Hierarchical File System APIs (V5R2)

Table of Contents

Hierarchical File System APIs

« HFS concepts
o HFS Use--Requirements

o HFS Directory Entry Attributes

« APIs
o Hierarchica File System APIs

= File system management APIs
= Control File System (QHFCTLFS)

» List Registered File Systems (QHFLSTFS)

= Directory management APIs
= Create Directory (QHFCRTDR)

= Delete Directory (QHFDLTDR)
= Rename Directory (QHFRNMDR)

= Fileinput and output APIs
= Change File Pointer (QHFCHGFP)

» Close Stream File (QHFCLOSF)

» Force Buffered Data (QHFFRCSF)

» Get Stream File Size (QHFGETSZ)

= Lock and Unlock Range in Stream File (QHFLULSF)
= Open Stream File (QHFOPNSF)

= Read from Stream File (QHFRDSF)

= Set Stream File Size (QHFSETSZ)

= Writeto Stream File (QHFWRTSF)

» File management APIs
= Copy Stream File (QHFCPY SF)

= Delete Stream File (QHFDLTSF)
= Move Stream File (QHFMOV SF)
= Rename Stream File (QHFRNMSF)
= Directory entry information APIs
= Change Directory Entry Attributes (QHFCHGAT)
= Close Directory (QHFCLODR)
= Open Directory (QHFOPNDR)




» Read Directory Entry (QHFRDDR)
= Retrieve Directory Entry Attributes (QHFRTVAT)
o File System Registration APIs
= New File Systems
= Enabling Your File System to HFS
= How HFS Support Processes a File System Job
= Standard HFS API and Exit Program Functions

= APIs
» Dereqgister File System (QHFDRGFS)

» Register File System (QHFRGFS)
= EXit programs
= Change Directory Entry Attributes (QHFCHGAT) API
= Change File Pointer (QHFCHGFP) API
» Close Directory (QHFCLODR) API
= Close Stream File (QHFCLOSF) API
= Control File System (QHFCTLFS) API
= Copy Stream File (QHFCPY SF) AP
= Create Directory (QHFCRTDR) AP
= Delete Directory (QHFDLTDR) AP
» Delete Stream File (QHFDLTSF) API
= End Job Session
= Force Buffered Data (QHFFRCSF) API
= Get Stream File Size (QHFGETSZ) AP
= Lock and Unlock Range in Stream File (QHFLUL SF) API

= Move Stream File (QHFMOV SF) AP

= Open Directory (QHFOPNDR) AP

= Open Stream File (QHFOPNSF) API

= Read Directory Entries (QHFRDDR) API
= Read from Stream File (QHFRDSF) API
= Rename Directory (QHFRNMDR) API

= Rename Stream File (QHFRNMSF) AP
= Retrieve Directory Entry Attributes (QHFRTVAT) API
= Set Stream File Size (QHFSETSZ) AP

= Start Job Session

= Write to Stream File (QHFWRTSF) AP




Hierarchical File System APIs

For information on the Hierarchical File System (HFS) APIs, see the following:

« HFES concepts
« HFS Use--Requirements

« HFS Directory Entry Attributes

The hierarchical file system (HFS) APIsinclude:
» Hierarchical File System APIs

o File System Reqistration APIs

The HFS APIs and the functions they support are part of the OS/400 program. These APIs provide
applications with a single, consistent interface to the file systems registered with the hierarchical file system
on your i Series server. They automatically support the document library services (DLS) file system and the
optical file system (QOPT), and they can also support user-written file systems.

With HFS APIs you can work with nonrelational data stored in objects, such as directories and filesin
exigting file systems. Y ou can aso perform such tasks as creating and deleting directories and files, reading
from and writing to files, and changing the directory entry attributes of files and directories.

The following diagram shows the relationship of the HFS APIs to your applications and to other file
systems:

Apolication A Apolication B

' 0S/400 |
FProgram |

| HF S |

: APls |

| |

|

| |

[ I

T N -

|

| Y |

| |

: DLS File Ootical File l aer-Written

: System System : File Systems

|

| I

b e e e e e e e e e e e e e e e e e = = = 1

If you are working with the optical file system (QOPT), refer to the Optical Support book @ If you are



not writing applications, but instead are creating or installing a new file system for other programmersto
use with the HFS APIs, turn to User-Written File Systems and HFS.

Top | APIs by category




HFS Concepts

The HFS APIswork with units of information or objects that belong to existing, hierarchical file systems. A
file system is the operating system's method of controlling the format of information on storage media and
performing input and output operations to the objects that contain the information. The document library
services (DLS) file system is one example of afile system.

The basic units of nonrelational information in afile system are usually called files. Files are sometimes
called byte-stream files or stream files because they consist of a stream of bytes with no specific record
structure.

A hierarchical file system arranges information unitsin amultileve, tree-like structure, as IBM DOS
does. Files are grouped into larger units usually called directories. A directory can contain both files and
subordinate directories. A directory contains no data of its own but is simply a named group of files and
other directories. Two objects with the same name cannot exist in the same directory, but one directory can
contain directories or files with the same names as those in another directory.

HFS Directory--Scenario: The following diagram illustrates the structure of a hierarchical directory:

DIRA
] I | | |
DIRE FILEW DIRD FILEX
I I I | l I
DIRC DIRD FILEX FILEW
N E—

|
FILEX FILEY FILEZ

In the preceding diagram, the topmost directory, DIRA, contains both directories, DIRB and DIRD, and
files, FILEW and FILEX. Directory DIRD contains only files. Directory DIRB contains only directories. In
this structure, there are two directories named DIRD, onein directory DIRA and onein directory
DIRA/DIRB. There are also three files named FILEX, one in directory DIRA, onein DIRA/DIRD, and one
in DIRA/DIRB/DIRC.

