I
I
i
U

b

ceReport

m
e
W

WebSphere Application Server and
Lotus Domino Scenario Overview

Cindy Murch
Daniel Boyum
Sue Kelling
Marie Wilson

November 2002

Table of Contents

WebSphere Application Server and Lotus Domino Scenario Overview

o LotusDomino environment overview

o Lotus Domino environment workflow

o Lotus Domino environment key findings

o Example: Source code for Lotus Domino agents

» WebSphere Application Server environment overview

o WebSphere Application Server environment application flow

o WebSphere Application Server environment key findings

o Example: Customer bean

« WebSphere Application Server and L otus Domino inter oper ability overview

o WebSphere Application Server and L otus Domino interoperability single sign-on

o WebSphere Application Server and L otus Domino interoperability key findings

ExperienceReport

WebSphere(R) Application Server and Lotus(R)
Domino(TM) Scenario Overview

This report documents the i Series(TM) System Test team's experience of bringing WebSphere Application Server and Lotus Domino together as

part of asingle application. In this application, we use Lotus Domino to establish aninitial Web presence, create a database, and utilize directory
services. WebSphere Application Server is used to create dynamic Web pages, set up single sign on, and ensure security. This was done through
several phases as part of our flights scenario.

The flights scenario simulates an airline company which isworking hard to increase their market share. The flights company determined that in
order to remain competitive, they needed to have a Web site in which customers could view and book flights. Anxious to get a Web presence, they
decided to make this transition in several phases which included:

1. Getting aninitial presence by allowing the customers to view the available flights

2. Increasing customer services by allowing customers to book flights on-line

3. Branching out to create a business to business relationship with atravel agency
Each of these phases built on the previous phase and incorporated the latest technologies available. Below are more details on the functions and
technologies used in each of the phases.

Phase one consisted of creating a web presence via static Lotus Domino served pages. During this phase a L otus Domino Server was used for a
database, directory services, and the Lotus Domino HTTP server.
Phase one allowed the customers and employees to do the following functions:
« Customers
o View available flights from the Web site
o Cadll aflights employee to book aflight
« Employees
o Add and delete flights
0 Add, update, and delete customer information
o Book flights
0 Retrieve customer flight information
o Bill customers and update billing information
Figure 1 illustrates phase one.

Figure 1 Flights scenario phase one

Employees

e-mail

Directory

Services

Hame &
address book

T Contains:

Domino DB -Customer information
-Employee information

Flights info
Billing info
— Orders

Customer flight data
=T ntuale

!

. St
Custom Ersg_/‘,.—.WEm ployees

Domino Server

Phase two consisted of using the existing Lotus Domino server, database, and directory services. In addition, WebSphere Application Server was
used to provide dynamic Web sites which allowed the customers to book flights. Servlets, enterprise beans, and JSPs were used to upgrade the
scenario. WebSphere Application Server single sign-on (SSO) and security were used to complete the application.

Astheresult of the phase two changes, customers were able to do the functions listed above as well as these additional functions:
« Book available flights from the Web site
« Retrieve customer flight information
« Update customer information
« Pay hillson-line
Figure 2 illustrates phase two.

Figure 2 Flights scenario phase two

WAS} Enterprise
Security beans

WebSphere Application Server

T T
Y
@ Directory
o Services
- |
e-mal Name &
address
hook
= C;Htaﬁ;s:
- Customer information
i -Empleyess information
df{.-'_'_'_'_'_ o B __—__——\'\
Dominoe DB
Flights info
Custome Billing infao
Orders
[-=-1] JLustomer flight data_.
Domino Server

Phase three, which is yet to be implemented, will consist of creating a business to business relationship with atravel agency. This relationship will
allow customers to book flights through the travel agency.

For more information on the L otus Domino environment, the WebSphere Application Server environment, or the interoperability between the two,
see the following sections.

Lotus Domino environment

This section describes the overall Lotus Domino environment. It includes an overview of the environment, the workflow
throughout the environment, and our key findings from creating and using this environment.

WebSphere Application Server environment

This section describes the overall WebSphere Application Server environment. It includes an overview of the environment, the
application flow through the environment, and our key findings from creating and using this environment.

WebSphere Application Server and Lotus Domino inter operability

This section describes the inter operability of the WebSphere Application Server and the L otus Domino environment. It includes
an overview, details about setting up the single sign-on, and our key findings from creating and using WebSphere Application
Server and Lotus Domino together.

Lotus(R) DominoM) environment overview

The Lotus Domino environment was set up during phase one of the iSeries(TM) System Test flights scenario work.
During phase one, the goal was to quickly establish a Web presence so the flights company could expand their
business and provide a solution that was reliable, available, scalable, and could integrate easily with other
applications.

These requirements led the flights company to choose L otus Domino on eServer i Series. With Lotus Domino, the

flights company was able to quickly obtain aWeb presence for their customers and employees by providing static

Web pages. In addition, Lotus Domino allowed the flights company to take advantage of workflow processing and
provided inter operability with many other platforms.

The flights company's L otus Domino application contains customer, flight, itinerary, and billing information. The
application uses various forms and views, which create and maintain the information. The flight information consists
of the flights offered including the arrival dates, departure dates, times, cities, and the number of first class and coach
seats available per flight. To securely manage both the customer and employee data, a L otus Domino Lightweight
Directory Access Protocol (LDAP) directory is used.

The flights company provides two Web interfaces using L otus Domino framesets. There is one interface for the
customers and one for the employees.

The flights customers can perform the following tasks:
« View flights
« Cdl aflights employeeto book aflight
The flights employees can perform the following tasks:
« Add, display, and delete flights
« Add and delete city codes
« Add, update, display, and delete customer information
« Book flights
« Retrieve customer flight information
« Display and update billing information

During phase two, WebSphere(R) Application Server was used to allow more customer functions including the ability
to book flights. See the WebSphere Application Server Overview for more information.

Lotus(R) DominoM) environment workflow

Application Design Points

When designing the Lotus Domino application, the flights company had to choose between using framesets or
navigators for their Web interface. Since the flights company wanted to provide a consistent structure throughout the
website that could display different forms and views, and since frames can contain forms, folders, pages, documents
and views, the frameset became the best choice.

Another decision the flights company faced was finding and implementing the best way to secure their data. They
wanted a solution that was robust enough to provide the security they needed, integrated easily with their existing
application, and had the flexibility to integrate with other software packages. These requirements led the flights
company to choose L otus Domino Lightweight Directory Access Protocol (LDAP).

Since the flights company already had several employees with skillsin Java(TM) development, they were able to use
those skills in writing the background agents for their application in Java. This proved valuable in terms of making the
best use of the skills of their employees.

Application Setup

For al of our Lotus Domino implementation work, we used Lotus Domino Designer as the devel opment tool. Lotus
Domino designer is a Lotus Notes(R) client application used to quickly create and modify a L otus Domino application.
It provides the application building blocks for everything needed in a database, including forms, views, and agents.
We used forms to create new documents in a database and display current documents. Views provide aflexible and
intuitive way for documents to be organized. Users can easily see lists of documents, sort the listsin different ways,
open documents for reading or editing, and create new documents.

Lotus Domino forms and views

The flights company employees created the forms and views shown in Table 1 for their Lotus Domino application.

Table 1 Flights Lotus Domino Forms and Views

|Lotus Dominoforms |Lotus Domino views

|LiSt Of Available Flights |LiSt Of Available Flights

|Scheduled Flights |Processed Flights, Scheduled Flights
|Airplane Seat Information [Airplane Seat Information

|Ti cket Information |Active Tickets, Inactive Tickets, Processed Tickets
|Crediit Information |Crediit Information

|City Codes |City Codes

|Bill Information |Bill Information

|Customer Number |viewCustomerFldNumber

|Flight Number |ViewFlightFldNumber

|Invoice Number |viewlnvoiceFldNumber

|Seat Number |viewSeatFldNumber

| Statement Number |viewStatementFldNumber

The List Of Available Flights form contains the flight information for the available flights that are offered by the
flight company. It is used to create anew flight or display an existing flight. All of the flight specific datais contained
in thisform. The cities serviced are in the City Codes form and the airplane type and seats available are in the
Airplane Seat Information form.

The List Of Available Flights view displays the various flights and is categorized by the Available Flight Number.
Table 2 shows thefieldsin the List Of Available Flights form.

Table2 List of Available Flights Form

IName |Field Name IType |Description

The number of the flight, which may be used
Flight Number AvailableFlightNumber (Text on multiple days of the week but not on the

same day
|Departure Time |DepartureTime |Date/time | The time the flight leaves the departure city
|Arrival Time |Arrival Time |Date/time |The time the flight arrivesin the arrival city
Duration Duration Number ;-r?iei/ Zlmount of hours between departure and
|Airline Name |AirlineName | Text |The name of the airline providing the flight
Departure City Code [DisplayOnlyDeparture g![;'l gg dlg hased on The three letter code of the departure city
Arrival City Code |DisplayOnlyArrival g{;‘l ggcig based on The three |etter code of the arrival city
|AirplaneType |ListAirplaneType Dialog list | The type of plane

Radio button -> Specifies whether breakfast, lunch, dinner,

Food Food (breakfast, lunch, snack, or no food (none) will be provided on

dinner, snack, none) |[the flight
Checkbox -> Sunday,

Monday, Tuesday,

Scheduled Days ScheduledDays Wednesday, The days the flight will be scheduled to fly
Thursday, Friday,
Saturday

|First Class Price |FirstClassPrice |Number |The price of afirst class ticket

|Coach Price |CoachPrice |Number | The price of a coach ticket

|Departure City Code |[DepartureCityCode ~ |Text |Hidden

|Arrival City Code |ArrivalCityCode | Text |Hidden

Display Status DisplayStatus | Text |Hidden

The Scheduled Flights form contains the flight information for a particular flight on a particular date. It is used to
book and track seats on a specific flight on a specific date. All of the scheduled flight specific datais contained in this
form.

The Scheduled Flights view displays the various scheduled flights and is categorized by the Flight By Date. The
Processed Flights view displays all flights that have arrived or have no avail able seats to book.

Table 3 shows the fields in the Scheduled Flights form.
Table 3 Scheduled Flights Form

IName |Field Name IType |Description
The ID to be used to track a
specific flight on a specific

Flight By Date ScheduledFlightByDate |Text date, created by joining the
flight number with the date of
the flight

|Flight Number |ScheduledFlightNumber | Text | The flight number

|AirplaneType |ScheduledAirplaneType |Dialog list |The type of plane

The number of first class seats

First Class Seats Available |FirstClassSeatsAvailable [Number that are still available on the
plane
Coach Seats Available CoachSeatsAvailable Number The number of coach seats that

are still available on the plane

Radio button -> (Cancelled,

Status Status arrived, departed, standby, | The status of the flight
new)
|DepartureDate |ScheduledDepartureDate | Date |The date the flight is departing
The date the flight is arriving,
ArrivalDate ScheduledArrivalDate |Date which may differ if it is an

overnight flight or crossing the
international date line

The Airplane Seat Information form contains the airplane specific information. It is used to list the type of plane and
the total number of seats available.

The Airplane Seat Information view displays the various airplanes and is categorized by the Airplane Type.
Table 4 shows the fieldsin the Airplane Seat Information form.

Table 4 Airplane Seat I nformation Form

IName |Field Name |Type |Description

|AirplaneType |SeatAirplaneType|Text |Thetype of plane

|First Class Seats |FirstClassSeats |Number |The number of first class seats that exist on the plane
|Coach Seats |CoachSeats |Number |The number of coach seats that exist on the plane
|All Airplane Info |AllAirplanelnfo |[Text [Hidden

The Ticket Information form contains the information for one ticket. There will be one or more ticketsincluded in an
invoice.

The Active Tickets view displays the tickets that have not yet been processed. Once these orders are processed, they
are removed from this view and displayed in either the Processed Tickets or the Inactive Tickets view, depending on
whether the ticket was successfully processed.

The Inactive Tickets view displays the tickets that could not be completed. An example of tickets that could not be
processed are for orders that were placed when no more tickets were available for the flight or for aflight that was
cancelled.

The Processed Tickets view displays all the completed tickets.

Table 5 shows the fields in the Ticket Information form.

Table5 Ticket Information Form

IName |Field Name IType |Description

|Invoice Number |InvoiceNumber | Text |Number used to tie tickets together

|Flight Number | TicketFlightNumber | Text | Tiesto the list of available flights document

| Ticket Class | TicketClass IDialog List |Which classtheticket is: First Class or Coach
|Seat Number | SeatNumber | Text | The seat number on this flight

| Ticket Price | TicketPrice |Number |The price of the ticket for that seat

|Paid Status |PaidStatus |Radio button | The status of the ticket

|Customer Number | TicketCustomerNumber | Text | The number of the customer paying for the ticket

. . . . The status of the ticket: Active, Inactive, or
Ticket Status TicketStatus Dialog List Proc |
The name of the customer sitting in the assigned
Passenger First Name |PassengerFirstName Text seat. This may differ from the person purchasing
the ticket and therefore the customer number

|Passenger Middie Name |PassengerMiddieName |Text

| The middle name of the passenger

|Passenger Last Name |PassengerLastName |Text |The last name of the passenger

|Passenger Street Address |PassengerStreet | Text | The address for the passenger

|Passenger City |PassengerCity | Text | The passenger's city

|Passenger State |PassengerState | Text | The passenger's state

|Passenger Zip |PassengerZip | Text |The zip code for the passenger's address
|Passenger Country |PassengerCountry | Text | The passenger's country

|Passenger Phone |PassengerPhone | Text | The phone number for the passenger

Flight By Date FlightByDate ’Text The flight by date number for the flight of this

ticket

The Credit Information form contains the credit information for the customer as identified by the customer number.

The Credit Information view displays the credit card information used by the customer to pay for their flight and is
categorized by the Customer Number.

Table 6 shows thefields in the Credit Information form.

Table 6 Credit Information Form

|Name |Field Name IType |Description
Dialog list (Mastercard, Visa, .
Card Type CardType Diner's Club) Thetype of credit card
|Credit Card Number |CreditCardN umber |Text |The number of the card
|Expiration Date [ExpirationDate |Date/ time |The date the card expires
) The customer number associated
Customer Number |CreditCustomerNumber | Text with that card
. . Number used to tie tickets
Invoice Number InvoiceNumber Text together

The City Codes form contains the list of cities supported and their corresponding three |etter city codes.

The City Codes view displays the various city codes and is categorized by the code.

Table 7 shows the fields in the City Codes form.

Table 7 City Codes Form

IName |Field Name ~ |Type |Description

|City |City IText | Thecity

|State |State |Text |The state or providence

|Country |Country |Text |The country

|Code |Code |Text |Thethree letter code to represent the city specified
|All City Code Info [AllCityCodelnfo|Text |Hidden

|Save Options |SaveOptions [Number |Hidden - set to 0 so default doc will not save

The Bill Information form contains information for billing customers.

The Bill Information view displays the ticket information used to bill a customer for their flight and is categorized by
the Customer Number.

Table 8 shows the fields in the Credit |nformation form.

Table 8 Credit Information Form

|Name |Field Name [Type |Description

|Bill Price |BillAmount [Number | The amount the customer owes
|Customer Number |BillCustomer |Text |The customer number

| Ticket Invoice Info [Bill Ticketinfo |[Text | Theticket to which the bill is associated

The viewCustomerFldNumber, viewFlightFldNumber, viewInvoiceFldNumber, viewSeatFldNumber, and
viewStatementFldNumber are hidden views that display the customer number, flight number, invoice number, seat
number, and statement number documents. When a new document is created, the PostOpen event uses the current
value in the document to create a unique number. Once the number has been created, the PostOpen event increments
the value and stores it in the document.

In addition to the forms and views created within their application database, the flights company a so added the
following form and view to the Names and Address book on their Lotus Domino server, shown in Table 9.

Table 9 Lotus Domino Forms and Views

|Lotus Domino forms |L0tus Domino views
|Flight Person |Flights Customers

The Flight Person form contains the hame, address information, and customer number for each of the flights
customers. The flights company based this form off of the existing Person form from the Address Book design and
modified it to better fit their needs.

The Flight Customers view displays the customer information and is categorized by the Customer Number.

Table 10 shows the fields in the Flight Person form.

Table 10 Flight Person Form

|Name |Field Name |Type |Description

|First name |FirstName |Text |The customer'sfirst name
|Middleinitial |Middlelnitial |Text |The customer's middleinitial
|Last name |LastName |Text |The customer's last name

|Internet Address |InternetAddress|Text | The customer'sinternet address
|Internet Password |HTTPPassword |Text | The customer's password for accessing the flights company's website
|Street Address |StreetAddress |Text |The customer's home street address

|City |City |Text |The customer'scity

|State/Province |State |Text | The customer's state/province
|Zip/Postal Code |Zip |Text |The customer's zip/postal code
|Country |Country |Text |The customer's country

|Home Phone |PhoneNumber |Text | The customer's home phone number

|Customer Number |PersonaIID |Number |The customer number

Lotus Domino agents

L otus Domino agents are design elements added to a L otus Domino database to automate tasks. Agents can be
initiated by a user action or run on a scheduled basis. Agents are commonly used to update or create documents, or to
access data from the L otus Domino database or other sources. Lotus Domino agents can be written in Java,
LotusScript, or Formula Language.

The creation of agents requires Lotus Domino Designer. When you create an agent, you specify when you want it to
run, what language the code will be written in, and what documents it runs under. After you have written the code and
compiled it, it is automatically scheduled to run at the time you previously specified. While you are writing code, you
can make use of the built-in debugging capabilities of Lotus Domino Designer to help you debug your code.

The following provides detailed information about the L otus Domino agents written for the Lotus Domino flight
application:

Check Unique City Code

This LotusScript agent receives a city code as input from a Web browser using the City Codes form. This
agent uses that information along with information from the existing City Code documents (created from the
City Codes form) to search through all the City Code documents. If a match isfound, an error messageis
displayed and the user is notified and allowed to create a different City Code document. If no match isfound,
the City Code document will be created.

