\hline 00836 & - & 00837 & 00935 & 01115 & 01380 & 01381 & - & - & - & - & - \\
\hline 00837 & 00836 & - & 00935 & 01115 & 01380 & 01381 & - & - & - & - & - \\
\hline 00838 & - & - & - & 00874 & - & - & - & - & - & - & - \\
\hline 00850 & 00500 & - & - & - & - & - & 00819 & 01252 & - & - & - \\
\hline 00851 & 00875 & - & - & - & - & - & 00813 & 01253 & - & - & - \\
\hline 00852 & 00870 & - & - & - & - & - & 00912 & 01250 & - & - & - \\
\hline 00855 & 01025 & - & - & - & - & - & - & 01251 & - & - & - \\
\hline 00857 & 01026 & - & - & - & - & - & 00920 & 01254 & - & - & - \\
\hline 00860 & 00037 & - & - & - & - & - & 00819 & 01252 & - & - & - \\
\hline 00861 & 00871 & - & - & - & - & - & 00819 & 01252 & - & - & - \\
\hline 00862 & 00424 & - & - & - & - & - & 00916 & 01255 & - & - & - \\
\hline 00863 & 00500 & - & - & - & - & - & 00819 & 01252 & - & - & - \\
\hline 00864 & 00420 & - & - & - & - & - & 01089 & 01256 & - & - & - \\
\hline 00865 & 00277 & - & - & - & - & - & 00819 & 01252 & - & - & - \\
\hline 00866 & 01025 & - & - & 00866 & - & - & - & 01251 & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input CCSID & 1100 & 1200 & 1301 & 2100 & 2200 & 2300 & 4100 & 4105 & 4403 & 5100 & 5404 \\
\hline 00869 & 00875 & - & - & - & - & - & 00813 & 01253 & - & - & - \\
\hline 00870 & - & - & - & 00852 & - & - & 00912 & 01250 & - & - & - \\
\hline 00871 & - & - & - & 00861 & - & - & 00819 & 01252 & - & - & - \\
\hline 00874 & 00838 & - & - & - & - & - & - & - & - & - & - \\
\hline 00875 & - & - & - & 00869 & - & - & 00813 & 01253 & - & - & - \\
\hline 00880 & - & - & - & 00855 & - & - & - & - & - & - & - \\
\hline 00891 & 00833 & 00834 & 00933 & - & 00926 & 00934 & - & - & - & - & - \\
\hline 00897 & 00290 & 04396 & 05026 & - & 00301 & 00932 & - & - & - & - & - \\
\hline 00903 & 00836 & 00837 & 00935 & - & 00928 & 00936 & - & - & - & - & - \\
\hline 00904 & 28709 & 00835 & 00937 & - & 00927 & 00938 & - & - & - & - & - \\
\hline 00905 & - & - & - & 00857 & - & - & 00920 & - & - & - & - \\
\hline 00912 & 00870 & - & - & 00852 & - & - & - & 01250 & - & - & - \\
\hline 00915 & 01025 & - & - & 00855 & - & - & - & 01251 & - & - & - \\
\hline 00916 & 00424 & - & - & 00862 & - & - & - & 01255 & - & - & - \\
\hline 00920 & 01026 & - & - & 00857 & - & - & - & 01254 & - & - & - \\
\hline 00921 & 01112 & - & - & 01125 & - & - & - & 01257 & - & - & - \\
\hline 00922 & 01122 & - & - & 01125 & - & - & - & 01251 & - & - & - \\
\hline 00923 & 00924 & - & - & 00850 & - & - & - & 01252 & - & 00367 & - \\
\hline 00924 & - & - & - & 00850 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 00926 & 00833 & 00834 & 00933 & 01040 & - & 00944 & - & - & - & - & - \\
\hline 00927 & 28709 & 00835 & 00937 & 01043 & - & 00950 & - & - & - & - & - \\
\hline 00928 & 00836 & 00837 & 00935 & 01042 & - & 00946 & - & - & - & - & - \\
\hline 00930 & 00290 & 00300 & - & 01041 & 00301 & 00942 & - & - & - & - & 05052 \\
\hline 00932 & 00290 & 04396 & 05026 & 00897 & 00301 & - & - & - & - & - & - \\
\hline 00933 & 00833 & 00834 & - & 01088 & 00951 & 00949 & - & - & 00970 & - & 17354 \\
\hline 00934 & 00833 & 00834 & 00933 & 00891 & 00926 & - & - & - & - & - & - \\
\hline 00935 & 00836 & 00837 & - & 01115 & 01380 & 01381 & - & - & - & - & - \\
\hline 00936 & 00836 & 00837 & 00935 & 00903 & 00928 & - & - & - & - & - & - \\
\hline 00937 & 28709 & 00835 & - & 01043 & 00927 & 00950 & - & - & 00964 & - & 00965 \\
\hline 00938 & 28709 & 00835 & 00937 & 00904 & 00927 & - & - & - & - & - & - \\
\hline 00939 & 01027 & 00300 & - & 01041 & 00301 & 00942 & - & - & - & - & 05052 \\
\hline 00942 & 00290 & 04396 & 05026 & 01041 & 00301 & - & - & - & - & - & - \\
\hline 00943 & 00290 & 04396 & 05026 & 00897 & 00301 & - & - & - & - & - & - \\
\hline 00944 & 00833 & 00834 & 00933 & 01040 & 00926 & - & - & - & - & - & - \\
\hline 00946 & 00836 & 00837 & 00935 & 01042 & 00928 & - & - & - & - & - & - \\
\hline 00947 & - & 00835 & 00937 & - & - & - & - & - & - & - & - \\
\hline 00948 & 28709 & 00835 & 00937 & 01043 & 00927 & - & - & - & - & - & - \\
\hline 00949 & 00833 & 00834 & 00933 & 01088 & 00951 & - & - & - & 00970 & - & 17354 \\
\hline 00950 & 28709 & 00835 & 00937 & 01114 & 00947 & - & - & - & - & - & - \\
\hline 00951 & 00833 & 00834 & 00933 & 01088 & - & 00949 & - & - & 00970 & - & 17354 \\
\hline 00956 & 00290 & 00300 & 05026 & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input CCSID & 1100 & 1200 & 1301 & 2100 & 2200 & 2300 & 4100 & 4105 & 4403 & 5100 & 5404 \\
\hline 00957 & 00290 & 00300 & 05026 & - & - & - & - & - & - & - & - \\
\hline 00958 & 00290 & 00300 & 05026 & - & - & - & - & - & - & - & - \\
\hline 00959 & 00290 & 00300 & 05026 & - & - & - & - & - & - & - & - \\
\hline 00964 & 00037 & 00835 & 00937 & - & - & - & - & - & - & - & - \\
\hline 00965 & 00037 & 00835 & 00937 & - & - & - & - & - & - & - & - \\
\hline 00970 & 13121 & 04930 & 01364 & - & - & - & - & - & - & - & - \\
\hline 01008 & 00420 & - & - & - & - & - & - & - & - & - & - \\
\hline 01009 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01010 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01011 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01012 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01013 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01014 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01015 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01016 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01017 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01018 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01019 & 00500 & - & - & - & - & - & - & - & - & - & - \\
\hline 01025 & - & - & - & 00855 & - & - & - & 01251 & - & - & - \\
\hline 01026 & - & - & - & 00857 & - & - & 00920 & 01254 & - & - & - \\
\hline 01027 & - & 04396 & 05035 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 01040 & 00833 & 00834 & 00933 & - & 00926 & 00944 & - & - & - & - & - \\
\hline 01041 & 00290 & 04396 & 05026 & - & 00301 & 00942 & - & - & - & - & - \\
\hline 01042 & 00836 & 00837 & 00935 & - & 00928 & 00946 & - & - & - & - & - \\
\hline 01043 & 28709 & 00835 & 00937 & - & 00927 & 00950 & - & - & - & - & - \\
\hline 01046 & 00420 & - & - & - & - & - & - & - & - & - & - \\
\hline 01051 & 00037 & - & - & 00850 & - & - & - & - & - & - & - \\
\hline 01088 & 00833 & 00834 & 00933 & - & 00951 & 00949 & - & - & 00970 & - & 17354 \\
\hline 01089 & 00420 & - & - & - & - & - & - & 01256 & - & - & - \\
\hline 01097 & - & - & - & 01098 & - & - & - & - & - & - & - \\
\hline 01098 & 01097 & - & - & - & - & - & - & - & - & - & - \\
\hline 01112 & - & - & - & - & - & - & - & 01257 & - & - & - \\
\hline 01114 & 28709 & - & - & - & - & - & - & - & - & - & - \\
\hline 01115 & 00836 & 00837 & 00935 & - & 01380 & 01381 & - & - & - & - & - \\
\hline 01122 & - & - & - & 01125 & - & - & 01124 & 01257 & - & - & - \\
\hline 01123 & - & - & - & 01125 & - & - & 01124 & 01251 & - & - & - \\
\hline 01126 & 13121 & 04930 & 01364 & - & 01362 & 01363 & - & - & 00970 & - & 17354 \\
\hline 01129 & 01130 & - & - & - & - & - & - & 01258 & - & - & - \\
\hline 01130 & - & - & - & - & - & - & 01129 & 01258 & - & - & - \\
\hline 01132 & - & - & - & - & - & - & 01133 & - & - & - & - \\
\hline 01133 & 01132 & - & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input CCSID & 1100 & 1200 & 1301 & 2100 & 2200 & 2300 & 4100 & 4105 & 4403 & 5100 & 5404 \\
\hline 01140 & - & - & - & 00437 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01141 & - & - & - & 00850 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01142 & - & - & - & 00865 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01143 & - & - & - & 00865 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01144 & - & - & - & 00850 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01145 & - & - & - & 00850 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01146 & - & - & - & 00850 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01147 & - & - & - & 00850 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01148 & - & - & - & 00850 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01149 & - & - & - & 00861 & - & - & 00923 & 01252 & - & 00367 & - \\
\hline 01153 & - & - & - & 00852 & - & - & 00912 & 01250 & - & - & - \\
\hline 01154 & - & - & - & 00855 & - & - & - & 01251 & - & - & - \\
\hline 01155 & - & - & - & 00857 & - & - & 00920 & 01254 & - & - & - \\
\hline 01156 & - & - & - & - & - & - & - & 01257 & - & - & - \\
\hline 01157 & - & - & - & 01125 & - & - & 01124 & 01257 & - & - & - \\
\hline 01158 & - & - & - & 01125 & - & - & 01124 & 01251 & - & - & - \\
\hline 01160 & - & - & - & 00874 & - & - & - & - & - & - & - \\
\hline 01164 & - & - & - & - & - & - & 01129 & 01258 & - & - & - \\
\hline 01250 & 00870 & - & - & 00852 & - & - & - & - & - & - & - \\
\hline 01251 & 01025 & - & - & 00855 & - & - & - & - & - & - & - \\
\hline 01252 & 00500 & - & - & 00850 & - & - & 00819 & - & - & 00367 & - \\
\hline 01253 & 00875 & - & - & 00869 & - & - & - & - & - & - & - \\
\hline 01254 & 01026 & - & - & 00857 & - & - & - & - & - & - & - \\
\hline 01255 & 00424 & - & - & 00862 & - & - & - & - & - & - & - \\
\hline 01256 & 00420 & - & - & 00864 & - & - & - & - & - & - & - \\
\hline 01257 & 01112 & - & - & - & - & - & 00921 & - & - & - & - \\
\hline 01258 & 01130 & - & - & 01258 & - & - & 01129 & - & - & - & - \\
\hline 01275 & 00037 & - & - & 00850 & - & - & - & - & - & - & - \\
\hline 01280 & 00875 & - & - & 00869 & - & - & - & - & - & - & - \\
\hline 01281 & 01026 & - & - & 00857 & - & - & - & - & - & - & - \\
\hline 01282 & 00870 & - & - & 00852 & - & - & - & - & - & - & - \\
\hline 01283 & 01025 & - & - & 00855 & - & - & - & - & - & - & - \\
\hline 01362 & 13121 & 04930 & 01364 & 01126 & - & 01363 & - & - & 00970 & - & 17354 \\
\hline 01363 & 13121 & 04930 & 01364 & 01126 & 01362 & - & - & - & 00970 & - & 17354 \\
\hline 01364 & 13121 & 04930 & - & 01126 & 01362 & 01363 & - & - & 00970 & - & 17354 \\
\hline 01380 & 00836 & 00837 & 00935 & 01115 & - & 01381 & - & - & - & - & - \\
\hline 01381 & 00836 & 00837 & 00935 & 01115 & 01380 & - & - & - & - & - & - \\
\hline 01386 & 13124 & 04933 & 01388 & - & - & - & - & - & - & - & - \\
\hline 01388 & 13124 & 04933 & - & 01114 & 01385 & 01386 & - & - & - & - & - \\
\hline 01399 & 05123 & 16684 & - & 01041 & 00301 & 00942 & - & - & 05050 & - & 05052 \\
\hline 04396 & 00290 & - & 05026 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input CCSID & 1100 & 1200 & 1301 & 2100 & 2200 & 2300 & 4100 & 4105 & 4403 & 5100 & 5404 \\
\hline 04930 & 13121 & - & 01364 & 01126 & 01362 & 01363 & - & - & - & - & - \\
\hline 04933 & 13124 & - & 01388 & 01114 & 01385 & 01386 & - & - & - & - & - \\
\hline 04948 & 00870 & - & - & - & - & - & - & - & - & - & - \\
\hline 04951 & 01025 & - & - & - & - & - & - & - & - & - & - \\
\hline 04952 & 00424 & - & - & - & - & - & - & - & - & - & - \\
\hline 04953 & 01026 & - & - & - & - & - & - & - & - & - & - \\
\hline 04960 & 00420 & - & - & - & - & - & - & - & - & - & - \\
\hline 04965 & 00875 & - & - & - & - & - & - & - & - & - & - \\
\hline 05026 & 00290 & 04396 & - & 01041 & 00301 & 00942 & - & - & 05050 & - & 05052 \\
\hline 05035 & 01027 & 04396 & - & 01041 & 00301 & 00942 & - & - & - & - & 05052 \\
\hline 05050 & 00290 & 00300 & 05026 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 05052 & 00290 & 00300 & 05026 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 05053 & 00290 & 00300 & 05026 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 00000 & - & - & - & - & - & - & - & - & - & - & - \\
\hline 05054 & 00290 & 00300 & 05026 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 00000 & - & - & - & - & - & - & - & - & - & - & - \\
\hline 05055 & 00290 & 00300 & 05026 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 00000 & - & - & - & - & - & - & - & - & - & - & - \\
\hline 05123 & - & 16684 & 01399 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 00000 & - & - & - & - & - & - & - & - & - & - & - \\
\hline 09030 & - & - & - & 09066 & - & - & - & - & - & - & - \\
\hline 09066 & 09030 & - & - & - & - & - & - & - & - & - & - \\
\hline 13121 & - & 04930 & 01364 & 01126 & 01362 & 01363 & - & - & - & - & - \\
\hline 13124 & - & 04933 & 01388 & 01114 & 01385 & 01386 & - & - & - & - & - \\
\hline 00000 & - & - & - & - & - & - & - & - & - & - & - \\
\hline 16684 & 05123 & - & 01399 & 01041 & 00301 & 00942 & - & - & - & - & - \\
\hline 00000 & - & - & - & - & - & - & - & - & - & - & - \\
\hline 17354 & 00833 & 00834 & 00933 & - & - & - & - & - & - & - & - \\
\hline 25546 & 00833 & 00834 & 00933 & 01088 & 00951 & 00949 & - & - & - & - & - \\
\hline 28709 & - & 00835 & 00937 & 01043 & 00927 & 00948 & - & - & - & - & - \\
\hline 33722 & 00290 & 04366 & 05026 & - & - & - & - & - & - & - & - \\
\hline 57345 & 00290 & 00300 & 05026 & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Encoding schemes for the CCSIDs}

