
High-level Language APIs (V5R2)

Table of Contents

High-level Language APIs

Application Development Manager/400 APIs

Using Application Development Manager/400 APIs■

Record Types■

Examples of Records Written■

APIs

Get Space Status (QLYGETS) obtains the status of the space.■

Read Build Information (QLYRDBI) reads one or more records from the
space.

■

Set Space Status (QLYSETS) sets the status of the space.■

Write Build Information (QLYWRTBI) writes one or more records to the
space.

■

■

❍

COBOL/400 APIs

APIs

Change COBOL Main Program (QLRCHGCM)■

Dump COBOL (QlnDumpCobol)■

Retrieve COBOL Error Handler (QlnRtvCobolErrorHandler)■

Retrieve COBOL Error Handler (QLRRTVCE)■

Set COBOL Error Handler (QlnSetCobolErrorHandler)■

Set COBOL Error Handler (QLRSETCE)■

■

Exit programs

ILE COBOL Error-Handling exit procedure■

OPM COBOL Error-Handling exit program■

■

❍

●

High-Level Language APIs

The high-level language APIs communicate with compilers, and the DB2 Universal Database(TM) for
iSeries SQL and COBOL/400(R) languages. The high-level language APIs include:

Application Development Manager/400 APIs●

COBOL/400 APIs●

APIs by category

Application Development Manager/400 APIs
The Application Development Manager/400 APIs allow a control language (CL) command such as the
Build Part command (BLDPART) to determine, for example, the includes and external references that were
used by certain processors when processing a source member. The term processor is used in these APIs to
mean compiler or preprocessor.

In Application Development Manager/400 terms, a part can be either a source member or an object, such as
a file. Refer to the appropriate Application Development Manager/400 publication, as listed in the
bibliography, for more information.

If you have an application that can use the information provided by the APIs, you can call these APIs from
any high-level programming language. The Application Development Manager/400 feature does not need
to be installed on your system for you to use these APIs.

The Get and Set Status APIs are used to query and initialize the build information space that is to contain
the Application Development Manager/400 information. The Write and Read Build Information APIs are
used to write or read records of build information to and from the space.

For additional information, see Using Application Development Manager/400 APIs.

For information on the different types of records that can be read or written using the Application
Development Manager/400 APIs, see:

Record Types●

Examples of Records Written●

The Application Development Manager/400 APIs are:

Get Space Status (QLYGETS) obtains the status of the space.●

Read Build Information (QLYRDBI) reads one or more records from the space.●

Set Space Status (QLYSETS) sets the status of the space.●

Write Build Information (QLYWRTBI) writes one or more records to the space.●

Top | High-level Language APIs | APIs by category

Using Application Development Manager/400
APIs
The following compilers and preprocessors use the the Application Development Manager/400 APIs.

Table 1. Compilers and preprocessors that can be used with the Application Development
Manager/400 feature

Compiler/
Preprocessor
Language

Compiler/Preprocessor OS/400 Command Supported if *PRV is
Specified for Target
Release

RPG/400 CRTRPGPGM Yes

ILE RPG/400 No

COBOL/400 CRTCBLPGM Yes

ILE COBOL/400 No

ILE CL No

ILE C Yes

CRTPF, CRTLF,
CRTDSPF, CRTPRTF,
CRTICFF

Not applicable

CL CRTCLPGM Yes

CLD CRTCLD Yes

CMD CRTCMD Not applicable

CRTSQLRPG,
CRTSQLCBL,
CRTSQLCI

Yes

CRTSQLRPGI,
CRTSQLCBLI

No

CRTSRVPGM CRTSRVPGM Yes

CRTPGM CRTPGM Yes

MENU CRTMNU TYPE(*UIM) Not applicable

PNLGRP CRTPNLGRP Not applicable

Notes:

Default command is used by the BLDPART command.1.

Appropriate default compiler command is used based on the part type and the language.2.

The following diagram shows the proper usage and order in which the APIs should be called.

Figure 1. Overall Application Development Manager/400 API Usage

QLYGETS should be called by the application or compiler before calling the other three APIs: QLYSETS,
QLYWRTBI, and QLYRDBI to verify that the space is available for use.

The following table describes the API space status values that can be received by calling the QLYGETS
API, and the action that should be taken by the application or compiler that is calling the API.

Table 2. API Space Status

Status Application Compiler

*COMPLETE The space is available for use. Call
QLYSETS to set to *READY.

Do not write API records.

*NONE The space does not exist. The application
calls QLYSETS to create and set the space to
*READY.

Do not write API records.

*READY The space is in use by a compiler. The other
APIs should not be called.

The space is available for writing.

Compilers use the APIs to write to the space. Applications use the APIs to read from the space.

Note: Unpredictable results can occur when the APIs are not properly used or are used in the incorrect
order.

Calling multiple API-supporting compilers simultaneously in a single interactive session (one possible way
of doing this is by pressing the Attention key and then command key F9 to get to the command line) may
cause unpredictable results. The compiler can fail, for example, or incorrect or incomplete information can
be put in the work space.

Top | High-level Language APIs | APIs by category

Record Types
This section describes the information contained in all the different record types. Typically a compiler writes records and an
application reads them.

Names, field types and other information passed through the different record types are not validated and no authority is checked
by QLYWRTBI. The QLYWRTBI API assumes that all that validation and checking has been done.

There are the following record types:

Processor member start record●

Processor object start record●

Normal processor end record●

Normal processor end call next record●

Normal multiple end record●

Abnormal processor end record●

Include record●

File reference record●

Module reference record●

Service program reference record●

Bind directory reference record●

Record format reference record●

Field reference record●

Message reference record●

External reference error record●

Object already exists error record●

Start of new program record●

The following table shows the records that can be written by each compiler.

All fields where information is not available to put in these records should be filled with blanks.

The following is true for the Library specified fields for all records and compilers:

When *CURLIB is specified for the Library specified fields, *CURLIB is passed.●

When *LIBL is specified for the Library specified fields, or implied by not being specified, *LIBL is passed.●

Notes and restrictions are explained in the footnotes following the tables.

Record Types and Processors (Part 1)

Record
Type

Record
ID

RPG/400:
CRTRPGPGM

COBOL/400:
CRTCBLPGM

CLD:
CRTCLD

DDS:
CRTPF
CRTLF
CRTDSPF
CRTICFF
CRTPRTF

CL:
CRTCLPGM

CMD:
CRTCMD

Processor
member
start

'01' X(1, 3) X X(1, 3) X X(1, 3, 5) X(1)

Processor
object start

'50'

Normal
processor
end

'20' X X X X X(5) X

Normal
processor
end call
next

'21'

Normal
multiple
end record

'65'

Abnormal
processor
end

'30' X X X X X(5) X

Include '02' X(11) X

File
reference

'03' X X X X(1, 5)

Module
reference

'55'

Service
program
reference

'60'

Bind
directory
reference

'75'

Record
format
reference

'04' X X X X(1, 5)

Field
reference

'05' X(2)

Message
reference

'06' X(2, 9) X(1, 2, 6, 9)

External
reference
error

'15' X(10) X X(10) X(1, 4, 5)

Object
already
exists error

'16' X

Start of
new
program

'40' X(20)

Record Types and Processors (Part 2)

Record
Type

Record
ID

DB2 UDB for
iSeries:
CRTSQLRPG
CRTSQLCBL

ILE RPG/400:
CRTRPGMOD
CRTBNDRPG

ILE
COBOL/400:
CRTCBLMOD
CRTBNDCBL

ILE C:
CRTCMOD
CRTBNDC

ILE CL:
CRTCLMOD
CRTBNDCL

ILE DB2 UDB
for iSeries:
CRTSQLRPGI
CRTSQLCBLI
CRTSQLCI

Processor
member
start

'01' X(1) X(1, 3) X X(3) X(1, 3) X(1)

Processor
object
start

'50'

Normal
processor
end

'20' X X X X X X

Normal
processor
end call
next

'21' X X(14) X(14) X(14) X(14) X

Normal
multiple
end
record

'65'

