
Office APIs (V5R2)

Table of Contents

Office APIs●

Office-related APIs

APIs

Add Department (QOKADDDP)■

Aid Spelling (QTWAIDSP)■

Change Department (QOKCHGDP)■

Change Office Program (QOGCHGOE)■

Check Spelling (QTWCHKSP)■

Control Office Services (QOCCTLOF)■

Display Directory Panels (QOKDSPDP)■

Display Directory X.400 Panels (QOKDSPX4)■

Remove Department (QOKRMVDP)■

Retrieve Office Programs (QOGRTVOE)■

Search System Directory (QOKSCHD)■

❍

Exit programs

Directory Maintenance■

Directory Search■

Directory Supplier■

Document Conversion■

Document Handling■

User Application Administration■

❍

●

AnyMail/400 Mail Server Framework APIs

Using AnyMail/400 Mail Server Framework APIs❍

APIs

Add Mail Server Framework Configuration (QzmfAddMailCfg)■

Change Mail Message (QzmfChgMailMsg)■

Complete Creation Sequence (QzmfCrtCmpMailMsg)■

Create Mail Message (QzmfCrtMailMsg)■

List Mail Server Framework Configuration (QzmfLstMailCfg)■

Query Mail Message Identifier (QzmfQryMailMsgId)■

Remove Mail Server Framework Configuration (QzmfRmvMailCfg)■

❍

●

Remove Reserved Mail Message Identifier (QzmfRsvMailMsgID)■

Reserve Mail Message Identifier (QzmfRsvMailMsgId)■

Retrieve Mail Message (QzmfRtvMailMsg)■

Exit programs

Snap-In Call■

Track Mail Message Changes■

Validate Data Field■

❍

SNADS File Server Object APIs

File Server Objects❍

Assign SNADS File Server Object Access ID (QZDASNID)❍

Create SNADS File Server Object (QZDCRFSO)❍

List SNADS File Server Object Access IDs (QZDLSTID)❍

Read SNADS File Server Object (QZDRDFSO)❍

Retrieve SNADS File Server Object Access ID (QZDRTVID)❍

Revoke SNADS File Server Object Access ID (QZDRVKID)❍

Write to SNADS File Server Object (QZDWTFSO)❍

●

Word Separator Tables●

Office APIs
The office APIs work with system distribution directory data and with document handling. These APIs allow
you to perform customized and additional actions with office data.

The office APIs consist of:

Office-related APIs●

AnyMail/400 Mail Server Framework APIs●

SNADS File Server Object APIs●

For additional information, see Word Separator Tables.

APIs by category

Office-related APIs
The office-related APIs allow you to perform customized and additional actions with office data.

The office APIs are:

Add Department (QOKADDDP) allows you to add a department to the system distribution directory.●

Aid Spelling (QTWAIDSP) allows you to retrieve a list of correctly spelled words that are similar in
spelling to the input word.

●

Change Department (QOKCHGDP) allows you to change a department definition in the system
distribution directory.

●

Change Office Program (QOGCHGOE) allows you to set or change the document handling and
document conversion exit programs.

●

Check Spelling (QTWCHKSP) accepts a list of one or more words and returns the list with an indicator
of whether each word is valid.

●

Control Office Services (QOCCTLOF) makes requests of office services and indicates that several
office tasks will be processed.

●

Display Directory Panels (QOKDSPDP) allows you to use the Change Directory Information display
interactively without using OfficeVision administration to change directory information for
OfficeVision users.

●

Display Directory X.400 Panels (QOKDSPX4) llows you to display directory X.400 O/R name panels
and process functions interactively without going through the Work with Directory panel.

●

Remove Department (QOKRMVDP) allows you to remove a department from the system distribution
directory.

●

Retrieve Office Programs (QOGRTVOE) allows you to retrieve program names and attributes for the
current document handling and document conversion exit programs.

●

Search System Directory (QOKSCHD) allows you to search the system distribution directory and
receive results that match the input criteria.

●

The office exit programs are:

Directory Maintenance allows the administrator to define additional security or validation checking
when directory data is added, changed, or deleted. There are two entry points. The verification entry is
called before an addition, change, or deletion. The notification entry is called after the actions. The
verification maintenance exit program is specified on the VRFPGM parameter of the Change System
Directory Attribute (CHGSYSDIRA) command. The verification maintenance exit program can also be
specified with the Work with Registration Information (WRKREGINF) command. The notification
maintenance exit program is specified with the Work with Registration Information (WRKREGINF)
command.

●

Directory Search allows the administrator to define a customized search of directory data. The Directory
Search program is specified on the SCHPGM parameter of the Change System Directory Attribute
(CHGSYSDIRA) command.

●

Directory Supplier allows the administrator to decide whether a change, add, or delete operation for
directory entries, departments, and locations is to be shadowed to collector systems. The supplier
program is specified on the SUPPGM parameter of the Change System Directory Attribute
(CHGSYSDIRA) command.

●

Document Conversion allows other document conversion programs to be called when a request is made
for the OfficeVision program to process a document that is an unsupported type (for example, PCFILE).

●

Document Handling allows other editors and applications to be called from the OfficeVision word
processing and print functions.

●

User Application Administration passes control to the application enabler where a registered alternate
administration program will be called.

●

Top | Office APIs | APIs by category

Add Department (QOKADDDP) API

 Required Parameter Group:

1 Department Input Char(10)
2 Title Input Char(50)
3 Manager Input Char(16)
4 Reports to department Input Char(10)
5 Allow duplicate departments Input Char(1)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Add Department (QOKADDDP) API adds departments to the system distribution directory. To add and
remove members from within a department use the DEPT parameter on the Add Directory Entry (ADDDIRE)
and Change Directory Entry (CHGDIRE) CL commands.

Authorities and Locks

Adding a department requires *SECADM (security administrator) authority.

Required Parameter Group

Department

INPUT; CHAR(10)

The department name to add. The department name must not be blank.

Title

INPUT; CHAR(50)

The descriptive title of the department. The title can be left blank.

Manager

INPUT; CHAR(16)

The department manager's user ID and address. The first 8 characters contain the user ID and the last 8
contain the address. The manager user ID and address must exist in the system distribution directory if
specified. The manager field can be left blank.

Reports to department

INPUT; CHAR(10)

The department to which this department reports. If a department that does not exist in the system

distribution directory is specified, it is automatically created. This field can be left blank.

Allow duplicate departments

INPUT; CHAR(1)

Whether to allow duplicate department names. The valid values are:

0 Do not allow duplicate department names.

1 Allow duplicate department names.

The department name value is not case sensitive when checking for duplicate departments.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF89A3 E Operation not successful due to authority reasons.

CPF89A4 E Operation not successful due to data validation reasons.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPF9A8D E Error occurred with &5 API. Reason code is &1.

API Introduced: V3R6

Top | Office APIs | APIs by category

Aid Spelling (QTWAIDSP) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Input word Input Char(*)
5 Length of input word Input Binary(4)
6 Input dictionaries Input Char(*)
7 Length of input dictionaries Input Binary(4)
8 Output dictionaries Output Char(*)
9 Length of output dictionaries Input Binary(4)
10 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Aid Spelling (QTWAIDSP) API returns a list of candidate words that are similar in spelling to the input
word. The input word is generally the misspelled word and the candidate words are correctly spelled words that
are spelled similarly to the input word. The QTWAIDSP API returns a maximum of six candidate words per
dictionary.

The QTWAIDSP API can be used to do the following:

Return an indication if the input word was misspelled●

Return a list of correctly spelled words which are similar to the input word●

To perform the function, a user can specify a maximum of eight IBM or user language dictionaries in the input
dictionaries parameter.

Authorities and Locks

Dictionary Authority

*USE

Dictionary Library Authority

*USE

Dictionary Lock Authority

*SHRNUP

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information about candidate words. You can specify the size of this
area to be smaller than necessary to hold information about each word as long as you specify the length
parameter correctly. The API returns only the data that the area can hold. The minimum size area is 8
bytes.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The content and format of the information returned in the receiver variable. You can use this format:

AIDW0100 Return all candidate words. See AIDW0100 Format.

Input word

INPUT; CHAR(*)

Locate candidate words that are spelled similarly to this word.

Length of input word

INPUT; BINARY(4)

The length of the input word.

Input dictionaries

INPUT; CHAR(*)

A structure containing a list of up to eight dictionaries that is used to locate candidate words.

Length of input dictionaries

INPUT; BINARY(4)

The length of the input dictionaries parameter. The only valid value is 172 bytes.

Output dictionaries

OUTPUT; CHAR(*)

A structure containing a list of up to eight spelling aid dictionaries that were actually used to find
candidate words.

Length of output dictionaries

INPUT; BINARY(4)

The length of the output dictionaries parameter. The following are valid values:

0 No dictionaries are returned in the output dictionaries parameter.

>0 The length of space available in the output dictionaries parameter. If this length is larger than the
actual size of the output dictionaries parameter, the results may not be predictable.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

AIDW0100 Format

The following information is returned in the receiver variable for the AIDW0100 format. For detailed
descriptions of the fields, see Field Descriptions.

Offset

Type FieldDec Hex

Note: Fixed section.

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of words returned

12 C BINARY(4) Number of words available

16 10 BINARY(4) Offset to input word

20 14 BINARY(4) Length of input word

24 18 CHAR(1) Misspelled

25 19 CHAR(3) Reserved

28 1C BINARY(4) Offset to first word information entry

32 20 BINARY(4) Length of word information entry

36 24 BINARY(4) Reserved

Note: The input word for which candidate words were found. The decimal and
hexadecimal offsets are not defined. The input word is found by using the offset to
input word field.

 CHAR(*) Input word

Note: Format of a word information entry. The following fields are repeated for each
word returned. The decimal and hexadecimal offsets depend on the number of words
returned. The first word information entry is found by using the offset to first word
information entry in the fixed section. Each subsequent word information entry is found
by adding the length of a word information entry to the offset of the previous word
information entry.

 BINARY(4) Offset to candidate word

 BINARY(4) Length of candidate word

 BINARY(4) Output dictionary number

 CHAR(*) Reserved

Note: The following field is repeated for each word returned. Each word is located by
the offset to candidate word field and the length of the word is specified in the length of
candidate word field.

 CHAR(*) Candidate word

Field Descriptions

Bytes available. The total length of all data available.

Bytes returned. The length of the data actually returned. If the data is truncated because the receiver variable is
not large enough to hold all of the data available, the value will be less than the bytes available.

Candidate word. The candidate word that is spelled similar to the input word.

Input word. The word actually used to find candidate words.

Length of candidate word. The length of the candidate word in bytes.

Length of input word. The length of the input word in bytes.

Length of word information entry. The length of one item in the word information entry section.

Misspelled. Determines if the word is misspelled.

0 The word is spelled correctly.

1 The word is misspelled.

Number of words available. The number of candidate words that were found.

Number of words returned. The number of words actually returned in the receiver variable. If this number is
smaller than the number of words available, then all of the words could not fit in the receiver variable.

Offset to candidate word. The byte offset, from the beginning of the receiver variable to the candidate word.

Offset to input word. The byte offset, from the beginning of the receiver variable to the input word.

Offset to first word information entry. The byte offset, from the beginning of the receiver variable to the first
item in the word information entry section. If no candidate words are found, the value will be 0.

Output dictionary number. The index into the output dictionary list where the candidate word originated.

Reserved. An ignored field.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8751 E Number of dictionaries is not valid.

CPF8752 E No valid dictionaries were found.

CPF8754 E Length of input word not valid.

CPF8755 E Length of input dictionaries not valid.

CPF8756 E Length of output dictionaries not valid.

CPF8757 E Input word &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R1

Top | Office APIs | APIs by category

Change Department (QOKCHGDP) API

 Required Parameter Group:

1 Department Input Char(10)
2 Title Input Char(50)
3 Manager Input Char(16)
4 Reports to department Input Char(10)
5 New department name Input Char(10)
6 Allow duplicate departments Input Char(1)
7 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Change Department (QOKCHGDP) API changes department information in the system distribution
directory. To add and remove members from within a department use the DEPT parameter on the Add Directory
Entry (ADDDIRE) and Change Directory Entry (CHGDIRE) CL commands.

Authorities and Locks

Changing a department requires *SECADM (security administrator) authority.

Required Parameter Group

Department

INPUT; CHAR(10)

The department name to change. The department name must not be blank. When there are duplicate
department names in the directory, the first match found is changed. The department name value is not
case sensitive when being checked.

Title

INPUT; CHAR(50)

The descriptive title of the department. If this field is to remain unchanged, you must use *SAME for
the field value. Blanks change the field to blanks.

Manager

INPUT; CHAR(16)

The department manager's user ID and address. The first 8 characters contain the user ID and the last 8
contain the address. The manager user ID and address must exist in the system distribution directory if
specified. If this field is to remain unchanged, you must use *SAME for the field value. Blanks change
the field to blanks.

Reports to department

INPUT; CHAR(10)

The department to which this department reports. If a department that does not exist in the system
distribution directory is specified, it is automatically created. If this field is to remain unchanged, you
must use *SAME for the field value. Blanks change the field to blanks. The department name value is
not case sensitive when being checked.

New department.

INPUT; CHAR(10)

The new department name. If the department name is not to be changed, you must use *SAME for the
field value. Blanks are not allowed. If this field is not *SAME, the department name is changed to this
value. This changes the department value in all the system distribution directory entries that are
members of the department being renamed.

Allow duplicate departments

INPUT; CHAR(1)

Whether to allow duplicate department names. The valid values are:

0 Do not allow duplicate department names.

1 Allow duplicate department names.

The department name value is not case sensitive when checking for duplicate departments.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF89A3 E Operation not successful due to authority reasons.

CPF89A4 E Operation not successful due to data validation reasons.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPF9A8D E Error occurred with &5 API. Reason code is &1.

API Introduced: V3R6

Top | Office APIs | APIs by category

Change Office Program (QOGCHGOE) API

 Required Parameter Group:

1 Qualified document handling exit
program

Input Char(20)

2 Document handling program supports
mail flag

Input Char(1)

3 Qualified document conversion exit
program

Input Char(20)

4 Error code I/O Char(*)

 Optional Parameter Group:

5 Activate application enabler support Input Char(1)
6 Activate mail handling support Input Char(1)
7 Activate PCFILE identification

processing support
Input Char(1)

 Default Public Authority: *USE

 Threadsafe: No

The Change Office Program (QOGCHGOE) API allows you to set or change the document handling and
document conversion exit programs. The default value for these exit programs is *IBM, which indicates that
OfficeVision processing should be used for the request or conversion.

Authority

You must have security administrator (*SECADM) authority to call this program.

Required Parameter Group

Qualified document handling exit program

INPUT; CHAR(20)

The name of the program called when document editing and print requests are made. The first 10
characters contain the program name, and the second 10 characters contain the name of the library
where the program is located.

*IBM OfficeVision should process document requests. The library name should be blanks if *IBM is
specified in the program name.

Document handling program supports mail flag

INPUT; CHAR(1)

This flag indicates whether the document handling program supports mail requests (that is,
MAILVIEW, MAILEDIT, EDIT using Revise a Copy, MAILFWD, MAILREPLY, PRINT and
PRINTOPTS from the Work with Mail display). If an application does not plan to handle these
functions, set the value to 0. Setting the value to 0 prevents the unnecessary overhead of filing the mail
items and calling the document handling program. If the document handling program is *IBM, set the
value to 1.

0 Mail requests are not supported.

1 Mail requests are supported.

This indicates whether the program specified in the document handling exit program and library name
parameter should be called for mail requests.

Qualified document conversion exit program

INPUT; CHAR(20)

The name of the program that is used to do document conversions when office services requires the
document to be in a different data stream format. The first 10 characters contain the program name, and
the second 10 characters contain the name of the library where the program is located.

*IBM Use the IBM-supplied document conversion exit program. The library name should be blank if
*IBM is specified in the program name.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group

Activate application enabler support

INPUT; CHAR(1)

If an application does not plan to handle these functions, set the value to 0. If the application requires
application enabler support, set the value to 1. Any other value does not change the current activation of
application enabler support.

0 Application enabler support is inactive.

1 Application enabler support is active.

Activate mail handling support

INPUT; CHAR(1)

If an application does not plan to handle these functions, set the value to 0. If the program requires mail
handling support, set the value to 1. Any other value does not change the current activation of mail

handling support.

0 Mail handling support is inactive.

1 Mail handling support is active.

Activate PCFILE identification processing support

INPUT; CHAR(1)

If an application does not plan to handle these functions, set the value to 0. If the program requires
PCFILE identification processing support, (1) set the value to 1. Any other value does not change the
current activation of PCFILE identification processing support.

0 PCFILE identification processing support is inactive.

1 PCFILE identification processing support is active.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3C29 E Object name &1 is not valid.

CPF90A8 E *SECADM special authority required to do requested operation.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

OFC15FF E Value &1 for mail handled parameter is not valid.

OFC8019 E Required module not on system.

API Introduced: V2R2

Top | Office APIs | APIs by category

Check Spelling (QTWCHKSP) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Word list Input Char(*)
5 Length of word list Input Binary(4)
6 Input dictionaries Input Char(*)
7 Length of input dictionaries Input Binary(4)
8 Output dictionaries Output Char(*)
9 Length of output dictionaries Input Binary(4)
10 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Check Spelling (QTWCHKSP) API accepts a list of one or more words in the word list parameter, and
returns one word array entry in the receiver variable for every word with an indication if it is a valid word. To
retrieve additional information about a specific word, see the Aid Spelling (QTWAIDSP) API.

The QTWCHKSP API can be used to do the following:

Check the spelling of an individual word●

Find misspelled words in a character string●

To perform the function, a user can specify a maximum of eight IBM or user language dictionaries in the input
dictionaries parameter.

Authorities and Locks

Dictionary Authority

*USE

Dictionary Library Authority

*USE

Dictionary Lock Authority

*SHRNUP

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information about each word in the word list. You can specify the size
of this area to be smaller than necessary to hold information about each word as long as you specify the
length parameter correctly. As a result, the API returns only the data that the area can hold. The
minimum size of this area is eight bytes.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The content and format of the information returned in the receiver variable. For more information on the
format see CHKW0100 and CHKW0200 Formats. The following are possible format names:

CHKW0100 Word array entries for only the misspelled words should be returned in the receiver
variable.

CHKW0200 Word array entries for all words in the word list should be returned.

Word list

INPUT; CHAR(*)

A list of one or more words to be checked. The words must be separated by one or more word
separators where the blank character is always considered a word separator. The CCSID of the current
job determines what code page will be used and each code page defines what other characters can be
used as word separators. Refer to the Globalization topic in the iSeries Information Center for more
information on CCSIDs. Refer to Word Separator Tables for information on word separators.

Length of word list

INPUT; BINARY(4)

The length of the word list in bytes.

Input dictionaries

INPUT; CHAR(*)

A structure containing a list of up to eight dictionaries to be used to determine if the word or words in
the word list are spelled correctly. For the format of this parameter, see Input Dictionaries Format.

Length of input dictionaries

INPUT; BINARY(4)

The length of the input dictionaries parameter. The only valid value is 172 bytes.

Output dictionaries

OUTPUT; CHAR(*)

A structure containing a list of up to eight dictionaries that were actually used. For the format of this
parameter, see Output Dictionaries Format.

Length of output dictionaries

INPUT; BINARY(4)

The length of the output dictionaries parameter. The following are valid values:

0 No dictionaries are returned in the output dictionaries parameter.

>0 The length of space available in the output dictionaries parameter. If this length is larger than the
actual size of the output dictionaries parameter, the results may not be predictable.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

CHKW0100 and CHKW0200 Formats

The following information is returned for both the CHKW0100 and CHKW0200 formats. If the receiver
variable is large enough to hold all the information, then it contains information about each word in the word
list.

The receiver variable has three logical sections which contain:

Fixed section●

Word information entry●

An array of the actual input words●

For more detailed descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

Note: Fixed section.

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of words returned

12 C BINARY(4) Number of words available

16 10 BINARY(4) Offset to first word information entry

20 14 BINARY(4) Length of word information entry

24 18 BINARY(4) Reserved

Note: Format of a word information entry. The following four fields are repeated for
each word returned. The first word information entry is found by using the offset to first
word information entry in the fixed section. Each subsequent word information entry is
found by adding the length of a word information entry to the offset of the previous
word information entry.

 BINARY(4) Offset to word

 BINARY(4) Length of word

 CHAR(1) Misspelled

 CHAR(*) Reserved

Note: The following field is repeated for each word returned. Each word is located by
the offset to word field and the length of the word is specified in the length of word
field.

 CHAR(*) Word

Input Dictionaries Format

The following list shows the format of the input dictionaries parameter. For detailed descriptions of the fields,
see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to dictionary entries

4 4 BINARY(4) Number of dictionary entries

8 8 BINARY(4) Reserved (must be set to 0)

Note: Format of a dictionary entry. The following fields are repeated by the number of
dictionary entries. The decimal and hexadecimal offsets depend on the number of
dictionary entries. The first dictionary entry is found by using the offset to dictionary
entries in the header section.

 CHAR(10) Dictionary name

 CHAR(10) Dictionary library name

Output Dictionaries Format

The following shows the format of the output dictionaries parameter. For detailed descriptions of the fields, see
Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of dictionaries returned

4 4 BINARY(4) Number of dictionaries available

Note: The following fields are repeated by the number of dictionaries returned. The
decimal and hexadecimal offsets depend on the number of dictionaries returned.

 CHAR(10) Dictionary name

 CHAR(10) Dictionary library name

Field Descriptions

Bytes available. The total length of all data available.

Bytes returned. The length of the data actually returned. If the receiver variable is not large enough to hold all
of the data available, only the data that will fit in the space available is returned and this value will be less that
the bytes available.

Dictionary library name. The library containing the language dictionary. The special values for the library
name are *CURLIB and *LIBL.

Dictionary name. The name of the language dictionary.One special value for the name is *USERID.

*USERID The name of the dictionary is the same as the user ID for the current job. A library name must be
specified with this value.

Length of word. The length of the word in bytes.

Length of word information entry. The length of one item in the word information entry section.

Misspelled. Indicates if the word is misspelled.

0 The word is spelled correctly.

1 The word is misspelled.

Number of dictionaries available. The number of dictionaries that were actually used to determine if the word
or words in the word list were spelled correctly.

Number of dictionaries returned. The number of dictionaries actually returned in the output dictionaries
parameter. If this number is smaller than the number of dictionaries available, then all of the dictionaries could
not fit in the space available.

Number of dictionary entries. The number of usable dictionaries to perform the function. Valid values are 1
through 8.

Number of words available. The number of words which are found in the word list.

Number of words returned. The number of words actually returned in the receiver variable. If this number is
smaller than the number of words available, then all of the words could not fit in the receiver variable.

Offset to dictionary entries. The byte offset, from the beginning of the parameter, to the beginning of the
dictionary entries.

Offset to first word information entry. The byte offset, from the beginning of the receiver variable, to the first
item in the word information entry section.

Offset to word. The byte offset, from the beginning of the receiver variable, to the actual word.

Reserved. This field must be set to 0 on the input dictionaries parameter. Otherwise, this field is ignored.

Word. The word that was checked for spelling.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8751 E Number of dictionaries is not valid.

CPF8752 E No valid dictionaries were found.

CPF8753 E Length of word list not valid.

CPF8755 E Length of input dictionaries not valid.

CPF8756 E Length of output dictionaries not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R3

Top | Office APIs | APIs by category

Control Office Services (QOCCTLOF) API

 Required Parameter Group:

1 Request type Input Char(10)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Control Office Services (QOCCTLOF) API makes requests of the office services. Office services accepts
the following actions:

*START●

*END●

*CHECK●

An office services block is defined as a time during an application that the application knows that it will be
using more office commands. By starting an office services block, the application is informing office that it will
do several office tasks. The application will also inform office when to close the office files, destroy the
working spaces, and so forth. It closes the files by ending an office services block. The application uses the
QOCCTLOF to start and end an office services block.

For example, assume you have a program that issues 10 calendar CL commands. Each CL command must open
office files and create work spaces that it needs before processing the request. The CL command must then close
the office files that were opened and destroy the work spaces created before exiting. In this case, the files would
be opened and closed and the work spaces created and destroyed 10 times, once for each CL command. With
the QOCCTLOF API, you can improve the performance of this program by starting an office services block at
the beginning of the program, issuing the CL commands and then ending the office services block. This enables
the files to be opened and closed and the work spaces to be created and destroyed only once.

With the QOCCTLOF API, you can improve the performance of this program as follows:

Use the QOCCTLOF API to start an office services block●

Issue the 10 calendar CL commands●

Use the QOCCTLOF API to end the office services block●

All calendar CL commands can make use of this API.

Required Parameter Group

Request type

INPUT; CHAR(10)

The request that the application makes of the office services. The following are the possible values:

*START Start an office services block. An office services block is the time during the running of an
application when more office commands will be used. Office services leaves the job in
such a state as to maximize the performance of subsequent office services use. This
includes leaving the office files open and leaving working spaces created and already
initialized. It is the responsibility of the application to end the office services block.

*END End an office services block. No further office services will be used. The files will be
closed and all working spaces deleted.

*CHECK Determine if an office services block is active. An error will be returned if an office
services block has not been previously started or has already ended.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

OFCFD01 E Office services session is already active.

OFCFD02 E Office services session request failed.

OFCFD03 E Office services session is not active.

OFCFD04 E Office services session request is not correct.

OFCFD05 E Number of bytes provided for the error code is not correct.

API Introduced: V2R2

Top | Office APIs | APIs by category

Display Directory Panels (QOKDSPDP) API

 Required Parameter Group:

1 User ID Input Char(8)
2 User address Input Char(8)
3 Title Input Char(10)
4 Function key processing Output Char(10)
5 Message to be displayed Input Char(*)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Display Directory Panels (QOKDSPDP) API has the ability to display the Add Directory Information and
Change Directory Information displays. It can run that function interactively without using OfficeVision
administration to change directory information for office users. This API is for interactive use only.

Authorities and Locks

If you have security administrator (*SECADM) authority, you can change all the directory information. If you
do not have security administrator authority, then you can only change your own directory information.

Required Parameter Group

User ID

INPUT; CHAR(8)

The user ID to be processed. The ID needs to be in character set 697, code page 500, and monocase.

User address

INPUT; CHAR(8)

The address of the user to be processed. The address needs to be in character set 697, code page 500,
and monocase.

Title

INPUT; CHAR(10)

The type of directory panel to be displayed. The following are the possible values:

*CHG Change directory information

*ADD Add directory information

Function key processing

OUTPUT; CHAR(10)

The operation processed for the key pressed. This indicates what type of ending processing to do. The
following are the possible values:

*ENTER The enter operation is processed.

*F3 The exit operation is processed.

*F12 The previous display is shown.

Message to be displayed

INPUT; CHAR(*)

A structure with a message ID and replacement text that is to be shown on the display. If the message
size is 0, no message will be displayed. For the format of the structure, see Message to Be Displayed
Format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Message to Be Displayed Format

The format of the message to be displayed parameter is as follows:

Offset

Type FieldDec Hex

0 0 BINARY(2) Message size

2 2 CHAR(7) Message ID

9 9 CHAR(8) Message file

17 11 CHAR(4) Message type

21 15 BINARY(2) Length of message data

23 17 CHAR(*) Message data

Field Descriptions

Length of message data. The length of the message data. The maximum length is 256.

Message data. The data to be replaced in the message. The maximum size is 256.

Message file. The message file name where the message is displayed from. When the message is sent, it picks
up the message library from *LIBL.

Message ID. The message ID of the message to be displayed.

Message size. The total length of the message to be displayed format. If this value is greater than zero, the
message will be sent.

Message type. The message type of the message to be signaled. The valid values are:

INFO Informational

DIAG Diagnostic

ESCP Escape

COMP Completion

NTFY Notify

STAT Status

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF89A0 E Values passed to QOKDSPDP are not valid

CPF9024 E System cannot get correct record to finish operation.

CPF9054 E Description '&1' already exists.

CPF9083 E User ID and address &1 &2 not changed.

CPF9810 E Library &1 not found.

CPF9830 E Cannot assign library &1.

CPF9845 E Error occurred while opening file &1.

CPF9846 E Error while processing file &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | Office APIs | APIs by category

Display Directory X.400 Panels (QOKDSPX4) API

 Required Parameter Group:

1 Function Input Char(10)
2 Format Input Char(10)
3 System name Input Char(8)
4 System group Input Char(8)
5 User ID I/O Char(8)
6 User address I/O Char(8)
7 Text description Output Char(50)
8 Key code Output Char(10)
9 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Display Directory X.400 Panels (QOKDSPX4) API has the ability to display various X.400 O/R name
panels and to process functions interactively without going through the Work with Directory panel. An O/R
name is to X.400 as a user ID and address is to SNADS; that is, it is the way users are addressed in an X.400
network.

This API is for interactive use only; it cannot be used for batch programs.

Authorities and Locks

The QOKDSPX4 API is shipped with *EXCLUDE public authority. If the program calling this API adopts
authority, it is the responsibility of the calling program to ensure that the user has the correct authority to add
X.400 O/R names.

Required Parameter Group

Function

INPUT; CHAR(10)

The function requested. The following are possible values:

*ADD Add O/R name information

*DISPLAY Display O/R name information

Format

INPUT; CHAR(10)

This field must be blank.

System name

INPUT; CHAR(8)

The system name (REN) of the user to be associated with the O/R name to be added. The system name
cannot be the local system name because local user profiles are not automatically created. If blanks are
passed when FUNCTION(*ADD) is specified, the local system name will be used. This parameter is
ignored when the function is (*DISPLAY).

System group

INPUT; CHAR(8)

The system group name (RGN) of the user to be associated with the O/R name to be added. This
parameter is required for FUNCTION(*ADD). This parameter is required for FUNCTION(*DISPLAY)
but is ignored.

User ID

I/O; CHAR(8)

The user ID (DEN) of the user associated with the function. For FUNCTION(*ADD), this is an
output-only field. On the panel, the user ID (DEN) will be initialized to *GEN. The user may override
this with a specified user ID, or a user ID will be generated. For *GEN, the generated user ID is the
value returned in this field. Otherwise, the value in this field when Enter is pressed is the value returned.
For FUNCTION(*DISPLAY), this is an input-only field.

User address

I/O; CHAR(8)

The user address (DGN) of the user associated with the function. For FUNCTION(*ADD), this is an
output-only field. On the panel, the user address will be initialized to the system name value that is
specified on this API. The user can change the user address. The value in this field when Enter is
pressed is the value returned in this field. For FUNCTION(*DISPLAY), this is an input-only field.

Text description

OUTPUT; CHAR(50)

The description of the directory entry associated with the O/R name added. This parameter is valid only
for FUNCTION(*ADD).

Key code

OUTPUT; CHAR(10)

The key code (F3, F12, Enter) from the X.400 panel. The following are possible values:

*F3 F3 was pressed on the X.400 panel

*F12 F12 was pressed on the X.400 panel

*ENTER Enter was pressed on the X.400 panel

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF89A3 E Operation not successful due to authority reasons.

CPF89A4 E Operation not successful due to data validation reasons.

CPF89A7 E Error associated with exit program. Reason code &3. <</td>

CPF898A E X.400 O/R name does not exist for this directory entry. </</td>

CPF9A8C E Error occurred with QOKSCHD API. Reason code &1.

CPF9A82 E Values passed to QOKDSPX4 not valid.

CPF9082 E User ID and address &1 &2 not added to directory.

CPF9845 E Error occurred while opening file &1.

CPF9846 E Error while processing file &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R1

Top | Office APIs | APIs by category

Remove Department (QOKRMVDP) API

 Required Parameter Group:

1 Department Input Char(10)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Remove Department (QOKRMVDP) API removes a department from the system distribution directory.
The department field in the directory for the removed department members is blanked out. To remove individual
members from within a department, use the DEPT parameter on the Add Directory Entry (ADDDIRE) and
Change Directory Entry (CHGDIRE) CL commands.

Authorities and Locks

Removing a department requires *SECADM (security administrator) authority.

Required Parameter Group

Department

INPUT; CHAR(10)

The department name to remove. The department name must not be blank. When there are duplicate
department names in the directory, the first match found is removed. The department name value is not
case sensitive when being checked.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF89A3 E Operation not successful due to authority reasons.

CPF89A4 E Operation not successful due to data validation reasons.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPF9A8D E Error occurred with &5 API. Reason code is &1.

API Introduced: V3R6

Top | Office APIs | APIs by category

Retrieve Office Programs (QOGRTVOE) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Office Programs (QOGRTVOE) API retrieves the programs that are used for office document
requests and document conversion requests. The default value for the programs being retrieved is *IBM, which
indicates that OfficeVision processing should be used for the request or conversion.

Authority

To use this program you need *SECADM authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable to receive exit program information. This area must be large enough to accommodate the
information specified.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. The length must be at least 8 bytes. If the variable is not large
enough to hold the requested information, the data is truncated.

Format name

INPUT; CHAR(8)

The format of the program to be retrieved. The valid format is OGOE0100 (see OGOE0100 Format).

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

OGOE0100 Format

The following list shows the format of the program to be retrieved. For detailed descriptions of the fields, see
Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Document handling program name

18 12 CHAR(10) Document handling program library name

28 1C CHAR(1) Document handling program supports mail flag

29 1D CHAR(10) Document conversion program name

39 27 CHAR(10) Document conversion program library name

49 31 CHAR(1) Application enabler support active flag

50 32 CHAR(1) Mail handling support active flag

51 33 CHAR(1) PCFILE identification active flag

52 34 CHAR(1) Application enabler support activated flag

53 35 CHAR(1) Mail handling support activated flag

54 36 CHAR(1) PCFILE identification activated flag

55 37 CHAR(1) Application enabler support activating flag

56 38 CHAR(1) Mail handling support activating flag

57 39 CHAR(1) PCFILE identification activating flag

Field Descriptions

Application enabler support active flag. An indication of whether the application enabler is active. The
application enabler support is active if there is an application defined and the support has been made active.

0 The application enabler support will not be used with this system.

1 The application enabler support will be used with this system.

Application enabler support activated flag. An indication of whether the application enabler has been
activated with the QOGCHGOE API.

0 The application enabler has not been activated.

1 The application enabler has been activated.

Application enabler support activating flag. An indication of whether the application enabler support can be
activated. Application enabler support can become active if at least one application is defined and the support is

made active with the QOGCHGOE API.

0 The application enabler would not become active if activated.

1 The application enabler would become active if activated.

Bytes available. The total length of all data available.

Bytes returned. The length of the data actually returned.

Document conversion program library name. The name of the library containing the program to be called for
document conversions. This field will be blanks if the document conversion exit program name is *IBM.

Document conversion program name. The name of the program to be called for document conversions if an
IBM conversion does not exist. If the program is *IBM, the IBM-supplied conversion exit or registered
conversions will be called.

Document handling program library name. The name of the library containing the program to be called for
document requests. This field will be blanks if the document handling exit program name is *IBM.

Document handling program name. The name of the program to be called for document requests. If the
program is *IBM, OfficeVision is called for the document requests.

Document handling program supports mail flag. An indication of whether the document handling program
supports mail requests (that is, MAILVIEW, MAILFWD, MAILREPLY, PRINT and PRINTOPTS from the
Work with Mail display). If *IBM is specified as the document handling exit program, the value will be 1.

0 The exit program does not support mail.

1 The exit program does support mail.

Mail handling support active flag. An indication of whether the Mail Handling support is active. Mail
handling support is active if there is an application defined that handles mail, application enabler support has
been activated, and mail support has been activated.

0 The mail handling support is inactive with this application.

1 The mail handling support is active with this application.

Mail handling support activated flag. An indication of whether the mail handling support could be activated.
It is activated with the QOGCHGOE API.

0 The mail handling support has not been activated.

1 The mail handling support has been activated.

Mail handling support activating flag. An indication of whether the mail handling support could be activated.
Mail handling support is activated with the QOGCHGOE API.

0 The mail handling support cannot be activated.

1 The mail handling support can be activated.

PCFILE identification active flag. An indication of whether the PCFILE identification processing support is
active.(2) If PCFILE identification support has indicated that at least one type has been defined and PCFILE
identification support is active, then the PCFILE identification processing is active.

0 The PCFILE identification processing support is inactive with this application.

1 The PCFILE identification processing support is active with this application.

PCFILE identification activated flag. An indication of whether the PCFILE identification processing support
could be activated. PCFILE identification is activated with the Change Office Programs (QOGCHGOE) API.

0 The PCFILE identification support has not been activated.

1 The PCFILE identification support has been activated.

PCFILE identification activating flag. An indication of whether the PCFILE identification processing could
be activated. PCFILE identification support is activated with the QOGCHGOE API.