The following table shows the encoding scheme values (from CDRA) that are used for the CCSIDs.
\begin{tabular}{|l|l|}
\hline ESID hex & Interpretation \\
\hline 1100 & EBCDIC, single-byte, No code extension is allowed. Number of States \(=1\). \\
\hline 1200 & EBCDIC, double-byte, No code extension is allowed. Number of States \(=1\). \\
\hline 1300 & EBCDIC, mixed-byte, No code extension is allowed Number of States \(=1\). \\
\hline 1301 & \begin{tabular}{l}
EBCDIC, mixed single-byte and double-byte, using shift-in (SI) and shift-out (SO) code \\
extension method Number of States \(=2\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline ESID hex & Interpretation \\
\hline 2100 & IBM-PC Data, single-byte, No code extension is allowed Number of States \(=1\). \\
\hline 2200 & IBM-PC Data, double-byte, No code extension is allowed Number of States \(=1\). \\
\hline 2300 & \begin{tabular}{l}
IBM-PC Data, mixed single-byte and double-byte, with implicit code extension Number of States \\
\(=2\).
\end{tabular} \\
\hline 3100 & IBM-PC Display, single-byte, No code extension is allowed Number of States \(=1\). \\
\hline 3200 & IBM-PC Display, double-byte, No code extension is allowed Number of States \(=1\). \\
\hline 3300 & \begin{tabular}{l}
IBM-PC Display, mixed single-byte and double-byte, with implicit code extension Number of \\
States \(=2\).
\end{tabular} \\
\hline 4100 & ISO 8, single-byte, No code extension is allowed Number of States = 1. \\
\hline 4105 & \begin{tabular}{l}
ISO 8 (ASCII code), single-byte, Graphics in C1 Note that graphic characters may be present in \\
the area normally reserved for the C1 control codes. (ie X'80' to X'9F') Number of States \(=1\).
\end{tabular} \\
\hline 4403 & IBM EUC Number of States \(=2\) to 4 \\
\hline 5100 & ISO 7 (ASCII code), single-byte, No code extension is allowed Number of States = 1. \\
\hline 5404 & ISO 2022 TCP/IP Number of States \(=2\) to 4. \\
\hline 7200 & UCS-2, No code extension is allowed Number of States = 1. \\
\hline 7808 & UTF-8, No code extension is allowed Number of States = 3. \\
\hline
\end{tabular}

\section*{Language identifiers and associated default CCSIDs}

The following table contains a list of language identifiers and the job default CCSID (DFTCCSID) values associated with those identifiers.

\section*{>}

If the QTQ_DEFAULT_CCSID system level environment variable is not defined, then the defaults act as indicated in the table below.

If the QTQ_DEFAULT_CCSID system level environment variable is defined, then it consists of pairs of valid language ID and single byte or mixed byte EBCDIC CCSID values. You can use this environment variable to change to the Euro value. If this value is not properly defined, the system issues an informational message and uses the value in the table below.

See Job default coded character set identified for more information about the QTQ_DEFAULT_CCSID system level environment variable.

\section*{<}
\begin{tabular}{|l|l|l|l|}
\hline Language identifier & Single-byte CCSID & Mixed-byte CCSID & Language \\
\hline AFR & 00037 & None & Afrikaans \\
\hline ARA & 00420 & None & Arabic \\
\hline BEL & 01025 & None & Byelorussian \\
\hline BGR & 01025 & None & Bulgarian \\
\hline CAT & 00284 & None & Catalan \\
\hline CHS & 00836 & 00935 & Simplified Chinese \\
\hline CHT & 00037 & 00937 & Traditional Chinese \\
\hline CSY & 00870 & None & Czech \\
\hline DAN & 00277 & None & Danish \\
\hline DES & 00500 & None & Swiss German \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Language identifier & Single-byte CCSID & Mixed-byte CCSID & Language \\
\hline DEU & \begin{tabular}{l}
00273 (\\
1141 with Euro < \\
)
\end{tabular} & None & German \\
\hline ELL & \begin{tabular}{l}
\[
00875
\] \\
4971 with Euro \(\ll\) \\
)
\end{tabular} & None & Greek \\
\hline ENA & 00037 & None & Australian English \\
\hline ENG & 00285 & None & United Kingdom English \\
\hline ENP & 00037 & None & Uppercase English \\
\hline ENU & 00037 & None & United States English \\
\hline ESP & \begin{tabular}{l}
\[
00284
\]
\[
\gg
\] \\
1145 with Euro)
\end{tabular} & None & Spanish \\
\hline FAR & 01097 & None & Farsi \\
\hline FIN & \begin{tabular}{l}
00278 (\\
1143 with Euro《 \\
)
\end{tabular} & None & Finnish \\
\hline FRA & \begin{tabular}{l}
\[
00297
\] \\
1147 with Euro \(\ll\) \\
)
\end{tabular} & None & French \\
\hline FRB & \begin{tabular}{l}
00500 (\\
1148 with Euro \\
)
\end{tabular} & None & Belgian French \\
\hline FRC & 00500 & None & Canadian French \\
\hline FRS & 00500 & None & Swiss French \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Language identifier & Single-byte CCSID & Mixed-byte CCSID & Language \\
\hline GAE & \begin{tabular}{l}
\[
00285 \text { (}
\] \\
1146 with Euro < \\
)
\end{tabular} & None & Irish Gaelic \\
\hline HEB & 00424 & None & Hebrew \\
\hline HRV & 00870 & None & Croatian \\
\hline HUN & 00870 & None & Hungarian \\
\hline ISL & \begin{tabular}{l}
00871 (\\
> \\
1149 with Euro < \\
)
\end{tabular} & None & Icelandic \\
\hline ITA & \begin{tabular}{l}
00280 (\\
1144 with Euro \\
)
\end{tabular} & None & Italian \\
\hline ITS & 00500 & None & Swiss Italian \\
\hline JPN & 00290 & 05026 & \begin{tabular}{l}
Japanese Katakana \\
The mixed value for DFTCCSID is 05026 when the job CCSID is 65535. In order for the DFTCCSID to be 05035, the job CCSID must be 05035.
\end{tabular} \\
\hline KOR & 00833 & 00933 & Korean \\
\hline MKD & 01025 & None & Macedonian \\
\hline NLB & \begin{tabular}{l}
00500 (\\
> \\
1148 with Euro \\
)
\end{tabular} & None & Belgian Dutch \\
\hline NLD & \[
\begin{aligned}
& 00037 \text { (} \\
& \gg \\
& 1140 \text { with Euro } \\
& \text { 《 } \\
& \text {) }
\end{aligned}
\] & None & Dutch \\
\hline NON & 00277 & None & Norwegian Nynorsk \\
\hline NOR & 00277 & None & Norwegian Bokmal \\
\hline PLK & 00870 & None & Polish \\
\hline PTB & 00037 & None & Brazilian Portuguese \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Language identifier & Single-byte CCSID & Mixed-byte CCSID & Language \\
\hline & 00037 (& \(>\) & \\
\\
& 1140 with Euro & & \\
& 《 & & \\
PTG & \()\) & None & Portuguese \\
\hline ROM & 00870 & None & Romanian \\
\hline RUS & 01025 & None & Russian \\
\hline SKY & 00870 & None & Slovakian \\
\hline SLO & 00870 & None & Slovenian \\
\hline SQI & 00500 & None & Albanian \\
\hline SRB & 01025 & None & Serbian Cyrillic \\
\hline SRL & 00870 & None & Serbian Latin \\
\hline SVE & 00278 & None & Swedish \\
\hline THA & 00838 & None & Thai \\
\hline TRK & 01026 & None & Turkish \\
\hline
\end{tabular}

\section*{Locale reference information}

The following topics provide useful information about locales on OS/400:
- System-supplied locales and recommended CCSIDs
- Mapping of locale symbolic names

\section*{System-supplied locales and recommended CCSIDs}

The system-supplied locale source definition file members are in the optionally installable library QSYSLOCALE in the QLOCALESRC source file. The source file members are encoded in CCSID 37 and are read-only. The following table shows the locale source file definition members that are shipped with OS/400; the table also provides the recommended CCSID for creating each locale, and how the locale is supplied (as source, object, or both).

The source definition file members themselves cannot be changed. They can be copied and then edited, if needed.

Note: The Japanese 5035 is shipped as an object but uses the same JA_JP source member as the Japanese.
>
\begin{tabular}{|l|c|c|c|}
\hline Description & Member & CCSID & How shipped \\
\hline Albania/Albanian & SQ_AL & 500 & Both \\
\hline Algeria/Arabic & AR_DZ & 420 & Source \\
\hline Arabic-speaking countries/Arabic & AR_AA & 420 & Both \\
\hline Argentina/Spanish & ES_AR & 284 & Source \\
\hline Australia/English & EN_AU & 37 & Source \\
\hline Austria/German & DE_AT & 273 & Source \\
\hline Austria/German euro & DE_AT_E & 1141 & Source \\
\hline Bahrain/Arabic & AR_BH & 420 & Source \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Description & Member & CCSID & How shipped \\
\hline Belgium/Dutch & NL_BE & 500 & Both \\
\hline Belgium/Dutch euro & NL_BE_E & 1148 & Both \\
\hline Belgium/English & EN_BE & 37 & Both \\
\hline Belgium/English euro & EN_BE_E & 1148 & Source \\
\hline Belgium/French & FR_BE & 500 & Both \\
\hline Belgium/French euro & FR_BE_E & 1148 & Both \\
\hline Bolivia/Spanish & ES_BO & 284 & Source \\
\hline Brazil/Portugese & PT_BR & 37 & Both \\
\hline Bulgaria/Bulgarian & BG_BG & 1025 & Both \\
\hline Bulgaria/Bulgarian-Lotus & BG_BG_L & 1025 & Both \\
\hline Byelorussia/Byelorussian & BE_BY & 1025 & Source \\
\hline Canada/English & EN_CA & 37 & Source \\
\hline Canada/French & FR_CA & 500 & Both \\
\hline Chile/Spanish & ES_CL & 284 & Source \\
\hline China/Simplified Chinese & ZH_CN & 1388 & Both \\
\hline China/Simplified Chinese (old) & ZH_CN_GBK & 935 & Source \\
\hline China (Hong Kong S.A.R.)/English & EN_HK & 37 & Source \\
\hline China (Hong Kong S.A.R.)/Simplified Chinese & ZH_HK_S & 1388 & Source \\
\hline China (Hong Kong S.A.R.)/Traditional Chinese & ZH_HK_T & 937 & Source \\
\hline Columbia/Spanish & ES_CO & 284 & Source \\
\hline Costa Rica/Spanish & ES_CR & 284 & Source \\
\hline Croatia/Croatian & HR_HR & 870 & Both \\
\hline Czech Republic/Czech & CS_CZ & 870 & Both \\
\hline Denmark/Danish & DA_DK & 277 & Both \\
\hline Denmark/Danish euro & DA_DK_E & 1142 & Source \\
\hline Dominican Republic/Spanish & ES_DO & 284 & Source \\
\hline Ecuador/Spanish & ES_EC & 284 & Source \\
\hline Egypt/Arabic & AR_EG & 420 & Source \\
\hline El Salvador/Spanish & ES_SV & 284 & Source \\
\hline Estonia/Estonian & ET_EE & 1122 & Both \\
\hline Finland/Finnish & Fl_Fl & 278 & Both \\
\hline Finland/Finnish euro & FI_Fl_E & 1143 & Both \\
\hline France/French & FR_FR & 297 & Both \\
\hline France/French euro & FR_FR_E & 1147 & Both \\
\hline Germany/German & DE_DE & 273 & Both \\
\hline Germany/German euro & DE_DE_E & 1141 & Both \\
\hline Great Britain/English & EN_GB & 285 & Both \\
\hline Greece/Greek & EL_GR & 875 & Both \\
\hline Greece/Greek euro & EL_GR_E & 875 & Source \\
\hline Guatemala/Spanish & ES_GT & 284 & Source \\
\hline Honduras/Spanish & ES_HN & 284 & Source \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Description & Member & CCSID & How shipped \\
\hline Hungary/Hungarian & HU_HU & 870 & Both \\
\hline Iceland/Icelandic & IS_IS & 871 & Both \\
\hline India/English & EN_IN & 37 & Source \\
\hline India/Hindi & HI_IN & 1137 & Source \\
\hline India/Tamil & TA_IN & 13488 & Source \\
\hline India/Telugu & TE_IN & 13488 & Source \\
\hline Indonesia/Indonesian & ID_ID & 500 & Source \\
\hline Ireland/English & EN_IE & 37 & Source \\
\hline Ireland/English euro & EN_IE_E & 1140 & Source \\
\hline Israel/Hebrew & HE_IL & 424 & Both \\
\hline Israel/Hebrew & IW_IL & 424 & Both \\
\hline Italy/Italian & IT_IT & 280 & Both \\
\hline Italy/Italian euro & IT_IT_E & 1144 & Both \\
\hline Japan 13488 & JA_13488 & 13488 & Both \\
\hline Japan 5035 & JA_5035 & 5035 & Object \\
\hline Japan/Japanese & JA_JP & 5026 & Both \\
\hline Jordan/Arabic & AR_JO & 420 & Source \\
\hline Kazakstan/Kazakh & KK_KZ & 13488 & Source \\
\hline Kuwait/Arabic & AR_KW & 420 & Source \\
\hline Latvia/Latvian & LV_LV & 1112 & Both \\
\hline Lebanon/Arabic & AR_LB & 420 & Source \\
\hline Lithuania/Lithuanian & LT_LT & 1112 & Both \\
\hline Luxembourg/French & FR_LU & 297 & Source \\
\hline Luxembourg/French euro & FR_LU_E & 1147 & Source \\
\hline Luxembourg/German & DE_LU & 273 & Source \\
\hline Luxembourg/German euro & DE_LU_E & 1141 & Source \\
\hline Macedonia/Macedonian & MK_MK & 1025 & Both \\
\hline Macedonia/Macedonian-Lotus & MK_MK_L & 1025 & Both \\
\hline Malaysia/Malaysian & MS_MY & 500 & Source \\
\hline Mexico/Spanish & ES_MX & 284 & Source \\
\hline Morocco/Arabic & AR_MA & 420 & Source \\
\hline Netherlands/Dutch & NL_NL & 37 & Both \\
\hline Netherlands/Dutch euro & NL_NL_E & 1140 & Both \\
\hline New Zealand/English & EN_NZ & 37 & Source \\
\hline Nicaragua/Spanish & ES_NI & 284 & Source \\
\hline Norway/Norwegian & NO_NO & 277 & Both \\
\hline Norway/Norwegian (Bokmal) & NB_NO & 277 & Source \\
\hline Oman/Arabic & AR_OM & 420 & Source \\
\hline Panama/Spanish & ES_PA & 284 & Source \\
\hline Paraguay/Spanish & ES_PY & 284 & Source \\
\hline Peru/Spanish & ES_PE & 284 & Source \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Description & Member & CCSID & How shipped \\
\hline Philippines/English & EN_PH & 37 & Source \\
\hline Poland/Polish & PL_PL & 870 & Both \\
\hline Portugal/Portuguese & PT_PT & 37 & Both \\
\hline Portugal/Portuguese euro & PT_PT_E & 1140 & Both \\
\hline Puerto Rico/Spanish & ES_PR & 284 & Source \\
\hline Qatar/Arabic & AR_QA & 420 & Source \\
\hline Romania/Romanian & RO_RO & 870 & Both \\
\hline Russia/Russian & RU_RU & 1025 & Both \\
\hline Saudi Arabia/Arabic & AR_SA & 420 & Source \\
\hline Serbia/Serbian, Cyrillic & SR_SP & 1025 & Both \\
\hline Serbia/Serbian, Cyrillic-Lotus & SR_SP_L & 1025 & Both \\
\hline Serbia/Serbian, Latin & SH_SP & 870 & Both \\
\hline Singapore/English & EN_SG & 37 & Source \\
\hline Singapore/Simplified Chinese & ZH_SG & 1388 & Source \\
\hline Slovak/Slovakian & SK_SK & 870 & Both \\
\hline Slovene/Slovenian & SL_SI & 870 & Both \\
\hline South Africa/English & EN_ZA & 37 & Source \\
\hline South Korea/Korean & KO_KR & 933 & Both \\
\hline Spain/Catalan & CA_ES & 284 & Source \\
\hline Spain/Catalan euro & CA_ES_E & 1145 & Source \\
\hline Spain/Spanish & ES_ES & 284 & Both \\
\hline Spain/Spanish euro & ES_ES_E & 1145 & Both \\
\hline Sweden/Swedish & SV_SE & 278 & Both \\
\hline Sweden/Swedish euro & SV_SE_E & 1143 & Source \\
\hline Switzerland/French & FR_CH & 500 & Both \\
\hline Switzerland/French-Lotus & FR_CH_L & 500 & Both \\
\hline Switzerland/German & DE_CH & 500 & Both \\
\hline Switzerland/German-Lotus & DE_CH_L & 500 & Both \\
\hline Switzerland/Italian & IT_CH & 500 & Source \\
\hline Syria/Arabic & AR_SY & 420 & Source \\
\hline Taiwan/Mandarin, Traditional Chinese & ZH_TW & 937 & Both \\
\hline Thailand/Thai & TH_TH & 838 & Both \\
\hline Tunisia/Arabic & AR_TN & 420 & Source \\
\hline Turkey/Turkish & TR_TR & 1026 & Both \\
\hline Turkey/Turkish, English & TR_TR2 & 1026 & Source \\
\hline Ukraine/Ukrainian & UK_UA & 1025 & Both \\
\hline United Arab Emirates/Arabic & AR_AE & 420 & Source \\
\hline United Kingdom/English euro & EN_GB_E & 1146 & Source \\
\hline United States/Spanish & ES_US & 284 & Source \\
\hline Uruguay/Spanish & ES_UY & 284 & Source \\
\hline USA/English & EN_US & 37 & Both \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline Description & Member & CCSID & How shipped \\
\hline USA/English,Upper Case & EN_UPPER & 37 & Both \\
\hline Venezuela/Spanish & ES_VE & 284 & Source \\
\hline Vietnam/Vietnamese & VI_VN & 1129 & Source \\
\hline Yemen/Arabic & AR_YE & 420 & Source \\
\hline Yugoslavia/Serbian, Latin & SH_YU & 870 & Source \\
\hline Yugoslavia/Serbian, Cyrillic & SR_YU & 1025 & Source \\
\hline
\end{tabular}