Abnormal
processor
end

'30' X X X X X X

Include '02' X(1, 7) X(11) X X(8, 12) X(1, 7)

File
reference

'03' X(1) X X X X(1) X(1)

Module
reference

'55'

Service
program
reference

'60'

Bind
directory
reference

'75' X

Record
format
reference

'04' X(1) X X X X(1) X(1)

Field
reference

'05'

Message
reference

'06'

External
reference
error

'15' X(1) X(10) X X(10, 13) X(1, 4) X(1)

Object
already
exists
error

'16'

Start of
new
program

'40' X(20) X(20)

Record Types and Processors (Part 3)

Record
Type

Record
ID

ILE SRVPGM:
CRTSRVPGM

ILE
CRTPGM

UIM:
CRTPNLGRP CRTMNU UDT:

SYSTYPE(*NONE)
UDT:
member

Processor
member
start

'01' X(18) X X(17) X

Processor
object start

'50' X(16) X(19)

Normal
processor
end

'20' X X X X X

Normal
processor
end call
next

'21' X

Normal
multiple
end record

'65' X(19)

Abnormal
processor
end

'30' X X X X X(19) X

Include '02' X X X

File
reference

'03' X

Module
reference

'55' X X

Service
program
reference

'60' X X

Bind
directory
reference

'75' X X

Record
format
reference

'04' X

Field
reference

'05' X

Message
reference

'06' X X X

External
reference
error

'15' X(15) X(15) X X X

Object
already
exists
error

'16' X

Start of
new
program

'40' X

Notes and Restrictions for the Above Tables:

If *CURLIB is specified for the Library specified fields (this includes the Source library specified field on the
Processor member start record), the resolved library name is passed instead of *CURLIB.

1.

If *LIBL is specified for the Library specified fields, or implied by not being specified, the resolved library name is
passed instead of *LIBL.

2.

If *CURLIB is specified for the Target library field, the resolved library name is passed instead of *CURLIB.3.

For most Used fields, when a file being referenced on the DCLF command cannot be found, CL puts blanks in this
field. There is no actual file or library name when the file is not found.

4.

For all fields marked Reserved, CL initializes them to hex zeros. However, fields that are not reserved are set to blanks
when they do not apply and are defined as characters. For example, Target member on the Processor member start
record does not have meaning for the CL compiler and is initialized to blanks.

5.

Message reference records are written only for messages specified on the PROMPT parameter of the PARM, ELEM, or
QUAL command definition statement.

6.

The SQL compilers do not write include records for the following statements:

EXEC SQL INCLUDE SQLCA

EXEC SQL INCLUDE SQLDA

These statements are not true includes in the sense that the SQL compiler does not read source from another member or
source file.

7.

The ILE C compiler does not write API Include records for system include files. File names enclosed in angle brackets,
(< ... >), designate system include files. File names enclosed in double quotation marks, (" ... "), designate user include
files.

8.

The Message file used and Library used fields are always blank.9.

If *LIBL is specified in the source, or implied by not being specified (Library specified is *LIBL), the Library used
field is set to *LIBL because no specific library can be determined if the file is not found in the library list.

10.

The RPG/400 compiler puts *LIBL in the Library specified field if it is not already specified, and QRPGSRC in the
File specified field if it is not already specified.

The ILE RPG/400 compiler puts *LIBL in the Library specified field if it is not already specified, and QRPGLESRC in
the File specified field if it is not already specified.

11.

The Library specified field is the resolved library name if the library name is not already specified. The Include file
specified field contains the resolved file name if the file name is not already specified.

12.

If *CURLIB is specified in the source (Library specified is *CURLIB), the Library used field is set to *CURLIB
because no specific library can be determined if the file is not found in the library list.

13.

This record is written only by the CRTBNDxxx commands.14.

This record is written only when a SRVPGM or MODULE does not exist, and this causes the compilation to fail.15.

The object fields in this record refer to the ENTMOD parameter for the CRTPGM command.16.

CRTMNU only writes records when TYPE(*UIM) is specified.17.

The source used fields contain the same information as the source specified fields.18.

User-defined types are part types that the user created and not the part types made available with the Application

Development Manager feature. See the ADTS/400: Application Development Manager Self-Study Guide book on
the V5R1 Supplemental Manuals Web site for more information on creating and using user-defined part types.

19.

Any COBOL/400 source may contain more than one program.20.

Processor member start record

This, or the Processor object start record, must be the first record that is passed by the compiler or preprocessor on its first call
to the QLYWRTBI API. Its purpose is to identify the source that is being compiled, and also to describe the expected output
object, if any.

Note: This record was previously called the processor start record, but the format remains the same.

The Processor member start record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Processor command

18 12 CHAR(10) Source object name specified

28 1C CHAR(10) Source library name specified

38 26 CHAR(7) Source object type

45 2D CHAR(10) Source member name specified

55 37 CHAR(10) Source object name used

65 41 CHAR(10) Source library name used

75 4B CHAR(10) Source member name used

85 55 CHAR(10) Target object name specified

95 5F CHAR(10) Target library name specified

105 69 CHAR(7) Target object type

112 70 CHAR(10) Target member name specified

122 7A CHAR(2) Reserved

Processors for which this record type applies

All compilers and preprocessors listed in Record Types and Processors (Part 1) except CRTPGM, and the processor processing
the user-defined types added with SYSTYPE(*NONE) on the ADDADMTYPE command.

Field Descriptions

Processor command. The compiler or preprocessor that wrote this record, for example, CRTRPGPGM.

Record length. The length of this record is 124.

Record type. The type of this record is '01'.

Reserved. An ignored field.

Source library name used. The actual name of the library that was used. The library name could be different from the
specified library name because *LIBL or *CURLIB was specified, or an override was used. This field contains the name the
library resolves to.

Source library name specified. The library name of the source file specified on the compiler or preprocessor command.

Source member name used. The actual name of the source member that was used. This field is required, even if the two
member names are the same.

Source member name specified. The source member name specified on the compiler or preprocessor command.

Source object name used. The actual name of the object that was used. The object name could be different from the specified
object name if an override was used.

Source object name specified. The object name specified on the compiler or preprocessor command.

Source object type. The OS/400 type of the source object (for example, *FILE).

Target library name specified. The library of the target object specified on the compiler or preprocessor command.

Target member name specified. The name of the member to be created, if applicable, specified on the compiler or
preprocessor command.

Target object name specified. The name of the object to be created, called the target object, specified on the compiler or
preprocessor command. The actual name of the object that was created is passed through the Normal processor end record. (See
Normal processor end record.)

Target object type. The OS/400 type of the object to be created (for example, *FILE).

Processor object start record

This, or the Processor member start record, must be the first record that is passed by the compiler or preprocessor on its first
call to the QLYWRTBI API. Its purpose is to identify the object that is being processed, and also to describe the expected
output object, or, for user-defined types, the expected location of the output members, if any.

User-defined types added with SYSTYPE(*NONE) on the ADDADMTYPE command must write this record before any other
record.

The Processor object start record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Processor command

18 12 CHAR(10) Object name specified

28 1C CHAR(10) Object library name specified

38 26 CHAR(7) Object type specified

45 2D CHAR(10) Object name used

55 37 CHAR(10) Object library name used

65 41 CHAR(7) Object type used

72 48 CHAR(10) Target object name specified

82 52 CHAR(10) Target object library name specified

92 5C CHAR(7) Target object type specified

99 63 CHAR(1) Reserved

Processors for which this record type applies

CRTPGM and the processor processing the user-defined types added with SYSTYPE(*NONE) on the ADDADMTYPE
command.

Field Descriptions

Object library name specified. The library name of the object specified on the compiler or preprocessor command. If the
object type specified is a user-defined type with SYSTYPE(*NONE), the library name specified should be the group library
name.

Object library name used. The actual name of the library that the object was found in. The library name could be different
from the specified library name because, for example, *LIBL or *CURLIB was specified. This field contains the name the
library resolves to.

Object name specified. The object name specified on the command. If the object type specified is a user-defined type with
SYSTYPE(*NONE), the object name specified should be the part name.

