
Connect Customization Guide

Date:October, 2002

Connect Customization Guide

Connect Customization Guide

Contents

454.1.2.9 Publishing a protocol .
454.1.2.8 Protocol Classpath .
444.1.2.7 Request Groups .
444.1.2.6 Application Connectors .
444.1.2.5 Protocol Data Presentation .
444.1.2.4 Protocol Data .
434.1.2.3 Contexts .
434.1.2.2 Requests .
434.1.2.1 Protocol Information .
424.1.2 An overview of defining a new protocol .
424.1.1 Delivery Gateway Foundation Overview .
424.0 XML PROTOCOL CUSTOMIZATION .

413.5.2.3 Message CON0352 - Error Message .
403.5.2.2 Message CON0351 - Warning Message .
403.5.2.1 Message CON0350 - Information Message .
393.5.2 User Messages .
383.5.1 User Tracing .
383.5 LOGGING INTERFACES .
363.4.2.5 Error handling and other Miscellaneous APIs. .
363.4.2.4 FlowDataArea .
353.4.2.3 MessageHeader Context .
333.4.2.2 Named DOM Context .
333.4.2.1 ProgramConnectorParm Object .
333.4.2 Direct Access .
313.4.1.3 Sample Code .
293.4.1.2 Field Object .
213.4.1.1 ConnectorParm Object .
213.4.1 Mappable Access .
203.4 CONNECTOR INTERFACES .
203.3 DATA FOR TOOLS COMPARED TO DATA AT RUNTIME .
193.2 WHERE CAN CODE RUN IN CONNECT? .
153.1.3 Gateway and Flow Manager Architecture .
143.1.2.8 Key Attributes .
143.1.2.7 IDA Contexts .
143.1.2.6 DOM Contexts .
133.1.2.5 Protocol .
133.1.2.4 Provider (required by Flow Engine) .
133.1.2.3 Partner (required by Flow Engine) .
123.1.2.2 Internal Header (required by Flow Engine) .
113.1.2.1 Message Header (required by Flow Engine) .
103.1.2 Named Data Contexts .
103.1.1 Connectors .
103.1 CONNECTOR OVERVIEW .
103.0 CONNECTORS .

82.0 CONNECT ARCHITECTURE OVERVIEW .

71.1 OVERVIEW .
71.0 INTRODUCTION .

 Connect Customization Guide

Page 3 of 133

118A.3 BUYER/SUPPLIER CONSTANTS .

111A.2 HEADER CONSTANTS .

109A.1 CONNECTOR CONSTANTS .

1067.1.3 Supplier Populate Exit Sample Code .
1037.1.2 Shadow Buyer Exit Program Sample Code .
1027.1.1 Create Buyer Sample Code .
947.0 BUYER/SUPPLIER INTERFACES .

936.4 MAILBOX CLEANUP .
936.3 SENDMESSAGE CONNECTOR .
926.2.2 Sample Code: .
916.2.1 Classpath requirements .
916.2.2 Requests .
916.2.1 Authority Required .
896.2 OUTBOUNDREQUEST JAVA CLASS .
886.1 INITIATING AN OUTBOUND MESSAGE .
886.0 SENDING OUTBOUND MESSAGES .

855.1.1 Public APIs for Refresh/Publish .
855.0 ECATALOG INTERFACES .

834.1.7.3 XML validation documents that are located in the network .
83

4.1.7.2 XML validation documents that were previously located in the network, that have
been cached locally by the Connect Global Entity Resolver .

81
4.1.7.1 XML validation documents provided by the Connect Administrator, which are
located on the local file system .

804.1.7 Enhanced XML Validation .
804.1.6.15 UpdateMessageProcessingStatus Connector .
794.1.6.14 UpdateMessageDeliveredStatus Connector .
794.1.6.13 RetrieveMessage Connector .
784.1.6.12 QueryMessage Connector .
754.1.6.11 SendMessage Connector .
744.1.6.10 Response step .
724.1.6.9 Request Mapper Connector .
714.1.6.8 Outbound Logging .
694.1.6.7 FlowManager Communication Connector .
684.1.6.6 Request Token Generation .
664.1.6.5 Partner Or Provider Resolver .
654.1.6.4 Authorization Connector .
644.1.6.3 Authentication Connector .
624.1.6.2 Inbound Logging .
614.1.6.1 XML Validator (XML validation) .
614.1.6 Utility Connectors for Protocol Flow Development .
604.1.5 Gateway Flow design guidelines for protocols .
604.1.4.1 Protocol Flows .
604.1.4 Defining the flow to process the protocol .
594.1.3.7 Protocol .
594.1.3.6 Partner .
594.1.3.5 Provider .
584.1.3.4 Transport Output .
584.1.3.3 TransportInput .
544.1.3.2 InternalHeader .
464.1.3.1 MessageHeader .
454.1.3 Gateway data contexts .

 Connect Customization Guide

Page 4 of 133

125A.5 CONNECT FOR ISERIES JAR FILES .

124A.4 CUSTOM PROTOCOL SAMPLE .

121A.3.1.4 SupplierProperties .
119A.3.1.3 BuyerProperties .
118A.3.1.2 SupplierExit .
118A.3.1.1 BuyerExit .

 Connect Customization Guide

Page 5 of 133

This page intentionally left blank.

 Connect Customization Guide

Page 6 of 133

1.0 Introduction

1.1 Overview
IBM Connect for iSeries was announced October 3, 2000 as a software integration framework for Business
to Business. It provides secure integration of your existing core business applications with the business
applications of your trading partners. It is meant to be a high function, low-cost, easy to deploy framework.
As a framework, it is designed to be customized to provide an end-customer solution. This customization is
in two major areas: A) the customization to accept a diverse set of XML protocols and b) the customization
to a diverse set of legacy, business applications. The Connect Customization Guide provides the needed
information to perform these two areas of customization. It is used as a suppliment to the iSeries Connect
API Javadoc and the set of Connect Samples.

The objective of IBM Connect for iSeries is to NOT require any coding in order to integrate your core
business applications with the Connect framework. However, we realize that we cannot foresee all the
ways you would want to integrate their applications or customize the framework. That is why Connect
provides a series of APIs to extend the framework. This Customization Guide is a suppliment to the API
documentation. It is meant to provide the needed information to effectively utilize the APIs that the Connect
product provides.

There are several tasks that can be accomplished by using the Connect APIs. Among these tasks are the
following:

� Utilize the tools to define a unique XML Protocol to Connect.

� Create the protocol flow to allow gateway services to be rendered for the XML message.

� Create a connector (that can be one of various types) to interface with a backend application and learn
how that connector can then be plugged into an application flow.

� Exchange information and provide a mapping between a Connect Provider or Partner entity and a
corresponding Backend Application entity (such as a customer, patient, agent, client, merchant, store,
etc).

� Enhance or share the information stored in the Provider or Partner Registry with a backend application
and learn how you can automatically keep the Connect Provider or Partner registry in sync with the
backend entity information through the use of registered exit programs.

� Generate a request to send an asynchronous message from an application

.

Page 7 of 133

2.0 Connect Architecture Overview
Connect for iSeries is logically divided into two halves. The first half is called the Delivery Gateway, or
Gateway for short. The Gateway accepts requests from remote trading partners in currently-supported
trading partner “language” (XML protocol), like cXML.. (Note: throughout this paper we use the term “trading
partner” to describe both customers and marketplaces). The second part is the Flow Manager. The Flow
Manager handles connecting (mapping) the protocol “payload” (the information sent within the protocol
request) to your existing business processes.

WCS
Domino
MQ Series
etc

Develop
Configure

Deploy
Manage

Core
Business
Applications

Trading
Partners

N
e
t
w
o
r
k

Front-end
Gateway

Services with
Pluggable
protocols

Back-end
Flow Manager

with
Connectors

 Downloadable
Plugins/Connectors

Tools

Templates
Standard
Customized

iSeries Connect: The Big Picture

Page 8 of 133

B2B Delivery Gateway Framework

Queue
Manager

Flow
Manager
Interface
Queues

Handles the interfacing with various business partners over a variety of
business protocols e.g. cXML
Does marketplace and protocol authentication
Forwards request (and response template) to Flow Manager
Sends the response back to the requester
Protocol connectors handle authentication and request/response processing

Log
Manager

HTTP
Servlet
Admin
Servlet

Reuseable
Connectors

Gateway
APIs

In
te

rn
et

Flow
Processor

Gateway
Connector

HTTP
Servlet
Async
Servlet

Flow
Processor

Java
Connector

Gateway
Connector

HTTP
Servlet
HTTP
Servlet

o
o
o

o
o
o

o
o
o

o
o
o

Java
Connector

Services

Protocol Implementations

Page 9 of 133

3.0 Connectors
The IBM Connect for iSeries product has two main runtime components when processing a request: Delivery
Gateway and Flow Manager. Both runtime components share the same runtime architecture and code.
This architecture/code is called the flow engine. The flow engine provides the runtime environment functions
of process control flow and data storage flow. From an interface point of view, the flow engine provides a
similar and consistent programming environment for both the Gateway and Flow Manager. One of the
benefits of sharing the flow engine is that once you understand the environment in one component, that
knowledge will apply to the other component.

3.1 Connector Overview

3.1.1 Connectors

The flow engine provides the capability to invoke legacy or newly written applications. The flow engine
provides this capability through its connector architecture. Each connector can be thought of as an
application access method. The following are the currently supported access methods (connectors):

Program Call Connector - This connector allows invoking applications via a program call. It is used to
invoke applications that are designed with a program call interface. These applications can exist on either
the local or a remote system. This connector utilizes the Program Call Meta Language (PCML) support
from the AS/400 Java Toolbox. You can use this connector to invoke C, C++, RPG and Cobol progams via
a call and return mechanism.

Queue Connector - This connector allows communicating with applications by putting a message on a
queue. It is used to access applications that are designed to accept/return messages via data queues.
These applications can exist on either the local or a remote system. The connector will utilize either
AS/400 Data Queues or MQ Series queues.

JDBC Connector - This connector allows accessing data from relational databases. It utilizes JDBC drivers
to query, insert, update or delete rows in a relational database.

Java Connector - This connector allows the invocation of a Java Class that implements a specific Java
Interface. This is the main source of user written code that uses the APIs provided by Connect. The Java
Connector is used to invoke a Java Connector Application. The Java Connector Application can be written to
do anything the end user requires. For example: it may take the request and generate a HTTP message
and post it to a URL. The Java Connector Application can utilize the APIs that are described below to
retrieve data associated with Requests, set data for the Response and retrieve data that is maintained by
the flow engine.

3.1.2 Named Data Contexts

Named Data Contexts allow the protocol writer to define a data storage area that they can store information
and have that information available to either the Gateway, Flow Manager, or both. Contexts have different
attributes and are defined for each protocol. Contexts can be mappable. Connect provides support for
several types of named data contexts.

The following provides a description of the context types that are available in the Flow Engine for version 2.0.

Page 10 of 133

� Header - The header context type provides a data context that supports name/value pairs of simple
string fields. There are two header contexts predefined by Connect. The header type data contexts are
the “MessageHeader” and “InternalHeader” message header contexts used by the Gateway and Flow
Manager infrastructure. In developing a custom protocol, users have the ability to define more named
contexts of type header.

� DOM - The DOM context type is a data context type that provides mapping to a w3c DOM document. It
only provides access for storing data as strings. The DOM type context allows repeating fields and
structures. DOM type contexts are generally used for the request and response documents.

� Intermediate (IDA) - The IDA context type provides mapping to a data store that provides a DOM-like
structure for repeating fields and structures, but also allows for storage of any of the Connect supported
data types (not just string fields). The IDA context type was used in 1.1 to support the Intermediate
context that is used to map data between steps in a flow.

Protocol writers must take context requirements into account when developing their protocol. There are
some fields they will be required to map into the pre-defined contexts, and some fields that are set in the
infrastructure that may be useful for them. They will also have some control over the data contexts that are
available for their protocol flows and all process flows deployed for that protocol. When creating new
contexts for the protocol, the protocol tools and protocol writers must consider the following factors:
� Context names must be unique. There is a set of reserved names for the Connect pre-defined contexts.

The reserved names are:
� MessageHeader
� InternalHeader
� Partner
� Provider
� Protocol

� They should consider if the context should be available to the process flows running in the Flow
Manager to be used by backend applications. In this case, the context will be sent across on the
queue to the Flow Manager by the Gateway’s FMCommunicatorConnector.

� Likewise, they should consider if the context could be updated by the process flow and should be
returned to the Gateway when the response step is encountered in the process flow. In this case, the
context will be sent back on the queue from the Flow Manager to the Gateway’s
FMCommunicatorConnector.

� A context should contain related data when possible. The data in the sendable contexts are serialized
to be sent between the Delivery Gateway and Flow Manager. In the Flow Manager, changed data
contexts are serialized between each step of a restartable process flow for flow recovery. Extraneous
data included in those contexts will affect performance of the Gateway and Flow Manager
communications, and in the case of flow recovery, may require a lot of extra data to be serialized and
written to the recovery database when other unrelated data in the context changes.

The following sections describe the data context requirements and assumptions from the flow engine’s
perspective for each data context.

3.1.2.1 Message Header (required by Flow Engine)

The Flow Engine relies on the following fields to be set in the “MessageHeader” message header
context. The Delivery Gateway infrastructure sets these fields prior to the start of any protocol flow.
These fields are documented in the XML Protocol Customization section.

� GATEWAY_INSTANCE
� CONTENT_REQUEST - used in the Flow Manager for flow selection
� PROTOCOL_GROUP - used in the Flow Manager for flow selection
� PROTOCOL_TYPE - used in the Flow Manager for flow selection

Page 11 of 133

3.1.2.2 Internal Header (required by Flow Engine)

The Flow Engine sets the following fields into the “InternalHeader” message header context. These fields
are available for the Flow Engine running either in the Gateway (GW in the access column below) or the
Flow Manager (FM in the access column), but are not sent across on the queue, so the values apply to
the environment in which the Flow Engine is running. (In the access column, GW means Delivery
Gateway, FM means Flow Manager, R means Read access, W means read and write access).

This field is the descriptive error
text for the application

GW - R
FM - W

StepApplicati
onErrorText

STEP_APP_ERROR_INFO_ST
RING

This field is the error code for
the application connector. The
values are application
dependant. An error can be
indicated by mapping a
non-zero value into this field or
by returning a non-zero return
code from a Java connector. A
non-zero return code from a
Java connector will override
anything mapped into this field.
When the next step begins, this
error code is reset back to zero.
A copy of the error code is
available to subsequent error
steps via the
ApplicationErrorCode field.

GW - R
FM - W

StepApplicati
onErrorCode

STEP_APP_ERROR_INFO_CO
DE

This field contains the error text
for the flow error.

GW - R
FM - R

FlowErrorTextFM_ERROR_INFO_STRING

This field contains the error
code for the flow.

GW - R
FM - R

FlowErrorCodeFM_ERROR_INFO_CODE

This field indicates if this flow
has been restarted during
startup based on information
stored in the Flow Manager
recovery database. The values
are “true” or “false”. It is set by
the Flow Engine when running
in the Flow Manager.

GW - N/A
FM - R

IsRestartRESTART

This field indicates whether the
flow is running in the error path.
The values are “true” or “false”,
and it is set by the Flow
Engine.

GW - R
FM - R

IsErrorIN_ERROR_PATH

This field contains the name of
the failed step in the flow. It is
set by the Flow Engine.

GW - R
FM - R

FailedStepFAILED_STEP_NAME

This field contains the name of
the current step running in the
flow. It is set by the Flow
Engine.

GW - R
FM - R

CurrentStepCURRENT_STEP_NAME
DescriptionAccessMapping NameHeader Constant Name

Page 12 of 133

This field is a copy of the
StepApplicationErrorText and
represents the error text of the
previous step.

GW - RW
FM - R

ApplicationEr
rorText

APP_ERROR_INFO_STRING

This field is a copy of the
StepApplicationErrorCode and
represents the error code of the
previous step.

GW - RW
FM - R

ApplicationEr
rorCode

APP_ERROR_INFO_CODE

connector. This field can be set
by mapping or returned from a
Java connector. A non-zero
error code from a Java
connector will cause the
returned error text to override
anything mapped into this field.
When the next step begins, this
error text is reset to an empty
string. A copy of the error text
is available to subsequent error
steps via the
ApplicationErrorCode field.

3.1.2.3 Partner (required by Flow Engine)

 The partner context is used to map partner (buyer) business data from a protocol or process flow. A
key must first be mapped out to the partner context that represents the partner token used to access
the appropriate partner information. Once the key is mapped to the partner context, the remaining
business data defined in the Request Message Format (RMF) will be available for mapping. (see the
XML Protocol Customization section for an explanation of RMFs). The keys should be writeable from the
protocol flows, but read only in the process flows (controlled by the RMF). Business data set from
mapping is written to the partner configuration database and available from outside the flow.

The Flow Manager accesses the partner token from the partner context for use during flow selection. If
a partner definition is required by the protocol, the partner token must be mapped out to the partner
context in the protocol flow before sending a request to the Flow Manager. If the protocol does not have
partner information, the partner will be null when processed as part of the flow selection. In this case,
any configured flow with *ALL for the partner would be considered a match for the null partner in the flow.
 Connect has provided a utility connector to retrieve the partner token.

3.1.2.4 Provider (required by Flow Engine)

The provider context is used to map provider (supplier) business data into a protocol or process flow. A
key must first be mapped out to the provider context that represents the provider token used to access
the appropriate provider information. Once the key is mapped to the provider context, the remaining
business data defined in the RMF will be available for mapping. The keys will be defined in the RMF as
writeable from the protocol flows, but read only in the process flows. Business data set from mapping is
written to the partner configuration database and available from outside the flow.

The Flow Manager accesses the provider token from the provider context for use during flow selection,
so the provider token must be mapped out to the provider context in the protocol flow before sending a
request to the Flow Manager. Connect provides a utility connector to retrieve the provider token.

Page 13 of 133

3.1.2.5 Protocol

The protocol context is used to map the protocol information from within a protocol or process flow. The
protocol and protocol group will be set by the Gateway infrastructure which will provide an initial set of
data available for mapping. When the provider key is set into the provider context, additional data or
new values will be available in the protocol context based on the current provider. When the partner key
is set into the partner context, additional data or new values will be available in the protocol context
based on the current partner. The keys to the Protocol context will be defined in the RMF as read only
in the protocol and process flows.

3.1.2.6 DOM Contexts

A protocol can create an arbitrary number of DOM contexts to provide XML documents available for
mapping and programmatic access. Two typical contexts would be one to represent the incoming
request and one to represent the outgoing response, although any number of contexts with any context
names (except for those names reserved by Connect) may be used.

3.1.2.7 IDA Contexts

Several IDA type contexts will be used in protocol and process flows. One or more IDA type contexts
will be used to hold the data mapped between steps in the flow. This is the “Intermediate” context from
version 1.1, and does not have an RMF associated with its data.

3.1.2.8 Key Attributes

The Flow Engine will now allow for special key fields to be mapped to or from certain contexts to affect
the context as a whole. These key fields are associated with the context, but are not stored in the
actual data store associated with the context. The following key fields are available for version 2.0:

This is the partner key that is used to initialize the Partner#Partner_RefnoPartner

This is the provider key that is used to initialize the Provider
context. Once it is set by the protocol, the remaining
provider fields are available for mapping. It also causes the
provider specific fields in the Protocol context to be
available.

#Provider_RefnoProvider

This represents the full XML document for the DOM context.
When a mapin (or copy step) occurs to read this key field,
the current DOM will be serialized and provided as a string.
When a mapout (or copy step) occurs to update this key
field, the document in the String will be parsed and used to
populate the DOM context.

#XMLStringDOM contexts

This represents the full XML document for the DOM context.
When a mapin (or copy step) occurs to read this key field,
the current DOM will be serialized and provided in the byte
array. When a mapout (or copy step) occurs to update this
key field, the document in the byte array will be parsed and
used to populate the DOM context.

#XMLByteArrayDOM contexts

This key field is used to override the level of validation that
is performed when the DOM is parsed. The valid values are
“Full”, “EntityResolver”, and “None”. This will override the
default validation level for the context for all future validation
in the flow.

#ValidationLevelDOM contexts
DescriptionKey ReferenceContext

Page 14 of 133

This is the protocol key that is used to initialize the protocol
context. Once this and the #Protocol_Group field are set
by the Delivery Gateway framework, the Protocol fields are
available for mapping.

#ProtocolProtocol

This is the protocol group key that is used to initialize the
protocol context. Once this and the #Protocol field are set
by the Delivery Gateway framework, the Protocol fields are
available for mapping.

#Protocol_GroupProtocol

context. Once it is set by the protocol, the remaining
partner fields are available for mapping. It also causes the
partner specific fields in the Protocol context to be
available. .

3.1.3 Gateway and Flow Manager Architecture

There is one important difference between the two environments: the Gateway and the Flow Manager. The
Flow Manager only allows access to the data stores through mapping. The Gateway provides a mappable
access plus direct access to the data stores. Mappings lets you associate fields from the data stores with
input or output fields in your application or process step. Mappable access is strictly one field at a time
processing. The API methods that provide mappable access have the architecture of retrieving an object
associated with a field and then retrieving or setting a value associated with that field. For example,
mappable access will only allow the retrieving and setting of a specific field of a DOM context. One of the
main benefits of the mappable interface is that it isolates the user from the format of the data. When a
program requests/sets data one field at a time, the Connect product will ensure that the data is found no
matter what format the data is in. In addition, Connect will format the data correctly when setting response
data. The Mappable interfaces provides Connect the ability for applications to be protocol independent.

 In contrast to the mappable interface, direct access will allow access to a broader range of data elements
of the data store objects. The API methods that provide direct access have the architecture to allow
retrieving and setting data element objects. For example, direct access provides a method to retrieve or set
an entire DOM in a DOM context. This interface is not protocol independent. If an application wants to
retrieve an entire DOM then that application needs to understand the format of the DOM (which makes it
protocol dependent).

 The diagram below depicts the above overview:

Page 15 of 133

JDBC

Program
Call

Java

Queue

JavaConnectorApp

ConnectorsFlowEngine

Interface Architecture

Registry Buyer/Supplier

Request DOM

Resonse DOM

MessageHeader

Flow Data Area

InternalHeader

Data Stores

Data Access Methods

Mapping

Page 16 of 133

In the section above we described that the Flow Manager and the Gateway runtime components share the
same flow engine. However, we noted that the Flow Manager only provides a mapping interface to the data
stores that are maintained in the flow engine. The main purpose of the Flow Manager component is to
communicate with legacy applications that will process the request message and generate the response
message. So the Java Connector Application that is invoked via the Java Connector generally will be
involved with transforming the request message into a format that is acceptable to a target legacy
application. It will take the results from the legacy application and utilizing the Connect APIs, it will return
the response in the correct format. The diagram below depicts a generic algorithm for a Java Connector
Application that will utilize mapping to get request data, invoke a legacy application and then set the
response data.

FlowManager

Java Connector App

Get List of input Fields
Get values for each field
Put value in Java Object
Invoke Target Application
get list of output fields
Get value from Java Object
 Put values for each field
set JavaConnectorResult Object

Java
Connector

Request-
Response

Flow Manager Java Connector

Java Method implements
Java Connector Interface

Target
Application

Page 17 of 133

In contrast to the Flow Manager component environment, the Gateway component has the ability to have
direct access to the flow engine data stores (in addition to mappable access). The main purpose of the
Gateway component is to provide a set of functions that are specific to each protocol. These functions
generally involve authentication, authorization, data extraction, encoding, logging, and so forth. In order for
the Gateway Java Connectors Applications to provide their desired functions, it is necessary to provide the
direct access to the data stores. One possible algorithm for using the direct access APIs is depicted in the
diagram below:

Gateway

Java Connector App

get the input byte array from the
Flow Data area;
parse the input byte array to
generate a DOM object;
put the generated DOM object as
the Request DOM;

Java
Connector

Request-
Response

Gateway Java Connector

Java Method implements
JavaProgramConnector Interface

Page 18 of 133

3.2 Where can code run in Connect?
There are generally two places in the Connect runtime where code can run: A java Connector Application
and a Flow Manager Exit.

Java Connector Applications

The Connect for iSeries connectors allow the integration of business applications with Connect and allow the
ability to support custom protocols. Generally, the connectors provide a specific access method to
applications or data (for example, program call connectors allow the invocation of an application via a
call/return access method). The exception to this is the Java Connector which invokes the Java connector
application. The Java connector application can provide any function that is required. The Java connector
applications can invoke a set of connect APIs to get information about a request and set response
information. This is a key point for users and business partners to provide custom code for Connect.

Flow Manager Exits

These exit points will allow user written code to get executed at distinct points in the Flow Manager’s life.
There are two exit points, one at initialization time and one at termination time. The initialization one is
executed after the Flow Manager goes through it’s initialization phase, prior to waiting for requests on the
Gateway queue. The termination point is during the cleanup phase of the Flow Manager prior to shutting
down any processes/threads. The Flow Manager instantiates a Java class that implements a specified
Java interface. Multiple Java exit classes can be registered with Connect. The Flow Manager will
instantiate and run all classes that are registered.

To register the exit programs, the administrator/programmer must use the Connect administration GUI.
Select an instance in the Instance tab and then select the Properties action button. In the Properties panel,
press the Flow Manager tab and look down for an User Exit Class field. There will be a button to add the
class name that contains the exit programs; eg com.user.MyInitializer. There can be multiple exit program
properties registered.