0 The PCFILE identification processing support would not become active if activated.

1 The PCFILE identification processing support would become active if activated.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF90A8 E *SECADM special authority required to do requested operation.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

OFC8019 E Required module not on system.

API Introduced: V2R2

Top | Office APIs | APIs by category

Search System Directory (QOKSCHD) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name of receiver variable Input Char(8)
4 Function Input Char(10)
5 Keep temporary resource indicator Input Char(1)
6 Request variable Input Char(*)
7 Length of request variable Input Binary(4)
8 Format name of request variable Input Char(8)
9 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Search System Directory (QOKSCHD) API searches the system distribution directory and returns user
information that matches the criteria input.

Authorities and Locks

To search the system directory, *USE authority is required to the QOKSCHD API.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that is to receive the information requested. You can specify the size of the area
smaller than the format requested as long as you specify the length of the receiver variable correctly. As
a result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

Format name of the receiver variable

INPUT; CHAR(8)

The format of the information returned. The possible format names are:

SRCV0100 System directory user information. See SRCV0100 Format for more information on the
SRCV0100 format.

SRCV0200 System directory field names. See SRCV0200 Format for more information on the
SRCV0200 format.

Function

INPUT; CHAR(10)

The function name of this request. The functions supported are:

*SEARCH Search the system directory

*CLEANUP Clean up resources (if temporary resources were kept on previous search requests). Note
that for cleanup, the keep temporary resource indicator parameter has to be 0.

Keep temporary resource indicator

INPUT; CHAR(1)

An indicator of whether to keep or delete the temporary resource that the search uses for search
requests. This temporary resource keeps files open and other relevant information between calls.
Performance will be better if this is done and you do multiple searches. If this API is called and this
indicator is set to keep temporary resources, the last call should have the Function parameter set to
*CLEANUP to close files and delete the resources.

0 Do not keep the temporary resource (and close the files).

1 Keep the temporary resource (and the files open).

The resource handle stores the information about the open files. When the search API is called again
and the files have been left open, the resource handle needs to be passed. The resource handle differs
from the continuation handle in that the resource handle saves information about open files. The same
resource handle can be used to request different kinds of searches. If you are doing multiple types of
searches, you do not want to do Function of *CLEANUP between the calls to the QOKSCHD API. Pass
the same resource handle for these calls and it will make the searches perform faster. The continuation
handle is used to continue the search with the same criteria because there are more users that match the
search criteria. The continuation handle is documented in Field Descriptions.

Request variable

INPUT; CHAR(*)

The request variable that is the input buffer that requests the type of search to do.

Length of request variable

INPUT; BINARY(4)

The length of the request variable.

Format name of request variable

INPUT; CHAR(8)

The information requested. The possible format names are:

SREQ0100 System directory user information. See SREQ0100 Format for more information on the
SREQ0100 format.

SREQ0200 System directory field names. See SREQ0200 Format for more information on the
SREQ0200 format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

SREQ0100 Format

The following table is the layout of the request variable, format SREQ0100, for requesting searches on the
system directory user information.

Offset

Type FieldDec Hex

0 0 BINARY(4) CCSID of data input

4 4 BINARY(4) Character set of data input

8 8 BINARY(4) Code page of data input

12 C CHAR(4) Wildcard character

16 10 CHAR(1) Convert receiver data indicator

17 11 CHAR(1) Data to search

18 12 CHAR(1) Run verify indicator

19 13 CHAR(1) Continuation handle (input)

20 14 CHAR(16) Resource handle

36 24 CHAR(8) Format name of the search request array

44 2C BINARY(4) Offset to the search request array

48 30 BINARY(4) Number of elements in the search request array

52 34 CHAR(8) Format name of array of fields to return

60 3C BINARY(4) Offset to array of fields to return

64 40 BINARY(4) Number of elements in the fields to return array.

68 44 CHAR(8) Format name of array of users to return in the
receiver variable

76 4C BINARY(4) Number of elements to return in the array of users
to return

80 50 CHAR(8) Format name of array of fields for each user
returned

88 58 CHAR(8) Format name of the order of field names to return

96 60 CHAR(1) Return fields in order specified option

97 61 CHAR(3) Reserved

 CHAR(*) Array of fields to return

 CHAR(*) Search request array

SREQ0101 Format

The following table is the search request array, format SREQ0101. This format name is used as input in the
request variable, SREQ0100, in the field, format name of the search request array.

This is an array of search fields. There is a maximum of 100 entries.

The first element that is entered in the search request array is considered to be the key for the search. This is
important for performance because the more distinct the key, the faster the search. Records will be returned in
the order of the field specified as the key.

A performance consideration that should be made when choosing the key value for the value to match field is
whether the field will contain a wildcard character. The search key should contain fields that occur a minimum
number of times on the system. For this reason, it is more efficient to specify a key search value that does not
contain wildcard characters. A wildcard character at the end of a search key value does not affect performance.

The search is an AND of all of the input fields. It will be a complete match or a generic match if a wildcard
character is used as the last character of the field value.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of entry (including this field)

4 4 CHAR(1) Compare value

5 5 CHAR(10) Field name

15 F CHAR(7) Product ID

22 16 CHAR(1) Case of data input

23 17 CHAR(1) Reserved

24 18 BINARY(4) Length of value

28 1C CHAR(*) Value to match

SREQ0102 Format

The following table is the array of fields to return, format SREQ102. This format name is used as input in the
request variable, SREQ0100, in the field, format name of array of fields to return.

The SREQ0102 format provides for selecting a user controlled set of system distribution directory fields.

Offset

Type FieldDec Hex

0 0 CHAR(10) Field name

10 A CHAR(7) Product ID

SREQ0103 Format

The following table is the array of special values representing the fields to be returned, format SREQ0103. This
format name is used in the request variable, SREQ0100, in the field, format name of the array of fields to return.

The SREQ0103 format provides for selecting a predefined set of system distribution directory fields. The
allowed special values are *SYSDIR, *ORNAME, and *SMTP. See Field Descriptions for a definition of the
special value of fields to be returned field.

Offset

Type FieldDec Hex

0 0 CHAR(10) Special value of fields to be returned

SREQ0200 Format

The following table is the layout of the request variable, format SREQ0200. This request returns the fields
defined in the system distribution directory.

Offset

Type FieldDec Hex

0 0 CHAR(1) Type of system distribution directory fields to
return

1 1 CHAR(17) Continuation handle for directory fields (input)

SRCV0100 Format

The following table is the layout of the receiver variable, format SRCV0100. The receiver variable is the output
buffer for the search results. This format defines the structure of the receiver variable.

Fields returned in the receiver variable will be in the order as documented in System directory field names. All
of the fields with a product ID of *IBM will precede any fields with a product ID other than *IBM. Also, fields
with a product ID of *IBM that appear in the array of fields to return more than once will be returned one time.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Offset to order of fields returned array

8 8 BINARY(4) Offset to the first array of users entry

12 C BINARY(4) Number of directory entries returned

16 10 CHAR(1) Continuation handle (output)

17 11 CHAR(16) Resource handle

 CHAR(*) Array of users that match the search criteria

 CHAR(*) Order of fields returned array

SRCV0101 Format

The following table is the structure of the array of users returned, format SRCV0101. This format name is
specified in the request variable structure, SREQ0100, in the field, format name of array of users to return.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of data for this user

4 4 BINARY(4) Number of fields returned

8 8 CHAR(*) Array of fields for each user that was requested in
the search request variable

SRCV0111 Format

The following table is the structure of the array of fields for each user returned, format SRCV0111. The format
name is specified in the request variable structure, SREQ0100, in the field, format name of array of fields for
each user returned. All fields requested are returned even if the fields are blank. The fields are returned in the
order documented in System directory field names.

Offset

Type FieldDec Hex

0 0 CHAR(10) Field name

10 A CHAR(7) Product ID

17 11 CHAR(3) Reserved

20 14 BINARY(4) Character set or CCSID of the value

24 18 BINARY(4) Code page of the value

28 1C BINARY(4) Length of field value returned

32 20 CHAR(*) Field value

SRCV0112 Format

The following table is the structure of the array of fields for each user returned, format SRCV0112. The format
name is specified in the request variable structure, SREQ0100, in the field, format name of array of fields for
each user returned.

If you do not need user-defined fields or the field name and product ID, then request this format in SREQ0100
instead of SRCV0111, as it will save some overhead space. All fields requested are returned even if the fields
are blank.

Format SRCV0120 tells the order in which the fields are returned. The order of the fields are always returned in
the order as documented in System directory field names, but you may have a coding reason for needing to

order the fields returned array.

Offset

Type FieldDec Hex

0 0 BINARY(4) Character set or CCSID of the value

4 4 BINARY(4) Code page of the value

8 8 BINARY(4) Length of field value returned

12 C CHAR(*) Field value

SRCV0120 Format

The following table is the structure of the order of fields returned array, format SRCV0120. The format name is
specified in the request structure, SREQ0100, in the field, format name of order of field names array returned.

Offset

Type FieldDec Hex

0 0 CHAR(10) Field name

10 A CHAR(7) Product ID

SRCV0200 Format

The following table is the layout of the receiver variable, format SRCV0200. The receiver variable is the output
buffer for the results from the system directory field name search request. The format name defines the structure
of the receiver variable.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of directory field names returned

4 4 BINARY(4) Number of directory fields

8 8 BINARY(4) Offset to the array of directory field names

12 C CHAR(17) Continuation handle for directory fields (output)

 CHAR(*) Array of directory field names in the system
distribution directory

Array of Directory Field Names

The following table is the structure of the field name array. This format contains the field names of the type that
was requested in SREQ0200.

Offset

Type FieldDec Hex

0 0 CHAR(10) Directory field name

10 A CHAR(7) Product ID

17 11 CHAR(10) Directory field type

27 1B CHAR(1) Reserved

28 1C BINARY(4) Maximum field length

Field Descriptions

Array of directory field names in the system distribution directory. The array of fields that are returned as a
result of the search request array. This array contains the directory field name, product ID, directory field type,
and the maximum field length.

Array of fields for each user that was requested. The actual data for each field for the user returned as a
result of the match. See either SRCV0111 Format, or SRCV0112 Format for the structure of this array.

Array of fields to return. The field names that the user wants returned in the receiver variable for each user
found that matches the search criteria. See either SREQ0102 Format, or SREQ0103 Format for the structure of
this array. There is no maximum number of elements.

Array of users that match the search criteria. The array of users that matches the search criteria on the
request. See SRCV0101 Format for the structure of this array.

Case of data input. The case of the data input. The valid values are:

blank The data of all fields except two is searched without regard to the case of the data (case-insensitive
search). The exceptions are the IBM fields SMTPUSRID and SMTPRTE, which are searched with
regard to the case of the data (case-sensitive search).

0 The same as blank, the preceding value description.

1 The data of all fields is searched without regard to the case of the data (case-insensitive search).

Note: When you use the case of data input field for the SMTPUSRID or SMTPRTE field names,
always qualify these field names with the product ID *IBM.

CCSID of data input. The CCSID of the data input or a special value. The special values are:

0 The default job CCSID will be used.

-1 The character set and code page will be used.

65535 The default job CCSID will be used.

Character set of data input. The character set of the data input. This field is used if the CCSID of data input is
-1.

Character set or CCSID of the value. If the conversion of the data (convert receiver data indicator) was set to
0, this is the character set of the field value as it exists on the system. If the convert receiver indicator was set to
1, this is either a character set or CCSID depending on what was specified in the request variable for CCSID of
data input. If the convert receiver data indicator was set to 2, this is the CCSID of the field value.

Code page of data input. The code page of the data input. This field is used if the CCSID of data input is -1.

Code page of the value. If the conversion of the data (convert receiver data indicator) was set to 0, this is the
code page of the field value as it exists on the system. If the convert receiver indicator was set to 1, this is either
a code page or CCSID depending on what was specified in the request variable for CCSID of data input.
Otherwise, the code page is set to 0.

Compare value. The way to compare the value given with the field value in the system distribution directory
entry. Only the value, 1 (equal), is currently supported.

Continuation handle (input). This allows you to continue to return data on a search if there was not enough
space available to return all the entries that matched the search criteria on a previous search.

This value is 0 on the first search request. If you are continuing a search, this value needs to be set from the
continuation handle (output) field.

The resource handle must be set if you are going to continue a search.

To use the continuation handle, you must keep the temporary resource space by setting the keep temporary
resource indicator field to 1.

Continuation handle (output). An indicator for more directory entries available. The valid values are:

0 No

1 Yes

If this continuation handle is 0, either all the records that matched the search criteria were returned to this
structure, or there were more records but the search files were not requested to be left open.

If the continuation handle is 1, there are more records available in the directory that match the search criteria,
but there was no room available in the return structure. You may request more data by using this value in the
request variable along with the resource handle.

Continuation handle for directory fields (input). Allows you to continue to return data on a search of
directory fields if there was not enough space available to return all of the directory fields that matched the
request.

This value is blank on the first request. If you are continuing a search, this value needs to be set from the
continuation handle for directory fields (output) field.

Continuation handle for directory fields (output). Contains a value if there are more directory fields available
for the search criteria requested. You may request more directory fields by using this value in the request
variable field, continuation handle for directory fields (input).

Convert receiver data indicator. The option to convert the field values in the array of users returned for each
user in the receiver variable.

The valid values are:

0 Do not convert receiver data. All data returned will be returned in the character set and code page as the
data exists on the system. The character set and code page of the receiver data is in the array of fields for
each user. See either SRCV0111 Format, or SRCV0112 Format for more information on the array of fields
for each user.

1 Convert the receiver data. All data will be returned in the CCSID or character set and code page specified
in the request variable.

2 Do not convert receiver data. All data will be returned as the data exists on the system, but the character set
and code page will be converted to a CCSID tag. The CCSID of the receiver data is in the array of fields for
each user. See either SRCV0111 Format, or SRCV0112 Format for more information on the array of fields
for each user.

Data to search. The type of data to search on this system.

The valid values are:

0 Local data

1 All data on the system including shadowed data

Directory field name. Depending on the request in the SREQ0200 format, either an IBM-defined or a
user-defined field. OS/400 system distribution directory field names have a product ID of *IBM. All other field
names are for user-defined fields.

Directory field type. The following values can be returned for the field type and is meaningful only for
user-defined fields:

*DATA User-defined field is for data.

*MSFSRVLVL User-defined field is for a mail service level.

*ADDRESS User-defined field is for an address.

See SRCV0200 Format for the field types for user-defined.

Field name. The field name can be an IBM-defined field name, or a user-defined field name. To determine the
user-defined field names defined on the system, either use the Change System Directory Attributes
(CHGSYSDIRA) command with F4, or retrieve the fields using the SREQ0200 format.

The following is a list of predefined field names that can be specified in the field name field of the array of
search fields and the array of fields to return.

Notes:

There is a maximum of 512 bytes for user-defined fields.1.

There is a performance impact when a mixture of system directory field names, SMTP field names, and
user-defined fields are specified in the search request array.

2.

System directory field names

Note: This is the order in which the field names are returned when the return fields in order specified option is
not 1 (0 is the default). The field is truncated so that ending blanks are not returned. This group of field names is
the *SYSDIR group when the SREQ0103 format is used. See SREQ0103 Format for more information on the
SREQ0103 format.

USER User profile. The maximum length is 10.

INDUSR Indirect user. The maximum length is 1. This only applies for local directory entries. The
valid values are:

1 Yes

0 No

PRTCOVER Print cover page. The maximum length is 1. This only applies for local directory entries.
The valid values are:

1 Yes

0 No

Note: The PRTCOVER field can only be returned. It cannot be searched on.

NFYMAIL Mail notification. The maximum length is 3. The first byte value represents:

1 Specific types of mail

2 All mail

3 No mail

For specific types of mail:

The second byte represents priority, private, and important mail. The valid values
are:

1 Yes

0 No

●

The third byte represents messages. The valid values are:

1 Yes

0 No

●

Note: The NFYMAIL field can only be returned. It cannot be searched on.

USRID User ID (DEN). The maximum length is 8.

LCLDTA Local data indicator. The maximum length is 1. The valid values are:

0 Local

1 Shadowed

This indicates where this user was created (origination). If the user was created on this
system, this indicator is 0. If the user was shadowed from another system, this
indicator is 1. If a remote user was created on this system, this indicator is 0.

USRADDR User address (DGN). The maximum length is 8.

SYSNAME System name (REN). The maximum length is 8.

SYSGRP System group (RGN). The maximum length is 8.

USRD User description.

Each description field has a maximum length of 50. If a user has only one description, it
will be returned trimmed. If a user has more than one description, all of the descriptions
will be returned in this field, with each description using a maximum of 50 characters. The
length of the value will tell how long the field is and, in effect, how many descriptions
exist. For example, if a user has 3 descriptions, the length of value field will be 150 (50
characters for each description).

Note: When there is more than one description, blank truncation is not performed.

FSTNAM First name. The maximum length is 20.

PREFNAM Preferred name. The maximum length is 20.

MIDNAM Middle name. The maximum length is 20.

LSTNAM Last name. The maximum length is 40.

FSTPREFNAM First or preferred name. The maximum length is 20.

Note: This is an input-only field. It is not output.

FULNAM Full name. The maximum length is 50.

TITLE Job title. The maximum length is 40.

CMPNY Company. The maximum length of is 50.

DEPT Department. The maximum length is 10.

NETUSRID Network user ID. The maximum length is 47.

TELNBR1 Telephone number 1. The maximum length is 26.

TELNBR2 Telephone number 2. The maximum length is 26.

FAXTELNBR Fax telephone number. The maximum length is 26.

LOC Location. The maximum length is 40.

BLDG Building. The maximum length is 20.

OFC Office. The maximum length is 16.

ADDR1 Mailing address line 1. The maximum length is 40.

ADDR2 Mailing address line 2. The maximum length is 40.

ADDR3 Mailing address line 3. The maximum length is 40.

ADDR4 Mailing address line 4. The maximum length is 40.

CCMAILADR cc:Mail** address. The maximum length is 255.

CCMAILCMT cc:Mail comment. The maximum length is 126.

TEXT Text. The maximum length is 50.

MSFSRVLVL Mail server framework service level.

The field for the mail service level. When requesting this field to be searched on, supply
only the field name and product ID with the field name in the first 10 bytes and the product
ID in the last 7 bytes. When this field is returned in SRCV0111 or SRCV0112, the mail
service level value contains the following structure:

CHAR(10)-Field name

The field name can be a special value or a user-defined field name. The special
values are:

*USRIDX User index

*SYSMS System message store

*DOMINO Lotus Domino mail database

●

CHAR(7)-Product ID

The product ID of a user-defined field. *NONE indicates that there is no product
ID for the user-defined field.

●

BINARY(4)-Length of mail service level

If the value is 0, then the field did not exist in the directory, the field was blank, or
the field name is a special value of *USRIDX, *SYSMS, or *DOMINO.

●

CHAR(*)-The value of the mail service level field and product ID. This value will
be blank for *USRIDX, *SYSMS, and *DOMINO. For user-defined fields, it is the
value of that field in the system distribution directory.

The maximum size is 512.

●

See either SRCV0111 Format or SRCV0112 Format for more information on either the
SRCV0111 format or the SRCV0112 format.

PREFADR Preferred address.

The field for the preferred address. When requesting this field to be searched on, supply
only the field name and product ID, with the field name in the first 10 bytes and the product
ID in the last 7 bytes. When this field is returned in SRCV0111 or SRCV0112, the
preferred address value contains the following structure:

CHAR(10)-Field name

The field name can be a special value, a user-defined field name, or an
IBM-defined field name. The special values are:

*USRID User ID/address

*ORNAME X.400 O/R name

*SMTP SMTP name

●

CHAR(7)-Product ID

The product ID of the field. *IBM indicates an IBM-defined field name. *NONE
indicates that there is no product ID for the user-defined field.

●

CHAR(4)-Address type value●

CHAR(8)-Address type name●

BINARY(4)-Length of preferred address value

If the value is 0, either the field did not exist in the directory or the field was blank.

●

CHAR(*)-The value of the preferred address field and the product ID.

The following is the structure of this field based on the field name value:

*USRID User ID (DEN) in the first 8 bytes, user address
(DGN) in the second 8 bytes, system name
(REN) in the third 8 bytes, and system group
(RGN) in the last 8 bytes.

*ORNAME X.400 O/R name is formatted from the X.400
O/R name fields that exist for this user. See the
IBM-defined field ORNAME for the structure
of this field. The maximum size for this field is
909 bytes.

*SMTP The maximum size of the SMTP user ID is 24
bytes. The maximum size changes to 64 bytes if
SMTP names are converted using the Convert
Name SMTP (CVTNAMSMTP) command.
You can check if the CVTNAMSMTP
command has been run with the
WRKNAMSMTP command. You get error
TCP9610 if CVTNAMSTMP has been run. The
first part of the *SMTP structure does not
change. The SMTP user ID is the first 24 bytes
followed by either the SMTP domain or route
for 256 bytes. To support the new SMTP user
ID length, 64 bytes follow the SMTP domain or
route portion. Both the old SMTP user ID and
the new SMTP user ID contain the SMTP user
ID except when the SMTP user ID has more
than 24 bytes. In this case the old SMTP user
ID is blank.

IBM-defined or user-defined
field

The contents of the field will be the value of the
field in the system distribution directory. The
maximum size is 512 bytes.

See either SRCV0111 Format or SRCV0112
Format for more information on either the
SRCV0111 format or the SRCV0112 format.

●

ALWSYNC Allow synchronization. The maximum length is 1.

This field indicates whether the user's entry should be synchronized with directories other
than the System Distribution Directory. The valid values are:

1 Yes

0 No

DLOOWN DLO owner. The maximum length is 10.

This field indicates if the user profile or the group profile will be assigned the ownership of
the document library objects (DLOs) for this directory entry. The valid values are:

*USRPRF User profile

*GRPPRF Group profile

MGRCODE Manager code. The maximum length is 1.

This field indicates whether the user is a manager. The valid values are:

1 Yes

0 No

X.400 O/R field names:

These fields are the group of fields for the *ORNAME special value in the SREQ0103 format.

ORNAME The paper representation of the X.400 O/R name. This field cannot be searched on, but it
can be returned in the receiver variable.

The string starts with X.400 and is followed by the following formats:

Non-DDA (domain-defined attributes) are represented as:

<attribute type>=<attribute value>

●

DDA (domain-defined attributes) are represented as:

DDA.<DDA type>=<DDA value>

●

Abbreviations for the attributes in an X.400 O/R name are:

C Country or region name

A Administration Domain (ADMD) name

P Private Management Domain (PRMD) name

O Organization name

OU Organizational unit name

OU1 Organizational unit 1 name

OU2 Organizational unit 2 name

OU3 Organizational unit 3 name

OU4 Organizational unit 4 name

S Surname

G Given name

I Initials

GQ Generation qualifier

DDA Domain-defined attribute

When an O/R name contains only one organization unit attribute, the type OU is used.
When an address contains more than one organization unit attribute, the types OU1, OU2,
OU3, and OU4 are used. OU1 is the most significant designator in the organization's
hierarchy.

Every attribute, except the last one is followed by a semicolon.

An example paper representation of an X.400 O/R name is:

X.400 C=US;A=ANYMAIL;P=XYZ;O=CLEANING COMPANY;
OU=SALES DEPT;S=DOE;G=John;I=JA;DDA.ID=123999

If each X.400 field is returned separately, then:

COUNTRY would be US●

ADMD would be ANYMAIL●

PRMD would be XYZ●

ORG would be CLEANING COMPANY●

One of the organizational units would be SALES DEPT●

SURNAM would be DOE●

GIVENNAM would be JOHN●

INITIALS would be JA●

One of the domain-defined attribute types fields would be ID, and the value of that
field would be 123999.

●

COUNTRY Country or region. The maximum length is 3.

ADMD Administration domain. The maximum length is 16.

PRMD Private management domain. The maximum length is 16.

ORG Organization. The maximum length is 64.

SURNAM Surname. The maximum length is 40.

GIVENNAM Given name. The maximum length is 16.

INITIALS Initials. The maximum length is 5.

GENQUAL Generation qualifier. The maximum length is 3.

ORGUNIT1 Organization unit 1. The maximum length is 32.

ORGUNIT2 Organization unit 2. The maximum length is 32.

ORGUNIT3 Organization unit 3. The maximum length is 32.

ORGUNIT4 Organization unit 4. The maximum length is 32.

DMNDFNAT1 Domain-defined attribute type 1. The maximum length is 8.

DMNDFNAV1 Domain-defined attribute value 1. The maximum length is 128.

DMNDFNAT2 Domain-defined attribute type 2. The maximum length is 8

DMNDFNAV2 Domain-defined attribute value 2. The maximum length is 128.

DMNDFNAT3 Domain-defined attribute type 3. The maximum length is 8.

DMNDFNAV3 Domain-defined attribute value 3. The maximum length is 128.

DMNDFNAT4 Domain-defined attribute type 4. The maximum length is 8.

DMNDFNAV4 Domain-defined attribute value 4. The maximum length is 128.

See SREQ0103 Format for more information on the SREQ0103 format.

Simple Mail Transfer Protocol (SMTP) field names:

These fields are the group of fields for the *SMTP special value in the SREQ0103 format.

SMTPUSRID SMTP user ID. The maximum length is 24.

However, the maximum length changes to 64 if the SMTP names are converted using the
CVTNAMSMTP command.

Note: This field is a case-sensitive field.

SMTPDMN SMTP domain.

Either the SMTP domain or the SMTP route can exist, not both. The maximum length is 256.

SMTPRTE SMTP route.

Either the SMTP domain or the SMTP route can exist, not both. The maximum length is 256.

See SREQ0103 Format for more information on the SREQ0103 format.

Field value. The value of the field.

Format name of array of fields for each user returned. The format name of the array of fields for each user
returned. This is the specific structure for each user in either the SRCV0111 format or the SRCV0112 format.
See either SRCV0111 Format, or SRCV0112 Format for more information on the array of fields for each user.

Format name of array of fields to return. The format name of the array of fields to return so that the fields of
each user found matching the search criteria that is needed is known. The possible values are SREQ0102 and
SREQ0103. See SREQ0102 Format, or SREQ0103 Format for more information on the array of fields to return
for each user.

Format name of array of users to return in the receiver variable. The format name of the array of users to
return after the search is complete. This is so the format to return the search results is known. The possible value
is SRCV0101. See SRCV0101 Format for more information on the array of users returned.

Format name of order of field names array returned. The format name of the order of field names to be
returned. Possible values are blank and SRCV0120. If the value is blank, the order of the field names array is
not returned. The order of field names array is not returned if user-defined fields are requested as only the
user-defined fields that exist for each user is returned and are not in any specified order.

Format name of the search request array. The format name of the search request array so that the format of
the search request is known. The possible value is SREQ0101. See SREQ0101 Format for more information on
the array of search fields.

Length of data for this user. The length of both the header information and the fields that are returned for the

user.

Length of entry (including this field). The length of the entry in the array of all of the fields including this
field.

Length of field value returned. The length, in bytes, of the field value. If this value is 0, there is no data in the
field.

Length of value. If the length of the value is 0, this field is ignored on the search request. There must be at least
one field in the search request array with a length of value greater than 0 and the value is not blank spaces.

The maximum length is 512.

Maximum field length. The maximum length of this directory field.

Number of bytes returned. The length of the data returned. If the receiver variable is not large enough to hold
all of the data available, only the data that will fit in the space available is returned and this value will be less
than the bytes available.

Number of directory entries returned. This is the number of directory entries that are returned in SRCV0101.
It is the number of directory entries found as a result of the search request. If more directory entries are available
but there was not enough space available in the SRCV0101 structure, the continuation handle will be 1. If all of
the entries are returned, the continuation handle will be 0.

Number of directory field names returned. The number of elements in the field name array.

Number of directory fields. The total number of directory fields for the type of fields requested. If the
continuation handler for directory fields is not blank, then there are more fields available.

Number of elements in the fields to return array. The number of fields to be returned for each user. These
fields are returned in the receiver variable.

Number of elements in the search request array. The number of fields and values to match for the search
request. The maximum number of elements allowed is 100.

Number of elements to return in the array of users to return. The number that should be used to return a
fixed number of elements on a call to the API. The number of elements returned will be less than or equal to the
number specified here. If the number returned is less than the number specified, then either all of the elements
that met the criteria were returned or the size of the receiver variable could not hold the number specified.

The continuation handle will be set if more data exists after returning the number of elements specified for this
parameter.

If this number is 0, the maximum number of elements possible is returned.

This field could be used to limit the run time of the API. For instance, it could be used to retrieve only the
number of users needed to file a subfile page.

Number of fields returned. The number of fields returned for the user. Fields are returned even if blank.

Offset to array of fields to return. The offset, in bytes, to the array of fields to return.

Offset to order of fields returned array. The offset, in bytes, to the order of fields returned array. The value
can be 0 if either the order of the fields is not needed or the user-defined fields are returned. This is requested in
the SREQ0100 format. See SREQ0100 Format for more information on the offset to order of fields returned
array.

Offset to the array of directory field names. The offset, in bytes, to the array of directory field names at the
bottom of the SRCV0200 structure.

Offset to the first array of users entry. The offset, in bytes, to the array of users in the SRCV0100 structure.
This is the offset to the first entry in the array of users that are returned that match the search criteria.

Offset to the search request array. The offset, in bytes, to the search request array in the SREQ0100 format.
See SREQ0100 Format for more information on the offset to the search request array.

Order of fields returned array. The array of fields names of the order of the fields in the array of fields for
each user (in either the SRCV0111 format or the SRCV0112 format) that is returned. For more information see
SRCV0120 Format.

Product ID. A special value of *IBM indicates that the field is an OS/400 system distribution directory field. A
value of blank spaces indicates that there is no product ID associated with the field name.

An error will be signaled if:

The field name and product ID cannot be found.●

The product ID is blank and the field name does not exist with a product ID of *NONE.●

Reserved. This is used to align the character set of the value field.

Resource handle. This value needs to be set from the output resource handle variable that was used as output in
the receiver buffer from a previous search.

On the first call, this value needs to be blank.

To use the resource handle, you must specify to keep the temporary resources option on the previous search.

If you are continuing a search, the resource handle must be set from the output resource handle variable from a
previous search of the same criteria.

If you are not continuing a search, the resource handle can be reused and the continuation handle will be set to
0. This will reuse the open files and temporary work areas.

If a resource handle is reused on another search, a continuation of a previous search is attempted using the same
resource handle and the continuation is no longer valid for the previous search.

Return fields in order specified option. The option to return the fields in the order specified in the array of
fields to return format. See SREQ0102 Format for the structure of this array. The valid values are:

0 Return fields in the predefined order as specified in the Field name field description in Field name. This is
the default.

1 Return the fields as specified in SREQ0102 Format. This option may give slower response on the search
request. SRCV0120 Format and SREQ0103 Format cannot be used with this option.

Run verify indicator. The option to verify the input parameters. Running the verification process has the
potential to increase the time it takes to run a search. If the verification flag is set off and no valid data is passed
as input, unpredictable results may occur.

The purpose of this indicator is so verification does not have to be run when continuing the return of data, or
when a search request is repeated.

The valid values are:

0 Do not run the verification process.

1 Run the verification process.

For the first search request, it is recommended that this value be 1.

Search request array. An array of search fields. There is a maximum of 100 entries. See SREQ0101 Format
for the structure of this array.

The first element that is entered in the search request array is considered to be the key for the search. This is
important for performance because the more distinct the key, the faster the search. Records will be returned in
the order of the field specified as the key.

A performance consideration that should be made when choosing the key value is a value to match that contains
wildcard characters. The search key should contain fields that occur a minimum number of times on the system.
For this reason, it is more efficient to specify a key search value that does not contain wildcards.

The search is an AND of all the input fields. It will be a full match or a generic match if a wildcard character is
used as the last character of the field value.

Special value of fields to be returned. This field selects a group of fields depending on the special value. The
order of the field names returned in the SRCV0101 format is returned in the format, SRCV0120. The
SRCV0120 format is optional. It is optional because the order of the field names is always the same, but it is
given so you can programmatically find the order of fields returned.

The special values are:

*SYSDIR Returns all of the system distribution directory fields except the X.400 O/R name fields, the
SMTP name fields, and the user-defined fields.

*ORNAME Returns the X.400 O/R name fields.

*SMTP Returns the SMTP name fields.

Type of system distribution directory fields to return. The indicator for the type of system distribution
directory fields that are defined on the system to be returned.

The possible values are:

0 All system distribution directory fields, including both IBM-defined fields and user-defined fields.

1 IBM-defined system distribution directory fields.

2 User-defined system distribution directory fields.

Value to match. If a blank value is encountered, the API will ignore the field.

All values entered are monocased and converted to a common character set and code page before the search
takes place. Therefore, the uppercase and lowercase characters are not distinguished, except for the SMTP user
ID where it is distinguished. However, if the SMTP names are converted (CVTNAMSMTP command), the
SMTP user ID is not distinguished because the SMTP fields are converted into user-defined fields.

A maximum of one wildcard character is allowed in the value to match field.

Wildcard character. The wildcard character indicates the wildcard character used for wildcard searches. An
example of a wildcard character is an asterisk (*); however, the wildcard character can be anything you specify.
If the character is encountered in the values to search on, that value indicates a wildcard search. This wildcard
character will be in the CCSID or character set and code page (CHRID) that is used as input.

The wildcard character represents any number of characters (not just one character) in the search value to
match. If a blank is used for a wildcard value, the API will not check for wildcards and the value will be
checked specifically as input.

Note: The wildcard character field is a CHAR(4) because of DBCS and SBCS. In addition, for SBCS the
wildcard character field is left-adjusted.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9A8C E Error occurred with QOKSCHD API. Reason code &1.

CPF9845 E Error occurred while opening file &1.

CPF9846 E Error while processing file &1 in library &2.

CPF9847 E Error occurred while closing file &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPI9A9C I Search data does not exist.

API Introduced: V3R1

Top | Office APIs | APIs by category

Directory Maintenance Exit Program

 Required Parameter Group:

1 Request type Input Char(10)
2 Directory information format Input Char(10)
3 Owning system name Input Char(8)
4 User making request Input Char(10)
5 System making request Input Char(8)
6 Length of directory information Input Binary(4)
7 Directory information Input Char(*)
8 User exit program type Input Char(10)
9 Field name and product ID in error Output Char(17)

 QSYSINC Member Name: EOKDRVF

 Exit Point Name: QIBM_QOK_VERIFY
 QIBM_QOK_NOTIFY

 Exit Point Format Name: VRFY0100

The Directory Maintenance exit program allows the administrator to make decisions based on directory entry
additions, changes, or deletions. Two exit points are available.

The maintenance program registered at exit point QIBM_QOK_VERIFY is called before any directory entry,
department, or location is added, changed, or removed from the system. This exit program is more specifically
known as the verification maintenance exit program. The verification maintenance exit program allows the
administrator to define additional security or syntax checking on the data.

The maintenance program registered at exit point QIBM_QOK_NOTIFY is called after any directory entry,
department, or location is added, changed, or removed from the system. This exit program is more specifically
known as the notification maintenance exit program.

The verification maintenance exit program is specified on the VRFPGM parameter of the Change System
Directory Attribute (CHGSYSDIRA) command. The verification maintenance exit program can also be
specified using the Work with Registration Information (WRKREGINF) command. The notification
maintenance exit program can only be specified using the Work with Registration Information (WRKREGINF)
command.

Exit programs that have been registered through the registration facility for common exit programs can be
viewed by using the Work with Registration Information (WRKREGINF) command.

The maintenance programs are given all updated information known about the directory entry, department, or
location. The verification maintenance exit program returns to the directory service an indication as to whether
the add, change, or delete operation is to be applied to the Enterprise Address Book (EAB). On the iSeries
server, this is called the system distribution directory. The EAB is a collection of data, such as information
about people, departments, and locations in a network. An example of an enterprise is a company.

Whether or not update requests that are rejected by the verification maintenance exit program are supplied to
other systems depends on the origin of the update.

When a local update request is rejected by the verification maintenance exit program, the update does●

not affect the local system. If the iSeries server is participating in directory shadowing, the update is not
supplied to other systems in the directory shadowing network.

If the iSeries server is participating in directory shadowing and a shadowed update request is received
and is rejected by the verification maintenance exit program, then the update does not affect the local
system.

Other systems in the directory shadowing network may be affected. The results depend on the nature of
the shadowed update request:

When an add request is rejected, it is filtered out of (does not appear on) the local system, but
remains on the network. Information about the add request is stored separately in a change log
and will subsequently be supplied to other systems in the directory shadowing network.