Create Random Customer Number, Flight Number, and Invoice Number - Web Only
These L otusScript agents generate a unique customer number, flight number, or invoice number for new
customers, flights, or invoices added through the Lotus Domino Web interface.

Delete Button City Codes and List of Available Flights
This Java agent runs based on the user clicking on the Delete action button in the City Code or Flight views. It
marks the selected City Code or Flight document as del eted.

Delete Selected City Codes

This Java agent runs on a scheduled basis. It will delete any city codes that have a CityCodeStatus of Delete
from the City Codes documents. It will also delete the documents from List Of Available Flights, Scheduled
Flights and Tickets that match the city code.

Delete Selected Flights

This Java agent runs on a scheduled basis. It will delete any flights that have a DisplayStatus of Delete from
the List Of Available Flights documents. It will aso delete the documents from Scheduled Flights and Tickets
that match the flight number.

Delete Ticket - Update Available Seats
This Java agent runs based on the user clicking an action button. It will increment the number of available
seats based on the FlightByDate and Ticket Class selected from the Scheduled Flight document.

Generate Bill
This Java agent runs based on the user clicking an action button. It will generate the billing information for
the customer based on the customer number selected.

Generate Price and Seat Number

This Java agent runs based on the user clicking an action button. It will generate the price information and
calculate the next available seat for a particular flight and seat class based on the FlightByDate and Ticket
Class selected.

Populate Scheduled Flights

This Java agent runs on a scheduled basis. It creates Scheduled Flights documents with information gathered
from the List of Available Flights and Airplane Seat Information documents where the display statusis
"New". Each flight will be populated for one month from today's date.

Scheduled Flight Status

This Java agent runs on a scheduled basis. It will change the status of flights from new to departed and from
departed to arrived based on the Date and Time of the flight gathered from the List of Available Flights and
Scheduled Flights documents.

Update Scheduled Flights
This Java agent runs on a scheduled basis. It checks the status of flights and if it finds any flights that have

departed from the previous run of the agent, it updates the tickets associated with the flight by moving them to
the Processed Tickets view.

o Update Ticket Status
This Java agent runs on a scheduled basis. It will change the status of tickets from active to processed or
inactive based on the Date and Time of the flight gathered from the the List of Available Flights and
Scheduled Flights documents. A ticket becomesinactive if aflight is cancelled. Processed tickets are those
that have departed.

The source code for the Generate Price and Seat Number and the Check Unique City Code agents are shown in the
Example: Source code for Lotus Domino agents section.

Application details

From the Lotus Domino Web interface, the flights employee can perform several tasks. These tasks fall under four
main categories of customer, flights, flight reservations, and billing. Each of these categories contain actions that the
employee can perform. These actions are as follows:

« Customer
A flights employee can add a customer by entering the customers name, password, internet address, and home
address. The information entered along with the generated customer number is stored in the Lotus Domino
LDAP directory. Once created, this new document can then be updated, deleted, or displayed.

« Flights

o A flights employes can add aflight by entering departure and arrival time, length of flight, departure
and arrival city code, airplane type, type of food available, scheduled flight days, and first class and
coach price. The information entered is stored in the List Of Available Flights form. Once created,
this new document can then be displayed or deleted.

o A flights employee can also add a city code by entering city, state, country, and city code. The
information entered is stored in the City Codes form after the city code is checked to make sureitis
unique. If it is unique, the document is created. Once created, the document can be displayed or
deleted.

» Flight Reservations
A flight employee can book aflight by entering scheduled flight by date, class of ticket (coach/first class),
generated price, generated seat number, paid status, customer number, and passenger information. The
information entered is stored in the Ticket form. Once created, the document can be displayed in the
following states: active, processed, or inactive.

« Billing
A flight employee can generate a bill for aticket by entering credit card type, number, expiration date, and the
customer number. The information entered is stored in the Credit Information form. Once created, the
document can be displayed or updated.

Lotus(R) Domino(M) environment key findings

Followingisalist of key findings that we uncovered while creating and using the flights scenario L otus Domino
environment.

« Insevera flight documents, we used an agent to generate a unique number. This agent was called by the
WebQueryOpen event. The agent would generate the number when a new document was created, but the
generated number would not save when the document was saved. The following excerpt from Lotus Domino
Designer help text explains how the WebQueryOpen event works and why this value was not being saved:

"WebQueryOpen agents run when the user opens aform or document, but do not run when the user saves a
document. This means that computed fields set by a WebQueryOpen agent are not saved when the user
submits a document. To make sure computed fields are saved, you can either recalculate them in the
WebQuerySave agent or set the form property 'Generate HTML for all fields."

After selecting the form property 'Generate HTML for all fields, the computed number was saved aong with
all of the other fields in the document.

« Todisplay aview after submitting a document through the Web, instead of displaying the default text: "Form
processed”, do the following:

o Create ahidden text field in the form that is computed for display
o Name the field $$Return

o Useaformulasimilar to thisin the field value:
"[/"+@Subset(@DbName;-1)+"/Y ourViewName?OpenView& Dbl ClkTarget=_sdlf]"

If your view name has spacesin it, use a'+' instead of a space. (i.e. Y our+View+Name)
If your view name is categorized under other views, use adouble \\'. (i.e. Y ourView\\ViewName)

« We experienced poor performance and other odd behavior when we had the view property 'Use applet in the
browser' selected under the For Web Access in the advanced tab of the view properties.

« Inthe Flight Person form, the form property 'Generate HTML for all fields needed to be selected to alow the
data to be maintained in the form when entering data on the Web. Without it selected, when clicking on the
next tab in the customer form, the data in the other tabs would not be maintained. With it selected, the data
was maintained as each of the tabs was selected.

« Wewanted to only allow unique city codes to be saved when creating a new unique city code from the Web.

The following excerpt from the Lotus Domino Designer help text explains how the WebQuerySave event
works when checking for unique values:

"Simulating CGI programs that run on user-supplied data by programming a WebQuerySave event and
adding a SaveOptions field with avalue of '0' to the form. When the agent runs, you can collect field values
from the filled-out form without generating a new Notes(TM) document.”

Having the SaveOptions set to 0 will keep the document from being saved. As soon asthisvalueissetto 1,
the document is saved. Thereis no need to perform an if check on SaveOptions in the submit button. Lotus
Domino handles the saving based on the value of the SaveOptions field.

For example, here is the solution we used:

1. Inthe Form, create a Submit button and also a hidden field called SaveOptions with an initial value of
0

2. Inthe Submit button, code the following formula:
@Command([FileSave));
@Command([FileCloseWindow])

3. Inthe WebQuerySave event, enter the formula that runs an agent

4. In the agent, add the following code:
If (foundCityCode) Then
Print "<SCRIPT LANGUA GE=JavaScript(TM)>"
Print "alert(""Duplicate City Code found. Please enter a new city code."")"
Print "location.href = ""../../" + file + "/City+Codes?OpenForm™""
Print "</SCRIPT>"
Else
'/ The following line will set the SaveOptions on the document as 1 which will cause Notes to save the document.
Set item = doc.ReplaceltemV alue(" SaveOptions', 1)
End If

References

« Lotus Domino Release 5.0: A Developer's Handbook, IBM Redbook(R) SG24-5331-01

« |IBM Lotus Domino for iSeries(TM) - 0S/400(R) Web site
http://www.ibm.com/servers/eserver/iseries’domino/

« IBM Lotus Domino for iSeries (PartnerWorld(R) for Developers)
http://www.as400.ibm.com/devel oper/domino/

« LotusWeb site
http://www.lotus.com

Example: Source code for Lotus Domino agents

This section contains source code for two of the flight's application Lotus (R) Domino (TM) agents. The first example is Generate Price and
Seat Number agent which iswritten in Java(TM), This agent generates price information and cal cul ates the next available seat. The second
example is Check Unique City Code agent which iswritten in LotusScript. This agent verifies that the city codeis unique.

Example 1. Generate Price and Seat Number agent

NN NN NNy

/*

* This Java Agent will run based on the user clicking an action button.

* 1t will generate the price information and cal cul ate the next avail abl e seat
* based on the FlightByDate and Ti cket O ass sel ect ed.

*

* Scenario Name: TFC Flights

*

* Java Version: JDK 1.1.8

*/
NN NN NNy

i mport | otus.dom no.*;
public class JavaAgent extends AgentBase {
public void NotesMin() {

Systemout.println("Starting: Generate Price and Seat Number agent.");

try
{

Sessi on session = get Session();
Agent Cont ext agent Cont ext = sessi on. get Agent Cont ext () ;

gener at eSeat (sessi on, agent Cont ext);
Systemout. println("Done: Cenerate Price and Seat Nunber agent.");

}
cat ch(Exception e) {
e.printStackTrace();
}

} // end Notes(™ main

public voi d generateSeat (Sessi on sessi on, Agent Context agent Context)

/'l get the Flight by date and ticket class data fromthe current docunent
boolean isFirstCass = false; //initially set this flag to false (i.e. coach)

try

{

Dat abase db = agent Cont ext . get Current Dat abase() ;

Docunent Col | ecti on col | ecti on = agent Cont ext. get UnprocessedDocunent s();
if (collection.getCount() < 1)

/1 there was a problem accessing the current doc, quit agent
Systemout.printIn("Error with the current docunent, agent ending.");
return;

} /1 end if

el se

Document doc = col | ection. getFirstDocunent();

String flightByDate = doc.getltenVal ueString("FlightByDate");

String ticketd ass = doc.getltenval ueString("Ticketd ass");

Docunent Col | ecti on schedul edFl i ght DC = db. search("SELECT ((Form = \"Schedul ed Flights\")) &
((@ont ai ns(Schedul edFl i ght ByDate; \"" + flightByDate + "\")))");

i f (schedul edFl i ght DC. get Count () < 1)

{

/1 invalid flight by date specified - no matching flight by date found
Systemout.printin("lInvalid flight by date specified - no matching flight by date found,
agent ending.");

return;

} /] end if

el se

{ .

int seatsRenmaining = O;

int seat Number = O;

Docunent schedul edFl i ght Doc = schedul edFl i ght DC. get Fi r st Docunent () ;

if (ticketd ass.equals("First O ass"))
i sFirstd ass = true;
seat sRemai ni ng = schedul edFl i ght Doc. get | t enVal uel nt eger (" Fi r st Cl assSeat sAvai |l abl e") ;

//check to see if a seat is still avail able
i f (seatsRemmining >= 1)

/'l get the next avail abl e seat number

seat Nunber = get Next Avai | abl eSeat (db, i sFirstd ass,

schedul edFl i ght Doc. get | t emval ueSt ri ng(" Schedul edAi r pl aneType"));
i nt next Avai |l abl eSeat = seat Nunber - seat sRemaining + 1;

String strObj = String.val ueO (next Avai |l abl eSeat) ;
doc. repl acel t enval ue(" Seat Nunber", strQbj);

int price = getPrice(flightByDate, session, agentContext, isFirstCass); //get the price info
for this ticket

Integer pricelnt = new Integer(price);

doc. repl acel tenval ue(" Ti cket Price", pricelnt);

doc. save(true, true);

/1 a seat is available

I nteger intObject = new | nteger(seatsRemaining-1); //decrement num of avail abl e seats
schedul edFl i ght Doc. repl acel t enVal ue("Fi rst Cl assSeat sAvai | abl e", intObject);

schedul edFl i ght Doc. save(true, true);

} //end if seats remaining >= 1

el se

{ Ilif seats remaining = 0, check to see if any tickets have been del eted

String del etedSeats = schedul edFl i ght Doc. getltemval ueString("Del et edFirstC assSeats");

if (deletedSeats != null)

{ I/ there's a cancelled seat(s) avail able, book the seat

int index = del etedSeats.indexOf (";");

String avail Seat = del et edSeats. substring(0, index);

I nteger intCbject = Integer.valueXk (avail Seat);

/1 update the del eted seats, renoving the seat that was just booked and | eaving the rensining
as is

schedul edFl i ght Doc. repl acel t enVal ue("Del et edFi rst Cl assSeat s", del et edSeats. substring(index +
1));

schedul edFl i ght Doc. save(true, true);

String strj = String.val ue (avail Seat);
doc. repl acel t enval ue(" Seat Nunber", strQbj);

int price = getPrice(flightByDate, session, agentContext, isFirstClass); //get the price info
for this ticket

Integer pricelnt = new Integer(price);

doc.repl acel tenVal ue("Ti cket Price", pricelnt);

doc. save(true, true);

} // end if deletedSeats != null
el se

{

/1 the flight is full

Systemout. println ("<SCRI PT LANGUAGE=JavaScript(TM>");

Systemout.println ("alert(\"No nore seats are available on this flight. Please select a new
flight.\")");

Systemout.println ("</SCRI PT>");
} // end el se

} // end seats remaining = 0

} // end if first class

el se

{ // the ticket is for a coach seat

seat sRemai ni ng = schedul edFl i ght Doc. get | t em\val uel nt eger (" CoachSeat sAvai | abl e") ;

//check to see if a seat is still available
if (seatsRenmining >= 1)

/'l get the next avail abl e seat nunber

seat Nunber = get Next Avai | abl eSeat (db, i sFirstd ass,

schedul edFl i ght Doc. get | t em\val ueSt ri ng(" Schedul edAi r pl aneType"));
i nt next Avai |l abl eSeat = seat Nunber - seatsRemaining + 1

String strQj = String.val ued (next Avai | abl eSeat) ;
doc. repl acel t enval ue(" Seat Nunmber", strQbj);

int price = getPrice(flightByDate, session, agentContext, isFirstClass); //get the price info
for this ticket

Integer pricelnt = new Integer(price);

doc. repl acel tenval ue(" Ti cket Price", pricelnt);

doc. save(true, true);

/1 a seat is available

I nteger intCbject = new | nteger(seatsRemaining-1); //decrement num of avail abl e seats
schedul edFl i ght Doc. r epl acel t enVal ue(" CoachSeat sAvai | abl e", intCbject);

schedul edFl i ght Doc. save(true, true);

} //end if seats remaining >= 1

el se

{ //if seats remaining = 0, check to see if any tickets have been del eted

String del etedSeats = schedul edFl i ght Doc. getltenVal ueStri ng("Del et edCoachSeats");

if (deletedSeats != null)

{ // there's a cancelled seat(s) avail able, book the seat

int index = del etedSeats.indexOr(";");

String avail Seat = del et edSeats. substring(0, index);

I nteger intCbject = Integer.valueO (avail Seat);

/'l update the deleted seats, renoving the seat that was just booked and | eaving the renaining
as is

schedul edFl i ght Doc. r epl acel t enVal ue(" Del et edCoachSeat s", del et edSeats. substring(index + 1));
schedul edFl i ght Doc. save(true, true);

String strObj = String.val ueO (avail Seat) ;
doc. repl acel t enval ue(" Seat Nunber", strQbj);

int price = getPrice(flightByDate, session, agentContext, isFirstCass); //get the price info
for this ticket

I nteger pricelnt = new Integer(price);

doc. repl acel tenval ue(" Ti cket Price", pricelnt);

doc. save(true, true);

} // end if deletedSeats != nul
el se

{

/1 the flight is full

Systemout.println ("<SCRI PT LANGUAGE=JavaScri pt>");

Systemout.println ("alert(\"No nore seats are available on this flight. Please select a new
flight.\")");

Systemout.println ("</SCRI PT>");

/'l end seats remaining = 0
/1l end else ticket is coach

end el se
end try

e S e e e

/1
/1

catch (NotesException ne) {
ne. printStackTrace();

}

catch (Exception e) {
e.printStackTrace();
}

} // end nethod generat eSeat
public int getNextAvail abl eSeat (Dat abase db, bool ean isFirstC ass, String airplaneType)

/1l go to Airplane Seat Info view and find the matching plane type
int seatNum = 0;

try

{

Docunent Col | ecti on seat DC = db. search("SELECT ((Form = \"Airplane Seat Information\")) &
((@ont ai ns(Seat Ai rpl aneType; \"" + airplaneType + "\")))");

if (seatDC.getCount() < 1)

/1 no matching airplane type found

Systemout.printin("lInvalid airplane nodel specified - no matching record found, agent
endi ng.");

return O;

} // end if

el se

{ .

Docunent seat Doc = seat DC. get Fi r st Docunment () ;

if (isFirstd ass)

{

seat Num = seat Doc. get | t enVal uel nt eger ("FirstCl assSeats");

}

el se

{

seat Num = seat Doc. get | t enVal uel nt eger (" CoachSeat s") ;

}

} /1 end el se

} // end try

catch (NotesException ne) {
ne. print St ackTrace();

}
catch (Exception e) {
e.printStackTrace();

}

return seat Num
} // end nethod get Next Avai | abl eSeat

public int getPrice(String flightByDate, Session session, AgentContext agentContext, bool ean
i sFirstd ass)

{

int price = 0;

try

{

/1 calculate flight number

int index = flightByDate.lastlndexOr("_");

String flightNunmber = flightByDate.substring(0, index);

Dat abase db = agent Cont ext . get Current Dat abase() ;
Docunent Col | ection flightDC = db. search("SELECT ((Form = \"List O Available Flights\")) &
((@ont ai ns(Avai | abl eFl i ght Nunber; \"" + flightNunber + "\")))");

if (flightDC. getCount() < 1)
{

/'l there was a problem accessing the current doc, quit agent
Systemout.printin("Error with the current docunent, agent ending.");
return O;

} /1 end if

el se

{

Docunent doc = flightDC. getFirstDocunent();
if (isFirstd ass)
{

price = doc. getltenval uel nteger("Firstd assPrice");

}

el se

{

price = doc. getltenval uel nt eger (" CoachPrice");

}

} // end el se

} // end try

catch (NotesException ne) {
ne. print St ackTrace();

}

catch (Exception e) {
e.printStackTrace();

}

return price;

} // end nethod gener at eSeat

} // end class

Example 2: Check Unique City Code Agent

Sub Initialize

1

'/ This Domino agent receives a City Code as input from a browser using the City Codes Form.