The Java interface that the exit classes need to implement is:

public interface B2BExit {
public void initialize() throws Exception;
public void terminate() throws Exception;

}

The Flow Manager startup code will call all the initialize methods. If a user exit method throws an exception
during the initialization exit, the Flow Manager will log a message and the Flow Manager will NOT start.
The Flow Manager stop code that runs after all the connection threads have finished, will call the terminate
methods. If a user exit method throws an exception during the termination exit, the Flow Manager will log a
message and continue on. The Flow Manager will call the exit methods in "user threads" subject to the
user security manager restrictions.

Page 19 of 133

3.3 Data for tools compared to data at runtime
The tools for Connect are responsible for assisting users in configuring the runtime elements of Connect.
They provide the data required by runtime to determine how to process request and generate responses. In
dealing with the Connect runtime, the tool set has two main documents that are relevant to the Connect
runtime:

Application Connector Document : this document is generated by the Connect tool set and it describes the
interface to the applications that can be accessed by connectors in a process flow.

Process Flow: this document is generated by the Connect tool set and it describes the flow of steps that
occur for a given request. This document indicates which applications are going to be invoked and in what
sequence will they get invoked.

The deployment tool will then take these generated documents and build a runtime representation of the
information contained in these documents. The runtime representation differs from the generated
documents so that they can be optimized for runtime processing. At the start of the Delivery Gateway or
Flow Manager, the runtime reads the runtime representation of the documents and build Java object
representations of the information. These objects are then made available via the ConnectorParm and
JavaConnectorParm objects.

3.4 Connector Interfaces
In Connect for iSeries, there are two Java Connector Application Interfaces that are supported. One is
available only in the Gateway and is used for Custom Protocols. The other is available only in the Flow
Manager and is used for integrating business applications with Connect. When the Flow Manager invokes a
Java Connector Application, the com.ibm.connect.flowmanager.interfaces.JavaConnectorInterface is used.
This interface allow user code to execute and makes available an object that provides the mappable access
to data objects. This interface has a single method that takes a ConnectorParm object as input

run(ConnectorParm)
execute the user java code..

The Java Connector Application must implement this Java Interface and make the class available to the Flow
Manager (via it’s classpath).

When the Gateway invokes a Java Connector Application, the JavaProgramConnectorInterface is used. This
interface supplies the object that provide the mappable access to data objects. In addition, it provides direct
access to data object that the flow engine maintains. The JavaProgramConnectorInterface has a single
method that takes a ProgramConnectorParm object as input.

run(ProgramConnectorParm)
Execute the user java code.

The Java Connector Application must implement this Java Interface and make the class available to the
Gateway (via it’s classpath).

The run methods above both return a JavaConnectorResult object. The JavaConnectorResult object
contains two fields, a return code of type int and a return message of type String. It is the responsibility of
the Java Connector Application to set the return code. If the return code is set to non-zero, then this will

Page 20 of 133

signal to the Flow engine that an error has occurred. The Flow Engine will then perform it’s error
processing. During error processing, the flow engine will stop the normal step flow and jump into the error
step flow. Each step in the flow engine can optionally have an associated error step defined. This step will
be the step that control will go to in case of an error. Setting the Java Connector Result object return code
value to a non-zero value will signal that control will go to the error step. If an error step is not defined, then
the flow will stop processing. In addition, the JavaConnectorResult object return code and return message
will be automatically set in a InternalHeader field. The reason we will do this is that the error step can then
use the mapping technology to find out what the return code and return message values were that caused
the error step to gain control. The fields in the InternalHeader that corresponds to the return code is
ApplicationErrorCode and the field that corresponds to the return message is ApplicationErrorText.

3.4.1 Mappable Access

The ConnectorParm object provides all the methods required to access data that is mapped. The
ConnectorParm object provides methods to get Field Objects that are associated with the input and output
parameters identified for this Java Connector Application. Each Field Object contains information about the
field, including the mapping information to get or set the runtime value associated with the parameter. The
MapCursor object allows the moving of a pointer to navigate a DOM. It is used for getting/setting values for
a collection of related fields within a structure.

3.4.1.1 ConnectorParm Object

The ConnectorParm object provides all the methods required to access data that is mapped. The
ConnectorParm object provides methods to get Field objects that are associated with the input and output
parameters identified for this Java Connector Application. Each Field object contains information about the
field, including the mapping information to get or set the runtime value associated with the parameter. The
Field Object contains all the data associated with an input or output parameter defined for the Java
Connector Application.

Step 1) Get Field objects. The first required step in every Java Connector Application is to get the set of
field objects associated with the Java Connector Application. The Java Connector Application can get this
set of objects using methods on the ConnectorParm object. The methods allow getting the input list of
fields separate from the output list. This allows the mapping of the input fields, then the processing
associated with the Java Connector Application and then the mapping of the output fields. The methods to
get the list of input fields are:

getInputField(String)
Get a specific field defined for input. This method is used to get a single specific input field object.
The name of the field is the input String and the output is the associated field object. The name of
the field can be a path type name to get fields within structures. For example; if the input parameter
is a structure such that the order_item structure contains a field called unit_price;to get the field
object associated with the field unit_price then the input String must be “/order_item/unit_price”.

getInputFieldList()
Get of list of fields defined for input.

getInputFieldList(Field)
Get of list of children fields for a field defined for input.

The getInputFieldList() methods (with no parameters) only get the list of first level parameters. If your input
parameters contain structures then the getInputFieldList() will get the field object associated with the

Page 21 of 133

structure. In order to get the list of children field, the method getInputFieldList(Field) must be used. The
Field parameter in getInputFieldList(Field) is the field object of the structure whose children you want to get
field objects for.

For example; if the input parameters to a Java Connector Application were defined in the following PCML
xml sample.

<pcml version="1.0">
<!-- PCML source for calling PCMLTest -->
 <program name="pcmltest" path="/QSYS.lib/B2BTEST.lib/PCMLTEST.pgm">
 <data name="incount" type="int" length="4" usage="input" />
 <data name="instance" type="char" length="10" usage="input" />
 <data name="mktplc" type="char" length="20" usage="input" />
 <struct name="fromc" usage="input" >
 <data name="from_domain" type="char" length="64" usage="input" />
 <data name="from_identity" type="char" length="64" usage="input" />
 </struct>
 <struct name="toc" usage="input" >
 <data name="to_domain" type="char" length="64" usage="input" />
 <data name="to_identity" type="char" length="64" usage="input" />
 </struct>
 <data name="orderID" type="char" length="6" usage="input" />
 <data name="t_type" type="char" length="6" usage="input" />
 <struct name="item" usage="input" count="pcmlapperr.incount" >
 <data name="lineNumber" type="int" length="4" init="0" usage="input" />
 <data name="identifier" type="char" length="16" usage="input" />
 <data name="quantity" type="int" length="4" usage="input" />
 <data name="price" type="float" length="4" usage="input" />
 <data name="description" type="char" length="64" init="none" usage="input" />
 </struct>
 </program>
</pcml>

Then the following Java code snippet demonstrates how to get the Field Objects for the input parameters:

import com.ibm.connect.flowmanager.interfaces.*;
import com.ibm.connect.flowmanager.metadata.Field;
import java.util.*;

public JavaConnectorResult run(ConnectorParm parms)
{
 // Get the high level fields. The Vector of Fields will contain the
 // following input fields
 // incount
 // instance
 // mktplc
 // fromc
 // toc

Page 22 of 133

 // orderID
 // t_type
 // item
 Vector FirstLevelFields = parms.getInputFieldList();

 // The following will get a specific field (item) and then will get all the member fields
 Field itemfld = parms.getInputField(“item”);

 // The Vector of Fields will contain field objects associated with the following input fields:
 // lineNumber
 // identifier
 // quantity
 // price
 // description
 Vector item_children_flds = parms.getInputFieldList(itemfld);

 // The following will get a specific child field in the structure item
 Field quantity = parms.getInputField(“/item/quantity”);
}

Once the Field object is retrieved, you can use it as input into subsequent ConnectorParm methods. In
addition, you can get information about the field using the “get” methods on the Field object.

There is a synonymous group of methods for retrieving the output list of Field objects. These methods act
the same as the getInputField methods except they retrieve the list of Field objects associated with output
parameters defined for the Java Connector Application. These methods are:

getOutputField(String)
Get a specific field defined for output.

getOutputFieldList()
Get of list of fields defined for output.

getOutputFieldList(Field)
Get of list of children fields for a field defined for output.

Step 2) (optional) Associate a Cursor with a Field. After getting the Field objects associated with the
input and output parameters defined for the Java Connector Application, then the next step is to associate a
MapCursor with a Field Object. This is an optional step. The MapCursor object allows the moving of a
pointer to navigate a DOM. It is used for getting/setting values for a collection of related fields within a
structure. For example; let’s say the input to the Java Connector Application is a repeating structure that
represents an order item. The order item structure has 4 child fields (price, quantity, identifier and
description). It is important that the values for the child fields are the same relative to each other. This
means that if you have 3 order items, that the values for the child fields of price, quantity, identifier and
description of the first order are grouped together. If MapCursors were not present it is possible to get the
values for price, quantity and identifier of the second order grouped with the description of the third order
(this could happen if the description field had no value). MapCursor objects are not constructed, they are
returned when getting or setting fields that are of type “struct”. Once a MapCursor is returned then it can be
“bound” to a field object. When bound to a field object then the getting or setting of that field object will be
relative to that MapCursor position. If the field is not bound to any cursor, then it is automatically bound to
the “root” or default cursor position. Generally, binding to the “root” or default cursor is sufficient if the field is
not in a repeating structure. The methods for binding fields to cursor are as follows:

Page 23 of 133

bindInfieldToCursor(Field, MapCursor)
Bind an input field to a cursor
This will create a relationship between a field and a specific cursor.

bindOutfieldToCursor(Field, MapCursor)
Bind an output field to a cursor
This will create a relationship between a field and a specific cursor.

Step 3) Retrieve or Set a value. The methods of ConnectorParm that provide the getting and setting of
values perform many functions. First, they perform the mappings as defined by the Business Process
Workbench tools. The second is that they do automatic data type conversion. They perform any default
processing if the value to be retrieved is null. They will also perform any operations defined. The methods for
getting values will convert from a String object to a target data type for all data stores except the
Intermediate Data Area. The methods for setting values will convert from a source data type to the String
object. In addition, the set methods will ensure that valid XML is generated if mapping to the Response
DOM.

The methods for retrieving values follow a naming algorithm; getFieldAsXXXX(Field), where XXXX are the valid
data types that Connect supports. The current list of data types that Connect supports are:

BigDecimal
Boolean
Byte
ByteArray
Double
Float
Int
Long
Short
Struct

These methods will find the mapping that was specified by the Business Process Workbench tools and
retrieve the values by applying the mappings. The user of these methods need not be aware of the mapping
specifications or where the values are retrieved from. These get methods will return the value in the data
type that is specified on the method name. One way to programmatically figure out which data type to
retrieve a field as is to use the Field Object getType() method. This will return the data type that a specific
Field is specified in the input/output field template. Each method takes a Field object as input. The get
methods return an array of values in the appropriate data type. The reason for this is that it will return a
value for every mapping match that it finds. For example, if the input request has 4 elements that are called
OrderNumber and each element has a value, then a call to getFieldAsInt() passing in a Field object that
maps to the OrderNumber request will return an int array containing 4 elements.

 The list of get methods currently supported is as follows:
getFieldAsBigDecimal(Field)

Get of a field and return it as an array of BigDecimals.
getFieldAsBoolean(Field)

Get of a field and return it as an array of booleans.
getFieldAsByte(Field)

Get of a field and return it as an array of bytes.
getFieldAsByteArray(Field)

Get of a field and return it as an array of byte[]s.

Page 24 of 133

getFieldAsDouble(Field)
Get of a field and return it as an array of doubles.

getFieldAsFloat(Field)
Get of a field and return it as an array of floats.

getFieldAsInt(Field)
Get of a field and return it as an array of ints.

getFieldAsLong(Field)
Get of a field and return it as an array of longs.

getFieldAsShort(Field)
Get of a field and return it as an array of shorts.

getFieldAsString(Field)
Get of a field and return it as an array of Strings.

getFieldAsStruct(Field)
Get of a field and return it as an array of cursors.

There is one special case method from the list above; the getFieldAsStruct(). This method will return an
array of MapCursors. The length of the array is the number of structure items that were discovered in the
mapping area. For example; let’s say that the input parameters expect an order item as input (and it is a
structure). In addition, the mapping specification indicates that this input structure maps to ItemOut
element in the cXML Order Request. When processing each request and a getFieldAsStruct() call on the
order item field is processed, the number of order items in that specific request is the length of the
MapCursor array returned from getFieldAsStruct(). So if a request contains 3 ItemOut elements, then the
MapCursor array will have a length of 3.

Each MapCursor object can be bound to a field so that the search for values will be relative to that
MapCursor object. The ConnectorParm methods bindInfieldToCursor(Field,MapCursor) can be used for this
binding. This will allow the grouping of field values relative to a specific structure.

The following is an example of how to use getFieldAsStruct(), bindInfieldToCursor() and getFieldAsInt(). It
assumes that none of the input parameters are arrays. Let’s say the following PCML XML snippet defines
the input into your Java Connector Application.
<pcml version="1.0">
<!-- PCML source for calling PCMLTest -->
 <program name="pcmltest" path="/QSYS.lib/B2BTEST.lib/PCMLTEST.pgm">
 <data name="incount" type="int" length="4" usage="input" />
 <struct name="item" usage="input" count="pcmltest.incount" >
 <data name="lineNumber" type="int" length="4" init="0" usage="input" />
 <data name="identifier" type="char" length="16" usage="input" />
 <data name="quantity" type="int" length="4" usage="input" />
 <data name="price" type="float" length="4" usage="input" />
 <data name="description" type="char" length="64" init="none" usage="input" />
 </struct>
 </program>
</pcml>

 Here is a Java Code Snippet

Page 25 of 133

// Declare a bunch of data elements
MapCursor[] cursorlist;
// Get the Field Objects associated with the input fields
Field itemfld = parms.getInputField(“item”);
Field linenum_fld = parms.getInputField(“item/linenumber”);
Field identifier_fld = parms.getInputField(“item/identifier”);
Field quantify_fld = parms.getInputField(“item/quantity”);
Field price_fld = parms.getInputField(“item/price”);
Field desc_fld = parms.getInputField(“item/description”);
// Declare the value arrays
int[] linenum_val;
String[] id_val;
int[] quantity_val;
float[] price_val;
String[] desc_val;

// Get the array of cursors as mapped by the structure field
cursorlist = parms.getFieldAsStruct(itemfld);

// Each array element corresponds to an order item in the request
for (int i=0;i<cursorlist.length;i++) { /*each struct element returned */

 // Get the line number for this order item
parms.bindInfieldToCursor(linenum_fld,cursorlist[i]);
linenum_val = parms.getFieldAsInt(linenum_fld);

 // Get the identifier for this order item
parms.bindInfieldToCursor(identifier_fld,cursorlist[i]);
id_val = parms.getFieldAsString(identifier_fld);

 // Get the quantity for this order item
parms.bindInfieldToCursor(quantity_fld,cursorlist[i]);
quantity_val = parms.getFieldAsInt(quantity_fld);

 // Get the price for this order item
parms.bindInfieldToCursor(price_fld,cursorlist[i]);
price_val = parms.getFieldAsFloat(price_fld);

 // Get the description for this order item
parms.bindInfieldToCursor(desc_fld,cursorlist[i]);
desc_val = parms.getFieldAsString(desc_fld);

 // Now that you have all the values for this order item, process them as a group
 // there should be only one value in each return array.
 ProcessOrder(linenum_val[0],id_val[0],quantity_val[0],price_val[0],desc_val[0]);

 // get the next order item
} /* end for */

Page 26 of 133

The ConnectorParm object has corresponding methods for setting output parameter values. These
methods follow a similar naming convention as the get methods; setFieldFromXXXX(), where XXXX is a
supported data type. Each methods takes a Field object as input and a value in the data type of the
method. The set method will perform the mapping, putting the value in the area as defined by the Business
Process Workbench tools Change name?. In all the data stores except the Intermediate Data Area, the set
method will perform a data type conversion from the input type into a String. Also, the set method will
ensure that the XML document is properly formed and valid. The set of methods for setting values are:

setFieldFromBigDecimal(Field, BigDecimal)
Put a BigDecimal field value

setFieldFromBoolean(Field, boolean)
Put a boolean field value

setFieldFromByte(Field, byte)
Put a byte field value

setFieldFromByteArray(Field, byte[])
Put a byte[] field value

setFieldFromDouble(Field, double)
Put a double field value

setFieldFromFloat(Field, float)
Put a float field value

setFieldFromInt(Field, int)
Put an int field value

setFieldFromLong(Field, long)
Put a long field value

setFieldFromShort(Field, short)
Put a short field value

setFieldFromString(Field, String)
Put a string field value

setFieldFromStruct(Field)
Put a struct field
This will create an element node in the DOM tree or in the Intermediate Data Area and return a
cursor to that newly created node.

As with the get methods, the setFieldFromStruct() method is a special case method. It will
create an element node and return a MapCursor to that newly created node. This will allow the
Java Connector Application to perform a bindOutfieldToCursor() and then set the member fields
relative to that newly created element. This will allow control over the grouping of member fields
in order to maintain proper relationships of values. This is very similar to the input field struct
support. Note: the value of the node will not be set.

A sample of setting a field with a value
Let’s say the following PCML XML snippet defines the output from your Java Connector Application.
<pcml version="1.0">
<!-- PCML source for calling PCMLTest -->

Page 27 of 133

 <program name="pcmlouttest" path="/QSYS.lib/B2BTEST.lib/PCMLTEST.pgm">
 <struct name="item" usage="output" >
 <data name="lineNumber" type="int" length="4" init="0" usage="output" />
 <data name="identifier" type="char" length="16" usage="output" />
 <data name="quantity" type="int" length="4" usage="output" />
 <data name="price" type="float" length="4" usage="output" />
 <data name="description" type="char" length="64" init="none" usage="output" />
 </struct>
 </program>
</pcml>

 Here is a Java Code Snippet

// Declare a bunch of data elements
MapCursor cursor;
// Get the Field Objects associated with the output fields
Field itemfld = parms.getOutputField(“item”);
Field linenum_fld = parms.getOutputField(“item/linenumber”);
Field identifier_fld = parms.getOutputField(“item/identifier”);
Field quantify_fld = parms.getOutputField(“item/quantity”);
Field price_fld = parms.getOutputField(“item/price”);
Field desc_fld = parms.getOutputField(“item/description”);
// Declare the value
intlinenum_val;
String id_val;
Int quantity_val;
float price_val;
String desc_val;

try {
// Create a parent element in the output DOM, returns a cursor to that new element
cursor = parms.setFieldFromStruct(itemfld);

// Set the line number for this order item
Parms.bindOutfieldToCursor(linenum_fld,cursor);
Parms.setFieldFromInt(linenum_fld, 25); // create the element for linenum and set the

value to 25. This will perform output mapping

// Set the identifier for this order item
Parms.bindOutfieldToCursor(identifier_fld,cursor);

Parms.setFieldFromString(identifier_fld, “1234”); // create the element for identifier and set
the value to 1234.

// Set the quantity for this order item
Parms.bindOutfieldToCursor(quantity_fld,cursor);
Parms.setFieldFromInt(quantity_fld, 2); // create the element for quantity and set the

value to 2.

Page 28 of 133

// Set the price for this order item
Parms.bindOutfieldToCursor(price_fld,cursor);
Parms.setFieldFromFloat(price_fld, 12.56); // create the element for price and set the

value to 12.56

// Set the description for this order item
Parms.bindOutfieldToCursor(desc_fld,cursor);
Parms.setFieldFromString(desc_fld, “toothbrush”); // create the element for

description and set the value to toothbrush

} Catch (e SetFieldException) {
// do exception processing

} /* end try/catch */

 } /* end for */

There is a set of miscellaneous methods on the ConnectorParm object. The getProperty() methods
allows the retrieval of Property values associated with the Connector type. For Java Connector
Applications the only valid Property to retrieve is the properties file name that was entered for this Java
Connector Application. The string to use for the properties file name is “propertyfilename”.
getProperty(String)

Get a property value for a specified.

Connect generates a unique identifier for each new message that it receives. This identifier is generated
and contains a timestamp (so it cannot be used for duplicate checking). The main purpose for using the
identifier is for logging auditing or trace information about each message. The method getUniqueID()
can be used to retrieve the unique identifier associated with the current message that is getting
processed.
getUniqueId()

Get the unique Id for this message

Connect maintains a version number. This is the current version of Connect that is running. Valid values
are 1 for Connect 1.0, 2 for Connect 1.1 and 3 for Connect 2.0.
getVersion()

Get the interface version.

3.4.1.2 Field Object

The Field Object contains all the data associated with an input or output parameter defined for the Java
Connector Application. The first step in every Java Connector Application is to get the set of field objects
associated with the Java Connector Application. The Java Connector Application can get this set of objects
using methods on the ConnectorParm object (see below). Once the Field object is retrieved, you can use it

Page 29 of 133

as input into subsequent ConnectorParm methods. In addition, you can get information about the field using
a set of get methods on the Field object.

There are two attributes that are associated with the Field object that require some clarification, the Name
attribute and the Location attribute. The Name attribute is a ‘/’ delimited, fully qualified, display name of the
field. The value is the same as what was displayed via the Application Connection Document (ACD) editor
tool (except that it is fully qualified). Fully qualified means that if the field is a child member of a structure,
then all it’s parent names will be part of the Name attribute. For example. If the field object represents a
field named “order” and this field is a child of “item”, which in turn is a child of “request”, then the value for
the Name attribute for this field object is “request/item/order”.

The Location attribute can be used by a connector to locate the field in a target application access method.
The value of the Location attribute depends on how the field is defined to the ACD editor tool. If you use
PCML to define the interface to an application, then the Location value will be a ‘.’ delimited, full qualified
value. If you use XML to define the interface to an application, then the location will be of an XPATH
notation. For example, if you use the following PCML to define an application interface, the Location value
for “price” would be “pcmlouttest.item.price” (the Name value would be “item/price”).

<pcml version="1.0">
<!-- PCML source for calling PCMLTest -->
 <program name="pcmlouttest" path="/QSYS.lib/B2BTEST.lib/PCMLTEST.pgm">
 <struct name="item" usage="output" >
 <data name="lineNumber" type="int" length="4" init="0" usage="output" />
 <data name="identifier" type="char" length="16" usage="output" />
 <data name="quantity" type="int" length="4" usage="output" />
 <data name="price" type="float" length="4" usage="output" />
 <data name="description" type="char" length="64" init="none" usage="output" />
 </struct>
 </program>
</pcml>

If you used the following XML to define an application interface, the location value for “date” would be
“order/@date” (the Name value would be “order/date”).

<order date=”x”>
 <id>xxx</id>
 <price>1.1</price>
</order>

getCountfield()
Returns the value of the count field attribute on this Field element.

getDefault()
Returns the default value for this Field element.

getField(String)
Returns the field object with the specified name attribute. The field identified by the String must be a
child field for this field.

getFields()
Returns the list of child field objects contained within this field.

getLength()
Returns the int value of the length attribute on this Field element.

Page 30 of 133

getLocation()
Returns the value of the location attribute on this Field element.

getName()
Returns the value of the name attribute on this Field element.

getPrecision()
Returns the int value of the precision attribute on this Field element.

getRepeating()
Returns the value of the repeating attribute on this Field element.

getSubtype()
Returns the value of the subtype attribute on this Field element.

getType()
Returns the int value of the type attribute on this Field element.

GetVariableLengthField
 Returns the name of another field that contains the length of this field.
IsVariableLength
 Indicates if the field is a variable length field
isRepeating()

Indicates if the field is a repeating field.

3.4.1.3 Sample Code

Interface XML

<?xml version="1.0" encoding="UTF-8"?>
<order date="">
 <orderitem quantity="1" >
 <itemnum>1111</itemnum>
 <unitprice currency="USD">1.23</unitprice>
 <desc> PartA </desc>
 </orderitem>
 <orderitem quantity="21">
 <itemnum>222</itemnum>
 <unitprice >1.45</unitprice>
 </orderitem>
 <orderitem quantity="13">
 <itemnum>222</itemnum>
 <unitprice >1.45</unitprice>
 <desc> PartB </desc>
 </orderitem>
</order>

Page 31 of 133

Request XML snippet

<cXML>
<Request>
<OrderRequest>
 <OrderRequestHeader orderDate="1999-03-12" />
</OrderRequest>
<ItemOut quantity="2" requestedDeliveryDate="1999-03-25">
 ItemID>
 <SupplierPartID>1233244</SupplierPartID>
 </ItemID>
 <ItemDetail>
 <UnitPrice>
 <Money currency="USD">1.34</Money>
 </UnitPrice>
 <Description xml:lang="en">hello</Description>
 </ItemDetail>
</ItemOut>
<ItemOut quantity="5" requestedDeliveryDate="1999-03-25">
 ItemID>
 <SupplierPartID>11111</SupplierPartID>
 </ItemID>
 <ItemDetail>
 <UnitPrice>
 <Money currency="USD">10.25</Money>
 </UnitPrice>
 <Description xml:lang="en"> test part</Description>
 </ItemDetail>
</ItemOut></Request></cXML>
Java Connector Application

ConnectorParm parms; /* let's say that this is a fully initialized object */
Field orderfld = parms.getInputField("order/orderitem");
parms.bindInfieldToCursor(orderfld);
/* get a list of DOM cursors corresponding to this struct */
MapCursor orderlist = parms.getFieldAsStruct(orderfld);
if (orderlist != null) {
 Vector memberflds;
 Enumeration enum;
 Field currentmember;
 String[] values;
 /* get all the members fields name */
 memberflds = parms.getInputFieldList(orderfld);
 enum = memberflds.elements();
 /* for each struct value that is found and for each field in the struct process the
 value. Those member fields may be struct themselves so we need to recurse */
 for (int i=0;i<orderlist.length;i++) {/*each struct element returned */
 while (enum.hasMoreElements()){ /* each member field name */

Page 32 of 133

 currentmember = (Field)enum.nextElement();
 /* this will make sure we are pointing to the right spot in the input message */
 parms.bindInfieldToCursor(currentmember,orderlist[i]);
 values = getFieldAsString(currentmember);
 if (values != null) {
 System.out.println("Field {0} has value
{1}.",currentmember.getName(),values[0]);
 }/* end if*/
 } /* end while */
 } /* end for */
}/*end if */

Page 33 of 133

3.4.2 Direct Access

The objective of providing direct access to Connect data stores is to allow the manipulation of data without
requiring field by field mapping. The direct access methods provide access to the set of Connect data
stores. This set contains the following:

This contains objects that can be
used for sharing information
between Java Connector
Applications within a specific flow
instance.