\section*{<}

\section*{Mapping of locale symbolic names}

The following table shows:
- Some of the common locale symbolic names used by OS/400 and the UCS-2 code points they represent.
- When appropriate, a comparison of code points between UCS-2 code page and various IBM code pages
- The IBM graphic character global identifier (GCGID)
- An illustration of the GCGID

\section*{》}

This table shows code points up through x'00FF'. The locale compiler understands most of the names defined by the Unicode organization. See the Unicode

Web site (http://www.unicode.org) for an extended listing.

\section*{<}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (\(\mathrm{xxx} / \mathrm{xx}\)) & IBM GCGID & GCGID illustration \\
\hline <NUL> & 0000 & NULL (NUL) & 037/00 & & \\
\hline <SOH> & 0001 & START OF HEADING (SOH) & 037/01 & & \\
\hline <STX> & 0002 & START OF TEXT (STX) & 037/02 & & \\
\hline <ETX> & 0003 & END OF TEXT (ETX) & 037/03 & & \\
\hline <EOT> & 0004 & \[
\begin{aligned}
& \text { END OF } \\
& \text { TRANSMISSION } \\
& \text { (EOT) }
\end{aligned}
\] & 037/37 & & \\
\hline <ENQ> & 0005 & ENQUIRY (ENQ) & 037/2D & & \\
\hline <ACK> & 0006 & ACKNOWLEDGE (ACK) & 037/2E & & \\
\hline <alert> & 0007 & BELL & 037/2F & & \\
\hline <BEL> & 0007 & BELL (BEL) & 037/2F & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & GCGID illustration \\
\hline <BS> & 0008 & \[
\begin{aligned}
& \text { BACKSPACE } \\
& \text { (BS) }
\end{aligned}
\] & 037/16 & & \\
\hline <backspace> & 0008 & BACKSPACE & 037/16 & & \\
\hline <tab> & 0009 & CHARACTER TABULATION & 037/05 & & \\
\hline <HT> & 0009 & CHARACTER TABULATION (HT) & 037/05 & & \\
\hline <newline> & 000A & LINE FEED & 037/25 & & \\
\hline <LF> & 000A & LINE FEED (LF) & 037/25 & & \\
\hline <vertical-tab> & 000B & \begin{tabular}{l}
LINE \\
TABULATION
\end{tabular} & 037/0B & & \\
\hline <VT> & 000B & \begin{tabular}{l}
LINE \\
TABULATION (VT)
\end{tabular} & 037/0B & & \\
\hline <FF> & 000C & FORM FEED (FF) & 037/0C & & \\
\hline <form-feed> & 000C & FORM FEED & 037/0C & & \\
\hline <carriage-return> & 000D & CARRIAGE RETURN & 037/0D & & \\
\hline <SO> & 000E & SHIFT OUT & 037/0E & & \\
\hline <SI> & 000F & SHIFT IN & 037/0F & & \\
\hline <DLE> & 0010 & DATALINK ESCAPE (DLE) & 037/10 & & \\
\hline <DC1> & 0011 & DEVICE CONTROL ONE (DC1) & 037/11 & & \\
\hline <DC2> & 0012 & \begin{tabular}{l}
DEVICE \\
CONTROL TWO (DC2)
\end{tabular} & 037/12 & & \\
\hline <DC3> & 0013 & DEVICE CONTROL THREE (DC3) & 037/13 & & \\
\hline <DC4> & 0014 & \begin{tabular}{l}
DEVICE \\
CONTROL FOUR \\
(DC4)
\end{tabular} & 037/3C & & \\
\hline <NAK> & 0015 & NEGATIVE ACKNOWLEDGE (NAK) & 037/3D & & \\
\hline <SYN> & 0016 & SYNCRONOUS IDLE (SYN) & 037/32 & & \\
\hline <ETB> & 0017 & \begin{tabular}{l}
END OF \\
TRANSMISSION \\
BLOCK (ETB)
\end{tabular} & 037/26 & & \\
\hline <CAN> & 0018 & CANCEL (CAN) & 037/18 & & \\
\hline & 0019 & END OF MEDIA & 037/19 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & GCGID illustration \\
\hline <SUB> & 001A & SUBSTITUTE (SUB) & 037/3F & & \\
\hline <ESC> & 001B & ESCAPE (ESC) & 037/27 & & \\
\hline <IS4> & 001C & FILE SEPARATOR (IS4) & 037/1C & & \\
\hline <FS> & 001C & FILE SEPARATOR (IS4) & 037/1C & & \\
\hline <IS3> & 001D & GROUP SEPARATOR (IS3) & 037/1D & & \\
\hline <GS> & 001D & GROUP SEPARATOR (IS3) & 037/1D & & \\
\hline <IS2> & 001E & RECORD SEPARATOR (IS2) & 037/1E & & \\
\hline <RS> & 001E & RECORD SEPARATOR (IS2) & 037/1E & & \\
\hline <IS1> & 001F & UNIT SEPARATOR (IS1) & 037/1F & & \\
\hline <US> & 001F & UNIT SEPARATOR (IS1) & 037/1F & & \\
\hline & 007F & DELETE (DEL) & 037/07 & & \\
\hline <space> & 0020 & SPACE & 037/40 & SP010000 & (SP) \\
\hline <exclamationmark> & 0021 & EXCLAMATION MARK & 500/4F & SP020000 & \(!\) \\
\hline <quotation-mark> & 0022 & QUOTATION MARK & 500/7F & SP040000 & " \\
\hline <number-sign> & 0023 & NUMBER SIGN & 500/7B & SM010000 & \# \\
\hline <dollar-sign> & 0024 & DOLLAR SIGN & 500/5B & SC030000 & \$ \\
\hline <percent-sign> & 0025 & PERCENT SIGN & 500/6C & SM020000 & \% \\
\hline <ampersand> & 0026 & AMPERSAND & 500/50 & SM030000 & \& \\
\hline <apostrophe> & 0027 & APOSTROPHE & 500/7D & SP050000 & , \\
\hline <left-parenthesis> & 0028 & LEFT PARENTHESIS & 500/4D & SP060000 & (\\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Symbolic name } & \begin{array}{l}\text { Unicode (ISO } \\ \text { 10646) code } \\ \text { point } \\ \text { (hexadecimal) }\end{array} & \text { Description } & \begin{array}{l}\text { IBM code page } \\ \text { and code point } \\ \text { (xxx/xx) }\end{array} & \text { IBM GCGID }\end{array} \quad \begin{array}{l}\text { GCGID } \\ \text { illustration }\end{array}\right]:\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & GCGID illustration \\
\hline <equals-sign> & 003D & EQUALS SIGN & 500/7E & SA040000 & \(=\) \\
\hline <greater-thansign> & 003E & GREATER-THAN SIGN & 500/6E & SA050000 & > \\
\hline <question-mark> & 003F & QUESTION MARK & 500/6F & SP150000 & ? \\
\hline <commercial-at> & 0040 & COMMERCIAL AT & 500/7C & SM050000 & @ \\
\hline <A> & 0041 & LATIN CAPITAL LETTER A & 500/C1 & LA020000 & A \\
\hline & 0042 & LATIN CAPITAL LETTER B & 500/C2 & LB020000 & B \\
\hline <C> & 0043 & LATIN CAPITAL LETTER C & 500/C3 & LC020000 & C \\
\hline <D> & 0044 & LATIN CAPITAL LETTER D & 500/C4 & LD020000 & D \\
\hline <E> & 0045 & LATIN CAPITAL LETTER E & 500/C5 & LE020000 & E \\
\hline <F> & 0046 & LATIN CAPITAL LETTER F & 500/C6 & LF020000 & F \\
\hline <G> & 0047 & LATIN CAPITAL LETTER G & 500/C7 & LG020000 & G \\
\hline <H> & 0048 & LATIN CAPITAL LETTER H & 500/C8 & LH020000 & H \\
\hline <1> & 0049 & LATIN CAPITAL LETTER I & 500/C9 & LIO20000 & I \\
\hline <J> & 004A & LATIN CAPITAL LETTER J & 500/D1 & LJ020000 & J \\
\hline <K> & 004B & LATIN CAPITAL LETTER K & 500/D2 & LK020000 & K \\
\hline <L> & 004C & LATIN CAPITAL LETTER L & 500/D3 & LL020000 & L \\
\hline <M> & 004D & LATIN CAPITAL LETTER M & 500/D4 & LM020000 & M \\
\hline <N> & 004E & LATIN CAPITAL LETTER N & 500/D5 & LN020000 & N \\
\hline <O> & 004F & LATIN CAPITAL LETTER O & 500/D6 & LO020000 & O \\
\hline & 0050 & LATIN CAPITAL LETTER P & 500/D7 & LP020000 & P \\
\hline <Q> & 0051 & LATIN CAPITAL LETTER Q & 500/D8 & LQ020000 & Q \\
\hline <R> & 0052 & LATIN CAPITAL LETTER R & 500/D9 & LR020000 & R \\
\hline <S> & 0053 & LATIN CAPITAL LETTER S & 500/E2 & LS020000 & S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & GCGID illustration \\
\hline <T> & 0054 & LATIN CAPITAL LETTER T & 500/E3 & LT020000 & T \\
\hline <U> & 0055 & LATIN CAPITAL LETTER U & 500/E4 & LU020000 & U \\
\hline <V> & 0056 & LATIN CAPITAL LETTER V & 500/E5 & LV020000 & V \\
\hline <W> & 0057 & LATIN CAPITAL LETTER W & 500/E6 & LW020000 & W \\
\hline <X> & 0058 & LATIN CAPITAL LETTER X & 500/E7 & LX020000 & X \\
\hline <Y> & 0059 & LATIN CAPITAL LETTER Y & 500/E8 & LY020000 & Y \\
\hline <Z> & 005A & LATIN CAPITAL LETTER Z & 500/E9 & LZ020000 & Z \\
\hline <left-squarebracket> & 005B & LEFT SQUARE BRACKET & 500/4A & SM060000 & [\\
\hline <backslash> & 005C & BACKSLASH & 500/E0 & SM070000 & 1 \\
\hline <reverse-solidus> & 005C & REVERSE SOLIDUS & 500/E0 & SM070000 & 1 \\
\hline <right-squarebracket> & 005D & RIGHT SQUARE BRACKET & 500/5A & SM080000 &] \\
\hline <circumflex> & 005E & CIRCUMFLEX & 500/5F & SD150000 & \(\wedge\) \\
\hline <circumflexaccent> & 005E & CIRCUMFLEX ACCENT & 500/5F & SD150000 & \(\wedge\) \\
\hline <underscore> & 005F & UNDERSCORE & 500/6D & SP090000 & - \\
\hline <underline> & 005F & UNDERLINE & 500/6D & SP090000 & - \\
\hline <low-line> & 005F & LOW LINE & 500/6D & SP090000 & - \\
\hline <grave-accent> & 0060 & GRAVE ACCENT & 500/79 & SD130000 & - \\
\hline <a> & 0061 & LATIN SMALL LETTER A & 500/81 & LA010000 & a \\
\hline & 0062 & LATIN SMALL LETTER B & 500/82 & LB010000 & b \\
\hline <c> & 0063 & LATIN SMALL LETTER C & 500/83 & LC010000 & C \\
\hline <d> & 0064 & LATIN SMALL LETTER D & 500/84 & LD010000 & d \\
\hline <e> & 0065 & LATIN SMALL LETTER E & 500/85 & LE010000 & e \\
\hline <f> & 0066 & LATIN SMALL LETTER F & 500/86 & LF010000 & f \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (\(x x x / x x\)) & IBM GCGID & GCGID illustration \\
\hline <g> & 0067 & LATIN SMALL LETTER G & 500/87 & LG010000 & g \\
\hline <h> & 0068 & LATIN SMALL LETTER H & 500/88 & LH010000 & h \\
\hline <i> & 0069 & LATIN SMALL LETTER I & 500/89 & LI010000 & 1 \\
\hline <j> & 006A & LATIN SMALL LETTER J & 500/91 & LJ010000 & j \\
\hline <k> & 006B & LATIN SMALL LETTER K & 500/92 & LK010000 & k \\
\hline <1> & 006C & LATIN SMALL LETTER L & 500/93 & LL010000 & 1 \\
\hline <m> & 006D & LATIN SMALL LETTER M & 500/94 & LM010000 & m \\
\hline <n> & 006E & LATIN SMALL LETTER N & 500/95 & LN010000 & n \\
\hline <0> & 006F & LATIN SMALL LETTER O & 500/96 & LO010000 & 0 \\
\hline & 0070 & LATIN SMALL LETTER P & 500/97 & LP010000 & p \\
\hline <q> & 0071 & LATIN SMALL LETTER Q & 500/98 & LQ010000 & q \\
\hline <r> & 0072 & LATIN SMALL LETTER R & 500/99 & LR010000 & r \\
\hline <s> & 0073 & LATIN SMALL LETTER S & 500/A2 & LS010000 & S \\
\hline <t> & 0074 & LATIN SMALL LETTER T & 500/A3 & LT010000 & t \\
\hline <u> & 0075 & LATIN SMALL LETTER U & 500/A4 & LU010000 & u \\
\hline <v> & 0076 & LATIN SMALL LETTER V & 500/A5 & LV010000 & V \\
\hline <w> & 0077 & LATIN SMALL LETTER W & 500/A6 & LW010000 & W \\
\hline <x> & 0078 & LATIN SMALL LETTER X & 500/A7 & LX010000 & X \\
\hline <y> & 0079 & LATIN SMALL LETTER Y & 500/A8 & LY010000 & y \\
\hline <Z> & 007A & LATIN SMALL LETTER Z & 500/A9 & LZ010000 & Z \\
\hline <left-brace> & 007B & LEFT BRACE & 500/C0 & SM110000 & \{ \\
\hline <left-curlybracket> & 007B & LEFT CURLY BRACKET & 500/C0 & SM110000 & \{ \\
\hline <vertical-line> & 007C & VERTICAL LINE & 500/BB & SM130000 & | \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (\(x x x / x x\)) & IBM GCGID & GCGID illustration \\