'/l This agent uses that information along with information from the existing City Code documents (created from the City Codes form).
'/l This agent uses the veiw 'City Codes' to search through al the City Code documents. If a match isfound, the user is

'/l notified and allowed to create a new City Code document. If no match is found, the City Code document will be created.

I

'/l Set foundCityCode variant
Dim foundCityCode As Variant
foundCityCode = False

'// Create a notes session
Dim session As New NotesSession

Messagebox "Running agent " & session.CurrentAgent.Name & " in database " & session.CurrentDatabase.Title & " as" &
session.CommonUserName

'/l Open this database

Dim db As NotesDatabase

Set db = session.CurrentDatabase

If Not (db.IsOpen) Then

Messagebox "Database " & session.CurrentDatabase. Title & " did not open. Agent ending.”
Exit Sub

End If

'/l Set doc equal to the current session transient values (i.e. the city code document code variables)
Dim doc As NotesDocument

Set doc = session.DocumentContext

Dim unid As String

Dim file As String

file=db.FileName

'/l Set the view to the City Codes view, to locate a City Codes document
Dim CCview As NotesView

Dim CCdoc As NotesDocument

Set CCview = db.GetView("City Codes")

Set CCdoc = CCview.GetFirstDocument

'/l Search through the City Code documents until a match is found or no match is found
While ((Not (CCdoc Is Nothing)) And (Not foundCityCode))

If (CCdoc.Code(0) = doc.Code(0)) Then

unid = CCdoc.UniversalID

foundCityCode = True

Else

Set CCdoc = CCview.GetNextDocument (CCdoc)
End If

Wend

/1 If match found, display a message and allow user to create a new City Code document
/I lf no match found, allow user to create a new City Code document

If (foundCityCode) Then

Print "<SCRIPT LANGUAGE=JavaScript>"

Print "aert(""Duplicate City Code found. Please enter a new city code."")"
Print "location.href =""../../" + file + "/City+Codes?OpenForm"""

Print "</SCRIPT>"

Else

On Error Goto Errhandle

"I/ Call doc.Save(True, True)

'/l Print "<SCRIPT LANGUAGE=JavaScript>"

Il Print "location.href =""../../" + file + "/City+Codes/doc?SaveDocument"""
" Print "aert(""Saving."")"

'/l Print "location.href =""../../[" + file + "/City+Codes?OpenView"""

"Il Print "</SCRIPT>"

Set item = doc.ReplaceltemV al ue(" SaveOptions', 1)

End If

Errhandle;

" Use the Err function to return the error number and
" the Error$ function to return the error message.
Messagebox "Error" & Str(Err) & ": " & Error$
Exit Sub

End Sub

WebSphere(R) Application Server environment overview

The WebSphere Application Server environment was set up during phase two of the i Series(TM) System Test flights scenario work. During
phase two, the flight company's goal was to allow their customersto book flights from their Web site. They decided to build thisinterface
using HTML pages, JavalT™) Server Pages (JSPs), JavaBeans(TM), enterprise beans, and servlets. This interface allowed customers to view
and book flights on-line, retrieve flight information, update customer information, and pay bills on-line.

Application Model

The flights application uses the application model depicted in Figure 1. In thismodel, a browser accesses the Java Server Pages (JSPs)
indirectly through a servlet which interacts with the business logic using enterprise beans. The enterprise beans extract the needed information
from the Lotus(R) Domino(T™™) database. After receiving the client request, the servlet performs any necessary computation and creates the
JavaBeans. The JSP is invoked with the appropriate JavaBeans. The JSP extracts the information it requires from the JavaBeans and merges
them with the HTML page. The browser then interprets and renders the HTML.

Figure 1 Flights Application Model

HThL Fage=&
J5F=

ol — - Servlst —e Session bean

Customers via their
broveser of choice

Domino

L P JavaBeans (s— Entity beans |—e| Motes APz e
Cratabaszes

Application Process Flow

There are a number of HTML and JSP pages used within the flights application. Table 1 contains the list of HTML pages and Table 2 contains
the list of JSPs. The application flow is displayed in Figure 2.

Table 1 Flights Application HTML pages

|[HTML page [Functions
Allows the customer to choose between displaying the following information:
« flight
homePage
 customer
o itinerary
index |Brings together the menu, top, and homePage frames
|logOn |Allows customer to log on
menu |Provi des menu options on the | eft side
top |Provide£ top of page which contains the logo

Table 2 Flights Application JSPs

|JsP |Functions

customerlnformation |Di splays information about the customer

|ogOff |AIIows customer to log off

customerlnformationUpdate |AIIows customer to update their information

customer| nformationConfirmation |AI lows customer to verify their updated information
flightsSearch |Provid05 list of criteriafor searching for flights

flightsList |Provid&sa|ist of flights that match the search criteria
flightsDetails |Provid&sthe detailed flight information for a specific flight
passengernformation |AIIows customer to enter passenger information
passengerlnformationV erification |AIIows customer to verify passenger information
paymentlnformation |AIIows customer to enter payment information
paymentInformationV erification |AIIows customer to verify payment information
reservationCancel |AIIows customer to cancel the reservation
bookConfirmation |Confi rms the booking

itineraryList |Providesthe list of itineraries for the customer
itineraryDetails |Provi des the detailed itinerary information for a specific itinerary

Figure 2 Flights Application Flow

Fages listed under the Flights Lagaon
Flights Home Fage are Fage
entry points. They will be
accessible at all times.

Flights Logaff

Fage

h J

Flights Home Page
Custemer - Customer Information)]
Infarmation - Flights Information Itinerary List

- inerary Information

1
Customer f)
. Iltinerany
Infarmation Detail
Update Flights Search Elall

Customer

Information Flights List
Werification

Flights Cretail=s

¥

Faszsenger
Information

Fassenger
Information
Wearification

Additional Fassengers
button pressed.

[rata is=sentto DB and the invoice # is /
generated. The Invaice # is created when
first passengerissent. Thisis handled by ¥

the servlet. The invaice # will be kept as
zeszion data.

Fayment Plan
button pressed.

L
Ead{ -:uut.paﬁenger Fayment Canfirmation numb!erig_gixren t_l:-
!nf-:r.rnatn:-n. The Infarmation the cust-:-mgr. The imwoice # will
imroice # needs to be the confirmation #.
be provided.
A

Book
Confirmation

F ayment
Werification

Rezanvation
Cancel

Development Environment

The following products were used during the development of this application:
« WebSphere Studio
« Visua Age for Java Enterprise Edition
« WebSphere Studio Application Developer
The JSPswereinitially developed using WebSphere Studio and the enterprise beans were devel oped using Visual Age for Java. In the middle

of development, we migrated to WebSphere Application Server Version 4.0. This change prompted us to move our development of the JSPs
and enterprise beans to WebSphere Studio Application Devel oper.

WebSphere®) Application Server environment application flow

Application Details

This section provides details on the flights application model including the use of servlets, JavaBeans(TM), enterprise beans, and JSPs. There is one servlet
(FlightsServlet) that acts as the main controller. All requests are sent to this servlet, which then performs the requested task. The servlet accesses a session bean
(CustomerFlight) to accomplish the mgjority of its work. The CustomerFlight session bean uses entity beans (Customer, Flight, and Ticket) to accomplish the desired
task.

Figure 1 illustrates the relationship between the servlet and enterprise beans.

Figure 1 Application relationship

FlightPerson

Customerinfo

get..()
zet..()

Customer
findByPrimarykey)
getDatarl)
Information,
Scheduled
Elights, &
City Codes
-
FlightsServiet CustomerFlight
displayCustamert getCustomerDetailz()]
updsteCustomer() et AvailableFlight=0) Flight
selectFlightr) |::> getFlightDetails() ::> fincByPrimarykey()
flightDetaill) Eﬁﬂkg‘ﬁm‘:'ﬂdesﬂ findBy ArtivalDate!)
bookFlightt') ztDT' }Lgﬂ_% getDatal)
cancelBoakFlight!) getTicketlist()
findTickets() makePaymenti)
Legend
@ Doming Database D Serviet
Ticket
findByPrimarykey
payTicket() Ertity Bean
GetDatar) JavaBean
Q Seszzion Bean

Ticket
Information &

Information

Design Considerations

Theinitial plan wasto use a Lotus(R) Domino(T) JDBC Driver within our enterprise beans to access the Lotus Domino databases. However, in WebSphere
Application Server, you cannot create a datasource that uses the Lotus Domino JDBC driver on the iSeries(TM). Since the i Series has not yet ported the Lotus Domino
JDBC driver, we aso could not implement our own connection pooling. A Lotus Domino JDBC driver for iSeriesis scheduled to be available in a future release.
Because of the limitations listed above, we used the Lotus Domino APIs to access the Lotus Domino database within our entity beans.

When the application was designed, the decision was made to use bean-managed persistence entity beans. We needed to use bean-managed entity beans because the
entity beans would be using Lotus Domino APIs to access L otus Domino databases.

Flights Servlet

The flights application uses the FlightsServlet to control the flow of the application. The FlightsServlet is used to provide the Flights customers with the capability to
view and update customer data, view scheduled flight data, and book flights using a Web browser. The JSP pages called by this servlet are used for the presentation of
data. They perform aminimal amount of processing work. The majority of the processing work is done by the FlightsServlet through the following methods:

« doPost
o Cresates a session between the Web server and the browser making the request.
o Examines each request and routes it to the appropriate method within the servlet based on the jspRequest value.
» doGet
0 Creates a session between the Web server and the browser making the request.
o Setsthe jspRequest value accordingly and calls doPost().
«» errorHandle
o Handles any exceptions encountered by the servlet or enterprise beans.
o Provides amessage to the user on the error encountered.
o init
o Called by the server immediately after the server constructs the servlet's instance.
o Creates and looks up the CustomerFlight home object.
« bookFlight
o Usesthe CustomerFlight enterprise bean to book aflight for the specified customer.
o Displays the passengerInformation.jsp.
« cancelBookFlight
0 Usesthe CustomerFlight enterprise bean to cancel aflight that was being booked for a specific customer.
o Displays the reservationCancel.jsp.
« confirmFlight
o Usesthe CustomerFlight enterprise bean to confirm and make payment for a booked flight.
o Displays the bookConfirmation.jsp.
« displayCustomer
0 Uses the CustomerFlight enterprise bean to obtain the information for the specified customer.
o Displays the customerlnformation.jsp.
« displayJSP
o CallsaJSP page. All the data that the JSP needs will be in the session.
« findTickets
o Usesthe CustomerFlight enterprise bean to obtain alist of tickets.
o DisplaystheitineraryList.jsp.
« flightDetail
0 Usesthe CustomerFlight enterprise bean to obtain the detailed flight information.
o Displaysthe flightsDetails.jsp.
« flightList
0 Usesthe CustomerFlight enterprise bean to obtain alist of al of the city codes.
o Displaysthe flightSearch.jsp.
« getCustomerFlight
o Creates a CustomerFlightHome object by looking up the CustomerFlightHome class.
« getInitial Context
o Obtainsaninitial context for the specified URL.
« itineraryDetails
0 Usesthe CustomerFlight enterprise bean to obtain the details of the itinerary and flight based on the itinerary number and flight by date.
o DisplaystheitineraryDetails,jsp.
« selectFlight
o Usesthe CustomerFlight enterprise bean to obtain alist of all flights based on the search criteria provided.
o Displaysthe flightsList.jsp.

« updateCustomer
0 Usesthe CustomerFlight enterprise bean to update the customer data.
o Displays the customerlnfoConfirmation.jsp.

Enterprise beans

Within the flights application, FlightsServlet acts as the main controller. All requests are sent to this servlet which then does the requested task. The servlet accesses a
session bean (CustomerFlight) to accomplish the majority of its work. The CustomerFlight session bean uses entity beans (Customer, Flight, and Ticket) to accomplish
the desired task.

CustomerFlight enterprise bean

The CustomerFlight enterprise bean is a statel ess session bean. It supplies methods that accomplish tasks that would be performed by a customer, for example:
« View or update customer information
« Obtain alist of available flights
« View itinerary details
« Book aflight
« Make apayment for a booked flight

The methods in the CustomerFlight on bean are described here:
» ThebookFlight() method returns a TicketInfo object that contains the information for the ticket that was booked. The following tasks are performed:

1. It checksto seeif aninvoice number is specified. If it is not specified, it will create a new ticket with a new invoice number. If the invoice number is
specified, it will create a new ticket using the specified invoice number. The tickets are created using the Ticket enterprise bean.

2. The getData() method isinvoked in the Ticket enterprise bean and the datais stored in a TicketInfo object.
3. The TicketInfo object isreturned.
« The cancelBookFlight() method cancels the tickets for the specified invoice number. The following tasks are performed:
1. It usesthe findBylnvoiceNumber() method within the Ticket enterprise bean to obtain alist of tickets with the specified invoice number.

2. Thelist of ticketsis then processed through and the remove() method is called on each Ticket to remove the documents from the L otus Domino
database.

» The getAllCityCodes() method obtains alist of all the city codes available in the City Codes document. The following tasks are performed:
1. It selects al city codes from the City Codes form and the information is stored in a FlightInfo object.
2. TheFlightInfo object is returned.

« The getAvailableFlights() method returns a Flightlnfo object that contains alist of al the flights that match the specified search criteria. The following tasks
are performed:

1. The parameter values are checked and afind by is performed based on the search criteria using the Flight enterprise bean.
2. The getData() method in the Flight enterprise bean isinvoked and the datais stored in a FlightInfo object.
3. TheFlightInfo object is returned.
« The getConnection() method returns a connection to the Lotus Domino database using Lotus Domino APIs. The following tasks are performed:
1. The environment variables are used to create the connection.
2. A new session is created to the Lotus Domino database.
3. The database object is created and returned.

« The getCustomerDetails() method returns a Customerlnfo object that contains the customer information for the specified customer number. The following
tasks are performed:

1. A find by primary key is executed based on the customer number using the Customer enterprise bean.
2. The getData() method isinvoked in the Customer enterprise bean and the data is returned in a CustomerInfo object.

« The getFlightDetails() method returns a FlightInfo object that contains the flight information for the specified flight by date. The following tasks are
performed:

1. A find by primary key is executed based on the flight by date using the Flight enterprise bean.
2. The getData() method isinvoked in the Flight enterprise bean and the datais returned in a FlightInfo object.
» The getlnitial Context() method returnstheinitial context for creating the entity beans.

« ThegetTicketList() method returns a TicketInfo object that contains alist of all the tickets based on a customer number or an invoice number. The following
tasks are performed:

1. A find by customer number or afind by invoice number is executed based on the parameter passed in using the Ticket enterprise bean.
2. The getData() method isinvoked in the Ticket enterprise bean and the datais stored in a vector.

3. Thevector is stored in a TicketInfo object.

4. The Ticketlnfo object is returned.

« The makePayment() method returns a Ticketlnfo object. This method is used to make a payment for a booked flight. It will update all of the tickets with the
same invoice number. The following tasks are performed:

1. A find by invoice number is executed based on the invoice number using the Ticket enterprise bean.

2. The payTicket() method isinvoked in the Ticket enterprise bean.

3. ThegetData() method isinvoked in the Ticket enterprise bean and the datais returned in a Ticketlnfo object.
» The setCustomerHome() method creates a CustomerHome object by looking up the CustomerHome class.

« The setFlightHome() method creates a FlightHome object by looking up the FlightHome class.
« The setTicketHome() method creates a TicketHome object by looking up the TicketHome class.
» The updateCustomer() method updates a customer's personal information. The following tasks are performed:
1. A find by primary key is executed based on the customer number using the Customer enterprise bean.
2. Thefollowing methods are invoked in the Customer enterprise bean:
= setCustomerFirstName() method
= setCustomerMiddlel nitial () method
= setCustomerL astName() method
= setCustomerAddress() method
= setCustomerCity() method
= setCustomerState() method
= setCustomerZipCode() method
= setCustomerCountry() method
= setCustomerPhoneNumber() method
= setCustomerinernetAddress() method
= getData() method which stores the data in a CustomerInfo object
3. The Customerinfo object is returned.

Customer bean

The Customer enterprise bean is an entity bean used to represent a flights customer. It supplies methods that accomplish tasks that are performed on customer data, for
example:

« Viewing customer information
« Updating customer information

The Customer enterprise bean uses bean-managed persistence and is mapped to the FlightPerson form in the names.nsf Lotus Domino database. The layout for the
FlightPerson form is shown in Table 10 in the Lotus Domino environment section.

The Customer enterprise bean contains one gjbFindBy method. This finder method is defined in the home interface. Table 1 contains the finder method.

Table 1 Customer enterprise bean Finder Methods

Method Name
ejbFindByPrimaryKey()

Select Statement
"SELECT (Form =\"FlightPerson\") & (PersonalID =" + customerNumber.trim() +")"

Description
Finds customers based on customer number

The getter and setter methods, and the values they return or set, are listed in Table 2.

Table 2 Customer Getter and Setter Methods

Getter Setter Form Field Name Data Type
getCustomerAddress() setCustomerAddress() FlightPerson: StreetAddress String
getCustomerCity() setCustomerCity() FlightPerson: City String
getCustomerCountry() setCustomerCountry() FlightPerson: Country String
getCustomerFirstName() setCustomerFirstName() FlightPerson: FirstName String
getCustomerlnternetAddress() |setCustomer| nternetAddress() |FlightPerson: InternetAddress String
getCustomerL astName() setCustomerL astName() FlightPerson: LastName String
getCustomerMiddlelnitial() |setCustomerMiddlelnitial() |FlightPerson: Middlel nitial String
getCustomerNumber() setCustomerNumber() FlightPerson: Personal|ID String
getCustomerPhoneNumber() |setCustomerPhoneNumber() |FlightPerson: PhoneNumber String
getCustomerState() setCustomerState() FlightPerson: State String
getCustomerZipCode() setCustomerZipCode() FlightPerson: Zip String
getData() CustomerInfo JavaBean containing the values within the enterprise bean |Customerinfo

The gjbLoad() method is used to retrieve the data from a specific FlightPerson document and place it in the bean properties.