NoFlow Data Area

This contains a set of fields that
are available in a message header
context

YesMessage Header context

This context is defined by the
protocol designer and typically
contains the request and or the
response XML

YesDOM context

DescriptionMappabl
e

Name

At the start of the Gateway protocol flow, all these areas are empty or incomplete. The object of many of
the Connectors in the protocol flow set values in these areas so that they can be used by subsequent
Connectors in the Gateway protocol flow or in the Flow Manager.

3.4.2.1 ProgramConnectorParm Object

The ProgramConnectorParm object gets passed to each Java Connector Application that is invoked in the
Gateway. It provides all the same methods as the ConnectorParm object described above. It also provides
a set of methods that allow direct access to objects so that data doesn’t have to be processed on a field by
field basis. The direct access methods are described below and are organized by methods associated with
data stores.

3.4.2.2 Named DOM Context

A named DOM context is initially empty and once it contains values, it is mappable. Typically, one of the
early steps in the protocol flow takes the XML byte array representation of the Request message and
performs an XML Parse to generate the DOM object. The setDOM() method will take that generated DOM
object and store it in a named DOM context. This will allow any subsequent connector (in both the
Gateway and Flow Manager) to map fields out of the named DOM context.

A brief side note. The initialization of named DOM context with the XML string (or byte array) can be
acheive throug another technique. Each DOM context has a special mappable key field that performs a
specific function. For example, each DOM context has a key field called #XMLString. This key field treats
DOMs as strings. So, a user can map an XML string into the #XMLString key field and Connect will parse
the XML string and store it as a DOM in the DOM context. After this, the DOM context contains the fully
parsed XML string and each field in the string is mappable. Conversely, at any point a user can map out of

Page 34 of 133

the key field #XMLString. The value returned is an XML string that represents the current state of the DOM.
When use with the Copy step in the Protocol or Process flows, the utilization of mapping these key fields
can be powerful and easy ways to manipulate entire XML strings (or byte arrays).

getDOM(java.lang.String contextName)
Return the DOM containing the xml associated with the named context provided.

setDOM(java.lang.String contextName, org.w3c.dom.Document document)
Set the document in the flow state for the context specified

A sample of using these methods are as follows:

// This sample will get the input request from the Gateway Framework, parse it and store
// the DOM in named DOM context called “InsuranceRequest”. It will then get the DOM
// and extract some information from it.
import org.apache.xerces.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.*;

{
Document RequestDOM;
DOMParser parser = new DOMParser();

// get the Input Byte Array from the Gateway Framework
// parms is the ProgramConnectorParm object
byte[] xmldoc = (byte[])
 parms.flowDataAreaGet(GatewayConstants.INPUT_BYTES_ARRAY);

// parse the XML byte Array
 parser.parse(new InputSource(new ByteArrayInputStream(xml)));
// save the parsed DOM version of the XML byte array
 RequestDOM = parser.getDocument();

// Store it in the named DOM context associated with an Insurance protocol Request
 parms.setDOM(“InsuranceRequest”,RequestDOM);

// Get the Insurance request DOM back out and extract some information from it
Document inputDocument = parms.getDOM(“InsuranceRequest”,);
DocumentType docType = (DocumentType) inputDocument.getDoctype();
parms.flowDataAreaPut(GatewayConstants.REMOTE_DTD_NAME,docType.getSystemId(
));
}

}

Page 35 of 133

3.4.2.3 MessageHeader Context

This context is limited in that it only accepts String data types as values. The semantics of
storing/retrieving data is a name/value pair technique. You can retrieve a value by providing a name, the
name of a Message Header context and the method messageHeaderGet() will return the string value
associated with the name. You can store a value by providing a name, the name of a Message Header
context and string value of the method messageHeaderPut(). If you wish to remove a name then pass that
name and the name of a Message Header context to the messageHeaderRemove() method.

The Connect Framework has two predefined Message Header Context each with a set of predefined names.
The names of the two predefined Message Header Contexts are “MessageHeader” and “InternalHeader”.
The “MessageHeader” message header context contains name/value pairs that are sent between the
Gateway and the Flow Manager. The “InternalHeader” message header context contains name/value pairs
that are scoped only to either the Gateway or the Flow Manage. The set of predefined name/value keys for
each pre-defined message header context are listed in the Appendix.

New names can be added to the a particular Message Header context by simply using the
messageHeaderPut() method. This will create an entry in the particular Message Header context with the
new name and value.

messageHeaderGet(java.lang.String contextName, java.lang.String key)
Retrieve a string from the message header specified by the context name

messageHeaderPut(java.lang.String contextName, java.lang.String key,
java.lang.String value)
Store the value at the specified key in the message header specified by the context name.

messageHeaderRemove(java.lang.String contextName, java.lang.String key)
Remove a string with the specified key from the the message header specified by the context name.

A sample of getting and putting a value in the sendable message header data area:

public JavaConnectorResult run(ProgramConnectorParm connectorParm)
 {

// The content request value from the header, key is "com_ibm_connect_header_contentRequest"
String messageType =

(String)connectorParm.messageHeaderGet(“MessageHeader”,HeaderConstants.CONTENT_REQUE
ST);

System.out.println(“The request value for this request is “ + messageType);

// replace the message type value in the MessageHeader
If (messageType.equals(“InputProfileRequest”) {

connectorParm.messageHeaderPut(“MessageHeader”,HeaderConstants.CONTENT_REQUEST,
“ProfileRequest”);
 }
 }

Page 36 of 133

3.4.2.4 FlowDataArea

The purpose of the Flow Data Area is to provide Java Connector Applications an area where they can put
objects or data and then retrieve them in a subsequent instance of a Java Connector Application. This
means that a Java Connector Application can store an object in this area and it will reside in that area for
the duration of the flow. Then in a later step a Java Connector Application can retrieve that data. The flow
engine will not do any processing of the object that the Java Connector Application stores and the Java
Connector Applications are responsible for name space collisions on the keys. There is no mapping
support for the value stored in the Flow Data Area. The Java Connector Applications can get access to the
Flow Data Area by using the following methods on the ProgramConnectorParm object.

flowDataAreaGet(String)
Return the object from the flow data area

flowDataAreaPut(String, Object)
Store an object in the flow data area at the specified key

flowDataAreaRemove(String)
Remove the object from the flow data area with the specified key

The semantics is that an object that is retrieved from the Flow Data Area and modified, the modification will
not be reflected in the FlowDataArea until that object is put into the Flow Data Area. The scope of the Flow
Data Area is the process flow. This means that each instance of a flow has a new Flow Data Area and the
Flow Data Area is not sent between the Gateway and the Flow Manager.

A sample of getting and putting a value in the flow data area:

JavaConnectorResult run(ProgramConnectorParm connectorParm)

 {
// Get the input raw message from the flowDataARea

 byte[] input_raw_msg = (byte[])
parms.flowDataAreaGet(GatewayConstants.INPUT_BYTES_ARRAY);

// Set the DTD name in the flowDataArea
parms.flowDataAreaPut(GatewayConstants.REMOTE_DTD_NAME, “cXML.dtd”);

 }

3.4.2.5 Error handling and other Miscellaneous APIs.

The Connect flow engine has the ability to do error processing for Connector steps that fail. In developing a
flow, a flow designer has the ability to point to an alternative next step to take if the step returns an error
while processing a step. If after processing a step, the flow engine determines an error occurred, then it will
invoke the step that is defined as the error step. If none is defined then the flow is terminiated. To indicate
to the flow engine that an error has occur in a connector step, the application must return a non-zero return
code. Once the flow engine determines that the connector step set the error code
(StepApplicationErrorCode), it will store these values and make them available to the error step via the
following set of methods. These values are also available via mapping of the InternalHeader message header
context.

Page 37 of 133

This set of methods provide convenience in getting information from the flow engine. Many of the methods
will be used in error steps to determine which step failed and how did that step fail.

getAPPErrorInfoCode()
Return the Application error code that was set in the previous step.

getAPPErrorInfoString()
Return the Application error string that was set in the previous step.

getCurrentStepName()
Return the current step name

getFailedStepName()
Return the failed step name

getFlowErrorInfoCode()
Return the Flow error code

getFlowErrorInfoString()
Return the Flow error string

getUniqueId()
Get the unique identifier for this request message

isInErrorPath()
Return true if this flow hit an error that forced it into the error path.

isRestart()
Return true if this flow was being restarted.

Sample using the methods

int appErrorCode = 0;
int flowErrorCode = 0;
flowErrorCode = parms.getFlowErrorInfoCode();
if (flowErrorCode != 0) {

// Something failed
if (flowErrorCode == FlowManagerCodes.ERROR_JAVA_CONNECTOR) {

// The failure is set by the java connectors
appErrorCode = parms.getAPPErrorInfoCode();
int errorCode = 500;
String errorText = "Internal Server Error";
switch (appErrorCode) {

case
GatewayConstants.ERROR_GW_INBOUND_MESSAGE_PARSING_FAILED: {

errorCode = 400;
errorText = "Bad Request";
break;

 }
case GatewayConstants.ERROR_GW_AUTHENTICATION_FAILED: {

errorCode = 401;
errorText = "Unauthorized";

 break;
}
case GatewayConstants.ERROR_GW_AUTHORIZATION_FAILED: {

errorCode = 403;

Page 38 of 133

errorText = "Forbidden";
break;

}
}
System.out.println("Error origin is Connector, code is " + appErrorCode + ", error

text is "+parms.getAPPErrorInfoString());
 }

3.5 Logging Interfaces
 User-written Java code is allowed to log trace and message information into the same trace and message
files used by iSeries Connect. Logging functions for user-written Java programs are provided by the Java
class, UserLogManager. The UserLogManager class will provide methods for tracing and sending
messages. There is one instance of the UserLogManager class per JVM. The UserLogManager
instance is created and initialized when iSeries Connect logging support is started.

3.5.1 User Tracing

User tracing is controlled by the same iSeries Connect configuration tool tracing controls that are used for
the Delivery Gateway and the Flow manager. That is, if tracing is active for the Delivery Gateway or the
Flow manager, then user tracing is active for any user-written software running in the same JVM.

User trace entries are logged to the same files used by the Delivery Gateway and the Flow manager. The
trace files for the Delivery Gateway and the Flow manager are written to
/qibm/userdata/connect200/Commerce/<instance name>/Logs. The trace files are named GW_Trace1.log to
GW_Tracen.log for the Delivery Gateway and FM_Trace1.log to FM_Tracen.log for the Flow manager, where
n is the number of trace file configure on the iSeries Connect configuration tool tracing screen.

The following UserLogManager trace methods will be provided:

setTracing(boolean)
Sets the static tracing indicator that is used to guard tracing in the user-written application code.

trace(Object, String, byte[])
Traces an array of bytes.

trace(Object, String, String)
Traces a text string.

trace(Object, String, Throwable)
Traces an exception.

Each method includes in its parameters the name of the class and method which is logging the trace point.
In all cases, the Object loggingClass parameter may be a String naming the logging class. In instance
(non-static) methods, loggingClass may be this (the logging object). Using this is a convenience to the
programmer, as the class name can be derived from any Object. In static methods, an object does not
exist, so this cannot be used. This use of the this pointer versus a String also applies to the message
methods in the next section. In additional to the parameters on the trace methods, each trace entry also
has the date, timestamp, and the name of the current thread.

Page 39 of 133

This is a sample trace point:

public class MyClass {
public void myMethod {

/* Note that the "this" pointer is used for the logging class */
UserLogManager.trace(this, "myMethod", "This is a trace example");

}
}

This is the resulting trace file entry:

2001.03.07 10:15:04.769 com.ibm.connect.MyClass myMethod Thread-0 This is a trace
example

To minimize the performance impact when tracing is inactive, the UserLogManager class includes a static
Boolean that can be used to check whether trace is active.

isTracing
Boolean used to guard tracing in calling code.

This Boolean is set true when iSeries Connect tracing is active, and false when it is not. For example:

if (UserLogManager.isTracing)
UserLogManager.trace(...);

3.5.2 User Messages

Messages logged by user-written Java applications will be written to the same locations as iSeries Connect
Messages.

� B2B Instance Message Queue. A message queue is created for each instance, and is located in the
instance library. The message queue name and library name are the same as the instance name.

� B2B Instance Message File. The same messages that are written to the B2B instance message queue
are also written to an integrated file system file named FM_Messages_<date>.log in the
/qibm/userdata/connect200/Commerce/<instance name>/Logs directory or GW_Messages_<date>.log
in the /qibm/userdata/connect200/Commerce/<instance name>/Logs directory. The message file name
has a date and time stamp, and is switched at midnight.

The following methods will be provided to allow users to log 3 types of messages: Informational, Warning,
and Error.

logErrorMessage(Object, String, String)
Logs an error message.

logInfoMessage(Object, String, String)
Logs an informational message.

logWarningMessage(Object, String, String)
Logs a warning message

If translation of messages into different languages is desired, the user-written application must perform its
own translation prior to passing the text into the UserLogManager message methods.

Page 40 of 133

This is a sample of the logging of a message:

public class MyClass {
public static void myStaticMethod {

/* Note that a string is used since there is no "this" pointer */
UserLogManager.logsendInfoMessage("MyClass", "myStaticMethod", "This

is a message example");
}

}
This is the resulting IFS message file entry:

2001.03.07 10:15:04.769 MyClass myStaticMethod Thread-0 This is a message example.

Each message logged to the IFS file is also mapped to one of the following AS/400 messages and sent to
the instance message queue.

3.5.2.1 Message CON0350 - Information Message

:MSGL.
:SUBTYPE.I
:CCSID.*JOB
:USER.PGMR
:SEVERITY.00
:LOGPRB.No
:ALRTFLG.*NO
:ALRTIDX.
:MSG.iSeries Connect user application information: &1 &2
:EMSG.
:XPL.Additional information: &3
:EXPL.
:URESP.This information is from an iSeries Connect user-written application.
:EURESP.
:PRESP.
:EPRESP.
:GROUP IDF='REPLVAR' LEN='3 32 20' COLHDR1='Symbol' COLHDR2='Description'
COLHDR3='Format'.
:ITEM1.&1
:ITEM2.Class name
:ITEM3.*CHAR *VARY 2
:ITEM1.&2
:ITEM2.Method name
:ITEM3.*CHAR *VARY 2
:ITEM1.&23
:ITEM2.Message text
:ITEM3.*CHAR *VARY 2
:EGROUP.
:PROGNOTE.This message can be sent by an iSeries Connect user-written
application.
:EPROGNOTE.
:TRANNOTE.Do not translate iSeries Connect.
:ETRANNOTE.
:EMSGL.

3.5.2.2 Message CON0351 - Warning Message

:MSGL.

Page 41 of 133

:SUBTYPE.I
:CCSID.*JOB
:USER.PGMR
:SEVERITY.10
:LOGPRB.No
:ALRTFLG.*NO
:ALRTIDX.
:MSG.iSeries Connect user application warning: &1 &2
:EMSG.
:XPL.Additional warning information: &3
:EXPL.
:URESP.This warning information is from an iSeries Connect user-written
application.
:EURESP.
:PRESP.
:EPRESP.
:GROUP IDF='REPLVAR' LEN='3 32 20' COLHDR1='Symbol' COLHDR2='Description'
COLHDR3='Format'.
:ITEM1.&1
:ITEM2.Class name
:ITEM3.*CHAR *VARY 2
:ITEM1.&2
:ITEM2.Method name
:ITEM3.*CHAR *VARY 2
:ITEM1.&23
:ITEM2.Message text
:ITEM3.*CHAR *VARY 2
:EGROUP.
:PROGNOTE.This message can be sent by an iSeries Connect user-written
application.
:EPROGNOTE.
:TRANNOTE.Do not translate iSeries Connect.
:ETRANNOTE.
:EMSGL.

3.5.2.3 Message CON0352 - Error Message

:MSGL.
:SUBTYPE.I
:CCSID.*JOB
:USER.PGMR
:SEVERITY.20
:LOGPRB.No
:ALRTFLG.*NO
:ALRTIDX.
:MSG.iSeries Connect user application error: &1 &2
:EMSG.
:XPL.Additional error information: &3
:EXPL.
:URESP.This error information is from an iSeries Connect user-written
application.
:EURESP.
:PRESP.
:EPRESP.
:GROUP IDF='REPLVAR' LEN='3 32 20' COLHDR1='Symbol' COLHDR2='Description'
COLHDR3='Format'.
:ITEM1.&1
:ITEM2.Class name
:ITEM3.*CHAR *VARY 2
:ITEM1.&2
:ITEM2.Method name

Page 42 of 133

:ITEM3.*CHAR *VARY 2
:ITEM1.&23
:ITEM2.Message text
:ITEM3.*CHAR *VARY 2
:EGROUP.
:PROGNOTE.This message can be sent by an iSeries Connect user-written
application.
:EPROGNOTE.
:TRANNOTE.Do not translate iSeries Connect.
:ETRANNOTE.

 :EMSGL

Page 43 of 133

4.0 XML Protocol Customization

4.1.1 Delivery Gateway Foundation Overview

At a very high-level, the Connect Delivery Gateway can be thought of as the gatekeeper between partners
(either end users or applications) which want to communicate with back-end applications, via some
networking technology (either internet or intranet). There has not been a single protocol which has been
widely adopted and used by companies for carrying out their business over the net. For the time being,
there are several protocols for carrying out commerce related transactions, and there are also a number of
protocols which various companies or business sectors have developed outside of any standards bodies.
Since the first release of the Connect product, implementations for the cXML protocol, which provides
supplier enablement to communicate with partners which have adopted procurement solutions from Ariba,
have been provided.

The Gateway handles all aspects of the XML request from receiving the request to sending the response.
The Gateway’s design is very similar to the Flow Manager in that they share a common Flow Engine. Both
use a series of connectors to process the XML request. The Gateway is implemented as a set of servlets
that run in a servlet engine. For Connect 2.0, Websphere Application Server is the only servlet engine which
the Gateway will support.

The Gateway also provides support for allowing applications to originate messages and send them to
business partners. This support provides a mechanism for providing true peer-to-peer capabilities between
business partners. This support is provided by a function within the Gateway called the Outbound Message
Handler (OMH), and will be explained in detail later in this document.

4.1.2 An overview of defining a new protocol

Tools are provided to create and edit custom protocols in Connect. The protocol tools present a set of menu
options for guiding you through creating a custom protocol from start to finish. In this section we’ll go
through the main menu of items and explain their use and meaning. This will give you an overview of the
capabilities of the Gateway and the process to follow to write a custom protocol. As you read through this
section, it might be helpful to create a temporary protocol and follow along in the screens as each item is
described. The later sections, will describe the Gateway’s use and interfaces in much more detail.

After creating a new protocol instance and giving it a name the tools will present to you the following list of
options to edit;

� Protocol Information

� Requests

� Contexts

� Protocol Data

� Protocol Data Presentation

� Application Connectors

� Request Groups

� Protocol Classpaths

Page 44 of 133

The order of these items suggests the order in which the information for the protocol should be specified.
The sections below will give an introduction to each item to be completed. In the last section we’ll describe
how to publish a protocol once you’re finished developing it.

4.1.2.1 Protocol Information

In this section you can give a description of the protocol. The description can be entered directly into
the description field or it can be optionally contained in a resource bundle and referenced from the
description field by entering the resource bundle key. The description is optional, and a brief description
is sufficient.

4.1.2.2 Requests

This is where the requests for the protocol are defined. For each request in your protocol, you’ll enter
the name of the request and optionally give it a description.

4.1.2.3 Contexts

In this section you’ll define the data contexts that the protocol will use. A data context stores
information for mapping between connectors. The contexts can be used in just the Gateway or just the
Flow Manager or shared between the two.

There are three different types of contexts for storing different types of data. First is the DOM context
type for storing XML data. Next is the Header type for storing name value pairs (or Properties type data).
Finally, there is the Intermediate type for storing structured data. That is, for storing repeating fields
(arrays), and structures (data records). The Intermediate context type is very similar in functionality to
the DOM type but it is designed to be more generic than just XML data. See the section on Contexts for
more information.

If a DOM type of context is chosen, you can specify the level of validation that should take place on the
XML document when it stored in the context. A full description of the values and the meaning of
validation values is given in the more detailed sections below.

Once the Context type is set you can choose whether it is shared with the Flow Manager, whether it
should be returned to the Gateway (containing any modifications the Flow Manager process might have
made) and the level of access each has to the context.

Contexts store data to be mapped by the flow processor but before we can use them for this purpose,
we first must define the fields that are in the context. To define the fields we use a “Request Message
Format” file (RMF file for short). The name originated from the DOM contexts that were first supported
in Connect. Multiple RMF files can be used to define the fields for a context and the RMF files can be
scoped at different levels. That is, an RMF file can be specified to be in effect for the entire protocol, or
for specific requests. If an RMF is specified at the protocol level that means all the fields defined by the
RMF can be mapped during any request in the protocol. If an RMF is specified at the request level,
then those fields are only visible for mapping by the protocol flow that is handling that request. We’ll
explain protocol flows in a section below. This scoping is very useful when your contexts are storing
both common and request specific fields. For instance, if all of the requests in your protocol contain the
sender and recipient’s address, those fields could be stored in the protocol level RMF. Whereas, the
body of the request (a purchase order for instance) could have it’s fields specified in a request specific
RMF. Requests can actually have two RMFs specified. One that is used when the request handled in
the normal way, and one that is used when a “rebound” message is received. We’ll explain what a
rebound flow or message is later, but briefly, it’s when a message is returned to Connect in response to
a message that was sent to a remote trading partner.

Page 45 of 133

Request Message Format files can be created from either a Document Type Definition (DTD), XML,
ACDFieldSet or PCML file. It can also can be created from scratch, without an input source. Once the
RMF is created the fields defined in the RMF can be edited, added, or deleted through the tools.

You’ll notice DOM contexts have three additional fields added to the RMF when it is being edited or
when mapping to or from the contexts. These fields are #XMLByteArray, #ValidationLevel, and
#XMLString. They are used to set and retrieve the entire contents of the context. The value mapped into
#ValidationLevel controls the amount of validation done on the XML when the contents of the context is
set.

4.1.2.4 Protocol Data

This section allows you to define data fields that the protocol requires to correctly process the protocol,
or a request in the protocol. Later, in the next section, you can specify how these data fields should be
presented in the protocol, provider, and partner configuration screens.

By utilizing the protocol data field capabilities of Connect you can design powerful and flexible protocol
implementations. For instance, you can create a protocol data field that the Connect administrator
must set for each trading partner configured. This is how you would implement a password
authentication model in a protocol. You would create a user identification and password data field that
the administrator would set when the partner is configured. Furthermore, you can create data fields that
are configured at the protocol level but can be overridden for particular partners or providers.

Each field that is defined is available for mapping in the Gateway’s flow processor. These fields are
available as “read-only” to the process flows that run in the Flow Manager.

4.1.2.5 Protocol Data Presentation

This section allows you define how the protocol data is presented to the user. For each field that was
defined through the protocol data screens you can define the type of input field that is presented, default
values, it’s size, range checking, a description of the field, and whether it is required to be set.

Once all the field’s presentation is setup, you can organize the fields into pages, and define whether
those pages should be presented during protocol, partner or provider configuration.

4.1.2.6 Application Connectors

This section allows you to define new application connectors to be used in the protocol flows of the
protocol. An application connector defines the input and output fields that are expected by the
connector, as well as the class name of the connector itself. Although the Flow Manager supports a
variety of connector types, the Gateway only supports Java connectors.

If you are writing custom java code to implement the protocol, you would create an application
connector for each Java class you expect to call in the protocol flow.

4.1.2.7 Request Groups

In this section, you create groups of requests that will be implemented as a single protocol flow. There
are some important things to consider when deciding what requests should be grouped together. First,
it is a convenient way for requests that might have similar semantics to be processed by a single
protocol flow. For instance, if all your request have the same authentication and authorization steps,
maybe they should be grouped together. Then the protocol flow would be common for all requests and
could simply branch out to request specific steps once the authentication and authorization are
completed.