Object name used. The actual name of the object that was used. The object name could be different from the specified object
name if an override was used.

Object type specified. The object type specified on the command. For user-defined types this must be left blank. If the object
type specified is a user-defined type with SYSTYPE(*NONE), the object type specified should be the part type.

Object type used. The actual type of the object used. For example, *MODULE. For user-defined types this can be left blank.

Processor command. The compiler or preprocessor that wrote this record, for example, CRTPGM.

Record length. The length of this record is 100.

Record type. The type of this record is '50'.

Reserved. An ignored field.

Target object library name specified. The library of the target object specified on the command. For user-defined types, the
library where the output members are created, as specified on the command.

Target object name specified. The name of the object to be created, or modified as specified on the command. For
user-defined types this can be left blank.

Target object type specified. The type of the object to be created. For example, *PGM. The actual name of the object that was
created is passed through the Normal processor end record. (See Normal processor end record.) For user-defined types, the
names of the output members are passed through the Normal multiple end record. For user-defined types this value must be
*MBR.

Normal processor end record

This is the last record passed by the compiler or preprocessor to indicate that processing ended successfully.

The Normal processor end record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Object name created

18 12 CHAR(10) Library

28 1C CHAR(7) Object type

35 23 CHAR(10) Member

45 2D CHAR(7) Message identifier

Processors for which this record type applies

All compilers and preprocessors listed in Record Types and Processors (Part 1), except the processor processing the
user-defined types added with SYSTYPE(*NONE) on the ADDADMTYPE command.

Field Descriptions

Library name. The library where the object was created.

Member name. The name of the member created, if applicable.

Message identifier. The message identification of the completion message.

Object name created. The object created by the compiler or preprocessor. If an object is not created, this field stores the value
of '*NONE'.

Object type. The type of object created.

Record length. The length of this record is 52.

Record type. The type of this record is '20'.

Reserved. An ignored field.

Normal processor end call next record

When a preprocessor successfully creates an object or a member and needs to call another compiler or preprocessor, it should
pass this record instead of passing the Normal processor end record as the final record. For example, if the CRTSQLCI
command is entered with OPTION(*GEN), and the member is created successfully, the last record written by CRTSQLCI is
the Normal processor end call next record. The preprocessor then calls the CRTBNDC command that eventually writes the
Normal or Abnormal processor end record.

The Normal processor end call next record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Object name

18 12 CHAR(10) Library name

28 1C CHAR(7) Object type

35 23 CHAR(10) Member name

45 2D CHAR(7) Message identifier

Processors for which this record type applies

CRTSQLRPG CRTSQLCBL CRTSQLRPGI CRTSQLCBLI
CRTBNDRPG CRTBNDCBL CRTBNDC CRTBNDCL
CRTSQLCI when
OPTION(*GEN) is
specified

processor processing the user-defined types represented as
members

Field Descriptions

Library name. The library where the object was created.

Member name. The name of the member created, if applicable.

Message identifier. The message identification of the completion message.

Object name. The name of the object created.

Object type. The type of object created.

Record length. The length of this record is 52.

Record type. The type of this record is '21'.

Reserved. An ignored field.

Normal multiple end record

This is the last record passed by a user-defined type added with SYSTYPE(*NONE) on the ADDADMTYPE command. It
identifies Normal multiple end processing of all the output members. One Normal multiple end record is written per member
generated. The Normal processor end record should not be written.

Note: It is possible that the processor generated 10 members on the last build, and because of a change, now needs to
regenerate just 2 of those members. For the build process to preserve the relationships to the remaining 8 members, the
processor must write all members to the API, regardless of whether the member was actually regenerated. The build process
ignores those parts (members) that have either not changed (because the processor did not regenerate them), or do not exist
(because the processor did not generate them, and they may exist higher in the hierarchy).

The Normal multiple end record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Library

18 12 CHAR(10) File name created

28 1C CHAR(10) Member

38 26 CHAR(32) Part type

70 46 CHAR(32) Part language

102 66 CHAR(22) Reserved

Processors for which this record type applies

The processor processing the user-defined types added with SYSTYPE(*NONE) on the ADDADMTYPE command.

Field Descriptions

File name created. The file name that was created or used to hold the member.

Library. The library where the member was created.

Member. The name of the member created.

Part language. The language of the part to represent this member.

Part type. The type of the part to represent this member.

Record length. The length of this record is 124.

Record type. The type of this record is '65'.

Reserved. An ignored field.

Abnormal processor end record

This is the last record passed if the compiler or preprocessor fails because of an error. For example, an object or a member was
not created because of compile errors, or REPLACE(*NO) was specified on the command and the object existed.

If the command failed because an external reference to a file, message file, module, bind directory or service program could not
be found, the command passes the External reference error record before passing this one. See External reference error record
for more information on this record.

The Abnormal processor end record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(7) Message identifier

15 F CHAR(1) Reserved

Processors for which this record type applies

All compilers and preprocessors listed in Record Types and Processors (Part 1).

Field Descriptions

Message identifier. The message identification of the completion message.

Record length. The length of this record is 16.

Record type. The type of this record is '30'.

Reserved. An ignored field.

Include record

This record is passed when the compiler or preprocessor processes an include. An include statement is a statement that causes
the compiler to replace the include statement with the contents of the specified header or file. If the include is not found, the
compiler or preprocessor passes the Abnormal processor end record.

The Include record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 BINARY(4) Nesting level

12 C CHAR(10) Include file name specified

22 16 CHAR(10) Include file library name specified

32 20 CHAR(10) Include file member name specified

42 2A CHAR(7) Object type

49 31 CHAR(10) Include file name used

59 3B CHAR(10) Include file library name used

69 45 CHAR(10) Include file member name used

79 4F CHAR(1) Reserved

Processors for which this record type applies

CRTRPGPGM CRTCBLPGM CRTRPGMOD CRTBNDRPG
CRTCBLMOD CRTBNDCBL CRTCMOD CRTBNDC
CRTSQLRPGI CRTSQLCBLI CRTSQLCI CRTPNLGRP
CRTMNU processor processing the user-defined types represented as members

Field Descriptions

Include file used. The actual name of the include file that was used. For example, the default include file used by the compiler
and implied in the source, or the file different from the one specified in the source as a result of an override. This name must
always be filled in.

Include file specified. The name of the file that contains the include. This is the name specified in the source (if the include
was file qualified), otherwise it is blank.

Include file library used. The name of the actual library that contains the include file that was used (for example, a specific
library name instead of *CURLIB or *LIBL, as specified in the source, or a library different from the one specified in the
source, as a result of an override).

Include file library specified. The name of the library where the include file resides, as specified in the source (if the include

was library qualified), otherwise it is blank.

Include file member used. The actual name of the source member containing the include that was used. This name must
always be filled in.

Include file member specified. The name of the source member containing the include, as specified in the source.

Nesting level. The level of nesting of the include. Includes found in the root source have a nesting level of 1, includes found in
level 1 have a nesting level of 2 and so on.

Object type. The object type of the object containing the include, for example *FILE.

Record length. The length of this record is 80.

Record type. The type of this record is '02'.

Reserved. An ignored field.

The nesting level should be indicated even by those compilers that do not allow include nesting. In that case, the nesting level
passed should be equal to 1.

File reference record

This record is passed when the compiler or preprocessor encounters a reference to an externally described file but not its record
format or field.

For example, a reference is made in DDS source using the PFILE or JFILE keywords. Another example is when a compiler or
preprocessor copies all the record format declares from a file. This is not considered to be a dependency on any specific record
format and is treated as a dependency on the file, so this record must be passed, not the Record format reference records for all
the individual record formats.

The File reference record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) File name specified

18 12 CHAR(10) File library name specified

28 1C CHAR(1) Based on indicator

29 1D CHAR(10) File name used

39 27 CHAR(10) File library name used

49 31 CHAR(3) Reserved

52 34 BINARY(4) Nesting level

Processors for which this record type applies

CRTRPGPGM CRTCBLPGM CRTPF CRTLF
CRTDSPF CRTICFF CRTPRTF CRTCLPGM
CRTSQLRPG CRTSQLCBL CRTRPGMOD CRTBNDRPG
CRTCBLMOD CRTBNDCBL CRTCMOD CRTBNDC
CRTCLMOD CRTBNDCL CRTSQLRPGI CRTSQLCBLI

CRTSQLCI processor processing the user-defined types represented as members

Field Descriptions

Based on indicator. Indicates whether the referenced file is used to base another file on. Possible values are N (no) and Y
(yes).