\hline <right-brace> & 007D & RIGHT BRACE & 500/D0 & SM140000 & \} \\
\hline <right-curlybracket> & 007D & RIGHT CURLY BRACKET & 500/D0 & SM140000 & \} \\
\hline <tilde> & 007E & TILDE & 500/A1 & SD190000 & \(\sim\) \\
\hline <BPH> & 0082 & BREAK PERMITTED HERE & 037/22 & & \\
\hline <NBH> & 0083 & NO BREAK HERE & 037/23 & & \\
\hline <IND> & 0084 & INDEX & 037/24 & & \\
\hline <NEL> & 0085 & NEXT LINE & 037/15 & & \\
\hline <SSA> & 0086 & START OF SELECTED AREA & 037/06 & & \\
\hline <ESA> & 0087 & END OF SELECTED AREA & 037/17 & & \\
\hline <HTS> & 0088 & CHARACTER TABULATION SET & 037/28 & & \\
\hline <HTJ> & 0089 & CHARACTER TABULATION WITH JUSTIFICATION & 037/29 & & \\
\hline <VTS> & 008A & \begin{tabular}{l}
LINE \\
TABULATION SET
\end{tabular} & 037/2A & & \\
\hline <PLD> & 008B & PARTIAL LINE DOWN & 037/2B & & \\
\hline <PLU> & 008C & PARTIAL LINE UP & 037/2C & & \\
\hline <RI> & 008D & REVERSE INDEX & 037/09 & & \\
\hline <SS2> & 008E & SINGLE SHIFT TWO & 037/0A & & \\
\hline <SS3> & 008F & SINGLE SHIFT THREE & 037/1B & & \\
\hline <DCS> & 0090 & DEVICE CONTROL STRING & 037/30 & & \\
\hline <PU1> & 0091 & PRIVATE USE ONE & 037/31 & & \\
\hline <PU2> & 0092 & PRIVATE USE TWO & 037/1A & & \\
\hline <STS> & 0093 & SET TRANSMIT STATE & 037/33 & & \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { Unicode (ISO } \\
\text { 10646) code } \\
\text { point } \\
\text { (hexadecimal) }\end{array} & \begin{array}{l}\text { Description }\end{array} & \begin{array}{l}\text { IBM code page } \\
\text { and code point } \\
\text { (xxx/xx) }\end{array} & \text { IBM GCGID }\end{array}\right] \begin{array}{l}\text { GCGID } \\
\text { illustration }\end{array}\right]\)\begin{tabular}{l}
Symbolic name
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & GCGID illustration \\
\hline <copyright> & 00A9 & COPYRIGHT SIGN & 500/B4 & SM520000 & (C) \\
\hline <feminine> & 00AA & FEMININE ORDINAL INDICATOR & 500/9A & SM210000 & \(\underline{\text { a }}\) \\
\hline <guillemot-left> & 00AB & LEFT-POINTING DOUBLE ANGLE QUOTATION MARK & 500/8A & SP170000 & < \\
\hline <not> & 00AC & NOT SIGN & 500/BA & SM660000 & 7 \\
\hline <dash> & 00AD & SOFT HYPHEN & 500/CA & SP320000 & (SHY) \\
\hline <registered> & 00AE & REGISTERED TRADE MARK SIGN & 500/AF & SM530000 & (B) \\
\hline <macron> & 00AF & SPACING MACRON & 500/BC & SM150000 & - \\
\hline <degree> & 00B0 & DEGREE SIGN & 500/90 & SM190000 & - \\
\hline <plus-minus> & 00B1 & PLUS-OR-MINUS SIGN & 500/8F & SA020000 & \(\pm\) \\
\hline <two-superior> & 00B2 & SUPERSCRIPT DIGIT TWO & 500/EA & ND021000 & 2 \\
\hline <three-superior> & 00B3 & SUPERSCRIPT DIGIT THREE & 500/FA & ND031000 & 3 \\
\hline <acute> & 00B4 & SPACING ACUTE & 500/BE & SD110000 & , \\
\hline <mu> & 00B5 & MICRO SIGN & 500/A0 & SM170000 & \(\mu\) \\
\hline <paragraph> & 00B6 & PARAGRAPH (PILCROW) SIGN & 500/B6 & SM250000 & 9 \\
\hline <dot> & 00B7 & MIDDLE DOT & 500/B3 & SD630000 & - \\
\hline <cedilla> & 00B8 & SPACING CEDILLA & 500/9D & SD410000 & , \\
\hline <one-superior> & 00B9 & SUPERSCRIPT DIGIT ONE & 500/DA & ND011000 & 1 \\
\hline <masculine> & 00BA & MASCULINE ORDINAL INDICATOR & 500/9B & SM200000 & ○ \\
\hline <guillemot-right> & 00BB & RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK & 500/8B & SP180000 & " \\
\hline <one-quarter> & 00BC & FRACTION ONE QUARTER & 500/B7 & NF040000 & \(1 / 4\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & GCGID illustration \\
\hline <one-half> & OOBD & FRACTION ONE HALF & 500/B8 & NF010000 & 1/2 \\
\hline <three-quarters> & OOBE & FRACTION THREE QUARTERS & 500/B9 & NF050000 & \(3 / 4\) \\
\hline <question-down> & 00BF & INVERTED QUESTION MARK & 500/AB & SP160000 & i \\
\hline <A-grave> & 00C0 & LATIN CAPITAL LETTER A GRAVE & 500/64 & LA140000 & À \\
\hline <A-acute> & 00C1 & LATIN CAPITAL LETTER A ACUTE & 500/65 & LA120000 & Á \\
\hline <A-circumflex> & 00 C 2 & LATIN CAPITAL LETTER A CIRCUMFLEX & 500/62 & LA160000 & A \\
\hline <A-tilde> & 00C3 & LATIN CAPITAL LETTER A TILDE & 500/66 & LA200000 & \(\widetilde{\text { A }}\) \\
\hline <A-diaresis> & 00C4 & LATIN CAPITAL LETTER A DIAERESIS & 500/63 & LA180000 & Ä \\
\hline <A-ring> & 00C5 & LATIN CAPITAL LETTER A RING ABOVE & 500/67 & LA280000 & \(\AA\) \\
\hline <AE> & 00C6 & LATIN CAPITAL LIGATURE AE & 500/9E & LA520000 & Æ \\
\hline <C-cedilla> & 00C7 & LATIN CAPITAL LETTER C CEDILLA & 500/68 & LC420000 & Ç \\
\hline <E-grave> & 00C8 & LATIN CAPITAL LETTER E GRAVE & 500/74 & LE140000 & È \\
\hline <E-acute> & 00C9 & LATIN CAPITAL LETTER E ACUTE & 500/71 & LE120000 & É \\
\hline <E-circumflex> & 00CA & LATIN CAPITAL LETTER E CIRCUMFLEX & 500/72 & LE160000 & E \\
\hline <E-diaresis> & 00CB & LATIN CAPITAL LETTER E DIAERESIS & 500/73 & LE180000 & \(\ddot{\mathrm{E}}\) \\
\hline <l-grave> & 00CC & LATIN CAPITAL LETTER I GRAVE & 500/78 & LI140000 & İ \\
\hline <l-acute> & OOCD & LATIN CAPITAL LETTER I ACUTE & 500/75 & LI120000 & Í \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & \begin{tabular}{l}
GCGID \\
illustration
\end{tabular} \\
\hline <l-circumflex> & OOCE & \begin{tabular}{l}
LATIN CAPITAL LETTER I \\
CIRCUMFLEX
\end{tabular} & 500/76 & LI160000 & \(\widehat{\mathbf{I}}\) \\
\hline <l-diaresis> & 00CF & LATIN CAPITAL LETTER I DIAERESIS & 500/77 & LI180000 & İ \\
\hline <Eth> & 00D0 & LATIN CAPITAL LETTER ETH (Icelandic) & 500/AC & LD620000 & D \\
\hline <N-tilde> & 00D1 & LATIN CAPITAL LETTER N TILDE & 500/69 & LN200000 & \(\widetilde{N}\) \\
\hline <O-grave> & 00D2 & LATIN CAPITAL LETTER O GRAVE & 500/ED & LO140000 & Ò \\
\hline <O-acute> & 00D3 & LATIN CAPITAL LETTER O ACUTE & 500/EE & LO120000 & Ó \\
\hline <O-circumflex> & 00D4 & LATIN CAPITAL LETTER O CIRCUMFLEX & 500/EB & LO160000 & O \\
\hline <O-tilde> & 00D5 & LATIN CAPITAL LETTER O TILDE & 500/EF & LO200000 & \(\widetilde{\mathrm{O}}\) \\
\hline <O-diaresis> & 00D6 & LATIN CAPITAL LETTER O DIAERESIS & 500/EC & LO180000 & Ö \\
\hline <multiply> & 00D7 & MULTIPLICATION SIGN & 500/BF & SA070000 & \(\times\) \\
\hline <O-slash> & 00D8 & LATIN CAPITAL LETTER O STROKE & 500/80 & LO620000 & \(\varnothing\) \\
\hline <U-grave> & 00D9 & LATIN CAPITAL LETTER U GRAVE & 500/FD & LU140000 & U \\
\hline <U-acute> & 00DA & LATIN CAPITAL LETTER U ACUTE & 500/FE & LU120000 & Ú \\
\hline <U-circumflex> & 00DB & LATIN CAPITAL LETTER U CIRCUMFLEX & 500/FB & LU160000 & \(\widehat{U}\) \\
\hline <U-diaresis> & 00DC & LATIN CAPITAL LETTER U DIAERESIS & 500/FC & LU180000 & Ü \\
\hline <Y-acute> & 00DD & LATIN CAPITAL LETTER Y ACUTE & 500/AD & LY120000 & Y' \\
\hline <Thorn> & OODE & \begin{tabular}{l}
LATIN CAPITAL \\
LETTER THORN (Icelandic)
\end{tabular} & 500/AE & LT640000 & \(\mathbf{P}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & GCGID illustration \\
\hline <s-sharp> & 00DF & LATIN SMALL LETTER SHARP S (German) & 500/59 & LS610000 & B \\
\hline <a-grave> & O0EO & LATIN SMALL LETTER A GRAVE & 500/44 & LA130000 & à \\
\hline <a-acute> & 00E1 & LATIN SMALL LETTER A ACUTE & 500/45 & LA110000 & á \\
\hline <a-circumflex> & 00E2 & LATIN SMALL LETTER A CIRCUMFLEX & 500/42 & LA150000 & â \\
\hline <a-tilde> & 00E3 & LATIN SMALL LETTER A TILDE & 500/46 & LA190000 & ã \\
\hline <a-diaresis> & O0E4 & LATIN SMALL LETTER A DIAERESIS & 500/43 & LA170000 & ä \\
\hline <a-ring> & 00E5 & LATIN SMALL LETTER A RING ABOVE & 500/47 & LA270000 & å \\
\hline <ae> & 00E6 & LATIN SMALL LIGATURE AE & 500/9C & LA510000 & \(\mathfrak{X}\) \\
\hline <c-cedilla> & 00E7 & LATIN SMALL LETTER C CEDILLA & 500/48 & LC410000 & ¢ \\
\hline <e-grave> & 00E8 & LATIN SMALL LETTER E GRAVE & 500/54 & LE130000 & è \\
\hline <e-acute> & 00E9 & LATIN SMALL LETTER E ACUTE & 500/51 & LE110000 & é \\
\hline <e-circumflex> & 00EA & LATIN SMALL LETTER E CIRCUMFLEX & 500/52 & LE150000 & \(\hat{e}\) \\
\hline <e-diaresis> & 00EB & LATIN SMALL LETTER E DIAERESIS & 500/53 & LE170000 & ë \\
\hline <i-grave> & 00EC & LATIN SMALL LETTER I GRAVE & 500/58 & LI130000 & 1 \\
\hline <i-acute> & O0ED & LATIN SMALL LETTER I ACUTE & 500/55 & LI110000 & 1 \\
\hline <i-circumflex> & O0EE & LATIN SMALL LETTER I CIRCUMFLEX & 500/56 & LI150000 & î \\
\hline <i-diaresis> & 00EF & LATIN SMALL LETTER I DIAERESIS & 500/57 & LI170000 & ï \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbolic name & Unicode (ISO 10646) code point (hexadecimal) & Description & IBM code page and code point (xxx/xx) & IBM GCGID & GCGID illustration \\
\hline <eth> & 00F0 & LATIN SMALL LETTER ETH (Icelandic) & 500/8C & LD630000 & ठ \\
\hline <n-tilde> & 00F1 & \begin{tabular}{l}
LATIN SMALL \\
LETTER N TILDE
\end{tabular} & 500/49 & LN190000 & \(\tilde{\mathbf{n}}\) \\
\hline <o-grave> & 00F2 & LATIN SMALL LETTER O GRAVE & 500/CD & LO130000 & Ò \\
\hline <o-acute> & 00F3 & LATIN SMALL LETTER O ACUTE & 500/CE & LO110000 & Ó \\
\hline <o-circumflex> & 00F4 & LATIN SMALL LETTER O CIRCUMFLEX & 500/CB & LO150000 & O \\
\hline <o-tilde> & 00F5 & LATIN SMALL LETTER O TILDE & 500/CF & LO190000 & Õ \\
\hline <o-diaresis> & 00F6 & LATIN SMALL LETTER O DIAERESIS & 500/CC & LO170000 & \(\ddot{O}\) \\
\hline <divide> & 00F7 & DIVISION SIGN & 500/E1 & SA060000 & \(\div\) \\
\hline <division> & 00F7 & DIVISION SIGN & 500/E1 & SA060000 & \(\div\) \\
\hline <o-slash> & 00F8 & LATIN SMALL LETTER O STROKE & 500/70 & LO610000 & \(\varnothing\) \\
\hline <u-grave> & 00F9 & LATIN SMALL LETTER U GRAVE & 500/DD & LU130000 & ù \\
\hline <u-acute> & 00FA & LATIN SMALL LETTER U ACUTE & 500/DE & LU110000 & ú \\
\hline <u-circumflex> & 00FB & LATIN SMALL LETTER U CIRCUMFLEX & 500/DB & LU150000 & 人 \\
\hline <u-diaresis> & 00FC & LATIN SMALL LETTER U DIAERESIS & 500/DC & LU170000 & ü \\
\hline <y-acute> & 00FD & LATIN SMALL LETTER Y ACUTE & 500/8D & LY110000 & y \\
\hline <thorn> & 00FE & \begin{tabular}{l}
LATIN SMALL \\
LETTER THORN (Icelandic)
\end{tabular} & 500/8E & LT630000 & b \\
\hline <y-diaresis> & 00FF & LATIN SMALL LETTER Y DIAERESIS & 500/DF & LY170000 & \(\ddot{y}\) \\
\hline
\end{tabular}