The second thing to note about request groups is that each group gets its own unique servlet URL for
receiving the requests. Since the Gateway protocol flow processor does not inspect the incoming data,

Page 46 of 133

the only way it has to know which protocol flow should be run is to have each group have a unique URL.
This is important when you consider how your trading partner is going to interface with your protocol
implementation. If the trading partners software is not flexible enough to configure different URLs for
each request, you will be forced to group all requests together.

Once a strategy for the grouping of requests is complete, you can set whether this group is for inbound
or outbound requests. Outbound requests are described later in this document. If this is an inbound
request group you can set how the data is to be received and passed to the protocol flow. Also in this
section, is the screen where you can define which requests are in this group. You are presented with a
list of all the requests and you simple check off any of the requests that you want to be in this group,
that are not already in a different group. A request can only be a member of one group.

Finally, you can specify and edit the protocol flows that should be used for this group. Two protocol
flows are available to be set. One to use when data is received in the normal manner (called the
“normal” flow), and one for when data is received back from the trading partner after calling the
SendMessage connector (called the “rebound” flow.)

4.1.2.8 Protocol Classpath

This section allows you to add directories, jar and zip files to be used by the Gateway. Any directories
that are specified are added to the classpath of the JVM that the Gateway runs in. Jar files are added
to the J2EE War file. These two classpaths use different class loaders and can present some problems.
Any classes in the jar files will be able to call classes found in the directories, but the opposite is not
true. Classes found in directories cannot call classes in Jar files, because the JVM class loader does
not know about the class loader used by WebSphere.

If you’re creating custom Java connectors to implement your protocol, or any Java code that references
classes supplied by Connect, you must package them in a uniquely named Jar file, copy that Jar file to
the directory where the protocol files are kept (/QIBM/Userdata/Connect200/Protocols/MyProtocol) and
use this section to point to that Jar file.

You can add directories to point to Java class files, but these class file must not be dependent upon
any classes in the jar or zip files.

4.1.2.9 Publishing a protocol

Once the protocol is finished you can publish it by returning to the main “Protocols” page and selecting
the Publish button. Publishing a protocol will take a snap shot of the protocol and write it into the
/QIBM/Userdata/Connect200/Commerce/Protocols directory. Once there you can use the “Manage
User-Defined Protocols” screen to add support for the protocol into Connect. If you wanted to use this
protocol on a different system you can copy (by using FTP or some other means) the contents of the
protocols directory in QIBM/Userdata/Connect200/Commerce/Protocols to the other system and use
the “Manage User-Defined Protocols” screen on the other system to add support for the protocol there.
When you add support for a protocol, Connect will find all remote systems used for gateway processing
of instances on this system and automatically copy and add support for the protocol to those remote
systems. When you create an instance to a new gateway system, the current set of supported
protocols will be copied to the new system

That completes the overview of the steps and screens that it takes to create a custom Gateway protocol.
The sections below give a more detailed explanation of Gateway features and topics.

Page 47 of 133

4.1.3 Gateway data contexts

This section will describe the data contexts used by the Delivery Gateway. These data contexts are used
to store information required to process requests within the Connect framework. There are different types of
contexts used within the Delivery Gateway.

The protocol designer can use the mapping technology built into the flow engine or programmable access to
modify or access fields in most of these data contexts. When describing these fields, there is a ‘constant’
name as well as the ‘Mapping’ name of the field. The constant name is what the protocol designer must
use when accessing a field using programmable access. The mapping name is the name of the field as it
will be displayed when accessing fields using mapping technology. Both of these names will be provided
for completeness.

There is also a column in the tables called usage. This column will provide information describing which
portion of the Gateway or Flow Manager sets or uses the field. The legend for this column is as follows:

Process Flow - value used in SetBy and UsedByPROC
Protocol Flow - value used in SetBy and UsedByPROT

Flow Engine - This is the common flow engine support which provides the
underlying functions required for either protocol flows or process flows to run.

FENG
Flow Manager - value used in SetBy and UsedByFM

Delivery Gateway Infrastructure - value used in SetBy and UsedBy. If DGI is
specified, then this indicates the DGI sets or uses the field to perform its function.

DGI

Contains values of None, Read, or R/W This field indicates how process flows in
Flow Manager can access this field via mapping.

FMAccess

Contains values of None, Read, or R/W This field indicates how protocol flows in
the Gateway can access this field via mapping.

DGAccess

Indicates that this field is used by and possibly required by some component
within Connect in order to perform its function.

UsedBy

Indicates which component sets a particular field. Note that if a field indicates that
it is set by PROT, and that it is used by FM or DGI, then the protocol designer
must ensure this field gets set during the running of the protocol flow.

SetBy
DescriptionKey

The purpose of the usage column will be to specify how various fields are intended to be used and to
explicitly spell out fields set by the Delivery Gateway and Flow Manager. Even if fields are not explicitly
called out as SetBy or UsedBy, protocol flow or process flow, as long as the process flow or protocol flow
has access to a particular field, it can use that field for whatever purpose it needs to fulfill its task.

When discussing the fields in the data contexts, it mentions whether a field is set or used by the Delivery
Gateway (DG) infrastructure. This means that the field is directly used or modified by the DG infrastructure
itself (e.g. The code which processes requests prior to invoking the protocol flows, or after control has been
returned to the DG infrastructure after having run a protocol flow.) Many additional fields are set/used within
these data contexts in the implementation of the protocols.

4.1.3.1 MessageHeader

This context contains a set of information that is sent back and forth between the Gateway and the Flow
Manager. Some of the fields in this header are eventually used by the Flow Manager for performing flow
selection, thus it becomes the responsibility of the protocol flow designer to ensure these fields get set
prior to passing the request over to the Flow Manager over the MQ series queue. This data context
supports both programmable and mappable access.

Page 48 of 133

NOTE: The MessageHeader and InternalHeader are describing header type data contexts which are
used by the Connect infrastructure and these context names are reserved by Connect. Protocol Flow
designers can define additional Header type contexts (and specify whether those headers are available
to both Gateway and FlowManager or if the header is available only to Gateway or to FlowManager).

Connect Infrastructure Message Header section

This field contains a unique
ID for the request being
processed. This allows the
various audit records which
get logged due to this single
request to be correlated with
each other. Refer to the
Gateway Auditing section

SetBy - DGI

UsedBy - DGI, FM,
 PROT

DGAccess - Read

FMAccess - Read

Audit Unique IDAUDIT_UNIQUE_ID

This field is used to record
when the message being
processed by the Delivery
Gateway was received.

SetBy - DGI

UsedBy - DGI

DGAccess - Read

FMAccess - Read

Audit Received
Timestamp

AUDIT_RECEIVED_TIM
ESTAMP

The request. SetBy - PROT

UsedBy - FM

DGAccess - R/W

FMAccess - Read

Request REQUEST

This field is used to hold the
data that uniquely identifies
the protocol being used.

SetBy - DGI

UsedBy - FM

DGAccess - Read

FMAccess - Read

ProtocolPROTOCOL

ProtocolGroup (formerly
marketplace name).

SetBy - DGI

UsedBy - FM

DGAccess - Read

FMAccess - Read

Protocol GroupPROTOCOL_GROUP

Connect instance name. SetBy - DGI

UsedBy - FM

DGAccess - Read

FMAccess - Read

Gateway InstanceGATEWAY_INSTANCE

DESCRIPTIONUSAGEFIELD NAME
(MAPPING)

FIELD NAME
(CONSTANT)

Page 49 of 133

Provides a way to pass data
between the application and
a process flow. The value is
set by the delivery gateway
from the data passed in on
the OutboundRequest API.

SetBy - DGI

UsedBy - PROT

DGAccess - RW

FMAccess - RW

Application TokenAPPLICATION_TOKE
N

This field is used for audit
logging purposes by the
Delivery Gateway and
FlowManager infrastructure
components. Protocol Flow
designers should not need
to set or use this parameter.
For more information on how
DG and FM use this field
refer to the Gateway
Auditing Changes section of
this document.

SetBy - DGI

UsedBy - DGI, FM

DGAccess - Read

FMAccess - Read

Flow Index and Audit
Point Index

FLOW_INDEX_AUDIT_
POINT_INDEX

This field contains a token
which can be used to
represent the key
parameters used for
identification. The instance
name, protocol group,
protocol, ProviderId, and
PartnerId are considered in
this unique identification.
This token can be used in
conjunction with the OMH
support and can be
generated by using the
RequestToken utility
connector provided by the
Delivery Gateway support.

SetBy - PROT

UsedBy - PROC

DGAccess - R/W

FMAccess - Read

Request TokenREQUEST_TOKEN

for a description of how this
field is used.

Common Protocol Enablement Message Header section

This field can be used
by a protocol flow
designer to provide
the URL that a
back-end application
can send
subsequent/related
requests into the

SetBy - PROT

UsedBy - PROC

DGAccess - R/W

FMAccess - Read

Inbound Transport
URL

INBOUND_TRANSPOR
T_URL

DESCRIPTIONUSAGEFIELD NAME
(MAPPING)

FIELD NAME
(CONSTANT)

Page 50 of 133

This field contains the
message identifier
that the partner
system has placed
within the received
request. If the partner
system ever
resubmits the same
message with the
same message ID,
this field can be used
by a back-end
application to identify

SetBy - PROT

UsedBy - PROC

DGAccess - R/W

FMAccess - Read

Partner Transport
Message ID

PARTNER_TRANSPOR
T_MSG_ID

This field contains an
identifier which the
partner provides to
identify the
transaction as it
pertains to their own
application.

SetBy - PROT

UsedBy - PROC

DGAccess - R/W

FMAccess - Read

Partner Session IDPARTNER_SESSION_I
D

This field can be used
by a protocol flow
designer to allow a
re-direct of the URL.
For example, a
protocol flow designer
can allow a back-end
application to provide
a URL to redirect to
as opposed to simply
sending the response
back directly to the
partner that sent in
the original request.
This can be useful in
commerce type
applications where a
redirect is needed to
the URL which must
be invoked to initiate a
B2B shopping
experience.

SetBy - PROC

UsedBy - PROT

DGAccess - R/W

FMAccess - R/W

Outbound Transport
URL

OUTBOUND_TRANSPO
RT_URL

Delivery Gateway.
This is used in the
Connect cXML
implementation to
notify the back-end
application of the
NewQuote URL which
can be invoked after
completing the B2B
shopping experience.

Page 51 of 133

.This field contains
the identifier of the
requisitioner within the
partner organization.
This can be used to
allow back-end

SetBy - PROT

UsedBy - PROC

DGAccess - R/W

FMAccess - Read

Requisitioner IDREQUISITIONER_ID

This field contains the
message identifier
that the partner
system has placed
within the received
request. If the partner
system ever
resubmits the same
message with the
same message ID,
this field can be used
by a back-end
application to identify
this condition and act
appropriately. This
field contains the
same information as
the

PARTNER_TRANSP
ORT_MSG_ID field,
but is being left in to
accomodate process
flows which may have
used either field.

SetBy - PROT

UsedBy - PROC

DGAccess - R/W

FMAccess - Read

Message IDMESSAGE_ID

This field is used by
protocol flow
designers to log the
timestamp of when
the request was sent
by the partner
system. Some
protocols provide this
information in the XML
messages which are
sent between
systems. This is an
optional field for
protocol flow
designers to set. If
set, this field along
with the rest of the
MessageHeader will
appear in the audit
log.

SetBy - PROT

UsedBy -

DGAccess - R/W

FMAccess - Read

Audit Sent
Timestamp

AUDIT_SENT_TIMESTA
MP

this condition and act
appropriately.

Page 52 of 133

This field contains the
unique name of the
provider organization.
A unique name may
consist of several
distinct subfields. If
the name consists of
multiple subfields, the
subfields should be
separated with a
colon “:” character.
For example, in the
case of cXML, the
fields used for
identification are the
domain and ID. If
domain were “DUNS”
and ID was
“555666777” , then
this field should
contain
“DUNS:555666777”.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Provider Organization
Name

PROVIDER_ORG_NA
ME

This field contains the
unique name of the
partner organization.
A unique name may
consist of several
distinct subfields. If
the name consists of
multiple subfields, the
subfields must be
separated with a
colon “:” character.
For example, in the
case of cXML, the
fields used for
identification are the
domain and ID. If
domain were “DUNS”
and ID was
“123456789” , then
this field must contain
“DUNS:123456789”.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Partner Organization
Name

PARTNER_ORG_NAM
E

applications to
differentiate between
requisitioners that
belong to the same
partner organization.
This field is optional
and would only need
to be filled in by
protocol if the process
flows require it.

Page 53 of 133

This field is not set by
the DG infrastructure.

 CXML Extensions (protocol specific) to the MessageHeader

The following table shows the extensions that have been provided to the Message Header in support of
the cXML protocol implementation that is shipped with Connect. None of these fields are set or used by
the DG infrastructure, but are set by the cXML protocol implementation in the Delivery Gateway. The
majority of these fields are copied from the cXML header information by the DG cXML protocol
implementation.

Agent domain. This will
contain the provider domain.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Agent DomainAGENT_DOMAIN

Agent userid. This will
contain the provider ID.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Agent UseridAGENT_USERID

Agent organization domain.
This will contain the partner
domain.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Agent Org DomainAGENT_ORG_DOM
AIN

Agent organization ID. This
this will contain the partner
ID.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Agent Org IDAGENT_ORG_ID

Agent organization name.
The cXML implementation
sets this to a concatenation
of the AGENT_ORG_ID and
AGENT_ORG_DOMAIN
using a colon “:” as the
separator character.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Agent Org NameAGENT_ORG_NAM
E

DESCRIPTIONUSAGEFIELD NAME
(ACTUAL)

FIELD NAME
(CONSTANT)

Page 54 of 133

The provider organization
domain. For example
“DUNS” . Used to qualify
what type of information the
PROVIDER_ORG_ID
represents.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Provider Organization
Domain

PROVIDER_ORG_
DOMAIN

The provider ID (formerly
supplier organization ID).
This parameter is typically
used to identify the provider
on the local system. For
example “555666777” which
represents a DUNS number
of the provider.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Provider Organization
ID

PROVIDER_ORG_I
D

The partner organization
domain. For example
“DUNS” . Used to qualify
what type of information the
PARTNER_ORG_ID
represents.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Partner Organization
Domain

PARTNER_ORG_D
OMAIN

The partner (formerly buyer)
organization ID. This
parameter is typically used
in the identification of the
partner node. For example
“123456789” which
represents a DUNS number
of the partner.

SetBy - PROT

UsedBy - PROT,
PROC

DGAccess - R/W

FMAccess - Read

Partner Organization IDPARTNER_ORG_ID

Agent authentication type.
For cXML this will be set to
“PW” to indicate that
authentication is handled via
userid and password
verification.

SetBy - PROT

UsedBy - PROT

DGAccess - R/W

FMAccess - Read

Agent Auth TypeAGENT_AUTH_TYP
E

 Retired Fields

Due to some restructuring of the Connect product, fields used to identify protocol subtype, protocol
version, and request type have been retired. The protocol information is now contained within the single
field, PROTOCOL. The request information is now contained within the single field, REQUEST. Also,
some unused fields have been retired as well. The retired fields from the MessageHeader are:

Replaced by the PARTNER_ORG_REFNUM
field of the Partner data context.

BUYER_ORG_TOKEN
Consolidated into CONTENT_REQUESTCONTENT_REQUEST_TYPE
Consolidated into PROTOCOL fieldPROTOCOL_VERSION
Consolidated into PROTOCOL fieldPROTOCOL_SUB_TYPE

CommentsRetired Field

Page 55 of 133

Moved to PASSWORD in
NonSendableMessageHeader

AGENT_PASSWORD

UnusedAGENT_ORG_TOKEN

UnusedBUYER_DEPT_TYPE

UnusedBUYER_DEPT_KEY

UnusedAUDIT_REQUEST

UnusedAUDIT_MARKETPLACE

UnusedAUDIT_PROTOCOL

UnusedAUDIT_SUPPLIER

UnusedAUDIT_BUYER

UnusedREQUISITIONER_NAME

UnusedAUDIT_REQUEST_TYPE

Replaced by the PROVIDER_ORG_REFNUM
field of the Provider data context.

SUPPLIER_ORG_TOKEN

 Deprecated Fields

Due to some renaming of various entities within the Connect product, the following fields have been
deprecated. The internal constant values for these fields still exist. The following chart shows the name
of the field that is deprecated, and the name of the field which replaced it.

REQUESTCONTENT_REQUEST

PROTOCOL PROTOCOL_TYPE

PARTNER_TRANSPORT_MSG_IDBUYER_TRANPORT_MSG_ID

PARTNER_SESSION_IDBUYER_SESSION_ID

PROVIDER_ORG_DOMAINSUPPLIER_ORG_DOMAIN
PROVIDER_ORG_IDSUPPLIER_ORG_ID
PARTNER_ORG_DOMAINBUYER_ORG_DOMAIN
PARTNER_ORG_IDBUYER_ORG_ID
PROTOCOL_GROUPMARKET_PLACE

Replacement FieldDeprecated Field

4.1.3.2 InternalHeader

This context contains a set of information that is only used within the Delivery Gateway. This
context is available for both programmable access and mapping.

This field is used to
represent the Gateway
type. This field will be
set to a value of
“Connect” by the DG
infrastructure.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Gateway TypeGATEWAY_TYPE

DESCRIPTIONUSAGEFIELD NAME
(ACTUAL)

FIELD NAME
(CONSTANT)

Page 56 of 133

This field indicates the
number of seconds that
the Delivery Gateway will
wait for a response from
the Flow Manager before
considering the message

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Message Queue
Timeout

MSG_QUEUE_TIME
OUT

This field indicates the
maximum number of
trace files available for
use by this Gateway
instance. This
parameter is set by the
DG infrastructure by
copying the value
configured in the
instance registry.
Modifying this parameter
in the InternalHeader has
no effect.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Max Number of
Trace Files

MAX_NUMBER_OF
_TRACE_FILES

This field indicates the
maximum trace file size
for the trace files
associated with this
Gateway instance. This
parameter is set by the
DG infrastructure by
copying the value
configured in the
instance registry.
Modifying this parameter
in the InternalHeader has
no effect.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Max Trace File SizeMAX_TRACE_FILE_
SIZE

This field indicates
whether logging to the
trace files has been
enabled for this instance.
Valid values are “true” or
“false”. This parameter
is set by the DG
infrastructure by copying
the value configured in
the instance registry.
Modifying this parameter
in the InternalHeader has
no effect on whether or
not tracing is performed.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Trace EnabledTRACE_ENABLED

This field is used to
represent the version of
the Gateway that is
running. This field is set
to “2.0.0” by the DG
infrastructure in Connect
2.0.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Gateway VersionGATEWAY_VERSIO
N

Page 57 of 133

This field indicates the
directory in which this
protocol has been
deployed in. For
example, this field is set
to cXML12Ariba when
running the cXML 1.2
implementation which is
shipped with the Connect
product.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Deploy DestinationDEPLOY_DESTINA
TION

This field provides the
name of the servlet which
was invoked to initiate
the current request. This
field will be set by the
DG infrastructure when
the HTTP transport is
being used for inbound
requests.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Servlet NameSERVLET_NAME

This field indicates the
protocol flow which will
process the current
request.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Flow NameFLOW_NAME

This field contains the
UserData directory path
for the Connect instance
which is currently
processing this request.
For Connect 2.0, this will
contain the value

“/QIBM/UserData/Conne
ct200”.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

UserData PathUSERDATA_PATH

This field contains the
ProdData directory path
for the Connect instance
which is currently
processing this request.
For Connect 2.0, this will
contain the value

“/QIBM/ProdData/Conne
ct200”.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

ProdData PathPRODDATA_PATH

as timed out and
returning control back to
the protocol flow. This
value is copied from the
Gateway properties in
the instance registry.

Page 58 of 133

This field indicates
whether validation of
inbound XML documents

SetBy - DGI UsedBy -
DGAccess - Read
FMAccess - Read

Validate InputVALIDATE_INPUT

This is the shared secret
used between the
provider and the partner
(or between provider and
the agent that is working
on behalf of the partner).

SetBy - PROT

UsedBy - PROT

DGAccess - R/W

FMAccess - None

PasswordPASSWORD

This indicates whether
the byte stream received
from the partner is a byte
array or if it should be
processed as
name-value pairs, and
converted into byte array
containing an nvpML
XML document. Valid
values are POST or
NVP.

SetBy - DGI

UsedBy - DGI

DGAccess - Read

FMAccess - None

Request MethodREQUEST_METHO
D

This field contains the
fully qualified directory
where this protocol has
been deployed. For
example, if the
DEPLOY_DESTINATION
field is set to
“cXML12Ariba” ,
DEPLOY_TYPE field is
set to “ProdData”,
DEPLOY_THEME field is
set to Commerce, then
this field will contain:

“/QIBM/ProdData/Conne
ct200/Commerce/Gatew
ay/Connectors/cXML12A
riba”.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Deploy DirectoryDEPLOY_DIRECT
ORY

This field indicates which
theme this protocol has
been deployed into. For
Connect 2.0, this field
will contain “Commerce”.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Deploy ThemeDEPLOY_THEME

This field indicates
whether this protocol has
been deployed into
“ProdData” or
“UserData”.

SetBy - DGI

UsedBy -

DGAccess - Read

FMAccess - None

Deploy TypeDEPLOY_TYPE

Page 59 of 133

This field indicates
whether validation of
outbound XML
documents should be
performed. This field is
copied from the Gateway
properties of the instance
registry by DG
infrastructure. This
parameter could be used
in conjunction with the
XMLValidator connector
described later

SetBy - DGI UsedBy -
DGAccess - Read
FMAccess - Read

Validate OutputVALIDATE_OUTP
UT

should be performed.
This field is copied from
the Gateway properties
of the instance registry
by DG infrastructure.
This parameter could be
used in conjunction with
the XMLValidator
connector described
later.

Retired Fields

New Transport contexts, one for input and one for output, are being used to consolidate the information
involved in processing transport related data in protocol flows. Due to this restructuring, the following
fields are being retired from the InternalHeader. The fields being retired are:

UnusedOUTBOUND_TRANSPORT_URL_NAME

Information accessible via the TransportOutput
context

OUTBOUND_TRANSPORT_SENDER_INFO

Information accessible via the TransportOutput
context

OUTBOUND_TRANSPORT_CONTENT_ENCODIN
G

Information accessible via the TransportOutput
context

OUTBOUND_TRANSPORT_CONTENT_TYPE

Unused INBOUND_TRANSPORT_URL_NAME

Information accessible via the TransportInput
context

INBOUND_TRANSPORT_SENDER_INFO

Information accessible via the TransportInput
context

INBOUND_TRANSPORT_CONTENT_ENCODING

Information accessible via the TransportInput
context

INBOUND_TRANSPORT_CONTENT_TYPE

CommentsRetired Field

4.1.3.3 TransportInput

The TransportInput context holds the request data that was received. The recieved data is stored in
the TransportInput according to the Request Group settings. No programable access is provided for

Page 60 of 133

these fields. Protocol flow designers will need to access this data context using mapping
technology.

The context contains the following fields:

Request contentsbyte[]ByteArray

Contains one of the following values:

� byteArray -- the ByteArray field contains only the body of a request

� MIME -- the ByteArray field contains a complete MIME document, including
the beginning headers

StringType

Contains the values of the main headers for the received request. Each String
would appear like the following:

<headerName>: <headerValue>

This field will be set if Type specifies byteArray -- it may be set if Type
specifies MIME

repeating
String

Headers
DescriptionTypeName

This context is never sent to the Flow Manager.

4.1.3.4 Transport Output

The TransportOutput context holds the data to be sent. The protocol implementation would use this
context to control what data is sent and how it is to be sent to the trading partner. No programable
access is provided for these fields. Protocol flow designers will need to access this data context
using mapping technology.

The context contains the following fields:

Response/acknowledgement contentsbyte[]ByteArray

Contains one of the following values:

� byteArray -- the ByteArray field contains only the body of a request

� MIME -- the ByteArray field contains a complete MIME document,
including the beginning headers

StringType

Contains the values of the main headers for the data to be sent. Each String
would appear like the following:

<headerName>: <headerValue>

This field must be set if Type specifies byteArray -- it may be set if Type
specifies MIME, but it will be ignored.

repeating
String

Headers

Status code that should be returned to the partner system. This field should
contain an HTTP status code value.

intStatusCode
DescriptionTypeName

Page 61 of 133

4.1.3.5 Provider

The Provider context holds business data which needs to be maintained on a provider basis.
Protocol flows do not have access to this business data. It is only available to the Flow Manager.
However a protocol implementation must set the #Provider_Refno field in order for the Flow Manager
to have access to the data. The #Provider_Refno is the key field for this context and the Protocol
context. The PartnerOrProviderResolver utility connector (described later) can be used to set the
key field.

4.1.3.6 Partner

The Partner context holds business data which needs to be maintained on a partner basis.
Protocol flows do not have access to this business data. It is only available to the Flow Manager.
However a protocol implementation must set the #Partner_Refno field in order for the Flow Manager
to have access to the data. The #Partner_Refno is the key field for this context and the Protocol
context. The PartnerOrProviderResolver utility connector (described later) can be used to set the
key field.

4.1.3.7 Protocol

The Protocol context holds protocol specific data which needs to be collected as part of the
protocol configuration process. This data is available and intended to be used by the protocol
implementation.