File name used. The name of the actual file that was referenced. This name must always be filled in.

File name specified. The name of the file referenced, as specified in the source.

File library name used. The name of the actual library that contains the file that was referenced. The library name could be
different from the specified library name because *LIBL or *CURLIB was specified, or an override was used.

File library name specified. The name of the library of the file referenced, as specified in the source.

Nesting level. If this file reference is made within an include, this field has value of N + 1, where N is the nesting level of the
include. Otherwise, the value of this field is 1.

Record length. The length of this record is 56.

Record type. The type of this record is '03'.

Reserved. An ignored field.

Module reference record

This record is passed when a module is successfully referenced by a processor. This record is not to be written for the
ENTMOD module, on the CRTPGM command.

The Module reference record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Module name specified

18 12 CHAR(10) Module library name specified

28 1C CHAR(10) Module name used

38 26 CHAR(10) Module library name used

Processors for which this record type applies

CRTSRVPGM and CRTPGM.

Field Descriptions

Module name used. The name of the actual module that was referenced. This name must always be filled in.

Module name specified. The name of the module referenced, as specified on the command, or in the bind directory.

Module library name used. The name of the actual library that contains the module that was referenced. The library name
could be different from the specified library name because *LIBL or *CURLIB was specified.

Module library name specified. The name of the library of the module referenced, as specified on the command, or in the bind
directory.

Record length. The length of this record is 92.

Record type. The type of this record is '55'.

Reserved. An ignored field.

Service program reference record

This record is passed when a service program is successfully referenced by a processor.

The Service program reference record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Service program name specified

18 12 CHAR(10) Service program library name specified

28 1C CHAR(10) Service program name used

38 26 CHAR(10) Service program library name used

48 30 CHAR(16) Service program signature used

Processors for which this record type applies

CRTSRVPGM and CRTPGM.

Field Descriptions

Record length. The length of this record is 64.

Record type. The type of this record is '60'.

Service program name used. The name of the actual service program that was referenced. This name must always be filled in.

Service program name specified. The name of the service program as specified on the command.

Service program library name used. The name of the actual library that contains the service program that was referenced.
The library name could be different from the specified library name because *LIBL or *CURLIB was specified.

Service program library name specified. The name of the library of the service program referenced, as specified on the
command.

Service program signature used. The current signature of the service program used.

Bind directory reference record

This record is passed when a module is successfully referenced by a processor. This record is not to be written for the
ENTMOD module, on the CRTPGM command.

The Bind directory reference record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Bind directory name specified

18 12 CHAR(10) Bind directory library name specified

28 1C CHAR(10) Bind directory name used

38 26 CHAR(10) Bind directory library name used

Processors for which this record type applies

CRTSRVPGM and CRTPGM.

Field Descriptions

Bind directory name used. The name of the actual bind directory that was referenced. This name must always be filled in.

Bind directory name specified. The name of the bind directory referenced, as specified on the command.

Bind directory library name used. The name of the actual library that contains the bind directory that was referenced. The
library name could be different from the specified library name because *LIBL or *CURLIB was specified.

Bind directory library name specified. The name of the library of the bind directory referenced, as specified on the command.

Record length. The length of this record is 48.

Record type. The type of this record is '75'.

Reserved. An ignored field.

Record format reference record

This record is passed when the compiler or preprocessor encounters a reference to a record format of an externally described
file (but not to any single field). For example, a reference is made in DDS source using the FORMAT keyword or in the RPG,
COBOL, CL, DB2 UDB for iSeries SQL, ILE RPG, ILE COBOL, ILE CL, or ILE C processors whenever a declaration of a
record format structure from a DDS-described file is generated by the compiler or preprocessor.

The Record format reference record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) File name specified

18 12 CHAR(10) File library name specified

28 1C CHAR(10) Record format name

38 26 CHAR(13) Record format level ID

51 33 CHAR(10) File name used

61 3D CHAR(10) File library name used

71 47 CHAR(1) Reserved

72 48 BINARY(4) Nesting level

Processors for which this record type is applicable

CRTRPGPGM CRTCBLPGM CRTPF CRTLF
CRTDSPF CRTICFF CRTPRTF CRTCLPGM
CRTSQLRPG CRTSQLCBL CRTRPGMOD CRTBNDRPG
CRTCBLMOD CRTBNDCBL CRTCMOD CRTBNDC
CRTCLMOD CRTBNDCL CRTSQLRPGI CRTSQLCBLI
CRTSQLCI processor processing the user-defined types represented as members

Field Descriptions

File name used. The name of the actual file that was referenced. This name must always be filled in.

File name specified. The name of the file being referenced, as specified in the source.

File library name used. The name of the actual library that contains the file that was referenced. The library name could be
different from the specified library name because *LIBL or *CURLIB was specified, or an override was used. This field
contains the name the library resolves to.

File library name specified. The name of the library of the file being referenced, as specified in the source.

Nesting level. If this record format reference is made within an include, this field has value of N + 1, where N is the nesting
level of the include. Otherwise, the value of this field is 1.

Record format level ID. The level ID of the record format referenced.

Record format name. The name of the record format referenced.

Record length. The length of this record is 76.

Record type. The type of this record is '04'.

Reserved. An ignored field.

Field reference record

This record is passed when the compiler or preprocessor encounters a reference to a field in an externally described file. For
example, a reference is made in DDS source using the REF and REFFLD keywords.

The Field reference record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) File name specified

18 12 CHAR(10) File library name specified

28 1C CHAR(10) Record format name

38 26 CHAR(13) Record format level ID

51 33 CHAR(10) Field

61 3D CHAR(3) Reserved

64 40 BINARY(4) Field length

68 44 BINARY(4) Decimal positions

72 48 CHAR(1) Data type

73 49 CHAR(1) Fixed/variable length indicator

74 4A CHAR(10) File name used

84 54 CHAR(10) File library name used

94 5E CHAR(2) Reserved

Processors for which this record type applies

CRTPF CRTLF CRTDSPF CRTICFF
CRTPRTF processor processing the user-defined types represented as members

Field Descriptions

Data type. The field data type in DDS. For example, P, S, B, F, A, or H.

Decimal positions. The number of decimal positions if the field is numeric, otherwise 0.

Field. The name of the referenced field.

Field length. The length of the field in bytes. If the field is a variable-length field, the maximum length should be passed.

File name used. The name of the actual file that was referenced. This name must always be filled in.

File name specified. The name of the file being referenced, as specified in the source.

Fixed/variable length indicator. Contains F if the field is of fixed length, or V if variable length.

File library name used. The name of the actual library that contains the file that was referenced.

File library name specified. The name of the library of the file being referenced, as specified in the source.

Record format level ID. The level ID of the record format referenced.

Record format name. The name of the record format referenced.

Record length. The length of this record is 96.

Record type. The type of this record is '05'.

Reserved. An ignored field.

Message reference record

This record is passed when the compiler encounters a reference to a message ID in a message file. For example, a reference is
made in DDS source using the MSGCON keyword.

The Message reference record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(7) Message identifier

15 F CHAR(10) Message file name specified

25 19 CHAR(10) Message file library name specified

35 23 CHAR(10) Message file name used

45 2D CHAR(10) Message file library name used

55 37 CHAR(1) Reserved

56 38 BINARY(4) Nesting Level

Processors for which this record type applies

CRTPF CRTLF CRTDSPF CRTPRTF
CRTICFF CRTCMD CRTPNLGRP CRTMNU
processor processing the user-defined types represented as members

Field Descriptions

Message file library used. The name of the actual library that contains the message file. This may be *CURLIB or *LIBL if
the compiler does not resolve to the library name.

Message file library specified. The name of the library that contains the message file, as specified in the source.