❍

When a change or delete request is rejected, the local system keeps its original information. In
addition, the original information will be supplied again to other systems, including the system
the information originated from, to keep directory information consistent throughout the
network.

❍

●

The verification criteria should be consistent on all your systems to help reduce the amount of processing on the
network.

The system can get back the data which was filtered, but it is not a simple task. In order to retrieve the data
which has been filtered out, the data can be shadowed again from the system where the data resides.

Required Parameter Group

Function being requested

INPUT; CHAR(10)

The type of operation that the user is requesting to do to the directory information that is described by
the other parameters.

*ADD Information is being added.

*ADDDSC User description is being added.

*CHG Information is being changed.

All fields in the directory information that are not changed will be X'00' except for the
first field of every table. That field indicates what directory entry, department, or location
is being changed.

*DLT Information is being deleted.

*DLTDSC User description is being deleted.

Directory information format

INPUT; CHAR(10)

The format of the directory information that is being worked with. The information is provided in the
directory information parameter. The valid formats are:

CHKP0100 Directory entry (See CHKP0100 Format.)

CHKP0200 Department entry (See CHKP0200 Format.)

CHKP0300 Location entry (See CHKP0300 Format.)

These formats have the same layout as the SUPP0100, SUPP0200, and SUPP0300 formats used for the
Directory Supplier exit program. This allows a single program to be used as both a verification
maintenance program and a supplier program.

Owning system name

INPUT; CHAR(8)

The name of the system that "owns" the directory entry, department, or location that is being worked
with. The owning system is the system that originally added the data to the network.

*LOCAL The entry is owned by the local system.

User making request

INPUT; CHAR(10)

The user profile name of the user that is doing the request. When using the shadowing function, this is
the user that originated the modification.

System making request

INPUT; CHAR(8)

The system from which the request is coming. When using the shadowing function, this is the system
that originated the modification.

Length of directory information

INPUT; BINARY(4)

The length of the directory information in the directory information parameter. The length depends on
the directory information format. Each format has a different (but fixed) length as shown in specific
format tables.

Directory information

INPUT; CHAR(*)

The directory information that is associated with the directory entry, department, or location that the
request is made against. For the format of this character parameter, refer to the specific format table
(CHKP0100 Format , CHKP0200 Format , or CHKP0300 Format) and to the Field Descriptions.

User exit program type

INPUT; CHAR(10)

The user exit program type that is associated with the call of the Directory Maintenance exit program.
This parameter is provided so that a single program can be used as both a maintenance program and a
supplier program. This parameter is set to *VRFPGM if calling the verification maintenance exit
program or *NFYPGM if calling the notification maintenance exit program.

Field name and product ID in error

OUTPUT; CHAR(17)

The field name and product ID that caused the CPF89A4 error. The first 10 characters are the field
name; the second 7 characters contain the product name. The product ID can have the following special

values:

*NONE A field name that does not have a product ID.

*IBM A field defined by the OS/400 system distribution directory.

This parameter is used only by the verification maintenance exit program. The notification maintenance
exit program does not use any output parameter. This is because the information has already been added
to the directory and the notification maintenance exit program cannot reject it.

This field will be recognized only for an add or a change of a directory entry where the Work with
Directory Entries (WRKDIRE) panel support is being used. The field will be highlighted and the cursor
will be positioned on the field. The field will be ignored under any other conditions.

The field name can be a user-defined name or a name supplied by the OS/400 system distribution
directory. To display the user-defined names, either type CHGSYSDIRA and press F4, or use the
SREQ0200 format of the QOKSCHD API. For more information on the SREQ0200 format of the
QOKSCHD API, see SREQ0200 Format.

The following names are defined by the OS/400 system distribution directory. The product ID of these
names is *IBM.

LSTNAM Last name

FSTNAM First name

MIDNAM Middle name

PREFNAM Preferred name

FULNAM Full name

DEPT Department

USRID User ID (DEN)

USRADDR User address (DGN)

USRD User description

SYSNAME System name (REN)

SYSGRP System group (RGN)

USER User profile

NETUSRID Network user ID

TELNBR1 Telephone number 1

TELNBR2 Telephone number 1

FAXTELNBR Fax telephone number

LOC Location

BLDG Building

CMPNY Company

OFC Office

TITLE Job title

ADDR1 Mailing address line 1

ADDR2 Mailing address line 2

ADDR3 Mailing address line 3

ADDR4 Mailing address line 4

INDUSR Indirect user

LCLDTA Local data indicator

TEXT Text

COUNTRY Country or region

ADMD Administration domain

PRMD Private management domain

ORG Organization

SURNAM Surname

GIVENNAM Given name

INITIALS Initials

GENQUAL Generation qualifier

ORGUNIT1 Organization unit 1

ORGUNIT2 Organization unit 2

ORGUNIT3 Organization unit 3

ORGUNIT4 Organization unit 4

DMNDFNAT1 Domain-defined attribute type 1

DMNDFNAV1 Domain-defined attribute value 1

DMNDFNAT2 Domain-defined attribute type 2

DMNDFNAV2 Domain-defined attribute value 2

DMNDFNAT3 Domain-defined attribute type 3

DMNDFNAV3 Domain-defined attribute value 3

DMNDFNAT4 Domain-defined attribute type 4

DMNDFNAV4 Domain-defined attribute value 4

CCMAILADR cc:Mail address

CCMAILCMT cc:Mail comment

MSFSRVLVL Mail server framework service level

PREFADR Preferred address

ALWSYNC Allow synchronization

DLOOWN DLO owner

Rejecting an Update Operation

The user-written verification maintenance exit program may reject update requests. To do so, the verification
maintenance exit program must signal a specific program message to the directory services module that called
it, and then return. An update is rejected based on the restrictions that have been identified. For example, if three
people have authority to make updates but the program allows only one user to do updates, then update requests

by all other users are rejected.

To allow a directory update request, the verification maintenance exit program only returns to the program that
called it. Two program messages have been defined for the purpose of rejecting directory updates. The
messages are:

CPF89A3 Operation not successful due to authority reasons.
CPF89A4 Operation not successful due to data validation reasons.

Note: The message must be signalled as an escape message. A diagnostic or informational message can be
signalled before the escape message to give additional information about the error.

You may provide an optional data structure with message variable substitution text. This will help clarify the
reasons for the rejection to the users. The optional data structure is:

CHAR(10) The profile name of the user who requested (entered) the update. This information is from the user
making request parameter.

CHAR(8) The system name of the user who requested (entered) the update. You can get this from the system
making request parameter.

CHAR(120) A description of the reason the exit program is rejecting the request.

CHKP0100 Format

Offset

Type FieldDec Hex

Note: The following fields are in code page 500 and character set 697.

0 0 CHAR(16) User ID/address

16 10 CHAR(16) System name/group

32 20 CHAR(10) User profile

42 2A CHAR(47) Network user ID

89 59 CHAR(16) New user ID/address

105 69 CHAR(16) Old user to forward from user ID/address

121 79 CHAR(1) Indirect user

122 7A CHAR(1) Print personal mail

123 7B CHAR(3) Reserved

Note: The character sets and code pages immediately follow the individual fields in the
list below.

126 7E CHAR(50) Description

176 B0 BINARY(4) Character set

180 B4 BINARY(4) Code page

184 B8 CHAR(40) Last name

224 E0 BINARY(4) Character set

228 E4 BINARY(4) Code page

232 E8 CHAR(20) First name

252 FC BINARY(4) Character set

256 100 BINARY(4) Code page

260 104 CHAR(20) Middle name

280 118 BINARY(4) Character set

284 11C BINARY(4) Code page

288 120 CHAR(20) Preferred name

308 134 BINARY(4) Character set

312 138 BINARY(4) Code page

316 13C CHAR(2) Reserved

318 13E CHAR(50) Full name

368 170 BINARY(4) Character set

372 174 BINARY(4) Code page

376 178 CHAR(2) Reserved

378 17A CHAR(10) Department

388 184 BINARY(4) Character set

392 188 BINARY(4) Code page

396 18C CHAR(2) Reserved

398 18E CHAR(50) Job title

448 1C0 BINARY(4) Character set

452 1C4 BINARY(4) Code page

456 1C8 CHAR(2) Reserved

458 1CA CHAR(50) Company

508 1FC BINARY(4) Character set

512 200 BINARY(4) Code page

516 204 CHAR(2) Reserved

518 206 CHAR(26) Telephone number 1

544 220 BINARY(4) Character set

548 224 BINARY(4) Code page

552 228 CHAR(2) Reserved

554 22A CHAR(26) Telephone number 2

580 244 BINARY(4) Character set

584 248 BINARY(4) Code page

588 24C CHAR(40) Location

628 274 BINARY(4) Character set

632 278 BINARY(4) Code page

636 27C CHAR(20) Building

656 290 BINARY(4) Character set

660 294 BINARY(4) Code page

664 298 CHAR(16) Office

680 2A8 BINARY(4) Character set

684 2AC BINARY(4) Code page

688 2B0 CHAR(40) Mailing address line 1

728 2D8 BINARY(4) Character set

732 2DC BINARY(4) Code page

736 2E0 CHAR(40) Mailing address line 2

776 308 BINARY(4) Character set

780 30C BINARY(4) Code page

784 310 CHAR(40) Mailing address line 3

824 338 BINARY(4) Character set

828 33C BINARY(4) Code page

832 340 CHAR(40) Mailing address line 4

872 368 BINARY(4) Character set

876 36C BINARY(4) Code page

880 370 CHAR(2) Reserved

882 372 CHAR(50) Text

932 3A4 BINARY(4) Character set

936 3A8 BINARY(4) Code page

940 3AC CHAR(1) Print cover page

941 3AD CHAR(1) Mail notification

Note: The following X.400 fields are in the character set and code page as defined by
1984 X.400 standards.

942 3AE CHAR(3) X.400 country or region

945 3B1 CHAR(16) X.400 administration domain

961 3C1 CHAR(16) X.400 private domain

977 3D1 CHAR(64) X.400 organization

1041 411 CHAR(40) X.400 surname

1081 439 CHAR(16) X.400 given name

1097 449 CHAR(5) X.400 initials

1102 44E CHAR(3) X.400 generation qualifier

1105 451 CHAR(32) X.400 organization unit 1

1137 471 CHAR(32) X.400 organization unit 2

1169 491 CHAR(32) X.400 organization unit 3

1201 4B1 CHAR(32) X.400 organization unit 4

1233 4D1 CHAR(8) X.400 domain attribute type 1

1241 4D9 CHAR(128) X.400 domain attribute value 1

1369 559 CHAR(8) X.400 domain attribute type 2

1377 561 CHAR(128) X.400 domain attribute value 2

1505 5E1 CHAR(8) X.400 domain attribute type 3

1513 5E9 CHAR(128) X.400 domain attribute value 3

1641 669 CHAR(8) X.400 domain attribute type 4

1649 671 CHAR(128) X.400 domain attribute value 4

1777 6F1 CHAR(3) Reserved

1780 6F4 CHAR(32) Fax telephone number

1812 714 BINARY(4) Character set

1816 718 BINARY(4) Code page

1820 71C CHAR(17) Mail service level

1837 72D CHAR(29) Preferred address

1866 74A CHAR(255) cc:Mail address

2121 849 CHAR(126) cc:Mail comment

2247 8C7 CHAR(1) Allow synchronization

2248 8C8 BINARY(4) Offset to user-defined fields array

2252 8CC BINARY(4) Number of elements (fields) in user-defined fields
array

2256 8D0 CHAR(10) DLO owner

Note: All fields that are not changed will be X'00' except for the user ID/address field.

Array for User-Defined Fields

The following table is the array for user-defined fields, format CHKP0100.

Offset

Type FieldDec Hex

0 0 BINARY(4) Displacement to next user-defined field element in
this array

4 4 CHAR(10) Field name

14 E CHAR(7) Product ID

21 15 CHAR(3) Reserved

24 18 BINARY(4) Character set

28 1C BINARY(4) Code page

32 20 BINARY(4) Length of field value returned

36 24 CHAR(*) Field value

CHKP0200 Format

Offset

Type FieldDec Hex

Note: The character sets and code pages immediately follow the individual fields in the
list below.

0 0 CHAR(2) Reserved

2 2 CHAR(10) Department

12 C BINARY(4) Character set

16 10 BINARY(4) Code page

20 14 CHAR(2) Reserved

22 16 CHAR(50) Title

72 48 BINARY(4) Character set

76 4C BINARY(4) Code page

80 50 CHAR(2) Reserved

82 52 CHAR(10) Reports to department

92 5C BINARY(4) Character set

96 60 BINARY(4) Code page

Note: The following field is in code page 500 and character set 697.

100 64 CHAR(16) Manager user ID/address

116 74 CHAR(2) Reserved

118 76 CHAR(10) Old department

128 80 BINARY(4) Character set

132 84 BINARY(4) Code page

Note: All fields that are not changed will be X'00' except for the department field and
its corresponding character set and code page fields.

CHKP0300 Format

Offset

Type FieldDec Hex

Note: The character sets and code pages immediately follow the individual fields in the
list below.

0 0 CHAR(40) Location

40 28 BINARY(4) Character set

44 2C BINARY(4) Code page

48 30 CHAR(2) Reserved

50 32 CHAR(30) Location line 1

80 50 BINARY(4) Character set

84 54 BINARY(4) Code page

88 58 CHAR(2) Reserved

90 5A CHAR(30) Location line 2

120 78 BINARY(4) Character set

124 7C BINARY(4) Code page

128 80 CHAR(2) Reserved

130 82 CHAR(30) Location line 3

160 A0 BINARY(4) Character set

164 A4 BINARY(4) Code page

168 A8 CHAR(2) Reserved

170 AA CHAR(30) Location line 4

200 C8 BINARY(4) Character set

204 CC BINARY(4) Code page

208 D0 CHAR(2) Reserved

210 D2 CHAR(30) Location line 5

240 F0 BINARY(4) Character set

244 F4 BINARY(4) Code page

248 F8 CHAR(2) Reserved

250 FA CHAR(30) Location line 6

280 118 BINARY(4) Character set

284 11C BINARY(4) Code page

288 120 CHAR(40) Location changed to

328 148 BINARY(4) Character set

332 14C BINARY(4) Code page

336 150 CHAR(40) Old location

376 178 BINARY(4) Character set

380 17C BINARY(4) Code page

Note: All fields that are not changed will be X'00' except for the location field and its
corresponding character set and code page fields.

Field Descriptions

Allow synchronization. Whether the directory entries should be synchronized with directories other than the
system distribution directory. The values are 0 for no and 1 for yes.

Building. The name or number that identifies the user's building.

cc:Mail address. The cc:Mail address for a user. This field has a maximum of 126 characters, or 255 if the
cc:Mail address contains both a remote post office name and an alias name.

cc:Mail comment. The cc:Mail comment for this user.

Character set. The character identifier (graphic character set) that was used by the work station to enter the
data for the field.

Code page. The value specified on this parameter is used to instruct the printer device to interpret the
hexadecimal byte string to print the same characters that were intended when the text was created.

Company. The name of the company for whom the user works.

Department. The name or number that identifies the user's department.

Description. The description associated with the user ID. One entry in the directory can have several different
descriptions.

Displacement to next user-defined field element in this array. The displacement, in bytes, to the next
user-defined field. Use this value to increment the pointer to get to the next user-defined field.

DLO owner. A special value indicating whether the user profile or the group profile will be assigned ownership
of newly created document library objects (DLOs) associated with this directory entry.

Fax telephone number. The facsimile telephone number.

Field name. The user-defined field name.

Field value. The value of the user-defined field. The maximum is 512 bytes.

First name. The user's first name or given name.

Full name. The user's full name as it appears when a directory is viewed or searched.

Indirect user. A user enrolled in the system distribution directory who receives mail but never signs on to view
it. An indirect user receives printed mail only. The values are 0 for no and 1 for yes.

Job title. The title of the user's occupation.

Last name. The user's last name.

Length of field value. The length of the user-defined field value. If the value is 0, there is no data in that field
for this user.

Location. The location of the business or system. Some examples of location are city, state, or street address.

Location changed to. The new location value after combining locations.

Location lines 1 through 6. The location of the business or system. These fields further describe a location
name. For example, the field may contain the general mailing address for the location.

Mail notification. Whether or not the user wants to be notified when mail arrives.

The user can specify these values:

Blank Notified for priority or personal mail and messages

1 Notified for priority or personal mail and messages

2 Notified for only priority or personal mail

3 Notified for messages only

4 Notified for all mail

0 No notification for mail

Mail service level. A 17-byte field where the first 10 bytes are the field name and the last 7 bytes are the
product ID. The values for the mail service level can be:

*USRIDX User index

*SYSMS System message store

*DOMINO Lotus Domino mail database

A user-defined field name and product ID The product ID will be blank if the product ID does not exist.

Mailing address lines 1 through 4. The address of the user.

Manager user ID/address. The department manager's user ID and address.

Middle name. The user's middle name.

Network user ID. A unique value associated with each user in the Enterprise Address Book. For example, the
value could be the user ID/address, the social security number, or the employee number.

New user ID/address. The new user ID and address used during the rename operation.

Office. The name or number that identifies the user's office.

Old department. The previous department value before being changed.

Old location. The previous location value before being changed.

Old user to forward from user ID/address. This field shows the previous user ID and address from which the
user forwards mail.

Preferred address. A 29-byte field where the first 10 bytes are the field name, the second 7 bytes are the
product ID, the third 4 bytes are reserved, and the last 8 bytes are the address type name.

The special values of the field name in preferred address can be:

*USRID User ID/Address

*ORNAME X.400 O/R name

*SMTP SMTP name

A user-defined or IBM-defined field. The product ID is *IBM for an IBM-defined field. The product ID will
be blank if the product ID does not exist.

Preferred name. The name by which the user prefers to be known.

Product ID. The product ID of the user-defined field. If the value is *NONE, there is no product ID.

Print cover page. Whether a cover page is printed when the user's mail is printed. The values are 0 for no and 1
for yes.

Print personal mail. This field is used only if the user is an indirect user. The value specifies whether to print
the mail that can be accessed only by the receiver, but not by someone working on behalf of the receiver. When
mail is sent, it can be assigned the classification personal. The values are 0 for no and 1 for yes.

Reports to department. The department to which this department reports.

Reserved. An ignored field.

System name/group. An IBM-supplied name that uniquely identifies the system. It is used as a network value
for certain communications applications such as APPC.

Telephone number 1. The telephone number of the user's office or business, or telephone numbers that are
significant to the user. The most important number should be listed on the first line because only the first line is
displayed when you use the search directory function.

Telephone number 2. The second line for telephone numbers.

Text. Any additional information that describes the entry.

Title. A department title that further describes the department name.

User-defined fields. Fields that are defined on the system by the Change System Directory Attributes
(CHGSYSDIRA) command. The value of these user-defined fields can then be filled in on the directory entry
for each user. The field name, product ID and field value are passed in the user-defined fields array. The product
ID will be blank if the product ID does not exist.

User ID/address. A two-part network name used in the system distribution directory and in the office
applications to uniquely identify a user and to send electronic mail.

User profile. The user profile name, if any, associated with a user ID and address.

X.400 administration domain. The administration management domain part of the X.400 originator/recipient
(O/R) name. An administration management domain is a management domain that is administered by a public
organization, such as a national Post Telephone and Telegraph Administration (PTT). A management domain is
a set of message transfer agents (MTAs) and user agents (UAs) that comprise a message handling system.

X.400 country or region. The country or region part of the X.400 originator/recipient (O/R) name.

X.400 domain attribute types 1 through 4. The type of a domain-defined attribute for this object. The
domain-defined attribute is not defined by X.400 standards but is allowed in the X.400 originator/recipient
(O/R) name to accommodate values of existing systems sending messages.

X.400 domain attribute values 1 through 4. The code immediately following the attribute type that specifies a
particular property from the set defined by the attribute type.

X.400 generation qualifier. The generation qualifier part of the X.400 originator/recipient (O/R) name. For
example, the generation qualifier in the name John R. Smith, III, is III. If you specify a generation qualifier, you
must specify an X.400 surname.

X.400 given name. The user first name, or given name, part of the X.400 originator/recipient (O/R) name. The
default for the given name is the equivalent of the first name. If you specify a given name, you must specify an
X.400 surname.

X.400 initials. The first and middle initials of the X.400 originator/recipient (O/R) name. For example, the
initials for John Henry Smith are JH. If you specify initials, you must specify a surname.

X.400 organization. The organization name part of the X.400 originator/recipient (O/R) name.

X.400 organization units 1 through 4. The organization-defined unit part of the X.400 originator/recipient
(O/R) name.

X.400 private domain. The private management domain part of the X.400 originator/recipient (O/R) name. A
private management domain is a management domain that is administered by a private company or a
noncommercial organization.

X.400 surname. The user last name, or surname, part of the X.400 originator/recipient (O/R) name.

Error Messages

Message ID Error Message Text

CPF89A3 E Operation not successful due to authority reasons.

CPF89A4 E Operation not successful due to data validation reasons.

Exit Program Introduced: V3R6

Top | Office APIs | APIs by category

Directory Search Exit Program

 Required Parameter Group:

1 Function being requested Input Char(10)
2 Maximum entries for

addressees
Input Binary(4)

3 Maximum entries for copy list Input Binary(4)
4 Number of array elements Output Binary(4)
5 Array Output Char(*)
6 Maximum entries for blind

copy list
Input Binary(4)

 QSYSINC Member Name: EOKDRSH1

The Directory Search exit program allows the administrator to define a customized search of directory data. The
exit will perform one of three functions: display, select, or optional select. In this way, a user-customized search
is provided and this search is integrated with OfficeVision programs and the system distribution directory.

Use the Change System Directory Attributes (CHGSYSDIRA) command to specify the Directory Search exit
program name in the SCHPGM parameter. When F10 is pressed on the Search System Directory display, the
Directory Search exit program is called.

Required Parameter Group

Function being requested

INPUT; CHAR(10)

The type of search operation that was requested.

*DISPLAY Search and display directory information.

*SELECT Search and select user IDs. The output includes user IDs and addresses selected as a
result of a search function.

*OPTSELECT Search and select user IDs for addressees and copy list.

Maximum entries for addressees

INPUT; BINARY(4)

The maximum number of entries that can be selected for the addressees of the distribution. The
maximum number allowable is 100.

This parameter is used with the *SELECT and *OPTSELECT values of the function being requested
parameter. If the function is *DISPLAY, this value is 0 indicating no output is returned.

Maximum entries for copy list

INPUT; BINARY(4)

The maximum number of entries that can be selected to be copied on the distribution. This is the
maximum number of entries that can be returned in the array parameter with the value of 2 in select
option used field. The maximum number allowable is 100.

This value is used with the *OPTSELECT value of the function being requested parameter. If the
function is either *SELECT or *DISPLAY, this value is 0 indicating no output is returned.

Number of array elements

OUTPUT; BINARY(4)

For the values *SELECT and *OPTSELECT, the number of users that is returned. The maximum value
is the total of the maximum entries for addressees parameter plus the maximum entries for copy list
parameter.

Array

OUTPUT; CHAR(*)

For the values *SELECT and *OPTSELECT, the array of the user IDs and addresses selected from the
search function. For the format of this character parameter follows.

Offset

Type FieldDec Hex

0 0 CHAR(1) Select option used

1 1 CHAR(8) User ID

9 9 CHAR(8) User address

17 11 CHAR(50) User's full name or description

Maximum entries for blind copy list

INPUT; BINARY(4)

The maximum number of entries that can be selected to be blind copied on the distribution. This is the
maximum number of entries that can be returned in the array parameter with the value of 4 in select
option used field. The maximum number allowable is 100.

This value is used with the *OPTSELECT value of the function being requested parameter. If the
function is either *SELECT or *DISPLAY, this value is 0 which indicates that no output is returned.

Field Descriptions

Select option used. The number of the option you want to use. The following are the possible values:

1 Addressee list

2 Carbon copy list (used only with *OPTSELECT)

4 Blind copy list (used only with *OPTSELECT)

User address. The second part of a two-part network name used in the system distribution directory and in the
office applications to uniquely identify a user and to send electronic mail.

User ID. The first part of a two-part network name used in the system distribution directory and in the office

applications to uniquely identify a user.

User's full name or description. The user's full name or any description up to 50 characters.

Exit Program Introduced: V2R2

Top | Office APIs | APIs by category

Directory Supplier Exit Program

 Required Parameter Group:

1 Function being requested Input Char(10)
2 Directory information format Input Char(10)
3 Owning system name Input Char(8)
4 User making request Input Char(10)
5 System making request Input Char(8)
6 Length of directory information Input Binary(4)
7 Directory information Input Char(*)
8 User exit program type Input Char(10)

 QSYSINC Member Name: EOKDRSP

 Exit Point Name: QIBM_QOK_SUPPLIER

 Exit Point Format Name: SUPL0100

The supplier program allows the administrator to decide whether operations (add, change, or delete) for
directory entries, departments, and locations should be shadowed to collector systems. If a user exit program is
defined, it is called before any changes are shadowed to a collector system. The supplier program is specified on
the SUPPGM parameter of the Change System Directory Attributes (CHGSYSDIRA) command, or through the
registration facility for common exit programs.

Exit programs that have been registered through the registration facility can be viewed using the Work with
Registration Information (WRKREGINF) command.

During directory shadowing, the supplier program is given all information known about the changes to the
directory entries, departments, and locations. The exit program returns to the directory service an indication as
to whether the add, change, or delete operation should be supplied to the collecting system.

The supplier program can reduce the amount of processing on the network, as opposed to the verification
maintenance program. The supplier program can decide not to supply changes to the collecting system.
However, the verification maintenance program can only decide not to apply changes that have already been
supplied to the collecting system.

The supplier criteria should be consistent on all your systems to help reduce the amount of processing on the
network.

Required Parameter Group

Function being requested

INPUT; CHAR(10)

The type of operation that the user is requesting to do to the directory information that is described by
the other parameters.

*ADD Information is being added.

*ADDDSC User description is being added.

*CHG Information is being changed.

All fields in the directory information that are not changed will be X'00' except for the
first field of every table. That field indicates what directory entry, department, or location
is being changed.

*DLT Information is being deleted.

*DLTDSC User description is being deleted.

Directory information format

INPUT; CHAR(10)

The format of the directory information that is being worked with. The information is provided in the
directory information parameter. The valid formats are:

SUPP0100 Directory entry (See SUPP0100 Format.)

SUPP0200 Department entry (See SUPP0200 Format.)

SUPP0300 Location entry (See SUPP0300 Format.)

These formats have the same layout as the CHKP0100, CHKP0200, and CHKP0300 formats used for
the Directory Maintenance exit program. This allows a single program to be used as both a supplier
program and a verification maintenance program.

Owning system name

INPUT; CHAR(8)

The name of the system that "owns" the directory entry, department, or location that is being worked
with. The owning system is the system that originally added the data to the network.

*LOCAL The entry is owned by the local system.

User making request

INPUT; CHAR(10)

The user profile name of the user that is doing the request. When using the shadowing function, this is
the user that originated the change.

System making request

INPUT; CHAR(8)

The system from which the request is coming. When using the shadowing function, this is the system
that originated the change.

Length of directory information

INPUT; BINARY(4)

The length of the directory information in the directory information parameter. The length depends on
the directory information format. Each format has a different (but fixed) length as shown in specific
format tables.

Directory information

INPUT; CHAR(*)

The directory information that is associated with the directory entry, department, or location that the
request is made against. For the format of this character parameter, refer to the specific format table
(SUPP0100 Format, SUPP0200 Format , or SUPP0300 Format) and to the Field Descriptions.

User exit program type

INPUT; CHAR(10)

The user exit program type that is associated with the call of the Directory Supplier exit program. This
parameter is provided so that a single program can be used as both a supplier program and a verification
program. This parameter is always set to *SUPPGM.

The Directory Supplier exit program will support a required parameter of 8 or 9 parameters. This is so
the same exit program can be used for the Directory Supplier exit program or the verification
maintenance exit program. To use a Directory Supplier exit program with 9 parameters, the first 8
parameters should be defined as documented for this exit program. The ninth parameter should be
defined as documented for the ninth parameter for the verification maintenance exit program. When the
Directory Supplier exit program is called with 9 parameters, the ninth parameter is ignored.

See Directory Maintenance Exit Program for more information on the verification maintenance exit
program.

Rejecting a Directory Shadowing Record

The user-written exit program may reject requests to supply changes to a collector system. To do so, the exit
program must signal a specific program message to the directory services module that called it, and then return.
A directory shadowing operation is rejected based on the restrictions that have been identified. For example, if
the exit program allows only five of ten systems in an advanced program-to-program communications (APPC)
network to collect directory information, then directory shadowing requests by all other systems are rejected.

To allow a directory shadowing record to be supplied, the exit program only returns to the program that called
it. Two program messages have been defined for the purpose of rejecting directory shadowing records. The
messages are:

CPF89B6 Directory information not shadowed for authority reasons.

CPF89B8 Directory information not shadowed for data validation reasons.

Note: The message must be signalled as an escape message. A diagnostic or informational message can be
signalled before the escape message to give additional information about the error.

You may provide an optional data structure with message variable substitution text. This will help clarify the
reasons for the rejection to the users. The optional data structure is:

CHAR(10) The profile name of the user who requested directory shadowing. This information is from the
user making request parameter.

CHAR(8) The system name of the user who requested directory shadowing. You can get this from the
system making request parameter.

CHAR(120) A description of the reason the exit program is rejecting the request.

SUPP0100 Format

Offset

Type FieldDec Hex

Note: The following fields are in code page 500 and character set 697.

0 0 CHAR(16) User ID/address

16 10 CHAR(16) System name/group

32 20 CHAR(10) User profile

42 2A CHAR(47) Network user ID

89 59 CHAR(16) New user ID/address

105 69 CHAR(16) Old user to forward from user ID/address

121 79 CHAR(1) Indirect user

122 7A CHAR(1) Print personal mail

123 7B CHAR(3) Reserved

Note: The character sets and code pages immediately follow the individual fields in the
list below.

126 7E CHAR(50) Description

176 B0 BINARY(4) Character set

180 B4 BINARY(4) Code page

184 B8 CHAR(40) Last name

224 E0 BINARY(4) Character set

228 E4 BINARY(4) Code page

232 E8 CHAR(20) First name

252 FC BINARY(4) Character set

256 100 BINARY(4) Code page

260 104 CHAR(20) Middle name

280 118 BINARY(4) Character set

284 11C BINARY(4) Code page

288 120 CHAR(20) Preferred name

308 134 BINARY(4) Character set

312 138 BINARY(4) Code page

316 13C CHAR(2) Reserved

318 13E CHAR(50) Full name

368 170 BINARY(4) Character set

372 174 BINARY(4) Code page

376 178 CHAR(2) Reserved

378 17A CHAR(10) Department

388 184 BINARY(4) Character set

392 188 BINARY(4) Code page

396 18C CHAR(2) Reserved

398 18E CHAR(50) Job title

448 1C0 BINARY(4) Character set

452 1C4 BINARY(4) Code page

456 1C8 CHAR(2) Reserved

458 1CA CHAR(50) Company

508 1FC BINARY(4) Character set

512 200 BINARY(4) Code page

516 204 CHAR(2) Reserved

518 206 CHAR(26) Telephone number 1

544 220 BINARY(4) Character set

548 224 BINARY(4) Code page

552 228 CHAR(2) Reserved

554 22A CHAR(26) Telephone number 2

580 244 BINARY(4) Character set

584 248 BINARY(4) Code page

588 24C CHAR(40) Location

628 274 BINARY(4) Character set

632 278 BINARY(4) Code page

636 27C CHAR(20) Building

656 290 BINARY(4) Character set

660 294 BINARY(4) Code page

664 298 CHAR(16) Office

680 2A8 BINARY(4) Character set

684 2AC BINARY(4) Code page

688 2B0 CHAR(40) Mailing address line 1

728 2D8 BINARY(4) Character set

732 2DC BINARY(4) Code page

736 2E0 CHAR(40) Mailing address line 2

776 308 BINARY(4) Character set

780 30C BINARY(4) Code page

784 310 CHAR(40) Mailing address line 3

824 338 BINARY(4) Character set

828 33C BINARY(4) Code page

832 340 CHAR(40) Mailing address line 4

872 368 BINARY(4) Character set

876 36C BINARY(4) Code page

880 370 CHAR(2) Reserved

882 372 CHAR(50) Text

932 3A4 BINARY(4) Character set

936 3A8 BINARY(4) Code page

940 3AC CHAR(1) Print cover page

941 3AD CHAR(1) Mail notification

Note: The following X.400 fields are in the character set and code page as defined by
1984 X.400 standards.

942 3AE CHAR(3) X.400 country or region

945 3B1 CHAR(16) X.400 administration domain

961 3C1 CHAR(16) X.400 private domain

977 3D1 CHAR(64) X.400 organization

1041 411 CHAR(40) X.400 surname

1081 439 CHAR(16) X.400 given name

1097 449 CHAR(5) X.400 initials

1102 44E CHAR(3) X.400 generation qualifier

1105 451 CHAR(32) X.400 organization unit 1

1137 471 CHAR(32) X.400 organization unit 2

1169 491 CHAR(32) X.400 organization unit 3

1201 4B1 CHAR(32) X.400 organization unit 4

1233 4D1 CHAR(8) X.400 domain attribute type 1

1241 4D9 CHAR(128) X.400 domain attribute value 1

1369 559 CHAR(8) X.400 domain attribute type 2

1377 561 CHAR(128) X.400 domain attribute value 2

1505 5E1 CHAR(8) X.400 domain attribute type 3

1513 5E9 CHAR(128) X.400 domain attribute value 3

1641 669 CHAR(8) X.400 domain attribute type 4

1649 671 CHAR(128) X.400 domain attribute value 4

1777 6F1 CHAR(3) Reserved

1780 6F4 CHAR(32) Fax telephone number

1812 714 BINARY(4) Character set

1816 718 BINARY(4) Code page

1820 71C CHAR(17) Mail service level

1837 72D CHAR(29) Preferred address

1866 74A CHAR(255) cc:Mail address

2121 849 CHAR(126) cc:Mail comment

2247 8C7 CHAR(1) Allow synchronization

2248 8C8 BINARY(4) Offset to user-defined fields array

2252 8CC BINARY(4) Number of elements (fields) in user-defined fields
array

2256 8D0 CHAR(10) DLO owner

Note: All fields that are not changed will be X'00' except for the user ID/address field.

Array for User-Defined Fields

The following table is the array for the user-defined fields, format SUPP0100.

Offset

Type FieldDec Hex

0 0 BINARY(4) Displacement to next user-defined field element in
this array

4 4 CHAR(10) Field name

14 E CHAR(7) Product ID

21 15 CHAR(3) Reserved

24 18 BINARY(4) Character set

28 1C BINARY(4) Code page

32 20 BINARY(4) Length of field value returned

36 24 CHAR(*) Field value

SUPP0200 Format

Offset

Type FieldDec Hex

Note: The character sets and code pages immediately follow the individual fields in the
list below.

0 0 CHAR(2) Reserved

2 2 CHAR(10) Department

12 C BINARY(4) Character set

16 10 BINARY(4) Code page

20 14 CHAR(2) Reserved

22 16 CHAR(50) Title

72 48 BINARY(4) Character set

76 4C BINARY(4) Code page

80 50 CHAR(2) Reserved

82 52 CHAR(10) Reports to department

92 5C BINARY(4) Character set

96 60 BINARY(4) Code page

Note: The following field is in code page 500 and character set 697.

100 64 CHAR(16) Manager user ID/address

116 74 CHAR(2) Reserved

118 76 CHAR(10) Old department

128 80 BINARY(4) Character set

132 84 BINARY(4) Code page

Note: All fields that are not changed will be X'00' except for the department field and
its corresponding character set and code page fields.

SUPP0300 Format

Offset

Type FieldDec Hex

Note: The character sets and code pages immediately follow the individual fields in the
list below.