The gjbStore() method is used to update the data in a specific FlightPerson document from the bean properties.

Customerlinfo

Customerinfo is a JavaBean used to store the customer information. It is passed to the appropriate JSP, which, in turn, usesit to retrieve the specific customer data.

The getter and setter methods, and the values that they return or set, arelisted in Table 3.

Table 3 CustomerInfo Getter and Setter Methods

Getter Setter Value Data type
getCustomerAddress() setCustomerAddress() Customer Address String
getCustomerCity() setCustomerCity() Customer City String
|getCustomerCountry() |setCustomerCountry() Customer Country String

getCustomerFirstName() setCustomerFirstName() Customer First Name String
getCustomerlnternetAddress() |setCustomerl nternetAddress() (Customer Internet Address [String
getCustomerL astName() setCustomerL astName() Customer Last Name String
getCustomerMiddlelnitial() |setCustomerMiddlelnitial() (Customer Middle Initial [String
getCustomerPhoneNumber() |setCustomerPhoneNumber() (Customer Phone Number [String
getCustomerState() setCustomerState() Customer State String
getCustomerZipCode() setCustomerZipCode() Customer Zip Code String

The source code used within the Customer and CustomerInfo beans is shown in the Example: Customer bean section.

Flight bean

The Flight enterprise bean is an entity bean used to represent aflight. It supplies methods that accomplish tasks that are performed on flight data, for example:
» Obtaining alist of available flights based on specific search criteria

« Obtaining specific flight information based on the flight by date value

The Flight enterprise bean uses bean-managed persistence and is mapped to the List Of Available Flights and the Scheduled Flights formsin the flights.nsf Lotus
Domino database. The layout for the List of Available Flights form is shown in Table 2 and the Scheduled Flights form is shown in Table 3 in the Lotus Domino

environment section.

The Flight enterprise bean contains several gjbFindBy methods. These finder methods are defined in the home interface. Table 4 contains the finder methods where the
method name is preceded by ebFindBy.

Table 4 Flight Finder Methods

Method Name Select Statement [Description
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
e
ArrivalCity() Finds flights based on the arrival city
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (Status =\"New\") & ((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArriva City +
e
. . . Finds flights based on the arrival city
ArrivalCityArrivalDale() |uge) £CT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = **+ flightNum + "\") |and the arrival date
& (ScheduledArrivalDate =[" + aArrivalDate + "]) & (Status =\"New\") &
((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
"\") & (DepartureCityCode =\"" + aDepartureCity +"\")"
ArrivalCityArrival Date Finds flights based on the arrival
DepartureCity() "SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\") |city, arrival date, and departure city
& (ScheduledArrivalDate =[" + aArrivalDate + "]) & (Status=\"New\") &
((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
"\") & (DepartureCityCode =\"" + aDepartureCity + "\")"
}) . Finds flights based on the arrival
g”"ﬁ&gﬁrg’dgﬁfw atep) | SELECT (Form = " Schedluled Fights") & (ScheduledFlighiNumber =\""+ flighiNum +"\') city, arrival cete, departure ity, and
€p ybep & (ScheduledArrivalDate = [+ aArrivalDate + "]) & (ScheduledDepartureDate = [* + departure date
aDepartureDate + "]) & (Status = \"New\") & ((CoachSeatsAvailable > 0) |
(FirstClassSeatsAvailable>0))"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArriva City +
"\") & (DepartureCityCode =\"" + aDepartureCity + "\")"
» Coach
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\") | . : :
ArivalCityArrivalDate & (ScheduledArrivalDate = [+ aArrivalDate + *]) & (CoachSeatsAvailable > 0) & (Status = Z'tr)‘/dg'r'i ghts based e%r;rtt*:ﬁ a Cri't‘;a'
DepartureCitySeat Type() \"New\") . departure date, and set type
» First Class
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (FirstClassSeatsAvailable > 0) &
(Status = \"New\")"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArriva City +
e
ArrivalCityArrival Date " e . " . ey iy |Findsflights based on the arrival
SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\") | . .
DepartureDate() & (ScheduledArrivalDate = [+ aArrivalDate + "]) & (ScheduledDepartureDate = [* + aity, arrival date, and departure date
aDepartureDate + "]) & (Status = \"New\") & ((CoachSeatsAvailable > 0) |
(FirstClassSeatsAvailable>0))"

"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
e

» Coach
"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")

Finds flights based on the arrival

ArrivalCityArrival Date & (ScheduledArrivalDate =[" + aArrivalDate + "]) & (ScheduledDepartureDate = [" + h :
DepartureDateSeatType() |aDepartureDate + "]) & (CoachSeatsAvailable > 0) & (Status = \"New\")" getg{t%leval date, departure date, and
« First Class
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (ScheduledDepartureDate = [+
aDepartureDate + "]) & (FirstClassSeatsAvailable > 0) & (Status = \"New\")"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArriva City +
e
» Coach
"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
ArrivalCityArrival Date & (ScheduledArrivalDate = [" + aArrivalDate + "]) & (CoachSeatsAvailable > 0) & (Status= |Finds flights based on the arrival
SeatType() \"New\")" city, arrival date, and seat type
« First Class
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (FirstClassSeatsAvailable > 0) &
(Status = \"New\")"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
Arrival CityD eCity()) & (DepartureCityCode =V + abeparturecity +)" Finds flights based on the arrival city
rrival CityDepartureCity :
“SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\") |3 departure city
& (Status =\"New\") & ((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"
“"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrival City +
Arrival CitvDeoartureC) "\") & (DepartureCityCode = \"" + aDepartureCity +"\")" Finds flights based on the arrival
rrival CityDepartureCity ; .
DepartureDate() "SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\") glatt):e departure city, and departure
& (ScheduledDepartureDate = [+ aDepartureDate + "]) & (Status=\"New\") &
((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
"\") & (DepartureCityCode = \"" + aDepartureCity + "\")"
« Coach
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\") | _. . .
ArivalCityDepartureCity |& (ScheduledDepartureDate = [* + aDepartureDate +"]) & (CoachSeatsAvailable>0) & |Hirosfidhisbasedonthe arriva
DepartureDateSeat Type() (Status = \"New\")" angj/’ segtP type Y, dep ’
» First Class
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledDepartureDate = [+ aDepartureDate + "]) & (FirstClassSeatsAvailable > 0) &
(Status = \"New\")"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
"\") & (DepartureCityCode =\"" + aDepartureCity +"\")"
« Coach
Arrival CityDepartureCity "SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\") |Finds flights based on the arrival
SeatType() & (CoachSeatsAvailable > 0) & (Status = \"New\")" city, departure city, and seat type
» First Class
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (FirstClassSeatsAvailable > 0) & (Status = \"New\")"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
e
" ’ Finds flights based on the arrival city
ArrivalCityDepartureDale) |ugr| T (Form = * Scheduled Flights\”) & (ScheduledFlightNumber = \"*+ flightNum + "*) [and departure date
& (ScheduledDepartureDate = [" + aDepartureDate + "]) & (Status = \"New\") &
((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"
"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
e
» Coach
"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
Arrival CityDepartureDate & (ScheduledDepartureDate = [" + aDepartureDate + "]) & (CoachSeatsAvailable > 0) & Finds flights based on the arrival
SeatType() (Status = \"New\")" city, departure date, and seat type

« First Class

"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
& (ScheduledDepartureDate = [" + aDepartureDate + "]) & (FirstClassSeatsAvailable > 0) &
(Status = \"New\")"

Arrival CitySeat Type()

"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
e
» Coach

"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
& (CoachSeatsAvailable > 0) & (Status = \"New\")"

o First Class

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (FirstClassSeatsAvailable > 0) & (Status = \"New\")"

Finds flights based on the arrival city
and seat type

ArrivalDate()

"SELECT (Form =\"Scheduled Flights\") & (ScheduledArrivalDate = [" + aArrivalDate + "])
& (Status =\"New\") & ((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"

Finds flights based on the arrival date

Arrival DateDepartureCity()

"SELECT (Form =\"List Of Available Flights\") & (DepartureCityCode =\"" +
aDepartureCity + "\")"

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [+ aArrivalDate + "]) & (Status = \"New\") &
((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"

Finds flights based on the arrival date
and departure city

Arrival DateDepartureCity
DepartureDate()

"SELECT (Form =\"List Of Available Flights\") & (DepartureCityCode =\"" +
aDepartureCity + "\")"

"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (ScheduledDepartureDate = [" +
aDepartureDate + "]) & (Status = \"New\") & ((CoachSeatsAvailable > 0) |
(FirstClassSeatsAvailable>0))"

Finds flights based on the arrival
date, departure city, and departure
date

Arrival DateDepartureCity
DepartureDateSeat Type()

"SELECT (Form = \"List Of Available Flights\") & (DepartureCityCode =\"" +
aDepartureCity + "\")"

« Coach

"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
& (ScheduledArrivalDate =[" + aArrivalDate + "]) & (ScheduledDepartureDate = [" +
aDepartureDate + "]) & (CoachSeatsAvailable > 0) & (Status = \"New\")"

o First Class

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (ScheduledDepartureDate = [+
aDepartureDate + "]) & (FirstClassSeatsAvailable > 0) & (Status = \"New\")"

Finds flights based on the arrival
date, departure city, departure date,
and seat type

Arrival DateDepartureCity
SeatType()

"SELECT (Form = \"List Of Available Flights\") & (DepartureCityCode =\"" +
aDepartureCity + "\")"

« Coach

"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (CoachSeatsAvailable > 0) & (Status =
\"New\")"

« First Class

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (FirstClassSeatsAvailable > 0) &
(Status = \"New\")"

Finds flights based on the arrival
date, departure city, and seat type

Arrival DateDepartureDate()

"SELECT (Form =\"Scheduled Flights\") & (ScheduledArrivalDate =[" + aArrivalDate + "])
& (ScheduledDepartureDate = [" + aDepartureDate + "]) & (Status=\"New\") &
((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"

Finds flights based on the arrival date
and departure date

Arrival DateDepartureDate
SeatType()

"SELECT (Form =\"List Of Available Flights\")"
« Coach

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [+ aArrivalDate + "]) & (ScheduledDepartureDate = [* +
aDepartureDate + "]) & (CoachSeatsAvailable > 0) & (Status = \"New\")"

o First Class

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (ScheduledDepartureDate = [" +
aDepartureDate + "]) & (FirstClassSeatsAvailable > 0) & (Status = \"New\")"

Finds flights based on the arrival
date, departure date, and seat type

Arrival DateSeat Type()

« Coach

"SELECT (Form =\"Scheduled Flights\") & (ScheduledArrivalDate = [" + aArrivalDate + "])
& (CoachSeatsAvailable > 0) & (Status = \"New\")"

o First Class

"SELECT (Form =\"Scheduled Flights\") & (ScheduledArrivalDate = [" + aArrivalDate + ")
& (FirstClassSeatsAvailable > 0) & (Status =\"New\")"

Finds flights based on the arrival date
and seat type

DepartureCity()

"SELECT (Form =\"List Of Available Flights\") & (DepartureCityCode =\"" +
aDepartureCity +"\")"

"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum +"\")
& (Status = \"New\") & ((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"

Finds flights based on the departure
city

DepartureCityDepartureDate()

"SELECT (Form =\"List Of Available Flights\") & (DepartureCityCode =\"" +
aDepartureCity +"\")"

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
& (ScheduledDepartureDate = [" + aDepartureDate + "]) & (Status=\"New\") &
((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"

Finds flights based on the departure
city and departure date

DepartureCityDepartureDate
SeatType()

"SELECT (Form =\"List Of Available Flights\") & (DepartureCityCode = \"" +
aDepartureCity + "\")"

« Coach

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledDepartureDate = [" + aDepartureDate + "]) & (CoachSeatsAvailable > 0) &
(Status = \"New\")"

o First Class

"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
& (ScheduledDepartureDate = [" + aDepartureDate + "]) & (FirstClassSeatsAvailable > 0) &
(Status = \"New\")"

Finds flights based on the departure
city, departure date, and seat type

DepartureCitySeat Type()

"SELECT (Form =\"List Of Available Flights\") & (DepartureCityCode = \"" +
aDepartureCity + "\")"

« Coach

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (CoachSeatsAvailable > 0) & (Status = \"New\")"

o First Class

"SELECT (Form = \"Scheduled Flights\") & (ScheduledFlightNumber = \""+ flightNum + "\")
& (FirstClassSeatsAvailable > 0) & (Status = \"New\")"

Finds flights based on the departure
city and seat type

DepartureDate()

"SELECT (Form =\"Scheduled Flights\") & (ScheduledDepartureDate = [* + aDepartureDate
+"]) & (Status=\"New\") & ((CoachSeatsAvailable > 0) | (FirstClassSeatsAvailable>0))"

Finds flights based on the departure
date

DepartureDateSeat Type()

« Coach

"SELECT (Form =\"Scheduled Flights\") & (ScheduledDepartureDate = [" + aDepartureDate
+"]) & (CoachSeatsAvailable > 0) & (Status = \"New\")"

« First Class

"SELECT (Form =\"Scheduled Flights\") & (ScheduledDepartureDate = [" + aDepartureDate
+"]) & (FirstClassSeatsAvailable > 0) & (Status = \"New\")"

Finds flights based on the departure
date and seat type

PrimaryKey()

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightByDate = \""+
tempSchedul edFlightByDate +"\")"

"SELECT ((Form =\"List Of Available Flights\")) & (AvailableFlightNumber =\"" +
flightNum + "\")"

Finds flights based on the scheduled
flight by date

SearchCriteria()

"SELECT (Form =\"List Of Available Flights\") & (ArrivalCityCode =\"" + aArrivalCity +
"\") & (DepartureCityCode =\"" + aDepartureCity + "\")"

« Coach

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [" + aArrivalDate + "]) & (ScheduledDepartureDate = [* +
aDepartureDate + "]) & (CoachSeatsAvailable > 0) & (Status =\"New\")"

« First Class

"SELECT (Form =\"Scheduled Flights\") & (ScheduledFlightNumber =\""+ flightNum + "\")
& (ScheduledArrivalDate = [+ aArrivalDate + "]) & (ScheduledDepartureDate = [* +
aDepartureDate + "]) & (FirstClassSeatsAvailable > 0) & (Status = \"New\")"

Finds flights based on all search
criteria

Seat Type()

« Coach
"SELECT (Form =\"Scheduled Flights\") & (CoachSeatsAvailable > 0) & (Status =\"New\")"
o First Class

"SELECT (Form = \"Scheduled Flights\") & (FirstClassSestsAvailable > 0) & (Status =
P Neny"

Finds flights based on the seat type

The glbLoad() method is used to retrieve the data based on the scheduled flight by date from a Scheduled Flights document and the corresponding List Of Available
Flights document and placesit in the bean properties.

The getter and setter methods, and the values they return or set, are listed in Table 5.

Table 5 Flight Getter and Setter M ethods

Getter |Setter Form Field Name Data Type
getArrival CityCode() |setArrivaI CityCode() List Of Available Flights: DisplayOnlyArrival String
|getArrivalDate() [setArrival Date() Scheduled Flights: ScheduledArrival Date [String
getArrival Time() |setArrivaITi me() List Of Available Flights: ArrivaTime String
getCoachPrice() |setCoachPri ce() List Of Available Flights: CoachPrice String
|getCoachSeatsAvailable() [setCoachSeatsAvailable() [Scheduled Flights: CoachSeatsAvailable [String
getData() FlightInfo JavaBean containing the values within the enterprise bean bean [Flightinfo
getDepartureCityCode() |setDepartureCityCode() List Of Available Flights: DisplayOnlyDeparture String
|getDepartureDate() [setDepartureDate() Scheduled Flights: ScheduledDepartureDate [String
|getDepartureTime() |setDepartureTime() List Of Available Flights: DepartureTime |String

getFirstClassPrice() setFirstClassPrice() List Of Available Flights: FirstClassPrice String

getFirstClassSeatsAvailable() |setFirstClassSeatsAvailable() |Scheduled Flights: FirstClassSeatsAvailable String

getFood() IsetFood() List Of Available Flights: Food String

getListAirplaneType() setListAirplaneType() List Of Available Flights: ListAirplaneType String

getScheduledFlightByDate() |setScheduledFlightByDate() |Scheduled Flights: ScheduledFlightByDate String
Flightinfo

FlightInfo is a JavaBean used to store the flight information. It is passed to the appropriate JSP, which, in turn, usesit to retrieve the specific flight data.
The getter and setter methods, and the values that they return or set, arelisted in Table 6.

Table 6 Flightlnfo Getter and Setter M ethods

Getter Setter Value Data type
getArrival CityCode() setArrival CityCode() Flight Arrival City Code String
getArrival Date() [setArrival Date() [Flight Arrival Date String
getArriva Time() setArrival Time() Flight Arrival Time String
getCityCode() setCityCode() Flight City Code String
getCoachPrice() [setCoachPrice() [Flight Coach Price String

getCoachSeatsAvailable() setCoachSeatsAvailable() Flight Coach Seats Available String
getDepartureCityCode() setDepartureCityCode() Flight Departure City Code String

getDepartureDate() [setDepartureDate() [Flight Departure Date String
getDepartureTime() setDepartureTime() Flight Departure Time String
getFirstClassPrice() setFirstClassPrice() Flight First Class Price String
getFirstClassSeatsAvailable() [setFi rstClassSeatsAvailable() [Flight First Class Seats Available |String
getFlightList() setFlightList() Flight List Vector
getFood() setFood() Flight Food String
getListAirplaneType() [setListAirplaneType() [Flight Airplane Type String

getScheduledFlightByDate() |setScheduledFlightByDate() [Flight Scheduled Flight By Date |String

Ticket bean

The Ticket enterprise bean is an entity bean used to represent aticket. It supplies methods that accomplish tasks that are performed on ticket data, for example:
» Creating anew ticket for aflight which has been booked by a customer
« Obtaining alist of tickets for a specified customer or itinerary number
« Marking the ticket as paid and saving the credit card information

The Ticket enterprise bean uses bean-managed persistence and is mapped to the Ticket Information and Credit Information forms in the flights.nsf Lotus Domino
database. The layout for the Ticket Information form is shown in Table 5 and the Credit Information form is shown in Table 6 in the Lotus Domino environment

section.