Message file name used. The name of the actual message file that was referenced. This name must always be filled in.

Message file name specified. The name of the message file referenced, as specified in the source.

Message identifier. The message ID referenced.

Nesting Level. The level of nesting of the MSGF. MSGFs referenced in the root source have a nesting level of 1, MSGFs found
in level 1 have a nesting level of 2 and so on.

Record length. The length of this record is 60.

Record type. The type of this record is '06'.

Reserved. An ignored field.

External reference error record

This record is passed when processing fails because a referenced object, such as a file, message file, module, bind directory or
service program cannot be found. This record does not apply to includes.

After passing one or more of these records, the compiler or preprocessor also passes the Abnormal processor end record (see
Abnormal processor end record).

The External reference error record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Object name specified

18 12 CHAR(10) Object library name specified

28 1C CHAR(7) Object type

35 23 CHAR(10) Object name used

45 2D CHAR(10) Object library name used

55 37 CHAR(1) Based on indicator

Processors for which this record type applies

CRTRPGPGM CRTCBLPGM CRTPF CRTLF
CRTDSPF CRTICFF CRTPRTF CRTCLPGM
CRTSQLRPG CRTSQLCBL CRTRPGMOD CRTBNDRPG
CRTCBLMOD CRTBNDCBL CRTCMOD CRTBNDC
CRTCLMOD CRTBNDCL CRTSQLRPGI CRTSQLCBLI
CRTSQLCI CRTSRVPGM CRTPGM CRTPNLGRP
CRTMNU processor processing the user-defined types represented as members

Field Descriptions

Based on indicator. Whether the referenced file is used to base another file on. Possible values are N (no) and Y (yes). This
field is used by the CRTLF processor.

Object library name used. The actual name of the library that contains the object that was referenced.

Object library name specified. The name of the library that contains the object that was not found.

Object name used. The actual name of the object that was referenced. This name must always be filled in.

Object name specified. The name of the object referenced that was not found.

Object type. The type of object that was not found.

Record length. The length of this record is 56.

Record type. The type of this record is '15'.

Reserved. An ignored field.

Object already exists error record

This record is passed when the compiler or preprocessor fails because the object that was to be created exists. There is no
REPLACE parameter on the command because the compiler or preprocessor expects the object not to exist.

After passing this record, the compiler or preprocessor must also pass the Abnormal processor end record (see Abnormal
processor end record).

The Object already exists error record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) Object name that already exists

18 12 CHAR(10) Object library name

28 1C CHAR(7) Object type

35 23 CHAR(1) Reserved

Processors for which this record type applies

CRTPF CRTLF CRTDSPF CRTICFF
CRTPRTF processor processing the user-defined types represented as members

Field Descriptions

Object library name. The name of the library that contains the object that already exists. A specific library name, not
*CURLIB or *LIBL must be passed.

Object name that already exists. The name of the object that already exists and could not be replaced.

Object type. The type of the object that already exists.

Record length. The length of this record is 36.

Record type. The type of this record is '16'.

Reserved. An ignored field.

Start of new program record

The COBOL/400 compiler is able to compile source that contains more than one program. This record is passed by the
COBOL/400 compiler when the beginning of a new program is encountered.

The Start of new program record has the following format:

Offset

Type FieldDec Hex

0 0 BINARY(4) Record length

4 4 CHAR(2) Record type

6 6 CHAR(2) Reserved

8 8 CHAR(10) New program name

18 12 CHAR(10) Object name created

28 1C CHAR(10) Object library name

38 26 CHAR(7) Message identifier

45 2D CHAR(3) Reserved

48 30 CHAR(7) Object type

55 37 CHAR(1) Reserved

Processors for which this record type applies

CRTCBLPGM CRTCBLMOD CRTBNDCBL CRTSQLCBLI
processor processing the user-defined types represented as members

Field Descriptions

Message identifier. The message ID of the completion message.

New program name. The name of the new program, per IDENTIFICATION DIVISION.

Object library name. The library where the object was created. This field contains blank if an error occurred.

Object name created. The name of the object created in the previous step. If an object was not created because of syntax errors
or because REPLACE(*NO) was specified and the object already existed, this field contains '*ERROR'.

Object type. The type of object created. For example, *PGM or *MODULE.

Record length. The length of this record is 56.

Record type. The type of this record is '40'.

Reserved. An ignored field.

Top | High-level Language APIs | APIs by category

Examples of Records Written
The following examples illustrate how compilers and preprocessors communicate with the Application
Development Manager/400 APIs in different circumstances. In all these examples, assume that the
compiles are submitted by an Application Development Manager/400 BLDPART command, which means
it has called QLYSETS to set the status of the space to *READY before calling the compiler or
preprocessor.

It is also assumed that a cleanup is done after the compile by calling QLYSETS again to set the status of the
space to *COMPLETE.

Example 1

RPG/400 compiler successfully compiles source that has one include in it.

The compiler first calls QLYGETS and determines that it was started by the BLDPART command. Then it
calls QLYWRTBI to pass records of the following record types and in the following order:

Processor member start1.

Include2.

Normal processor end3.

Example 2

DDS compiler successfully compiles source of type LF and creates a logical file based on two physical
files.

The compiler first calls QLYGETS and determines that it was started by the BLDPART command. Then it
calls QLYWRTBI to pass records of the following record types and in the following order:

Processor member start1.

File reference

This record is called for the first physical file on which the logical file is based. The based-on
indicator is set to Y (yes).

2.

File reference

This record is called for the second physical file on which the logical file is based. The based-on
indicator is set to Y (yes).

3.

Normal processor end4.

Example 3

COBOL/400 compiler fails when compiling source that has one include in it because the include was not
found in *LIBL.

The compiler first calls QLYGETS and determines that it was started by a BLDPART command. Then it
calls QLYWRTBI to pass records of the following record types and in the following order:

Processor member start1.

Abnormal processor end2.

Example 4

COBOL/400 compiler fails when compiling source that references a record format of a database file
because the file was not found in *LIBL.

The compiler first calls QLYGETS and determines that it was started by a BLDPART command. Then it
calls QLYWRTBI to pass records of the following record types and in the following order:

Processor member start1.

External reference error

The name of the Library specified passed to QLYWRTBI is *LIBL.

2.

Abnormal processor end3.

Example 5

ILE C CRTBNDC compiler successfully compiles a *PGM from a source that has one include in it.

The compiler calls QLYGETS and determines that it was started by the BLDPART command. Then it calls
QLYWRTBI to pass records of the following record types and in the following order:

Processor member start1.

Include2.

Normal processor end call next3.

Processor object start4.

Normal processor end5.

Note: The Processor object start and the Normal processor end records are written by the CRTPGM
processor internally called by the CRTBNDC compiler.

Example 6

CRTPGM binder successfully binds objects from 2 modules, and references a bind directory and a service
program.

The compiler calls QLYGETS and determines that it was started by the BLDPART command. Then it calls
QLYWRTBI to pass records of the following record types and in the following order:

Processor object start1.

Module reference2.

Module reference3.

Bind directory reference4.

Service program reference5.

Normal processor end.6.

Top | High-level Language APIs | APIs by category

Get Space Status (QLYGETS) API

 Required Parameter Group:

1 Status Output Char(10)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Get Space Status (QLYGETS) API obtains the status of the space.

Authorities and Locks

None

Required Parameter Group

Status

OUTPUT; CHAR(10)

*READY Information in the space is ready to be processed.

*COMPLETE Information in the space has been processed.

*NONE The space does not exist. Use QLYSETS to create the space.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | High-level language APIs | APIs by category

Read Build Information (QLYRDBI) API

 Required Parameter Group:

1 Buffer Output Char(*)
2 Maximum size Input Binary(4)
3 Read mode Input Char(10)
4 Buffer length Output Binary(4)
5 Number of records Output Binary(4)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Read Build Information (QLYRDBI) API reads one or more records from the space.

QLYRDBI reads the space starting at the first location after the last record was read. If this is the first time
QLYRDBI is called, the first record following the header record is read.

After QLYRDBI has read the final record, the next call to QLYRDBI starts reading the space from the
beginning again.