0 0 CHAR(40) Location

40 28 BINARY(4) Character set

44 2C BINARY(4) Code page

48 30 CHAR(2) Reserved

50 32 CHAR(30) Location line 1

80 50 BINARY(4) Character set

84 54 BINARY(4) Code page

88 58 CHAR(2) Reserved

90 5A CHAR(30) Location line 2

120 78 BINARY(4) Character set

124 7C BINARY(4) Code page

128 80 CHAR(2) Reserved

130 82 CHAR(30) Location line 3

160 A0 BINARY(4) Character set

164 A4 BINARY(4) Code page

168 A8 CHAR(2) Reserved

170 AA CHAR(30) Location line 4

200 C8 BINARY(4) Character set

204 CC BINARY(4) Code page

208 D0 CHAR(2) Reserved

210 D2 CHAR(30) Location line 5

240 F0 BINARY(4) Character set

244 F4 BINARY(4) Code page

248 F8 CHAR(2) Reserved

250 FA CHAR(30) Location line 6

280 118 BINARY(4) Character set

284 11C BINARY(4) Code page

288 120 CHAR(40) Location changed to

328 148 BINARY(4) Character set

332 14C BINARY(4) Code page

336 150 CHAR(40) Old location

376 178 BINARY(4) Character set

380 17C BINARY(4) Code page

Note: All fields that are not changed will be X'00' except for the location field and its
corresponding character set and code page fields.

Field Descriptions

Allow synchronization. Whether the directory entries should be synchronized with directories other than the
system distribution directory. The values are 0 for no and 1 for yes.

Building. The name or number that identifies the user's building.

cc:Mail address. The cc:Mail address for a user. This field has a maximum of 126 characters, or 255 if the
cc:Mail address contains both a remote post office name and an alias name.

cc:Mail comment. The cc:Mail comment for this user.

Character set. The character identifier (graphic character set) that was used by the work station to enter the
data for the field.

Code page. The value specified on this parameter is used to instruct the printer device to interpret the
hexadecimal byte string to print the same characters that were intended when the text was created.

Company. The name of the company for whom the user works.

Department. The name or number that identifies the user's department.

Description. The description associated with the user ID. One entry in the directory can have several different
descriptions.

Displacement to next user-defined field element in this array. The displacement, in bytes, to the next
user-defined field. Use this value to increment the pointer to get to the next user-defined field.

DLO owner. A special value indicating whether the user profile or the group profile will be assigned ownership
of newly created document library objects (DLOs) associated with this directory entry.

Fax telephone number. The facsimile telephone number.

Field name. The user-defined field name.

Field value. The value of the user-defined field. The maximum is 512 bytes.

First name. The user's first name or given name.

Full name. The user's full name as it appears when a directory is viewed or searched.

Indirect user. A user enrolled in the system distribution directory who receives mail but never signs on to view
it. An indirect user receives printed mail only. The values are 0 for no and 1 for yes.

Job title. The title of the user's occupation.

Last name. The user's last name.

Length of field value returned. The length of the user-defined field value. If the value is 0, there is no data in
that field for this user.

Location. The location of the business or system. Some examples of location are city, state, or street address.

Location changed to. The new location value after combining locations.

Location lines 1 through 6. The location of the business or system. These fields further describe a location
name. For example, the field may contain the general mailing address for the location.

Mail notification. Whether or not the user wants to be notified when mail arrives.

The user can specify these values:

Blank Notified for priority or personal mail and messages

1 Notified for priority or personal mail and messages

2 Notified for only priority or personal mail

3 Notified for messages only

4 Notified for all mail

0 Notified for no mail

Mail service level. A 17-byte field where the first 10 bytes are the field name and the last 7 bytes are the
product ID. The values for the mail service level can be:

*USRIDX User index

*SYSMS System message store

*DOMINO Lotus Domino mail database

A user-defined field name and product ID The product ID will be blank if the product ID does not exist.

Mailing address lines 1 through 4. The address of the user.

Manager user ID/address. The department manager's user ID and address.

Middle name. The user's middle name.

Network user ID. A unique value associated with each user in the Enterprise Address Book. For example, the
value could be the user ID/address, the social security number, or the employee number.

New user ID/address. The new user ID and address used during the rename operation.

Office. The name or number that identifies the user's office.

Old department. The previous department value before being changed.

Old location. The previous location value before being changed.

Old user to forward from user ID/address. This field shows the previous user ID and address from which the
user forwards mail.

Preferred address. A 29-byte field where the first 10 bytes are the field name, the second 7 bytes are the
product ID, the third 4 bytes are reserved, and the last 8 bytes are the address type name.

The special values of the field name in preferred address can be:

*USRID User ID/address

*ORNAME X.400 O/R name

*SMTP Simple Mail Transfer Protocol (SMTP) name

A user-defined or IBM-defined field The product ID is *IBM for IBM-defined fields. The product ID will be
blank if the product ID does not exist.

Preferred name. The name by which the user prefers to be known.

Print cover page. Whether a cover page is printed when the user's mail is printed. The values are 0 for no and 1
for yes.

Print personal mail. Whether to print the mail that can be accessed only by the receiver, but not by someone
working on behalf of the receiver. When mail is sent, it can be assigned the classification of personal. This field
is used only if the user is an indirect user. The values are 0 for No and 1 for Yes.

Product ID. The product ID of the user-defined field. If the value is *NONE, there is no product ID associated
with the field.

Reports to department. The department to which this department reports.

Reserved. An ignored field.

System name/group. An IBM-supplied name that uniquely identifies the system. It is used as a network value
for certain communications applications such as APPC.

Telephone number 1. The telephone number of the user's office or business, or telephone numbers that are
significant to the user. The most important number should be listed on the first line because only the first line is
displayed when you use the search directory function.

Telephone number 2. The second line for telephone numbers.

Text. Any additional information that describes the entry.

Title. A department title that further describes the department name.

User-defined fields. Fields that are defined on the system by the Change System Directory Attributes
(CHGSYSDIRA) command. The value of these user-defined fields can then be filled in on the directory entry
for each user. The field name, product ID, and the value is passed in the user-defined field array. The product ID
will be blank if the product ID does not exist.

User ID/address. A two-part network name used in the system distribution directory and in the office
applications to uniquely identify a user and to send electronic mail.

User profile. The user profile name, if any, associated with a user ID and address.

X.400 administration domain. The administration management domain part of the X.400 originator/recipient
(O/R) name. An administration management domain is a management domain that is administered by a public
organization, such as a national Post Telephone and Telegraph Administration (PTT). A management domain is
a set of message transfer agents (MTAs) and user agents (UAs) that comprise a message handling system.

X.400 country or region. The country or region part of the X.400 originator/recipient (O/R) name.

X.400 domain attribute types 1 through 4. The type of a domain-defined attribute for this object. The
domain-defined attribute is not defined by X.400 standards but is allowed in the X.400 originator/recipient
(O/R) name to accommodate values of existing systems sending messages.

X.400 domain attribute values 1 through 4. The code immediately following the attribute type that specifies a
particular property from the set defined by the attribute type.

X.400 generation qualifier. The generation qualifier part of the X.400 originator/recipient (O/R) name. For
example, the generation qualifier in the name John R. Smith, III, is III. If you specify a generation qualifier, you
must specify an X.400 surname.

X.400 given name. The user first name, or given name, part of the X.400 originator/recipient (O/R) name. The
default for the given name is the equivalent of the first name. If you specify a given name, you must specify an
X.400 surname.

X.400 initials. The first and middle initials of the X.400 originator/recipient (O/R) name. For example, the
initials for John Henry Smith are JH. If you specify initials, you must specify a surname.

X.400 organization. The organization name part of the X.400 originator/recipient (O/R) name.

X.400 organization units 1 through 4. The organization-defined unit part of the X.400 originator/recipient
(O/R) name.

X.400 private domain. The private management domain part of the X.400 originator/recipient (O/R) name. A
private management domain is a management domain that is administered by a private company or a
noncommercial organization.

X.400 surname. The user last name, or surname, part of the X.400 originator/recipient (O/R) name.

Error Messages

Message ID Error Message Text

CPF89B6 E Directory information not shadowed for authority reasons.

CPF89B8 E Directory information not shadowed for data validation reasons.

Exit Program Introduced: V2R3

Top | Office APIs | APIs by category

Document Conversion Exit Program

 Required Parameter Group:

1 Input document name Input Char(12)
2 Input folder name Input Char(63)
3 Input document type Input Binary(4)
4 Output document name Input Char(12)
5 Output folder name Input Char(63)
6 Output document type Input Binary(4)
7 Function code Input Char(1)
8 Conversion existence indicator Output Char(1)

The Document Conversion exit program allows other document conversions to be called when a request is made
for the OfficeVision program to process a document type that it does not support. The OS/400 and OfficeVision
programs use document conversions when opening documents.

Program Registration

To register a user exit program, use the Change Office Program (QOGCHGOE) API.

Required Parameter Group

Input document name

INPUT; CHAR(12)

The name of the document the function is to be performed against.

Input folder name

INPUT; CHAR(63)

The folder in which the document is to be found.

Input document type

INPUT; BINARY(4)

The DIA document type ID. You can display a list of document types defined with the Work with
Document Types (WRKDOCTYP) command. The value must be in the range of 1 through 65535.

Output document name

INPUT; CHAR(12)

The name of the output document.

Output folder name

INPUT; CHAR(63)

The folder in which the output document is to be placed.

Output document type

INPUT; BINARY(4)

The format of the document that is being worked with. The value must be in the range of 1 through
65535.

Function code

INPUT; CHAR(1)

Whether the exit is being called to check for the existence of a conversion or to perform the conversion.

0 A conversion is being requested.

1 An existence check is requested.

Conversion existence indicator

OUTPUT; CHAR(1)

Whether the requested conversion exists. This flag must be set for both conversion existence checks and
conversion requests.

0 Conversion does not exist.

1 Conversion exists.

Use of Document Conversions by IBM Programs

Other document conversions will be called when you are opening documents and:

Processing the following document commands and using the OfficeVision editor or print functions:

CRTDOC

EDTDOC

DSPDOC

PRTDOC

CHKDOC

MRGDOC

PAGDOC

ADDTXTIDXE

●

Processing the following options from the Work with Documents in Folders display and using
OfficeVision:

Create

●

Revise

View

Print

Spell

Paginate

Print options

Processing the following options from the Work with Documents in a Document List display:

Revise

View

Print

●

Processing the following options from the Work with Mail display and using OfficeVision:

Revise a copy

View

Print

Forward

Reply

●

Copying a document on a create request when using the OfficeVision editor.●

Recalling from or copying or moving to a notepad document within the OfficeVision editor.●

Using the GET function within the OfficeVision editor.●

Including a document with the .inc instruction in the OfficeVision print function.●

Accessing external footnote documents in the OfficeVision print function.●

Accessing a fill-in document (merge from a document) in the OfficeVision print function.●

Accessing shell documents QPROFNOT and QPROFDOC for converting incoming PROFS documents
and notes.

●

Printing mail for indirect office users.●

Accessing the shell note when creating a note.●

Accessing the output document for a copy graph or image request.●

In each of these cases a conversion from the current format to RFTDCA or FFTDCA is requested. A second

conversion from this resulting format to OS/400 format may also be performed using the IBM conversion
programs.

Exit Program Introduced: V2R2

Top | Office APIs | APIs by category

Document Handling Exit Program

 Required Parameter Group:

1 Document name Input Char(12)
2 Folder name Input Char(63)
3 Document type Input Binary(4)
4 Function Input Char(26)
5 Function-specific information Input Char(*)
6 Exit processing indicator Output Char(4)

 QSYSINC Member Name: EOGDOCH

The Document Handling program allows other applications to be called in place of or in addition to the
OfficeVision word processor. Requests are sent to the exit program. The exit program can choose to process the
request or return it to the OfficeVision program for processing.

OfficeVision application enabler support assists users in integrating other office applications into OfficeVision.
This is accomplished by creating command interfaces that define the applications to OfficeVision in terms of
document types. Applications created this way can support the following functions:

Table 1. APIs Used to Register User Exit Applications

Function API Used for
Registration

Exit Point Name and Exit Point Format
Name

ADDRESSING Add Exit Program
API

QIBM_QOE_OV_USR_SND, DOCI0900

ADDRCANCEL Add Exit Program
API

QIBM_QOE_OV_USR_SND, DOCI0900

CREATE QOGCHGOE

EDIT QOGCHGOE

FILLFORM QOGCHGOE

MAILEDIT QOGCHGOE

MAILVIEW QOGCHGOE

MAILFWD QOGCHGOE

MAILREPLY QOGCHGOE

MERGE QOGCHGOE

MERGEOPTS QOGCHGOE

PAGINATE QOGCHGOE

PRINT QOGCHGOE

PRINTOPTS QOGCHGOE

SEND Add Exit Program
API

QIBM_QOE_OV_USR_SND, DOCI0900

SPELLCHECK QOGCHGOE

VIEW QOGCHGOE

Note: For performance improvements, a local copy of the API information is cached on
the first usage by a job. The cached API information is then available for reuse by the
executing job. (For example, when a job needs information about a registered user exit
program, the information is cached.) Therefore, the changes to the API may not take
effect until after the jobs with the cached information are terminated. This means that a
user may need to sign off then sign on again before the API changes become effective.

The sign off process is an example of a job termination. The sign on process starts a
new job.

Required Parameter Group

Document name

INPUT; CHAR(12)

The name of the document on which the function is performed.

Folder name

INPUT; CHAR(63)

The folder in which the document is located.

Document type

INPUT; BINARY(4)

The DIA document type ID. You can display a list of document types defined with the Work with
Document Types (WRKDOCTYP) command. The value must be from 1 to 65535.

Function

INPUT; CHAR(26)

The first 10 characters is the type of operation that the user is requesting for this document. The next 16
characters contain the address of the current work on behalf of user. If there is no work on behalf of
user, it will contain spaces.

Refer to the DOCI0100 Format for print function requests.

Refer to the DOCI0200 Format for merge function requests.

Refer to the DOCI0300 Format for spell function requests.

Refer to the DOCI0400 Format for mail function requests.

Refer to the DOCI0500 Format for edit function requests.

Refer to the DOCI0600 Format for create function requests.

Refer to the DOCI0700 Format for fill form function requests.

Refer to the DOCI0800 Format for mail view function requests.

Refer to the DOCI0900 Format for send, addressing, and cancel user application
addressing function requests.

Function-specific information

INPUT; CHAR(*)

Additional input that varies by function. See Table 2 for more detailed information.

Note: Function-specific information that is not specified and for which there is no value stored in the
document will be passed to the exit program as blanks.

Exit processing indicator

OUTPUT; CHAR(4)

The additional processing that the IBM programs should perform on return from the document handling
program. Any code returned, when the function requested does not support it, will be treated as a return
code of 0000.

0000 No additional processing required for this request. (Processed like the enter key from the exit.)

0001 Request has been processed, and the user requested to return. The IBM programs process as if
F12 were pressed.

0002 Request has been processed, and the user requested to return. The IBM programs process as if
F3 were pressed.

0007 Request OfficeVision to delete the document from the mail log (only valid on VIEWMAIL
requests).

0008 Request has been processed and the user requested that the item be sent. Only the MailEdit,
MailForward, MailReply, Addressing, and Addcancel functions are valid.

0010 The OfficeVision program will process the requester as if the user exit had not been called.

For the user application send exit program (ADDRESSING, ADDRCANCEL, and
SEND functions), additional processing will occur.

If a higher numbered registered user exit program has been defined, that exit
program will be called to process the request as if the previous user exit
program had not been called.

■

If 0010 is returned from the highest numbered registered exit program,
OfficeVision will treat the request as an exit processing indicator of 0000.

■

❍

Considerations for a mail document:

When working with a mail document, a copy of the original mail document is made.
This is done to preserve the integrity of the original mailed document. This copied
document is the document that is passed to the application user exit program.

If a user exit program decides to use the 0010 exit processing indicator on exit (that is,
let OfficeVision handle this document), then the application enabler will check to see if
a higher numbered user exit program is registered. If so, this second user exit program
will get passed to the copied document (this is the copied document that the first user
exit program had access to and had the opportunity to modify or transform the data
stream content).

Now if the second user exit program decides to use the 0010 exit processing indicator
on exit (and this is the highest number user exit program), the application enabler will

❍

return to mail with the request to let OfficeVision process the document.

It is the responsibility of the user exit programs to maintain the integrity of the copied
document. It is possible that one of the user exit programs may have modified the
document before the user exit program returns (for example, the user exit program had
the opportunity to modify any part of the document or perhaps it may have transformed
it to another data stream content).

The customer installation is responsible for maintaining the integrity of this copied
document. If it is important that the exact document is kept upon return from the user
exit program, perhaps the user exit program must make a copy before it calls the
application program to process the document. It is the responsibility of the user exit
program to handle deleting the copied document that it created.

0011 User is requesting that the document be filed locally. If any function other than MailView is
used, it is treated as a 0000 return.

0012 User is requesting that the document be filed remotely. If any function other than MailView is
used, it is treated as a 0000 return.

0013 User is requesting that the document be forwarded. If any function other than MailView is
used, it is treated as a 0000 return.

0014 User is requesting a reply to the document. If any function other than MailView is used, it is
treated as a 0000 return.

Table 2 shows when the exit program will be called for each of the document functions.

Table 2. Document Handling Function Requests

Function Description Where Called From

'ADDRESSING' User application
addressing(DOCI0900
format)

Send Note display; F15●

Send Document display; F15●

Send Form display; F15●

Forward a Mail Item display; F15●

Reply to a Mail Item display; F15●

SNDDOC command; F15●

'ADDRCANCEL' Cancel user
application addressing
(DOCI0900 format)

Send Note display; F12; F3●

Send Document display; F12; F3●

Send Form display; F12; F3●

Forward a Mail Item display; F12;
F3

●

Reply to a Mail Item display; F12;
F3

●

SNDDOC command; F12; F3●

'CREATE' Create document
(DOCI0600 format)

CRTDOC command●

Work with Documents in Folders
display; option 1

●

Note: The exit program is called after the
Enter key or F10 is pressed on the Create
Document Details display, when details are
used.

'VIEW' View document (No
function specific
format information)

DSPDOC command●

MERGE request with
DSPOPT(*VIEW)

●

Work with Documents in Folders
display; option 5

●

Work with Documents in a List
display; option 5

●

'EDIT' Edit document and
revise a copy of a
mail item (DOCI0500
format)

EDTDOC command●

MERGE request with
DSPOPT(*EDIT)

●

Work with Documents in Folders
display; option 2

●

Work with Documents in a List
display; option 2

●

Work with Mail display; option 2●

'FILLFORM' Fill Form Document
(complete a form
using the fill form
editor of OfficeVision
for AS/400)
(DOCI0700 format)

FILLFORM command●

MRGDOC command; DSPOPT is
*FILLFORM

●

Work with Documents in a List
display; option 15

●

Note: The exit program is called after the
Enter key or F10 is pressed on the Create
Document Details display, when details are
used.

'MAILVIEW' View mail item
(DOCI0800 format)

Work with Mail display; option 5●

'MAILEDIT' Create a note
(DOCI0400 format)

OfficeVision main menu; option 4●

Note: The exit program is called after F6
(Type Note) is pressed on the Send Note
display.

'MAILFWD' Forward a note
(DOCI0400 format)

Work with Mail display; option 10●

Note: The exit program is called after F6
(Type Note) is pressed on the Forward Mail
display.

'MAILREPLY' Reply to a note
(DOCI0400 format)

Work with Mail display; option 11●

Note: The exit program is called after F6
(Type Note) is pressed on the Reply to Mail
display.

'MERGE' Merge document
(DOCI0200 format)

MRGDOC command; display merge
options is *NO

●

'MERGEOPTS' Merge document with
options (DOCI0200
format)

MRGDOC command; display merge
options is *YES

●

'PRINT' Print request
(DOCI0100 format)

PRTDOC command; display print
options is *NO

●

Work with Documents in Folders
display; option 6

●

Work with Documents in a List
display; option 6

●

Work with Mail display; option 6●

'PRINTOPTS' Print with options
(DOCI0100 format)

PRTDOC command; Display print
options is *YES

●

Work with Documents in Folders
display; option 9

●

Work with Documents in a List
display; option 9

●

Work with Mail display; option 9●

'PAGINATE' Paginate document
(DOCI0100 format)

PAGDOC command●

Work with Documents in Folders
display; option 13

●

'SEND' User application send
(DOCI0900 format)

If F15 processing was previously preformed:

Send Note display; F10●

Send Document display; F10●

Send Form display; F10●

Forward a Mail Item display; F10●

Reply to a Mail Item display; F10●

SNDDOC command; F10●

F10 or F11 from an edit session●

'SPELLCHECK' Check the spelling
accuracy or grade
level of a document
(DOCI0300 format)

CHKDOC command●

Work with Documents in Folders
display; option 11

●

DOCI0100 Format

This is the function-specific information for PRINT and PRINTOPTS requests. This format is filled out the
same as it would have looked if the OfficeVision program were to process the request. This format merges the
parameters specified on the PRTDOC command with the print options record. The Field column describes the
associated PRTDOC parameter for each format.

The Field Descriptions have more detailed information about the fields for this format.

Offset

Type FieldDec Hex

0 0 CHAR(2) Number of copies to print

2 2 CHAR(1) Output device

3 3 CHAR(10) Printer device name

13 D CHAR(10) Output queue name

23 17 CHAR(10) Output queue library name

33 21 CHAR(10) Output file name

43 2B CHAR(10) Form type

53 35 CHAR(10) Printer file name

63 3F CHAR(10) Printer file library name

73 49 CHAR(10) Device file name

83 53 CHAR(10) Device library name

93 5D CHAR(10) Device member name

103 67 CHAR(1) Delay printing

104 68 CHAR(1) Draft spacing

105 69 CHAR(1) Print line numbers

106 6A CHAR(1) Resolve instructions

107 6B CHAR(1) Large print

108 6C BINARY(4) Graphic character set

112 70 BINARY(4) Code page

116 74 CHAR(1) Print separator page

117 75 CHAR(1) Adjust line endings

118 76 CHAR(1) Adjust page endings

119 77 CHAR(1) Allow widow lines

120 78 CHAR(2) Additional spaces to left

122 7A CHAR(1) Print change symbols

123 7B CHAR(5) Change symbols to print

128 80 CHAR(1) Print quality

129 81 CHAR(1) Place on job queue

130 82 CHAR(1) Send completion message

131 83 CHAR(10) Job description name

141 8D CHAR(10) Job description library name

151 97 CHAR(1) Cancel on error

152 98 CHAR(1) Print error log

153 99 CHAR(10) Error log form type

163 A3 CHAR(1) Clear error log after printing

164 A4 CHAR(1) Save resolved output

165 A5 CHAR(12) Resolved output document

177 B1 CHAR(63) Resolved output folder

240 F0 CHAR(1) Multiple line report

241 F1 CHAR(1) Print on both sides

242 F2 CHAR(1) Automatic page binding

243 F3 CHAR(1) Automatically shift margins to avoid truncating
text

244 F4 CHAR(1) Renumber system page numbers

245 F5 CHAR(7) Print from page 1

252 FC CHAR(8) Print to page 1

260 104 CHAR(7) Print from page 2

267 10B CHAR(8) Print to page 2

275 113 CHAR(7) Print from page 3

282 11A CHAR(8) Print to page 3

290 122 CHAR(7) Print from page 4

297 129 CHAR(8) Print to page 4

305 131 CHAR(7) Print from page 5

312 138 CHAR(8) Print to page 5

320 140 CHAR(7) Print from page 6

327 147 CHAR(8) Print to page 6

335 14F CHAR(7) Print from page 7

342 156 CHAR(8) Print to page 7

350 15E CHAR(1) Document is a label document

351 15F CHAR(2) Number of labels

353 161 CHAR(3) Width of labels

356 164 CHAR(1) Sheet-feed labels

357 165 CHAR(2) Number of rows per sheet

359 167 CHAR(1) Merge type

360 168 CHAR(10) Query name

370 172 CHAR(10) Query library name

380 17C CHAR(12) Data document name

392 188 CHAR(63) Data folder name

455 1C7 CHAR(10) Data file name

465 1D1 CHAR(10) Data file library name

475 1DB CHAR(10) Data file member name

DOCI0200 Format

This is the structure that is used by this exit program when the function is for merge or merge with options. Note
that the single-record merge is not supported.

The merge situations where the user specified DSPOPT(*VIEW) or DSPOPT(*EDIT) results in the exit
program being called twice, once for the merge and then once for the subsequent view or edit. The Field column
describes the associated MRGDOC parameter for each field.

The Field Descriptions have more detailed information about the fields for this format.

Offset

Type FieldDec Hex

0 0 CHAR(12) To document name

12 C CHAR(63) To folder name

75 4B CHAR(1) Replace document

76 4C CHAR(1) Place on job queue

77 4D CHAR(1) Send completion message

78 4E CHAR(10) Job description name

88 58 CHAR(10) Job description library name

98 62 CHAR(1) Merge type

99 63 CHAR(10) Query name

109 6D CHAR(10) Query library name

119 77 CHAR(12) Data document name

131 83 CHAR(63) Data folder name

194 C2 CHAR(10) Data file name

204 CC CHAR(10) Data file library name

214 D6 CHAR(10) Data file member name

224 E0 CHAR(1) Adjustment option

225 E1 CHAR(1) Multiple line report

226 E2 CHAR(1) Collect footnotes

227 E3 CHAR(258) Reserved

DOCI0300 Format

The Field Descriptions explain the values to use for spell function requests.

Offset

Type FieldDec Hex

0 0 CHAR(1) Type of check

1 1 CHAR(7) Beginning page number

8 8 CHAR(7) Ending page number

15 F CHAR(470) Reserved

DOCI0400 Format

The Field Descriptions explain the values to use for mail function requests.

Offset

Type FieldDec Hex

0 0 CHAR(12) Mail reference document name

12 C CHAR(63) Mail reference folder name

75 4B CHAR(1) Attach mail reference

76 4C CHAR(1) Same note

77 4D CHAR(408) Reserved

DOCI0500 Format

The Field Descriptions explain the values to use for edit function requests.

Offset

Type FieldDec Hex

0 0 CHAR(1) Show exit display

1 1 CHAR(484) Reserved

DOCI0600 Format

The Field Descriptions explain the values to use for create function requests.

Offset

Type FieldDec Hex

0 0 CHAR(1) Display exit display

1 1 CHAR(1) Display document details display

2 2 CHAR(1) Edit document

3 3 CHAR(482) Reserved

DOCI0700 Format

The Field Descriptions explain the values to use for fill form function requests.

Offset

Type FieldDec Hex

0 0 CHAR(12) Shell form

12 C CHAR(63) Shell folder

75 4B CHAR(12) Save form

87 57 CHAR(63) Save folder

150 96 CHAR(1) Replace form

151 97 CHAR(1) Display status

152 98 CHAR(1) Display exit

153 99 CHAR(1) Allow refresh

154 9A CHAR(10) Dump data file

164 A4 CHAR(10) File library name

174 AE CHAR(10) File member name

184 B8 CHAR(1) Replace or add

185 B9 CHAR(1) Output data on exit

186 BA CHAR(299) Reserved

DOCI0800 Format

The Field Descriptions explain the values to use for mail view function requests.

Offset

Type FieldDec Hex

0 0 CHAR(8) User ID (DEN)

8 8 CHAR(8) User address (DGN)

16 10 CHAR(22) Distribution ID

38 26 CHAR(447) Reserved

DOCI0900 Format

The Field Descriptions explain the values to use for send and addressing function requests.

Offset

Type FieldDec Hex

0 0 BINARY(4) Size of format

4 4 BINARY(4) Offset to recipient list

8 8 BINARY(4) Number of addressees

12 C BINARY(4) Number of copy list recipients

16 10 BINARY(4) Number of blind copy list recipients

20 14 CHAR(1) Confirm on delivery

21 15 CHAR(1) Log outgoing mail status

22 16 CHAR(1) Sensitivity

23 17 CHAR(1) Grade of delivery

24 18 CHAR(1) Disclose recipients

25 19 CHAR(1) Importance

26 1A CHAR(1) Allow alternate recipient

27 1B CHAR(1) Allow X.400 conversion

28 1C CHAR(1) Reply requested

29 1D CHAR(7) Reply requested date

36 24 CHAR(6) Reply requested time

42 2A CHAR(1) Function

43 2B CHAR(60) Subject

103 67 BINARY(4) Subject character set

107 6B BINARY(4) Subject code page

111 6F CHAR(60) Reference

171 AB BINARY(4) Reference character set

175 AF BINARY(4) Reference code page

179 B3 BINARY(4) Memo slip character set

183 B7 BINARY(4) Memo slip code page

187 BB CHAR(30) Action item text

217 D9 CHAR(202) User's memo slip text

419 1A3 CHAR(13) Reserved

Note: The following fields repeat as required.

 CHAR(8) User ID (DEN)

 CHAR(8) User address (DGN)

Notes:

The user ID and user address fields are in the order of addressee list, copy list,
and blind copy list. The number of users in an addressee list, a copy list, or a
blind copy list do not affect the order.

1.

All character fields are left-aligned and padded by blanks unless otherwise
noted.

2.

Field Descriptions

Action item text. The actual text of the action item. As shipped, they are:

For your information●

For your comments●

For your signature●

For your approval●

Please handle●

Please circulate●

Please see me●

Please prepare reply●

Additional spaces to left. The number of spaces added to the left margin in your printed document. If the
document is not printed on both sides of the paper, this is useful when you want to bind your document. Valid
values are 0 through 99.

Adjust line endings. The value Y (yes) adjusts line endings in the printed document. The lines are adjusted
according to what is specified on the Line Spacing/Justification Options display. This is useful when you print a
document that has data merged into it, has instructions, has display attributes that do not print as spaces, or uses
a proportionally spaced font.

The value N (no) means you do not want to adjust the line endings in the printed document.

Adjust page endings. The value Y (yes) adjusts page endings in the printed document. The pages are
determined by what is specified for the First typing line and Last typing line prompts on the Page Layout/Paper
Options display.

The value N (no) means you do not want to adjust the page endings in the printed document.

Adjustment option. The values indicate the adjustment option you want to use.

1 None

2 Lines (Adjusts line endings in the printed document.)

3 Pages and lines (Adjusts page endings and lines in the printed document.)

Allow alternate recipient. Whether the originator will allow applications to forward or delegate the mail to
some alternate recipient.

0 No

1 Yes

Allow refresh. Whether the form refresh will be allowed from within the editor. The value 1 (yes) means the
form refresh option will be allowed. The value 0 (no) means the refresh option will not be allowed.

Allow widow lines. The value Y (yes) means the page endings or column endings are determined by the exact
number of lines per page as specified on the Page Layout/Paper Options display. Also, use Y (yes) for the
Adjust page endings prompt. When you allow widows, a single line from a paragraph could be separated from
the rest of the paragraph.

The value N (no) means you do not want to have page endings or column endings determined by the exact
number of lines.

Allow X.400 conversion. Whether the originator will allow applications to make conversions to the
distribution.

0 No

1 Yes

Attach mail reference. Whether to concatenate the original mail item with the forward or reply operation. For
MAILREPLY, this is entered by the user on the Reply to Mail display. For MAILFWD, this will always be set
to a value of yes. The values are yes or no.

Automatic page binding. You can choose to adjust margins for page binding, which is a way to print pages and
adjust margins for the even pages so that they will line up with the odd pages when printing on both sides. The
values are yes or no.

Automatically shift margins to avoid truncating text. You can automatically shift the margin so that as much
text as possible is printed if the margin exceeds the paper edge. The values are yes or no.

Beginning page number. A number from 1.0 through 9999.99 or *FIRST or *LAST to specify the page on

which you want spell checking to start.

Cancel on error. The value Y (yes) means you want the document to stop printing if an error is detected during
printing. The error is listed in the error log with an error message stating that the job is canceled.

The value N (no) means you want the document to print even if an error is detected during printing.

Change symbols to print. Different revision symbols result in a document when the revision symbol is
changed. If your document contains more than one revision symbol character, and you do not select which
revision symbol characters you want to print, all revision symbol characters specified in your document will
print.

Clear error log after printing. The value Y (yes) means you want previous errors removed from the existing
error log page before new ones are added. This is useful if you want the error log to contain only the errors that
occurred during one printing of the document.

The value N (no) means you want your errors added to the end of the existing error log page. This is useful if
you want to keep a history of all the times your document printed.

Code page. A particular assignment of hexadecimal identifiers to graphic characters. If you want to specify a
code page, type the graphic character-set and code-page combination. A code page is a particular assignment of
hexadecimal identifiers to graphic characters. When both the graphic character-set ID and code-page ID are
typed, they must be separated by a hyphen.

Collect footnotes. The value Y (yes) means you want the associated footnote text for all Footnote instructions
found in the included text to become part of the document created during the merge function. All Footnote
instructions are changed to refer to the correct system page.

The value N (no) means you want the associated footnote text for all Footnote instructions found in the included
text to remain outside of the document created during the merge function.

Confirm on delivery. Whether to receive a notice in your outgoing mail log confirming that the note you sent
has been delivered.

0 No

1 Yes

Data document name. The name of the document that contains the data to be merged.

The document name must be 1 to 12 characters in length.

Data file library name. The name of the library where the data file is located.

Data file member name. The name of the member that contains data.

Data file name. The name of the file to merge data from.

Data folder name. The name of the folder that contains the document that has the data to be merged.

Delay printing. The value Y (yes) delays printing your labels. The labels are held on the output queue where
you can release them to print or delete them if you do not want them to print.

Device file name. The name of the file that contains the information about the device. Use the value 3 for file.

Device library name. A user-defined word that names a library. The value is *LIBL.

Device member name. The value *FILE for the member name, means the member with the same name as the

file name will be used. The values are *FILE, *FIRST, and *LAST.

Disclose recipients. Whether your list of addressee and copy list recipients should be revealed to your
recipients.

0 No

1 Yes

Display document details display. Whether you want the Document Details display shown. The values are Y
(yes) or N (no).

Display exit. Whether the exit panel should be displayed.

0 No

1 Yes

Display exit display. Whether you want the exit display shown. The values are Y (yes) or N (no).

Display status. Whether status lines should be shown on the fill form display.

0 No

1 Yes

Document is a label document. The value (yes or no) identifies if the document is a label document. A label
document contains the labels you are printing.

Draft spacing. The value Y (yes) doubles the spacing value in the Line spacing prompt on the Line
Spacing/Justification Options display. For example, if the Line spacing prompt is 3 (Triple), the doubled
spacing value is 6 and five blank lines are printed between each line of text in your document.

Dump data file. The name of the output file that will contain the form fill data.

Edit document. The values (yes or no) indicate whether you want to edit the document.

Ending page number. A number from 1.0 through 9999.99 or *FIRST or *LAST to specify the page on which
you want spell checking to stop.

Error log form type. The forms type for the type of paper on which you want the error log to be printed. If you
use the value *STD as the forms type, the error log will be printed on the paper specified in the printer file for
the printer you selected. A printer file contains information controlling how your document is printed on a
particular printer.

File library. The library to contain the dump data file.

File member. The member to contain the dump data. *FIRST is a special value indicating the first member of
the file.

Form type. The host system form type for the forms control table (FCT) entry.

Function. Whether the user is forwarding or replying to a mail item or is sending a note or document.

0 User application send function requested from Send

1 User application send function requested from Forward/Reply

Grade of delivery. Allows you to specify the speed of the network for a note or message to be sent. The

following values indicate the grade of delivery to use:

1 High

The distribution will be sent with the highest priority on the fastest distribution lines. It will appear
highlighted in a user's mail log until the user takes action on it.

2 Normal

The note or message is sent through normal distribution channels.

3 Low

No special priorities or distribution methods will be used to send the note or message

Graphic character set. The graphic character-set ID that you want to print your job. A graphic character-set ID
is an identifier used to specify a set of graphic characters in a code page. This identifier can be two 4-digit
prompts separated by a blank or by a hyphen.

Importance. The importance the originator places on the content of the note. Values are as follows:

1 High

2 Normal

3 Low

Job description library name. The library name by specifying one of the following:

name The name of the library that is storing your job description.

*LIBL If you use *LIBL, your library list is searched for the job description.

Job description name. The name of the job description that describes how the job is to be run.

Large print. The value Y (yes) prints your document with large print.

The value N (no) indicates that you do not want to print your document with large print.

Log outgoing mail status. Whether the distribution should be recorded in the outgoing mail status.

0 No

1 Yes

Mail reference document name. The document name where a mail item is referred.

Mail reference folder name. The folder name where the referenced document is filed.

Merge type. The value identifies the way the documents are merged. The values are:

1 Query

2 Document

3 File and Blank

Memo slip character set. The graphic character set ID of your memo slip. A graphic character set ID is an
identifier used to specify a set of graphic characters in a code page.

Memo slip code page. The graphic code page of your memo slip. A graphic code page is a particular

assignment of hexadecimal identifiers to graphic characters.

Multiple line report. The value Y (yes) means you want to create a multiple line report. A multiple line report
merges Data Field instructions to create a report where each record of data produces several lines of output.

The value N (no) means you do not want to create a multiple line report.

Number of addressees. The number of user ID (DEN) and user address (DGN) pairs considered primary or
addressee recipients contained in DOCI0900 format. The maximum is 32 767.