The Ticket enterprise bean contains several gjbFindBy methods. These finder methods are defined in the home interface. Table 7 contains the finder methods.

Table7 Ticket Finder Methods

Method Name Select Statement Description
P "SELECT ((Form=\"Ticket Information\")) & (TicketCustomerNumber =\"" |Finds tickets based on the customer
€jbFindByCustomerNumber() | aCust omsa(rNumber oy N&(number
"SELECT ((Form=\"Ticket Information\")) & (InvoiceNumber =\"" + Finds tickets based on the invoice

€ bFindBy! nvoiceNumber() alnvoiceNumber +"\")" number

"SELECT ((Form=\"Ticket Information\")) & (FlightByDate =\"" +
tk.flightByDate + "\") & (SeatNumber =\"" + tk.seatNumber +"\") Finds tickets based on flight by date

ejbFindByPrimaryKey()
"SELECT ((Form=\"Credit Information\")) & (InvoiceNumber =\"" + and seat number

invoiceNumber + "\")"

The gjbLoad() method is used to retrieve the data based on the flight by date and seat number from a Ticket Information document and the corresponding Credit
Information document and places it in the bean properties.

The gjbStore() method is used to update the data in a specific Ticket Information document and the corresponding Credit |nformation document from the bean
properties.

The getter and setter methods, and the values they return or set, are listed in Table 8.

Table 8 Ticket Getter and Setter Methods

Getter Setter Form Field Name Data Type
getCreditCardExpirationDate() [setCreditCardExpirationDate() |Credit Information: ExpirationDate String
getCreditCardNumber() IsetCreditCardNumber() Credit Information: CreditCardNumber String
getCreditCardType() |setCreditCardType() Credit Information: CardType String

getCustomerNumber() |setCustomerNumber() Ticket Information: TicketCustomerNumber String
getData() TicketInfo JavaBean containing the values within the enterprise bean bean [String
getFlightByDate() IsetFIightByDate() Ticket Information: FlightByDate String
getlnvoiceNumber() setlnvoiceNumber() Ticket Information: InvoiceNumber String
getPaidStatus() setPaidStatus Ticket Information: PaidStatus String
getPassengerAddress() IsetPassengerAddras() Ticket Information: PassengerStreet String
getPassengerCity() setPassengerCity() Ticket Information: PassengerCity String
getPassengerCountry() setPassengerCountry() Ticket Information: PassengerCountry String
getPassengerFirstName() IsetPassengerFi rstName() Ticket Information: PassengerFirstName String
getPassengerL astName() setPassengerL astName() Ticket Information: PassengerLastName String
getPassengerMiddlelnitial() [setPassengerMiddlelnitial() | Ticket Information: PassengerMiddlel nitial String
getPassengerPhoneNumber() IsetPassengerPhonel\lumber() Ticket Information: PassengerPhone String
getPassenger State() setPassenger State() Ticket Information: PassengerState String
getPassengerZipCode() setPassengerZipCode() Ticket Information: PassengerZip String
getSeatNumber() IsetSeHNumber() Ticket Information: SeatNumber String
getTicketClass() setTicketClass() Ticket Information: TicketClass String
getTicketPrice() setTicketPrice() Ticket Information: TicketPrice BigDecimal
getTicketStatus() IsetTi cketStatus() Ticket Information: TicketStatus String
payTicket() -Igglc(lgt;trgg ;Tc?t Isgtns Credit Information String
TicketInfo

TicketInfo is a JavaBean used to store the ticket information. It is passed to the appropriate JSP, which, in turn, usesit to retrieve the specific ticket data.

The getter and setter methods, and the values that they return or set, arelisted in Table 9.

Table 9 TicketInfo Getter and Setter Methods

Getter Setter Value [Datatype
getCreditCardExpirationDate() |setCreditCardExpirationDate() | Credit card expiration date String
|getCredi tCardNumber() setCreditCardNumber() Credit card number String
getCreditCardType() setCreditCardType() Credit card type |Stri ng
getCustomerNumber() setCustomerNumber() Customer number String
getFlightByDate() setFlightByDate() Flight by date String
getlnvoiceNumber() setlnvoiceNumber() Invoice number |Stri ng
getPaidStatus() setPaidStatus() Paid status String
getPassengerAddress() setPassengerAddress() Passenger address String
getPassengerCity() setPassengerCity() Passenger city |Stri ng
getPassengerCountry() setPassengerCountry() Passenger country String
getPassengerFirstName() setPassengerFirstName() Passenger first name String
getPassengerL astName() setPassengerL astName() Passenger last name |Stri ng
getPassengerMiddlelnitial() [setPassengerMiddlelnitial() |Passenger middleinitial String
getPassengerPhoneNumber() [setPassengerPhoneNumber() |Passenger phone number String
getPassenger State() setPassenger State() Passenger state [String
getPassengerZipCode() setPassengerZipCode() Passenger zip code String
getSeatNumber() setSeatNumber() Seat number String
getTicketClass() setTicketClass() Ticket class [String
getTicketList() setTicketList() Ticket list Vector
getTicketPrice() setTicketPrice() Ticket price String
getTicketStatus() [setTicketStatus() Ticket status [String
getTotal Cost() Total cost of all tickets within the ticket list vector String
getUniquel nvoiceNumbers() Unique invoice numbers of all tickets within the ticket list vector [V ector
toString() [String representation of the object [String

Installation of Enterprise Application

WebSphere Studio Application Developer combines the functionality that was found in Visual Age for Java(TM) and WebSphere Studio. However, many new features
were added. It supports perspectives, which allow you to work with your applications from different views. For example, the J2EE perspective alows you to work in
an environment customized for building J2EE compliant applications.

Application Developer alows you to export your applications directly into J2EE compliant formats, such as enterprise archive file (EAR) and Web archive file
(WAR). You can install these files as enterprise applications in WebSphere Application Server 4.0 without using the WebSphere Application Assembly Tool (AAT).
Figure 2 shows the J2EE hierarchy and the matching support in WebSphere Studio Application Devel oper.

Figure 2 J2EE Architecture

wsan | DL = Deployment Descriptar
JZEE
.
- Application Application DD
~J EAR EAR Fila
Froject
.~ R
L -
..-'""J.j - - T s
- T
L Bt
EJlB Mieb __ Client
Fraoject Fraoject L Frojact
=, . > ™,
™ Yy
EJB Module Web Module Client Madule
JAR File AR File JAR File

' Enterprize

Bean

EJB ,—_\ h h Web r_\ Client
(18] (18] Lo

A J2EE application is stored in an Enterprise Archive (EAR) file that contains enterprise bean modules (stored in an enterprise bean JAR file), Web modules (stored in
Web Archives (WAR) files), and client modules (stored in a JAR file). A WAR file contains al the components of a Web application: servlets, JSPs, HTML files,
images, and so on. Each of the modules contains a deployment descriptor. For example, a WAR file contains aweb.xml file.

The J2EE hierarchy is matched by projectsin WSAD. An EAR project contains references to enterprise bean, Web, and Client projects.

Within this application, there is a FlightsEAR EAR file which contains a FlightsEJBM odule and a FlightsWebM odule Web module. The FlightsEJBModule contains
al of the enterprise beans (CustomerFlight, Customer, Flight, and Ticket). The FlightWebModule contains al of the Web components (FlightsServiet, HTML, JSP,
and image files).
To generate the flights Enterprise Application file:

1. Select File -> Export from the Application Developer main screen

2. The Export window will appear at which point choose EAR file

3. Inthe next window, select the FlightsEAR resource from the drop down list for the "What resource do you want to export?" field.

4

. Enter the location SystemName:\QIBM\UserData\WebA SAdvA\instanceName\installableA pps\flight.ear for the "Where do you want to export resources to?"
field. Click Finish.

5. Once the flights Enterprise Application is exported you can see the file in the folder.

Toinstall the flights Enterprise Application:
1. Open acommand prompt window to start the Administrative Console. Wait until you see the message Console Ready.

2. Inthe Console, select the wizard icon and click Install Enterprise Application. The Specifying the Application Module window displays. Make sure that the
Install Application radio button is selected. Click the Browse button next to Path to locate the flight.ear in the
\QIBM\UserData\WebA SAdvA\instanceName\instal lableApps directory.

3. After clicking on Next, you will get the following message: "This application contains method permissions. Do you wish to deny all unprotected methods?"
Answer Yes.

4. On the Mapping User Roles window, press the Select button and check "All Authenticated Users' then press OK.

5. Keep clicking on Next until you see the "Selecting Application Servers' window. At this window, select al the modules in the Module box and press the
Select Server button. Choose the default server and press OK.

6. Click Next and then Finish to install the application, when the Regenerate the application dialog displays, Click No.
Now that the flights Enterprise Application isinstalled on WebSphere Application Server Version 4.0 Advanced Edition, we need to stop the server. Before we restart

it, we need to copy the NCSOW jar to the QIBM/UserData/\WebA SAdv4/InstanceName/lib/ext directory so that it is picked up in the classpath when the server is
restarted. Restart the server to make the new application ready.

Finally the flights Enterprise Application is ready for use. To use the application, open abrowser and enter the following URL:
http://systemName: port/webapp/Flights/index.html

WebSphere(R) Application Server environment key findings

Following isalist of key findings that we uncovered while creating and using the flights scenario WebSphere Application Server environment.
« To set the Session Timeout value in a stateful session bean to alarger value, perform the following stepsin the WebSphere Application Server Application Assembly Tool (AAT):
. Open your enterprise bean JAR or EAR inthe AAT
. Drill down to your Session enterprise bean and click on it.
. Click on the IBM(R) Extensions tab in the right-hand pane
. Set the Timeout property
. Saveyour JAR or EAR
. Exitthe AAT

o Ul A W NP

« WebSphere Application Server Application Assembly Tool (AAT) can be used to generate code for an Enterprise Application. If you encounter problems generating code for an
Enterprise Application during installation, the WebSphere Application Server administration console does not provide much information on why installation failed. In this case, you
can use AAT to generate the deployed code for the same EAR file and it will provide you with more information as to why it is failing. Both the WebSphere Application Server
administration console and AAT use the same underlying code to generate the code. There is also a Verify option that you can run on the EAR file which will give you additional
information.

« Toaccommodate the needs of the JSPs, a couple of the Lotus(R) Domino(T) documents had to have fields added to them. For the flightSearch.jsp, the Scheduled Flights form
needed to have the following fields added: Departure Date and Arrival Date. For the passengerl nformation.jsp, the Ticket Information form needed to have passenger information
fields added.

« When using the Lotus Domino JDBC driver, the names of the Lotus Domino documents and columns are case sensitive within the SQL statements.

In the flights application, we used the Lotus Domino Java(TM) APIs to connect to a Lotus Domino database. Originally we were going to use the Lotus Domino JDBC driver;
however, in WebSphere Application Server, you can not create a datasource that uses the Lotus Domino JDBC driver on the i Series(TM). Since the i Series has not yet ported the
Lotus Domino JDBC driver, we also could not implement our own connection pooling. A Lotus Domino JDBC driver for iSeriesis scheduled to be available in afuture release.

The following hints may help if you are experiencing problems connecting to a L otus Domino server remotely from a WebSphere Java Application:

0 Make sure DIIOP is set up on the Lotus Domino server. If DIIOP is not set up, you will receive a message that the remote host refused the connection.

o Make sure to specify the port number of the Lotus Domino HTTP server when trying to obtain a NotesFactory session. For example:
Session session = NotesFactory.createSession(" systemName.domainName: portNumber", "user ID", "password").
Thiswill allow the CORBA request to get to the correct server. If the port number is not specified, you will receive a NotesException.

o You may receive a NotesException of 4377: Server must be on same host as session when performing the getDatabase statement from a Java Application using the
following lines of code:
Session session = NotesFactory.createSession(notesServer, notesUser, password);
ndbContent = session.getDatabase(notesServer, notesDatabase);

There are two solutions:
1. On the getDatabase, send only the server name not the server name along with the port number.

2. Passin"" asthe notesServer on the getDatabase call which will force the use of the session just created:
ndbContent = session.getDatabase("", notesDatabase);

o Make sure that the CLASSPATH contains the NCSOW jar file obtained from the version of Lotus Domino that you are using. Thisis the WebSphere version of the
NCSO.jar file. The NCSO.jar is unusable because the [1OP levels will clash and you will not be able to create a session.

0 To use the Domino Java APIs to connect from a WebSphere Java Application to a Domino database via || OP, the application must import the lotus.domino.* package.

o To obtain additional information on NotesExceptions, add the System.out.printIn in the code below. This allows you to print out static variables that explain the error better:

catch(l otus.domino.NotesException ne)

System.out.printin(netext + " " + ne.id);
ne.printStackTrace();
}

« InaJavaapplication using Lotus Domino Java APIs, when writing a Select statement to search on a date, you need to specify the date you are searching for as a constant (iethe[]
around the value). For example: SELECT (Form = "Scheduled Flights") & (ScheduledDepartureDate = [10/31/2001]).

« When coding finder methods in bean-managed persistence entity beans, the finder isimplemented by the gjbFindByxxxx() method. Finder methods in the home interface will have
the name findByxxxx(). The container implements the findByxox() essentially as a wrapper around ejbFindByxxxx() so the actual finder code needs to be written.

« To avoid receiving a CSl TransactionRolledbackException when calling a bean-managed persistence entity bean from a session bean, the session bean needs to be deployed with a
transaction setting of TX_SUPPORTS.

A org.omg.CORBA.INV_OBJREF exception happens when the client code is trying to use an object that the L otus Domino server does not know about any more. This could
happen if the client session stays idle longer than the amount of time allowed by the session timeout parameter in the server record or if someone forces adrop of all the sessions
from the server console. Leaving a session idle for along timeis not considered to be a good thing so DIIOP will go out and terminate these sessions. The client is responsible for
handling the situation.

If the client does not handle the error, the Lotus Domino Session will time out and render the session object obsolete and the following error messages will be displayed.
Here is the error message from the WebSphere Application Server:

org.omg.CORBA.INV_OBJREF: minor code: 1229062208 completed: No

javallang/Throwable.<init>(Ljava/lang/String;)V+4 (Throwabl e java:94)

org/omg/CORBA/INV_OBJREF-.<init>(Ljavallang/String;| L org/omg/CORBA/CompletionStatus;)V+1 (INV_OBJREF java: 72)
org/omg/CORBA/INV_OBJREF.<init>(Ljavallang/String;)V+6 (INV_OBJREF.java:48)

com/ibm/CORBA /iiop/ReplyM essage.get Sy stemException() L org/omg/ CORBA/SystemException; +119 (ReplyM essage java: 181)

com/ibm/rmi/iiop/ClientResponsel mpl.getSystemException() L org/omg/CORBA/SystemException;+11 (ClientResponsel mpl java:89)

com/ibm/CORBA/iiop/ClientDel egate.invoke(L org/omg/CORBA/Object; L org/omg/CORBA/portabl e/OutputStream;) L org/omg/CORBA /portabl e/l nputStream; + 235 (ClientDel egate.java: 439)
org/omg/CORBA /portable/Objectimpl._invoke(L org/omg/CORBA/portable/OutputStream;) L org/omg/ CORBA/portabl e/ nputStream; +4 (Objectimpl java:251)

lotus/domino/corba/_| DatabaseStub.search(L java/lang/String; L |otus'domino/corba/l DateTime;) L | otus/domino/corba/DCData; +0 (_| DatabaseStub.java0)
lotus/domino/cso/Database.search(L javallang/String; L otus/domino/DateTime;) Ll otus/domino/DocumentCollection; +0 (Database.java: 1478)
|otus/domino/cso/Database.search(L javall ang/String;) Ll otus/domino/DocumentCollection; +0 (Database.java: 1452)
com/flights/ejb/session/CustomerHlightBean.getAll CityCodes() L com/flights/FlightI nfo;+0 (CustomerFlightBean.java: 110)

com/flights/ej b/session/EJSRemoteCustomerFlight.getAll CityCodes() L com/flights/FlightInfo;+0 (EJSRemoteCustomerFlight.java: 31)
com/flights/gjb/session/_EJSRemoteCustomerFlight_Tie._invoke(Ljavallang/String;L org/lomg/CORBA/portable/| nputStream; L org/omg/CORBA /portabl e/ResponseHandl er;) L org/omg/ CORBA/portabl e/Output Stream; +0
(_EJSRemoteCustomerFlight_Tiejava:82)

com/ibm/CORBA /iiop/ExtendedServerDel egate.dispatch(L com/i bm/rmi/ServerRequest;) L com/ibm/rmi/ServerResponse; +224 (ExtendedServerDel egate.java: 506)
com/ibm/CORBA/iiop/ORB.process(L com/ibm/rmi/ServerRequest;)L com/ibm/rmi/ServerResponse;+20 (ORB java: 2282)
com/ibm/CORBA/iiop/WorkerThread.run()V+89 (WorkerThread.java: 195)

com/ibm/ejs/oa/pool /ThreadPool $Pool ed Thread.run()V+67 (ThreadPool .java:641)

Here isthe error message from the Domino server:
DIIOP SYSTEM EXCEPTION: INV_OBJREF, minor code 49420040, SOMDERROR_BadObjref [somd_refdata_to_obj(CORBA ::ReferenceData*):1091]
Y ou can try setting the timeout of 11OP to a higher value or you can try to catch the error and re-establish the session.