\section*{REXX extension characters}

The following tables show the REXX extension characters that are supported on OS/400.
- Axxxxxxxx GCGIDs
- Bxxxxxxxx GCGIDs
- Gxxxxxxxx GCGIDs
- Hxxxxxxxx GCGIDs
- Jxxxxxxxx GCGIDs
- Kxxxxxxxx GCGIDs
- Lxxxxxxxx GCGIDs
- Nxxxxxxxx GCGIDs
- OxxxxxxxxGCGIDs
- Sxxxxxxxx GCGIDs

\section*{REXX/400 extension characters: Axxxxxxxx GCGIDs}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ GCGID } & \multicolumn{1}{|c|}{ Description } & Token Type & Token Flag \\
\hline AA010000 & Aleph (A/F/U) - Isolated & NAME & \\
\hline AA010002 & Aleph (A/F/U) - Final & NAME & \\
\hline AA010006 & Aleph (after Lam) (A/F/U) - Final & NAME & \\
\hline AA020000 & Aleph Maksura (A) - Isolated & NAME & \\
\hline AA020002 & Aleph Maksura (A) - Final & NAME & \\
\hline AA070009 & Fathatan (A) - Intrinsic & NAME & \\
\hline AA210000 & Aleph Madda (A), Aleph Maddey (F), Aleph Madd (U) - Isolated & NAME & \\
\hline AA210002 & Aleph Madda (A), Aleph Maddey (F) - Final & NAME & \\
\hline AA210006 & Aleph Madda (after Lam) (A), Aleph Maddey (after Lam) (F) - Final & NAME & \\
\hline AA310000 & Aleph Hamza (A), Aleph Hamzey (F) - Isolated & NAME & \\
\hline AA310002 & Aleph Hamza (A), Aleph Hamzey (F) - Final & NAME & \\
\hline AA310006 & Aleph Hamza (after Lam) (A), Aleph Hamzey (after Lam) (F) - Final & NAME & \\
\hline AB010000 & Beh (A/F/U) - Isolated-Final & NAME & \\
\hline AB010003 & Beh (A/F/U) - Initial-Middle & NAME & \\
\hline AC210000 & Tcheh (F/U) - Isolated-Final & NAME & \\
\hline AC210003 & Tcheh (F/U) - Initial-Middle & NAME & \\
\hline AC470000 & Ayn (A/F/U) - Isolated & NAME & \\
\hline AC470002 & Ayn (A/F/U) - Final & NAME & \\
\hline AC470003 & Ayn (A/F/U) - Initial & NAME & \\
\hline AC470004 & Ayn (A/F/U) - Middle & NAME & \\
\hline AD010000 & Dal (A/F/U) - Isolated-Final & NAME & \\
\hline AD450000 & Dud (1st part) (A) - Isolated-Final & NAME & \\
\hline AD450003 & Dud (A), Zad (F), Duad (U) - Initial-Middle & NAME & \\
\hline AD450006 & Dud (A), Zad (F), Duad (U) - Isolated-Final & NAME & \\
\hline AD470000 & Thal (A), Zal (F/U) - Isolated-Final & NAME & \\
\hline AF010000 & Feh (A/F/U) - Isolated-Final & \\
\hline AF010003 & Feh (A/F/U) - Initial-Middle & \\
\hline AG010000 & Gaf (F/U) - Isolated-Final & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline AG010003 & Gaf (F/U) - Initial-Middle & NAME & \\
\hline AG230000 & Jeem (A/F/U) - Isolated-Final & NAME & \\
\hline AG230003 & Jeem (A/F/U) - Initial-Middle & NAME & \\
\hline AG310000 & Ghayn (A/F/U) - Isolated & NAME & \\
\hline AG310002 & Ghayn (A/F/U) - Final & NAME & \\
\hline AG310003 & Ghayn (A/F/U) - Initial & NAME & \\
\hline AG310004 & Ghayn (A/F/U) - Middle & NAME & \\
\hline AH010000 & Heh (A/F) - Isolated-Final & NAME & \\
\hline AH010003 & Heh (A/F) - Initial & NAME & \\
\hline AH010004 & Heh (A/F) - Middle & NAME & \\
\hline AH210000 & Heh Yey (F) - Isolated-Final & NAME & \\
\hline AH450000 & Hah (A), Hey (F), Heh (U) - Isolated-Final & NAME & \\
\hline AH450003 & Hah (A), Hey (F), Heh (U) - Initial-Middle & NAME & \\
\hline AH470000 & Khah (A), Khey (F), Kheh (U) - Isolated-Final & NAME & \\
\hline AH470003 & Khah (A), Khey (F), Kheh (U) - Initial-Middle & NAME & \\
\hline AK010000 & Caf (A) - Isolated-Final & NAME & \\
\hline AK010003 & Caf (A/F/U) - Initial-Middle & NAME & \\
\hline AK010006 & Caf (F/U) - Isolated-Final & NAME & \\
\hline AL010000 & Lam (A/F/U) - Isolated-Final & NAME & \\
\hline AL010003 & Lam (A/F) - Initial-Middle & NAME & \\
\hline AL020000 & Lamaleph (A/F) - Isolated & NAME & \\
\hline AL020003 & Lamaleph (A/F) - Final & NAME & \\
\hline AL220000 & Lamaleph Madda (A), Lamaleph Maddey (F) - Isolated & NAME & \\
\hline AL220003 & Lamaleph Madda (A), Lamaleph Maddey (F) - Final & NAME & \\
\hline AL320000 & Lamaleph Hamza (A), Lamaleph Hamzey (F) - Isolated & NAME & \\
\hline AL320003 & Lamaleph Hamza (A), Lamaleph Hamzey (F) - Final & NAME & \\
\hline AM010000 & Meem (A/F/U) - Isolated-Final & NAME & \\
\hline AM010003 & Meem (A/F/U) - Initial-Middle & NAME & \\
\hline AN010000 & Noon (A/F/U) - Isolated-Final & NAME & \\
\hline AN010003 & Noon (A/F/U) - Initial-Middle & NAME & \\
\hline AP010000 & Peh (F/U) - Isolated-Final & NAME & \\
\hline AP010003 & Peh (F/U) - Initial-Middle & NAME & \\
\hline AQ010000 & Qaf (A/F/U) - Isolated-Final & NAME & \\
\hline AQ010003 & Qaf (A/F/U) - Initial-Middle & NAME & \\
\hline AR010000 & Reh (A/F/U) - Isolated-Final & NAME & \\
\hline AS010000 & Seen (1st part) (A) - Isolated-Final & NAME & \\
\hline AS010003 & Seen (A/F/U) - Initial-Middle & NAME & \\
\hline AS010006 & Seen (A/F/U) - Isolated-Final & NAME & \\
\hline AS230000 & Sheen (1st part) (A) - Isolated-Final & NAME & \\
\hline AS230003 & Sheen (A/F/U) - Initial-Middle & NAME & \\
\hline AS230006 & Sheen (A/F/U) - Isolated-Final & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline AS450000 & Sad (1st part) (A) - Isolated-Final & NAME & \\
\hline AS450003 & Sad (A/F), Suad (U) - Initial-Middle & NAME & \\
\hline AS450006 & Sad (A/F), Suad (U) - Isolated-Final & NAME & \\
\hline AT010000 & Teh (A/F/U) - Isolated-Final & NAME & \\
\hline AT010003 & Teh (A/F/U) - Initial-Middle & NAME & \\
\hline AT020000 & Teh Marbuta (A), Teh Mudawara (U) - Isolated-Final & NAME & \\
\hline AT450000 & Tah (A/F), Toey (U) - Isolated-Final-Initial-Middle & NAME & \\
\hline AT450001 & Tah (A/F), Toey (U) - Isolated-Final & NAME & \\
\hline AT450002 & Tah (A/F), Toey (U) - Initial-Middle & NAME & \\
\hline AT470000 & Theh (A/F/U) - Isolated-Final & NAME & \\
\hline AT470003 & Theh (A/F/U) - Initial-Middle & NAME & \\
\hline AW010000 & Waw (A), Vav (F), Waow (U) - Isolated-Final & NAME & \\
\hline AW310000 & Waw Hamza (A), Vav Hamzey (F), Waow Hamza (U) - Isolated-Final & NAME & \\
\hline AX100000 & Shadda (A/F), Shadd (U) - Isolated & NAME & \\
\hline AX100004 & Shadda (A/F), Shadd (U) - Middle & NAME & \\
\hline AX300000 & Hamza (A), Hamzey (F), Hamza (U) - Isolated & NAME & \\
\hline AY010000 & Yeh (A) - Isolated & NAME & \\
\hline AY010002 & Yeh (A) - Final & NAME & \\
\hline AY010003 & Yeh (A) - Initial-Middle & NAME & \\
\hline AY020000 & Yey (F), Yeh Chotee (U) - Isolated & NAME & \\
\hline AY020002 & Yey (F), Yeh Chotee (U) - Final & NAME & \\
\hline AY020003 & Yey (F), Yeh Chotee (U) - Initial-Middle & NAME & \\
\hline AY310000 & Yeh Hamza (A) - Initial-Middle & NAME & \\
\hline AY320003 & Yey Hamzey (F), Yeh Chotee Hamza (U) - Initial-Middle & NAME & \\
\hline AZ010000 & Zayn (A), Zey (F), Zeh (U) - Isolated-Final & NAME & \\
\hline AZ210000 & Jey (F), Zzeh (U) - Isolated-Final & NAME & \\
\hline AZ450000 & Zah (F), Zoey (U) - Isolated-Final-Initial-Middle & NAME & \\
\hline AZ450001 & Zah (A/F), Zoey (U) - Isolated-Final & NAME & \\
\hline AZ450002 & Zah (A/F), Zoey (U) - Initial-Middle & NAME & \\
\hline
\end{tabular}