QLYRDBI reads one or more records depending on the value specified on the Read mode parameter.
QLYRDBI does not read more records than can fit in the buffer. The buffer is determined by the
Maximum-size parameter.

Authorities and Locks

None.

Required Parameter Group

Buffer

OUTPUT; CHAR(*)

A character string to contain one or more records of build information.

Maximum size

INPUT; BINARY(4)

The maximum size of the data that is expected to be returned to this call. Maximum size should be
large enough to fit at least one record. If it is too small for one record, an error occurs.

Read mode

INPUT; CHAR(10)

The mode of reading.

The possible read mode values are:

*SINGLE Read only one record.

*MULTIPLE Read more than one record. The maximum number of records that are read is
determined by the size of Maximum size.

Buffer length

OUTPUT; BINARY(4)

The length of the data returned. If records are not read, 0 is returned.

Number of records

OUTPUT; BINARY(4)

The number of records read. Number of records is 0 if no records were read, 1 if one record was
read or greater than 1 if *MULTIPLE was specified on read mode and more than one record could
fit in the buffer.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

The LIBxxxx error messages are located in the message file QLIBMSG in the QSYS library.

Message ID Error Message Text

LIB9005 Value specified for Maximum size parameter is not valid.

LIB9006 Value specified for Read mode parameter is not valid.

LIB9007 Value specified for Maximum size parameter is too small.

LIB9009 Build information space does not exist, or it is damaged or deleted.

LIB9010 Build information missing or no more build information.

LIB9011 Build information in the space is not complete.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | High-level language APIs | APIs by category

Set Space Status (QLYSETS) API

 Required Parameter Group:

1 Status Input Char(10)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Set Space Status (QLYSETS) API sets the status of the space.

When QLYSETS is first called to create the space (if the space does not exist already) or to initialize the
space so the information can be written to it by compilers or preprocessors, the Status parameter should be
set to *READY. Then QLYSETS writes a special record (called the HEADER record) at the beginning of
the space and initializes a status flag in that record to *READY. Now the space is ready to accept records
containing build information. Compilers write to the space using the QLYWRTBI API. QLYWRTBI writes
records to the space concatenated to each other. QLYRDBI later reads them sequentially in the order in
which they are written.

Use the QLYSETS API to set the status flag in the space to *COMPLETE after the information in the space
is processed using the QLYRDBI API. This indicates that the information in the space has been processed
and the space can be reused.

Authorities and Locks

None

Required Parameter Group

Status

INPUT; CHAR(10)

The status for the space.

The possible status values are:

*READY Initialize the space. If the space does not exist, it is created.

*COMPLETE Information in the space has been processed. The space can now be used by
setting it to *READY with another call to QLYSETS.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

LIB9001 Value specified on the Status parameter is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | High-level language APIs | APIs by category

Write Build Information (QLYWRTBI) API

 Required Parameter Group:

1 Buffer Input Char(*)
2 Buffer length Input Binary(4)
3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Write Build Information (QLYWRTBI) API writes one or more records to the space.

QLYWRTBI writes records to the space concatenated to each other. QLYRDBI later reads them
sequentially in the order in which they are written.

QLYWRTBI continues to write records to the API space concatenated to previous records written, until
QLYSETS is called. See Record Types for the records that can be written. See Examples of Records
Written for examples of the sequence of records written.

Authorities and Locks

None.

Required Parameter Group

Buffer

INPUT; CHAR(*)

A character string containing one or more records of build information.

Buffer length

INPUT; BINARY(4)

The length of the buffer in bytes. The buffer length must be equal to the sum of the lengths of all
the concatenated records being passed, otherwise an error occurs.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

The first field in each record indicates the record length. This allows all the records to be read sequentially
using the QLYRDBI API.

Error Messages

Message ID Error Message Text

LIB9002 Value specified for the buffer length parameter is not valid.

LIB9003 Value specified for the buffer length parameter is too small.

LIB9004 Record not in correct sequence.

LIB9008 Record has a record type that is not valid.

LIB9009 Build information space does not exist, or it is damaged or deleted.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | High-level language APIs | APIs by category

COBOL/400 APIs
The OPM and ILE COBOL/400 APIs let you control run units and error handling.

Refer to Using COBOL Program to Call APIs and Error Handler for Example COBOL Program in the API
Examples for illustrations of how to use these APIs.

For a description of how to use the ILE COBOL/400 APIs, refer to the chapter about error and exception

handling in the WebSphere Development Studio: ILE COBOL Programmer's Guide book.

The COBOL/400 APIs are:

Change COBOL Main Program (QLRCHGCM) lets you create an additional run unit (1) by
assigning a different System/36-compatible COBOL, System/38-compatible COBOL, or iSeries
OPM COBOL/400 program to serve as a main program.

●

Dump COBOL (QlnDumpCobol) allows you to perform a formatted dump of an ILE COBOL/400
program.

●

Retrieve COBOL Error Handler (QlnRtvCobolErrorHandler) allows you to retrieve the procedure
pointer of the current COBOL error-handling procedure.

●

Retrieve COBOL Error Handler (QLRRTVCE) allows you to retrieve the name of the current or
pending COBOL error-handling program.

●

Set COBOL Error Handler (QlnSetCobolErrorHandler) allows you to specify the identity of a
COBOL error-handling procedure.

●

Set COBOL Error Handler (QLRSETCE) allows you to specify the identity of a COBOL
error-handling program.

●

The COBOL/400 exit programs are:

ILE COBOL Error-Handling exit procedure acts as an error handler for an ILE COBOL/400
program.

●

OPM COBOL Error-Handling exit program acts as an error handler for an OPM COBOL program.●

Top | High-Level Language APIs | APIs by category

Change COBOL Main Program (QLRCHGCM)
API

 Required Parameter

1 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Change COBOL Main Program (QLRCHGCM) API allows you to create an additional run unit by
assigning a different System/36-compatible COBOL, System/38-compatible COBOL, or iSeries OPM
COBOL/400 program to serve as a main program. You can call it from any programming language.

Note: By creating more than one run unit, you cantreat files, storage, and error conditions differently than
you would using an ordinary subprogram.

After you call this API, the next nonactive COBOL program that runs becomes the main program in a new
run unit. An active COBOL program is a program that has been called, and is not in its initial state.

In the following example, System/38-compatible COBOL Program A calls iSeries COBOL/400 Program B.
Because Program A is the first COBOL program, it is the main COBOL program.

COBOL Program B is a menu program that calls CL Program C.

Program C must start a new COBOL application that will pass control back to it, regardless of error
conditions. To accomplish this, Program C calls the QLRCHGCM API before calling the new COBOL
application.

When program C calls the new COBOL application in the form of Program D, Program D becomes the
main program in a new run unit. When Program D's run unit ends, control returns to the original run unit,
and Program A becomes the current main program again.

If, at the time a run unit is created, a program is active as a subprogram in an existing run unit, and this
program is then called within the new run unit, it will be made available in its last-used state.

Required Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

LBE7040 E Format of error code parameter is not correct.

API Introduced: V2R2

Top | High-level language APIs | APIs by category

Dump COBOL (QlnDumpCobol) API

 Required Parameter Group:

1 Program object name Input Char(10)
2 Library name Input Char(10)
3 Module object name Input Char(10)
4 Program object type Input Char(10)
5 Dump type Input Char(1)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Service Program: QLNRMAIN

 Threadsafe: No

The Dump COBOL (QlnDumpCobol) API allows you to perform a formatted dump of an ILE COBOL/400
program. You can call it from any ILE program; however, if the calling program is not an ILE COBOL/400
program, only a data dump will be performed. Message CPF955F will be issued if this API is called to
dump any module other than those created by the ILE COBOL/400 compiler.

This API provides two types of dumps, a data dump and an extended dump. The data dump contains the
following information:

The name of each variable●

The data type●

The default value●

The hexadecimal value●

Note: Only the first 250 characters of the values will be shown in the dump.