The following are ideas we tried to use to determine if a Lotus Domino session object is open from a Java client:

o Catch the exception from within the enterprise bean and handle it there. Thisideawill not work because of the following:.
From the Enterprise JavaBean 1.1 specification, section 12.3.4 Exceptions and transactions:

"If an instance has thrown an unchecked exception while executing in a client's transaction context, the container must mark the transaction for rollback and throw
javax.jts.TransactionRolledbackException to the client.”

"If the container decides for any reason to mark atransaction for rollback, it should throw the javax.jts. TransactionRolledback Exception to the client. The
javax.jts.TransactionRolledbackException is a subclass of the java.rmi.RemoteException, and it informs the client that any attempted recovery of the exception within the
transaction would be fruitless since the transaction cannot commit.”

To summarize, an unchecked exception occurring in an enterprise bean will always cause the in-flight transaction to be rolled back even if you are explicitly handling it.
Basically, an unchecked exception is any exception that is not derived from java.lang.Exception. A CORBA.INV_OBJREF exception is not derived from
javalang.Exception; hence, it can be classified as an unchecked exception. Thus, the container will always throw a TransactionRolledbackException when this exception is
thrown.

0 Use Session.isValid() which will be added to a future version of the Lotus Domino Java APIs. Thisis the best way to determine the state of asession, but it is not yet
available.

Feature: Session.isvValid()
Thisis part of the DIIOP connection pooling feature.

Purpose:

The purpose of this Java only method is to determine if a Session object that had been created is still valid. For the remoted API, it determinesif the DI1OP server task still
considers this session valid and therefore this method may perform a network operation. For this reason, this method should not be used in atight loop.

For thelocal API, it also determinesif asession isstill valid.

Signature:
boolean isvalid();

NOTE: This method does not throw any Exceptions.

Usage:

Here's an example of how to use the method in a servlet worker type of thread.
class WorkerThread extends Thread {

public void run()

while (WaitForWork()) {

if (1 session.isvalid()) {

/1 need to create new session

}
/1 do the work
}
}
}

o Modify your getConnection code to always get a new session to Lotus Domino. Thiswill avoid the CORBA.INV_OBJREF exception al together. Thisideaworks
although it provides extra overhead to the Java application.

« Inthe server document on the I1OP tab, the maximum number of threads that the administrator can specify is not restricted. In a future release of Lotus Domino, this setting is no
longer used by DIIOP. It will be left in the server document only for backwards support. The minimum timeout value for a session in the Lotus Domino server document isfive
minutes.

To specify classpath information for objects that reside in QIBM without using AAT, in WebSphere Studio Application Developer, you will want to create aMANIFEST.MF filein
the following locations:

For an enterprise bean module, you want create or use the existing manifest filein the following location : egpbModule -> META-INF -> MANIFEST.MF
For aWeb module, you want to create or use the existing manifest file in the following location: webApplication -> META-INF -> MANIFEST.MF
Here is an example of what the classpath would ook like in a Manifest.mf file:

Manifest-Version: 1.0
Class-Path: /gibm/userdata/webasadv4/flight4/installedapps/flightsear.ear/flightsejbmodule.jar

« After importing the published versions of the flights JSPs into WebSphere Studio Application Developer, they were each edited using Page Designer. After editing, the EAR was
exported to the installable directory and then each JSP was exported to a central team location. The JSPs that had updates made to them would not export to the team location. We
aso found that these JSPs could not be copied or deleted within WebSphere Studio Application Developer. The error received was that the resource is out of sync with thefile
system. The JSPs that were opened but did not have changes made were okay. The Web Module was then refreshed from local. This allowed the JSPs to be copied, deleted, and
exported.

« Table 1 liststhe keyboard shortcuts you can use in WebSphere Studio Application Developer's Java editor:

Table 1 Keyboard shortcuts

Description Key Sequence
Import Ctrl+Shift+M
Go to line number Ctrl+L

Indent the highlighted text Ctrl+l
Find/replace Ctrl+F

Copy Ctrl+C

Cut Citrl+X

Undo Ctrl+Z

Select al Ctrl+A

Go to the next error Ctrl+E

Brings up Java search with the selected item in the search table Ctrl+H

Brings up coding/content assistant. After you make your selection, Javadoc appears in hover Help Ctrl+Space
Executes an incremental build of a project in the navigation view Ctrl+B

Hold Ctrl key down and drag-and-drop resource to copy the resource between different Workbench windows |Ctrl+Drag-and-Drop

References

« Developing iSeries 2EE Applications for WebSphere 4.0, IBM Redbook SG24-6559-00
« WebSphere Studio Application Developer Programming Guide, IBM Redbook SG24-6585-00

« Tipsfor Working with Lotus Domino Objects
http://www.advisor.com/Articles.nsf/aidp/BALABO3

« WebSphere Studio Application Developer Migration Guide
http://www7b.boulder.ibm.com/wsdd/library/techarticles’/0110_wsad_mig/migration_ga.html

Example: Customer bean

The following examplesillustrate the coding of the Customer entity bean. The Customer bean uses bean-managed
persistence and is mapped to the FlightPerson form in the names.nsf L otus(R) Domino(T) database. It uses Lotus
Domino APIsto access the Lotus Domino database.

The source code for the CustomerKey is shown in Example 1.
Example 1: CustomerKey source code

package com.flights.ejb.bmp;

/**

* ThisisaPrimary Key Class for the Entity Bean

**/

public class CustomerKey implements java.io.Serializable {
public String primaryKey;

fina static long seriaVersionUID = 3206093459760846163L ;

/**

* CustomerKey() constructor
*/

public CustomerKey() {
}

/**

* CustomerKey(String key) constructor
*/

public CustomerKey(String key) {
primaryKey = key;

}

/**

* equals method

* - user must provide a proper implementation for the equal method. The generated
* method assumes the key is a String object.

*/

public boolean equals (Object o) {

if (0 instanceof CustomerKey)

return primaryKey.equal s(((CustomerKey)o).primaryKey);

else

return false;

}

/**

* hashode method

* - user must provide a proper implementation for the hashCode method. The generated
* method assumes the key is a String object.

*/

public int hashCode () {

return primaryKey.hashCode();

}

}
The source code for the CustomerHome inteface is shown in Example 2.
Example 2: CustomerHome source code

package com.flights.ejb.bmp;

/**

* ThisisaHome interface for the Entity Bean
*/
public interface CustomerHome extends javax.ejb.EJBHome {

/**

* create method for a BMP entity bean

* @return com.flights.ejb.bmp.Customer

* @param primaryKey com.flights.ejb.bmp.CustomerK ey

* @exception javax.ejb.CreateException The exception description.

* @exception java.rmi.RemoteException The exception description.

*/

com.flights.ejb.bomp.Customer create(com.flights.ejb.bmp.CustomerK ey primaryKey) throws
javax.gjb.CreateException, java.rmi.RemoteException;

/**

* findByPrimaryKey method comment

* @return com.flights.ejb.bmp.Customer

* @param key com.flights.ejb.bmp.CustomerK ey

* @exception java.rmi.RemoteException The exception description.

* @exception javax.ejb.FinderException The exception description.

*/

com.flights.ejb.bomp.Customer findByPrimaryK ey(com.flights.ejb.bmp.CustomerK ey key) throws
java.rmi.RemoteException, javax.ejb.FinderException;

}

The source code for the Customer remote interface is shown in Example 3.
Example 3: Customer remote interface source code

package com.flights.ejb.bmp;

/**

* Thisisthe enterprise bean Remote Interface for the Customer bean
*/
public interface Customer extends javax.ejb.EJBObject {

/**

* Returns the address for the customer.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerAddress() throws java.rmi.RemaoteException;
/**

* Returns the city for the customer.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerCity() throws java.rmi.RemoteException;

/**

* Returns the country for the customer.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerCountry() throws java.rmi.RemoteException;
/**

* Returns the first name of the customer.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerFirstName() throws java.rmi.RemoteException;

/**

* Returns the internet address for the customer.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerlnternetAddress() throws java.rmi.RemoteException;
/**

* Returns the last name of the customer.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerL astName() throws java.rmi.RemoteException;
/**

* Returns the middle initial of the customer.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerMiddlel nitial () throws java.rmi.RemoteException;
/**

* Returns the customer number.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerNumber() throws java.rmi.RemaoteException;
/**

* Returns the customer phone number.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerPhoneNumber() throws java.rmi.RemoteException;
/**

* Returns the state for the customer.

* @return java.lang.String

* @exception String The exception description.

*/

java.lang.String getCustomerState() throws java.rmi.RemoteException;

/**

* Returns the zip code for the customer.

* @return java.lang.String

* @exception String The exception description.

*/

javalang.String getCustomerZipCode() throws java.rmi.RemoteException;
/**

* Returns the values within the bean as data stored within a CustomerInfo JavaBean.
* @return com.flights.Customerinfo

* @exception String The exception description.

*/

com.flights.Customerinfo getData() throws java.rmi.RemoteException;

/**

* Sets the address for the customer.

* @return void

* @param newCustomerAddress java.lang.String

* @exception String The exception description.

*/

void setCustomerAddress(java.lang.String newCustomerAddress) throws java.rmi.RemoteException;
/**

* Sets the city for the customer.

* @return void

* @param newCustomerCity java.lang.String

* @exception String The exception description.

*/

void setCustomerCity(java.lang.String newCustomerCity) throws java.rmi.RemoteException;

/**

* Sets the country for the customer.

* @return void

* @param newCustomerCountry java.lang.String

* @exception String The exception description.

*/

void setCustomerCountry(java.lang.String newCustomerCountry) throws java.rmi.RemoteException;
/**

* Setsthe first name of the customer.

* @return void

* @param newCustomerFirstName java.lang.String

* @exception String The exception description.

*/

void setCustomerFirstName(javalang. String newCustomerFirstName) throws java.rmi.RemoteException;
/**

* Setsthe internet address for the customer.

* @return void

* @param newCustomerinternetAddress javalang.String

* @exception String The exception description.

*/

void setCustomerInternetAddress(java.lang.String newCustomerinternetAddress) throws java.rmi.RemoteException;
/**

* Setsthe last name of the customer.

* @return void

* @param newCustomerL astName java.lang.String

* @exception String The exception description.

*/

void setCustomerL astName(java.lang.String newCustomerLastName) throws java.rmi.RemoteException;
/**

* Setsthe middle initial of the customer.

* @return void

* @param newCustomerMiddlel nitial java.lang.String

* @exception String The exception description.

*/

void setCustomerMiddlel nitial (java.lang.String newCustomerMiddlel nitial) throws java.rmi.RemoteException;
/**

* Sets the customer number.

* @return void

* @param newCustomerNumber java.lang.String

* @exception String The exception description.

*/

void setCustomerNumber(java.lang.String newCustomerNumber) throws java.rmi.RemoteException;
/**

* Sets the phone number for the customer.

* @return void

* @param newCustomerPhoneNumber java.lang.String

* @exception String The exception description.

*/

void setCustomerPhoneNumber(java.lang.String newCustomerPhoneNumber) throws java.rmi.RemoteException;
/**

* Sets the state for the customer.

* @return void

* @param newCustomerState java.lang.String

* @exception String The exception description.

*/

void setCustomer State(java.lang. String newCustomer State) throws java.rmi.RemoteException;

/**

* Sets the zip code for the customer.

* @return void

* @param newCustomerZipCode javalang.String

* @exception String The exception description.

*/

void setCustomerZipCode(javalang.String newCustomerZipCode) throws java.rmi.RemoteException;
}

The source code for the Customer enterprise bean is shown in Example 4.
Example 4: Customer enterprise bean source code
package com.flights.ejb.bmp;

import java.rmi.RemoteException;

import java.security.ldentity;

import java.util.Properties;

import javax.gjb.*;

import lotus.domino.*;

import javax.naming.*;

/**

* Thisis an Entity Bean class with BMP fields

*/

public class CustomerBean implements EntityBean {
private javax.ejb.EntityContext entityContext = null;
private final static long serialVersionUID = 3206093459760846163L ;

private javalang.String customerAddress;

private javalang.String customerCity;

private javalang.String customerCountry;

private javalang.String customerFirstName;

private javalang.String customerinternetAddress;

private javalang.String customerL astName;

private javalang.String customerMiddlel nitial;

private javalang.String customerPhoneNumber;

private javalang.String customerState;

private java.lang.String customerZipCode;

private javalang.String customerNumber;

private transient Database ndbContent = null;

/**

* gjbActivate method comment

* @exception java.rmi.RemoteException The exception description.
*/

public void gjbActivate() throws java.rmi.RemoteException {}

/**

* gjbCreate method for a BMP entity bean

* @return com.flights.ejb.bmp.CustomerK ey

* @exception javax.ejb.CreateException The exception description.
* @exception java.rmi.RemoteException The exception description.
*/

public com.flights.ejb.bmp.CustomerK ey ejbCreate() throws javax.ejb.CreateException, java.rmi.RemoteException {
return null;

}

/* *

* gjbCreate method for a BMP entity bean

* @return com.flights.ejb.bmp.CustomerK ey

* @param key com.flights.ejb.bmp.CustomerK ey

* @exception javax.ejb.CreateException The exception description.

* @exception java.rmi.RemoteException The exception description.

*/

public com.flights.ejb.bmp.CustomerK ey ejbCreate(com.flights.ejb.bmp.CustomerK ey key) throws
javax.gjb.CreateException, java.rmi.RemoteException {

return null;

}

/**

* gjbFindByPrimaryK ey method comment

* @return com.flights.ejb.bmp.CustomerK ey

* @param primaryKey com.flights.ejb.bmp.CustomerK ey

* @exception java.rmi.RemoteException The exception description.
* @exception javax.ejb.FinderException The exception description.
*/

public com.flights.ejb.bmp.CustomerK ey ejbFindByPrimaryK ey(com.flights.ejb.bmp.CustomerK ey primaryKey)
throws java.rmi.RemoteException, javax.ejb.FinderException {
refresh(primaryKey);

return primaryKey;

/**

* Used to refresh the enterprise bean from the persistent storage.

* @exception java.rmi.RemoteException The exception description.
*/

public void gjbLoad() throws java.rmi.RemoteException {

System.out.printin(" Customer.gjbLoad()");
try

{
refresh((CustomerKey) entityContext.getPrimaryKey());

}
catch (FinderException fe)

{

throw new RemoteException(fe.getM essage());

}

}

/* *

* gjbPassivate method comment

* @exception java.rmi.RemoteException The exception description.
*/

public void gjbPassivate() throws java.rmi.RemoteException {}

/* *

* gjbPostCreate method for a BMP entity bean

* @param key com.flights.ejb.bmp.CustomerK ey

* @exception java.rmi.RemoteException The exception description.
*/

public void gjbPostCreate(com.flights.ejb.omp.CustomerK ey key) throws java.rmi.RemoteException {}
/* *

* gibRemove method comment -- currently not implemented

* @exception java.rmi.RemoteException The exception description.
* @exception javax.ejb.RemoveException The exception description.
*/

public void ejbRemove() throws java.rmi.RemoteException, javax.ejb.RemoveException {}
/* *

* gjbStore method comment

* @exception java.rmi.RemoteException The exception description.
*/

public void gjbStore() throws java.rmi.RemoteException {

System.out.printin(" Customer.gjbStore() ");

DocumentCollection dclResult = null;
Document docResult = null;

try

ndbContent = getConnection();

I/ Search for document with specified key values

System.out.printin(" Searching for document: " + customerNumber);

dclResult = ndbContent.search("SELECT (Form = \"FlightPerson\") & (PersonalID ="+ customerNumber.trim()
+)");

docResult = dclResult.getFirstDocument();

if (docResult !=null)

// Update document to contain new values
System.out.printin(" Should be updating customer info");

docResult.replaceltemVaue("FirstName', customerFirstName);
docResult.replaceltemVaue("Middlelnitial”, customerMiddiel nitial);
docResult.replaceltemVaue("LastName", customerL astName);
docResult.replaceltemVaue(" StreetAddress’, customerAddress);
docResult.replaceltemVaue(" City", customerCity);
docResult.replaceltemVaue(" State", customerState);
docResult.replaceltemVaue(" Zip", customerZipCode);
docResult.replaceltemVaue(" Country", customerCountry);
docResult.replaceltemVaue(" PhoneNumber", customerPhoneNumber);
docResult.replaceltemVaue("InternetAddress’, customerinternetAddress);

docResult.save();

else
throw new FinderException(" Customer EJB Store: CustomerBean (" + customerNumber + ") not found");

System.out.printin(" After update");

catch(lotus.domino.NotesException ne)
{

System.out.printin(ne.text + " " + ne.id);
ne.printStack Trace();
throw new RemoteException(ne.toString());

}
catch(Exception €)

{
e.printStackTrace();
throw new RemoteException(e.toString());

}

finaly
{
try

{
System.out.printin("Recycle objects");

if (dclResult = null)
dclResult.recycle();
if (docResult !=null)
docResult.recycle();
}

catch(Exception ex)

throw new RemoteException(ex.toString());

}
}

}

/* *

* Used to return a connection to the Lotus Domino database using Lotus Domino APIs.

* Creation date: (10/19/2001 3:14:11 PM)

* @return javax.sgl.DataSource

* @exception java.sgl.SQL Exception The exception description.

*/

private Database getConnection() throws java.rmi.RemoteException, java.sgl.SQL Exception {

if (ndbContent == null) {

Properties properties = getEntity Context().getEnvironment();
String providerURL = properties.getProperty("provider_url");
String notesServer = properties.getProperty("' notesServer™);
String notesUser = properties.getProperty (" notesUser");
String password = properties.getProperty (" password");

String notesDatabase = properties.getProperty (" notesDB");

Initial Context ctx = null;
Properties prop = new Properties();

try {
prop.put(Context. PROVIDER_URL, providerURL);

prop.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.gjs.ns.jndi.CNInitial ContextFactory");
ctx = new Initial Context(prop);

System.out.printIn(" creating notes session using current creds");
Session session = NotesFactory.createSessi on(notesServer, null);
System.out.printin("username: " + session.getUserName());

System.out.printIn("got session - getting DB");
ndbContent = session.getDatabase("", notesDatabase);

System.out.printin("got database");
if (!ndbContent.isOpen()) ndbContent.open();

}

catch(lotus.domino.NotesException ne){
System.out.printin(ne.text + " " + ne.id);
ne.printStack Trace();

throw new RemoteException(ne.toString());

catch (Exception €) {
System.out.printin("an error occurred");
e.printStackTrace();

throw new RemoteException(e.toString());

}
}

return ndbContent;

}

/**

* Returns address for customer.