\section*{REXX/400 extension characters: Bxxxxxxx GCGIDs}
\begin{tabular}{|l|l|l|l|}
\hline GCGID & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Token Type } & Token Flag \\
\hline BA100000 & a - (Upper Vowel) & NAME & \\
\hline BA200000 & a - (Middle Vowel) & NAME & \\
\hline BA300000 & a - (Middle Vowel) & NAME & \\
\hline BA400000 & am - (Middle Vowel) & NAME & \\
\hline BA500000 & ai - (Middle Vowel) & NAME & \\
\hline BA600000 & ai - (Middle Vowel) & NAME & \\
\hline BA700000 & a - (Middle Vowel) & NAME & \\
\hline BB100000 & Bo & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline BC100000 & Cho & NAME & \\
\hline BD100000 & Do & NAME & \\
\hline BD200000 & Do & NAME & \\
\hline BE100000 & e/a - (Upper Vowel) & NAME & \\
\hline BE200000 & e - (Middle Vowel) & NAME & \\
\hline BE300000 & e - (Middle Vowel) & NAME & \\
\hline BE400000 & Yamakkan & NAME & \\
\hline BF100000 & Fo & NAME & \\
\hline BF200000 & Fo & NAME & \\
\hline BH100000 & Ho & NAME & \\
\hline BH200000 & Ho & NAME & \\
\hline Bl100000 & i - (Upper Vowel) & NAME & \\
\hline BI200000 & i - (Upper Vowel) & NAME & \\
\hline BK100000 & Ko & NAME & \\
\hline BK200000 & Kho & NAME & \\
\hline BK300000 & Kho & NAME & \\
\hline BK400000 & Kho & NAME & \\
\hline BK500000 & Kho & NAME & \\
\hline BK600000 & Kho & NAME & \\
\hline BL100000 & Lo & NAME & \\
\hline BL200000 & Lu & NAME & \\
\hline BL300000 & Lo & NAME & \\
\hline BM100000 & Mo & NAME & \\
\hline BN100000 & Ngo & NAME & \\
\hline BN200000 & No & NAME & \\
\hline BN300000 & No & NAME & \\
\hline BN400000 & a - (Upper Vowel) & NAME & \\
\hline BO100000 & \(\bigcirc\) & NAME & \\
\hline BO200000 & - - (Middle Vowel) & NAME & \\
\hline BP100000 & Po & NAME & \\
\hline BP200000 & Pho & NAME & \\
\hline BP300000 & Pho & NAME & \\
\hline BP400000 & Pho & NAME & \\
\hline BQ100000 & Thai Repeat Sign & NAME & \\
\hline BQ200000 & Thai Ellipsis & NAME & \\
\hline BQ300000 & a - (Lower Vowel) & NAME & \\
\hline BQ400000 & Fongmann & NAME & \\
\hline BQ500000 & Angkhankhu & NAME & \\
\hline BQ600000 & Komut & NAME & \\
\hline BR100000 & Ro & NAME & \\
\hline BR200000 & Ro & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline BS100000 & So & NAME & \\
\hline BS200000 & So & NAME & \\
\hline BS300000 & So & NAME & \\
\hline BS400000 & So & NAME & \\
\hline BT100000 & To & NAME & \\
\hline BT200000 & Tho & NAME & \\
\hline BT300000 & Tho & NAME & \\
\hline BT400000 & Tho & NAME & \\
\hline BT500000 & To & NAME & \\
\hline BT600000 & Tho & NAME & \\
\hline BT700000 & Tho & NAME & \\
\hline BT800000 & Tho & NAME & \\
\hline BU100000 & u - (Upper Vowel) & NAME & \\
\hline BU200000 & u - (Upper Vowel) & NAME & \\
\hline BU300000 & u - (Lower Vowel) & NAME & \\
\hline BU400000 & u - (Lower Vowel) & NAME & \\
\hline BW100000 & Wo & NAME & \\
\hline BX100000 & Хо & NAME & \\
\hline BX200000 & Хо & NAME & \\
\hline BX300000 & Хо & NAME & \\
\hline BY100000 & Jo & NAME & \\
\hline BY200000 & Yo & NAME & \\
\hline BZ100000 & 1st Tone Mark & NAME & \\
\hline BZ100300 & 1st Tone Mark, Low Position & NAME & \\
\hline BZ200000 & 2nd Tone Mark & NAME & \\
\hline BZ200300 & 2nd Tone Mark, Low Position & NAME & \\
\hline BZ300000 & 3rd Tone Mark & NAME & \\
\hline BZ300300 & 3rd Tone Mark, Low Position & NAME & \\
\hline BZ400000 & 4th Tone Mark & NAME & \\
\hline BZ400300 & 4th Tone Mark, Low Position & NAME & \\
\hline BZ500000 & 5th Tone Mark & NAME & \\
\hline BZ500300 & 5th Tone Mark, Low Position & NAME & \\
\hline
\end{tabular}

\section*{REXX/400 extension characters: Gxxxxxxx GCGIDs}
\begin{tabular}{|c|l|l|c|}
\hline GCGID & \multicolumn{1}{|c|}{ Description } & Token Type & Token Flag \\
\hline GA010000 & Alpha Small & NAME & \\
\hline GA020000 & Alpha Capital & NAME & \\
\hline GA110000 & Alpha Acute Small & NAME & \\
\hline GA120000 & Alpha Acute Capital & NAME & \\
\hline GB010000 & Beta Small & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline GB020000 & Beta Capital & NAME & \\
\hline GD010000 & Delta Small & NAME & \\
\hline GD020000 & Delta Capital & NAME & \\
\hline GE010000 & Epsilon Small & NAME & \\
\hline GE020000 & Epsilon Capital & NAME & \\
\hline GE110000 & Epsilon Acute Small & NAME & \\
\hline GE120000 & Epsilon Acute Capital & NAME & \\
\hline GE310000 & Eta Small & NAME & \\
\hline GE320000 & Eta Capital & NAME & \\
\hline GE710000 & Eta Acute Small & NAME & \\
\hline GE720000 & Eta Acute Capital & NAME & \\
\hline GF010000 & Phi Small & NAME & \\
\hline GF020000 & Phi Capital & NAME & \\
\hline GG010000 & Gamma Small & NAME & \\
\hline GG020000 & Gamma Capital & NAME & \\
\hline GH010000 & Chi Small & NAME & \\
\hline GH020000 & Chi Capital & NAME & \\
\hline GI010000 & Iota Small & NAME & \\
\hline GI020000 & Iota Capital & NAME & \\
\hline Gl110000 & Iota Acute Small & NAME & \\
\hline Gl120000 & Iota Acute Capital & NAME & \\
\hline Gl170000 & Iota Diaeresis Small & NAME & \\
\hline Gl180000 & Iota Diaeresis Capital & NAME & \\
\hline Gl730000 & Iota Acute and Diaeresis Small & NAME & \\
\hline GK010000 & Kappa Small & NAME & \\
\hline GK020000 & Kappa Capital & NAME & \\
\hline GL010000 & Lambda Small & NAME & \\
\hline GL020000 & Lambda Capital & NAME & \\
\hline GM010000 & Mu Small & NAME & \\
\hline GM020000 & Mu Capital & NAME & \\
\hline GN010000 & Nu Small & NAME & \\
\hline GN020000 & Nu Capital & NAME & \\
\hline GO010000 & Omicron Small & NAME & \\
\hline GO020000 & Omicron Capital & NAME & \\
\hline GO110000 & Omicron Acute Small & NAME & \\
\hline GO120000 & Omicron Acute Capital & NAME & \\
\hline GO310000 & Omega Small & NAME & \\
\hline GO320000 & Omega Capital & NAME & \\
\hline GO710000 & Omega Acute Small & NAME & \\
\hline GO720000 & Omega Acute Capital & NAME & \\
\hline GP010000 & Pi Small & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline GCGID & \multicolumn{1}{|c|}{ Description } & Token Type & Token Flag \\
\hline GP020000 & Pi Capital & NAME & \\
\hline GP610000 & Psi Small & NAME & \\
\hline GP620000 & Psi Capital & NAME & \\
\hline GR010000 & Rho Small & NAME & \\
\hline GR020000 & Rho Capital & NAME & \\
\hline GS010000 & Sigma Small & NAME & \\
\hline GS020000 & Sigma Capital & NAME & \\
\hline GS610000 & Sigma Small (Final Form) & NAME & \\
\hline GT010000 & Tau Small & NAME & \\
\hline GT020000 & Tau Capital & NAME & \\
\hline GT610000 & Theta Small & NAME & \\
\hline GT620000 & Theta Capital & NAME & \\
\hline GU010000 & Upsilon Small & NAME & \\
\hline GU020000 & Upsilon Capital & NAME & \\
\hline GU110000 & Upsilon Acute Small & NAME & \\
\hline GU120000 & Upsilon Acute Capital & NAME & \\
\hline GU170000 & Upsilon Diaeresis Small & NAME & \\
\hline GU180000 & Upsilon Diaeresis Capital & NAME & \\
\hline GU730000 & Upsilon Acute and Diaeresis Small & \\
\hline GX010000 & Xi Small & NAME & \\
\hline GX020000 & Xi Capital & Neta Small & \\
\hline GZ010000 & Zeta Capital & & \\
\hline GZ020000 & & & \\
\hline
\end{tabular}

REXX/400 extension characters: Hxxxxxxx GCGIDs
\begin{tabular}{|l|l|l|l|}
\hline GCGID & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Token Type } & Token Flag \\
\hline HB010000 & Bet & NAME & \\
\hline HD010000 & Dalet & NAME & \\
\hline HG010000 & Gimel & NAME & \\
\hline HH010000 & He & NAME & \\
\hline HH450000 & Het & NAME & \\
\hline HK010000 & Kaf & NAME & \\
\hline HK610000 & Kaf (Final Form) & NAME & \\
\hline HL010000 & Lamed & NAME & \\
\hline HM010000 & Mem & NAME & \\
\hline HM610000 & Mem (Final Form) & NAME & \\
\hline HN010000 & Nun & NAME & \\
\hline HN610000 & Nun (Final Form) & NAME & \\
\hline HP010000 & Pe & NAME & \\
\hline HP610000 & Pe (Final Form) & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline GCGID & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Token Type } & Token Flag \\
\hline HQ010000 & Qof & NAME & \\
\hline HR010000 & Resh & NAME & \\
\hline HS010000 & Samech & NAME & \\
\hline HS210000 & Shin & NAME & \\
\hline HS450000 & Zadi & NAME & \\
\hline HS610000 & Zadi (Final Form) & NAME & \\
\hline HT010000 & Tav & NAME & \\
\hline HT450000 & Tet & NAME & \\
\hline HW010000 & Waw & NAME & \\
\hline HX330000 & Alef & NAME & \\
\hline HX350000 & Ayin & NAME & \\
\hline HY010000 & Yod & NAME & \\
\hline HZ010000 & Zayin & NAME & \\
\hline
\end{tabular}

\section*{REXX/400 extension characters: Jxxxxxxx GCGIDs}
\begin{tabular}{|c|l|l|l|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline JA000000 & A & NAME & \\
\hline JA010000 & a & NAME & \\
\hline JE000000 & E & NAME & \\
\hline JE010000 & e & NAME & \\
\hline JH100000 & HA & NAME & \\
\hline JH200000 & HI & NAME & \\
\hline JH300000 & HU or FU & NAME & \\
\hline JH400000 & HE & NAME & \\
\hline JH500000 & HO & NAME & \\
\hline JI000000 & I & NAME & \\
\hline JI010000 & i & NAME & \\
\hline JK100000 & KA & NAME & \\
\hline JK200000 & KI & NAME & \\
\hline JK300000 & KU & NAME & \\
\hline JK400000 & KE & NAME & \\
\hline JK500000 & KO & NAME & \\
\hline JM100000 & MA & NAME & \\
\hline JM200000 & MI & NAME & \\
\hline JM300000 & MU & NAME & \\
\hline JM400000 & ME & NAME & \\
\hline JM500000 & MO & NAME & \\
\hline JN000000 & N & NAME & \\
\hline JN100000 & NA & & \\
\hline JN200000 & NI & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline JN300000 & NU & NAME & \\
\hline JN400000 & NE & NAME & \\
\hline JN500000 & NO & NAME & \\
\hline JO000000 & 0 & NAME & \\
\hline JO010000 & - & NAME & \\
\hline JQ700000 & Katakana Full Stop & NAME & \\
\hline JQ710000 & Katakana Left Bracket & NAME & \\
\hline JQ720000 & Katakana Right Bracket & NAME & \\
\hline JQ730000 & Katakana Comma & NAME & \\
\hline JQ740000 & Katakana Conjunctive Symbol & NAME & \\
\hline JR100000 & RA & NAME & \\
\hline JR200000 & RI & NAME & \\
\hline JR300000 & RU & NAME & \\
\hline JR400000 & RE & NAME & \\
\hline JR500000 & RO & NAME & \\
\hline JS100000 & SA & NAME & \\
\hline JS200000 & SI or SHI & NAME & \\
\hline JS300000 & SU & NAME & \\
\hline JS400000 & SE & NAME & \\
\hline JS500000 & SO & NAME & \\
\hline JT100000 & TA & NAME & \\
\hline JT200000 & TI or CHI & NAME & \\
\hline JT300000 & TU or TSU & NAME & \\
\hline JT310000 & tu or tsu & NAME & \\
\hline JT400000 & TE & NAME & \\
\hline JT500000 & TO & NAME & \\
\hline JU000000 & U & NAME & \\
\hline JU010000 & u & NAME & \\
\hline JW100000 & WA & NAME & \\
\hline JW500000 & WO, Katakana Participle & NAME & \\
\hline JX700000 & Prolonged Sound Symbol & NAME & \\
\hline JX710000 & Voiced Sound Symbol & NAME & \\
\hline JX720000 & Semi-Voiced Sound Symbol & NAME & \\
\hline JY100000 & YA & NAME & \\
\hline JY110000 & ya & NAME & \\
\hline JY300000 & YU & NAME & \\
\hline JY310000 & yu & NAME & \\
\hline JY500000 & YO & NAME & \\
\hline JY510000 & yo & NAME & \\
\hline
\end{tabular}