This context can contain three levels of information for each data field present. The levels are the
protocol configuration, the provider, and the partner, in that order. The protocol designer can
determine which levels are appropriate for the specific data being collected. The levels are from least
specific (protocol) to most specific (partner). The level of information that is returned from a mapping
is dependent on what key fields have been set in the Provider and Partner contexts. Generally, if
neither the #Provider_Refno or #Partner_Refno have been set, then the Protocol level of data will be
returned. If the #Provider_Refno has been set, but not the #Partner_Refno, then the provider level is
returned. Finally, if the #Partner_Refno has been set then the partner level of information is
returned. This assumes that data is present at all levels. If data is not available at the expected
level then a lower level of data will be returned if it’s available. That is, if the #Partner_Refno is set
but the data is only available at the protocol level, then the protocol level of data is returned.

4.1.4 Defining the flow to process the protocol

4.1.4.1 Protocol Flows

Once a request is received by the Delivery Gateway, the flow engine is started and the correct protocol
flow is initiated. A protocol flow is a sequence of one or more Gateway connectors and/or
copy/decision steps. The Gateway Flow Engine only supports Java connectors.

A given request will cause a single flow to start. However, it should be noted that multiple requests can
point to the same protocol flow. The design of the protocol flows are based on the expected
choreography of the messages which flow between trading partners. For instance, the trading partner’s
software package may allow one URL to be configured for each request or it may place restrictions on
the configuration and only allow a single URL to be configured for all requests. These restrictions or
flexibility will dictate how the protocol may be implemented in the Gateway. Let’s look at cXML as an
example. cXML defines the ProfileRequest that is called to return the URLs that handle all the other
cXML requests. With this flexibility, we might use separate URLs for each request or we might handle

Page 62 of 133

multiple requests with the same protocol flow. We implement cXML in Connect for iSeries as a single
URL because the XML structure shares a common XML header across all requests, each request was
easily determined by the XML header and the way we processed each request would be very similar.

4.1.5 Gateway Flow design guidelines for protocols

Although each protocol is different and each request is unique, Gateway protocol flows should follow a
basic design structure. We’ll break down the Gateway protocol flow into a sequence of typical steps.
The Gateway protocol flow could be implemented as one big Java connector that performs all of the flow
steps by itself. However, it’s more desirable to implement each step as a separate connector, looking
for commonality and reusing connectors across different requests and across different protocols.

As a general guideline, it is suggested that each of the following steps be implemented as its own
connector when building protocol flows for standalone protocols. Typical steps which need to be
addressed when defining standalone protocol flows are:

� XML validation and parsing of incoming request

� Authentication

� Authorization

� Inbound Logging

� Request DOM and Header Generation (setting partner/provider and request information)

� Queue the request/response to the FlowManager

� Error Checking

� Set Outbound Status

� Outbound Logging

� Error Handling

� Response Step (provide response data to the transport layer)

Many of these connectors are provided by Connect. They are implemented in a generic fashion so
protocol flow designers can avoid writing a lot of code. Each of the supplied connectors are described
later in the documentation.

One aspect of protocol flow development for which there are no utility connectors provided is error
handling. This is because every protocol will have different requirements for how they process different
types of errors. Protocol flow designers are able to define ‘error steps’. These error step specifications
within a protocol flow allow the protocol flow designer to call a connector which can be designed for
handling error processing. There can be different error connectors defined for different steps within a
flow, or the same error connector can be specified for all the steps. Anytime that a connector within the
protocol flow returns a non-zero return code or throws an exception, that error step will be invoked.

The protocol flow designer must decide the appropriate steps to take based upon the error. There are a
number of fields, mappable from the InternalHeader, which provide information regarding what type of
error was encountered in the flow, and which step of the flow encountered the error. This error

Page 63 of 133

information as well as the protocol designers knowledge of the step which failed can be used to
determine what their error processing connector should do. For instance, if the error occurred during
some step of the flow which is considered optional or non-critical, then the protocol flow designer could
choose to log some additional information that may assist in analyzing the error, but continue on in the
processing of the protocol flow. However, if the error occurred in a step of the flow which is deemed
critical (such as failure to authenticate the partner or failure to communicate with the FlowManager),
then the error processing connector will need to take steps to construct an error response, and to either
invoke the response step or the send message connector to cause the ‘error’ response to get sent
back to the partner system.

4.1.6 Utility Connectors for Protocol Flow Development

The following utility connectors are intended for use by protocol flow designers. The utility connectors
which the Delivery Gateway component ships with the product rely heavily on the mapping technology
provided by the flow engine. One would expect some of these utility connectors to be used once in a
protocol flow, whereas other connectors could be utilized multiple times within a flow.

Each of the utility connectors has input parameters, output parameters, and connector return codes
section. The input parameters are describing the fields defined in the AppConnector which need to have
mapin specifications (or possibly string constants) provided for them in the protocol flow which uses the
connector. The output parameters are describing the fields defined in the AppConnector which need to
have mapout specifications provided for them in the protocol flow. The connector return codes are
defined in the java interface class called GatewayConstants, which is located in the GatewayAPI.jar
file. Any protocol specific connector which has a requirement to interrogate the return code provided by
these utility connectors should refer to the constants (the RETURN CODE column in the tables below)
and not the actual values described here.

4.1.6.1 XML Validator (XML validation)

Name: XMLValidator

Description: This connector can be used to validate an XML byte array. The XML byte array is
parsed into an XML document, but the XML document is not retained when using this connector.
One use of this connector is to validate an XML byte array which has been built by the Connect
infrastructure, to ensure that the system is sending valid XML to a trading partner.

The XML validation function will use the Connect Global entity resolver to locate XML validation
documents (DTDs).

Input Parameters:

Validation method to be used.
Valid values for this field are: “Full”,
“EntityResolver”, or “None”.

 NoString ValidationMethod

 Input byte array containing xml
data.

 Yesbyte[] XMLInput

DescriptionRequiredTypeName

Page 64 of 133

Output Parameters:

 N/A

DescriptionTypeName

Connector Return Codes:

An exception was taken when attempting to access
the XML byte array, or when validating the
document. See the DG Message log files for
additional information.

901.ERROR_GW_EXCEPTION_TH
ROWN

This error indicates that XML validation failed due to
some error in the XML document.

954ERROR_GW_XML_VALIDATIO
N_ERROR

This error indicates that XML validation failed
because a DTD or XML Schema file required for
validation could not be located.

953ERROR_GW_XML_VALIDATIO
N_FILES_NOT_FOUND

The connector completed successfully. This
indicates that the XML validation completed
successfully if validation was requested.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.6.2 Inbound Logging

Name: InboundLoggerConnector

Description: Creates an audit log entry based upon the contents of the inbound message and the
MessageHeader. This connector will use the input parameter NamedContexts to determine which
named DOM or header contexts that it should include in the audit log entry. It also allows an
additional byte array and byte array name to be specified which will be added to the audit log entry.

Input Parameters:

 Names of the contexts which
the protocol designer chooses to
dump into the audit log. This
string may contain a list of
named DOM and named Header
contexts separated by the
SeparatorCharacter.

For example, if the protocol
designer chooses to log named

 NoString NamedContexts

DescriptionRequiredTypeName

Page 65 of 133

Name of byte array -- both
ByteArray and ByteArrayName
must be specified for the byte
array to be added to the audit
log entry. The ByteArrayName
should be a valid XML element
name.

NoStringByteArrayName

Byte array to be added to the
audit log entry

Nobyte arrayByteArray

This field is used to specify the
separator character used to
delineate the request names
within the NamedContexts
String.

The AppConnector will provide a
default value of comma “,” .

NoStringSeparatorCharacter

DOM contexts called Request
and Response, then this field
needs to contain the following
string:

“Request , Response”

assuming the comma is being
used as the separator character.

Note: Under all conditions, the
MessageHeader context will
always be dumped by the
InboundLogger. Any other
contexts which the protocol
designer chooses to dump out
must be specified in this
parameter. Also, any
unrecognized contexts or any
contexts besides DOM or
Header contexts will be ignored
by this connector, and not
dumped into the log.

Output Parameters:

N/A

DescriptionTypeName

Page 66 of 133

Connector Return Codes:

An exception was taken when attempting to access
information or when dumping information into the
audit log. See the DG trace log files for additional
information.

901.ERROR_GW_EXCEPTION_TH
ROWN

The connector completed successfully. This
indicates that the inbound message information was
logged successfully.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.6.3 Authentication Connector

Name: AuthenticationConnector

Description: This connector uses the supplied input parameters and invokes the Connect B2B
basic authentication function to determine if the partner has provided the appropriate credentials to
prove their identity. This basic authentication verifies that the password supplied to this connector
matches the password which was configured for the LogonId that was configured into the
Partner/Provider DB. If authentication is successful, then a successful return code is provided by
this connector. If authentication fails, a non-zero return code is returned by the connector.

Input Parameters:

The partner IDYesStringPartner
The provider IDYesStringProvider

This is a password, or shared
secret between the local system
and the partner system.

YesStringPassword

The logon ID is a string made up of
1 or more substrings used to
uniquely identify the partner being
authenticated. The separator
characters for the substrings must
be a colon “:” . For example, if
the substrings making up the
uniqueId for the partner is a domain
name of “DUNS” and Id Number of
“123456798”, then the LogonId
should be “DUNS:123456789” .

YesStringLogonId

DescriptionRequiredTypeName

Output Parameters:

 N/A

DescriptionTypeName

Page 67 of 133

Connector Return Codes:

An exception was taken when attempting to invoke
the Connect B2B authentication function. See the
DG Message log files for additional information.

901.ERROR_GW_EXCEPTION_TH
ROWN

The Connect B2B authentication function failed this
request. This could indicate that the LogonId
specified has not been configured in the
Partner/Provider DB or that the password supplied
does not match the password that is configured for
this LogonId.

942ERROR_GW_AUTHENTICATI
ON_FAILED

The connector completed successfully. This
indicates that the LogonId is known by the Connect
B2B authentication function and that the Password
supplied matches the password which was
configured for this LogonId.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.6.4 Authorization Connector

Name: AuthorizationConnector

Description: This connector uses the supplied input parameters and invokes the Connect B2B
authorization function to determine if the partner, identified by the ProviderId / PartnerId pair, is
allowed to issue the Request which has been received. If authorization is successful, then a
successful return code is provided by this connector. If authorization fails, a non-zero return code is
returned by the connector.

Input Parameters:

The PartnerId is a string made up of
1 or more substrings used to
uniquely identify the partner (or

YesString PartnerId

The ProviderId is a string made up
of 1 or more substrings used to
uniquely identify the provider (or
supplier) involved in the request.
The separator characters for the
substrings must be a colon “:” .
For example, if the substrings
making up the provider/supplier are
“DUNS” and Id Number of
“123456798”, then the ProviderId
should be “DUNS:123456789” .

YesStringProviderId

Request (such as “OrderRequest”
for cXML).

YesStringRequest

DescriptionRequiredTypeName

Page 68 of 133

buyer) involved in the request. The
separator characters for the
substrings must be a colon “:” .
For example, if the substrings
making up the partner/buyer are
“DUNS” and Id Number of
“555555555”, then the PartnerId
should be “DUNS:555555555” .

Output Parameters:

 N/A

DescriptionTypeName

Connector Return Codes:

An exception was taken when attempting to invoke
the Connect B2B authorization function. See the DG
Message log files for additional information.

901.ERROR_GW_EXCEPTION_TH
ROWN

The Connect B2B authorization function failed this
request. This could indicate that the Partner or
Provider specified has not been configured properly
in the Partner/Provider DB, or that this request is not
listed as one of the valid requests which can be
processed by this provider from this partner.

938ERROR_GW_AUTHORIZATIO
N_FAILED

The connector completed successfully. This
indicates that the partner that is authorized to issue
the request to the provider specified. This has been
validated using the Connect B2B authorization
function.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.6.5 Partner Or Provider Resolver

Name: PartnerOrProviderResolver

Description: This connector is used to determine the unique reference numbers which represent
the provider (supplier) and/or the partner (buyer) involved in this request. This unique reference
number is maintained in the Partner/Provider database, and the reference number which is retrieved
can be used by subsequent connectors to access information regarding this Partner or Provider.
This connector allows either the partner, provider, or both reference numbers to be retrieved. The
connector maps out these reference numbers to the location controlled by the mapout specification.
A typical use of this connector is to retrieve these reference numbers and mapout the results into
the key fields maintained in the Partner and Provider data contexts (specifically the #Partner_Refno
and #Provider_Refno keys.)

Input Parameters:

Page 69 of 133

The PartnerId is a string made up of
1 or more substrings used to
uniquely identify the partner (or
buyer) involved in the request. The
separator characters for the
substrings must be a colon “:” .
For example, if the substrings
making up the partner/buyer are
“DUNS” and Id Number of
“555555555”, then the PartnerId
should be “DUNS:555555555” .

YesString PartnerId

The ProviderId is a string made up
of 1 or more substrings used to
uniquely identify the provider (or
supplier) involved in the request.
The separator characters for the
substrings must be a colon “:” .
For example, if the substrings
making up the provider/supplier are
“DUNS” and Id Number of
“123456798”, then the ProviderId
should be “DUNS:123456789” .

YesStringProviderId

DescriptionRequiredTypeName

Output Parameters:

The unique reference number of the
partner.

StringPartnerRefNum

The unique reference number of the
provider.

 String ProviderRefNum

DescriptionTypeName

Connector Return Codes:

An error occurred while attempting to retrieve the
unique partner reference number. This error most
likely indicates that the PartnerId supplied as input

951ERROR_GW_PARTNER_REF
NUM_RETRIEVE_FAILED

An error occurred while attempting to retrieve the
unique provider reference number. This error most
likely indicates that the ProviderId supplied as input
to this connector does not match any of the
providers configured in the Partner/Provider DB for
this instance.

950ERROR_GW_PROVIDER_RE
FNUM_RETRIEVE_FAILED

The connector completed successfully. This
indicates that the unique partner and/or provider
reference numbers were successfully retrieved and
the reference numbers were successfully mapped
out to the fields provided in the mapout
specifications.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

Page 70 of 133

An exception was taken while attempting to process
this request. See the DG Message log files for
additional information.

901.ERROR_GW_EXCEPTION_TH
ROWN

to this connector does not match any of the partners
configured in the Partner/Provider DB for this
instance.

4.1.6.6 Request Token Generation

Name: RequestToken

Description: This connector is used to generate a request token. This request token can be used
by process flow designers to supply identification type parameters required by the Gateway to
process a subsequent Outbound Message. These outbound messages are initiated by a connector
within a process flow or by a back-end application. Refer to the Outbound Message Handler
section of this document for additional information regarding the use of a request token. The
parameters supplied to this connector are used as input in creating a string representation of this
request token.

Suggested use of this connector is to mapout the results into the REQUEST_TOKEN field of the
MessageHeader context.

Input Parameters:

The request is a string that
specifies the request which is

NoStringRequest

The PartnerId is a string made up of
1 or more substrings used to
uniquely identify the partner (or
buyer) involved in the request. The
separator characters for the
substrings must be a colon “:” .
For example, if the substrings
making up the partner/buyer are
“DUNS” and Id Number of
“555555555”, then the PartnerId
should be “DUNS:555555555” .

YesString PartnerId

The ProviderId is a string made up
of 1 or more substrings used to
uniquely identify the provider (or
supplier) involved in the request.
The separator characters for the
substrings must be a colon “:” .
For example, if the substrings
making up the provider/supplier are
“DUNS” and Id Number of
“123456798”, then the ProviderId
should be “DUNS:123456789” .

YesStringProviderId

DescriptionRequiredTypeName

Page 71 of 133

associated with the Request Token.
This can either be the request
currently being processed or the
request associated with the
outbound request that will
eventually be processed.

Output Parameters:

RequestToken which can be used by
back-end application or process flows to
invoke the OMH function with the
appropriate identification parameters
required to initiate OMH flows.

StringRequestToken

DescriptionTypeName

Connector Return Codes:

An exception was taken when attempting to create
the request token or setting the request token into
the field specified by the mapout specification. See
the DG Message log files for additional information.

901.ERROR_GW_EXCEPTION_TH
ROWN

The connector issued the command to have a
request token generated, but no request token was
generated. Verify that the input parameters being
passed into this connector have valid data.

952ERROR_GW_REQUEST_TOK
EN_CREATION_FAILED

The connector completed successfully. This
indicates that the request token was successfully
retrieved and placed into the field based upon the
mapout specification.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.6.7 FlowManager Communication Connector

Name: FMComm

Description: This connector handles sending requests from the Gateway to the FlowManager,
using the MQ Series queue for the inter-process communication. It also handles the response
received from the FlowManager. This connector uses the information contained in the flow to
determine which of the data contexts to serialize and send to the FlowManager. The
MessageHeader context is always included, and other data contexts are provided based upon the
selections made by the protocol flow designer. When the response is received from the
FlowManager, the data returned is deserialized and placed back into the appropriate data context to
allow the protocol flow to continue with processing of the response.

 Input Parameters:

Page 72 of 133

 N/A

DescriptionRequiredTypeName

Output Parameters:

N/A

DescriptionTypeName

Connector Return Codes:

An exception was taken when attempting to send
the request or get the response from the
FlowManager. See the DG Message log files for
additional information.

901.ERROR_GW_EXCEPTION_TH
ROWN

Either the FlowManager or back-end application has
encountered an error. The error code provided by
this connector is the same error code that was
returned by the FlowManager. See the DG or FM
trace log files for additional information.

xxx**** OTHER *****

The DG sent the message to the FlowManager, but
no response was received from the FlowManager
prior to the timeout value expiring. The timeout value
is controlled by the MSG_QUEUE_TIMEOUT value in
the NonSendable header. Verify that this timeout value
is long enough to complete requests and that the
FlowManager process is started for this Connect
instance.

905ERROR_GW_TRANSPORT_TI
MEOUT

An error occurred in the transport of the message
either from the DG to the FlowManager, or from the
FlowManager back to the DG. There was no
response data available when the DG regained
control. See the DG trace log files for additional
information.

904ERROR_GW_TRANSPORT

An error occurred while gathering up the information
into an object for transport to the FlowManager. See
the DG trace log files for additional information.

903ERROR_GW_TRANSPORT_IN
IT

The connector completed successfully. This
indicates that the request was sent to the
FlowManager, response data was received from the
FlowManager, and the response data was
successfully transferred back into the flow data area
of the flow that is currently running.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

Page 73 of 133

4.1.6.8 Outbound Logging

Name: OutboundLoggerConnector

Description: Creates an audit log entry based upon the contents of the outbound message and the
MessageHeader context. This connector will use the input parameter NamedContexts to determine
which named DOM or header contexts that it should include in the audit log entry. If one of the
named contexts is not available, then this connector will still proceed with dumping out the
MessageHeader and any of the specified name contexts which are available. If this condition
occurs or if some other error occurs during the logging process, an error code will be returned by
this connector. If logging is successful, then a good return code will be provided.

An additional byte array and byte array name may also be specified which will be added to the audit
log entry.

Input Parameters:

Names of the contexts which the
protocol designer chooses to dump
into the audit log. This string may
contain a list of named DOM and
named Header contexts separated
by the SeparatorCharacter.

For example, if the protocol
designer chooses to log named
DOM contexts called Request and
Response (which is what our cXML
implementation will map into this
connector), then this field needs to
contain the following string:

“Request , Response”

assuming the comma is being
used as the separator character.

Note: Under all conditions, the
MessageHeader context will
always be dumped by the
InboundLogger. Any other
contexts which the protocol
designer chooses to dump out
must be specified in this
parameter. Also, any
unrecognized contexts or any
contexts besides DOM or Header
contexts will be ignored by this
connector, and not dumped into
the log.

 YesString NamedContexts

DescriptionRequiredTypeName

Page 74 of 133

Name of byte array -- both
ByteArray and ByteArrayName
must be specified for the byte array
to be added to the audit log entry.
The ByteArrayName should be a
valid XML element name.

NoStringByteArrayName

Byte array to be added to the audit
log entry

Nobyte[]ByteArray

This field is used to specify the
separator character used to
delineate the request names within
the NamedContexts String.

The AppConnector will provide a
default value of comma “,” .

NStringSeparatorCharacter

Output Parameters:

N/A

DescriptionTypeName

Connector Return Codes:

The connector completed successfully. This
indicates that the outbound message information
was logged successfully.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.6.9 Request Mapper Connector

Name: RequestMapper

Description: This connector is used to verify that a request entering the Gateway via OMH is
supported. The incoming request must either match a protocol specific request which is expected
by this flow, or a generic request. It will also mapout the protocol specific request into the mapout
ProtocolSpecificRequest mapout parameter. The reason that the protocol flow designer can
specify a generic request as well as the protocol specific request is that the back-end application
initiating this outbound message could be written in a protocol independent manner, thus the
back-end application may not know (or care) what protocol is actually being used to communicate
between the partners.

This connector makes use of several input parameters. The first parameter contains the request to
compare. The second input parameter is used to provide the list of protocol specific requests that
are supported by this protocol flow. The third parameter, if provided, lists the generic requests
which correspond to the list of protocol specific requests. If the generic list is provided, the number

Page 75 of 133

of generic requests must be the same as the number of protocol specific requests, otherwise an
error code will be returned by this connector.

The suggested use of this connector is to specify the Request field of the MessageHeader for both
the RequestToCompare mapin parameter and the ProtocolSpecificRequest mapout parameter. This
will allow the MessageHeader to get filled in properly so that the FlowManager can perform flow
selection against a valid request supported by this protocol.

Input Parameters:

Generic names of the requests which
this flow is capable of processing. The
number of generic requests must match
the number of protocol specific request
names supported. This string contains a
list of these generic request names
separated by the SeparatorCharacter.

For example, if this flow supported the
generic requests of Status Update,
OrderConfirmation, and ShipNotice, and
the corresponding protocol specific
requests are:

“StatusUpdateRequest,ConfirmationRequ
est,ShipNoticeRequest”

Then this GenericRequestsSupported
field should be set to:

NStringGenericRequestsSupported

Protocol specific names of the requests
which this flow is capable of processing.
This string contains a list of these
request names, separated by the
SeparatorCharacter.

For example, if this flow can process the
requests of StatusUpdateRequest,
ConfirmationRequest, and
ShipNoticeRequest, and the
SeparatorCharacter is a comma, then the
value passed into this field must be:

“StatusUpdateRequest,ConfirmationRequ
est,ShipNoticeRequest”

YStringProtocolRequestsSupported

This field contains the request field to
compare against, to determine if this
request is either a Protocol Specific or
Generic request supported by this
protocol flow.

YStringRequestToCompare

DescriptionRequiredTypeName

Page 76 of 133

This field is used to specify the separator
character used to delineate the request
names within the
ProtocolRequestsSupported and the
GenericRequestsSupported parameters.

The AppConnector will provide a default
value of comma “,” .

NStringSeparatorCharacter

“StatusUpdate,OrderConfirmation,ShipNo
tice”

Output Parameters:

If this connector is successful, this field will contain the
value of the RequestToCompare field if the
RequestToCompare was found in the
ProtocolRequestsSupported list. If the RequestToCompare
field is found in the GenericRequestsSupported list, then
the correponding ProtocolRequestsSupported entry will be
mapped out.

StringProtocolSpecificRequest

DescriptionTypeName

Connector Return Codes:

An exception was taken when attempting to perform
the request comparison or when mapping out the
results. See the DG Message log files for additional
information.

901.ERROR_GW_EXCEPTION_TH
ROWN

The RequestToCompare that was passed in was not
listed in either the ProtocolRequestsSupported or
the GenericRequestsSupported list.

948ERROR_GW_UNSUPPORTED
_MESSAGE_TYPE

The connector completed successfully. This
indicates that the request passed in either matched
one of the allowable protocol specific or generic
requests being compared against. The
ProtocolSpecificRequest was successfully set in the
field specified by the mapout specification.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

Page 77 of 133

4.1.6.10Response step
The Response step is used in the Gateway protocol flows to signal a response is ready to be sent
from the flow. The Response step can be used by protocol flows started by either an inbound
request, or an outbound request. When the Response step is encountered the Delivery Gateway
will collect the response from the TransportOutput context and deliver it.. All output data to be
returned to the caller must be set before calling the Response step.

Even though the Response step returns data to the caller, the flow continues with the next step
after the Response step, if available. By calling the Response step as early as possible in the
protocol flow, the caller is able to handle the response sooner while the protocol flow is still able to
continue with the next step and handle the request. This is especially useful when a protocol
request just needs an acknowledgment, like “200, Okay”, without the entire request being
processed. Performance wise, it is a good idea to issue the Response step as soon after the
response data is available. If a protocol flow needs to send a message to a remote partner after the
Response step is called the SendMessage connector should be used.

A Response step will always be called in a Protocol flow. If no Response step is encountered before
the end of the Gateway protocol flow then the Delivery Gateway will treat this as though an implicit
response step was provided and the data in the transport output context will be returned to the
partner as a response.

4.1.6.11SendMessage Connector
Name: Sendmessage

Description: This connector is used to send a message to a remote partner from a protocol flow.
The SendMessage Connector uses the Outbound Message Handler to deliver the message. See
the Outbound Message Handler section for more information.

Input Parameters:

 PartnerRefNum

The unique reference number of the
partner

No. StringPartnerRefNum

 ProviderRefNum

The unique reference number of the
provider

No. StringProviderRefNum

The headers that should be sent along
with the message.

NoRepeating
String

Headers

Type of message input, either “ByteArray”
or “MIME”.

YesStringMessageType
The message to send.YesByte []Message

Message Identifier.

This must be a unique message identifier
for the protocol.