The extended dump contains the following additional information:

The name of each file●

The system name of each file●

External/internal flag●

Open/close status●

Last I/O operation attempted●

Last file status●

Last extended status●

Blocking information●

Blocking factor●

Linage-counter value●

I/O feedback area information●

Open feedback area information●

Variable values may only be requested if an active call stack entry exists for the module object specified in
the job in which this API is called. Values existing in program static or automatic storage are not accessible
by this API unless the program object has a current call stack entry. All variables that were defined by the
compiler and stored in the module object's HLL symbol table will be returned.

Also, the module object for which variable information is requested must contain debug data. Thus, the
module object must be compiled with a *DBGVIEW option other than *NONE.

Required Parameter Group

Program object name

INPUT; CHAR(10)

The name of the program to be dumped. If this parameter is omitted, the program object name of
the caller is used.

Library name

INPUT; CHAR(10)

The name of the library in which the program to be dumped is found. *CURLIB and *LIBL can be
specified as valid values to indicate the current library and the library list, respectively. If this
parameter is omitted, the library associated with the calling program is used.

Module object name

INPUT; CHAR(10)

The name of the module, within the specified program, to be dumped. If this parameter is omitted,
the module object name of the caller is used.

Program object type

INPUT; CHAR(10)

The object type of the program object.

Valid values are:

*PGM Program object
*SRVPGM Service program

Dump type

INPUT; CHAR(1)

The type of dump.

Valid values are:

D Data dump. Gives a dump of the COBOL identifiers.
F Extended dump. Gives a dump of COBOL identifiers and file-related information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9549 E Error addressing API parameter.

CPF954F E Module &1 not found.

CPF955F E Program &1 not a bound program.

CPF9562 E Module &1 cannot be debugged.

CPF956D E Parameter does not match on continuation request.

CPF956E E Program language of module not supported.

CPF956F E Continuation handle parameter not valid.

CPF9573 E Program type parameter not valid.

CPF9574 E Call stack entry does not exist.

CPF9579 E Data option specified not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9809 E Library &1 cannot be accessed.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

API Introduced: V3R6

Top | High-level language APIs | APIs by category

Retrieve COBOL Error Handler
(QlnRtvCobolErrorHandler) API

 Required Parameter Group:

1 Current error-handling exit procedure
pointer

Output Anyptr

2 Error code I/O Char(*)

 Default Public Authority: *USE

 Service Program: QLNRMAIN

Threadsafe: No

The Retrieve COBOL Error Handler (QlnRtvCobolErrorHandler) API allows you to retrieve the procedure
pointer of the current COBOL error-handling procedure. You can call it from any ILE programming
language; however, this API only retrieves the procedure pointer of the error handling program that is
called when an error occurs in an ILE COBOL/400 program.

Required Parameter Group

Current error-handling exit procedure pointer

OUTPUT; ANYPTR

Valid values are:

NULL No current error-handling procedure found.

procedure-pointer The procedure pointer of the error handler.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

LNR7074 E Error code not valid.

LNR7075 E Error addressing API parameters.

API Introduced: V2R1.1

Top | High-level language APIs | APIs by category

Retrieve COBOL Error Handler (QLRRTVCE)
API

 Required Parameter Group:

1 Current or pending error-handling exit
program name

Output Char(20)

2 Scope of error-handling exit program Input Char(1)
3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve COBOL Error Handler (QLRRTVCE) API allows you to retrieve the name of the current or
pending COBOL error-handling program. You can call it from any programming language; however, this
API only retrieves the name of the error handling program that is called when an error occurs in an OPM
COBOL/400 program.

Required Parameter Group

Current or pending error-handling exit program name

OUTPUT; CHAR(20)

The qualified name of the error-handling program for the current or pending COBOL run unit.

The 20 characters of this parameter are:

1-10 The name of the program object.
Valid values are:

*NONE No user-defined COBOL error handler has been set.

program-name The name of the error-handling program.

11-20 The library where the program object existed.
The valid value is:

library-name The library where the program object existed.

Scope of error-handling exit program

INPUT; CHAR(1)

The program can apply to a current or pending run unit.

Valid values are:

C Current COBOL run unit

P Pending COBOL run unit

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

LBE7040 E Format of error code parameter is not correct.

LBE7051 E Scope parameter not valid.

LBE7052 E Run unit specified for error handler does not exist.

LBE7055 E Severe error while addressing parameter list. The API did not complete.

API Introduced: V3R6

Top | High-level language APIs | APIs by category

Set COBOL Error Handler
(QlnSetCobolErrorHandler) API

 Required Parameter Group:

1 New error-handling exit procedure
pointer

Input Anyptr

2 Current error-handling exit
procedure pointer

Output Anyptr

3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Set COBOL Error Handler (QlnSetCobolErrorHandler) API allows you to specify the identity of a
COBOL error-handling procedure. You can call it from any ILE programming language; however, this API
only sets the procedure pointer of the error-handling program that is called when an error occurs in an ILE
COBOL/400 program.

After you call this API, any ILE COBOL/400 program that issues an inquiry message with options C, D, or
F will first call the defined error-handling procedure. This procedure receives the message identification
and substitution text, as well as the name of the program that received it, and a list of valid 1-character
responses. The defined procedure is responsible for returning a 1-character code (blank, C, D, F, or G)
indicating whether the COBOL program should continue or not.

Note: All messages issued by the operating system during the running of a COBOL program are monitored
by the COBOL program. Only some of the system messages issued will result in a COBOL inquiry
message.

You can define a different error-handling procedure for each activation group.

Only one ILE error-handling procedure can be active at a time. If an error occurs in the error-handling
procedure, the COBOL program does not call the error-handling procedure again. (In other words,
recursive calls do not occur.) Instead, the inquiry message would be issued as if no error-handling
procedure were defined.

You cannot change the error-handling procedure while it is responding to an error in a COBOL program.

If an error occurs during the calling of the error-handling procedure, an informational message (LNR7430)
is issued, and processing continues as if no error-handling procedure were defined.

The error-handling procedure is defined by the user. The parameters aredescribed under ILE COBOL
Error-Handling Exit Procedure.

Required Parameter Group

New error-handling exit procedure pointer

INPUT; ANYPTR

The pointer to the new error-handling procedure that you want to set.

Current error-handling exit procedure pointer

OUTPUT; ANYPTR

The pointer to the error-handling procedure that was in place before the new error-handling
procedure was set.

Valid values are:

NULL No current error-handling exit procedure was found.

procedure-pointer The pointer to the error-handling procedure.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

LNR7074 E Error code not valid.

LNR7075 E Error addressing API parameters.

LNR7077 E Procedure reference not valid.

API Introduced: V2R2

Top | High-level language APIs | APIs by category

Set COBOL Error Handler (QLRSETCE) API

 Required Parameter Group:

1 Error-handling exit program name Input Char(20)
2 Scope of error-handling program Input Char(1)
3 New error-handling exit program

library
Output Char(10)

4 Current or pending error-handling
exit program name

Output Char(20)

5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Set COBOL Error Handler (QLRSETCE) API allows you to specify the identity of a COBOL
error-handling program. You can call it from any programming language; however, this API only sets the
name of the error handling program that is called when an error occurs in an OPM COBOL/400 program.

After you call this API, any COBOL/400 program that issues an inquiry message with options C, D, or F
will first call the defined error-handling program. This program receives the message identification and
substitution text, as well as the name of the program that received it, and a list of valid one-character
responses. The defined program is responsible for returning a one-character code (blank, C, D, F, or G)
indicating whether the COBOL program should continue or not.

Note: All messages issued by the operating system during the running of a COBOL program are monitored
by the COBOL program. Only some of the system messages issued will result in a COBOL inquiry
message.

For more information about error handling and the issuing of COBOL inquiry messages, see the chapter on

error handling in the WebSphere Development Studio: ILE COBOL Programmer's Guide book.

You can define a different error-handling program for each COBOL run unit, but when a new COBOL run
unit starts, it uses the error-handling program from the previous run unit.

Only one error-handling program can be active at a time. If an error occurs in the error-handling program,
the COBOL program does not call the error-handling program again. (In other words, recursive calls do not
occur.) Instead, the inquiry message would be issued as if no error-handling program were defined.