REXX/400 extension characters: Kxxxxxxx GCGIDs
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline KA010000 & a Small & NAME & \\
\hline KA020000 & A Capital & NAME & \\
\hline KA150000 & ya Small & NAME & \\
\hline KA160000 & YA Capital & NAME & \\
\hline KB010000 & b Small & NAME & \\
\hline KB020000 & B Capital & NAME & \\
\hline KC010000 & ts Small & NAME & \\
\hline KC020000 & TS Capital & NAME & \\
\hline KC110000 & c Special Small & NAME & \\
\hline KC120000 & C Special Capital & NAME & \\
\hline KC210000 & ch Small & NAME & \\
\hline KC220000 & CH Capital & NAME & \\
\hline KD010000 & d Small & NAME & \\
\hline KD020000 & D Capital & NAME & \\
\hline KD610000 & d Special Small & NAME & \\
\hline KD620000 & D Special Capital & NAME & \\
\hline KE010000 & e Small & NAME & \\
\hline KE020000 & E Capital & NAME & \\
\hline KE130000 & e Special Small & NAME & \\
\hline KE140000 & E Special Capital & NAME & \\
\hline KE150000 & ye Small & NAME & \\
\hline KE160000 & YE Capital & NAME & \\
\hline KE170000 & e Diaeresis Small & NAME & \\
\hline KE180000 & E Diaeresis Capital & NAME & \\
\hline KF010000 & f Small & NAME & \\
\hline KF020000 & F Capital & NAME & \\
\hline KG010000 & g Small & NAME & \\
\hline KG020000 & G Capital & NAME & \\
\hline KG110000 & g Special Small & NAME & \\
\hline KG120000 & G Special Capital & NAME & \\
\hline KG210000 & dz Special Small & NAME & \\
\hline KG220000 & DZ Special Capital & NAME & \\
\hline KH010000 & kh Small & NAME & \\
\hline KH020000 & KH Capital & NAME & \\
\hline KI010000 & i Small & NAME & \\
\hline KI020000 & I Capital & NAME & \\
\hline KI110000 & i Special Small & NAME & \\
\hline KI120000 & I Special Capital & NAME & \\
\hline KI170000 & i Diaeresis Small & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline KI180000 & I Diaeresis Capital & NAME & \\
\hline KJ010000 & j Small & NAME & \\
\hline KJ020000 & J Capital & NAME & \\
\hline KJ110000 & j Special Small & NAME & \\
\hline KJ120000 & J Special Capital & NAME & \\
\hline KK010000 & k Small & NAME & \\
\hline KK020000 & K Capital & NAME & \\
\hline KK110000 & k Special Small & NAME & \\
\hline KK120000 & K Special Capital & NAME & \\
\hline KL010000 & I Small & NAME & \\
\hline KL020000 & L Capital & NAME & \\
\hline KL410000 & Ij Small & NAME & \\
\hline KL420000 & LJ Capital & NAME & \\
\hline KM010000 & m Small & NAME & \\
\hline KM020000 & M Capital & NAME & \\
\hline KN010000 & n Small & NAME & \\
\hline KN020000 & N Capital & NAME & \\
\hline KN110000 & nj Small & NAME & \\
\hline KN120000 & NJ Capital & NAME & \\
\hline KO010000 & o Small & NAME & \\
\hline KO020000 & O Capital & NAME & \\
\hline KP010000 & p Small & NAME & \\
\hline KP020000 & P Capital & NAME & \\
\hline KR010000 & r Small & NAME & \\
\hline KR020000 & R Capital & NAME & \\
\hline KS010000 & s Small & NAME & \\
\hline KS020000 & S Capital & NAME & \\
\hline KS150000 & shch Small & NAME & \\
\hline KS160000 & SHCH Capital & NAME & \\
\hline KS210000 & sh Small & NAME & \\
\hline KS220000 & SH Capital & NAME & \\
\hline KT010000 & t Small & NAME & \\
\hline KT020000 & T Capital & NAME & \\
\hline KU010000 & u Small & NAME & \\
\hline KU020000 & U Capital & NAME & \\
\hline KU150000 & yu Small & NAME & \\
\hline KU160000 & YU Capital & NAME & \\
\hline KU210000 & Hard Sign Small & NAME & \\
\hline KU220000 & Hard Sign Capital & NAME & \\
\hline KU230000 & u Breve Small & NAME & \\
\hline KU240000 & U Breve Capital & NAME & \\
\hline
\end{tabular}

416 iSeries: Globalization
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ GCGID } & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Token Type } & Token Flag \\
\hline KV010000 & v Small & NAME & \\
\hline KV020000 & V Capital & NAME & \\
\hline KX110000 & Soft Sign Small & NAME & \\
\hline KX120000 & Soft Sign Capital & NAME & \\
\hline KY010000 & y Small & NAME & \\
\hline KY020000 & Y Capital & NAME & \\
\hline KZ010000 & z Small & NAME & \\
\hline KZ020000 & Z Capital & NAME & \\
\hline KZ150000 & s Special Small & NAME & \\
\hline KZ160000 & S Special Capital & NAME & \\
\hline KZ210000 & zh Small & NAME & \\
\hline KZ220000 & zh Capital & NAME & \\
\hline
\end{tabular}

REXX/400 extension characters: Lxxxxxxx GCGIDs
\begin{tabular}{|c|l|l|l|}
\hline GCGID & & Description & Token Type \\
\hline LA010000 Flag \\
\hline LA020000 & a Small & NAME & \\
\hline LA110000 & a Acute Small & NAME & \\
\hline LA120000 & A Acute Capital & NAME & \\
\hline LA130000 & a Grave Small & NAME & \\
\hline LA140000 & A Grave Capital & NAME & \\
\hline LA150000 & a Circumflex Small & NAME & \\
\hline LA160000 & A Circumflex Capital & NAME & \\
\hline LA170000 & a Diaeresis Small & NAME & \\
\hline LA180000 & A Diaeresis Capital & NAME & \\
\hline LA190000 & a Tilde Small & NAME & \\
\hline LA200000 & A Tilde Capital & NAME & \\
\hline LA230000 & a Breve Small & NAME & \\
\hline LA240000 & A Breve Capital & NAME & \\
\hline LA270000 & a Overcircle Small & NAME & \\
\hline LA280000 & A Overcircle Capital & NAME & \\
\hline LA430000 & a Ogonek Small & NAME & \\
\hline LA440000 & A Ogonek Capital & NAME & \\
\hline LA510000 & ae Diphthong Small & NAME & \\
\hline LA520000 & ae Diphthong Capital & NAME & \\
\hline LB010000 & b Small & NAME & \\
\hline LB020000 & B Capital & NAME & \\
\hline LC010000 & c Small & NAME & \\
\hline LC020000 & C Capital & & \\
\hline LC110000 & c Acute Small & & \\
\hline & & NAME & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline LC120000 & C Acute Capital & NAME & \\
\hline LC150000 & c Circumflex Small & NAME & \\
\hline LC160000 & C Circumflex Capital & NAME & \\
\hline LC210000 & c Caron Small & NAME & \\
\hline LC220000 & C Caron Capital & NAME & \\
\hline LC290000 & c Overdot Small & NAME & \\
\hline LC300000 & C Overdot Capital & NAME & \\
\hline LC410000 & c Cedilla Small & NAME & \\
\hline LC420000 & C Cedilla Capital & NAME & \\
\hline LD010000 & d Small & NAME & \\
\hline LD020000 & D Capital & NAME & \\
\hline LD210000 & d Caron Small & NAME & \\
\hline LD220000 & D Caron Capital & NAME & \\
\hline LD610000 & d Stroke Small & NAME & \\
\hline LD620000 & D Stroke Capital/Eth Icelandic Capital & NAME & \\
\hline LD630000 & eth Icelandic Small & NAME & \\
\hline LE010000 & e Small & NAME & \\
\hline LE020000 & E Capital & NAME & \\
\hline LE110000 & e Acute Small & NAME & \\
\hline LE120000 & E Acute Capital & NAME & \\
\hline LE130000 & e Grave Small & NAME & \\
\hline LE140000 & E Grave Capital & NAME & \\
\hline LE150000 & e Circumflex Small & NAME & \\
\hline LE160000 & E Circumflex Capital & NAME & \\
\hline LE170000 & e Diaeresis Small & NAME & \\
\hline LE180000 & E Diaeresis Capital & NAME & \\
\hline LE210000 & e Caron Small & NAME & \\
\hline LE220000 & E Caron Capital & NAME & \\
\hline LE430000 & e Ogonek Small & NAME & \\
\hline LE440000 & E Ogonek Capital & NAME & \\
\hline LF010000 & f Small & NAME & \\
\hline LF020000 & F Capital & NAME & \\
\hline LG010000 & g Small & NAME & \\
\hline LG020000 & G Capital & NAME & \\
\hline LG150000 & g Circumflex Small & NAME & \\
\hline LG160000 & G Circumflex Capital & NAME & \\
\hline LG230000 & g Breve Small & NAME & \\
\hline LG240000 & G Breve Capital & NAME & \\
\hline LG290000 & g Overdot Small & NAME & \\
\hline LG300000 & G Overdot Capital & NAME & \\
\hline LH010000 & h Small & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline LH020000 & H Capital & NAME & \\
\hline LH150000 & h Circumflex Small & NAME & \\
\hline LH160000 & H Circumflex Capital & NAME & \\
\hline LH610000 & h Stroke Small & NAME & \\
\hline LH620000 & H Stroke Capital & NAME & \\
\hline LI010000 & i Small & NAME & \\
\hline LIO20000 & I Capital & NAME & \\
\hline LI110000 & i Acute Small & NAME & \\
\hline LI120000 & I Acute Capital & NAME & \\
\hline LI130000 & i Grave Small & NAME & \\
\hline LI140000 & I Grave Capital & NAME & \\
\hline LI150000 & i Circumflex Small & NAME & \\
\hline LI160000 & I Circumflex Capital & NAME & \\
\hline LI170000 & i Diaeresis Small & NAME & \\
\hline LI180000 & I Diaeresis Capital & NAME & \\
\hline LI300000 & I Overdot Capital & NAME & \\
\hline LI610000 & i Dotless Small & NAME & \\
\hline LJ010000 & j Small & NAME & \\
\hline LJ020000 & J Capital & NAME & \\
\hline LJ150000 & j Circumflex Small & NAME & \\
\hline LJ160000 & J Circumflex Capital & NAME & \\
\hline LK010000 & k Small & NAME & \\
\hline LK020000 & K Capital & NAME & \\
\hline LL010000 & I Small & NAME & \\
\hline LL020000 & L Capital & NAME & \\
\hline LL110000 & I Acute Small & NAME & \\
\hline LL120000 & L Acute Capital & NAME & \\
\hline LL210000 & I Caron Small & NAME & \\
\hline LL220000 & L Caron Capital & NAME & \\
\hline LL610000 & I Stroke Small & NAME & \\
\hline LL620000 & L Stroke Capital & NAME & \\
\hline LM010000 & m Small & NAME & \\
\hline LM020000 & M Capital & NAME & \\
\hline LN010000 & n Small & NAME & \\
\hline LN020000 & N Capital & NAME & \\
\hline LN110000 & n Acute Small & NAME & \\
\hline LN120000 & N Acute Capital & NAME & \\
\hline LN190000 & \(n\) Tilde Small & NAME & \\
\hline LN200000 & N Tilde Capital & NAME & \\
\hline LN210000 & n Caron Small & NAME & \\
\hline LN220000 & N Caron Capital & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline LO010000 & - Small & NAME & \\
\hline LO020000 & O Capital & NAME & \\
\hline LO110000 & o Acute Small & NAME & \\
\hline LO120000 & O Acute Capital & NAME & \\
\hline LO130000 & - Grave Small & NAME & \\
\hline LO140000 & O Grave Capital & NAME & \\
\hline LO150000 & o Circumflex Small & NAME & \\
\hline LO160000 & O Circumflex Capital & NAME & \\
\hline LO170000 & o Diaeresis Small & NAME & \\
\hline LO180000 & O Diaeresis Capital & NAME & \\
\hline LO190000 & - Tilde Small & NAME & \\
\hline LO200000 & O Tilde Capital & NAME & \\
\hline LO250000 & o Double Acute Small & NAME & \\
\hline LO260000 & O Double Acute Capital & NAME & \\
\hline LO610000 & o Slash Small & NAME & \\
\hline LO620000 & O Slash Capital & NAME & \\
\hline LP010000 & p Small & NAME & \\
\hline LP020000 & P Capital & NAME & \\
\hline LQ010000 & q Small & NAME & \\
\hline LQ020000 & Q Capital & NAME & \\
\hline LR010000 & r Small & NAME & \\
\hline LR020000 & R Capital & NAME & \\
\hline LR110000 & r Acute Small & NAME & \\
\hline LR120000 & R Acute Capital & NAME & \\
\hline LR210000 & r Caron Small & NAME & \\
\hline LR220000 & R Caron Capital & NAME & \\
\hline LS010000 & s Small & NAME & \\
\hline LS020000 & S Capital & NAME & \\
\hline LS110000 & s Acute Small & NAME & \\
\hline LS120000 & S Acute Capital & NAME & \\
\hline LS150000 & s Circumflex Small & NAME & \\
\hline LS160000 & S Circumflex Capital & NAME & \\
\hline LS210000 & s Caron Small & NAME & \\
\hline LS220000 & S Caron Capital & NAME & \\
\hline LS410000 & s Cedilla Small & NAME & \\
\hline LS420000 & S Cedilla Capital & NAME & \\
\hline LS610000 & Sharp s Small & NAME & \\
\hline LT010000 & t Small & NAME & \\
\hline LT020000 & T Capital & NAME & \\
\hline LT210000 & t Caron Small & NAME & \\
\hline LT220000 & T Caron Capital & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline LT410000 & t Cedilla Small & NAME & \\
\hline LT420000 & T Cedilla Capital & NAME & \\
\hline LT630000 & Thorn Icelandic Small & NAME & \\
\hline LT640000 & Thorn Icelandic Capital & NAME & \\
\hline LU010000 & u Small & NAME & \\
\hline LU020000 & U Capital & NAME & \\
\hline LU110000 & u Acute Small & NAME & \\
\hline LU120000 & U Acute Capital & NAME & \\
\hline LU130000 & u Grave Small & NAME & \\
\hline LU140000 & U Grave Capital & NAME & \\
\hline LU150000 & u Circumflex Small & NAME & \\
\hline LU160000 & U Circumflex Capital & NAME & \\
\hline LU170000 & u Diaeresis Small & NAME & \\
\hline LU180000 & U Diaeresis Capital & NAME & \\
\hline LU230000 & u Breve Small & NAME & \\
\hline LU240000 & U Breve Capital & NAME & \\
\hline LU250000 & u Double Acute Small & NAME & \\
\hline LU260000 & U Double Acute Capital & NAME & \\
\hline LU270000 & u Overcircle Small & NAME & \\
\hline LU280000 & u Overcircle Capital & NAME & \\
\hline LV010000 & v Small & NAME & \\
\hline LV020000 & \(V\) Capital & NAME & \\
\hline LW010000 & w Small & NAME & \\
\hline LW020000 & W Capital & NAME & \\
\hline LX010000 & x Small & NAME & \\
\hline LX020000 & X Capital & NAME & \\
\hline LY010000 & y Small & NAME & \\
\hline LY020000 & Y Capital & NAME & \\
\hline LY110000 & y Acute Small & NAME & \\
\hline LY120000 & Y Acute Capital & NAME & \\
\hline LY170000 & y Diaeresis Small & NAME & \\
\hline LZ010000 & z Small & NAME & \\
\hline LZ020000 & Z Capital & NAME & \\
\hline LZ110000 & z Acute Small & NAME & \\
\hline LZ120000 & Z Acute Capital & NAME & \\
\hline LZ210000 & z Caron Small & NAME & \\
\hline LZ220000 & Z Caron Capital & NAME & \\
\hline LZ290000 & z Overdot Small & NAME & \\
\hline LZ300000 & Z Overdot Capital & NAME & \\
\hline
\end{tabular}