* Creation date: (04/02/02 2:37:06 PM)

* @return java.lang.String

*/

public javalang.String getCustomerAddress() {
return customerAddress;

}

/**

* Returns city for customer.

* Creation date: (04/02/02 2:37:28 PM)

* @return java.lang.String

*/

public javalang.String getCustomerCity() {
return customerCity;

}

/**

* Returns country for customer.

* Creation date: (04/02/02 2:37:46 PM)

* @return java.lang.String

*/

public javalang.String getCustomerCountry() {
return customerCountry;

}

/**

* Returns first name of customer.

* Creation date: (04/02/02 2:38:05 PM)

* @return java.lang.String

*/

public javalang.String getCustomerFirstName() {
return customerFirstName;

}

/**

* Returnsinternet address of customer.

* Creation date: (04/02/02 2:38:24 PM)

* @return java.lang.String

*/

public javalang.String getCustomerinternetAddress() {
return customerinternetAddress;

}

/**

* Returns last name of customer.

* Creation date: (04/02/02 2:38:39 PM)

* @return java.lang.String

*/

public javalang.String getCustomerL astName() {
return customerL astName;

}

/**

* Returns middle initial of customer.

* Creation date: (04/02/02 2:38:55 PM)

* @return java.lang.String

*/

public javalang.String getCustomerMiddlel nitial () {
return customerMiddlelnitial;

}

/**

* Returns customer number.

* Creation date: (04/02/02 2:40:12 PM)

* @return java.lang.String

*/

public javalang.String getCustomerNumber() {
return customerNumber;

}

/**

* Returns phone number for customer.
* Creation date: (04/02/02 2:39:10 PM)
* @return java.lang.String

*/

public javalang.String getCustomerPhoneNumber() {
return customerPhoneNumber;

}

/**

* Returns state for customer.

* Creation date: (04/02/02 2:39:22 PM)

* @return java.lang.String

*/

public javalang.String getCustomerState() {
return customer State;

}

/**

* Returns zip code for customer.

* Creation date: (04/02/02 2:39:40 PM)

* @return java.lang.String

*/

public javalang.String getCustomerZipCode() {
return customerZipCode;

}

/**

* Returns the values within the enterprise bean as data stored within a Customerinfo JavaBean.
* Creation date: (03/26/02 7:20:12 AM)

*/

public com.flights.Customerinfo getData() {

com.flights.CustomerInfo customerinfo = new com.flights.Customerinfo();

customerl nfo.setCustomerFirstName(customerFirstName);
System.out.printin("getData(): Here's the customer first name: " + customerFirstName);
customerlnfo.setCustomerMiddl el nitial (customerMiddlel nitial);

System.out.printin("getData(): Here's the customer middleinitial: " + customerMiddlel nitial);
customerl nfo.setCustomerL astName(customerL astName);
customerlnfo.setCustomerAddress(customerAddress);

customerl nfo.setCustomer| nternetAddress(customer I nternetAddress);

System.out.printin("getData(): Here's the customer internet address: " + customerInternetAddress);
customerl nfo.setCustomerCity(customerCity);

customerl nfo.setCustomer State(customer State);

customerl nfo.setCustomerZipCode(customerZipCode);

customerl nfo.setCustomerCountry(customerCountry);

customerl nfo.setCustomerPhoneNumber(customerPhoneNumber);

return customernfo;

}

/**

* getEntityContext method comment

* @return javax.ejb.EntityContext

*/

public javax.ejb.EntityContext getEntityContext() {
return entityContext;

}

/**

* Refreshes the enterprise bean corresponding to the primary key from the persistent
* storage.

* Creation date: (11/14/2001 2:06:39 PM)

* @param aPrimaryK ey com.flights.ejb.bomp.FlightKey

* @exception java.rmi.RemoteException The exception description.

* @exception javax.ejb.FinderException The exception description.

*/

private void refresh(CustomerK ey primaryK ey) throws java.rmi.RemoteException, javax.ejb.FinderException {

DocumentCollection customerDC = null;
Document customerDoc = null;

System.out.printin("starting refresh™);

if (primaryKey == null)
throw new RemoteException("Primary key cannot be null");

customerNumber = primaryKey.primaryKey;
System.out.printin(" Customer Number in refresh: " + customerNumber);

try {

ndbContent = getConnection();

// find the customer number to obtain customer info

customerDC = ndbContent.search("SELECT (Form =\"FlightPerson\") & (PersonallD ="+ customerNumber.trim()
+Il)ll);

System.out.printin("number of elementsin collection: " + customerDC.getCount());

customerDoc = customerDC.getFirstDocument();

if (customerDoc !'=null) {

customerFirstName = customerDoc.getltemVa ueString(" FirstName'");
customerMiddlelnitial = customerDoc.getltemV alueString("Middlelnitial");
customerL astName = customerDoc.getltemVa ueString('LastName');
customerAddress = customerDaoc.getltemVaueString(" StreetAddress');
customerCity = customerDoc.getltemV aueString(" City");

customerState = customerDoc.getltemValueString(" State");

customerZipCode = customerDoc.getltemVaueString("Zip");
customerCountry = customerDoc.getltemV aueString(" Country");
customerPhoneNumber = customerDaoc.getltemV alueString(" PhoneNumber");
customerinternetAddress = customerDoc.getltemValueString(" I nternetAddress');

+

System.out.printin("FN: " + customerFirstName + " LN: " + customerLastName + " MI: " + customerMiddlel nitial
" Internet Addr: " + customerinternetAddress);

} Il end if
else

throw new FinderException(" Customer information not found for customer number " + customerNumber);

}

} [l end try
catch(lotus.domino.NotesException ne){
System.out.printin(ne.text + " " + ne.id);
ne.printStack Trace();

throw new RemoteException(ne.toString());

}

catch(Exception €) {

e.printStackTrace();

throw new RemoteException(e.toString());
}

finaly

{

try
{
System.out.printIn("Recycle objects in CustomerBean refresh);

if (customerDC !=null)
customerDC.recycle();
if (customerDoc != null)
customerDoc.recycle();

}
catch(Exception ex)

throw new RemoteException(ex.toString());

}

}

}

/**

* Sets the address for the customer.

* Creation date: (04/02/02 2:37:06 PM)

* @param newCustomerAddress java.lang.String

*/

public void setCustomerAddress(java.lang.String newCustomerAddress) {
customerAddress = newCustomerAddress,

}

/**

* Sets the city for the customer.

* Creation date: (04/02/02 2:37:28 PM)

* @param newCustomerCity java.lang.String

*/

public void setCustomerCity(javalang.String newCustomerCity) {
customerCity = newCustomerCity;

}

/**

* Sets the country for the customer.

* Creation date: (04/02/02 2:37:46 PM)

* @param newCustomerCountry java.lang.String

*/

public void setCustomerCountry(java.lang.String newCustomerCountry) {
customerCountry = newCustomerCountry;

}

/**

* Setsthe first name of the customer.

* Creation date: (04/02/02 2:38:05 PM)

* @param newCustomerFirstName java.lang.String

*/

public void setCustomerFirstName(javalang.String newCustomerFirstName) {
customerFirstName = newCustomerFirstName;

}

/**

* Setsthe internet address for the customer.

* Creation date: (04/02/02 2:38:24 PM)

* @param newCustomerinternetAddress javalang.String

*/

public void setCustomerl nternetAddress(java.lang.String newCustomer| nternetAddress) {
customerinternetAddress = newCustomerlnternetAddress,

}

/**

* Setsthe last name of the customer.
* Creation date: (04/02/02 2:38:39 PM)
* @param newCustomerL astName java.lang.String

*/
public void setCustomerL astName(java.lang.String newCustomerLastName) {
customerL astName = newCustomerL astName;

}

/**

* Setsthe middle initial of the customer.

* Creation date: (04/02/02 2:38:55 PM)

* @param newCustomerMiddlel nitial java.lang.String

*/

public void setCustomerMiddlelnitial (java.lang.String newCustomerMiddlel nitial) {
customerMiddlelnitial = newCustomerMiddlelnitial;

}

/**

* Sets the customer number.

* Creation date: (04/02/02 2:40:12 PM)

* @param newCustomerNumber java.lang.String

*/

public void setCustomerNumber(java.lang.String newCustomerNumber) {
customerNumber = newCustomerNumber;

}

/**

* Sets the phone number for the customer.

* Creation date: (04/02/02 2:39:10 PM)

* @param newCustomerPhoneNumber java.lang.String

*/

public void setCustomerPhoneNumber(java.lang.String newCustomerPhoneNumber) {
customerPhoneNumber = newCustomerPhoneNumber;

}

/**

* Sets the state for the customer.

* Creation date: (04/02/02 2:39:22 PM)

* @param newCustomerState java.lang.String

*/

public void setCustomer State(java.lang. String newCustomer State) {
customer State = newCustomer State;

}

/**

* Sets the zip code for the customer.

* Creation date: (04/02/02 2:39:40 PM)

* @param newCustomerZipCode javalang.String

*/

public void setCustomerZipCode(java.lang.String newCustomerZipCode) {
customerZipCode = newCustomerZipCode;

}

/**

* setEntityContext method comment

* @param ctx javax.ejb.EntityContext

* @exception java.rmi.RemoteException The exception description.
*/

public void setEntityContext(javax.ejb.EntityContext ctx) throws java.rmi.RemoteException {
entityContext = ctx;

}

/**

* unsetEntityContext method comment

* @exception java.rmi.RemoteException The exception description.
*/

public void unsetEntityContext() throws java.rmi.RemoteException {
entityContext = null;

}
}

The source code for the CustomerinfoBean is shown in Example 5.
Example 5: CustomerlnfoBean source code

package com.flights;
import java.util.*;

/**

* CustomerlInfo is a JavaBean used to store the customer information for
* aspecific customer/flight. It is passed to the appropriate

* JSP which will useit to retrieve the specific customer data.

*/

public class Customerlnfo implements java.io.Serializable {

private javalang.String customerFirstName;
private javalang.String customerMiddlel nitial;
private java.lang.String customerL astName;
private javalang.String customerAddress;
private javalang.String customerCity;

private javalang.String customerState;

private java.lang.String customerZipCode;
private javalang.String customerCountry;
private javalang.String customerPhoneNumber;
private javalang.String customerinternetAddress;
private Vector customerListVector;

/**

* CustomerInfo constructor.

*/

public Customerinfo() {

super();

}

/**

* Returns address for customer.

* Creation date: (02/11/02 10:08:49 AM)

* @return java.lang.String

*/

public javalang.String getCustomerAddress() {
return customerAddress;

}

/**

* Returns city for customer.

* Creation date: (02/11/02 10:10:19 AM)

* @return java.lang.String

*/

public javalang.String getCustomerCity() {
return customerCity;

}

/**

* Returns country for customer.

* Creation date: (02/11/02 10:11:38 AM)

* @return java.lang.String

*/

public javalang.String getCustomerCountry() {
return customerCountry;

}

/**

* Returns first name of customer.
* Creation date: (02/11/02 10:28:15 AM)
* @return java.lang.String

*/
public javalang.String getCustomerFirstName() {
return customerFirstName;

}

/**

* Returnsinternet address for customer.

* Creation date: (04/02/02 12:31:05 PM)

* @return java.lang.String

*/

public String getCustomerinternetAddress() {
return customerinternetAddress;

}

/**

* Returns last name of customer.

* Creation date: (02/11/02 10:29:22 AM)

* @return java.lang.String

*/

public javalang.String getCustomerL astName() {
return customerL astName;

}

/**

* Returnslist of customers.

* Creation date: (02/11/02 10:30:00 AM)
* @return java.lang.String

*/

public Vector getCustomerListVector() {
return customerListVector;

}

/**

* Returns middlet initial of customer.

* Creation date: (02/11/02 10:30:00 AM)

* @return java.lang.String

*/

public javalang.String getCustomerMiddlel nitial () {
return customerMiddlelnitial;

}

/**

* Returns phone number for customer.

* Creation date: (02/11/02 10:30:28 AM)

* @return java.lang.String

*/

public javalang.String getCustomerPhoneNumber() {
return customerPhoneNumber;

}

/**

* Returns state for customer.

* Creation date: (02/11/02 10:31:01 AM)

* @return java.lang.String

*/

public javalang.String getCustomerState() {
return customer State;

}

/**

* Returns zip code for customer.

* Creation date: (02/11/02 10:31:32 AM)

* @return java.lang.String

*/

public javalang.String getCustomerZipCode() {
return customerZipCode;

}

/**

* Sets address for customer.

* Creation date: (02/11/02 10:42:16 AM)

*/

public void setCustomerAddress(java.lang.String newCustomerAddress) {
customerAddress = newCustomerAddress;

}

/**

* Set city for customer.

* Creation date: (02/11/02 10:53:31 AM)

*/

public void setCustomerCity(java.lang.String newCustomerCity) {
customerCity = newCustomerCity;

}

/**

* Sets country for customer.

* Creation date: (02/11/02 10:57:06 AM)

*/

public void setCustomerCountry(java.lang.String newCustomerCountry) {
customerCountry = newCustomerCountry;

}

/**

* Setsfirst name of customer.

* Creation date: (02/11/02 10:57:31 AM)

*/

public void setCustomerFirstName(javalang.String newCustomerFirstName) {
customerFirstName = newCustomerFirstName;

}

/**

* Setsinternet address for customer.

* Creation date: (04/02/02 12:32:18 PM)

* @param newCustomerlnternetAddress javalang.String

*/

public void setCustomerlnternetAddress(String newCustomerinternetAddress) {
customerinternetAddress = newCustomerlnternetAddress,

}

/**

* Setslast name of customer.

* Creation date: (02/11/02 10:57:57 AM)

*/

public void setCustomerL astName(java.lang.String newCustomerLastName) {
customerL astName = newCustomerL astName;

}

/**

* Setslist of customers.

* Creation date: (02/11/02 10:58:12 AM)

*/

public void setCustomerListVector(Vector newCustomerListVector) {
customerListVector = newCustomerListVector;

}

/**

* Sets middle initial of customer.

* Creation date: (02/11/02 10:58:39 AM)

*/

public void setCustomerMiddlel nitial (java.lang.String newCustomerMiddlel nitial) {
customerMiddlelnitial = newCustomerMiddlel nitial;

}

/**

* Sets phone number for customer.
* Creation date: (02/11/02 10:58:39 AM)

*/
public void setCustomerPhoneNumber(java.lang.String newCustomerPhoneNumber) {
customerPhoneNumber = newCustomerPhoneNumber;

}

/**

* Sets state for customer.

* Creation date: (02/11/02 10:58:52 AM)

*/

public void setCustomer State(java.lang. String newCustomer State) {
customer State = newCustomer Stete;

}

/**

* Sets zip code for customer.

* Creation date: (02/11/02 10:59:08 AM)

*/

public void setCustomerZipCode(java.lang.String newCustomerZipCode) {
customerZipCode = newCustomerZipCode;

}
}

WebSphere(R) Application Server and Lotus(®R)
Domino(M) interoperability overview

The iSeries(TM) System Test flights scenario consisted of a a WebSphere Application Server front end with Lotus
Domino databases on the backend. As aresult, we needed to ensure that the WebSphere Application Server front end
could work with the Lotus Domino back end. Thisincluded the ability to communicate between the two
environments, share asingle sign-on (SSO) across the environments, and ensure security within each of the
environments.

To communicate between the two environments, the flights application used WebSphere Application Server programs
written in Java(TM) that used the Lotus Domino Java APIs. The Lotus Domino workflow managed the popul ation of
the flights. The WebSphere Application Server transaction services were used to implement the customer flight Web
site.

The flights application uses the L otus Domino LDAP (Lightweight Directory Access Protocol) directory. The LDAP
directory is needed for implementing WebSphere Application Server security. LDAP allows the flight customersto
authenticate using customer numbers and passwords. The flights application validates the user's identity to allow
access to customer and payment information.

The flights application uses the single sign-on capability that spans WebSphere Application Server and Lotus
Domino. This alows the flight application to access either while only requiring the user to sign on once. This means
that when atransaction isinitiated from WebSphere Application Server to the Lotus Domino database, the same login
credentials are used. The opposite is also possible, but the flights application did not have a need for L otus Domino to
access WebSphere Application Server. The goa of single sign-on is to provide a seamless flow of information across
the products.

WebSphere(R) Application Server and Lotus(®R)
Domino(M) interoperability single sign-on

For the flights application, security is a concern. Both WebSphere Application server and Lotus Domino provide
support for securing access and data. Both products implement security mechanisms which involve determining and
verifying user identity (authentication) and allowing access to protected resources to designated users (authorization).

Using single sign-on (SSO), the flight's Web users can authenticate once to the WebSphere Application Server, and
then access L otus Domino without logging in again. Thisis accomplished by configuring the L otus Domino and
WebSphere Application Servers to share authentication information gathered from the single Lotus Domino LDAP
server.

To enable SSO between servers, the Lightweight Third Party Authentication (LTPA) mechanismis used. This
mechanism utilizes an LTPAToken which contains the user authentication information, the network domain in which
the SSO isvalid, and the expiration time. The LTPAToken is encrypted using the LTPA keys that must be shared for
all the SSO participating servers.

Thetoken isissued to the Web user in a cookie. This cookie resides in browser memory and is not stored on the user's
computer and expires when the user closes the browser.