Number of blind copy list recipients. The number of user ID (DEN) and user address (DGN) pairs considered
blind copy list recipients contained in DOCI0900 format. The maximum is 32 767.

Number of copies to print. The quantity of copies you want printed. The valid values are from 1 through 99.

Number of copy list recipients. The number of user ID (DEN) and user address (DGN) pairs that are
considered copy list recipients contained in DOCI0900 format. The maximum is 32 767.

Number of labels. The value that identifies the amount or quantity of labels on a page. The valid values are
from 1 through 99.

Number of rows per sheet. If you selected Y (yes) for the Sheet feed labels prompt, this value from 1 through
99, is the number of rows of labels that you want printed on a page.

Offset to recipient list. The byte offset from the beginning of the structure (base 0) to the start of the variable
section containing the recipient list.

Output data on exit. Whether the output data is placed to an output file. The values are:

1 Yes

2 No

Output device. A device in a system by which data can be received from the system. The values are:

1 Printer

2 Display

3 File

Output file name. This is the name of the spooled file that is created. The values are *DOC and *FILE.

Output queue library name. The name of the library being used as the current library during the processing of
this command. The value is *LIBL.

Output queue name. A list of output files to be printed or displayed. The output queue is used for spooled files.
The values are *DEV, *FILE, and *WRKSTN.

Place on job queue. A document can be merged on the job queue.

Use the value Y (yes) if you want the document merged on the job queue. You can then continue working on
your display while the document is being merged on the job queue.

Use the value N (no) if you want the job to merge interactively.

Print change symbols. The value Y (yes) prints revision symbols in the left margin of your document. Revision
or change symbols are used to indicate lines that have been revised since the last time the document was
changed. The revision symbol character is specified on the Change Editing Options display.

Use N (no) if you do not want to print the revision symbols in the left margin of your document.

Print error log. The value Y (yes) prints the error log page at the end of your document. The log contains any
errors that were found while the document was being prepared for printing or errors found when a document
was sent from another system. The log can also contain informational messages. If your document does not
contain print errors, no log will be printed.

Print from pages 1 through 7. A number from 0.01 through 9999.99 to specify the page on which you want
printing to start. Other valid values are *FIRST, *LAST, or *STRPAGE. If you use *FIRST, printing is started
on the first page of the document. If you use *LAST, printing is started on the last page of the document. If you
use *STRPAGE, the To page and From page values are the same and only one page is printed. The From page
and To page prompts tell the printer to print specific pages from your document. The page values specified are
the pages from the printed document.

Print line numbers. The value Y (yes) prints line numbers in your document. The line numbers begin with 1 on
the first page of your document. Line numbers are not printed in headers or footers.

The value N (no) means you do not want to print line numbers in your document.

Print on both sides. The value indicates if you want your document printed on one side or both sides of a page.
The values are:

1 No

2 Yes

3 Tumble

Print quality. The value indicates the quality of printing you want to use. The values are:

1 Letter

Letter-quality type is better print but causes wear on the printer ribbon (if your printer uses a ribbon)
because the ribbon is struck harder.

2 Text

Text-quality type is not as good as letter-quality type, but is better than draft-quality type.

3 Draft

Draft-quality type saves wear on the printer ribbon (if your printer uses a ribbon) because the ribbon is not
struck as hard as it would be if you were using letter-quality type or text-quality type.

Print separator page. A value that determines if sheets will separate the jobs in the printer. The value Y (yes)
prints a separator page that includes such things as the document name, folder, document description, subject,
reference, and authors. This is useful for separating your document from other documents.

Use N (no) if you do not want to print a separator page.

Print to pages 1 through 7. A number from 0.01 to 9999.99 is the page on which you want printing to stop.
Other valid values are *FIRST and *LAST. If you use *FIRST, printing is ended on the first page of the
document. If you use *LAST, printing is ended on the last page of the document. The From page and To page
prompts tell the printer to print specific pages from your document. The page values specified are the pages
from the printed document.

Printer device name. A device that writes output data from a system on paper or other media.

Printer file library name. The library name of the printer file. Possible values are:

name The name of the library in which the printer file is stored.

*LIBL If you specify *LIBL, your library list is searched first for the printer file.

Printer file name. The name of the file where you want the printed labels to be received and stored. A file is a
group of records that are related and treated as a unit. If the file does not exist, a new file will be created for you.
If the file already exists, the document will be added to the end of the file.

Query library name. The name of the library that contains the query.

Query name. The name of the query that contains data to be merged.

Reference. The reference of the note or document being passed. This will be blank if the user did not enter a
reference.

Reference character set. The graphic character-set ID of the reference. A graphic character-set is an identifier
used to specify a set of graphic characters in a code page.

Reference code page. The code page ID of the reference. The code page is a particular assignment of
hexadecimal identifiers to graphic characters.

Renumber system page numbers. The value Y (yes) renumbers the system page numbers.

The value N (no) keeps the same system page numbers.

Replace document. Whether the document replaces the existing document (yes) or is added to the existing
documents (no).

Replace form. Whether the save form should be replaced if it already exists.

0 No

1 Yes

Replace or add. Whether the data is added or replaced in the file member.

A Add

R Replace

Reply requested. Whether the originator has requested a reply.

0 No

1 Yes

Reply requested date. The format is CYYMMDD, where C indicates the century digits. For example, 0
indicates years of the format 19xx, and 1 indicates years of the format 20xx.

Reply requested time. The format is HHMMSS.

Reserved. An ignored field.

Resolve instructions. The value Y (yes) processes the instructions that you have placed in your document.

Resolved output document. The saved document is a resolved document (saved in printed form), that is, page
endings are adjusted, line endings are adjusted, headers and footers are put in, and instructions are processed

(optional). If you wish to print this document again, it takes less time to print because this document is already
in printed form. (A resolved document is a document with the text instructions processed.) This document can
be from the text editor or another system.

Resolved output folder. The name of the folder that will contain the document you specified in the Document
name prompt. If the folder does not exist, a message is shown before it is created.

Save folder. The folder name where the save form document is saved.

Save form. The name of the document to save the results of the fill form process.

Save resolved output. The value Y (yes) means the document you are printing is saved in the document
specified in the document prompt.

The value N (no) means you do not want the document you are printing saved in another document.

Send completion message. The value Y (yes) means you are putting your print job on the job queue and you
want a message sent to your display station when the job has completed.

The value N (no) means you are putting your print job on the job queue and you do not want a message sent to
your display station when the job has completed.

Sensitivity. An indicator of the sensitivity of the content of the note. Values are as follows:

1 None

2 Personal

3 Private

4 Confidential

Shell folder. The folder containing the shell form.

Shell form. The shell document for fill form.

Sheet-feed labels. A value that defines that a device is attached to a printer to automatically feed out sheets of
labels. The value Y (yes) means you are sheet-feed printing and want more than one row of labels on a page. If
you are using sheet-feed paper, there is no other way to print more than one row of labels on a page.

Show exit display. Whether you want the exit display shown. The valid values are Y (yes) or N (no).

Size of format. The complete size of format DOCI0900, including any variable length records.

Subject. The subject of the note or document being passed. This will be blank if the user did not enter a subject.

Subject character set. The graphic character set ID of the subject. A graphic character set is an identifier used
to specify a set of graphic characters in a code page.

Subject code page. The code page ID of the subject. The code page is a particular assignment of hexadecimal
identifiers to graphic characters.

To document name. The name of the document to be merged with.

To folder name. The name of the folder that will contain the document being created.

Type of check. The value indicates if you want to check the spelling or the grade level.

0 Spell

1 Grade

User address. The recipient address or DGN.

User ID. The recipient name or DEN.

User's memo slip text. User's text typed on the Attach Memo Slip display.

Width of labels. The width of a label is the number of characters from the left edge of the first label to the left
edge of the next label, including the blank spaces between the labels. If the width you specify is larger than the
margins for your document, the margins are used as the width. Valid values are 2 through 198.

Note: For the printer device field the special values *SYSVAL, *USRPRF, and *WRKSTN are replaced with
the appropriate printer name, therefore the exit program does not use the special values.

Error Messages

Message ID Error Message Text

OFC169A User exit programs canceled by program &1 in library &2.

OFC169B Error with administration user exit programs.

OFC1691 Error occurred using Office application enabler.

OFC1695 Error occurred when calling program &1 in library &2.

OFC1696 Return code &1 from program &2 in library &3 not valid.

OFC1698 Error calling user exit program &1 in library &2.

OFC1699 Error on retrieval of user exit program.

OFC2096 The user application send processing has returned &1.

Exit program introduced: V2R2

Top | Office APIs | APIs by category

User Application Administration Exit Program

 Required Parameter Group:

1 Exit processing indicator Output Char(4)

 Exit Point Name: QIBM_QOE_USR_ADM

 Exit Point Format Name: UADM0100

The main administration panel has option 50 (User Application Administration) that passes control to the
application enabler. One or more of the registered alternate administration programs is then called.

Program Registration

To register user exit programs, see Registration Facility APIs. If you use the callable API, be sure to specify all
20 characters (the 19-character API followed by a blank character).

Required Parameter

Exit processing indicator

OUTPUT; CHAR(4)

This is provided for communication from the user exit program back to the OfficeVision programs. The
valid values are listed later.

Any code returned that is not valid will cause an information message to be sent to the job log. This
message will identify the invalid return code received, the user exit program name, and the library name
that issued the invalid return code. After the information message has been sent to the job log,
processing will continue as if a 0000 return code had been returned from the user exit program.

An exception condition returned from the user exit program to the OfficeVision program will post an
information message in the job log. This message will attempt to identify the user exit program name
and the library name that caused the exception. After the information message has been sent to the job
log, processing will continue as if a 0000 return code had been returned from the user exit program.

0000 No additional processing is required for this request. That is, processing is complete for the user
exit program.

0002 The user exit program requests cancelation of calling additional user exit programs. This
provides the opportunity for a user exit program to support an end user request to stop
processing any additional user exit programs and immediately return to the administration main
menu. The user exit program should take into consideration that the end user may not
understand the impact of the cancel request. Also, consider that the administrator has the
opportunity to change the user exit program numbers and may cause a change in the processing
sequence of multiple user exit programs.

A message will be put in the job log identifying the user exit program and library that requested
this cancelation.

Processing of multiple user exit programs

The user may have multiple user exit programs registered for this exit point. Each exit program will
have an exit program number defined when it is registered.

The lowest numbered registered exit program will be called first.❍

The second lowest numbered registered exit program will be called.❍

This process will continue until all of the registered user exit programs for this exit point have
been called.

❍

Exit Program Introduced: V3R1

Top | Office APIs | APIs by category

AnyMail/400 Mail Server Framework APIs
The mail server framework defines the format of how the data is passed rather than the format of the data itself.
This allows it to work independently of the format of the data. The format of the data is defined by assigning a
type to the information. The different types supported include:

Address type●

Envelope type●

Attachment reference type●

Message type●

For additional information, see Using AnyMail/400 Mail Server Framework APIs

The mail server framework APIs consist of the program calls shown in the following list:

Add Mail Server Framework Configuration (QzmfAddMailCfg) generates a configuration for the mail
server framework used in processing messages.

●

Change Mail Message (QzmfChgMailMsg) changes information about a mail message that was
previously created using the Create Mail Message (QzmfCrtMailMsg) API.

●

Complete Creation Sequence (QzmfCrtCmpMailMsg) removes a previously created, reserved mail
message identifier from the mail server framework's list of reserved identifiers and acknowledges that
the message was created.

●

Create Mail Message (QzmfCrtMailMsg) creates an electronic mail message.●

List Mail Server Framework Configuration (QzmfLstMailCfg) generates a list of type configurations.●

Query Mail Message Identifier (QzmfQryMailMsgId) queries the status of a message associated with a
mail message identifier.

●

Remove Mail Server Framework Configuration (QzmfRmvMailCfg) removes a configuration from the
mail server framework.

●

Remove Reserved Mail Message Identifier (QzmfRsvMailMsgID) removes an identifier for an
electronic mail message that has been reserved using the Reserve Mail Message Identifier
(QzmfRsvMailMsgId) API, but has not been used to create a message.

●

Reserve Mail Message Identifier (QzmfRsvMailMsgId) reserves an identifier for an electronic mail
message.

●

Retrieve Mail Message (QzmfRtvMailMsg) retrieves information about an electronic mail message and
returns it in the receiver variables provided by the caller.

●

The user can write exit programs that are called by the system for the following mail enablement exit programs:

Snap-In Call exit program provides information about an electronic mail message to defined snap-in
programs.

●

Track Mail Message Changes exit program allows exit programs to read all the parts of a message to
keep track of the message.

●

Validate Data Field exit program allows exit programs to validate the data for a message based on the
type selected.

●

Top | Office APIs | APIs by category

Using AnyMail/400 Mail Server Framework APIs
The mail server framework can be configured for up to 128 types in each type group. On each iSeries system,
type configuration defines the list of the types that the system can process. The data that is passed to the Create
Mail Message API must be in a type that is supported by the system.

A message type is associated with each recipient of the message and is used to tailor the processing of the
message. Message types are usually assigned when address resolution takes place.

A message is the sum of all of the data in the message descriptors. These message descriptors are passed to the
Create Mail Message (QzmfCrtMailMsg) API using the array of message descriptor attributes.

Figure 1 is an example of a message descriptor that has three descriptor lists being passed: 1) recipient list, 2)
envelope list, and 3) originator list. The attachment list, original recipient list, reply-to address list, report-on
address list, and report-to address list are optional descriptor lists.

Figure 1. Example of a Message Descriptor for the Create Mail Message (QzmfCrtMailMsg) or Change
Mail Message (QzmfChgMailMsg) API

If no errors are encountered during the creation of the mail message, the mail message identifier field contains
the unique message identifier associated with the message. If a reserved mail message identifier had been
passed, then the reserved mail message identifier is put in the mail message identifier parameter. If any errors
are encountered during the creation process, an error message is generated and the mail message identifier
returned is set to zeros.

All messages referred to in this section are issued synchronously.

All displacements are base 0 unless otherwise specified.

The AnyMail/400 Mail Server Framework Developer Guide, GG24-4449, focuses on the technical details
needed to understand how the mail server framework works. It provides information about how to write
programs that create MSF messages or act on MSF messages as MSF exit point programs.

Top | Office APIs | APIs by category

Add Mail Server Framework Configuration
(QzmfAddMailCfg) API

 Required Parameter Group:

1 Type configuration Input Char(*)
2 Format name Input Char(8)
3 Error code I/O CHAR(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Add Mail Server Framework Configuration (QzmfAddMailCfg) API generates a configuration for the mail
server framework used in validating the information in a message.

Required Parameter Group

Type configuration

INPUT; CHAR(*)

The structure containing the information used for the mail server framework type being configured.

Format name

INPUT; CHAR(8)

The format of the type configuration parameter being used as input. This must be set to ADDC0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

ADDC0100 Format

The following table shows the layout of the parameter structure for ADDC0100. For a detailed description of
each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of structure

4 4 CHAR(2) Type group

6 6 CHAR(4) Type value

10 A CHAR(8) Type name

18 12 CHAR(2) Reserved (must be blank)

20 14 BINARY(4) Type text coded character set identifier (CCSID)

24 18 CHAR(100) Type text

Field Descriptions

Length of structure. The length in bytes of the add mail configuration parameter list.

Reserved. This is a reserved field that must be set to blank.

Type group. The type group being configured. This is a 2-character field representing the type group being
configured. This field must be set to one of the following values:

01 Address type group

02 Message type group

03 Envelope type group

04 Attachment type group

There is a maximum of 128 different type value entries in each type group. If an attempt is made to configure
more than 128 type values in a type group, error message CPFAFB2 is generated.

Type name. The name of the type being configured. This is an 8-character mnemonic representation of the
type. This must be a unique type name. Allowed character values are A through Z and 0 through 9. This field
must not be set to blanks. If this field is blank, error message CPFAFB0 is generated. This value may be used
for messages when referring to the type.

Type text. The description of the type being configured. If this field is not used, it is set to blanks.

Type text coded character set identifier (CCSID). The coded character set identifier (CCSID) of the type text
field. Valid CCSID values for this field are 1 through 65533 and 65535. If this field is set to zero, then the job
CCSID is used.

Type value. The value of the type being configured. This is a unique 4-character representation of the type
being configured. Allowed character values are A through Z and 0 through 9. It is used in the registration of exit
point programs for the mail server framework exit points. The type value is used in the program data fields to
indicate whether a program should be called when the mail server framework is processing a specific type of
message. The following type values are reserved:

0xxx-1xxx Reserved for use by IBM.

9998 Reserved for use as the nondelivery message type.

9999 Reserved for use in specifying that a program is configured to process all types.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAFB0 E Mail server framework configuration API error occurred.

CPFAFB2 E Maximum types for type group &1 already exists.

API Introduced: V3R1

Top | Office APIs | APIs by category

Change Mail Message (QzmfChgMailMsg) API

 Required Parameter Group:

1 Mail message identifier Input Char(32)
2 Message descriptor attributes Input Array of

Char(*)
3 Number of message descriptor

attributes
Input Binary(4)

4 Format name Input Char(8)
5 Error code I/O Char(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Change Mail Message (QzmfChgMailMsg) API changes information about a mail message that was
previously created using the Create Mail Message (QzmfCrtMailMsg) API. The Change Mail Message
(QzmfChgMailMsg) API can be used to change one or more list items for each of the message descriptors on a
single call. This means that one call can result in changes, for example, to the envelope list, the recipient list,
and the attachment reference list. The Change Mail Message (QzmfChgMailMsg) API first checks if the caller
has the proper authority to request the changes. If any rule is violated, then the entire change fails. If the
requested changes are acceptable, the changes that are specified are made to the list. Each list item does not
retain its same unique list identifier after the change is completed.

When processing recipient entries using this API, the framework can be instructed to put a recipient entry back
so that it can be processed by other snap-in programs. This causes the recipient entry to be processed again. A
recipient is marked to be processed again by setting the recipient status to -1.

Note: The Change Mail Message (QzmfChgMailMsg) API can only be called from a Snap-In exit point.

Restriction: Originator, report-on, and report-to entries can be added but not changed. The unique identifier
fields for these list entries must be -1.

Required Parameter Group

Mail message identifier

INPUT; CHAR(32)

The identifier of the mail message to be changed. The mail message identifier is composed of characters
A through Z and 0 through 9 only.

Message descriptor attributes

INPUT; ARRAY OF CHAR(*)

This array contains pointers to the message descriptor attributes. It contains lengths of these message
descriptor attributes, along with the format name of the data that is provided (see Figure 1). The format
variable within this parameter list indicates to what type of list the pointer refers. See Change Message

Common Header for a description of the header data associated with each parameter list.

Number of message descriptor attributes

INPUT; BINARY(4)

The number of message descriptor attributes to change. At least one message descriptor attribute must
be specified on a call to this API.

Format name

INPUT; CHAR(8)

The format of the message descriptor attributes that is being passed. This field must be set to
CHGM0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

CHGM0100 Format

The following table shows the data that must be provided for each message descriptor attribute.

Offset

Type FieldDec Hex

0 0 POINTER Message descriptor pointer

16 10 BINARY(4) Length of the message descriptor

20 14 CHAR(8) Message descriptor format name

28 1C BINARY(4) Reserved (must be zero)

Message Descriptor

Each entry of the message descriptor attributes consists of:

A change message common header section●

Message descriptor format. The following table shows the format names of the valid message
descriptors.

Format name Description

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

ROAL0100 Report-on address entry

●

RPYL0100 Reply-to address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

Change Message Common Header

The following table shows the common header section that is always included at the beginning of each entry.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this message descriptor

4 4 BINARY(4) Reserved (must be set to zero)

8 8 CHAR(8) Message descriptor format name.

16 10 BINARY(4) Offset of the first entry in the message descriptor

20 14 BINARY(4) Number of entries in this message descriptor

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Message descriptor data.

The common header is used for all of the different formats that can be supplied on the Change Mail Message
(QzmfChgMailMsg) API. The common header must always be included. There must be one or more list items
after the common header section.

The list item or items to be changed are identified using the unique list identifier that is assigned by the mail
server framework. The unique list identifiers are part of the lists that are passed to the exit programs or are part
of the information returned by the Retrieve Mail Message (QzmfRtvMailMsg) API. The unique list identifiers
are also passed to snap-in exit programs. For a new addition to the list, the parameter list unique identifier must
be set to -1. There is no way to remove an entry using this API. Each list must contain unique identifiers that are
in ascending order, with add entries (unique identifier of -1) at the end of the list.

For substitution changes, a parameter list unique identifier must be specified once, along with the data that is to
be substituted. For expansion changes, a parameter list unique identifier must be specified multiple times, once
for each expansion list item that is to be added. After the API has completed, the unique identifiers that were
changed are no longer valid and may not be used in future calls to this API. The retrieve mail message
(QzmfRtvMailMsg) API passes lists with entries sorted so that unique identifiers are in ascending order.
Snap-in exit programs also receive sorted lists.

Message Descriptor Formats

One of the following message descriptor formats must be used to describe the data that follows the common
header. There may be multiple instances of the formats following the common header, depending on the size of
the parameter list.

ORCL0100 Format (Original Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the original recipient address
from the beginning of this ORCL0100 entry

8 8 BINARY(4) Length of the original recipient address

12 C CHAR(4) Address type

16 10 BINARY(4) Original recipient address coded character set
identifier(CCSID)

20 14 BINARY(4) Distribution type

24 18 BINARY(4) Reply requested flag

28 1C BINARY(4) Unique identifier

32 20 BINARY(4) Unique identifier of referenced ORCL0100 entry

36 24 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Original recipient address

ORGL0100 Format (Originator Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the origin address from the
beginning of this ORGL0100 entry

8 8 BINARY(4) Length of origin address

12 C CHAR(4) Address type

16 10 BINARY(4) Origin address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced ORGL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Origin address

ENVL0100 Format (Envelope Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the envelope from the beginning
of this ENVL0100 entry

8 8 BINARY(4) Length of envelope

12 C CHAR(4) Envelope type

16 10 BINARY(4) Unique identifier

20 14 BINARY(4) Unique identifier of referenced ENVL0100 entry

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Envelope

RCPL0100 Format (Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this RCPL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the original recipient address
from the beginning of this RCPL0100 entry

16 10 BINARY(4) Length of recipient address

20 14 CHAR(4) Address type

24 18 BINARY(4) Recipient address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 CHAR(4) Message type

40 28 BINARY(4) Status

44 2C BINARY(4) Reserved

48 30 BINARY(4) Unique identifier

52 34 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Recipient address

* * CHAR(*) Snap-in provided information (SPIN)

ROAL0100 Format (Report-on Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this ROAL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the report-on address from the
beginning of this ROAL0100 entry

16 10 BINARY(4) Length of address

20 14 CHAR(4) Address type

24 18 BINARY(4) Report-on address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 BINARY(4) Reserved

40 28 BINARY(4) Unique identifier

44 2C BINARY(4) Unique identifier of referenced ROAL0100 entry

* * CHAR(*) Report-on address

* * CHAR(*) Snap-in provided information (SPIN)

RPYL0100 Format (Reply-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the reply-to address from the
beginning of this RPYL0100 entry

8 8 BINARY(4) Length of reply-to address

12 C CHAR(4) Address type

16 10 BINARY(4) Reply-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced RPYL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Reply-to address

RTAL0100 Format (Report-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the report-to address from the
beginning of this RTAL0100 entry

8 8 BINARY(4) Length of address

12 C CHAR(4) Address type

16 10 BINARY(4) Report-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced RTAL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Report-to address

ATTL0100 Format (Attachment Reference Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the attachment reference from the
beginning of this ATTL0100 entry

8 8 BINARY(4) Length of attachment reference

12 C CHAR(4) Attachment reference type

16 10 BINARY(4) Unique identifier

20 14 BINARY(4) Unique identifier of referenced ATTL0100 entry

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Attachment reference

Field Descriptions

Address type. The type of address that is contained in the entry.

Attachment reference. A reference to an attachment that is associated with the message.

Attachment reference type. The type of attachment that is contained in the entry.

Diagnostic code. A code that indicates the cause of a problem which caused the delivery of a message to this
address to fail. The diagnostic code is assumed to contain the X.400 nondelivery diagnostic code.

Displacement of the attachment reference from the beginning of this ATTL0100 entry. The displacement
from the beginning of this entry to the attachment reference in this entry.

Displacement of the envelope from the beginning of this ENVL0100 entry. The displacement from the
beginning of this entry to the envelope in this entry.

Displacement of the original recipient address from the beginning of this ORCL0100 entry. The

displacement from the beginning of this entry to the original recipient address in this entry.

Displacement of the origin address from the beginning of this ORGL0100 entry. The displacement from the
beginning of this entry to the origin address in this entry.

Displacement of the recipient address from the beginning of this RCPL0100 entry. The displacement from
the beginning of this entry to the recipient address in this entry.

Displacement of the report-on address from the beginning of this ROAL0100 entry. The displacement from
the beginning of this entry to the report-on address in this entry.

Displacement of the reply-to address from the beginning of this RPYL0100 entry. The displacement from
the beginning of this entry to the reply-to address in this entry.

Displacement of the report-to address from the beginning of this RTAL0100 entry. The displacement from
the beginning of this entry to the report-to address in this entry.

Distribution type. The type of distribution associated with each recipient entry. The possible values are:

0 Normal message recipient

1 CC (carbon copy) recipient

2 BCC (blind carbon copy) recipient

Envelope. A string of data representing information about the message, aside from the attachments and its
recipients.

Envelope type. The type of envelope that is contained in the entry.

Format name. The content and format of the information provided for each message parameter. The possible
values are:

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

ROAL0100 Report-on address entry

RPYL0100 Reply-to address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

Length of address. The length of address that is contained in the entry. The maximum length of an address is
1024 bytes.

Length of attachment reference. The length in bytes of the attachment reference that is contained in the entry.

Length of envelope. The length of envelope that is contained in the entry.

Length of message descriptor. The length in bytes of the message descriptor that is being pointed to by the
pointer to the message descriptor. The maximum length of a message descriptor is 16 million bytes.

Length of origin address. The length of the origin address for this entry. The maximum length of an origin
address is 1024 bytes.

Length of original recipient address. The length of the original recipient address for this entry. The maximum
length of an original recipient address is 1024 bytes.

Length of recipient address. The length in bytes of the recipient address. The maximum length of a recipient
address is 1024 bytes.

Length of reply-to address. The length in bytes of the reply-to address. The maximum length of a reply-to
address is 1024 bytes.

Length of snap-in provided information (SPIN). The length in bytes of the snap-in provided information
(SPIN). The maximum length of the SPIN is 256 bytes.

Length of this entry. The length in bytes of this entry. This is used to get to the next entry.

Length of this message descriptor. The length in bytes of this message descriptor. The maximum length of a
message descriptor is 16 million bytes.

Message descriptor data. One or more parameter list formats that follow the common header. Message
descriptors are made up of a common header and a list of entries. The format of each entry in the list is defined
by the format name associated with the message descriptor, which is located in the common header. The number
of entries in the list is also defined in the common header.

Message type. The type of message that is associated with the entry.

Number of bytes available for this message descriptor. The number of bytes available in the space where the
mail server framework puts the information being retrieved.

Offset of the first entry in the message descriptor. The offset from the beginning of this message descriptor to
the first entry in the list of entries.

Origin address. A string that represents the address associated with the originator of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the origin address defines the contents of the origin address field.

Origin address coded character set identifier (CCSID). The CCSID provided for the origin address. Valid
values for the CCSID are 1 through 65533 and 65535.

Original recipient address. A string that represents the address associated with the original recipient of the
message. The contents and format of the string are not defined by the mail server framework. It is assumed that
the address type associated with the original recipient address defines the contents of the original recipient
address field.

Original recipient address coded character set identifier (CCSID). The CCSID provided for the original
recipient address. Valid values for the CCSID are 1 through 65533 and 65535.

Reason code. A code that identifies reasons associated with the message delivery to this address. In the case of
a nondelivery entry, this field would contain the reason the delivery of this message to this recipient failed. The
reason code is assumed to contain the X.400 nondelivery reason code.

Recipient address. A string that represents the address associated with a recipient of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the recipient address defines the contents of the recipient address field.

Recipient address coded character set identifier (CCSID). The CCSID provided for the recipient address.
Valid values for the CCSID are 1 through 65533 and 65535.

Reply requested flag. Whether this original recipient should reply to the message. The possible values are as

follows:

0 A reply is not requested from this original recipient

1 A reply is requested from this recipientz

Reply-to address. A string that represents the address to be replied to. The contents and format of the string are
not defined by the mail server framework. It is assumed that the address type associated with the reply-to
address defines the contents of the reply-to address field.

Reply-to address coded character set identifier (CCSID). The CCSID provided for the reply-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Report-on address. A string which represents the address to be reported on. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-on address defines the contents of the report-on address field.

Report-on address coded character set identifier (CCSID). The CCSID provided for the report-on address.
Valid values for the CCSID are 1 through 65533 and 65535.

Report-to address. A string which represents the address to be reported to. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-to address defines the contents of the report-to address field.

Report-to address coded character set identifier (CCSID). The CCSID provided for the report-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Reserved. All reserved fields must be set to zero.

Snap-in provided information (SPIN). An area where snap-ins can store information that other snap-ins may
use. SPIN provides a place where information relating to a specific recipient can be stored and used by snap-ins
in the same or different exit points. This is completely user-defined and user-interpreted data.

Status. The status associated with each recipient entry. The possible values are:

1 Forwarded (remote)

2 Ignore

3 Local

4 Nondeliverable

5 Security violation

Unique identifier. A unique identifier that differentiates each item within a particular list. Identifiers are
generated for each list item when the Create Mail Message (QzmfCrtMailMsg) API has successfully completed.
These unique identifiers are temporary and may change as the mail service processes a message. List entries are
placed in message descriptors such that unique identifiers are in ascending order.

Unique identifier of parent entry. The unique identifier associated with the parent entry of this entry. A parent
entry is an entry that had been replaced by a single or multiple entries.

Unique identifier of referenced entry. The unique identifier of another ORCL0100, ORGL0100, ENVL0100,
RTAL0100, RPYL0100, ROAL0100, or ATTL0100 entry that this entry refers to. This field can be used to
create entry cross references as new entries are added.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAF80 E Syntax error on call to MSF API. Reason code &1.

CPFAF81 E Parameter value error on call to MSF API. Reason code &1.

CPFAF82 E Error occurred during running of MSF API.

CPFAF83 E Parameter error on call to MSF API. Reason code &1.

CPFAF84 E MSF API failed. MSF message identifier not found.

CPFAF85 E MSF API failed. Request not allowed.

CPFAF86 E MSF API failed. Parameter values not valid for exit point.

CPFAF87 E MSF validate data field exit program error occurred.

CPFAF88 E Error occurred on call to MSF exit point program.

CPFAF8A E MSF API failed. List cannot be expanded or replaced.

API Introduced: V3R1

Top | Office APIs | APIs by category

Complete Creation Sequence
(QzmfCrtCmpMailMsg) API

 Required Parameter Group:

1 Reserved mail message
identifier

Input Char(32)

2 Format name Input Char(8)
3 Error code I/O Char(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Complete Creation Sequence (QzmfCrtCmpMailMsg) API is used to remove a reserved mail message
identifier from the mail server framework's list of reserved identifiers. This API marks the completion of a mail
message creation sequence. This API is to be used after the message associated with the reserved mail message
identifier has been created. This API ensures data integrity within the mail framework.

Required Parameter Group

Reserved mail message identifier

INPUT; CHAR(32)

The unique message identifier being completed. The message identifier is composed of characters A
through Z and 0 through 9 only.

Format name

INPUT; CHAR(8)

The content and format of the information being passed to the API. This field must be set to
CCMP0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAF82 E Error occurred during running of MSF API.

CPFAF83 E Parameter error on call to MSF API. Reason code &1.

CPFAF8B E Reserved mail message identifier is not valid.

CPFAF8C E Reserved mail message identifier not used.

API Introduced: V3R1

Top | Office APIs | APIs by category

Create Mail Message (QzmfCrtMailMsg) API

 Required Parameter Group:

1 Mail message identifier Output Char(32)
2 Reserved mail message

identifier
Input Char(32)

3 Creation message type Input Char(4)
4 Message descriptor attributes Input Array of

Char(*)
5 Number of message descriptor

attributes
Input Binary(4)

6 Format name Input Char(8)
7 Error code I/O Char(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Create Mail Message (QzmfCrtMailMsg) API creates a single electronic mail message.

The input to this API is a parameter list which includes an array of message descriptor attributes. Message
descriptor attributes define the basic characteristics of the message descriptor such as the format name
associated with it, a pointer to it, and its length. Each message descriptor has a common header, which defines
such things as the number of entries in the message descriptor and where the first entry is located. Following the
common header is a list of individual entries, which contain information that define the message. The format
name defines the format of the individual entries in the message descriptor data. The following message
descriptor formats are used.

Original recipient entry. An entry that contains the addresses of the original recipients of the message.

Originator entry. An entry that contains the addresses of the originators of the message.

Envelope entry. An entry that defines the format that is used to pass envelopes. An envelope is a string of data
representing information about the message, aside from the attachments and its recipients. This may include the
text of the message.

Recipient entry. An entry that contains information about the recipient of the message. This includes the
address of the recipient. Recipient addresses are reported on when the message cannot be delivered to the
recipient.

Reply-to address entry. An entry that contains the address to be replied to.

Report-on address entry. An entry that defines the address to be reported on.

Report-to address entry. An entry that defines an address to be reported to in case errors are encountered
delivering messages to a recipient.

Attachment reference entry. A reference to an attachment that is associated with the message. Attachments
may include the text of the message.

Required Parameter Group

Mail message identifier

OUTPUT; CHAR(32)

The variable containing a unique message identifier associated with this message. The mail message
identifier is composed of characters A through Z and 0 through 9 only. On completion of this API, if a
reserved mail message identifier field is not set to blanks, this variable contains the reserved mail
message identifier. Otherwise, this field contains the identifier associated with the message created by
the API. If an error occurs during processing, the identifier is set to zeros and a notification of the error
is made in the error code parameter. See Reserve Mail Message Identifier (QzmfRsvMailMsgId) API
for information on reserving mail message identifiers.

Reserved mail message identifier

INPUT; CHAR(32)

The variable containing the reserved mail message identifier associated with this message. If the
reserved mail message identifier field is set to blanks, then a unique mail message identifier associated
with this message is returned in the mail message identifier field after the API has completed running
and has created a message. If the reserved mail message identifier field is not set to blanks, then it is
assumed that the field contains a reserved mail message identifier. The reserved mail message identifier
is returned in the mail message identifier variable when the API has completed successfully. If the value
of the reserved mail message identifier field is not a reserved mail message identifier, then error
message CPFAF8B is generated. See Reserve Mail Message Identifier (QzmfRsvMailMsgId) API for
information on reserving mail message identifiers.

Creation message type

INPUT; CHAR(4)

The message type that the originator intended to create. This is used to indicate the message type
associated with the mail server framework message.

Message descriptor attributes

INPUT; CHAR(*)

An array containin message descriptor attributes entries (see Figure 1). A message descriptor attributes
entry is required for each of the following message descriptors:

Originator entry❍

Envelope entry❍

Recipient entry❍

The following table shows the data that must be provided for each message descriptor attributes entry.
The other message descriptors are optional.

Offset

Type FieldDec Hex

0 0 POINTER Message descriptor pointer

16 10 BINARY(4) Length of the message descriptor

20 14 CHAR(8) Message descriptor format name

28 1C BINARY(4) Reserved (must be zero)

Number of message descriptor attributes

INPUT; BINARY(4)

The number of entries in the array of message descriptor attributes. A minimum of three message
descriptor attributes entries is required (originator entry, envelope entry, and recipient entry).

Format name

INPUT; CHAR(8)

The variable containing the format name of the parameter list passed to the API. This field must be set
to CRTM0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Message Descriptors

A message descriptor consists of:

A create message common header section●

The actual message descriptor format. The following table shows valid message descriptor formats.

Format name Description

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

ROAL0100 Report-on address entry

RPYL0100 Reply-to address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

●

Create Message Common Header

The following table shows the common header section that is always included at the beginning of a message
descriptor.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this message descriptor

4 4 BINARY(4) Reserved (must be set to zero)

8 8 CHAR(8) Message descriptor format name

16 10 BINARY(4) Offset of the first entry in the message descriptor

20 14 BINARY(4) Number of entries in this message descriptor

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Message descriptor data

The common header is used for all of the different formats that can be supplied on the API. A specific format
name can only be supplied in one of the message descriptor common headers when this API is called. There
may be zero or more list items after the common header section.