\section*{REXX/400 extension characters: Nxxxxxxx GCGIDs}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline ND010000 & One & NUMBER & \\
\hline ND010001 & One (Arabic, Farsi, Urdu) & INVALID & \\
\hline ND010002 & One, Thai & INVALID & \\
\hline ND011000 & One Superscript & INVALID & \\
\hline ND020000 & Two & NUMBER & \\
\hline ND020001 & Two (Arabic, Farsi, Urdu) & INVALID & \\
\hline ND020002 & Two, Thai & INVALID & \\
\hline ND021000 & Two Superscript & INVALID & \\
\hline ND030000 & Three & NUMBER & \\
\hline ND030001 & Three (Arabic, Farsi, Urdu) & INVALID & \\
\hline ND030002 & Three, Thai & INVALID & \\
\hline ND031000 & Three Superscript & INVALID & \\
\hline ND040000 & Four & NUMBER & \\
\hline ND040001 & Four (Arabic) & INVALID & \\
\hline ND040002 & Four, Thai & INVALID & \\
\hline ND040003 & Four (Farsi) & INVALID & \\
\hline ND050000 & Five & NUMBER & \\
\hline ND050001 & Five (Arabic) & INVALID & \\
\hline ND050002 & Five, Thai & INVALID & \\
\hline ND050004 & Five (Farsi, Urdu) & INVALID & \\
\hline ND060000 & Six & NUMBER & \\
\hline ND060001 & Six (Arabic, Urdu) & INVALID & \\
\hline ND060002 & Six, Thai & INVALID & \\
\hline ND060003 & Six (Farsi) & INVALID & \\
\hline ND070000 & Seven & NUMBER & \\
\hline ND070001 & Seven (Arabic, Farsi) & INVALID & \\
\hline ND070002 & Seven, Thai & INVALID & \\
\hline ND080000 & Eight & NUMBER & \\
\hline ND080001 & Eight (Arabic, Farsi, Urdu) & INVALID & \\
\hline ND080002 & Eight, Thai & INVALID & \\
\hline ND090000 & Nine & NUMBER & \\
\hline ND090001 & Nine (Arabic, Farsi, Urdu) & INVALID & \\
\hline ND090002 & Nine, Thai & INVALID & \\
\hline ND100000 & Zero & NUMBER & \\
\hline ND100001 & Zero (Arabic, Urdu) & INVALID & \\
\hline ND100002 & Zero, Thai & INVALID & \\
\hline ND100003 & Zero (Farsi) & INVALID & \\
\hline NF010000 & One Half & INVALID & \\
\hline NF040000 & One Quarter & INVALID & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|c|}
\hline GCGID & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Token Type } & Token Flag \\
\hline NF050000 & Three Quarters & INVALID & \\
\hline
\end{tabular}

REXX/400 extension characters: Oxxxxxxx GCGIDs
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline OA000000 & A (Basic Vowel) & NAME & \\
\hline OA200000 & AE (Compound Vowel) & NAME & \\
\hline OB000000 & B (Basic Consonant) & NAME & \\
\hline OB100000 & BB (Compound Consonant) & NAME & \\
\hline OB200000 & BS (Compound Consonant) & NAME & \\
\hline OC200000 & CH (Basic Consonant) & NAME & \\
\hline OD000000 & D (Basic Consonant) & NAME & \\
\hline OD100000 & DD (Compound Consonant) & NAME & \\
\hline OE000000 & E (Compound Vowel) & NAME & \\
\hline OE200000 & EO (Basic Vowel) & NAME & \\
\hline OE300000 & EU (Basic Vowel) & NAME & \\
\hline OE400000 & EUI (Compound Vowel) & NAME & \\
\hline OG000000 & G (Basic Consonant) & NAME & \\
\hline OG100000 & GG (Compound Consonant) & NAME & \\
\hline OG200000 & GS (Compound Consonant) & NAME & \\
\hline OH000000 & H (Basic Consonant) & NAME & \\
\hline OIO00000 & I (Basic Vowel) & NAME & \\
\hline OJ000000 & \(J\) (Basic Consonant) & NAME & \\
\hline OJ100000 & JJ (Compound Consonant) & NAME & \\
\hline OK000000 & K (Basic Consonant) & NAME & \\
\hline OL000000 & L (Basic Consonant) & NAME & \\
\hline OL100000 & LB (Compound Consonant) & NAME & \\
\hline OL200000 & LG (Compound Consonant) & NAME & \\
\hline OL300000 & LH (Compound Consonant) & NAME & \\
\hline OL400000 & :c 2 .LM (Compound Consonant) & NAME & \\
\hline OL500000 & LP (Compound Consonant) & NAME & \\
\hline OL600000 & LS (Compound Consonant) & NAME & \\
\hline OL700000 & LT (Compound Consonant) & NAME & \\
\hline OM000000 & M (Basic Consonant) & NAME & \\
\hline ON000000 & N (Basic Consonant) & NAME & \\
\hline ON100000 & NH (Compound Consonant) & NAME & \\
\hline ON150000 & NJ (Compound Consonant) & NAME & \\
\hline ON200000 & NG or W (Basic Consonant) & NAME & \\
\hline 00000000 & O (Basic Vowel) & NAME & \\
\hline 00100000 & OA (Compound Vowel) & NAME & \\
\hline 00200000 & OAE (Compound Vowel) & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline GCGID & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Token Type } & Token Flag \\
\hline OO300000 & OI (Compound Vowel) & NAME & \\
\hline OP000000 & P (Basic Consonant) & NAME & \\
\hline OS000000 & S (Basic Consonant) & NAME & \\
\hline OS100000 & SS (Compound Consonant) & NAME & \\
\hline OT000000 & T (Basic Consonant) & NAME & \\
\hline OU000000 & U (Basic Vowel) & NAME & \\
\hline OU200000 & UE (Compound Vowel) & NAME & \\
\hline OU300000 & UEO (Compound Vowel) & NAME & \\
\hline OU400000 & UI (Compound Vowel) & NAME & \\
\hline OY200000 & YA (Basic Vowel) & NAME & \\
\hline OY250000 & YAE (Compound Vowel) & NAME & \\
\hline OY300000 & YE (Compound Vowel) & NAME & \\
\hline OY400000 & YEO (Basic Vowel) & NAME & \\
\hline OY500000 & YO (Basic Vowel) & NAME & \\
\hline OY600000 & YU (Basic Vowel) & NAME & \\
\hline
\end{tabular}

\section*{REXX/400 extension characters: Sxxxxxxx GCGIDs}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ GCGID } & \multicolumn{1}{|c|}{ Description } & Token Type & Token Flag \\
\hline SA010000 & Plus Sign & OPER & PLUS \\
\hline SA020000 & Plus or Minus Sign & INVALID & \\
\hline SA030000 & Less Than Sign/Greater Than Sign (Arabic) & OPER & LESS_THAN \\
\hline SA040000 & Equal Sign & OPER & EQUAL \\
\hline SA050000 & Greater Than Sign/Less Than Sign (Arabic) & OPER & GREAT_THAN \\
\hline SA060000 & Divide Sign & INVALID & \\
\hline SA070000 & Multiply Sign & INVALID & \\
\hline SC010000 & International Currency Symbol & INVALID & \\
\hline SC020000 & Pound Sterling Sign & INVALID & \\
\hline SC030000 & Dollar Sign & INVALID & \\
\hline SC040000 & Cent Sign & INVALID & \\
\hline SC050000 & Yen Sign & INVALID & \\
\hline SC060000 & Peseta Sign & INVALID & \\
\hline SC070000 & Florin Sign & INVALID & \\
\hline SC120000 & Yuan Sign & INVALID & \\
\hline SC130000 & Currency Symbol, Thailand & INVALID & \\
\hline SC140000 & Won Sign & INVALID & \\
\hline SC160000 & Rial Sign, Iran & INVALID & \\
\hline SD110000 & Acute Accent & & \\
\hline SD130000 & Grave Accent & Circumflex Accent & \\
\hline SD150000 & Sid & \\
\hline SD170000 & Diaeresis/Umlaut Accent & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GCGID & Description & Token Type & Token Flag \\
\hline SD190000 & Tilde Accent & INVALID & \\
\hline SD210000 & Caron Accent & INVALID & \\
\hline SD230000 & Breve Accent & INVALID & \\
\hline SD250000 & Double Acute Accent & INVALID & \\
\hline SD290000 & Overdot Accent & INVALID & \\
\hline SD410000 & Cedilla or Sedila Accent & INVALID & \\
\hline SD430000 & Ogonek Accent & INVALID & \\
\hline SD630000 & Middle Dot & INVALID & \\
\hline SD730000 & Acute and Diaeresis Accent & INVALID & \\
\hline SM000000 & Numero Sign & INVALID & \\
\hline SM010000 & Number Sign & INVALID & \\
\hline SM020000 & Percent Sign & OPER & PERCENT \\
\hline SM020007 & Percent Sign (Arabic) & OPER & PERCENT \\
\hline SM030000 & Ampersand & OPER & AMPERSAND \\
\hline SM040000 & Asterisk & OPER & ASTERISK \\
\hline SM040007 & Asterisk (Arabic Preference - 5 points) & OPER & ASTERISK \\
\hline SM050000 & At Sign & INVALID & \\
\hline SM060000 & Left Bracket & INVALID & \\
\hline SM070000 & Backslash & OPER & BACKSLASH \\
\hline SM080000 & Right Bracket & INVALID & \\
\hline SM100000 & Double Underscore & INVALID & \\
\hline SM110000 & Left Brace & INVALID & \\
\hline SM120000 & Long Dash/Throughscore & INVALID & \\
\hline SM130000 & Vertical Line/Logical OR & OPER & VERTI_BAR \\
\hline SM140000 & Right Brace & INVALID & \\
\hline SM150000 & Overline & INVALID & \\
\hline SM170000 & Micro Symbol & INVALID & \\
\hline SM190000 & Degree Symbol & INVALID & \\
\hline SM200000 & Ordinal Indicator, Masculine & INVALID & \\
\hline SM210000 & Ordinal Indicator, Feminine & INVALID & \\
\hline SM240000 & Section Symbol (USA)/Paragraph Symbol (Europe) & INVALID & \\
\hline SM250000 & Paragraph Symbol (USA) & INVALID & \\
\hline SM520000 & Copyright Symbol & INVALID & \\
\hline SM530000 & Registered Trademark Symbol & INVALID & \\
\hline SM570000 & Bullet & INVALID & \\
\hline SM650000 & Vertical Line, Broken & INVALID & \\
\hline SM660000 & Logical NOT/End Of Line Symbol & OPER & NOT_SIGN \\
\hline SM860000 & Tatweel (Connector) & INVALID & \\
\hline SM870000 & Kasseh (Tail) & INVALID & \\
\hline SP010000 & Space & WHITE & BLANK \\
\hline SP020000 & Exclamation Point & NAME & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline GCGID & \multicolumn{1}{|c|}{ Description } & Token Type & Token Flag \\
\hline SP030000 & Exclamation Point, Inverted & INVALID & \\
\hline SP040000 & Quotation Marks & STRING & QUOTE \\
\hline SP050000 & Apostrophe & STRING & APOSTROPH \\
\hline SP060000 & Left Parenthesis & PUNCT & L_PAREN \\
\hline SP070000 & Right Parenthesis & PUNCT & R_PAREN \\
\hline SP080000 & Comma & PUNCT & COMMA \\
\hline SP080007 & Comma Rotated (Arabic) & INVALID & \\
\hline SP090000 & Underline/Continuous Underscore & NAME & \\
\hline SP100000 & Hyphen/Minus Sign & OPER & MINUS \\
\hline SP110000 & Period/Full Stop & NAME & PERIOD \\
\hline SP120000 & Slash & OPER & SLASH \\
\hline SP130000 & Colon & PUNCT & COLON \\
\hline SP140000 & Semicolon & INVALID & \\
\hline SP140007 & Semicolon, Rotated (Arabic) & NAME & QUESTION \\
\hline SP150000 & Question Mark & INVALID & \\
\hline SP150007 & Question Mark, Reversed (Arabic) & INVALID & \\
\hline SP160000 & Question Mark, Inverted & INVALID & \\
\hline SP170000 & Left Angle Quotes & INVALID & \\
\hline SP180000 & Right Angle Quotes & INVALID & \\
\hline SP190000 & Left Single Quote & INVALID & \\
\hline SP200000 & Right Single Quote & \\
\hline SP300000 & Required Space & & \\
\hline SP310000 & Numeric Space & Syllable Hyphen & \\
\hline SP320000 & Sorean Fill (NULL) Character & \\
\hline SP490000 & SPALID & \\
\hline & & & \\
\hline
\end{tabular}

\section*{Globalization checklists}

This topic provides links to the numerous checklists that are presented within the globalization topics. They are useful tools for insuring that you have considered key issues that will be important in each particular aspect of your globalization planning and implementation. The following table provides the link to each checklist and shows where you can go to read related topics.
\begin{tabular}{|l|l|}
\hline Checklist & Where you can go to read related topics \\
\hline Globalization_planning & \begin{tabular}{l}
This comprehensive two-part checklist, which you can find in the Set up an iSeries \\
server with a national language version topic, provides a good summary of issues \\
relating to hardware installation, software installation, and system configuration.
\end{tabular} \\
\hline Application design & \begin{tabular}{l}
Use this checklist as you begin planning the development of a globalized application. \\
You can find this checklist in the Design global applications topic.
\end{tabular} \\
\hline User interface design & \begin{tabular}{l}
Use this checklist to insure that the user interfaces you create for your applications \\
anticipate unique requirements from multiple linguistic and cultural environments. You \\
can find this checklist in the User interfaces topic.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Checklist & Where you can go to read related topics \\
\hline Bidirectional_support & \begin{tabular}{l}
Languages such as Arabic and Hebrew are displayed in a right-to-left direction. \\
Because of this, you must take care that your applications handle bidirectional data \\
properly, and that your interfaces can accommodate this presentation of text and data. \\
You can find this checklist in the Work with bidirectional data topic.
\end{tabular} \\
\hline DBCS_application_design & \begin{tabular}{l}
You need to take numerous issues under consideration when you develop applications \\
that use double-byte character set (DBCS) support. You can find this checklist in the \\
Work with DBCS data topic.
\end{tabular} \\
\hline
\end{tabular}

\section*{}

Printed in U.S.A.```