YesStringMessageId

DescriptionRequiredTypeName

Page 78 of 133

The separator character used to separate
the values of the previous two parms.
This value defaults to “,” if not specified.

NoStringSeparatorCharacter

Override properties will override all other
properties contained in either the default
properties or the partners profile
properties. These are useful to override
certain properties for a particular
message. For example you can override
the URL for HTTP if an inbound message
contained a “reply-to” URL.

String format is “key=value:key=value”

Where ” :” is the separator character

NoString OverrideProperties

Default properties to use to send the
message. These properties can be
overridden by the partners properties
stored in the partners profile.

String format is “key=value:key=value”

Where “:” is the separator character.

NoString DefaultProperties

Transport to use. Valid types are HTTP,
MAILBOX, *PARTNERPROFILE

Default: *PARTNERPROFILE

 NoString TransportType

Output Parameters:

DescriptionTypeField

Properties for SendMessage connector:

Controls the number of retries
for a message. If “Config” is
used, the send message
connector will use the number

0-999, Config

Default: Config

RetryCount

If synchronous delivery is
“Yes” then the send message
connector will not return until
the message is either
delivered or an error is
encountered. Otherwise the
message will be saved to a
persistent database and
attempts to deliver the
message will continue until
the retry count expires

Yes, No

Default: No

SynchronousDelivery
DescriptionValueKey

Page 79 of 133

Controls who decides if the
message was delivered
successfully. Some
protocols use
acknowledgement messages
within the protocol to signal
when a message was
successfully received. The
default is for the transport
protocol to decide when a
message was successfully
delivered.

Transport, Protocol

Default: Transport

DeliverySuccess

Controls what flow will be
called if data is received back
while deliverying the outbound
message.

If “Config” is specified the
rebound flow defined for the
current flow definition is
called.

Flowname, Config

Default: Config

ReboundFlow

Controls the interval of retries
in minutes. If “Config” is
used, the send message
connector will use the retry
interval specified in the
Gateway properties

1-999, Config

Default: Config

RetryInterval

of retries specified in the
Gateway properties.

Connector Return Codes:

The message could not be sent.922.ERROR_GW_MESSAGE_FAI
LED

An exception was taken when attempting to access
information. See the DG Message log files for
additional information.

901.ERROR_GW_EXCEPTION_TH
ROWN

The connector completed successfully. This
indicates either the message was sent sucessfully
or the message was saved to be sent at a later time.

0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

Transport data used by the OMH

The OMH retrieves delivery information data from the protocol partner registry to deliver an outbound
message. When a Gateway protocol is written the data model and screen model for the protocol
partner registry must contain this data that is required by the delivery transports for the transports

Page 80 of 133

that are supported by the Gateway protocol. Below is a list of transports and the data that needs to
be collected.

HTTP

If this URL uses basic
authentication, a password
can be supplied.

LogonPassword=secretLogonPassword

If this URL uses basic
authentication a logon ID can
be supplied

LogonID=myIDLogonID

Indicator whether to use a
security mechanism.

Values: *SSL or *NO

Security=*NOSecurity
Location to send the requestURL=http://example.comURL
DescriptionProperties ExamplePartner Profile Field

MailBox Database

None.

This data may be associated with either the target or the partner depending on the needs of the
protocol. If the protocol specifies that the partners communicate with each other directly then the
data should be associated with the partner. If communications go through a central hub or
marketplace (like Ariba and it’s Commerce Services Network does) then the data should be set
once for the target, since it doesn’t vary per partner.

Rebound Flows

When an outbound message is sent to a remote partner, data may be received on the connection if
the transport supports response data. For instance, if a message is sent via an HTTP POST then
the remote partner may send data back on the same connection. If this happens the Outbound
Message Handler will call a Gateway flow to process the response data if one is available. This
type of flow is called a “rebound” flow. Each Gateway flow defined in a protocol implementation can
have a rebound flow associated with it. The outbound message handler will locate the flow that
initiated the outbound message and determine if a rebound flow is defined and if so, it will then pass
the data to the flow and start the flow.

4.1.6.12QueryMessage Connector

The QueryMessage connector can be used to find messages that were stored in the Message
database.

Input Parameters:

Key value.YStringValue
Message selection key. YString Key

DescriptionRequiredTypeField

Output Parameters:

DescriptionTypeField

Page 81 of 133

Message Reference NumberLong []MessageRefNum

Selection Keys:

Protocol specific message
identifier

Order123ProtocolMsgId
Providers reference number34ProviderRefNum
Partners reference number22PartnerRefNum

DescriptionValue example Key

Connector Return Codes:

An exception was thrown.901ERROR_GW_EXCEPTION_TH
ROWN

The connector completed successfully. 0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.6.13RetrieveMessage Connector

The RetrieveMessage connector can be used to retrieve messages that were stored in the Message
database.

Input Parameters:

Message Reference NumberYLong MessageRefNum
DescriptionRequiredTypeField

Output Parameters:

Format of the message.

Either “MIME” or “ByteArray”

StringFormat
Message HeadersString []Headers
Message byte []Message

DescriptionTypeField

Connector Return Codes:

An exception was thrown.901ERROR_GW_EXCEPTION_TH
ROWN

The connector completed successfully. 0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

Page 82 of 133

4.1.6.14UpdateMessageDeliveredStatus Connector

The UpdateMessageDeliveredStatus connector can be used to set the delivered status of a message
that was stored in the Message database. The message may have been stored by the OMH
processing.

Input Parameters:

Valid values are 0 and 1. Default value is
0.

NIntStatus
Message Reference NumberYLong MessageRefNum

DescriptionRequiredTypeField

Output Parameters:

None
DescriptionTypeField

Connector Return Codes:

An exception was thrown.901ERROR_GW_EXCEPTION_TH
ROWN

The connector completed successfully. 0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.6.15UpdateMessageProcessingStatus Connector

The UpdateMessageProcessStatus connector can be used to set the processing status of a message
that was stored in the Message database.

Input Parameters:

Any value that is meaningful to the
protocol may be stored.

YStringStatus
Message Reference NumberYLong MessageRefNum

DescriptionRequiredTypeField

Output Parameters:

None
DescriptionTypeField

Connector Return Codes:

Page 83 of 133

An exception was thrown.901ERROR_GW_EXCEPTION_TH
ROWN

The connector completed successfully. 0EXIT_SUCCESSFUL

DescriptionVALUERETURN CODE

4.1.7 Enhanced XML Validation

A protocol designer can determine whether XML documents need to validated. This validation is
performed by the XML parser. There are three ‘validation methods’ which will be supported by the
system. They are:

� Full Validation

� Partial Validation with Entity Resolution

� No Validation

Full validation means that all of the XML validation files will be located, and full XML validation will be
performed. This method provides the most assurance that the XML document is both syntactically and
semantically correct, but is the most expensive from a performance standpoint.

Partial Validation with Entity Resolution still verifies that an XML document is well formed and it also
requires locating the XML validation files. This method requires the validation files because XML
instance documents may be using entities, and these entities are defined in the XML validation
document. This entity resolution can be thought of as ‘macro substitutions’ which must occur in the
XML document. This option will perform faster than full validation. This is the default value configured in
the Gateway instance properties.

No Validation means the system will not use any XML validation file. This is the fastest option from a
performance standpoint. The XML parser will be supplied with an ‘empty’ XML validation file. When this
option is selected, the XML parser only assures that the XML document is well formed. This option is
not recommended. If an XML instance document contained any entity references, these would not be
resolved. Erroneous results could occur later in the processing of the parsed XML document. This
option should only be considered if the protocol designer knows there will never be entities used within
their XML instance documents and if performance is a critical factor.

As an XML document is being parsed, it locates the XML DTD documents that define the rules that
govern whether a given XML document is valid or not. For simplicity, we will refer to these XML DTD
documents as XML validation documents. The validation of a single XML document may require
multiple XML validation documents if multiple XML validation documents are referenced from within a
single XML document. The XML parser provides a mechanism to allow the ‘caller’ of its function to
assist in locating these XML validation documents. The Connect for iSeries framework has a global
entity resolver which will handle locating the required XML validation documents required for validating
XML documents..

There is three ways that the Global Entity Resolver will locate XML validation documents. They are:

1. Use XML validation documents that are provided by the Connect administrator, which are located on
the local file system.

2. Use XML validation documents that were previously located in the network, that have been cached
locally by the Connect Global Entity Resolver.

Page 84 of 133

3. Use XML validation documents that are located in the network. After locating these XML validation
documents, they will be cached for future use.

The three methods of locating these XML validation documents are the priority order in which the
Connect Global Entity Resolver will attempt to locate the documents. Each of these techniques will be
explained in greater detail.

4.1.7.1 XML validation documents provided by the Connect Administrator,
which are located on the local file system

There are several key points that need to be understood regarding this topic. These points are 1) where
should the files be located , 2) What should the files be called, and 3) How will the system identify the
correct file to use during validation.

File Location

The location of the files can be anywhere, but it should be noted that all instances that need a particular
file must have read access to the file. The instances will also need execute authority on all of the
directories in the path, which will allow the path to be searched. The
‘/QIBM/UserData/Connect200/XMLValidation’ directory can be used for storing these files. All the
Connect instances will be granted ‘read’ authority to this directory, and execute authority on all of the
directories in the path. For files located in other directories, the administrator will be responsible for
granting the proper authority to any Connect instance user profiles which requires these other files for
performing XML validation.

Note: In a split system configuration an administrator will need to keep the files between the
FlowManager and Gateway system synchronized manually.

File Name

The files can be named anything that a protocol designer chooses. The one restriction is that all of the
files placed into the /QIBM/UserData/Connect200/XMLValidation directory must be uniquely named.

How the system identifies the correct file to use during validation

The Connect administrator must provide mappings. There is a table which the administrator modifies
using the Connect for iSeries configuration GUI which controls what local file is to be used for validation
purposes. This table will be used to map the ‘location’ (which is found in the DOCTYPE element of an
XML document being validated) to the file name which corresponds to the XML validation document
located on the local file system. This table will be made up of a series of URILocation and LocalFileID
pairs. The ‘URILocation’ will be the location parameter as it appears in the XML documents. The
‘LocalFileID’ will be the local file which contains the XML validation document. The value can be just a
filename. In that case, it is assumed the XML validation file is located in the
/QIBM/UserData/Connect200/XMLValidation directory. The value can also be a fully qualified path and
filename. It is important to note that whatever the ‘LocalFileID’ parameter points to, the Connect
instance that requires the use of the file for validation must have read authority to the directories and file.

The ‘URILocation’ field will also support the use of an ‘*’ as a wildcard character. This wildcard
character can be used to allow ‘partial’ locations to be specified. This is useful for cases when the
partner system is specifying a slight revision to the XML validation document, but the protocol designer
wants to continue using the local copy of the XML validation document. The precedence is that the
Connect global entity resolver will first attempt to find a direct match for the URILocation. If no direct

Page 85 of 133

match is found, then the first entry encountered in the table which would provide a match based upon
the wildcard character will be selected.

 Following is a sample set of URILocation and LocalFileID pairs which could be stored in the global
registry, and an explanation of how the Connect Global Entity resolver will behave based upon various
‘locations’ encountered in received XML documents.

WidgetShipNoticeAny.dtdhttp://xml.Widgets.org/schemas/Widgets/*/WidgetShipN
otice.dtd

Widgets123.dtdhttp://xml.Widgets.org/schemas/Widgets/1.2.3/Widgets.
dtd

LocalFileID URILocation

Case 1 - XML document received specifies the following for location:

 http://xml.Widgets.org/schemas/Widgets/1.2.3/Widgets.dtd

In this case, Widgets123.dtd will be used for validation.

Case 2 - XML document received specifies the following for location:

http://xml.Widgets.org/schemas/Widgets/1.2.7/Widgets.dtd

In this case, There is no match found in the file, thus the system will first attempt to locate the dtd in
the ‘cache’, and if not found, it will search the network.

Case 3 - XML document received specifies the following for location:

http://xml.Widgets.org/schemas/Widgets/1.3.8/WidgetShipNotice.dtd

In this case, the system will use WidgetShipNoticeAny.dtd for validation.

Case 4 - XML document received specifies the following for location:

http://xml.Widgets.org/schemas/Widgets/1.3.9/WidgetShipNotice139.dtd

In this case, There is no match found in the file, thus the system will first attempt to locate the dtd in
the ‘cache’, and if not found, it will search the network.

NOTE: There are several DTD and schema files which are shipped with the Connect product in support
of cXML. The mapping table described above will have mapping entries for the appropriate URIs and
files filled in automatically as part of the install process. These cXML files will be shipped in Proddata.

Page 86 of 133

4.1.7.2 XML validation documents that were previously located in the network,
that have been cached locally by the Connect Global Entity Resolver

A protocol designer may choose not to supply any XML validation documents, and they may rely on
having the system retrieve the XML validation documents from the network. In this case, the system will
cache the XML validation documents in the /QIBM/UserData/Connect200/CachedXMLValidation
directory.

Besides having the URILocation and LocalFileID mapping pairs stored in the global registry, there is
also a configurable property called CachedEntityResolverExpiration. This property specifies the
'number of days' that cached files found by the global entity resolver will continue to be used. If a file
has been in the cache longer than this value, then the next time this XML validation file is required, the
file will be retrieved from network to refresh the cache. The system supplied default for this parameter is
14.

Besides placing the XML validation files in the directory above, there will also be some additional files
that are placed in this directory for keeping track of these cached file mapping (e.g. Similar to how the
URILocation to LocalFileID mapping works), and for keeping track of when to refresh the cached XML
validation files.

4.1.7.3 XML validation documents that are located in the network

The system will also have support for retrieving the files using either http or ftp, based upon the location
information provided in the XML document. An important note regarding the retrieval of XML documents
over the network is that in order for it to work, the URL provided in the XML document must point to a
valid URL, and that URL must be reachable by the local system. If the site specified by the URL is
down, or behind some firewall which the local system cannot reach, then this option cannot be used. In
those cases, the XML validation documents need to be made available locally using the first technique
which was described earlier.

Page 87 of 133

5.0 eCatalog Interfaces
The e-Catalog administration tool was an original part of iSeries Connect’s administration servlet. It is used
to maintain product and pricing information and for the publishing of this information to individual buyers
and/or public e-marketplaces like Ariba.

Customers/suppliers can use the e-Catalog tool in one of two ways. They can maintain the product and
price information for their catalog in the e-Catalog tool itself or maintain it in their legacy backing store, such
as DB2, WebSphere Commerce Suite, or Domino.

Information in the e-Catalog tool is then published to a format acceptable to a register marketplace. This
information can then be sent to the marketplace for use by potential buyers. If a private format is desired,
then the catalog information can be exported to a standard XML format. Customers/suppliers can then use
an open-standard translator, such as Xalan, to convert the markup to their private format.

Since product and pricing information is dynamic in nature, it is often necessary to maintain this information
by repeatedly using the Connect Administration GUI to refresh the product/price information from the souce
DB, and then publish or export it.

5.1.1 Public APIs for Refresh/Publish

Three new APIs will be provided to facilitate programmatic invocation of certain e-Catalog functions that are
periodic in nature. These functions are refresh, publish, and export. Invocation of these APIs is performed
by calling main() on the desired Java class, with the specified string parameters:

com.ibm.connect.tools.catalog.ExternalRefresh(instanceName,

 catalogName)

com.ibm.connect.tools.catalog.ExternalPublish(instanceName,

 catalogName)

instanceName is the name of the B2B instance for the catalog.

catalogName is the name of the target catalog.

Page 88 of 133

Callers (USRPRFs) of these APIs will be required to possess the same authority as that of a valid Connect
Administration GUI user.

Implicit parameters (those not supplied to the API) for the publishing of a catalog via the API will be taken
from the current registry information for that catalog.

Any error messages will be translated via resource bundles and directed to standard output.

A CL *PGM object can be created that refreshes and publishes an input catalog. A sample CLSRC for this
*PGM, that takes two parameters, instanceName and catalogName, is shown below:

PGM (&INSTANCE &CATALOG)

DCL VAR(&INSTANCE) TYPE(*CHAR) LEN(10)

DCL VAR(&CATALOG) TYPE(*CHAR) LEN(32)

ADDENVVAR ENVVAR(CLASSPATH) +

VALUE('/tobrien:+

/QIBM/PRODDATA/CONNECT200/TOOLS/CATALOG/CATALOG.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/CONFIG.JAR:+

/QIBM/PRODDATA/CONNECT200/TOOLS/TPA/TPA.JAR:+

/QIBM/PRODDATA/CONNECT200/TOOLS/RUNTIME/util.jar:+

/QIBM/PRODDATA/CONNECT200/CLASSES/WCSCONFIGSERVICES.JAR:+

/QIBM/PRODDATA/JAVA400/JT400NTV.JAR:+

/QIBM/PRODDATA/OS400/JT400/LIB/JT400NATIVE.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/XERCES321.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/SOAP.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/XALAN220.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/LOGGING.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/LOG.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/LOGGINGAPI.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/NCSO.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/ACTIVATION.JAR:+

/QIBM/PRODDATA/CONNECT200/CLASSES/MAIL.JAR:+

Page 89 of 133

/QIBM/PRODDATA/CONNECT200/CLASSES/COMIBMCONNECT.JAR') +

REPLACE(*YES)

JAVA CLASS(com.ibm.connect.tools.catalog.ExternalRefresh) +

PARM(&INSTANCE &CATALOG)

JAVA CLASS(com.ibm.connect.tools.catalog.ExternalPublish) +

PARM(&INSTANCE &CATALOG)

ENDPGM

This *PGM can be called directly via the CALL cmd, or can be scheduled via SBMJOB with the SCDDATE
and SCDTIME parameters or via the Advanced Job Scheduler (5722-JS1).

Page 90 of 133

6.0 Sending Outbound Messages
Besides receiving messages from remote trading partners the Delivery Gateway is also capable of
originating messages. The Outbound Message Handler (OMH) is used to send messages to remote
partners. The OMH supports sending messages via HTTP, and also supports storing messages in a
mailbox database. To send an outbound message the protocol writer would call the SendMessage
connector from a protocol flow. The connector can be called from a protocol flow that is being run from
the result of an incoming request from a partner or a protocol flow can be initiated by using the
outboundRequest Java class.

6.1 Initiating an Outbound Message
The outboundRequest Java class is used to initiate a protocol flow to send an outbound message. It
works by calling into the Delivery Gateway and acting as an inbound request. Once the protocol flow is
initiated it can perform any processing necessary for the outbound message. This would include
queuing the request to the Flow Manager so that the backend application can complete the outbound
request. What is traditionally a response to a trading partner initiated request is now the outbound
message instead.

Delivery
Gateway

Flow
Manager

outboundRequest
java class

Partner
Requests

The outboundRequest API can be called from a Java Connector or from a separate application. The
separate application is referred to as a “proxy application” because it most likely not part of the
business application you’re connecting to and would be written by an ISV with detailed knowledge of the
business application’s capabilities and interfaces. The proxy application has two functions; one is to
extract information from the business application and to call the outboundRequest APIs to originate
outbound requests. The second part of the proxy application is to implement a connector to extract
information from the backend application to complete the outbound request.

Delivery
Gateway

Flow
Manager

outboundRequest
java class

Partner
Requests Connectors

Proxy
Application

Business
Application

Page 91 of 133

The proxy application that initiates the outbound request by calling the API could be a stand alone
application or it could be a step in a flow manager flow.

6.2 OutboundRequest Java class

The java connector or proxy application will construct an OutboundRequest object, set any required
fields and call the initiateRequest() method to send the outbound message. The OutboundRequest API
needs to know enough information about the request to call the correct Delivery Gateway instance and
run the proper Gateway protocol flow for the protocol. It uses the Connect configuration registry to
locate the Gateway so the API must be run on a system where either the Delivery Gateway or the Flow
Manager resides. The following fields are required;

Protocol Request “Invoice”Request

Protocol Version

This field is deprecated and if present will be concatenated with
Protocol to form a Protocol field name in the format of:
Protocol:ProtocolSubtype:ProtocolVersion

Protocol Version

(deprecated)

Protocol Subtype

This field is deprecated and if present will be concatenated with
Protocol to form a Protocol field name in the format of:
Protocol:ProtocolSubtype:ProtocolVersion

Protocol Subtype

(deprecated)

Protocol “BusinessXML”Protocol

Connect Protocol Group (formerly called Marketplace)“Ariba_CSN”Protocol Group

Connect Instance “Acme_Corp”Instance

DescriptionExampleField

The following fields are optional on the API but may be required by the protocol flow;

Partner (formerly called Buyer)

If a “Buyer” field is supplied it will be used for the Partner.

“987654321:DUNS”Partner

Provider (formerly called Supplier)

If a “Supplier” field is supplied it will be used for the “Provider”

“123456789:DUNS”Provider

Request Type

This field is deprecated and if present will be concatenated
with Request to form a Request field name in the format of:
Request:RequestType

Request Type

(deprecated)

DescriptionExampleField

Page 92 of 133

Finally, the following field is for use by the java connector or proxy application. It can contain any string
data that may be needed to communicate between the proxy application and the flow manager
connectors.

Application Token

This string is saved in the MessageHeader context as
‘com_ibm_connect_header_appToken’, or Java constant
HeaderConstants.APP_TOKEN.

“Invoice #1234567”Application Token

DescriptionExampleField

There are two methods the caller can use to set the required fields. One method is to set the fields
individually. The other method is to use a Request Token. The fields can be set individually on the
object constructor, or through individual set methods or through the use of a Properties object.

Using a Request Token can greatly simplify the API call. A Request Token is usually generated on an
incoming request during the Gateway protocol flow and is stored in the MessageHeader context. When
the Request Token is generated it saves the following fields; Protocol Group, and Protocol. It will also
save the Provider, Partner and request information if it is available.

A Flow Manager connector can use or save away the value of the Request Token to make calling the
OutboundRequest easier. If a Request Token is used then just the Instance, Request Token, Request
and any optional fields need to be specified.

If the deprecated methods are called or a properties object provided on the setRequestFields() method
contains ProtocolSubtype, and ProtocolVersion, then these fields will be concatenated with the Protocol
value separated by a colon. Similarly, if RequestType is provided it will be concatenated with Request.
Any value provided as the Buyer or Supplier will become the Partner and Provider respectfully.

A few of the discussed methods are presented below. See the Javadoc for the complete documentation
of the object and all of it’s methods.

 public OutboundRequest()

 (deprecated)public OutboundRequest(String instance,
 String marketplace,
 String protocol,
 String protocolSubtype, /* will be concatenated with protocol */
 String protocolVersion, /* will be concatenated with protocol */
 String request,
 String requestType,
 String buyer, /* will be treated as the Partner */
 String supplier, /* will be treated as the Provider */
 String applicationToken)

 (deprecated)public OutboundRequest(String instance,
 long requestToken,
 String request,
 String requestType,
 String applicationToken)

 public void setRequestFields(Properties requestFields)

Page 93 of 133

6.2.1 Authority Required

The caller will need *RX access to all the directories in the path to the jar file and *R authority to the jar
file itself.

The caller of the API must be authorized to the “Connect Outbound Messages” program function or have
*ALLOBJ authority on the Delivery Gateway system. To authorize the user profile to have “Connect
Outbound Messages” program function use Operations Navigator.

6.2.2 Requests

There are a set of predefined protocol independent requests the caller can use to set the request value.
The caller can also set a protocol specific request value if none of the defined generic requests are
similar. The predefined set allows the caller to be protocol independent yet still send outbound requests
like “ShipNotice”. The Delivery Gateway protocol connectors will intercept the predefined set of request
and turn them into a protocol specific request. For example, the cXML protocol flow connector that is
processing the outbound request will see the “ShipNotice” request and turn that into a cXML
ShipNoticeRequest request. Protocol writers should see the RequestMapper connector for information
on how the request mapping is done. If the Delivery Gateway protocol connector does not support the
request an error is returned to the proxy application (BAD_REQUEST).

Since these predefined requests are translated to actual protocol specific requests before the Flow
Manger is called, the generic requests don’t need to be deployed or have RequestMessage files
associated with them.

Order ConfirmationOrderConfirmation

Advance Ship NoticeShipNotice

Order InvoiceInvoice

DescriptionRequest

6.2.1 Classpath requirements

/QIBM/ProdData/Connect200/gatewayAPI.jar

/QIBM/ProdData/Connect200/gateway.jar

/QIBM/ProdData/Connect200/bridge.jar

/QIBM/ProdData/Connect200/Classes/xerces321.jar

/QIBM/ProdData/Connect200/Classes/xalan220.jar

/QIBM/ProdData/Connect200/Classes/config.jar

Page 94 of 133

/QIBM/ProdData/Connect200/Tools/Runtime/util.jar

/QIBM/ProdData/Connect200/Classes/loggingapi.jar

/QIBM/ProdData/Connect200/Classes/logging.jar

/QIBM/ProdData/Connect200/Classes/log.jar

/QIBM/ProdData/Connect200/Classes/comibmconnect.jar

/QIBM/ProdData/OS400/jt400/lib/jt400Native.jar

6.2.2 Sample Code:

public class MyClass {

 void MyClass() {
 };

 public void sendInvoice() {

 try {

 OutboundRequest orq = new OutboundRequest();

 Properties prop = new Properties();
 FileInputStream propFile = new

 FileInputStream("OutboundRequest.properties");
 prop.load(propFile);

 /*
 Properties object contains values for Instance, Protocol Group,
 Protocol, Protocol Version.
 */
 orq.setRequestFields(prop);
 orq.setRequest(OutboundRequest.INVOICE_REQUEST);
 orq.setApplicationToken("INVOICE,123456");

 int rc = orq.initiateRequest();

 }
catch (Exception ex)

 System.err.println("Exception " + ex.getClass().getName() + " " +
ex.getMessage());

 ex.printStackTrace();
 System.exit(1);
}

 }

 public void sendInvoice(String invoiceNumber, String partner) {

 try {

Page 95 of 133

 OutboundRequest orq = new OutboundRequest();

 orq.setInstance("AcmeCorp");
 orq.setProtocolGroup("Ariba CSN");
 orq.setProtocol("cXML:Ariba:1.2");
 orq.setRequest(OutboundRequest.INVOICE_REQUEST);

 orq.setTarget("123456789:DUNS");
 orq.setPartner(partner);

 orq.setApplicationToken("INVOICE,"+invoiceNumber);

 int rc = orq.initiateRequest();
 }

catch (Exception ex)
{
 System.err.println("Exception " + ex.getClass().getName() + " " +

ex.getMessage());
 ex.printStackTrace();
 System.exit(1);
}

 }

}

6.3 Sendmessage Connector
The Sendmessage connector can be used to send outbound messages to remote partners from a
protocol flow. See the SendMessage connector specification for details.