Message Descriptor Formats for Create Mail Message

If there is data after the common header, one of the following message descriptor formats must be used. There
may be multiple instances of the formats following the common header, depending on the size of the message
descriptor.

ORCL0100 Format (Original Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the original recipient address
from the beginning of this ORCL0100 entry

8 8 BINARY(4) Length of the original recipient address

12 C CHAR(4) Address type

16 10 BINARY(4) Original recipient address coded character set
identifier(CCSID)

20 14 BINARY(4) Distribution type

24 18 BINARY(4) Reply requested flag

28 1C BINARY(4) Reserved (must be set to zero)

32 20 BINARY(4) Reserved (must be set to zero)

36 24 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Original recipient address

ORGL0100 Format (Originator Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the origin address from the
beginning of this ORGL0100 entry

8 8 BINARY(4) Length of origin address

12 C CHAR(4) Address type

16 10 BINARY(4) Origin address coded character set identifier
(CCSID)

20 14 BINARY(4) Reserved (set to zero)

24 18 BINARY(4) Reserved (set to zero)

28 1C BINARY(4) Reserved (set to zero)

* * CHAR(*) Origin address

ENVL0100 Format (Envelope Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of envelope from the beginning of
this ENVL0100 entry

8 8 BINARY(4) Length of envelope

12 C CHAR(4) Envelope type

16 10 BINARY(4) Reserved (set to zero)

20 14 BINARY(4) Reserved (set to zero)

24 18 BINARY(4) Reserved (set to zero)

* * CHAR(*) Envelope

RCPL0100 Format (Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this RCPL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the recipient address from the
beginning of this RCPL0100 entry

16 10 BINARY(4) Length of recipient address

20 14 CHAR(4) Address type

24 18 BINARY(4) Recipient address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 CHAR(4) Message type

40 28 BINARY(4) Status

44 2C BINARY(4) Reserved

48 30 BINARY(4) Reserved (set to zero)

52 34 BINARY(4) Reserved (set to zero)

* * CHAR(*) Recipient address

* * CHAR(*) Snap-in provided information (SPIN)

ROAL0100 Format (Report-on Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this ROAL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the report-on address from the
beginning of this ROAL0100 entry

16 10 BINARY(4) Length of address

20 14 CHAR(4) Address type

24 18 BINARY(4) Report-on address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 BINARY(4) Reserved (set to zero)

40 28 BINARY(4) Reserved (set to zero)

44 2C BINARY(4) Reserved (set to zero)

* * CHAR(*) Report-on address

* * CHAR(*) Snap-in provided information (SPIN)

RPYL0100 Format (Reply-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the reply-to address from the
beginning of this RPYL0100 entry

8 8 BINARY(4) Length of reply-to address

12 C CHAR(4) Address type

16 10 BINARY(4) Reply-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Reserved (set to zero)

24 18 BINARY(4) Reserved (set to zero)

28 1C BINARY(4) Reserved (set to zero)

* * CHAR(*) Reply-to address

RTAL0100 Format (Report-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the report-to address from the
beginning of this RTAL0100 entry

8 8 BINARY(4) Length of address

12 C CHAR(4) Address type

16 10 BINARY(4) Report-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Reserved (set to zero)

24 18 BINARY(4) Reserved (set to zero)

28 1C BINARY(4) Reserved (set to zero)

* * CHAR(*) Report-to address

ATTL0100 Format (Attachment Reference Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the attachment reference from the
beginning of this ATTL0100 entry

8 8 BINARY(4) Length of attachment reference

12 C CHAR(4) Attachment reference type

16 10 BINARY(4) Reserved (set to zero)

20 14 BINARY(4) Reserved (set to zero)

24 18 BINARY(4) Reserved (set to zero)

* * CHAR(*) Attachment reference

Field Descriptions

Address type. The type of address that is contained in the entry.

Attachment reference. A reference to an attachment that is associated with the message.

Attachment reference type. The type of attachment that is contained in the entry.

Diagnostic code. A code that indicates the cause of a problem which caused the delivery of a message to this
address to fail. The diagnostic code is assumed to contain the X.400 nondelivery diagnostic code.

Displacement of the attachment reference from the beginning of this ATTL0100 entry. The displacement
from the beginning of this entry to the attachment reference in this entry.

Displacement of the envelope from the beginning of this ENVL0100 entry. The displacement from the
beginning of this entry to the envelope in this entry.

Displacement of the origin address from the beginning of this ORGL0100 entry. The displacement from the
beginning of this entry to the origin address in this entry.

Displacement of the original recipient address from the beginning of this ORCL0100 entry. The
displacement from the beginning of this entry to the original recipient address in this entry.

Displacement of the recipient address from the beginning of this RCPL0100 entry. The displacement from
the beginning of this entry to the recipient address in this entry.

Displacement of the reply-to address from the beginning of this RPYL0100 entry. The displacement from
the beginning of this entry to the reply-to address in this entry.

Displacement of the report-to address from the beginning of this RTAL0100 entry. The displacement from
the beginning of this entry to the report-to address in this entry.

Displacement of the report-on address from the beginning of this ROAL0100 entry. The displacement from
the beginning of this entry to the report-on address in this entry.

Displacement of the snap-in provided information (SPIN) of this RCHL0100. The displacement from the
beginning of this entry to the snap-in provided information (SPIN). (There are fields for RCPL0100 and
RCHL0100 entries.)

Distribution type. The type of distribution associated with each recipient entry. The possible values are:

0 Normal message recipient

1 CC (carbon copy) recipient

2 BCC (blind carbon copy) recipient

Envelope. A string of data representing information about the message, aside from the attachments and its
recipients.

Envelope type. The type of envelope that is contained in the entry.

Length of address. The length of address that is contained in the entry. The maximum length of an address is
1024 bytes.

Length of attachment reference. The length in bytes of the attachment reference that is contained in the entry.

Length of envelope. The length of envelope that is contained in the entry.

Length of origin address. The length of the origin address for this entry. The maximum length of an origin
address is 1024 bytes.

Length of the original recipient address. The length of the original recipient address for this entry. The
maximum length of an original recipient address is 1024 bytes.

Length of receiver message descriptor. The length in bytes of the message descriptor that is being pointed to
by the pointer to the message descriptor. The maximum length of a message descriptor is 16 million bytes.

Length of recipient address. The length in bytes of the recipient address. The maximum length of a recipient
address is 1024 bytes.

Length of reply-to address. The length in bytes of the reply-to address. The maximum length of a reply-to
address is 1024 bytes.

Length of snap-in provided information (SPIN). The length in bytes of the snap-in provided information
(SPIN). The maximum length of the SPIN is 256 bytes.

Length of this entry. The length in bytes of this entry. This is used to get to the next entry.

Length of this message descriptor. The length in bytes of this message descriptor. The maximum length of a
message descriptor is 16 million bytes.

Message descriptor data. One or more parameter list formats that follow the common header. Message
descriptors are made up of a common header and a list of entries. The format of each entry in the list is defined
by the format name associated with the message descriptor, which is located in the common header. The number
of entries in the list is also defined in he common header.

Message descriptor format name. The content and format of the information provided for each message
parameter. The possible values are:

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

RPYL0100 Reply-to address entry

ROAL0100 Report-on address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

Message descriptor pointer. A space pointer that points to a message descriptor. A message descriptor is used
to pass information which describes the message.

Message type. The type of message that is associated with the entry.

Number of bytes available for this message descriptor. The number of bytes available in the space where the
mail server framework puts the information being retrieved.

Offset of the first entry in the message descriptor. The offset from the beginning of this message descriptor to
the first entry in the list of entries.

Origin address. A string that represents the address associated with the originator of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the origin address defines the contents of the origin address field.

Origin address coded character set identifier (CCSID). The CCSID provided for the origin address. Valid
values for the CCSID are 1 through 65533 and 65535.

Original recipient address. A string that represents the address associated with the original recipient of the
message. The contents and format of the string are not defined by the mail server framework. It is assumed that
the address type associated with the original recipient address defines the contents of the original recipient
address field.

Original recipient address coded character set identifier (CCSID). The CCSID provided for the original
recipient address. Valid values for the CCSID are 1 through and including 65533, and 65535.

Reason code. A code that identifies reasons associated with the message delivery to this address. In the case of
a nondelivery entry, this field would contain the reason the delivery of this message to this recipient failed. The
reason code is assumed to contain the X.400 nondelivery reason code.

Recipient address. A string that represents the address associated with a recipient of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the recipient address defines the contents of the recipient address field.

Recipient address coded character set identifier (CCSID). The CCSID provided for the recipient address.
Valid values for the CCSID are 1 through 65533 and 65535.

Reply requested flag. A flag that indicates whether this original recipient should reply to the message. The
possible values are as follows:

0 A reply is not requested from this original recipient

1 A reply is requested from this original recipient

Reply-to address. A string that represents the address to be replied to. The contents and format of the string are
not defined by the mail server framework. It is assumed that the address type associated with the reply-to
address defines the contents of the reply-to address field.

Reply-to address coded character set identifier (CCSID). The CCSID provided for the reply-to address.
Valid values for the CCSID are 1 through and including 65533, and 65535.

Report-on address. A string which represents the address to be reported on. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-on address defines the contents of the report-on address field.

Report-on address coded character set identifier (CCSID). The CCSID provided for the report-on address.
Valid values for the CCSID are 1 through 65533 and 65535.

Report-to address. A string which represents the address to be reported to. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-to address defines the contents of the report-to address field.

Report-to address coded character set identifier (CCSID). The CCSID provided for the report-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Reserved. All reserved fields must be set to zero.

Snap-in provided information (SPIN). An area where snap-ins can store information that other snap-ins may
use. SPIN provides a place where information relating to a specific recipient can be stored and used by snap-ins
in the same or different exit points. This is completely user-defined and user-interpreted data.

Status. The status associated with each recipient entry. The possible values are:

1 Forwarded (remote)

2 Ignore

3 Local

4 Nondeliverable

5 Security violation

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAF80 E Syntax error on call to MSF API. Reason code &1.

CPFAF81 E Parameter value error on call to MSF API. Reason code &1.

CPFAF82 E Error occurred during running of MSF API.

CPFAF83 E Parameter error on call to MSF API. Reason code &1.

CPFAF87 E MSF validate data field exit program error occurred.

CPFAF88 E Error occurred on call to MSF exit point program.

CPFAF8B E Reserved mail message identifier is not valid.

CPFAF8D E Reserved mail message identifier already used.

API Introduced: V3R1

Top | Office APIs | APIs by category

List Mail Server Framework Configuration
(QzmfLstMailCfg) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Type configuration format

name
Input Char(8)

4 Type configuration Input Char(*)
5 Error code I/O Char(*)

 Service Program: QZMFASRV

 Threadsafe: No

The List Mail Server Framework Configuration (QzmfLstMailCfg) API generates a list of type configurations
and places the list in a specified user space. You may specify a specific group of type configurations, a specific
configuration or all configurations. The generated list replaces any existing data in the user space.

Authorities and Locks

User Space Authority

*CHANGE

Library Authority

*USE

User Space Lock

*EXCLRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The qualified user space name identifies the space that is to receive the created list. The first 10
characters contain the user space name, and the second 10 characters contain the name of the library
where the user space is located. You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Format name

INPUT; CHAR(8)

The variable containing the name of the list format identifier. This must be set to LSTL0100. If the list
format identifier is not LSTL0100, then the error message CPFAFB0 is generated.

Type configuration format name

INPUT; CHAR(8)

The format identifier of the parameter structure for the type configuration to be used. This must be set to
LSTC0100. If the format identifier is not set to LSTC0100, the CPFAFB0 error message is generated.

Type configuration

INPUT; CHAR(*)

This is a structure containing the information that will be used for the mail server framework
configuration being listed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the application.

Format of the Generated List

The following table shows the layout of the parameter structure for LSTL0100. The framework configuration
list consists of:

A user area●

A generic header●

List data section●

For detailed descriptions of the fields in the list returned, see Field Descriptions.

When you retrieve list entry information from a user space, you must use the entry size returned in the generic
header. The size of each entry may be padded at the end. If you do not use the entry size, the result may not be
valid.

LSTL0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(2) Type group

2 2 CHAR(4) Type value

6 6 CHAR(8) Type name

14 E CHAR(2) Reserved

16 10 BINARY(4) Type text coded character set identifier (CCSID)

20 14 CHAR(100) Type text

Format for List Mail Configuration Selection

The following table shows the LSTC0100 format used to select the configurations to be listed. It can be used to
selectively retrieve configuration entries. If the data entered in any of the fields is not valid, error message
CPFAFB0 is generated. If no matching entries are found, not valid, error message CPFAFB1 is generated.

LSTC0100 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of structure

4 4 CHAR(2) Selection type group

6 6 CHAR(4) Selection type value

10 A CHAR(8) Selection type name

Field Descriptions

Length of structure. The length in bytes of the LSTL0100 format for list mail configuration selection.

Reserved. A reserved field must be set to blanks.

Selection type group. The requested type group to list. The possible values for the selection type group field
are:

01 Address type group

02 Message type group

03 Envelope type group

04 Attachment type group

blank List configurations that match the other selection criteria without using the selection type group as a
selection criteria.

Selection type name. The name of the configuration to list. If the selection type name is set to blank, other
selection criteria are used without using the selection type name as a selection criteria.

Selection type value. The value of the configuration to list. If the type value is set to blank, other selection
criteria are used without using the selection type name as a selection criteria.

Type group. The type group of the entry that matched the selection criteria. The possible values for the type
group field are:

01 Address type group

02 Message type group

03 Envelope type group

04 Attachment type group

Type name. The name of the type that matched the selection criteria. This is an 8-character mnemonic
representation of the type. This value is made up of the characters A through Z and 0 through 9.

Type text. The description of the type that matched the selection criteria.

Type text coded character set identifier (CCSID). The coded character set identifier (CCSID) for the type
text field.

Type value. The value of the type that matched the selection criteria. This is a 4-character representation of the
type. This value is made up of the characters A through Z and 0 through 9.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAFB0 E Mail server framework configuration API error occurred.

CPFAFB1 E Mail server framework type &1 not configured.

API Introduced: V3R1

Top | Office APIs | APIs by category

Query Mail Message Identifier
(QzmfQryMailMsgId) API

 Required Parameter Group:

1 Mail message identifier Input Char(32)
2 Format name Input Char(8)
3 Status Output Char(1)
4 Error code I/O Char(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Query Mail Message Identifier (QzmfQryMailMsgId) API is used to discover if a mail message identifier is
known to the mail server framework.

Required Parameter Group

Mail message identifier

INPUT; CHAR(32)

The variable containing the unique message identifier that is being queried as to whether it is known by
the mail server framework. The message identifier is composed of characters A through Z and 0 through
9 only.

Format name

INPUT; CHAR(8)

The variable containing the format identifier of the parameter list that is passed. This field must be set to
QRYF0100.

Status

OUTPUT CHAR(1)

This field contains one of the following:

0 The mail message identifier is not known by the mail server framework. The message associated
with this mail message may have already been processed.

1 The mail message identifier is known by the mail server framework. This status indicates that the
mail message identifier was created using the Create Mail Message (QzmfCrtMailMsg) API. The
message is either being processed, or is waiting to be processed, by the mail server framework.

2 The mail message identifier was reserved using the Reserve Mail Message Identifier
(QzmfRsvMailMsgId) API. It was also created using the Create Mail Message (QzmfCrtMailMsg)
API. The message still exists in the mail server framework and is either being processed, or is
waiting to be processed, by the mail server framework.

3 The mail message identifier was reserved using the Reserve Mail Message Identifier
(QzmfRsvMailMsgId) API. It was also created using the Create Mail Message (QzmfCrtMailMsg)
API. The message no longer exists in the mail server framework. The message associated with this
mail server identifier has already been processed by the mail server framework. However, the
Creation Sequence Complete (QzmfCrtCmpMailMsg) API has not been called to remove the
message identifier from the mail server framework.

4 The mail message identifier was reserved using the Reserve Mail Message Identifier
(QzmfRsvMailMsgId) API. However, the Create Mail Message (QzmfCrtMailMsg) API has not
been used to create a message using this mail message identifier.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAF82 E Error occurred during running of MSF API.

CPFAF83 E Parameter error on call to MSF API. Reason code &1.

CPFAF84 E MSF API failed. MSF message identifier not found.

API Introduced: V3R1

Top | Office APIs | APIs by category

Remove Mail Server Framework Configuration
(QzmfRmvMailCfg) API

 Required Parameter Group:

1 Type configuration Input Char(*)
2 Format name Input Char(8)
3 Error code I/O CHAR(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Remove Mail Server Framework Configuration (QzmfRmvMailCfg) API deletes a configuration from the
mail server framework.

Required Parameter Group

Type configuration

INPUT; CHAR(*)

A structure containing the information used for the mail server framework configuration being
removed.

Format name

INPUT; CHAR(8)

The format identifier of the parameter structure for the type configuration being used. This must be set
to DLTC0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the application.

DLTC0100 Format

The following table shows the layout of the parameter structure for DLTC0100. For a detailed description of
each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BIN(4) Length of structure

4 4 CHAR(2) Type group

6 6 CHAR(4) Type value

10 A CHAR(8) Type name

Field Descriptions

Length of structure. The length in bytes of the parameter list format for the remove mail server framework
configuration.

Type group. The type of the configuration being removed. This is a 2-character field representing the type
group that is being configured. This field must be set to one of the allowed values. The allowed values are:

01 Address type group

02 Message type group

03 Envelope type group

04 Attachment type group

If the field is not set to an allowed value, the error message CPFAFB0 is generated.

Type name. The name of the type configuration being removed. This is an 8-character mnemonic
representation of the type. This field must not be set to blanks. Allowed character values are A through Z and 0
through 9. If this field is blank, then error message CPFAFB0 is generated.

Type value. The value of the type configuration being removed. This is a 4-character representation of the type
being removed. Allowed character values are A through Z and 0 through 9.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAFB0 E Mail server framework configuration API error occurred.

CPFAFB1 E Mail server framework type &1 not configured.

API Introduced: V3R1

Top | Office APIs | APIs by category

Remove Reserved Mail Message Identifier
(QzmfRmvRsvMailMsgId) API

 Required Parameter Group:

1 Reserved mail message
identifier

Input Char(32)

2 Format name Input Char(8)
3 Error code I/O Char(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Remove Reserved Mail Message Identifier (QzmfRmvRsvMailMsgId) API can be used to remove an
identifier for an electronic mail message that has been reserved using the Reserve Mail Message
(QzmfRsvMailMsgId) API but that has not been created. If the message has been created, the Creation
Sequence Complete (QzmfCrtCmpMailMsg) API must be used to release the reserved message identifier. After
the Remove Reserved Mail Message Identifier (QzmfRmvRsvMailMsgId) API completes successfully, the
message identifier reserved earlier is no longer available to be used in message creation.

Required Parameter Group

Reserved mail message identifier

INPUT; CHAR(32)

The variable containing the unique message identifier to be removed from reserved status. After this
API has completed running, the message identifier can no longer be used with the Create Mail Message
(QzmfCrtMailMsg) API to pass information that defines the message. The reserved message identifier
is composed of characters A through Z and 0 through 9 only.

Format name

INPUT; CHAR(8)

The variable containing the format identifier of the parameter list being passed. This field must be set to
RMVF0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAF82 E Error occurred during running of MSF API.

CPFAF83 E Parameter error on call to MSF API. Reason code &1.

CPFAF8B E Reserved mail message identifier is not valid.

CPFAF8D E Reserved mail message identifier already used.

API Introduced: V3R1

Top | Office APIs | APIs by category

Reserve Mail Message Identifier
(QzmfRsvMailMsgId) API

 Required Parameter Group:

1 Reserved mail message
identifier

Output Char(32)

2 Format name Input Char(8)
3 Error code I/O Char(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Reserve Mail Message Identifier (QzmfRsvMailMsgId) API is used to reserve an identifier for an electronic
mail message. After the API completes successfully, a single mail message identifier is returned to the caller.

This reserved mail message identifier can be operated on through the Remove Reserved Mail Message Identifier
(QzmfRmvRsvMailMsgId) API, the Creation Sequence Complete (QzmfCrtCmpMailMsg) API, and the Create
Mail Message (QzmfCrtMailMsg) API. The normal processing for a reserved mail message identifier involves
the following sequence:

The mail message identifier is reserved (using the Reserve Mail Message Identifier
(QzmfRsvMailMsgId) API). This means that a message can later be created using this mail message
identifier.

1.

The message is created (using the Create Mail Message (QzmfCrtMailMsg) API).2.

The application confirms that the message was created (using the Creation Sequence Complete
(QzmfCrtCmpMailMsg) API).

3.

A reserved mail message identifier can be removed from reserved status using the remove mail message
identifier if the message has not been created.

Required Parameter Group

Reserved mail message identifier

OUTPUT; CHAR(32)

The variable containing a unique message identifier. The message identifier is returned by the API after
it has completed running. This identifier can be used later by the Create Mail Message
(QzmfCrtMailMsg) API to pass information which defines the message. The message identifier is
composed of characters A through Z and 0 through 9 only. If an error occurs during processing, a
message identifier is not generated.

Format name

INPUT; CHAR(8)

The variable containing the format identifier of the parameter list being passed. This field must be set to
RSVF0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAF82 E Error occurred during running of MSF API.

CPFAF83 E Parameter error on call to MSF API. Reason code &1.

API Introduced: V3R1

Top | Office APIs | APIs by category

Retrieve Mail Message (QzmfRtvMailMsg) API

 Required Parameter Group:

1 Mail message identifier Input Char(32)
2 Message descriptor attributes Input Char(*)
3 Number of message descriptor

attributes
Input Array of

Binary(4)
4 Format name Input CHAR(8)
5 Error code I/O Char(*)

 Service Program: QZMFASRV

 Threadsafe: No

The Retrieve Mail Message (QzmfRtvMailMsg) API retrieves information about an electronic mail message
and returns it in the receiver variables provided by the caller. It is only valid to call this API during the
processing of the exit program for the Snap-In Call or Track Mail Message Changes exit point.

Required Parameter Group

Mail message identifier

INPUT; CHAR(32)

The variable containing the message identifier for which information is to be retrieved. The mail
message identifier is composed of characters A through Z and 0 through 9 only.

Message descriptor attributes

INPUT; ARRAY OF CHAR(*)

This array contains the message descriptor attributes for the data that is to be retrieved. The following
table defines a message descriptor attributes array entry.

Table 1. Message Descriptor Attribute Array Entry

Offset

Type FieldDec Hex

0 0 POINTER Receiver message descriptor pointer

16 10 BINARY(4) Length of the receiver message descriptor

20 14 CHAR(8) Format name

28 1C BINARY(4) Reserved (must be set to zero)

The message descriptor attribute array entry contains the following:

Pointers to the message descriptors that are to receive the message information❍

The format name associated with the message descriptor❍

The length of the message descriptor.❍

If the message descriptors are not long enough to hold all of the available message information, the data
is truncated and the number of bytes available is returned. If the length specified for the receiver
message descriptor is -1, the pointer to the message descriptor is pointing to a user space that should be
automatically extended by the API if it is not large enough for all of the data.

The format name associated with the message descriptor indicates what type of message information is
being requested.

Number of message descriptor attributes

INPUT; BINARY(4)

The number of entries in the array of message descriptor attributes. At least one array element must be
specified on a call to this API.

Format name

INPUT; CHAR(8)

The variable containing the format name of the parameter list being returned. This field must be set to
RTVM0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Message Parameter Lists

A message descriptor consists of:

A common message header section●

The actual message descriptor format. The following table shows valid message descriptors.

Format name Description

ORCL0100 Originator recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

RCHL0100 Recipient history entry

ROAL0100 Report-on address entry

RPYL0100 Reply-to address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

MSGL0100 Message types in the recipient list
entries

EXCH0100 Exit call history entry

●

CRTA0100 Creation attributes entry

Message Descriptor Common Header

The following table shows the common header section that is always included at the beginning of a message
descriptor. It is used for all of the different formats that can be retrieved using this API. The common header
will always be returned, even if there is no message descriptor data to be included. There may be no list items or
one or more list items after the common header section.

Table 2. Format of Common Header

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this message descriptor

4 4 BINARY(4) Number of bytes available for this message
descriptor

8 8 CHAR(8) Array element format name

16 10 BINARY(4) Offset of the first entry in the message descriptor

20 14 BINARY(4) Number of entries available for this message
descriptor

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Message descriptor data

Message Descriptor Formats for Retrieve Mail Message

If there is data after the common header, the format associated with the message descriptor is used. There may
be multiple instances of the formats following the common header, depending on the size of the parameter list.

ORCL0100 Format (Original Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the original recipient address
from the beginning of this ORCL0100 entry

8 8 BINARY(4) Length of original recipient address

12 C CHAR(4) Address type

16 10 BINARY(4) Original recipient address coded character set
identifier(CCSID)

20 14 BINARY(4) Distribution type

24 18 BINARY(4) Reply requested flag

28 1C BINARY(4) Unique identifier

32 20 BINARY(4) Unique identifier of referenced ORCL0100 entry

36 24 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Original recipient address

ORGL0100 Format (Originator Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the origin address from the
beginning of this ORGL0100 entry

8 8 BINARY(4) Length of origin address

12 C CHAR(4) Address type

16 10 BINARY(4) Origin address coded character set
identifier(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced ORGL0100 entry

28 1C BINARY(4) Reserved (set to zero)

* * CHAR(*) Origin address

ENVL0100 Format (Envelope Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of envelope from the beginning of
this ENVL0100 entry

8 8 BINARY(4) Length of envelope

12 C CHAR(4) Envelope type

16 10 BINARY(4) Unique identifier

20 14 BINARY(4) Unique identifier of referenced ENVL0100 entry

24 18 BINARY(4) Reserved (set to zero)

* * CHAR(*) Envelope

RCPL0100 Format (Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this RCPL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the recipient address from the
beginning of this RCPL0100 entry

16 10 BINARY(4) Length of recipient address

20 14 CHAR(4) Address type

24 18 BINARY(4) Recipient address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 CHAR(4) Message type

40 28 BINARY(4) Status

44 2C BINARY(4) Reserved

48 30 BINARY(4) Unique identifier

52 34 BINARY(4) Reserved (set to zero)

* * CHAR(*) Recipient address

* * CHAR(*) Snap-in provided information (SPIN)

ROAL0100 Format (Report-on Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this ROAL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the report-on address from the
beginning of this ROAL0100 entry

16 10 BINARY(4) Length of address

20 14 CHAR(4) Address type

24 18 BINARY(4) Report-on address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 BINARY(4) Unique identifier

40 28 BINARY(4) Unique identifier of referenced ROAL0100 entry

44 2C BINARY(4) Reserved (set to zero)

* * CHAR(*) Report-on address

* * CHAR(*) Snap-in provided information (SPIN)

RPYL0100 Format (Reply-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the reply-to address from the
beginning of this RPYL0100 entry

8 8 BINARY(4) Length of reply-to address

12 C CHAR(4) Address type

16 10 BINARY(4) Reply-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced RPYL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Reply-to address

RTAL0100 Format (Report-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the report-to address
from the beginning of this RTAL0100
entry

8 8 BINARY(4) Length of address

12 C CHAR(4) Address type

16 10 BINARY(4) Report-to address coded character set
identifier (CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced
RTAL0100 entry

28 1C BINARY(4) Reserved (set to zero)

* * CHAR(*) Report-to address

ATTL0100 Format (Attachment Reference Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the attachment reference from the
beginning of this ATTL0100 entry

8 8 BINARY(4) Length of attachment reference

12 C CHAR(4) Attachment reference type

16 10 BINARY(4) Unique identifier

20 14 BINARY(4) Unique identifier of referenced ATTL0100 entry

24 18 BINARY(4) Reserved (set to zero)

* * CHAR(*) Attachment reference

MSGL0100 Format (Message Types in the Recipient List Entry)

Offset

Type FieldDec Hex

0 0 CHAR(4) Message type

RCHL0100 Format (Recipient History Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) of this RCHL0100 entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the recipient address from the
beginning of this RCHL0100 entry

16 10 BINARY(4) Length of recipient address

20 14 CHAR(4) Address type

24 18 BINARY(4) Recipient address coded character set identifier
(CCSID)

28 1C CHAR(4) Message type

32 20 BINARY(4) Status

36 24 BINARY(4) Reserved

40 28 BINARY(4) Unique identifier

44 2C BINARY(4) Recipient status flag

48 30 BINARY(4) Unique identifier of parent entry

52 34 BINARY(4) Reserved (set to zero)

* * CHAR(*) Recipient address

* * CHAR(*) Snap-in provided information (SPIN)

EXCH0100 Format (Exit Point Call History Entry)

Offset

Type FieldDec Hex

0 0 CHAR(20) Mail server framework exit point name

20 14 CHAR(10) Qualified mail server framework exit program
name

30 1E CHAR(10) Mail server framework exit program library

40 28 BINARY(4) Exit program number

44 2C CHAR(16) Timestamp of when the exit program was called

60 3C CHAR(16) Timestamp of when the exit program returned

76 4C BINARY(4) Return code from the exit program

80 50 CHAR(1) Change indicator

81 51 CHAR(3) Reserved (set to blanks)

CRTA0100 Format (Creation Attributes Entry)

Offset

Type FieldDec Hex

0 0 CHAR(16) Timestamp of when the message was created

16 10 CHAR(4) Creation message type

Field Descriptions

Address type. The type of address that is contained in the entry.

Attachment reference. A reference to an attachment that is associated with the message.

Attachment reference type. The type of attachment that is contained in the entry.

Change indicator. An indicator of whether processing of the exit point program resulted in changes to the

message.

0 There were no changes to the message as a result of this exit point program being called.

1 There were changes to the message as a result of this exit point program being called.

Creation message type. The creation message type specified when the MSF message was created.

Diagnostic code. A code that indicates the cause of a problem which caused the delivery of a message to this
address to fail. The diagnostic code is assumed to contain the X.400 nondelivery diagnostic code.

Displacement of the attachment reference from the beginning of this ATTL0100 entry. The displacement
from the beginning of this entry to the attachment reference in this entry.

Displacement of the envelope from the beginning of this ENVL0100 entry. The displacement from the
beginning of this entry to the envelope in this entry.

Displacement of the origin address from the beginning of this ORGL0100 entry. The displacement from the
beginning of this entry to the origin address in this entry.

Displacement of the original recipient address from the beginning of this ORCL0100 entry. The
displacement from the beginning of this entry to the original recipient address in this entry.

Displacement of the recipient address from the beginning of this RCPL0100 entry. The displacement from
the beginning of this entry to the recipient address in this entry.

Displacement of the reply-to address from the beginning of this RPYL0100 entry. The displacement from
the beginning of this entry to the reply-to address in this entry.

Displacement of the report-to address from the beginning of this RTAL0100 entry. The displacement from
the beginning of this entry to the report-to address in this entry.

Displacement of the report-on address from the beginning of this ROAL0100 entry. The displacement from
the beginning of this entry to the report-on address in this entry.

Displacement of the snap-in provided information (SPIN) of this RCHL0100. The displacement from the
beginning of this entry to the snap-in provided information (SPIN). (There are fields for RCPL0100 and
RCHL0100 entries.)

Distribution type. The type of distribution associated with each recipient entry. The possible values are:

0 Normal message recipient

1 CC (carbon copy) recipient

2 BCC (blind carbon copy) recipient

Envelope. A string of data representing information about the message, aside from the attachments and its
recipients.

Envelope type. The type of envelope that is contained in the entry.

Exit program number. A number assigned to the exit program when it is registered using the registration
facility. This is the number in effect at the time the exit program was called.

Format name. The content and format of the information provided for each message parameter. The possible
values are:

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

RCHL0100 Recipient history entry

ROAL0100 Report-on address entry

RPYL0100 Reply-to address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

MSGL0100 List of message types in the recipient list entry

EXCH0100 Exit call history entry

CRTA0100 Creation attributes entry

Length of address. The length of address that is contained in the entry. The maximum length of an address is
1024 bytes.

Length of attachment reference. The length in bytes of the attachment reference that is contained in the entry.

Length of envelope. The length of envelope that is contained in the entry.

Length of origin address. The length of the origin address for this entry. The maximum length of an origin
address is 1024 bytes.

Length of original recipient address. The length of the original recipient address for this entry. The maximum
length of an original recipient address is 1024 bytes.

Length of receiver message descriptor. The length in bytes of the message descriptor that is being pointed to
by the pointer to the message descriptor. The maximum length of a message descriptor is 16 million bytes.

Length of recipient address. The length in bytes of the recipient address. The maximum length of a recipient
address is 1024 bytes.

Length of reply-to address. The length in bytes of the reply-to address. The maximum length of a reply-to
address is 1024 bytes.

Length of snap-in provided information (SPIN). The length in bytes of the snap-in provided information
(SPIN). The maximum length of the SPIN is 256 bytes.

Length of this entry. The length in bytes of this entry. This is used to get to the next entry.

Length of this message descriptor. The length in bytes of this message descriptor. The maximum length of a
message descriptor is 16 million bytes.

Message descriptor data. One or more parameter list formats that follow the common header. Message
descriptors are made up of a common header and a list of entries. The format of each entry in the list is defined
by the format name associated with the message descriptor, which is located in the common header. The number
of entries in the list is also defined in the common header.

Message type. The type of message that is associated with the entry.

Number of bytes available for this message descriptor. The number of bytes available in the space where the
mail server framework puts the information being retrieved.

Number of entries available for this message descriptor. The total number of entries available for this
message descriptor indicates the number of entries that would be returned if the length of the message descriptor
is greater than or equal to the number of bytes available for this message descriptor.

Offset of the first entry in the message descriptor. The offset from the beginning of this message descriptor to
the first entry in the list of entries.

Origin address. A string that represents the address associated with the originator of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the origin address defines the contents of the origin address field.

Origin address coded character set identifier (CCSID). The CCSID provided for the origin address. Valid
values for the CCSID are 1 through 65533 and 65535.

Original recipient address. A string that represents the address associated with the original recipient of the
message. The contents and format of the string are not defined by the mail server framework. It is assumed that
the address type associated with the original recipient address defines the contents of the original recipient
address field.

Original recipient address coded character set identifier (CCSID). The CCSID provided for the original
recipient address. Valid values for the CCSID are 1 through 65533 and 65535.

Qualified mail server framework exit program name. The qualified program name of the program that was
called at the mail server framework exit point.

Reason code. A code that identifies reasons associated with the message delivery to this address. In the case of
a nondelivery entry, this field would contain the reason the delivery of this message to this recipient failed. The
reason code is assumed to contain the X.400 nondelivery reason code.

Receiver message descriptor pointer. A space pointer that points to a message descriptor. A message
descriptor is used to pass information which describes the message.

Recipient address. A string that represents the address associated with a recipient of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the recipient address defines the contents of the recipient address field.

Recipient address coded character set identifier (CCSID). The CCSID provided for the recipient address.
Valid values for the CCSID are 1 through 65533 and 65535.

Recipient status flag. A flag which when set to 1 indicates that this entry has been replaced by either one or
multiple entries. Entries with this flag set to 1 are referred to as parents. Entries with this flag set zero are
referred to as children.

Reply requested flag. Whether this original recipient should reply to the message. The possible values are as
follows:

0 A reply is not requested from this original recipient

1 A reply is requested from this original recipient

Reply-to address. A string that represents the address to be replied to. The contents and format of the string are
not defined by the mail server framework. It is assumed that the address type associated with the reply-to
address defines the contents of the reply-to address field.

Reply-to address coded character set identifier (CCSID). The CCSID provided for the reply-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Report-on address. A string which represents the address to be reported on. The contents and format of the

string are not defined by the mail server framework. It is assumed that the address type associated with the
report-on address defines the contents of the report-on address field.

Report-on address coded character set identifier (CCSID). The CCSID provided for the report-on address.
Valid values for the CCSID are 1 through 65533 and 65535.

Report-to address. A string which represents the address to be reported to. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-to address defines the contents of the report-to address field.

Report-to address coded character set identifier (CCSID). The CCSID provided for the report-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Reserved. All reserved fields must be set to zero.

Return code from the exit program. The return code returned by the user exit program.

Snap-in provided information (SPIN). An area where snap-ins can store information that other snap-ins may
use. SPIN provides a place where information relating to a specific recipient can be stored and used by snap-ins
in the same or different exit points. This is completely user-defined and user-interpreted data.

Status. The status associated with each recipient entry. The possible values are:

1 Forwarded (remote)

2 Ignore

3 Local

4 Nondeliverable

5 Security violation

Timestamp of when the message was created. The timestamp of when the message was created. The format
of the timestamp is CYYMMDDHHMMSSMMM. The fields are defined in the order that they occur in the
string.