Enabling single sign-on (SSO) on WebSphere, requires configuring the Enterprise Application Resource (EAR) file
for security and configuring the global security settings in WebSphere Application Server. Figure 1 shows the flight
application single sign-on process between Lotus Domino and WebSphere Application Server.

Figure 1 Lotus Domino and WebSphere SSO

1. A Web user submits a request to the Web server (HTTP server) for a protected resource, to obtain the home
page.

2. The Web server prompts the user for the authentication information.
3. The user responds by supplying the information (customer number and password).

4. Then the Web server contacts the LTPA server (WebSphere Application Server) which connects with the
Lotus Domino Directory to verify the authentication information.

5. If the information supplied for the user is correct, Lotus Domino responds to the server (WebSphere
Application Server) with the validated information.

6. The server uses the returned values to check if the user has access to the requested resource and issues an
LTPA token for the user. The Web server sends the token to the user asa HTTP Cookie which is stored in the
user's browser and serves the requested resource (index.html).

7. Once the user is authenticated and the cookie is available, they can request another protected resource from
Lotus Domino or WebSphere Application Server.

8. Lotus Domino and WebSphere Application Server validate the token provided for the user and tell the Web
server to send the requested resource to the browser, as long as the user has enough access to that resource,
without prompting again with the challenge information.

Setting up IIOP on Lotus Domino

Remote L otus Domino objects make use of Common Object Request Broker Architecture (CORBA) to implement
access to Lotus Domino. In CORBA, communication between objects occurs through Object Request Brokers (ORBS)
that use the Internet Inter-ORB Protocol (110P) to send messages to each other. In Lotus Domino, the Lotus Domino
Internet Inter-ORB Protocol (DI1OP) service isused for CORBA communication. The advantage of using remote

objectsis that the Web application server can run on a separate machine from the Lotus Domino server. The code
imports the lotus.domino.* package. The NotesFactory() method requires a Lotus Domino server | P address or name
and avalid user ID and profile that has access to 11OP and the L otus Domino server. The remote L otus Domino server
needs to have DIIOP configured and the user ID must be authorized to use the L otus Domino server and be authorized
to run 11OP agents.

The flights application used remote L otus Domino objects when using the Lotus Domino Java(TM) APIs for the
following reasons:

« Configuration and execution time requirements are simpler
« Norestrictions on usage in multi-threaded environments

To configure the Lotus Domino server for CORBA, perform the following steps:

1. Edit the notes.ini file and add the tasks to the lists of tasks specified in the ServerTasks parameter. For
example:
ServerTasks=<any other tasks>, HTTP, DIIOP

2. Open the Lotus Domino server document for editing and choose the Ports -> Internet Ports -> 11OP tab. Set
the port number and enable the port. The default port number is 63149 for a TCP/IP I1OP port and 63148 for
the 11OP port that uses SSL. Also, you can specify whether to allow name and password and anonymous
access.

3. Configure the number of threads and time-out value. The time-out val ue represents the number of minutes a
connection can beidle before being dropped by the server. To set the time-out value, choose Internet
Protocols -> [10OP tab of the Lotus Domino server document.

4. Set security for accessing the Lotus Domino server and for running Java programs on the server. In the Server
access section, specify who can access the server. If the field isleft blank, no one is denied access to the
server. If the field has any names listed in it, then only those people or groups specifically listed can access
the server. If users are required to log in, thisinformation is checked by the server after they have been
authenticated.

5. Inthe Java/COM Restrictions section of the Lotus Domino server document, specify the users who are
allowed to access the Lotus Domino objects using CORBA. If thisfield isleft blank, no oneisalowed to
access the Lotus Domino objects using CORBA. The field can accept wildcards. An asterisk (*) in thisfield
allows everyone.

6. If your Lotus Domino server is behind afirewall, edit the Lotus Domino server's Notes(TM).ini and add the
line DIIOP_IOR_HOST=ipAddress. Here ipAddress is the | P address of your Lotus Domino server asit is
known outside of the firewall.

Configuring the flights application for security

Before configuring WebSphere Application Server or Lotus Domino, the application needs to be configured for
security and installed. For information on configuring an application for security, see the IBM(R) Redbook, IBM
WebSphere V4.0 Advanced Edition Security. The chapters on Securing Web Components and Securing Enterprise
Bean Components were followed for securing the flights application in WebSphere Studio Application Developer.

In the flights application, Form-based authentication was used. This authentication mechanism allowed the flights site
to specify a site specific HTML login page. When using Form-based authentication, the password is not encrypted
and the target server is not authenticated which provides a security risk. To avoid this security risk, secure transport
(SSL) could be used.

Enabling single sign-on for WebSphere Application Server

Configuring Global Security Settings for SSO in WebSphere involves the following:
1. Start WebSphere Administrator's Console.

2. Select Console -> Security Center. Thiswill display the global security settings for WebSphere. Check
Enable Security in the Genera tab.

3. Click on the Authentication tab and choose Lightweight Third Party Authentication (LTPA) asthe
Authentication mechanism type.

4. Specify the following LTPA settings:

1. How many minutes can pass before a client using an L TPA token must authenticate again in the
Token Expiration field.

2. Check Enabled single sign-on (SSO). The Domain field will then be enabled.

3. Enter aDNS domain name in the Domain field. This domain name is used when the HTTP cookieis
created for SSO and determines the scope to which SSO applies.

Important: All SSO participating servers must be in the same DNS domain.
5. Check the LDAP radio button and input the LDAP server settings.

Note: Make sure to configure WebSphere Application Server to use Lotus Domino 5.0 as the Directory typein
Security Center. Also make sure that the Lotus Domino server is running and the LDAP task is started, because the
Security server 1D and password will be verified.

6. Click on the Generate Keys button to create the LTPA keysfor encrypting the LTPA token. Y ou will be
prompted for an LTPA password to protect the set of encryption keys. These LTPA keys must be shared for
all serversusing SSO.

Important: Remember that the generation of the LTPA keys must be done when the Lotus Domino LDAP server
settings are configured. This guarantees that the LDAP host name and port are present in the exported file. Lotus
Domino needs this information during the Web SSO configuration document creation process.

7. Oncethe LTPA keys are generated, click on the Export Key button to export the LTPA keysto afile. This
fileis used to import the keys into Lotus Domino.

8. Click on Apply and then OK.

9. When the process is completed a warning message will display, saying: Changes will not take effect until the
admin server isrestarted. Click OK.

10. Restart the administration server by selecting the node included in the node folder located in the tree view on
the left side of the console and then right-clicking on it and select Restart in the resulting context menu.

Enabling single sign-on for the Lotus Domino Server

1. Create anew Web SSO configuration Document in the Lotus Domino Directory database.

1. Select Server -> Serversto display the view. Click on the Web button and select Create Web SSO
Document in the resulting context menu.

2. A new document will be displayed with the following Token Name field (LTPAToken).

3. Include the DNS domain in the Token Domain field. This value must coincide with the value
specified in the Domain field in WebSphere Application Server. This domain name is used when the
HTTP cookieis created for single sign-on and determines the scope to which single sign-on applies.

4. Choose the Lotus Domino servers that are going to participate in the SSO scenario.

Note: You must specify afully qualified Lotus Domino server name (for example, MyDominoServer/MyOQOu).
The Lotus Domino server name that you specify must also match the name of the Home/mail server currently
in the active Location document on your Lotus Notes(R) client. If the L ocation document does not match, you
must create one that does.

5. Enter the maximum number of minutes that the issued token will be valid in the Expiration (minutes)
files. Set it to match the time set in WebSphere Application Server.

6. Click on the Keys drop down and select Import WebSphere LTPA keys.

7. Specify the path and the file name for the WebSphere Application Server LTPA keysfile exported
earlier.

8. Click OK. A new dialog box will appear prompting the user for the LTPA password specified when
the keys were generated.

9. Click OK. When the process completes a confirmation message will be displayed.

10. A new WebSphere Information section will appear in the document. The LDAP realm and host name
are read from the WebSphere Application Server Import file. If a port was specified in the
WebSphere LDAP configuration setting, make sure to add a blackslash (\) prior to the colon (:) in the
LDAP Ream field.

11. Click on Save and Close button. The document will be saved. To check if the document is present in
the Lotus Domino Directory select Server -> Web Configurations View and expand the *-All Servers
- section. The new document should be displayed as Web SSO configuration for LtpaToken.

2. Enable TCPF/IP port status in Ports -> Internet Ports -> Web tab and do not allow anonymous connections over
TCP/IP by modifying the Lotus Domino Server Document.

3. Select Multi-Server session in Internet Protocols -> Lotus Domino Web Engine tab on the server document.

4. Select More name variations with lower security in the Web server authentication section of the security tab.
This allows usersto enter the following name formats in the name and password dialog box: last name, first
name, common name, full hierarchical name, short name, and alias name.

Table 1 shows how the Database ACL was modified to implement security on the flights application database.

Table 1 Lotus Domino and WebSphere SSO

|People, Servers, and Group [User Type |Access Level [Authorization
|Flight Employees |Person Group |Editor |Delete Documents, Create L otus Script/Java Agent
|Anonymous |Unspecified |Reader |Write Public Documents

The Lotus Domino server will present adefault server login page when a user tries to access a Web page from the
database. The Web user then needs to enter their username and password and click on the Login button.

The Lotus Domino server checks if the user isregistered in the Lotus Domino Directory database and verifies that the
credential values are correct. It also checks if the user has access to the database. Once the user is authenticated, Lotus
Domino creates anew LTPAToken and sendsiit to the user asa HT TP cookie and opens the Lotus Domino document.

WebSphere(R) Application Server and Lotus(R) Domino(M) inter operability key
findings

Following isalist of key findings that we uncovered while implementing the flights scenario which dealt with WebSphere Application Server and Lotus Domino inter operability.

« When creating the L otus Domino Web single sign-on (SSO) configuration document, you need to make sure the location document of your Notes(TM) client points to the Lotus
Domino server where you want to enable SSO. Thisis needed so that a public key can be used for the server. If a message appears when you save the Web SSO Configuration
document saying it could not find server, then this should fix the message.

« Inthe WebSphere Application Server security center, the realm (domain name) needs to be specified in lower case.

« Since WebSphere Application Server treats the DNS name as case-sensitive, ensure that the DNS domain value is specified exactly the same, including casing asin Figure 1, whenever
you use this value in Lotus Domino.

Figure 1 L otus Domino and WebSphere SSO

£ Edit

Web SSO Configuration for : LtpaTo

Basics l Admirigtration }

Taken Mame: LtpaT oken E xpiration [minutes): 30
Token Domain: .rchland.ibr. com

Damino Server Mames: nhoteshstest

LDAP Realn: rehastry. rehland.ibr comb: 390

LTPA Versior: 1.0

« Make surethat you fully quaify the URL with the domain name (ie http://systemName.domainName: portNumber/uri) when accessing either a Lotus Domino or a WebSphere URL
when security and SSO are configured. If you do not fully qualify the URL (ie http://systemName: portNumber/uri), you will get returned to the login form and never get to the page
you were trying to access.

« When security is configured in WebSphere Application Server, place the NCSOW .jar in the gibm/userdata/webasadv4/instanceName/lib/ext directory. Because we were using the
NCSOW jar file to create our Lotus Domino sessions, we had put thisjar filein the VM properties of the default server. This caused a problem once security was enabled. With the jar
filein the VM settings, we kept getting a NoClassDefFound for com.ibm.ejs.0a.EJSORB. Since the NCSOW was in the VM classpath we were seeing this problem. To fix, we
moved the NCSOW jar to the gibm/userdata/webasadv4/instanceName/lib/ext directory and removed the entry from the VM classpath.

« When using security, you can verify that you are running under the correct identity by using the getCalledldentity() method on the enterprise bean Context. This method will print out
the user identity that the method inside the enterprise bean is running under.

Thefollowing Java/CORBA class (lotus.domino package) elements support sign-on to Lotus Domino and WebSphere servers in asingle sign-on domain.

o SessionToken property
Read-only. Gets a session token for enabling sign-on to Lotus Domino and WebSphere serversin adomain that supports single sign-on.
NOTE: This property is new with R5.0.5.
Defined in: lotus.domino.Session
Data type: String
Syntax: public String getSessionToken() throws NotesException
Usage: The token is unique for each user and is valid for the time specified in the Lotus Domino Directory. The format of the token is consistent with the LtpaToken cookie
used by WebSphere.

You can aso get the token from the HTTP headers in a servlet with HttpServletRequest.getCookies().
This property isvalid only on a server configured for single sign-on.
See NotesFactory for usage and examples.

o NotesFactory class
NOTE: To make remote (110P) calls to the Lotus Domino Objectsin a WebSphere environment, NCSOW.jar must be in your classpath. Thisis new with R5.0.4.
The description of the NotesFactory class is extended as follows.
NOTE: These extensions are new with R5.0.5.

To access a server using single sign-on, create a Session object as follows. For remote (110P) calls, the first parameter is the Internet name of the host. For local calls, the first
parameter is null.

= createSession(hostString, String token) - Access is granted based on the token. This method works in a Lotus Domino environment. The token must be avalid token for
single sign-on obtained from Session.getSessionToken or the LtpaToken cookie used by WebSphere.

= createSession(hostString, org.omg.SecurityLevel2.Credentials) - Accessis based on the Credential s object. This method works in a WebSphere environment where the
Credentials object is created using loginHel per.

= createSession(hostString, null) - Accessis granted based on the current Credentials object in the WebSphere environment. This method works from an enterprise bean
application in WebSphere.

The specification of NotesFactory is extended with the following methods:
= static public Session createSession(String host, String token) throws NotesException
= static public Session createSession(String host, org.omg.SecurityL evel 2.Credentials) throws NotesException

o Examples
= Example 1: This Lotus Domino agent gets a token for single sign-on and creates a remote (110OP) session to another server based on the token.

import lotus.domino.*;
public class JavaAgent extends AgentBase {

public void NotesMain() {

try{

Session session = getSession();

AgentContext agentContext = session.getAgentContext();

Session s2 = NotesFactory.createSession("test5.iris.com",
session.getSessionToken());

System.out.printIn(“remote session name =" + s2.getUserName());
} catch(Exception €) {

e.printStackTrace();

}

}
}

Example 2: This servlet gets a token for single sign-on from the L TPAToken cookie through HttpServletRequest and creates a session based on the token.

import javalang.*;

import javalang.reflect.*;
import java.util.*;

import javaio.*;

import javax.serviet.*;
import javax.serviet.http.*;
import lotus.domino.*;

public class Cookies extends HttpServlet

private void respond(HttpServletResponse response, String entity) throws |OException
{

response.setContentType("text/plain”);

if (entity == null)
{ response.setContentL ength(0);}
else{

response.setContentL ength(entity.length() + 1);
ServletOutputStream out = response.getOutputStream();
out.printin(entity);

}

}

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, |OException

{

Stringsl="";

Cookie[] cookies = null;

String sessionToken = null;

try {
cookies = request.getCookies();

}

catch (Exception €) {

respond(response,"Exception from request.getCookies(): " + e.toString());
return;

}

if (cookies == null) {

s1 ="No cookies received";

}

else{

for (inti=0; i < cookieslength; i++) {

if (cookied[i].getName().equal ("L tpaToken")) {
sessionToken = cookie[i].getValue();

}

}

}

if (sessionToken != null) {
try {
NotesThread.sinitThread();

Session session = NotesFactory.createSession(null, sessionToken);

sl +="\n" + "Server: " + session.getServerName();

s1+="\n" +"1sOnServer: " + session.isOnServer();

sl +="\n" + "CommonUserName: " + session.getCommonUserName();
sl +="\n" + "UserName: " + session.getUserName();

sl +="\n" + "NotesVersion: " + session.getNotesVersion();

sl +="\n" + "Platform: " + session.getPlatform();
NotesThread.stermThread();

}

catch (NotesException €) {
sl+="\n" + eiid + etext;
e.printStackTrace();

}

}
respond(response,sl);
}

}
Example 3: This application snippet creates a session based on a credentials object obtained from WebSphere.

com.ibm.CORBA.iiop.ORB orb = com.ibm.gjs.oa EJSORB.getORBI nstance();

if (orb !=null) {

org.omg.SecurityLevel 2.Current(R) securityCurrent = (org.omg.SecurityL evel 2.Current)orb.resolve initial_references(" SecurityCurrent");
org.omg.SecurityL evel 2.Credentials invCred = securityCurrent.get_credential s(org.omg.Security.Credentia Type.SeclnvocationCredential s);
System.out.printIn("creating notes session using current creds");

session = NotesFactory.createSession(notesServer, invCred);

}

Example 4: This WebSphere enterprise bean application creates a session based on the current credential's object in the WebSphere environment.
import lotus.domino.*;
public class HelloBean extends Object implements SessionBean {

... I* See HelloBean.java from Websphere for the complete class code */

/**

Returns the greeting. But has been modified to create aremote session to the
Lotus Domino server.

@return The greeting.

(@exception RemoteException Thrown if the remote method call fails.

*/
public String getMessage () throws RemoteException

String result = "hello bean ";

try {
Session s = NotesFactory.createSession("test5.iris.com”, null);
result = result + " -- Got Session for " + s.getUserName();

}

catch (NotesException ne) {

result = result + "-- " + ne.text;

result = result + "-- failed to get session for user";

}

return (String) result + " -- done”;

}

References

The following resources provide information you may find helpful.

1BM(R) WebSphere V4.0 Advanced Edition Security, IBM Redbook SG24-6520-00
Lotus Domino and WebSphere Integration on the IBM eServer i Series(TM) Server, IBM Redbook SG24-6223
Lotus Domino and WebSphere Together Second Edition, IBM Redbook SG24-5955-01

Security Guide
http://www.ibm.com/software/webservers/appserv/doc/v40/aes/infocenter/was/pdf/nav_Securityguide.pdf

WebSphere Inter operability between Versions 3.5.x and 4.0.x
http://www7b.software.ibm.com/wsdd/library/techarticles/0202_sundman/sundman.html