6.4 Mailbox Cleanup
Expired messages that are still in the message database can be cleaned up by the MailboxCleanup java
class. The clean() method can be called to delete all expired messages for all the configured Connect
instances. Additionally, the MailboxCleanup class contains a main() method that directly calls the cleanup()
method so that the class can be called from a command line or from Qshell.

JAVA CLASS('com.ibm.connect.gateway.interfaces.MailboxCleanup')
CLASSPATH('/QIBM/Proddata/Connect/Gateway/gatewayapi.jar:
/QIBM/Proddata/Connect200/classes/config.jar:
/QIBM/Proddata/Connect200/classes/xerces321.jar:
/QIBM/Proddata/Connect200/tools/tap/tparuntime.jar:
/QIBM/Proddata/Connect200/classes/connpool.jar:
/QIBM/Proddata/Connect200/classes/logging.jar')

 It can also be schedule to run periodically using OS/400 job scheduling. For example the command below
will schedule the cleanup to run every night at 1:00 AM.

Page 96 of 133

ADDJOBSCDE JOB(CONNECTDG)
CMD(JAVA CLASS(com.ibm.connect.gateway.interfaces.MailboxCleanup)
CLASSPATH('/QIBM/Proddata/Connect/Gateway/gatewayapi.jar:
/QIBM/Proddata/Connect200/classes/config.jar:
/QIBM/Proddata/Connect200/classes/xerces321.jar:
/QIBM/Proddata/Connect200/tools/tpa/tparuntime.jar:
/QIBM/Proddata/Connect200/classes/connpool.jar:
/QIBM/Proddata/Connect200/classes/logging.jar'))
FRQ(*WEEKLY) SCDATE(*NONE) SCDDAY(*ALL) SCDTIME(0100)
TEXT('Connect for iSeries Mailbox cleanup')

Page 97 of 133

7.0 Buyer/Supplier Interfaces
The purpose of the Connect partner Supplier Registry is to allow for the authentication and authorization of
requests coming from a marketplace or private protocol exchange and to facilitate the mapping of the
identities in those requests to corresponding backend application entities. In each request there is an
identified target (the provider) and an identified requester (the partner). The Connect product, through the
partner Supplier Registry interfaces, not only provides the registry for authenticating the requests and
identifying the partner and provider but also allows for the synchronization and mapping between the provider
and partner entities as identified in an ‘external’ protocol request and the corresponding entity as it is
known to the ‘internal’ backend application.

There are two approaches available within the partner provider Registry support in Connect to allow the
exchange of information between partner provider entities and backend application entities. The first
approach is a registered exit program approach. In this approach, you implement a java class that
implements a specific interface where the various methods map to exit points that correspond to specific
requests made in the partner provider Administration GUI. These exit points correspond to the create of a
partner or provider, the edit of a partner or provider, or the delete of a partner or provider. There are also exit
points to allow for the select of backend application entities for the purpose of populating the properties of a
partner or provider with that entity’s known information. The exit program approach requires that you
implement either a provider Exit program, a partner Exit program, or both and then register that exit program
for a given instance in the partner provider Administration GUI.

The second approach is a set of APIs that are distinct from the actions taken in the partner provider
Administration GUI. These APIs are available to standalone programs or in exit points in backend
application code, to effect the partner provider registry under Connect. These APIs allow you to create a
provider, create a partner, edit the properties of a provider or partner, retrieve the individual properties of a
provider or partner, retrieve a list of partner or suppliers and more. Note that you can also use theses APIs
in a registered exit program to make additional changes to the properties of a partner or provider based on
how you want that partner or provider to relate to a backend entity.

To develop either a registered exit program, implementing a specific set of interfaces, or to create a
standalone java program that issues APIs to alter the contents of the partner provider registry, you must
understand that a partner or provider is implemented as a set of properties. Documented below are two key
classes, the SupplierProperties class and the BuyerProperties class. These two classes inherit from the
java properties object,see java.util.Properties class, and represent a set of name, value pairs. These
property classes are used as both input and output in the various methods and are used to exchange
information about a provider or partner. The actual data about a registered partner or provider is stored in the
partner provider Registry database.

What follows is a discussion of the two approaches.

Registered Exit program:

There are a number of reasons why you might want to implement and register a provider or partner Exit
program with the partner provider Administration GUI.

� To create a corresponding backend entity object (a customer, shopper or store) to reflect the newly
created partner or provider and store the relationship key in the partner or provider properties

� To do additional data integrity checking on the input of various partner or provider properties via the
partner provider Administration GUI

Page 98 of 133

� To map a partner or provider object to an existing backend entity object such as a Store, Merchant,
Shopper, Customer, Agent, etc, and to set additional related information in the properties of a partner or
provider to reflect that mapping

� To select from and populate a partner or provider from a list of known backend application entities

� To shadow or copy partner or provider data to another instance

As part of the partner provider Registration exit process, which allows for real time exit calls out of the
partner provider Administration GUI, we have provided two interface classes: BuyerExit and SupplierExit.
The input and output parameters of the methods in these two class interfaces are directly related to the exit
points they plug in to in the partner provider Administration GUI. The exit points in the partner provider
Administration GUI are the following:

� After the create of a partner or provider, when using the New partner or New provider wizard and pressing
the FINISH button.

� After the update of a partner or provider, when doing an edit Properties of a registered partner or provider
and pressing OK button.

� Before the delete of a partner or provider, when doing a DELETE of a select partner or provider.

� Prior to moving through the New partner or New provider wizard, if the Select from Other Source has
been enabled. This function will call the select exit point, allowing the presentation of a list of backend
entities to choose from and then will invoke the populate exit point, so that the exit can set various
properties with the content of the backend entity.

Your exit program can choose to implement some or all of these exit points. For example, you may want
to implement create, update and delete, but not select and populate from backend entity. For those exit
call that you don’t implement, you need only provide the appropriate return value, a null pointer or void or
boolean.

Once you have created your exit program routine, either partner or provider, you need to register it in the
provider partner Administration GUI using the Registered Exit Program link on the sub-task bar. What you
will provide is the full package and class name. In order for the Administration GUI, which runs under the
Apache server, to successfully load your class, it must be able to find it. This means that your class or
corresponding jar file must be found at load time. If you only have a class file, you must store it in the
following path:

 /QIBM/UserData/HTTPA/admin/webapps/BtoB/web-inf/classes

If you have a jar file, you would put the jar file in the following path or add symbolic link to your jar file in the
following path:

 / QIBM/UserData/HTTPA/admin/webapps/BtoB/web-inf/lib

If your class or jar file is put in the appropriate one of these two paths, the class will be found when doing a
load during the registration of the exit under the partner provider Administration GUI. Note that you may
need to restart the administration server before doing a register of your exit as that is when the classpath for
apache is determined.. If you do not choose to put your class or jar in one or the other of these two
locations, then you must manually insure that the apache classpath is updated to reflect your class. See
the /qibm/proddata/httpa/adminj/conf/workers.properties file, the worker.jni.class_path property for update.
If the partner provider Administration GUI can successfully load your class, then the description of your
implementation (see getDescriptor) will be presented. If it could not be loaded, registration will fail with the
appropriate message.

Page 99 of 133

Provided as one of the interface methods is the isImplemented method. This method is used to interrogate
the implementation class to determine if the class has an implementation behind the particular exit points.
This is primarily of use with the select and populate, so the partner provider Administration GUI can best
determine if those screens should be presented.

The following classes and interfaces can be found in the tpaapi.jar in the following path:
/qibm/proddata/connect110/tools/tpa file (note: All constants associated with these classes are found in
the Appendix):

-com.ibm.connect.tools.tpa.SupplierProperties:

�Purpose: This class represents a provider as a set of properties a helper class and extends the
java.util.Properties class. It is used as input and output in the registered exit interfaces and Supplier
Buyer API interfaces. The objective of this class is to make Supplier data available to the Backend
Application connectors and also allow Supplier data to be populated from Backend application data.

�The supplier properties object allows for two sets of properties, data and password. The data
properties are stored in the Supplier Registry database “as is”. The password properties are not stored
in the Supplier Registry database, but rather are stored as tokens in the database and it is up to the
exit program to cache the real password property value into a secure store. For example, your exit code
could use a validation list. You can use any other property information as a key to get to the password
you have stored away, but you will not be able to get the real password property from the
SupplierProperties object except as input on the create or update Supplier exit, and only then when it is
 actually input new via the GUI. In all other cases, you get a token password value for that named
password property and this value can be used as an indication that the password property was set at
one time via the GUI. See the PASSWORD_SET_TOKEN in the appendix. This is the value that will
be returned as the named password property value on all retrieves. As password properties are distinct
from data properties, there are distinct methods to get, remove or set the property. You can also get a
list of the password properties names and process by returned names.

SupplierProperties()

getPasswordPropertiesGetPasswordProperties()

 Get a vector of password property names (Strings).

getPasswordProperty(String)

removePasswordProperty(String)

setPasswordProperty(String, String)

-com.ibm.connect.tools.tpa.BuyerProperties:

�Purpose: This class represents a buyer as a set of properties a helper class and extends the
java.util.Properties class. It will be used by the Registered Exit class that implements the
BuyerOrgExit interface. This class is used to input Buyer data to or return Buyer data from the B/S
Administration GUI. The objective of this class is to make Buyer data available to the Backend
Application connectors and also allow Buyer data to be populated from Backend application data.

Page 100 of 133

�The buyer properties object allows for two sets of properties, data and password. The data properties
are stored in the Buyer Registry database “as is”. The password properties are not stored in the Buyer
Registry database, but rather are stored as tokens in the database and it is up to the exit program to
cache the real password property value into a secure store. For example, your exit code could use a
validation list. You can use any other property information as a key to get to the password you have
stored away, but you will not be able to get the real password property value from the BuyerProperties
object except as input on the create or update Buyer exit, and only then when it is actually input new
via the GUI. In all other cases, you get a token password value for that named password property and
this value can be used as an indication that the password property was set at one time via the GUI.
See the PASSWORD_SET_TOKEN in the appendix. This is the value that will be returned as the
named password property value on all retrieves. As password properties are distinct from data
properties, there are distinct methods to get, remove or set the property. You can also get a list of the
password properties names and process by returned names.

BuyerProperties()

getPasswordProperties()

Gets a vector of password property names (Strings).

getPasswordProperty(String)

removePasswordProperty(String)

setPasswordProperty(String, String)

-com.ibm.connect.tools.tpa.api.SupplierExit:

�Purpose: This class represents an interface class. Implementations of this interface are registered
under the Buyer Supplier Administration GUI and result in real time exit calls to interface with backend
application entities. Backend applications will ship classes that implement this interface in order to
provide real time information about Connect Suppliers to the backend application entities.

�Throws : SupplierBuyerException

 Contains message data to be retrieved and any additional Exception object caught by the implementing
routine. Any SupplierBuyerException thrown by an exit program will result in the rollback of the
requested GUI operation. So, for example, if the createSupplier method throws the
SupplierBuyerException, the newly created Supplier via the GUI will be deleted.

void createSupplier(SupplierProperties properties)
This method gets invoked when Finish is pressed during the New Supplier wizard after the supplier has
been successfully created.

void deleteSupplier(SupplierProperties properties)
This method gets invoked when OK is pressed during the Delete Supplier before the delete supplier is
actually performed.

Page 101 of 133

java.lang.String getDescriptor()
Get supplier exit program description

void init(java.lang.String instanceName, java.lang.String propertiesFile)
Initializes supplier exit with Connect instance name and optional properties file name.

boolean isImplemented(int exitType)
Test supplier exit to determine if exit type is fully Implemented.

SupplierProperties populateSupplierFromBackendEntity(java.lang.String name)
Populate Supplier properties from named backend business application entity.

java.lang.String[] selectFromBackendEntities()
Select from backend business application entities.

void updateSupplier(SupplierProperties propertiesNew, SupplierProperties propertiesOld)
This method gets invoked when OK is pressed during the Edit properties of Supplier.

-com.ibm.connect.tools.tpa.api.BuyerExit:

�Purpose: This class represents an interface class. Implementations of this interface are registered
under the Buyer Supplier Administration GUI and result in real time exit calls to interface with backend
application entities. Backend applications will ship classes that implement this interface in order to
provide real time information about Connect Buyer Organizations and the backend application entities.

�Throws : SupplierBuyerException

 Contains message data to be retrieved and any Exception object caught by implementing routine. Any
SupplierBuyerException thrown by an exit program will result in the rollback of the requested GUI
operation. So, for example, if the createBuyer method throws the SupplierBuyerException, the newly
created Supplier via the GUI will be deleted.

void createBuyer(BuyerProperties properties)
This method gets invoked when Finish is pressed during the New Buyer wizard, after the buyer has
been successfully created.

void deleteBuyer(BuyerProperties properties)
This method gets invoked when OK is pressed during the Delete Buyer request before the delete buyer
is actually performed.

java.lang.String getDescriptor()
Get buyer exit program description

void init(java.lang.String instanceName, java.lang.String propertiesFile)
Initializes buyer exit with specific Connect instance name and optional properties file name.

Page 102 of 133

boolean isImplemented(int exitType)
Test buyer exit to determine if exit type is fully Implemented.

BuyerProperties populateBuyerFromBackendEntity(java.lang.String name)
Populates buyer properties from named backend business application entity.

java.lang.String[] selectFromBackendEntities()
Select from backend business application entities.

void updateBuyer(BuyerProperties propertiesNew, BuyerProperties propertiesOld)
This method gets invoked when OK is pressed during the Edit Properties of Buyer.

Additional Supplier /Buyer Java APIs for External access:

You can use the Supplier Buyer APIs in a number of ways.

� To make additional changes to a registered Buyer or Supplier’s information via a Buyer or Supplier
registered exit program

� To prime the buyers or suppliers based on information in a backend application database

� In exit programs associated with a backend application entities to keep Buyer or Supplier data in sync
with registered entities in the backend application (like customers, shoppers, merchants, etc)

The following is a set of Supplier/Buyer APIs. The purpose of these APIs is to allow priming of Buyer
Organization and Supplier data from existing Backend Application databases or to enable exits in the
BackEnd application to update the Supplier/Buyer registration information in real time. Just as in the case
of the exit APIs, these APIs only deal with partner data and do NOT relate to protocol information.

The following are the necessary classes, they can be found in the tpaapi.jar in
/qibm/proddata/connect110/tools/tpa.

-com.ibm.connect.tools.tpa.SupplierProperties: as referred to in the Register Exit section

-com.ibm.connect.tools.tpa.BuyerProperties: as referred to in the Register Exit section

-com.ibm.connect.tools.tpa.api.SupplierBuyerAPIs:

�Purpose: This class represents the Supplier r/Buyer API manager class. Use this class to create,
edit or delete Supplier or Buyers organizations. This class deals in partner data only, not with protocol
data.

�Throws : SupplierBuyerException

 Contains message data to be retrieved and any Exception object caught by the implementing routine.
Example would be if a supplier name was a duplicate or if the instance name was incorrect. SQL errors.

SupplierBuyerAPIs(java.lang.String instance)

Initiate a Supplier Buyer API manager with a Connect instance name.

Page 103 of 133

void closeConnection()
Close Supplier Buyer API manager connection with a Connect instance.

void createBuyer(BuyerProperties buyerProperties)
Creates a buyer organization.

void createSupplier(SupplierProperties supplierProperties)
Creates a Supplier.

void deleteBuyer(java.lang.String buyerName)
Delete registered buyer organization by Name.

BuyerProperties getBuyerDetails(java.lang.String buyerName)
Get details about a registered buyer organization.

java.lang.String[] getBuyerNames()
Get list of registered buyer organization names.

java.lang.String getBuyerProperty(java.lang.String buyerName, java.lang.String propertyName)
Get specific buyer property Value.

SupplierProperties getSupplierDetails(java.lang.String supplierName)
Get details about a registered supplier.

java.lang.String[] getSupplierNames()
Get list of registered suppliers by name.

java.lang.String getSupplierProperty(java.lang.String supplierName, java.lang.String propertyName)
Get a specific supplier property value from named (registered) supplier.

void removeBuyerProperty(java.lang.String buyerName, java.lang.String propertyName)
Remove specific buyer property from named (registered) buyer organization.

void removeSupplierProperty(java.lang.String supplierName, java.lang.String propertyName)
Remove specific supplier property from named (registered) supplier.

void updateBuyer(BuyerProperties buyerProperties)
Update buyer identified within buyer properties object.

void updateBuyer(java.lang.String buyerName, BuyerProperties buyerProperties)
Update buyer identified by buyer name parameter.

void updateBuyerProperty(java.lang.String buyerName, java.lang.String propertyName,
java.lang.String propertyValue)
Update or add specific buyer property to named (registered) buyer organization.

Page 104 of 133

void updateSupplier(java.lang.String supplierName, SupplierProperties supplierProperties)
Update supplier identified by supplier name parameter.

void updateSupplier(SupplierProperties supplierProperties)
Update supplier identified within supplier properties object itself.

void updateSupplierProperty(java.lang.String supplierName, java.lang.String propertyName,
java.lang.String propertyValue)
Update or add specific supplier property to named (registered) supplier.

SupplierBuyerException

SupplierBuyerException()

SupplierBuyerException(String)

SupplierBuyerException(String, boolean)

SupplierBuyerException(String[])

SupplierBuyerException(Throwable)

SupplierBuyerException(Vector)

appendMessages(String[])

appendMessages(SupplierBuyerException)

getLocalizedMessage()

getLocalizedMessages()

The returned array may be larger than the number of messages.

isFatal()

printStackTrace()

printStackTrace(PrintStream)

printStackTrace(PrintWriter)

setFatal(boolean)

setLocalizedMessage(String)

Page 105 of 133

toString()

7.1.1 Create Buyer Sample Code

This is a sample program which uses JDBC to read a "CUSTOMER " DB2 table, and creates a buyer for each
corresponding customer record. This is a standalone java program that uses the SupplierBuyerAPIs class to
interface with Connect Buyer Supplier registry.

import com.ibm.connect.tools.tpa.api.*;
import com.ibm.connect.tools.tpa.SupplierProperties;
import com.ibm.connect.tools.tpa.BuyerProperties;
import java.lang.*;
import java.util.*;
import java.sql.*;

public class createBuyers {

 private String InstanceName;
 private final String nativeurl="jdbc:db2:*LOCAL";
 private final String nativeDriver="com.ibm.db2.jdbc.app.DB2Driver";

 public createBuyers(String b2bInstance) {

 ResultSet srs = null;

 InstanceName = b2bInstance;
 try {

 // init a JDBC request to local host database
 Class.forName(nativeDriver);
 Properties p = new Properties();
 p.put("transaction isolation","read uncommitted");
 Connection db2Conn = DriverManager.getConnection(nativeurl,p);

 // The supplier buyer api manager class gives you a connection to the Supplier Buyer
Registry
 // for the named instance
 SupplierBuyerAPIs mgr = new SupplierBuyerAPIs(InstanceName);

 java.sql.PreparedStatement stmt=db2Conn.prepareStatement("SELECT CUSTNA, CUSTNO,
REPNO, CPHONE, CFAX, CADDR, CSTATE, CCITY, CCOUNT, CZIP FROM CUSTOMER for fetch
only");
 // Query the customer table
 srs= stmt.executeQuery();
 while (srs.next()==true) {
 // for each customer record, create a buyer properties object
 BuyerProperties buyerProp = new BuyerProperties();
 // Fill in the properties making each customer a buyer, note only BUYER_NAME is required
property

Page 106 of 133

 // Specify the properities as name, value pairs
 // Set buyer name to customer name
 buyerProp.put((String)BuyerProperties.BUYER_NAME,srs.getString("CUSTNA").trim());
 // Set buyer phone to customer phone
 buyerProp.put((String)BuyerProperties.BUYER_PHONE,srs.getString("CPHONE").trim());
 // set buyer fax to customer fax
 buyerProp.put((String)BuyerProperties.BUYER_FAX,srs.getString("CFAX").trim());
 // set buyer address (first line) to customer address
 buyerProp.put((String)BuyerProperties.BUYER_ADDRESS1,srs.getString("CADDR").trim());
 // set buyer city to customer city
 buyerProp.put((String)BuyerProperties.BUYER_CITY,srs.getString("CCITY").trim());
 // set buyer state to customer state
 buyerProp.put((String)BuyerProperties.BUYER_STATE,srs.getString("CSTATE").trim());
 // set buyer country to customer country
 buyerProp.put((String)BuyerProperties.BUYER_COUNTRY,srs.getString("CCOUNT").trim());
 // set buyer postal code to customer zip
 buyerProp.put((String)BuyerProperties.BUYER_POSTAL,srs.getString("CZIP").trim());
 // Provide for two unique properties, customer number and representative number
 // These properties would surface in the Buyer GUI if the Customize option was used to
 // add these two fields to the screens (see Customize functions, add page/field on GUI
 // note property names are case sensitve and what is specified here must match the screen
property
 buyerProp.put("Customer_Number",srs.getString("CUSTNO").trim());
 buyerProp.put("Representative_Number",srs.getString("REPNO").trim());

 // Create the buyer with the provided properties
 mgr.createBuyer(buyerProp);
 }

 // close local JDBC handles and connection
 srs.close();
 stmt.close();
 db2Conn.close();

 // close connection to Supplier Buyer API
 mgr.closeConnection();

 }
 catch (Exception e) {

System.out.println("Exception occurred: " + e.getLocalizedMessage());}
 }
 public static void main(String args[]) {
 // provide instance name as input
 // to execute: java createBuyers <instancename>
 createBuyers doBuyers = new createBuyers(args[0]);

 }
}

7.1.2 Shadow Buyer Exit Program Sample Code

This is a BuyerExit sample, which when registered as a Buyer Registered Exit program would shadow the create of
buyers in one instance to another instance. The shadow target instance name is provided on the register of the exit,

Page 107 of 133

as part of the exit properties file name. This example uses BuyerExit interface and shows how SupplierBuyerAPIs
class can also be used in a exit program.

import com.ibm.connect.tools.tpa.api.*;
import com.ibm.connect.tools.tpa.*;
import java.io.*;
import java.lang.*;
import java.util.*;

public class ShadowBuyerExit implements BuyerExit {

 // this class implements the BuyerExit interface and should only be used as a registered exit
for the buyer screens.
 // this class demonstrates how you could use an exit to shadow registered buyers from a
master instance to a shadow instance.
 // the primary purpose of this class is to illustrate the apis/interfaces available

 String currentInstance = null; // this is the instance that the exit was registered in (from the
init method).
 String shadowInstance = null; // this is the instance that all operations are shadowed to.
 SupplierBuyerAPIs sba = null; // an instance of the supplier buyer apis class. this is
connected to the "shadowInstance" instance (all instances must be on the same system in the
same connect installation)

 public void init(String instanceName, String propertiesFile) throws SupplierBuyerException {
// instanceName is the name of the instance this exit was just registered in.
// copy that to the currentInstance instance variable to keep track of it throughout
// the lifetime of the instance of this class.
currentInstance = instanceName;

// propertiesFile holds the value of the "Properties file name" field on the exit
// registration page. You can use it as a name of an external properties file or

 // in this case, it is the name of the instance property itself, that all of the
// operations are being shadowed to.

 // The value of propertiesFile will be copied to
// the shadowInstance instance variable to keep track of it throughout the lifetime
// of the instance of this class.
shadowInstance = propertiesFile;

// The SupplierBuyerAPIs class will be used to make a connection to the target shadow
instance.

try {
 sba = new SupplierBuyerAPIs(shadowInstance);
} catch(Exception e) {
 // SupplierBuyerAPIs could not be initialized. This is an example of sending a

SupplierBuyerException
 // This error message would show up on the Buyer registration page if target instance
did not exit.

 throw new SupplierBuyerException("Could not connect to shadow instance:
"+shadowInstance+". Make sure this instance exists.");

}

Page 108 of 133

 }

 public boolean isImplemented(int exitType) {
// isImplemented answers whether or not a specific interface is fully implemented. It is

called at exit program load.
// Given the following setup this exit should be called for all operations except select and

populate. If an exit
// writer doesn't want to implement specific operations this method should return false for

those operations.
 // Alternatively, the exit would be called with a noop being performed (return of void or
null).

boolean rv = false;
switch(exitType) {
case BUYER_EXIT_SELECT : rv = false; break;
case BUYER_EXIT_POPULATE : rv = false; break;
case BUYER_EXIT_CREATE : rv = true; break;
case BUYER_EXIT_UPDATE : rv = true; break;
case BUYER_EXIT_DELETE : rv = true; break;
default: rv = false;
}
return rv;

 }

 public String[] selectFromBackendEntities() throws SupplierBuyerException {
// not implemented for this example. notice that isImplemented will return
// false for BUYER_EXIT_SELECT, which corresponds to this method.
return null;

 }

 public BuyerProperties populateBuyerFromBackendEntity(String name) throws
SupplierBuyerException {

// not implemented for this example. notice that isImplemented will return
// false for BUYER_EXIT_POPULATE, which corresponds to this method.