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour of the day

mm Minute of the hour

SS Second of the minute

MMM Milliseconds in zoned format

Timestamp of when the exit program was called. The timestamp of when the exit point was called. The
format of this timestamp is the same as that of the timestamp of when the message was created.

Timestamp of when the exit program returned. The timestamp of when the exit point returned. The format of
this timestamp is the same as that of the timestamp of when the message was created.

Unique identifier. A unique identifier that differentiates each item within a particular list. Identifiers are
generated for each list item when the Create Mail Message (QzmfCrtMailMsg) API has successfully completed.
These unique identifiers are temporary and may change as the mail service processes a message. List entries are

placed in message descriptors such that unique identifiers are in ascending order.

Unique identifier of parent entry. The unique identifier associated with the parent entry of this entry. A parent
entry is an entry that had been replaced by a single or multiple entries.

Unique identifier of referenced entry. The unique identifier of another ORCL0100, ORGL0100, ENVL0100,
RTAL0100, ROAL0100, RPYL0100, or ATTL0100 entry that this entry refers to. This field can be used to
create entry cross-references as new entries are added.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAF80 E Syntax error on call to MSF API. Reason code &1.

CPFAF82 E Error occurred during running of MSF API.

CPFAF83 E Parameter error on call to MSF API. Reason code &1.

CPFAF84 E MSF API failed. MSF message identifier not found.

CPFAF85 E MSF API failed. Request not allowed.

API Introduced: V3R1

Top | Office APIs | APIs by category

Snap-In Call Exit Program

 Required Parameter Group:

1 Exit point name Input Char(20)
2 Mail message identifier Input Char(32)
3 Message descriptor attributes Input Array of

Char(*)
4 Number of message descriptor

attributes
Input Binary(4)

5 Format name Input Char(8)
6 Return code Output Binary(4)

The Snap-In Call exit program is used to pass information about an electronic mail message to defined snap-in
programs. When the snap-in program has completed processing the message, it returns its status in the return
code parameter.

Parameter Group

Exit point name

INPUT; CHAR(20)

The variable containing the name of the user exit point that is calling the snap-in program. The
following table shows the exit points from which snap-in programs can be called.

Exit Point Name Description

QIBM_QZMFMSF_LST_EXP MSF List Expansion Exit

QIBM_QZMFMSF_ADR_RSL MSF Address Resolution Exit

QIBM_QZMFMSF_ENL_PSS MSF Envelope Processing Exit

QIBM_QZMFMSF_ATT_CNV MSF Attachment Conversion
Exit

QIBM_QZMFMSF_SEC_AUT MSF Security and Authority
Exit

QIBM_QZMFMSF_LCL_DEL MSF Local Delivery Exit

QIBM_QZMFMSF_MSG_FWD MSF Messaging Forwarding
Exit

QIBM_QZMFMSF_NON_DEL MSF Non Delivery Exit

QIBM_QZMFMSF_ATT_MGT MSF Attachment Management
Exit

QIBM_QZMFMSF_ACT MSF Accounting User Exit

Mail message identifier

INPUT; CHAR(32)

The variable containing the message identifier that the Snap-In Call exit is passing information for. The
mail message identifier is composed of characters A through Z and 0 through 9 only.

Message descriptor attributes

INPUT; ARRAY OF CHAR(*)

This array contains the message descriptor attributes for the data that is to be passed. The following
table defines a message descriptor attributes array entry.

Offset

Type FieldDec Hex

0 0 POINTER Message descriptor pointer

16 10 BINARY(4) Length of the message descriptor

20 14 CHAR(8) Message descriptor format name

28 1C BINARY(4) Reserved (must be set to zero)

Number of message descriptor attributes

INPUT; BINARY(4)

The number of message descriptor attribute entries being passed in the array.

Format name

INPUT; CHAR(8)

The variable containing the format identifier of the parameter list in which information is being passed.
This field is set to SPCL0100. This is defined in the first 8 characters of the exit program data
associated with the exit point programs that are registered to work with the exit points from which
snap-in programs can be called.

Return code

OUTPUT; BINARY(4)

The defined return codes are:

0 Continue processing

1 Backout changes made but continue processing.

2 End the mail server framework job.

3 End the processing of this message.

Message Descriptors

A message descriptor consists of:

A snap-in call message header section●

A message descriptor data section

This section is composed of a list of individual entries. The data in these entries is in one of the formats
listed below. The following table shows valid array element format names for the data list section:

●

Format Name Description

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

ROAL0100 Report-on address entry

RPYL0100 Reply-to address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

MSGL0100 Message types in the recipient list
entry

CRTA0100 Creation attributes entry

Not all of these formats are passed to the Snap-In Call exit at each of the user exit points. The following
table identifies the format of the message descriptors that are passed at each exit point.

Exit Point Name Formats Passed

QIBM_QZMFMSF_LST_EXP RCPL0100

ENVL0100

QIBM_QZMFMSF_ADR_RSL RCPL0100

ENVL0100

ORGL0100

RTAL0100

ROAL0100

RPYL0100

ORCL0100

QIBM_QZMFMSF_ENL_PSS MSGL0100

RCPL0100

ROAL0100

ENVL0100

ATTL0100

RTAL0100

RPYL0100

ORCL0100

ORGL0100

QIBM_QZMFMSF_ATT_CNV MSGL0100

RCPL0100

ATTL0100

ENVL0100

QIBM_QZMFMSF_SEC_AUT RCPL0100

ATTL0100

ORGL0100

QIBM_QZMFMSF_LCL_DEL RCPL0100

ENVL0100

ATTL0100

ORGL0100

ROAL0100

RTAL0100

RPYL0100

ORCL0100

CRTA0100

QIBM_QZMFMSF_MSG_FWD RCPL0100

ENVL0100

ATTL0100

ORGL0100

ROAL0100

RTAL0100

RPYL0100

ORCL0100

CRTA0100

QIBM_QZMFMSF_NON_DEL RCPL0100

ENVL0100

ATTL0100

ORGL0100

RTAL0100

QIBM_QZMFMSF_ATT_MGT RCPL0100

ATTL0100

QIBM_QZMFMSF_ACT RCPL0100

ENVL0100

ATTL0100

ORGL0100

RTAL0100

RPYL0100

ORCL0100

CRTA0100

Snap-In Call Common Header

The following table shows the common header section that is always included at the beginning of a message
descriptor. It is used for all of the different formats that can be passed when calling Snap-In Call exit programs.
The common header will always be passed when there is message descriptor data to be included. The message
descriptor data may include one or more individual entries after the common header section.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this message descriptor

4 4 BINARY(4) Reserved (must be set to zero)

8 8 CHAR(8) Message descriptor format name

16 10 BINARY(4) Offset of the first entry in the message descriptor

20 14 BINARY(4) Number of entries in this message descriptor

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Message descriptor data. See the sections that
follow.

Message Descriptor Formats for Snap-In Call

If there is data after the common header, the format associated with the message descriptor is used.

ORCL0100 Format (Original Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the original recipient address
from the beginning of this ORCL0100 entry

8 8 BINARY(4) Length of original recipient address

12 C CHAR(4) Address type

16 10 BINARY(4) Original recipient address coded character set
identifier(CCSID)

20 14 BINARY(4) Distribution type

24 18 BINARY(4) Reply requested flag

28 1C BINARY(4) Unique identifier

32 20 BINARY(4) Unique identifier of referenced ORCL0100 entry

36 24 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Original recipient address

ORGL0100 Format (Originator Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the origin address from the
beginning of this ORGL0100 entry

8 8 BINARY(4) Length of origin address

12 C CHAR(4) Address type

16 10 BINARY(4) Origin address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced ORGL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Origin address

ENVL0100 Format (Envelope Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of envelope from the beginning of
this ENVL0100 entry

8 8 BINARY(4) Length of envelope

12 C CHAR(4) Envelope type

16 10 BINARY(4) Unique identifier

20 14 BINARY(4) Unique identifier of referenced ENVL0100 entry

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Envelope

RCPL0100 Format (Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this RCPL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the recipient address from the
beginning of this RCPL0100 entry

16 10 BINARY(4) Length of recipient address

20 14 CHAR(4) Address type

24 18 BINARY(4) Recipient address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 CHAR(4) Message type

40 28 BINARY(4) Status

44 2C BINARY(4) Reserved

48 30 BINARY(4) Unique identifier

52 34 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Recipient address

* * CHAR(*) Snap-in provided information (SPIN)

RPYL0100 Format (Reply-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the reply-to address from the
beginning of this RPYL0100 entry

8 8 BINARY(4) Length of reply-to address

12 C CHAR(4) Address type

16 10 BINARY(4) Reply-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced RPYL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Reply-to address

ROAL0100 Format (Report-on-Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this ROAL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the report-on address from the
beginning of this ROAL0100 entry

16 10 BINARY(4) Length of address

20 14 CHAR(4) Address type

24 18 BINARY(4) Report-on address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 BINARY(4) Unique identifier

40 28 BINARY(4) Unique identifier of referenced ROAL0100 entry

44 2C BINARY(4) Reserved

* * CHAR(*) Report-on address

* * CHAR(*) Snap-in provided information (SPIN)

RTAL0100 Format (Report-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the report-to address from the
beginning of this RTAL0100 entry

8 8 BINARY(4) Length of address

12 C CHAR(4) Address type

16 10 BINARY(4) Report-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced RTAL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Report-to address

ATTL0100 Format (Attachment Reference Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the attachment reference from the
beginning of this ATTL0100 entry

8 8 BINARY(4) Length of attachment reference

12 C CHAR(4) Attachment reference type

16 10 BINARY(4) Unique identifier

20 14 BINARY(4) Unique identifier of referenced ATTL0100 entry

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Attachment reference

MSGL0100 Format (Message Type in the Recipient List Entry)

Offset

Type FieldDec Hex

0 0 CHAR(4) Message type

CRTA0100 Format (Creation Attributes Entry)

Offset

Type FieldDec Hex

0 0 CHAR(16) Timestamp of when the message was created

16 10 CHAR(4) Creation message type

Field Descriptions

Address type. The type of address that is contained in the entry.

Attachment reference. A reference to an attachment that is associated with the message.

Attachment reference type. The type of attachment that is contained in the entry.

Creation message type. The creation message type specified when the MSF message was created.

Diagnostic code. A code that indicates the cause of a problem which caused the delivery of a message to this
address to fail. The diagnostic code is assumed to contain the X.400 nondelivery diagnostic code.

Note: The reason code and diagnostic code fields are assumed to contain values that are documented in CCITT
Data Communication Networks Message Handling Systems 1988 Recommendation for X.400-X.420 for fields
Non-delivery-reason-code and Non-delivery-diagnostic-code.

Displacement of the attachment reference from the beginning of this ATTL0100 entry. The displacement
from the beginning of this entry to the attachment reference in this entry.

Displacement of the envelope from the beginning of this ENVL0100 entry. The displacement from the
beginning of this entry to the envelope in this entry.

Displacement to the original recipient address from the beginning of this ORCL0100 entry. The
displacement from the beginning of this entry to the original recipient address in this entry.

Displacement of the origin address from the beginning of this ORGL0100 entry. The displacement from the
beginning of this entry to the origin address in this entry.

Displacement of the recipient address from the beginning of this RCPL0100 entry. The displacement from
the beginning of this entry to the recipient address in this entry.

Displacement of the reply-to address from the beginning of this RPYL0100 entry. The displacement from
the beginning of this entry to the reply-to address in this entry.

Displacement of the report-to address from the beginning of this RTAL0100 entry. The displacement from
the beginning of this entry to the report-to address in this entry.

Displacement of the report-on address from the beginning of this ROAL0100 entry. The displacement from
the beginning of this entry to the report-on address in this entry.

Displacement of the snap-in provided information (SPIN) of this RCHL0100. The displacement from the
beginning of this entry to the snap-in provided information (SPIN). (There are fields for RCPL0100 and
RCHL0100 entries.)

Distribution type. The type of distribution associated with each recipient entry. The possible values are:

0 Normal message recipient

1 CC (carbon copy) recipient

2 BCC (blind carbon copy) recipient

Envelope. A string of data representing information about the message, aside from the attachments and its

recipients.

Envelope type. The type of envelope that is contained in the entry.

Exit program number. A number assigned to the exit program when it is registered using the registration
facility. This is the number in effect at the time the exit program was called.

Format name. The content and format of the information provided for each message parameter. The possible
values are:

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

ROAL0100 Report-on address entry

RPYL0100 Reply-to address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

MSGL0100 List of message types in the recipient list entry

Length of address. The length of address that is contained in the entry. The maximum length of an address is
1024 bytes.

Length of attachment reference. The length in bytes of the attachment reference that is contained in the entry.

Length of envelope. The length of envelope that is contained in the entry.

Length of origin address. The length of the origin address for this entry. The maximum length of an origin
address is 1024 bytes.

Length of original recipient address. The length of the original recipient address for this entry. The maximum
length of an original recipient address is 1024 bytes.

Length of receiver message descriptor. The length in bytes of the message descriptor that is being pointed to
by the pointer to the message descriptor. The maximum length of a message descriptor is 16 million bytes.

Length of recipient address. The length in bytes of the recipient address. The maximum length of a recipient
address is 1024 bytes.

Length of reply-to address. The length in bytes of the reply-to address. The maximum length of a reply-to
address is 1024 bytes.

Length of snap-in provided information (SPIN). The length in bytes of the snap-in provided information
(SPIN). The maximum length of the SPIN is 256 bytes.

Length of this entry. The length in bytes of this entry. This is used to get to the next entry.

Length of this message descriptor. The length in bytes of this message descriptor. The maximum length of a
message descriptor is 16 million bytes.

Message descriptor data. One or more parameter list formats that follow the common header. Message
descriptors are made up of a common header and a list of entries. The format of each entry in the list is defined
by the format name associated with the message descriptor, which is located in the common header. The number

of entries in the list is also defined in the common header.

Message type. The type of message that is associated with the entry.

Number of bytes available for this message descriptor. The number of bytes available in the space where the
mail server framework puts the information being retrieved.

Number of entries available for this message descriptor. The total number of entries available for this
message descriptor indicates the number of entries that would be returned if the length of the message descriptor
is greater than or equal to the number of bytes available for this message descriptor.

Offset of the first entry in the message descriptor. The offset from the beginning of this message descriptor to
the first entry in the list of entries.

Origin address. A string that represents the address associated with the originator of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the origin address defines the contents of the origin address field.

Origin address coded character set identifier (CCSID). The CCSID provided for the origin address. Valid
values for the CCSID are 1 through 65533 and 65535.

Original recipient address. A string that represents the address associated with the original recipient of the
message. The contents and format of the string are not defined by the mail server framework. It is assumed that
the address type associated with the original recipient address defines the contents of the original recipient
address field.

Original recipient address coded character set identifier (CCSID). The CCSID provided for the original
recipient address. Valid values for the CCSID are 1 through 65533 and 65535.

Qualified mail server framework exit program name. The qualified program name of the program that was
called at the mail server framework exit point.

Reason code. A code that identifies reasons associated with the message delivery to this address. In the case of
a nondelivery entry, this field would contain the reason the delivery of this message to this recipient failed. The
reason code is assumed to contain the X.400 nondelivery reason code.

Note: The reason code and diagnostic code fields are assumed to contain values that are documented in CCITT
Data Communication Networks Message Handling Systems 1988 Recommendation for X.400-X.420 for fields
Non-delivery-reason-code and Non-delivery-diagnostic-code.

Receiver message descriptor pointer. A space pointer that points to a message descriptor. A message
descriptor is used to pass information which describes the message.

Recipient address. A string that represents the address associated with a recipient of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the recipient address defines the contents of the recipient address field.

Recipient address coded character set identifier (CCSID). The CCSID provided for the recipient address.
Valid values for the CCSID are 1 through 65533 and 65535.

Recipient status flag. A flag which when set to 1 indicates that this entry has been replaced by either one or
multiple entries. Entries with this flag set to 1 are referred to as parents. Entries with this flag set zero are
referred to as children.

Reply-to address. A string that represents the address to be replied to. The contents and format of the string are
not defined by the mail server framework. It is assumed that the address type associated with the reply-to
address defines the contents of the reply-to address field.

Reply-to address coded character set identifier (CCSID). The CCSID provided for the reply-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Reply requested flag. Whether this original recipient should reply to the message. The possible values are as
follows:

0 A reply is not requested from this original recipient

1 A reply is requested from this original recipient

Report-on address. A string which represents the address to be reported on. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-on address defines the contents of the report-on address field.

Report-on address coded character set identifier (CCSID). The CCSID provided for the report-on address.
Valid values for the CCSID are 1 through 65533 and 65535.

Report-to address. A string which represents the address to be reported to. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-to address defines the contents of the report-to address field.

Report-to address coded character set identifier (CCSID). The CCSID provided for the report-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Reserved. All reserved fields must be set to zero.

Return code from the exit program. The return code returned by the user exit program.

Snap-in provided information (SPIN). An area where snap-ins can store information that other snap-ins may
use. SPIN provides a place where information relating to a specific recipient can be stored and used by snap-ins
in the same or different exit points. This is completely user-defined and user-interpreted data.

Status. The status associated with each recipient entry. The possible values are:

1 Forwarded (remote)

2 Ignore

3 Local

4 Nondeliverable

5 Security violation

Timestamp of when the message was created. The timestamp of when the message was created. The format
of the timestamp is CYYMMDDHHMMSSMMM. The fields are defined in the order that they occur in the
string.

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

mm Minute of the hour

SS Second of the minute

MMM Milliseconds in zoned format

Unique identifier. A unique identifier that differentiates each item within a particular list. Identifiers are
generated for each list item when the Create Mail Message (QzmfCrtMailMsg) API has successfully completed.
These unique identifiers are temporary and may change as the mail service processes a message. List entries are
placed in message descriptors such that unique identifiers are in ascending order.

Unique identifier of parent entry. The unique identifier associated with the parent entry of this entry. A parent
entry is an entry that had been replaced by a single or multiple entries.

Unique identifier of referenced entry. The unique identifier of another ORCL0100, ORGL0100, ENVL0100,
RTAL0100, ROAL0100, RPYL0100, or ATTL0100 entry that this entry refers to. This field can be used to
create entry cross-references as new entries are added.

Error Messages

None

Exception Messages That are Monitored By MSF

The following messages can be signaled by the snap-in program to the mail server framework.

Message ID Exception Message Text

CPFAF90 E End mail server framework (MSF) job.

CPFAF91 E End processing MSF message.

Exit Program Introduced: V3R1

Top | Office APIs | APIs by category

Track Mail Message Changes Exit Program

 Required Parameter Group:

1 Mail message identifier Input Char(32)
2 Exit point name Input Char(20)
3 Qualified exit point program

name
Input Char(20)

4 Format name Input Char(8)
5 Return code Output Binary(4)

 Exit Point Name: QIBM_QZMFMSF_TRK_CHG

The exit point name and the name of an exit point program (which resulted in changes to a message) are passed
to the Track Mail Message Changes exit program. The exit program configured for this exit is allowed to read
all of the parts of a message to track the message. The exit point, however, cannot affect the processing of the
message. The return codes are provided for tracking purposes and do not affect the processing of the message.

Required Parameter Group

Mail message identifier

INPUT; CHAR(32)

The variable containing the mail message identifier that the Track Mail Message Changes exit program
is passing information for. The mail message identifier is composed of characters A through Z and 0
through 9 only.

Exit point name

INPUT; CHAR(20)

The name of the user exit point that was being processed when the changes to the message were made.

Qualified exit point program name

INPUT; CHAR(20)

The user qualified name of the program that was called that resulted in changes being made to the
message.

Format name

INPUT; CHAR(8)

The variable containing the format name of the parameter list in which the Track Mail Message
Changes exit program is passing information. This field must be set to TCMM0100.

Return code

OUTPUT; BINARY(4)

0 Everything was OK.

1 Data was not valid.

2 Severe error encountered.

Note: This return code is stored for tracking purposes and does not affect the processing of the message.

Exit Program Introduced: V3R1

Top | Office APIs | APIs by category

Validate Data Field Exit Program

 Required Parameter Group:

1 Mail message identifier Input Char(32)
2 Message descriptor attributes Input Array of

Char(*)
3 Number of message descriptor

attributes
Input Binary(4)

4 Format name Input Char(8)
5 Return code Output Binary(4)

 Exit Point Name: QIBM_QZMFMSF_VLD_TYP
 Exit Point Format Name: VDFF0100

To configure the mail server framework, the user or programmer defines the format of information that it will
use. The four basic type groups that the mail server framework supports are address types, message types,
envelope types, and attachment types. The definition of a type consists of its name and its value. The mail server
framework assumes that the definition of the type of the information defines the format of the information.

The mail server framework also provides a Validate Data Field exit program where a system can register
programs to provide additional checking. These programs are called when mail messages are created or changed
(using the Create Mail Message (QzmfCrtMailMsg) or Change Mail Message (QzmfChgMailMsg) API) and the
message contains a type that has a validate data field exit program configured. The exit programs can be
registered to be called for specific types of information only, or whenever any information for a particular type
group is changed. Only list entries that have a matching type are passed to the user exit programs. The Validate
Data Field exit program is called whenever any information matching the selection material is added to the
message. When the program is complete, it returns its status in the return code parameter. If the return code
from the exit program was zero, then the data is assumed to be valid and accepted. If the return code was not
zero, then the data is assumed to be not valid and is rejected.

Required Parameter Group

Mail message identifier

INPUT; CHAR(32)

The variable containing the mail message identifier that the Validate Data Field exit program is passing
information for. The mail message identifier is composed of characters A through Z and 0 through 9
only.

Message descriptor attributes

INPUT; ARRAY OF CHAR(*)

This array contains the message descriptor attributes for the data that is to be validated. The following
table defines a message descriptor attributes array entry.

Offset

Type FieldDec Hex

0 0 (PTR(SPP)) Message descriptor pointer

16 10 BINARY(4) Length of the message descriptor

20 14 CHAR(8) Message descriptor format name

28 1C BINARY(4) Reserved (must be set to zero)

Number of message descriptor attributes

OUTPUT; BINARY(4)

Tells the snap-in program how many message descriptor entries are in the array being passed.

Format name

INPUT; CHAR(8)

The variable containing the format name of the parameter list in which information is being passed.
This field must be set to VDFF0100.

Return code

OUTPUT; BINARY(4)

0 Data was valid.

1 Data was not valid.

2 Severe error encountered

Message Descriptors

A message descriptor consists of:

A Validate Data Field Exit common header section●

A list data section that contains the data to be validated. The following table shows valid format names
for message descriptors that are passed to the validate data field exit program.

Format Name Description

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

RPYL0100 Reply-to address entry

ROAL0100 Report-on address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

●

Validate Data Field Exit Common Header

The following table shows the common header section that is always included at the beginning of a message
descriptor. It can be used with all of the formats that can be passed using this exit. There may be one or more
entries after the common header section.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this message descriptor

4 4 BINARY(4) Reserved (must be set to zero)

8 8 CHAR(8) Message descriptor format name

16 10 BINARY(4) Offset of the first entry in the message descriptor

20 14 BINARY(4) Number of entries in this message descriptor

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Message descriptor data

Message Descriptor Formats for Validate Data Field Exit

One of the following message descriptor formats is used to describe the data that follows the common header.

ORCL0100 Format (Original Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the original recipient address
from the beginning of this ORCL0100 entry

8 8 BINARY(4) Length of the original recipient address

12 C CHAR(4) Address type

16 10 BINARY(4) Original recipient address coded character set
identifier(CCSID)

20 14 BINARY(4) Distribution type

24 18 BINARY(4) Reply requested flag

28 1C BINARY(4) Unique identifier

32 20 BINARY(4) Unique identifier of referenced ORCL0100 entry

36 24 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Original recipient address

ORGL0100 Format (Originator Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the origin address from the
beginning of this ORGL0100 entry

8 8 BINARY(4) Length of origin address

12 C CHAR(4) Address type

16 10 BINARY(4) Origin address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced ORGL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Origin address

ENVL0100 Format (Envelope Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of envelope from the beginning of
this ENVL0100 entry

8 8 BINARY(4) Length of envelope

12 C CHAR(4) Envelope type

16 10 BINARY(4) Unique identifier

20 14 BINARY(4) Unique identifier of referenced ENVL0100 entry

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Envelope

RCPL0100 Format (Recipient Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this RCPL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the recipient address from the
beginning of this RCPL0100 entry

16 10 BINARY(4) Length of recipient address

20 14 CHAR(4) Address type

24 18 BINARY(4) Recipient address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 CHAR(4) Message type

40 28 BINARY(4) Status

44 2C BINARY(4) Reserved

48 30 BINARY(4) Unique identifier

52 34 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Recipient address

* * CHAR(*) Snap-in provided information (SPIN)

ROAL0100 Format (Report-on Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the snap-in provided information
(SPIN) from the beginning of this ROAL0100
entry

8 8 BINARY(4) Length of snap-in provided information (SPIN)

12 C BINARY(4) Displacement of the report-on address from the
beginning of this ROAL0100 entry

16 10 BINARY(4) Length of address

20 14 CHAR(4) Address type

24 18 BINARY(4) Report-on address coded character set identifier
(CCSID)

28 1C BINARY(4) Reason code

32 20 BINARY(4) Diagnostic code

36 24 BINARY(4) Unique identifier

40 28 BINARY(4) Unique identifier of referenced ROAL0100 entry

44 2C BINARY(4) Reserved

* * CHAR(*) Report-on address

* * CHAR(*) Snap-in provided information (SPIN)

RPYL0100 Format (Reply-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this entry

4 4 BINARY(4) Displacement of the reply-to address from the
beginning of this RPYL0100 entry

8 8 BINARY(4) Length of reply-to address

12 C CHAR(4) Address type

16 10 BINARY(4) Reply-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced RPYL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Reply-to address

RTAL0100 Format (Report-to Address Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this list entry

4 4 BINARY(4) Displacement of the report-to address from the
beginning of this RTAL0100 entry

8 8 BINARY(4) Length of address

12 C CHAR(4) Address type

16 10 BINARY(4) Report-to address coded character set identifier
(CCSID)

20 14 BINARY(4) Unique identifier

24 18 BINARY(4) Unique identifier of referenced RTAL0100 entry

28 1C BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Report-to address

ATTL0100 Format (Attachment Reference Entry)

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of this list entry

4 4 BINARY(4) Displacement of the attachment reference from the
beginning of this ATTL0100 entry

8 8 BINARY(4) Length of attachment reference

12 C CHAR(4) Attachment reference type

16 10 BINARY(4) Unique identifier

20 14 BINARY(4) Unique identifier of referenced ATTL0100 entry

24 18 BINARY(4) Reserved (must be set to zero)

* * CHAR(*) Attachment reference

Field Descriptions

Address type. The type of address that is contained in the entry.

Attachment reference. A reference to an attachment that is associated with the message.

Attachment reference type. The type of attachment that is contained in the entry.

Diagnostic code. A code that indicates the cause of a problem which caused the delivery of a message to this
address to fail. The diagnostic code is assumed to contain the X.400 nondelivery diagnostic code.

Note: The reason code and diagnostic code fields are assumed to contain values that are documented in CCITT
Data Communication Networks Message Handling Systems 1988 Recommendation for X.400-X.420 for fields
Non-delivery-reason-code and Non-delivery-diagnostic-code.

Displacement of the attachment reference from the beginning of this ATTL0100 entry. The displacement
from the beginning of this entry to the attachment reference in this entry.

Displacement of the envelope from the beginning of this ENVL0100 entry. The displacement from the
beginning of this entry to the envelope in this entry.

Displacement of the origin address from the beginning of this ORGL0100 entry. The displacement from the
beginning of this entry to the origin address in this entry.

Displacement of the original recipient address from the beginning of this ORCL0100 entry. The
displacement from the beginning of this entry to the original recipient entry in this entry.

Displacement of the recipient address from the beginning of this RCPL0100 entry. The displacement from
the beginning of this entry to the recipient address in this entry.

Displacement of the reply-to address from the beginning of this RPYL0100 entry. The displacement from
the beginning of this entry to the reply-to address in this entry.

Displacement of the report-to address from the beginning of this RTAL0100 entry. The displacement from
the beginning of this entry to the report-to address in this entry.

Displacement of the report-on address from the beginning of this ROAL0100 entry. The displacement from
the beginning of this entry to the report-on address in this entry.

Distribution type. The type of distribution associated with each recipient entry. The possible values are:

0 Normal message recipient

1 CC (carbon copy) recipient

2 BCC (blind carbon copy) recipient

Envelope. A string of data representing information about the message, aside from the attachments and its
recipients.

Envelope type. The type of envelope that is contained in the entry.

Exit program number. A number assigned to the exit program when it is registered using the registration
facility. This is the number in effect at the time the exit program was called.

Format name. The content and format of the information provided for each message parameter. The possible
values are:

ORCL0100 Original recipient entry

ORGL0100 Originator entry

ENVL0100 Envelope entry

RCPL0100 Recipient entry

ROAL0100 Report-on address entry

RPYL0100 Reply-to address entry

RTAL0100 Report-to address entry

ATTL0100 Attachment reference entry

Length of address. The length of address that is contained in the entry. The maximum length of an address is
1024 bytes.

Length of attachment reference. The length in bytes of the attachment reference that is contained in the entry.

Length of envelope. The length of envelope that is contained in the entry.

Length of origin address. The length of the origin address for this entry. The maximum length of an origin
address is 1024 bytes.

Length of original recipient address. The length of the original recipient address for this entry. The maximum
length of an original recipient address is 1024 bytes.

Length of receiver message descriptor. The length in bytes of the message descriptor that is being pointed to
by the pointer to the message descriptor. The maximum length of a message descriptor is 16 million bytes.

Length of recipient address. The length in bytes of the recipient address. The maximum length of a recipient
address is 1024 bytes.

Length of reply-to address. The length in bytes of the reply-to address. The maximum length of a reply-to
address is 1024 bytes.

Length of snap-in provided information (SPIN). The length in bytes of the snap-in provided information
(SPIN). The maximum length of the SPIN is 256 bytes.

Length of this entry. The length in bytes of this entry. This is used to get to the next entry.

Length of this message descriptor. The length in bytes of this message descriptor. The maximum length of a
message descriptor is 16 million bytes.

Message descriptor data. One or more parameter list formats that follow the common header. Message
descriptors are made up of a common header and a list of entries. The format of each entry in the list is defined
by the format name associated with the message descriptor, which is located in the common header. The number

of entries in the list is also defined in the common header.

Message type. The type of message that is associated with the entry.

Number of bytes available for this message descriptor. The number of bytes available in the space where the
mail server framework puts the information being retrieved.

Number of entries available for this message descriptor. The total number of entries available for this
message descriptor indicates the number of entries that would be returned if the length of the message descriptor
is greater than or equal to the number of bytes available for this message descriptor.

Offset of the first entry in the message descriptor. The offset from the beginning of this message descriptor to
the first entry in the list of entries.

Origin address. A string that represents the address associated with the originator of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the origin address defines the contents of the origin address field.

Origin address coded character set identifier (CCSID). The CCSID provided for the origin address. Valid
values for the CCSID are 1 through 65533 and 65535.

Original recipient address. A string that represents the address associated with the original recipient of the
message. The contents and format of the string are not defined by the mail server framework. It is assumed that
the address type associated with the original recipient address defines the contents of the original recipient
address field.

Original recipient address coded character set identifier (CCSID). The CCSID provided for the original
recipient address. Valid values for the CCSID are 1 through 65533 and 65535.

Reason code. A code that identifies reasons associated with the message delivery to this address. In the case of
a nondelivery entry, this field would contain the reason the delivery of this message to this recipient failed. The
reason code is assumed to contain the X.400 nondelivery reason code.

Note: The reason code and diagnostic code fields are assumed to contain values that are documented in CCITT
Data Communication Networks Message Handling Systems 1988 Recommendation for X.400-X.420 for fields
Non-delivery-reason-code and Non-delivery-diagnostic-code.

Recipient address. A string that represents the address associated with a recipient of the message. The contents
and format of the string are not defined by the mail server framework. It is assumed that the address type
associated with the recipient address defines the contents of the recipient address field.

Recipient address coded character set identifier (CCSID). The CCSID provided for the recipient address.
Valid values for the CCSID are 1 through 65533 and 65535.

Recipient status flag. A flag which when set to 1 indicates that this entry has been replaced by either one or
multiple entries. Entries with this flag set to 1 are referred to as parents. Entries with this flag set zero are
referred to as children.

Reply requested flag. Whether this original recipient should reply to the message. The possible values are:

0 A reply is not requested from this original recipient

1 A reply is requested from this original recipient

Reply-to address. A string that represents the address to be replied to. The contents and format of the string are
not defined by the mail server framework. It is assumed that the address type associated with the reply-to
address defines the contents of the reply-to address field.

Reply-to address coded character set identifier (CCSID). The CCSID provided for the reply-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Report-on address. A string which represents the address to be reported on. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-on address defines the contents of the report-on address field.

Report-on address coded character set identifier (CCSID). The CCSID provided for the report-on address.
Valid values for the CCSID are 1 through 65533 and 65535.

Report-to address. A string which represents the address to be reported to. The contents and format of the
string are not defined by the mail server framework. It is assumed that the address type associated with the
report-to address defines the contents of the report-to address field.

Report-to address coded character set identifier (CCSID). The CCSID provided for the report-to address.
Valid values for the CCSID are 1 through 65533 and 65535.

Reserved. All reserved fields must be set to zero.

Return code from the exit program. The return code returned by the user exit program.

Snap-in provided information (SPIN). An area where snap-ins can store information that other snap-ins may
use. SPIN provides a place where information relating to a specific recipient can be stored and used by snap-ins
in the same or different exit points. This is completely user-defined and user-interpreted data.

Status. The status associated with each recipient entry. The possible values are:

1 Forwarded (remote)

2 Ignore

3 Local

4 Nondeliverable

5 Security violation

Unique identifier. A unique identifier that differentiates each item within a particular list. Identifiers are
generated for each list item when the Create Mail Message (QzmfCrtMailMsg) API has successfully completed.
These unique identifiers are temporary and may change as the mail service processes a message. List entries are
placed in message descriptors such that unique identifiers are in ascending order.

Unique identifier of referenced entry. The unique identifier of another ORCL0100, ORGL0100, ENVL0100,
RTAL0100, ROAL0100, RPYL0100, or ATTL0100 entry that this entry refers to. This field can be used to
create entry cross-references as new entries are added.

Exit Program Introduced: V3R1

Top | Office APIs | APIs by category

SNADS File Server Object APIs
The SNADS file server object APIs would be used if you were dealing with AnyMail/400 mail server
framework (MSF) messages that contained SNADS attachments. You would use the file server object read API
if the MSF message was originated by OfficeVision(R) or object distribution. You would use the create and
write APIs if the MSF message was destined for an OfficeVision or an object distribution user, or if you want to
temporarily store attachments.

With the SNADS file server interface, you can create and manipulate either SNADS general file server objects
or Document Interchange Architecture (DIA) file server objects. A file server object (FSO) in this context is
used by SNADS and by applications like object distribution and OfficeVision to store data associated with a
message (for example, an OfficeVision note).

Although SNADS general file server objects and DIA file server objects are manipulated using the same
interface, they differ in content.

For additional information, see File Server Objects.

The SNADS file server object APIs are:

Assign SNADS File Server Object Access ID (QZDASNID) assigns an access ID to a specific file
server object (FSO).

●

Create SNADS File Server Object (QZDCRFSO) allows a user to create an FSO on the server.●

List SNADS File Server Object Access IDs (QZDLSTID) lists the current accesses owned by the
specified product.

●

Read SNADS File Server Object (QZDRDFSO) provides functions for reading a file server object on
the server.

●

Retrieve SNADS File Server Object Access ID (QZDRTVID) allows the caller to retrieve information
about one access ID.

●

Revoke SNADS File Server Object Access ID (QZDRVKID) revokes an access ID to a specific file
server object that was previously assigned.

●

Write to SNADS File Server Object (QZDWTFSO) provides functions for writing to a file server object
on the system.

●

Top | Office APIs | APIs by category

File Server Objects
There are OS/400 system considerations, actions, or functions that might be performed that could affect file
server objects.

Following are some system considerations related to how the internal file server objects are used by the file
server object APIs.

All file server objects created using the FSO APIs are stored in the QUSRSYS library. If that library is
ever cleared, all file server objects are deleted.

●

All file server objects are permanent system objects. They are not deleted due to a system IPL (normal
or abnormal) or due to a normal installation of OS/400.