You cannot change the name of the error-handling program while it is responding to an error in a COBOL
program.

If an error occurs during the calling of the error-handling program, an informational message (LBE7430) is
issued, and processing continues as if no error-handling program were defined.

The error-handling program is defined by the user. The parameters are described under OPM COBOL
Error-Handling Exit Program.

Required Parameter Group

Error-handling exit program name

INPUT; CHAR(20)

The qualified name of the error-handling program.

The 20 characters of this parameter are:

1-10 The name of the program object.
Valid values are:

*NONE No user-defined COBOL error-handling program exists.

program-name The name of the error-handling program. The name can be an extended
one.

11-20 The library where the program object exists.
Valid values are:

*CURLIB The current library is used.

*LIBL The API searches the library list to find the object.

library-name The name of the library where the program object exists. The name can
be an extended one.

Scope of error-handling program

INPUT; CHAR(1)

The program can apply to a current or pending run unit.

Valid values are:

C Current COBOL run unit

P Pending COBOL run unit

New error-handling exit program library

OUTPUT; CHAR(10)

The library where the program object exists. If *CURLIB or *LIBL was specified for the
error-handling exit program name parameter, the library returned for this parameter shows the
library where the program was found. If *CURLIB or *LIBL was not specified, the library returned
here should be the same as character 11 through 20 of the error-handling exit program name
parameter.

Valid value is:

library-name The library where the program object exists.

Current or pending error-handling exit program name

OUTPUT; CHAR(20)

The qualified name of the error-handling program that was in place before the current
error-handling program was set.

The 20 characters of this parameter are:

1-10 The name of the previous error-handling program object.
Valid values are:

*NONE No previous current or pending error-handling program existed.

program-name The name of the error-handling program.

11-20 The library where the previous error-handling program object existed.
Valid value is:

library-name The library where the previous error-handling program object existed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

LBE7040 E Format of error code parameter is not correct.

LBE7050 E Error handler is already responding to an error in the same run unit.

LBE7051 E Scope parameter not valid.

LBE7052 E Run unit specified for error handler does not exist.

LBE7055 E Severe error while addressing parameter list.The API did not complete.

LBE7060 E Error in program name or availability.

LBE7061 E Error in library name or availability.

LBE7062 E Error in library list.

API Introduced: V3R6

Top | High-level language APIs | APIs by category

ILE COBOL Error-Handling Exit Procedure

 Required Parameter Group:

1 COBOL message identification Input Char(7)
2 Valid responses to message Input Char(6)
3 Name of program issuing error Input Char(20)
4 System message causing COBOL

message
Input Char(7)

5 Length of passed message text Input Binary(4)
6 Return code Output Char(1)
7 Message text Input Char(*)
8 Module name Input Char(10)
9 COBOL program name Input Char(256)

This is a user-defined program that acts as an error handler for an ILE COBOL/400 program. Use the Set
COBOL Error Handler (QlnSetCobolErrorHandler) API to establish this relationship between the two
programs.

Required Parameter Group

COBOL message identification

INPUT; CHAR(7)

A 3-character prefix followed by a 4-character number.

Valid responses to message

INPUT; CHAR(6)

The list of valid 1-character responses. This list is variable in length and consists of uppercase
letters in alphabetical order. The list always ends with a space.

The following are examples of lists of valid responses:

CG

CDFG

Name of program issuing error

INPUT; CHAR(20)

The qualified name of the ILE COBOL/400 program that issued the error.

The 20 characters of this parameter are:

1-10 The name of the program object.
The valid value is:

program-name The name of the program object.

11-20 The library where the program object existed.
The valid value is:

library-name The library where the program object existed.

System message causing COBOL message

INPUT; CHAR(7)

Some COBOL error messages are issued because of error messages received from the system. This
parameter identifies such system messages.

Valid values are:

*NONE No system message is available.

message-id A 3-character message prefix followed by a 4-character number.

Length of passed message text

INPUT; BINARY(4)

If the original message was a system message, the substitution text for the system message is
passed. In the absence of an original system message, Parameter 4 has a value of *NONE, and the
substitution text for the COBOL message is passed.

Return code

OUTPUT; CHAR(1)

Must be one of the values specified in Parameter 2, or a space. If the value is not one of these, a
response of a space is assumed.

Valid values are:

blank Issue the COBOL message that was passed to the error-handling program.

G Continue running the COBOL program.

C End the current COBOL run unit.

D Same as C, but produce a formatted dump of user-defined COBOL variables.

F Same as D, but also dump COBOL's file-related internal variables.

Message text

INPUT; CHAR(*)

The substitution text of the message. Its length is determined by Parameter 5.

Module name

INPUT; CHAR(10)

The module within the program object that issued the error.

COBOL program name

INPUT; CHAR(256)

The name of the COBOL program, from the PROGRAM-ID paragraph, that issued the error.

Exit program introduced: V3R2

Top | High-level language APIs | APIs by category

OPM COBOL Error-Handling Exit Program

 Required Parameter Group:

1 COBOL message identification Input Char(7)
2 Valid responses to message Input Char(6)
3 Name of program issuing error Input Char(20)
4 System message causing COBOL

message
Input Char(7)

5 Message text Input Char(*)
6 Length of passed message text Input Binary(4)
7 Return code Output Char(1)

This is a user-defined program that acts as an error handler for an OPM COBOL program. Use the Set
COBOL Error Handler (QLRSETCE) API to establish this relationship between the two programs.

Required Parameter Group

COBOL message identification

INPUT; CHAR(7)

A 3-character prefix followed by a 4-character number.

Valid responses to message

INPUT; CHAR(6)

The list of valid 1-character responses. The list is variable in length and consists of uppercase
letters in alphabetical order. The list always ends with a space.

Examples of lists of valid responses:

CG

CDFG

Name of program issuing error

INPUT; CHAR(20)

The qualified name of the COBOL/400 program that issued the error.

The 20 characters of this parameter are:

1-10 The name of the program object.
The valid value is:

program-name The name of the program object.

The library where the program object existed.
The valid value is:

library-name The library where the program object existed.

System message causing COBOL message

INPUT; CHAR(7)

Some COBOL error messages are issued because of error messages received from the system. This
parameter identifies such system messages.

Valid values are:

*NONE No system message is available.
message-id A 3-character message prefix followed by a 4-character number.

Message text

INPUT; CHAR(*)

The substitution text of the message, its length determined by Parameter 6.

Length of passed message text

INPUT; Binary(31)

If the original message was a system message, the substitution text for the system message is
passed. In the absence of an original system message, Parameter 4 has a value of *NONE, and the
substitution text for the COBOL message is passed.

Return code

OUTPUT; CHAR(1)

Must be one of the values specified in Parameter 2, or a space. If the value is not one of these, a
response of a space is assumed.

Valid values are:

blank Issue the COBOL message that was passed to the error-handling program.

G Continue running the COBOL program.

C End the current COBOL run unit.

D Same as C, but produce a formatted dump of user-defined COBOL variables.

F Same as D, but also dump COBOL's file-related internal variables.

Exit Program Introduced: V3R2

Top | High-level language APIs | APIs by category

	High-level Language APIs (V5R2)
	Table of Contents
	High-Level Language APIs
	Application Development Manager/400 APIs
	Using Application Development Manager/400 APIs
	Record Types
	Examples of Records Written
	APIs
	Get Space Status (QLYGETS) API
	Read Build Information (QLYRDBI) API
	Set Space Status (QLYSETS) API
	Write Build Information (QLYWRTBI) API

	COBOL/400 APIs
	APIs
	Change COBOL Main Program (QLRCHGCM) API
	Dump COBOL (QlnDumpCobol) API
	Retrieve COBOL Error Handler (QlnRtvCobolErrorHandler) API
	Retrieve COBOL Error Handler (QLRRTVCE) API
	Set COBOL Error Handler (QlnSetCobolErrorHandler) API
	Set COBOL Error Handler (QLRSETCE) API

	Exit programs
	ILE COBOL Error-Handling Exit Procedure
	OPM COBOL Error-Handling Exit Program