 // note that the populate exit always coincides with a previous exit call to select.
return null;

 }

 public void createBuyer(BuyerProperties properties) throws SupplierBuyerException {
// this method will be called to shadow the creation of a new buyer from current instance

to the shadow instance.
// this operation will fail if the buyer being registered has the same name (which is the

assumed error condition here)
// as one that already exists in the shadow instance.
try {
 sba.createBuyer(properties);
} catch(Exception e) {
 String buyerName = null;
 if(properties!=null) {

buyerName = (String)properties.get(BuyerProperties.BUYER_NAME);
 }
 throw new SupplierBuyerException("Buyer "+buyerName+" already exists in instance

"+shadowInstance);
}

 }

Page 109 of 133

 public void updateBuyer(BuyerProperties propertiesNew, BuyerProperties propertiesOld)
throws SupplierBuyerException {

// updateBuyer may attempt to update a buyer that doesn't exist in the shadow instance.
// this is not a problem.

// (might want to actually check to see if it does exist or not, there may be real errors ?)
String origBuyerName = (String)propertiesOld.get(BuyerProperties.BUYER_NAME);
try {
 sba.updateBuyer(origBuyerName, propertiesNew);
} catch(Exception e) {

 String msg[]=new String[2];
 msg[0]=e.getLocalizedMessage(); // get error from updateBuyer request
 msg[1]="Update of shadowed buyer to instance "+ shadowInstance + " failed."; //
indicate failure on shadow

 throw new SupplierBuyerException(msg); // resulting failure messages will show in
Buyer Supplier GUI

}
 }

 public void deleteBuyer(BuyerProperties properties) throws SupplierBuyerException {
// deleteBuyer will attempt to delete the buyer in the shadow instance. it may not
// exist so all errors are ignored.

 String origBuyerName = (String)properties.get(BuyerProperties.BUYER_NAME);
try {
 sba.deleteBuyer(origBuyerName); // delete buyer by required property of Buyer_Name
} catch(Exception e) {
 // not handling anything.
}

 }

 public String getDescriptor() throws SupplierBuyerException {
// This method is called to generate the description string used on the registered exit

screens.
// it can return a null if no information is needed. but the person writing the exit may want
// to put some information in here that explains what is setup and whether or not the
// exit program is in a functioning state and what the exit program interfaces with.

StringBuffer sb = new StringBuffer();
sb.append("Current Instance = "+currentInstance+"\n");
sb.append("Shadow Instance = "+shadowInstance+"\n");
return sb.toString();

 }

}

7.1.3 Supplier Populate Exit Sample Code

This is a SupplierExit sample, which when registered as a Supplier Registered Exit program would show how the
select and populate from backend application entity would work. This example uses SupplierExit interface.

Page 110 of 133

import java.lang.*;
import java.util.*;
import com.ibm.connect.tools.tpa.*;
import com.ibm.connect.tools.tpa.api.*;

public class SupplierPopulateExit implements SupplierExit {
 //uses Java 1.2 functions

 private Hashtable allSuppliers = null;
 private String[] supplierNames = null;

 public String getDescriptor() {
// just return a short message explaining this exit program.
return "This sample class shows how select and populate work.";

 }

 public void init(String instanceName, String propertiesFile) {
// initialize our internal data store.
allSuppliers = new Hashtable();

// our hashtable will store SupplierProperties objects keyed by the supplier name
 // Note that SUPPLIER_NAME and SUPPLIER_DUNS are required for a Supplier, all others
are
 // optional. Also, you can add any other private properties (name, value) that you want.
 // To view private properties via the GUI, you would customize the Buyer/Supplier GUI
 // screens and add a page with any additional supplier properties.
 // Note property names are case sensitive.

 // Contents is hard coded here but a real example would be to seed this data from some
 // backend application database using JDBC access.

SupplierProperties supProp = new SupplierProperties();
supProp.put(SupplierProperties.SUPPLIER_NAME, "Carl's DX");
supProp.put(SupplierProperties.SUPPLIER_DUNS, "000000001");

 supProp.put(SupplierProperties.SUPPLIER_CONTACT_FIRSTNAME,"Carl");
allSuppliers.put(supProp.get(SupplierProperties.SUPPLIER_NAME), supProp);

supProp = new SupplierProperties();
supProp.put(SupplierProperties.SUPPLIER_NAME, "Joe's Muffler and Brakes Shop");
supProp.put(SupplierProperties.SUPPLIER_DUNS, "000000002");

 supProp.put(SupplierProperties.SUPPLIER_CONTACT_FIRSTNAME,"Joe");
allSuppliers.put(supProp.get(SupplierProperties.SUPPLIER_NAME), supProp);

supProp = new SupplierProperties();
supProp.put(SupplierProperties.SUPPLIER_NAME, "Small Engine Repair");
supProp.put(SupplierProperties.SUPPLIER_DUNS, "000000003");
allSuppliers.put(supProp.get(SupplierProperties.SUPPLIER_NAME), supProp);

Set keys = allSuppliers.keySet();

supplierNames = new String[keys.size()];
supplierNames = (String[])keys.toArray(supplierNames);

 }

 public SupplierProperties populateSupplierFromBackendEntity(String name) {

Page 111 of 133

// name is the value selected in the GUI on the Populate from Other Source page.
// it will be one of the values in the supplierNames String array.
// since the values in supplierNames were gathered from the
SupplierProperties properties = null;

properties = (SupplierProperties)allSuppliers.get(name);

// check that a supplier was found.
// return an empty SupplierProperties object if no supplier was found.
if(properties == null) properties = new SupplierProperties();
return properties;

 }

 public String[] selectFromBackendEntities() {
return supplierNames;

 }

 public boolean isImplemented(int exitType) {
// the only methods implemented are selectFromBackendEntities and

 // populatesupplierFromBackendEntity. return true for those exit points.
boolean implemented = false;

if(exitType == SUPPLIER_EXIT_SELECT || exitType == SUPPLIER_EXIT_POPULATE)
implemented = true;

return implemented;
 }

 public void updateSupplier(SupplierProperties propertiesNew, SupplierProperties
propertiesOld) {

// not implemented for this sample
 }

 public void createSupplier(SupplierProperties properties) {
// not implemented for this sample

 }

 public void deleteSupplier(SupplierProperties properties) {
// not implemented for this sample

 }
}

Page 112 of 133

A.1 Connector Constants

BIG_DECIMAL
int representation of Big Decimal field type.

BOOLEAN
int representation of boolean field type.

BYTE
int representation of byte field type.

BYTE_ARRAY
int representation of byte[] field type.

CHAR
int representation of char field type. Deprecated.

DOUBLE
int representation of double field type.

FLOAT
int representation of float field type.

INT
int representation of int field type.

LONG
int representation of long field type.

PACKED
int representation of packed field type. Deprecated.

SHORT
int representation of short field type.

STRING
int representation of string field type.

STRUCT
int representation of struct field type.

ZONED
int representation of zoned field type. Deprecated.

Connect Customization Guide

Page 113 of 133

Connect Customization Guide

Page 114 of 133

A.2 Header Constants

AGENT_AUTH_TYPE
The agent's authentication type.

AGENT_DOMAIN
The agent domain.

AGENT_ORG_DOMAIN
The agent's organization domain.

AGENT_ORG_ID
The agent's organization ID.

AGENT_ORG_NAME
The agent's organization.

AGENT_ORG_TOKEN
The agent's organization token.

AGENT_USERID
The agent's userid.

APP_ERROR_INFO_CODE
Error information code for application.

APP_ERROR_INFO_STRING
Error information string for application.

APP_TOKEN
The application token which can be used to keep track of information related to an outbound message.

AUDIT_ASSOCIATED_UNIQUE_ID
Unique ID of a request associated with this request NOTE: This constant is added as a value for field
PROPERTIES_MESSAGE_NAME in table QABET_OMH_MESSAGE_PROPERTIES, so it is
limited to a length of 40 bytes

AUDIT_BUYER
Deprecated. Use AUDIT_PARTNER

AUDIT_ERROR_OCCURRED
When set to a non-null value, will cause an indication to be set in the AuditHeader to indicate that an
error has occurred.

Connect Customization Guide

Page 115 of 133

AUDIT_FLOWMANAGER_CALLS
The value specified for this field should be numeric -- it will be set in the AuditHeader to indicate how
many times the flow manager has been called for this unique ID

AUDIT_MARKETPLACE
DEPRECATED -- The audit value for the marketplace.

AUDIT_PARTNER
The audit value for partner

AUDIT_PROTOCOL
The audit value for the protocol.

AUDIT_PROVIDER
The audit value for the provider.

AUDIT_RECEIVED_TIMESTAMP
The timestamp used to record when the value was received.

AUDIT_REQUEST
The audit value for the request.

AUDIT_REQUEST_TYPE
The audit value for the request type.

AUDIT_SENT_TIMESTAMP
The timestamp used to record when the value was sent.

AUDIT_SUPPLIER
Deprecated. Use AUDIT_PROVIDER

AUDIT_UNIQUE_ID
A unique ID used for auditing.

BUFFER_FORMAT_IN
&&&& NEED DESCRIPTION &&&&&

BUFFER_FORMAT_OUT
&&&& NEED DESCRIPTION &&&&&

BUYER_DEPT_KEY
The buyer's dept.

BUYER_DEPT_TYPE
The buyer's dept.

Connect Customization Guide

Page 116 of 133

BUYER_ORG_DOMAIN
Deprecated. Use PARTNER_ORG_DOMAIN

BUYER_ORG_ID
Deprecated. Use PARTNER_ORG_ID

BUYER_ORG_NAME
Deprecated. Use PARTNER_ORG_NAME

BUYER_ORG_TOKEN
Deprecated. Now stored in partner context

BUYER_SESSION_ID
Deprecated.

BUYER_TRANSPORT_MSG_ID
Deprecated.

CONTENT_REQUEST
The content request.

CONTENT_REQUEST_TYPE
Deprecated. Now part of CONTENT_REQUEST

CURRENT_STEP_NAME
Current step name.

DEPLOY_DESTINATION
&&&& NEED DESCRIPTION &&&&&

DEPLOY_DIRECTORY
&&&& NEED DESCRIPTION &&&&&

DEPLOY_THEME
The theme name.

DEPLOY_TYPE
&&&& NEED DESCRIPTION &&&&&

FAILED_STEP_NAME
Step name which failed.

FLOW_INDEX_AUDIT_POINT_INDEX
The following should be added by the flow manager to all of its audit point values when creating audit
records.

Connect Customization Guide

Page 117 of 133

FLOW_NAME
The name of the flow currently running

FLOW_NUMBER
Flow number value

FM_ERROR_INFO_CODE
Flow engine error information code.

FM_ERROR_INFO_STRING
Flow engine error information string.

GATEWAY_INSTANCE
The gateway instance name.

GATEWAY_TYPE
The gateway type.

GATEWAY_VERSION
The gateway version.

HEADER_BASE
IN_ERROR_PATH
Flow engine error path key.

INBOUND_TRANSPORT_CONTENT_ENCODING
The inbound transport content encoding value.

INBOUND_TRANSPORT_CONTENT_TYPE
The inbound transport content type.

INBOUND_TRANSPORT_SENDER_INFO
The inbound transport sender information.

INBOUND_TRANSPORT_URL
The inbound transport URL.

INBOUND_TRANSPORT_URL_NAME
The inbound transport URL name.

MARKETPLACE
Deprecated. Use PROTOCOL_GROUP

MAX_NUMBER_OF_TRACE_FILES
Maximum number of trace files available for use by this gateway instance

Connect Customization Guide

Page 118 of 133

MAX_TRACE_FILE_SIZE
Maximum trace file size for the trace files associated with this instance.

MESSAGE_DELIVERY
The message delivery.

MESSAGE_HANDLER_ID
The message handler ID.

MESSAGE_ID
The unique valued used for item potentcy.

MSG_QUEUE_TIMEOUT
&&&& NEED DESCRIPTION &&&&&

MSG_RETENTION_PERIOD
Message retention period (in days)

OMH_RETRIES
Number of OMH retries static

OMH_RETRY_INTERVAL
OMH retry interval (in seconds)

OUTBOUND_TRANSPORT_CONTENT_ENCODING
The outnbound transport content encoding value.

OUTBOUND_TRANSPORT_CONTENT_TYPE
The outbound transport content type.

OUTBOUND_TRANSPORT_SENDER_INFO
The outbound transport sender information.

OUTBOUND_TRANSPORT_URL
The outbound transport URL.

OUTBOUND_TRANSPORT_URL_NAME
The outbound transport URL name.

PARENT_CONTENT_REQUEST
Request being processed in parent flow

PARENT_PROTOCOL
Protocol of parent flow

PARENT_REQUEST_TOKEN
Request token of request in parent flow

Connect Customization Guide

Page 119 of 133

PARTNER_ORG_DOMAIN
The partner organization domain.

PARTNER_ORG_ID
The partner organization ID.

PARTNER_ORG_NAME
The partner organization.

PARTNER_SESSION_ID
The partner's session ID.

PARTNER_TRANSPORT_MSG_ID
The partner's transport message ID.

PASSWORD
Password

POSTBACK_URL
The postback URL.

PRODDATA_PATH
&&&& NEED DESCRIPTION &&&&&

PROTOCOL
The protocol.

PROTOCOL_GROUP
The protocol group.

PROTOCOL_SUBTYPE
Deprecated. Now part of PROTOCOL

PROTOCOL_TYPE
Deprecated. Use PROTOCOL

PROTOCOL_VERSION
Deprecated. Now part of PROTOCOL

PROVIDER_ORG_DOMAIN
The provider organization domain.

PROVIDER_ORG_ID
The provider organization ID.

PROVIDER_ORG_NAME
The provider organization.

Connect Customization Guide

Page 120 of 133

REQUEST_METHOD
&&&& NEED DESCRIPTION &&&&&

REQUEST_TOKEN
The request token which represents several values including protocol, subtype, version, marketplace,
etc.

REQUISITIONER_ID
The requisitioner's ID.

REQUISITIONER_NAME
The requisitioner.

RESPONSE_SENT
Flow engine response sent key.

RESTART
Flow engine restart key.

SERVLET_NAME
&&&& NEED DESCRIPTION &&&&&

STEP_APP_ERROR_INFO_CODE
Error information code for application step.

STEP_APP_ERROR_INFO_STRING
Error information string for application step.

SUPPLIER_ORG_DOMAIN
Deprecated. Use PROVIDER_ORG_DOMAIN

SUPPLIER_ORG_ID
Deprecated. Use PROVIDER_ORG_ID

SUPPLIER_ORG_NAME
Deprecated. Use PROVIDER_ORG_NAME

SUPPLIER_ORG_TOKEN
Deprecated. Now stored in provider context

TRACE_ENABLED
Indicates whether logging to the trace files has been enabled for this instance.

USERDATA_PATH
&&&& NEED DESCRIPTION &&&&&

Connect Customization Guide

Page 121 of 133

VALIDATE_INPUT
Indicates whether validation of inbound XML documents should be performed.

VALIDATE_OUTPUT
Indicates whether validation of outbound XML documents should be performed

Connect Customization Guide

Page 122 of 133

A.3 Buyer/Supplier Constants

A.3.1.1 BuyerExit

BUYER_EXIT_CREATE

Constant used to test if Create Buyer exit is fully implemented

BUYER_EXIT_DELETE

Constant used to test if Delete Buyer exit is fully implemented

BUYER_EXIT_POPULATE

Constant used to test if Populate from Backend Application Entity is fully implementation

BUYER_EXIT_SELECT

Constant used to test if Select from Backend Application Entity is fully implemented

BUYER_EXIT_UPDATE

Constant used to test if Update Buyer exit is fully implemented

A.3.1.2 SupplierExit

SUPPLIER_EXIT_CREATE

Constant used to test if Create Supplier exit is fully implemented

SUPPLIER_EXIT_DELETE

Constant used to test if Delete Supplier exit is fully implemented

SUPPLIER_EXIT_POPULATE

Constant used to test if Populate from Backend Application Entity is fully implementation

SUPPLIER_EXIT_SELECT

Constant used to test if Select from Backend Application Entity is fully implemented

SUPPLIER_EXIT_UPDATE

Connect Customization Guide

Page 123 of 133

Constant used to test if Update Supplier exit is fully implemented

A.3.1.3 BuyerProperties

BUYER_ADDRESS1

BUYER_ADDRESS2

BUYER_ADDRESS3

BUYER_BILLTO_ADDRESS1

BUYER_BILLTO_ADDRESS2

BUYER_BILLTO_ADDRESS3

BUYER_BILLTO_CITY

BUYER_BILLTO_CODE

BUYER_BILLTO_COUNTRY

BUYER_BILLTO_COUNTRY_ISO

BUYER_BILLTO_NAME

BUYER_BILLTO_POSTAL

BUYER_BILLTO_STATE

BUYER_CITY

BUYER_CONTACT_EMAIL1

BUYER_CONTACT_EMAIL2

BUYER_CONTACT_FAX

BUYER_CONTACT_FIRSTNAME

BUYER_CONTACT_LASTNAME

BUYER_CONTACT_MIDDLENAME

BUYER_CONTACT_PHONE1

Connect Customization Guide

Page 124 of 133

BUYER_CONTACT_PHONE2

BUYER_CONTACT_TITLE

BUYER_COSTCENTER_ADDRESS1

BUYER_COSTCENTER_ADDRESS2

BUYER_COSTCENTER_ADDRESS3

BUYER_COSTCENTER_CITY

BUYER_COSTCENTER_CODE

BUYER_COSTCENTER_COUNTRY

BUYER_COSTCENTER_COUNTRY_ISO

BUYER_COSTCENTER_NAME

BUYER_COSTCENTER_POSTAL

BUYER_COSTCENTER_STATE

BUYER_COUNTRY

BUYER_COUNTRY_ISO

BUYER_DESCRIPTION

BUYER_DUNS

BUYER_EMAIL

BUYER_FAX

BUYER_LAST_UPDATE

BUYER_NAME

BUYER_PHONE

BUYER_POSTAL

BUYER_REFNO

BUYER_SHIPTO_ADDRESS1

BUYER_SHIPTO_ADDRESS2

Connect Customization Guide

Page 125 of 133

BUYER_SHIPTO_ADDRESS3

BUYER_SHIPTO_CITY

BUYER_SHIPTO_CODE

BUYER_SHIPTO_COUNTRY

BUYER_SHIPTO_COUNTRY_ISO

BUYER_SHIPTO_NAME

BUYER_SHIPTO_POSTAL

BUYER_SHIPTO_STATE

BUYER_STATE

PASSWORD_SET_TOKEN

Password properties can be input on create or update requests and cached away by custom exit
routines but, to maintain security, they cannot be returned directly as properties of the Buyer.

WCS_SHOPPER_NAME

A.3.1.4 SupplierProperties

PASSWORD_SET_TOKEN

Password properties can be input on create or update requests and cached away by custom exit
routines but, to maintain security, they cannot be returned directly as properties of the Supplier.

SUPPLIER_ADDRESS1

SUPPLIER_ADDRESS2

SUPPLIER_ADDRESS3

SUPPLIER_CITY

SUPPLIER_CONTACT_EMAIL1

SUPPLIER_CONTACT_EMAIL2

SUPPLIER_CONTACT_FAX

SUPPLIER_CONTACT_FAX_AREA

Connect Customization Guide

Page 126 of 133

SUPPLIER_CONTACT_FAX_CTRY

SUPPLIER_CONTACT_FAX_MAIN

SUPPLIER_CONTACT_FIRSTNAME

SUPPLIER_CONTACT_LASTNAME

SUPPLIER_CONTACT_MIDDLENAME

SUPPLIER_CONTACT_PHONE1

SUPPLIER_CONTACT_PHONE1_AREA

SUPPLIER_CONTACT_PHONE1_CTRY

SUPPLIER_CONTACT_PHONE1_MAIN

SUPPLIER_CONTACT_PHONE2

SUPPLIER_CONTACT_PHONE2_AREA

SUPPLIER_CONTACT_PHONE2_CTRY

SUPPLIER_CONTACT_PHONE2_MAIN

SUPPLIER_CONTACT_TITLE

SUPPLIER_COUNTRY

SUPPLIER_COUNTRY_ISO

SUPPLIER_CURRENCY

SUPPLIER_DESCRIPTION

SUPPLIER_DUNS

SUPPLIER_EMAIL

SUPPLIER_FAX

SUPPLIER_FAX_AREA

SUPPLIER_FAX_CTRY

SUPPLIER_FAX_MAIN

SUPPLIER_LAST_UPDATE

Connect Customization Guide

Page 127 of 133

SUPPLIER_NAME

SUPPLIER_PHONE

SUPPLIER_PHONE_AREA

SUPPLIER_PHONE_CTRY

SUPPLIER_PHONE_MAIN

SUPPLIER_POSTAL

SUPPLIER_REFNO

SUPPLIER_STATE

SUPPLIER_UNSPSC

SUPPLIER_URL

WCS_MERCHANT_NAME

WCS_MERCHANT_REFNO

Connect Customization Guide

Page 128 of 133

A.4 Custom Protocol Sample
The Custom Protocol Sample is available in the Connect Web page at the following URL.

http://www-1.ibm.com/servers/eserver/iseries/btob/connect/devtools.htm

Connect Customization Guide

Page 129 of 133

A.5 Connect for iSeries Jar files
All jar files that contain the classes for the Connect for iSeries APIs are available in the directory where the
product is installed. The path where to find the jar file is:

/QIBM/Proddata/Connect200

The jar file names in the table below are relative to the above path.

com/ibm/connect/config/B2BException.class
com/ibm/connect/config/B2BMarketplaceObject.class
com/ibm/connect/config/B2BMarketplacesObject.class
com/ibm/connect/config/B2BProtocolObject.class
com/ibm/connect/config/B2BProtocolsObject.class
com/ibm/connect/config/B2BRequestObject.class
com/ibm/connect/config/B2BRequestsObject.class
com/ibm/connect/config/B2BServletObject.class
com/ibm/connect/config/B2BServletParameterObject.clas
s
com/ibm/connect/config/B2BServletsObject.class

Classes/config.jar

com/ibm/connect/logging/interfaces/UserLogManager.cla
ss

Classes/loggingapi.jar

com/ibm/connect/flowmanager/interfaces/B2BExit.class
com/ibm/connect/flowmanager/interfaces/BindException.
class
com/ibm/connect/flowmanager/interfaces/ConnectorConst
ants.class
com/ibm/connect/flowmanager/interfaces/ConnectorParm.
class
com/ibm/connect/flowmanager/interfaces/FMOperatorInte
rface.class
com/ibm/connect/flowmanager/interfaces/GetFieldExcept
ion.class
com/ibm/connect/flowmanager/interfaces/JavaConnectorI
nterface.class
com/ibm/connect/flowmanager/interfaces/JavaConnectorR
esult.class
com/ibm/connect/flowmanager/interfaces/JavaProgramCon
nectorInterface.class
com/ibm/connect/flowmanager/interfaces/MapCursor.clas
s
com/ibm/connect/flowmanager/interfaces/OperandParm.cl
ass
com/ibm/connect/flowmanager/interfaces/OperatorExcept
ion.class
com/ibm/connect/flowmanager/interfaces/ProgramConnect
orParm.class
com/ibm/connect/flowmanager/interfaces/SetFieldExcept
ion.class
com/ibm/connect/flowmanager/metadata/Field.class

Classes/flowmanagerapi.jar
ClassesJar file names

Connect Customization Guide

Page 130 of 133

com/ibm/connect/tools/tpa/BuyerProperties.class
com/ibm/connect/tools/tpa/SupplierProperties.class
com/ibm/connect/tools/tpa/api/BuyerExit.class
com/ibm/connect/tools/tpa/api/SupplierBuyerAPIs.class
com/ibm/connect/tools/tpa/api/SupplierBuyerException.
class
com/ibm/connect/tools/tpa/api/SupplierExit.class

Tools/TPA/tpaapi.jar

com/ibm/connect/gateway/interfaces/ConnectGatewayExce
ption.class
com/ibm/connect/gateway/interfaces/GatewayConstants.c
lass
com/ibm/connect/gateway/interfaces/InvalidFieldExcept
ion.class
com/ibm/connect/gateway/interfaces/MailboxCleanup.cla
ss
com/ibm/connect/gateway/interfaces/OutboundMessageExc
eption.class
com/ibm/connect/gateway/interfaces/OutboundRequest.cl
ass

Gateway/gatewayAPI.jar

com/ibm/connect/config/IB2BPublicInstanceRegistry.cla
ss
com/ibm/connect/config/B2BPublicInstanceRegistry.clas
s

Connect Customization Guide

Page 131 of 133

Connect Customization Guide

Page 132 of 133

"END OF DOCUMENT"

Connect Customization Guide

Page 133 of 133