●

All file server objects are owned by the QSNADS user profile. To determine the amount of space used
by the system for file server objects, you can display the amount of storage owned by the QSNADS user
profile.

●

To manage the existence of a file server object, you would use the assign and revoke access ID APIs.
However, if these APIs are not used, there is no protection on the file server object (see Assign and
Revoke APIs Example). If someone issues the Reclaim Storage (RCLSTG) command and there is no
protection on a file server object, that file server object will be deleted.

●

File server objects cannot be saved. When you perform a save of the system, file server objects
currently existing on that system are not saved. File server objects that were created on one system
cannot be restored on another system.

●

File Servers Supported by FSO APIs

The following sections talk about the two file servers that are supported by the FSO APIs. These file servers are
programs that are called by the APIs to perform specific operations. Both file servers have the same interface.
To indicate which file server program should be used by the API, you pass in the name of the file server on the
API call.

Note: Only one file server can be used for any one file server object. For example, to manipulate file server
object A, you cannot use the DIA file server to create the object and then the SNADS general file server to write
data to the object. Only one of the file servers may be used to do both operations. Likewise, if file server object
A was created using the DIA file server, the DIA file server must be used to read the object later.

SNADS General File Server

The SNADS general file server is used to create objects (called SNADS general file server objects (FSOs))
which are simply a stream of bytes. When this type of FSO is created, no data conversions take place and the
only information in the FSO is the data itself. For example, the SNADS general file server is used by object
distribution to store data for files or spooled files.

DIA File Server

The DIA file server is used to create DIA FSOs. These objects are used by OfficeVision and can consist of more
information than just the data. Examples include the subject, origination date, expiration date, and priority. This
additional information is stored in the IDP (interchange document profile) in the document that comes right
before the actual document data.

The data in a DIA document are the actual contents of an OfficeVision note, message or document. The data in
a DIA FSO can take on several different formats that include final format text (FFT), revised format text (RFT),
or PC file format. See the Document Interchange Architecture: Technical Reference, C23-0781-01, for more
details on DIA.

Assign and Revoke APIs Example

Within SNADS there are several jobs that work with an MSF message. When an MSF message has a file server
object attached to it, each job must secure its usage of the FSO by assigning an access ID to that FSO.

When the first job has assigned an access ID and completed its work on the MSF message, it passes the
message to the next job.

1.

The next job assigns an access ID for itself, but also revokes the access ID of the previous job.2.

The last job to work with the MSF message never actually assigns an access ID to the FSO, but it does
revoke the access ID of the previous job.

3.

When all access IDs to an FSO have been revoked, the file server object is deleted.

How Usage Counts Are Used

The SNADS general file server uses a usage count to keep track of the use of a file server object. The usage
count indicates how many MSF messages are referencing the object. For example, as an MSF message (that
refers to an attachment) flows through SNADS, the MSF message is processed by several different jobs. These
jobs may each make copies of the MSF message to change some of the distribution data. The attachment, or file
server object, could then be referred to by more than one MSF message at a time. For each reference, the Assign
SNADS File Server Object Access ID (QZDASNID) API should be called to increment the usage count by one.
As each job finishes its processing of the distribution, it calls the Revoke SNADS File Server Object Access ID
(QZDRVKID) API. This decrements the usage count by one. When the usage count becomes zero, the file
server object is destroyed.

The assigning and revoking operations for DIA documents follows the same methodology as the SNADS
general file server. The usage count for DIA documents is stored in the distribution tracking object (DTO) for
the document. After the usage count has been decremented by calling the QZDRVKID API, the document and
DTO are deleted if they are eligible for deletion.

Top | Office APIs | APIs by category

Assign SNADS File Server Object Access ID
(QZDASNID) API

 Required Parameter Group:

1 File server object handle Input Char(32)
2 Correlation Input Char(3000)
3 Correlation bytes provided Input Binary(4)
4 Product ID Input Char(7)
5 Access ID Output Char(8)
6 Error code I/O Char(*)

 Threadsafe: No

The Assign SNADS File Server Access ID (QZDASNID) API assigns an access ID to a specific file server
object (FSO). An access ID lets the system know that a product is currently working with the file server object
and that the file server object should not be deleted. An access ID is returned to the caller so that the access can
be revoked at a later time. This API also increments the usage count of the FSO by one. Access IDs can be
assigned to a particular file server object, and multiple accesses can be assigned at the same time. You can
assign an access ID to an FSO 1 through 2 147 483 647 times, which equates to the usage count.

Authorities and Locks

API Public Authority

*EXCLUDE

Required Parameter Group

File server object handle

INPUT; CHAR(32)

The necessary linkage to the file server object. The value of this parameter should be taken from the
FSO handle that was returned on the call to the Create SNADS File Server Object (QZDCRFSO) API.

Correlation

INPUT; CHAR(3000)

Information defined by the caller that identifies the file server object or the file server object access ID.
For example, the correlation could contain the message identifier of the message attached to the file
server object. If the correlation bytes provided field is zero, this indicates that no correlation is to be
stored with the FSO.

Correlation bytes provided

INPUT; BINARY(4)

This field specifies the length of the correlation data.

Product ID

INPUT; CHAR(7)

The identifier of the product that is using the QZDASNID API. The product ID is used together with the
access ID to identify the file server object access.

Valid values for this parameter are as follows:

Product ID The product ID of a product that is installed on the iSeries server.

QMSFPRD The MSF product identifier. This value can be used for all file server objects that are
referred to by the MSF messages.

Access ID

OUTPUT; CHAR(8)

The identifier used together with the product ID to identify the file server object access.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3A0D E Temporary server error.

CPF3A09 E System error.

CPF3A12 E Interface error.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R6

Top | Office APIs | APIs by category

Create SNADS File Server Object (QZDCRFSO)
API

 Required Parameter Group:

1 File server object handle Output Char(32)
2 File server object data length Input Binary(4)
3 File server name structure Input Char(68)
4 Error code I/O Char(*)

 Threadsafe: No

The Create SNADS File Server Object (QZDCRFSO) API allows a user to create a file server object (FSO). A
file server object also may be referred to as an attachment (MSF messages, for example, can have attachments).
The types of file server objects that the QZDCRFSO API builds are SNADS general file-server objects and
Document Interchange Architecture (DIA) file-server objects. The interface is the same to these two types of
objects.

Authorities and Locks

API Public Authority

*EXCLUDE

Required Parameter Group

File server object handle

OUTPUT; CHAR(32)

The necessary linkage to the file server object. This parameter is set as output on the create operation
and is used as input on all other file server functions.

File server object data length

INPUT; BINARY(4)

The calculated length of the data to be written. The API creates an FSO space (up to 16MB) that is big
enough to hold the length of data specified. If you specify too small a size, there is no problem. SNADS
creates an FSO of the size you specify, but if the actual size is larger, SNADS extends the FSO. For
better performance, you should specify the actual size of the FSO. Valid values for this parameter are:

1 byte through 16 megabytes

File server name structure

INPUT; CHAR(68)

The file server name (either DIA or SNADS) and the server name length.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of file server name

4 4 CHAR(64) File server name

The length of the file server name is the number of bytes in the file server name defined by the SNADS
architecture. Valid values for length of the file server name are as follows:

4 SNADS general file-server name

4 DIA file-server name

The file server name is the name value defined by the SNADS architecture for the file server that is to
be used. The only file servers available with this API are the SNADS general file server and the DIA
file server. Valid values for file server name:

'21F0F0F6'X SNADS general file-server name

'20F0F0F1'X DIA file-server name

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3A0D E Temporary server error.

CPF3A09 E System error.

CPF3A1D E Limit of number of open file server objects exceeded.

CPF3A17 E Permanent server error.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R6

Top | Office APIs | APIs by category

List SNADS File Server Object Access IDs
(QZDLSTID) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Product ID Input Char(7)
4 Continuation access ID Input Char(8)
5 Error code I/O Char(*)

 Threadsafe: No

The List SNADS File Server Object Access IDs (QZDLSTID) API can be used to list the current accesses
owned by the specified product. Each access ID represents an access done on a file server object (FSO) that was
obtained by using the Assign SNADS File Server Object Access ID (QZDASNID) API. The list of access IDs is
returned in a user space.

This API provides a way for an application to do cleanup. For example, if the assigned access IDs that are
stored are lost, you can use this API to find out what access IDs need to be revoked. An application should use
this list interface at some periodic interval to check if it has any assigned access IDs that were not revoked.

If you use the MSF product ID (QMSFPRD) on the QZDASNID API, you do not have to use this API for
cleanup purposes. Cleanup routines currently exist in the system to revoke access IDs assigned to the MSF
product. These cleanup routines revoke access IDs only when the IDs are no longer associated with any file
server object.

The continuation access ID parameter should be either set to nulls (X'00') to have this API start the search at the
beginning of all access IDs, or set to a specific access ID. For the latter, the QZDLSTID API starts searching
with the next greater access ID. (No error is returned if the starting access ID does not exist.) If more access IDs
exist for a product than were returned on the call to the QZDLSTID API, this API sets the information status
variable in the generic user space header to indicate partially complete information. To retrieve more access
IDs, the caller should use the continuation access ID as input for the next call to the QZDLSTID API.

Authorities and Locks

API Public Authority

*EXCLUDE

Required Parameter Group

User space name

INPUT; CHAR(20)

The user space that stores all the access IDs found. This structure contains the user space name and the
library name where the user space is defined. The first 10 characters contain the user space name, and
the second 10 characters contain the library name.

Format name

INPUT; CHAR(8)

The name of the format that returns access ID information. You can specify this format:

ACID0100 Each entry contains an access ID.

Product ID

INPUT; CHAR(7)

The identifier of the product that is using the QZDLSTID API. This parameter is necessary to group
access IDs by product and to facilitate better cleanup of file server objects. For example, an installed
product that was creating FSOs is removed from the system, but FSOs still exist that are referred to by
that product. The SNADS cleanup routines check to ensure that the product is installed, and if the
product was removed, the SNADS cleanup routines delete the remaining FSOs referred to by that
product.

Valid values for this parameter are as follows:

Product ID The product ID of a product that is installed on the iSeries server.

QMSFPRD The MSF product identifier. This value can be used for all file server objects that are
referred to by the MSF messages.

Continuation access ID

INPUT; CHAR(8)

The identifier that is used together with the product ID to identify the first file server object access to
find. You can determine if a previous call resulted in partially complete information by checking the
information status variable in the generic user-space header following the API call.

If the API is not attempting to continue from a previous call, this parameter must be set to hexadecimal
zeros. Otherwise, a valid continuation value must be supplied. The value may be obtained from the list
header section of the user space used in the previous call. When continuing, the first entry in the
returned list is the entry that immediately follows the last entry returned in the previous call.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the User Space Variables

The following tables describe the order and format of the data returned in the user space.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name

28 1C CHAR(7) Product ID

35 23 CHAR(8) Continuation access ID

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(8) Continuation access ID

ACID0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(8) Access ID

Field Descriptions

Access ID. Each entry in the returned list contains an access ID that is currently assigned to the product
specified on input.

Continuation access ID (header section). A continuation point for the API. This value is set based on the
contents of the information status variable in the generic header for the user space. The following situations can
occur for the following information statuses:

C The information returned in the user space is valid and complete. No continuation is necessary and the
continuation access ID is set to nulls (X'00').

P The information returned in the user space is valid but incomplete. The user may call the API again,
starting where the last call left off. The continuation access ID contains a value, which may be supplied as
an input parameter in later calls.

I The information returned in the user space is not valid and not complete. The content of the continuation
access ID is unpredictable.

Continuation access ID (input section). The identifier that is used to continue from a previous call to this API,
which resulted in partially complete information.

Format name. The name of the format used to return access ID information.

Product ID. The identifier of the product that is using the QZDLSTID API.

User space library name specified. The name of the library that contains the user space.

User space name specified. The name of the user space to which the list of access IDs is returned.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3A09 E System error.

CPF3A12 E Interface error.

CPF3A13 E Access ID not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R6

Top | Office APIs | APIs by category

Read SNADS File Server Object (QZDRDFSO) API

 Required Parameter Group:

1 File server object handle Input Char(32)
2 Operation requested Input Binary(4)
3 File server object data length Output Binary(4)
4 File server name structure Input Char(68)
5 Resume position Input Binary(4)
6 Buffer area Input Char(*)
7 Bytes provided in buffer area Input Binary(4)
8 Bytes available in buffer area Output Binary(4)
9 Error code I/O Char(*)

 Threadsafe: No

The Read SNADS File Server Object (QZDRDFSO) API has four operations that can be used to read an FSO.
The three required operations are initiate read, read, and terminate read. The initiate read operation opens up
an existing file server object that is based on the information given to it by the caller. Once this operation is
called, the read operation can be used to read the data contained in the file server object. The read operation can
be called multiple times to read all the data. After all read operations are completed, the terminate read
operation must be issued to close the file server object.

The optional operation provided on the QZDRDFSO API is initiate read location. This operation can be used
to start reading the file server object at a specific location.

The QZDRDFSO API operates on SNADS general file server objects and DIA file server objects. The interface
to both of these types of objects is essentially the same.

SNADS General File Server

The SNADS general file server provides a means for SNADS support to save the data object portion of a
distribution request. The general file server stores objects in a byte stream format. No transformations are done
to the data when it is written into or read out of a general file server object. The SNADS general file server
objects are owned by QSNADS and are stored in the QUSRSYS library.

The SNADS general file server can support objects up to 4 gigabytes. Each file server object space can be only
16MB large, but the SNADS general file server has the capability of chaining file server objects together. If the
amount of data is greater than 16MB, the SNADS general file server creates as many file server object spaces as
necessary and then chains them together. This function is transparent to the caller of the SNADS general file
server routines.

The SNADS general file server read operations are as follows:

Initiate Read

The initiate read operation does the setup necessary to read the general file server object. This includes finding
the object specified by the object handle in the input parameters. This operation must be the first called before

any of the other read operations can be used for the specific file server object. The initiate read operation only
needs to be called once in the sequence of read operations.

Read

The caller of the read operation must specify what object is to be read, where to put the data that is read, and
how much data is to be read. If the amount of actual data is less than the size of the caller's buffer space (that is,
where the data will be read in), the read operation reads as much data as it can and then returns. Because a space
can be a maximum of 16MB, the caller's buffer space should be no more than 16MB, and the caller should not
request more data than 16MB to be read. If the object being read is larger than 16MB, the caller must call the
read operation more than once to read all the data. If more than one read is done, the SNADS general file server
read operation keeps a marker in the data (offset inside the object) so that on subsequent read operations, the
read operation knows where to start reading.

Terminate Read

The terminate read operation does the cleanup processing after you have completed reading the data in the file
server object. After this operation is called, the file server object may still exist, but an initiate read operation
must be done to read the file server object again.

Initiate Read Location

The initiate read location operation is similar to the initiate read operation, but allows a caller to set up a general
file server object to begin reading at a specified location rather than at the beginning of the object. This
operation also needs to be called only once in the sequence of read operations. The caller of this operation must
pass in the resume position of where to continue reading the file server object. This number is based on how
many bytes were read when the terminate read operation was called.

DIA File Server

The DIA file server provides a means for SNADS support to save the data object portion of an OfficeVision
distribution request. The DIA file server objects are of the type *DTO (distribution tracking object), are owned
by the QDOC user profile, and are stored in the QUSRSYS library.

The DIA file server can support objects up to 2 gigabytes. Each file server object space can be only 16MB large,
but the DIA file server has the capability of chaining file server objects together. If the amount of data is greater
than 16MB, the DIA file server creates as many file server object spaces as necessary and then chains them
together. This function is transparent to the caller of the DIA file server routines.

The DIA file server read operations are as follows:

Initiate Read

The initiate read operation does the setup necessary to read the DIA distribution tracking object. This includes
finding the object specified by the object handle in the input parameters. This operation must be the first
operation called before any of the other read operations can be used for the specific file server object.

Read

The caller of the read operation must specify what document object is to be read, where to put the data that is
read, and how much data is to be read. If the amount of actual data is less than the size of the caller's buffer
space (that is, where the data will be read in), the read operation reads as much data as it can and then returns.

Because a space can be a maximum of 16MB, the caller's buffer space should be no more than 16MB, and the
caller should not request more data than 16MB to be read. If the document object being read is larger than

16MB, the caller must call the read operation more than once to read all the data. If more than one read
operation is done, the DIA file server read operation keeps a marker in the data (offset inside the object) so that
on subsequent read operations, the read operation knows where to start reading.

Terminate Read

The terminate read operation should be called when you have completed reading the document. This operation
closes the document object.

Authorities and Locks

API Public Authority

*EXCLUDE

Required Parameter Group

File server object handle

INPUT; CHAR(32)

The necessary linkage to the file server object is contained in this parameter. This parameter must be
specified on all file server read operations. The value of this parameter should be taken from the file
server object handle that was returned on the call to the Create SNADS File Server Object
(QZDCRFSO) API.

Operation requested

INPUT; BINARY(4)

The operation the caller is requesting. Valid values for this parameter are as follows:

Initiate read 1

Read 2

Terminate read 3

Initiate read location 9

File server object data length

OUTPUT; BINARY(4)

The total length of the file server object being read. This parameter is returned on the initiate read and
the initiate read location functions.

File server name structure

INPUT; CHAR(68)

The file server name (either DIA or SNADS) and the server name length.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of file server name

4 4 CHAR(64) File server name

The length of the file server name is the number of bytes in the file server name defined by the SNADS
architecture. Valid values for length of the file server name are as follows:

4 SNADS general file-server name

4 DIA file-server name

The file server name is the name value defined by the SNADS architecture for the file server that is to
be used. The only file servers available with this API are the SNADS general file server and the DIA
file server. Valid values for file server name:

'21F0F0F6'X SNADS general file-server name

'20F0F0F1'X DIA file-server name

Resume position

INPUT; BINARY(4)

The place where the initiate read location operation is to resume reading in the FSO. This parameter is
ignored on the initiate read, read, and terminate read operations. Valid values for this parameter follow:

1 through the current file server object data length

Buffer area

INPUT; CHAR(*)

A buffer area defined by the caller. It is used by the read operation to store the data that is being read.

Bytes provided in buffer area

INPUT; BINARY(4)

The number of bytes of data that can be read into the buffer area. Valid values for this parameter are as
follows:

1 byte through 16 megabytes

Bytes available in buffer area

OUTPUT; BINARY(4)

The number of actual bytes of data that was read into the buffer area.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3A09 E System error.

CPF3A1A E Location in file server object not valid.

CPF3A1B E File server object operation not valid.

CPF3A1C E File server object request not valid.

CPF3A1D E Limit of number of open file server objects exceeded.

CPF3A1E E End of data reached in file server object.

CPF3A15 E File server object not found.

CPF3A17 E Permanent server error.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R6

Top | Office APIs | APIs by category

Retrieve SNADS File Server Object Access ID
(QZDRTVID) API

 Required Parameter Group:

1 Product ID Input Char(7)
2 Access ID Input Char(8)
3 File server object handle Output Char(32)
4 Correlation Output Char(3000)
5 Correlation bytes available Output Binary(4)
6 Error code I/O Char(*)

 Threadsafe: No

The Retrieve SNADS File Server Object Access ID (QZDRTVID) API allows the caller to retrieve information
about one access ID. This information includes the file server object handle for the access ID and any
correlation information associated with the access ID.

Authorities and Locks

API Public Authority

*EXCLUDE

Required Parameter Group

Product ID

INPUT; CHAR(7)

The identifier of the product that is using the List SNADS File Server Object Access IDs (QZDLSTID)
API. This parameter is necessary to group access IDs by product and to facilitate better cleanup of file
server objects. For example, an installed product that was creating FSOs is removed from the system,
but FSOs still exist that are referred to by that product. The SNADS cleanup routines check to ensure
that the product is installed, and if the product was removed, the SNADS cleanup routines delete the
remaining FSOs referred to by that product.

Valid values for this parameter are as follows:

The product ID of a product that is installed on the iSeries server.

QMSFPRD MSF product identifier. This value can be used for all file server objects that are referred
to by the MSF messages.

Access ID

INPUT; CHAR(8)

The identifier that is used together with the product ID to identify the file server object access to find.
Valid values for this parameter are as follows:

'0000000000000000'X through 'FFFFFFFFFFFFFFFF'X

File server object handle

OUTPUT; CHAR(32)

The necessary linkage to the file server object that was found by this API is contained in this parameter.

Correlation

OUTPUT; CHAR(3000)

The correlation is further identification of a file server object access that was found by this API. The
correlation information is defined by the caller.

Correlation bytes available

OUTPUT; BINARY(4)

The number of bytes of correlation data returned. Valid values for this parameter are:

0 through 3000

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3A09 E System error.

CPF3A12 E Interface error.

CPF3A13 E Access ID not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R6

Top | Office APIs | APIs by category

Revoke SNADS File Server Object Access ID
(QZDRVKID) API

 Required Parameter Group:

1 Product ID Input Char(7)
2 Access ID Input Char(8)
3 Error code I/O Char(*)

 Threadsafe: No

The Revoke SNADS File Server Object Access ID (QZDRVKID) API revokes an access ID to a specific file
server object (FSO) that was previously assigned. Revoking an access lets the system know that the current
process has finished working with the file server object. The access ID that was originally assigned to the file
server object must be passed as input. This API also decrements the usage count of the file server object by one.

Authorities and Locks

API Public Authority

*EXCLUDE

Required Parameter Group

Product ID

INPUT; CHAR(7)

The identifier of the product that is using the QZDLSTID API. This parameter is necessary to group
access IDs by product and to facilitate better cleanup of file server objects. For example, an installed
product that was creating FSOs is removed from the system, but FSOs still exist that are referred to by
that product. The SNADS cleanup routines check to ensure that the product is installed, and if the
product was removed, the SNADS cleanup routines delete the remaining FSOs referred to by that
product.

Valid values for this parameter are as follows:

Product ID The product ID of a product that is installed on the iSeries server.

QMSFPRD The MSF product identifier. This value can be used for all file server objects that are
referred to by the MSF messages.

Access ID

INPUT; CHAR(8)

The identifier that is used along with the product ID to identify the file server object access. The value

of this parameter should be taken from the access ID that was returned on the call to the Assign SNADS
File Server Object Access ID (QZDASNID) API.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3A09 E System error.

CPF3A12 E Interface error.

CPF3A13 E Access ID not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R6

Top | Office APIs | APIs by category

Write to SNADS File Server Object (QZDWTFSO)
API

 Required Parameter Group:

1 File server object handle Input Char(32)
2 Operation requested Input Binary(4)
3 File server object data length Output Binary(4)
4 File server name structure Input Char(68)
5 Resume position Input Binary(4)
6 Buffer area Input Char(*)
7 Bytes provided in buffer area Input Binary(4)
8 Error code I/O Char(*)

 Threadsafe: No

The Write to SNADS File Server Object (QZDWTFSO) API has four operations that can be used to write to an
FSO. The first two operations, write and terminate write, are required to completely write to an FSO. The
write operation copies the data from the caller's buffer into the file server object. This operation may be called
multiple times to write all the data. The terminate write operation must be done after all the writes are
completed. This operation closes the file server object and makes the FSO available to other processes to read it.

The two optional operations are suspend write and resume write, both of which are supported only by the
SNADS general file server. These operations can be used to suspend the writing of a SNADS general FSO and
then return to writing (resume) at a later time. These operations could be used in conjunction with the initiate
read location operation.

An example of the usage of these operations follows. When data is being sent from one system to another, the
sender on the source side is reading the file server object and the receiver is writing the data received into a new
FSO on the target side. If the communications connection goes down during the middle of this data
transmission, the receiver issues the suspend write operation. When the communications connection comes back
up, the sender starts reading again using the initiate read location operation (part of the Read SNADS File
Server Object (QZDRDFSO) API), and the receiver starts writing again using the resume write operation.

There are two types of file server objects that the QZDWTFSO API operates on: SNADS general file server
objects and DIA file server objects. The interface to both of these types of objects is essentially the same. There
are four SNADS general file server write operations and two DIA file server write operations provided by this
API.

SNADS General File Server

The SNADS general file server provides a means for SNADS support to save the data object portion of a
distribution request. The general file server stores objects in a byte stream format. No transformations are done
to the data when it is written into or read out of a general file server object. General file server objects are
owned by QSNADS and are stored in the QUSRSYS library.

The SNADS general file server can support objects up to 4 gigabytes. Each file server object space can only be

16MB large, but the SNADS general file server has the capability of chaining file server objects together. If the
amount of data is greater than 16MB, the SNADS general file server creates as many file server object spaces as
necessary and then chains them together. This function is transparent to the caller of the SNADS general file
server APIs. After a chain of FSOs is created, this chain is still referred to by one file server object handle.

The following paragraphs describe each of the SNADS general file server write operations.

Write

The write operation copies the contents of the caller's buffer to the file server object. If the data being written is
greater than 16MB, the write operation automatically creates new file server object spaces and chains them
together. The caller may call the write operation multiple times to write all the data.

Terminate Write

Once this operation is called, no other write operations can be done on the specific file server object. Also, the
file server object cannot be read or have an access ID assigned to it until the terminate write operation
completes.

Suspend Write

The suspend write operation allows the caller to temporarily suspend the writing of an object. This operation
does not assign an access ID to the file server object, nor does it increment the objects usage count.

Resume Write

The resume write operation does the setup needed to resume writing into a file server object. It is similar to the
create file server object API since it needs to be called only once before write operations can be done. The caller
of this operation must pass in the starting position of where to continue writing in the file server object. This
number is based on how many bytes were written when the suspend write operation was called.

Note: The resume write operation also checks the system storage threshold to make sure there is enough room
for the rest of the data to be written.

DIA File Server

The DIA file server provides a means for SNADS to save the data object portion of an OfficeVision distribution
request. The DIA file server objects are of type *DTO (distribution tracking object), are owned by the QDOC
user profile, and are stored in the QUSRSYS library.

The DIA file server can support objects up to 2 gigabytes. Each file server object space can only be 16MB large,
but the DIA file server has the capability of chaining file server objects together. If the amount of data is greater
than 16MB, the DIA file server creates as many file server object spaces as necessary and then chains them
together. This function is transparent to the caller of the DIA file server routines.

The following sections describe each of the DIA file server write operations.

Write

The write operation copies the contents of the caller's buffer to the DIA document object. If the data being
written is greater than 16MB, the write operation automatically creates new spaces and chains them together.
The caller may call the write operation multiple times to write all the data.

Terminate Write

When the caller completes writing the entire document, the terminate write operation must be called to save the
distribution tracking object. The DIA document will also be closed. The DTO and the document are not
available to other processes until this operation is called. Once this operation is called, no other write operations
can be done on the specific file server object. Also, the file server object cannot be read or have an access ID
assigned to it until the terminate write operation completes.

Authorities and Locks

API Public Authority

*EXCLUDE

Required Parameter Group

File server object handle

INPUT; CHAR(32)

The necessary linkage to the file server object. The value of this parameter should be taken from the
FSO handle that was returned on the call to the Create SNADS File Server Object (QZDCRFSO) API.

Operation requested

INPUT; BINARY(4)

The operation requested is used by the QZDWTFSO API to determine which operation, write, terminate
write, suspend write, or resume write, the caller is requesting. Valid values for this parameter are as
follows:

Write 5

Terminate write 6

Suspend write 7

Resume write 8

File server object data length

OUTPUT; BINARY(4)

The total length of the file server object that has been written. This parameter is returned on the
terminate write, suspend write, and resume write functions.

File server name structure

INPUT; CHAR(68)

The file server name (either DIA or SNADS) and the server name length.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of file server name

4 4 CHAR(64) File server name

The length of the file server name is the number of bytes in the file server name defined by the SNADS
architecture. Valid values for length of the file server name are as follows:

4 SNADS general file-server name

4 DIA file-server name

The file server name is the name value defined by the SNADS architecture for the file server that is to
be used. The only file servers available with this API are the SNADS general file server and the DIA
file server. Valid values for file server name:

'21F0F0F6'X SNADS general file-server name

'20F0F0F1'X DIA file-server name

Resume position

INPUT; BINARY(4)

The place where the resume write function is to resume writing in the FSO. This parameter is ignored
on the write, terminate write, and suspend write functions. Valid values for this parameter are as
follows:

1 through the current file server object data length

Buffer area

INPUT; CHAR(*)

The data that the caller wants to write into a file server object.

Bytes provided in buffer area

INPUT; BINARY(4)

The number of bytes of data in the buffer area that are to be written to the file server object. Valid
values for this parameter are as follows:

1 byte through 16 megabytes

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3A0D E Temporary server error.

CPF3A09 E System error.

CPF3A1A E Location in file server object not valid.

CPF3A1B E File server object operation not valid.

CPF3A1C E File server object request not valid.

CPF3A1D E Limit of number of open file server objects exceeded.

CPF3A15 E File server object not found.

CPF3A17 E Permanent server error.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V3R6

Top | Office APIs | APIs by category

Word Separator Tables
The single-byte character set (SBCS) EBCDIC code page is extracted from the CCSID of the current job. The
characters in the word list are mapped from the job's code page to the multinational code page 500 except for
Greek and Turkish. Greek is mapped to code page 875; Turkish is mapped to code page 1026.

Delimiter Categories

Each character in a code page is assigned to a delimiter category (always, sometimes, and never a delimiter) as
shown in the following tables.

Table 1. Always Delimiters

Category
Context-Dependent
Definition Description

Examples
(CP500)

A -- Basic delimiter1 Blank

D -- Other delimiters {) &
1This category can only contain 1 character.

Table 2. Never Delimiters

Category
Context-Dependent
Definition Description

Examples
(CP500)

L -- Lowercase alphabetic characters a b c

U -- Uppercase alphabetic characters A B C

N - Numeric characters, not
including superscripts or
subscripts

0 1 2

Table 3. Sometimes Delimiters

Category
Context-Dependent
Definition Description

Examples
(CP500)

E { e | a < e < a }1, 2 Set of punctuation characters not
treated as delimiters when
surrounded by alphabetic
characters

'

F { f | n < f < n }3 Set of punctuation characters not
treated as delimiters when
surrounded by numerics

. , : / -

G { g | p < g < n }4 Set of punctuation characters not
treated as delimiters preceded by
punctuation and followed by a
numeric

. , $

H { h | ((p < h) and (h
= p) }

Set of punctuation characters not
treated as delimiters when
immediately preceded by an
identical character

. , : / - * = # %

I { i | F and H } i is an element of F and H . , : / -

J { j | E and F and H j is an element of E and F and H None

K { k | F and G and H k is an element of F and G and H . ,

Note:

a = any character in L or U1.

< means precedes2.

h = any character in N3.

p = punctuation (nonalphabetic and nonnumeric)4.

Considerations for the Sometimes Delimiters Table

Categories E through K are usually called possible delimiters because they function as delimiters only in certain
contexts.

Characters . (period), ! (exclamation point), and ? (question mark) have a special status. When identical
characters from this category occur together in a sequence, the individual characters do not act as delimiters; the
entire sequence of characters forms a single token. However, the sequence of characters taken together does act
as a delimiter because the sequence forms a token separate from characters that precede and follow it. For
example, the text streams:

"abc...def" is broken into three tokens: "abc", "...", and "def".●

"Unbelievable!!!!" yields two tokens: "Unbelievable" and "!!!!".●

"Astonishing!!!???" yields three tokens: "Astonishing", "!!!", and "???".●

A simple token table is a 256-element array of unsigned characters. The simple token category value for the
character is found in the element indexed by the code point of each character. Each code point (character) must
be assigned exactly one category. If, according to the above definition of sets, a character is a member of more
than one category, it should be assigned to the highest level category (for example, the category with the letter
name latest in alphabetical order).

The categories assigned to each character in the three code pages are shown in the following tables. See the
appendix that shows the code pages in globalization to refer to the characters that match these tables.

Table 4 shows the simple token table for code page 500.●

Table 5 shows the simple token table for code page 875 (Greek).●

Table 6 shows the simple token table for code page 1026 (Turkish).●

Table 4. Simple Token Table for Code Page 500

Hex Digits
1st >
2nd V 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 A D I L U D D D D D D N

-1 D L I U L L D G U U D N

-2 L L U U L L L G U U U N

-3 L L U U L L L E U U U N

-4 L L U U L L L D U U U N

-5 L L U U L L L D U U U N

-6 L L U U L L L D U U U N

-7 L L U U L L L D U U U N

-8 L L U U L L L D U U U N

-9 L L U D L L L D U U U N

-A D D D I D D D D D D D D

-B K G K H D D D D L L U U

-C D H H D L L U D L L U U

-D D D D E L D U D L L U U

-E D D D H L U U E L L U U

-E H D H D D D D D L L U D

Table 5. Simple Token Table for Code Page 875 Greek Support

Hex Digits
1st >
2nd V 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 A D I D D D E G D D D N

-1 U U I U L L D L U U N

-2 U U U U L L L L U U U N

-3 U U U U L L L L U U U N

-4 U U U D L L L L U U U N

-5 U U U U L L L L U U U N

-6 U U U U L L L L U U U N

-7 U U U U L L L L U U U N

-8 U U U U L L L L U U U N

-9 U U U D L L L L U U U N

-A D D D I L L L L D D D D

-B K G K H L L L L L D D D

-C D D H D L L L L L

-D D D D E L L L L L E

-E D D D H L L L L D D D D

-F H D H D L L L L D D D D

Table 6. Simple Token Table for Code Page 1026 Turkish Support

Hex Digits
1st >
2nd V 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 A D I L U D L D L D L N

-1 D L I U L L L G U U D N

-2 L L U U L L L G U U U N

-3 L L U U L L L E U U U N

-4 L L U U L L L D U U U N

-5 L L U U L L L D U U U N

-6 L L U U L L L D U U U N

-7 L L U U L L L D U U U N

-8 D L D U L L L D U U U N

-9 L L U D L L L D U U U N

-A U U L I D D D D D D D D

-B K U K U D D D D L L U U

-C D H H U D L D D D D H D

-D D D D E G D G D L L U U

-E D D D H D U D E L L U U

-E H H H U D D D D L L U D

Notes:

(1)PCFILE is a file assigned the document type of PCFILE (Document Interchange Architecture type of 14) by
the Client Access program.

(2)PCFILE is a file assigned the document type of PCFILE (Document Interchange Architecture type of 14) by
the Client Access program.

Top | Office APIs | APIs by category

	Office APIs (V5R2)
	Table of Contents
	Office APIs
	Office-related APIs
	APIs
	Add Department (QOKADDDP) API
	Aid Spelling (QTWAIDSP) API
	Change Department (QOKCHGDP) API
	Change Office Program (QOGCHGOE) API
	Check Spelling (QTWCHKSP) API
	Control Office Services (QOCCTLOF) API
	Display Directory Panels (QOKDSPDP) API
	Display Directory X.400 Panels (QOKDSPX4) API
	Remove Department (QOKRMVDP) API
	Retrieve Office Programs (QOGRTVOE) API
	Search System Directory (QOKSCHD) API

	Exit Programs
	Directory Maintenance Exit Program
	Directory Search Exit Program
	Directory Supplier Exit Program
	Document Conversion Exit Program
	Document Handling Exit Program
	User Application Administration Exit Program

	AnyMail/400 Mail Server Framework APIs
	Using AnyMail/400 Mail Server Framework APIs
	APIs
	Add Mail Server Framework Configuration (QzmfAddMailCfg) API
	Change Mail Message (QzmfChgMailMsg) API
	Complete Creation Sequence (QzmfCrtCmpMailMsg) API
	Create Mail Message (QzmfCrtMailMsg) API
	List Mail Server Framework Configuration (QzmfLstMailCfg) API
	Query Mail Message Identifier (QzmfQryMailMsgId) API
	Remove Mail Server Framework Configuration (QzmfRmvMailCfg) API
	Remove Reserved Mail Message Identifier (QzmfRmvRsvMailMsgId) API
	Reserve Mail Message Identifier (QzmfRsvMailMsgId) API
	Retrieve Mail Message (QzmfRtvMailMsg) API

	Exit Programs
	Snap-In Call Exit Program
	Track Mail Message Changes Exit Program
	Validate Data Field Exit Program

	SNADS File Server Object APIs
	File Server Objects
	Assign SNADS File Server Object Access ID (QZDASNID) API
	Create SNADS File Server Object (QZDCRFSO) API
	List SNADS File Server Object Access IDs (QZDLSTID) API
	Read SNADS File Server Object (QZDRDFSO) API
	Retrieve SNADS File Server Object Access ID (QZDRTVID) API
	Revoke SNADS File Server Object Access ID (QZDRVKID) API
	Write to SNADS File Server Object (QZDWTFSO) API

	Word Separator Tables