The specific location and name of afile or directory are represented in a multipart name called a path name.
A path name starts with adlash (/) and consists of elements separated by slashes. The first element of the
path name is the name of the file system. The remaining elements specify the applicable directory and file
names; the last element can be either afile or adirectory, but the rest must be directories.

HFS Path Name--Example: The path name /QDLS/DIRA/FILEW refersto file FILEW in directory
DIRA infile system QDLS.

Optical Path Name--Example: The path name /QOPT/VOLL/DIRL/FILEA refersto file FILEA in
directory DIR1 on volume VOL1 in file system QOPT.

Note: The optical file system requires an optical volume name following the file system name in the path.

Top | Hierarchical File System APIs| APIs by category




HFS Use--Requirements

Before you can use an HFS API to work with a particular file system, these conditions must be met:

« You must have * USE authority to the API. This gives you the authority to call the API from your
programs.

« You must have authority to use the file system. Authority to the file system is controlled by the file
system's job startup program, described in Start Job Session Exit Program. If you have authority to

use the file system's Start Job exit program, you have authority to the file system asawhole.

Authority to use files and directories within afile system is controlled by the file system itself.

o The HFS API you want to use must be available for use with the file system. Some file systems
might not support all the HFS APIs described in these articles.

Hierarchical File System APIs| APIs by category




HFS Directory Entry Attributes

Every file and directory in afile system has a corresponding directory entry. The directory entry is created
automatically by the file system when the stream file is opened or the directory is created. It is stored in the
directory in which the file or directory islocated and contains descriptive information, such as the item's
creation date and whether it isafile or directory. Theitems of information are called directory entry
attributes or simply attributes. Each attribute has a name and a value.

Standard HFS Directory Entry Attributes

Some directory entry attributes are created automatically when the directory entry is created. These
attributes are called standar d attributes. Their names start with the letter Q so you can identify them
easily. Each file system determines which standard attributes you can specify when working with directory
entries.

The standard attributes for directory entries are:
QNAME
CHAR(*)
The current name of afile or directory.
Do not specify this attribute in the attribute information table or attribute selection table used with

some APIs. The nameis either already specified or disalowed, as follows:

o When you create a directory (or open a stream file) and when you retrieve directory entry
attributes, the object's name is aready specified in the API's path name parameter.

o The Read Directory Entries (QHFRDDR) API always returns the QNAME attribute to
identify the name of the directory entry.

o You cannot use the Change Directory Entry Attributes (QHFCHGAT) AP to changethis
attribute and rename the object. Y ou must use the Rename Directory (QHFRNMDR) or
Rename Stream File (QHFRNMSF) API to rename the object.

QFILSIZE
BINARY (4) UNSIGNED

The size of afile'sdata, in bytes.
This attribute applies only to files. Thus, for directories, it has avalue of zero. If you specify it for a
directory, it isignored.
QALCSIZE
BINARY (4) UNSIGNED

For afile, the alocated size of the filein bytes. The allocated size is the amount of space the file
system actually usesto store thefile.

This attribute applies only to files. Thus, for directories, it has a value of zero. If you specify it for a
directory, it isignored.

QCRTDTTM
CHAR(13)



The date and time of day thefile or directory was created, in CYY MMDDHHMMSS format.

Y ou cannot specify this attribute when creating a directory or file. However, you can specify it on
callsto the Retrieve Directory Entry Attributes (QHFRTVAT) and Change Directory Entry
Attributes (QHFCHGAT) APIs.

QACCDTTM
CHAR(13)

The date and time of day the file or directory was last accessed, in CY Y MMDDHHMMSS format.

Y ou can specify this attribute on any API call, but your file system might ignore it in some APIs.
QWRTDTTM
CHAR(13)

The date and time of day the file or directory was last written to, in CYYMMDDHHMMSS format.

Changestto this attribute may not be supported by all file systems. Refer to the file system's
documentation for any restrictions.

QFILATTR
CHAR(10)

Thetype of item the directory entry isfor. You can specify this attribute on any API call, except as
noted in the following list of character descriptions.

Each character in the QFILATTR attribute has a specific meaning. Characters 6-10 must be set to
blanks. Characters 1-5 must have a value of either O or 1:

0 No
1 Yes

The characters and their meanings are:

1 Read-only file. This applies only to files; it isignored for directories. You can change it
only by using the Change Directory Entry Attributes (QHFCHGAT) API.

When afile has this attribute, the file cannot be accessed in write mode. It cannot be
opened with write or read/write access, it cannot be the target file in a copy stream file
operation, and it cannot be deleted.

2 Hidden file or directory. Y ou can change this attribute by using the Change Directory Entry
Attributes (QHFCHGAT) API.

3 System file or directory. Y ou can change this attribute by using the Change Directory Entry
Attributes (QHFCHGAT) API.

4 Entry isadirectory (not afile). You cannot change this attribute. If you specify it on the
Change Directory Entry Attributes (QHFCHGAT) API, it isignored.

5 Changed file. This applies only to files. It indicates that the file has been changed and is
usually used to determine when afile needs to be moved to safe, permanent storage. It is set
to Yeswhen the fileis created or written to. Y ou can set it to No only by using the Change
Directory Entry Attributes (QHFCHGAT) API.

6-10 Reserved. Must be set to blanks.

QERROR



CHAR(?)

A special attribute that can be returned in the attribute data buffer by the Read Directory
(QHFRDDR) API when it encounters an error in retrieving the attributes of a directory entry. These
values can be returned:

Message ID Error Message Text

CPF1F06  Directory in use.

CPF1F06  Directory in use.

CPF1F08  Damaged directory.

CPF1F26  Fileinuse.

CPF1F28  Damagedfile.

CPF1F62  Requested function failed.

CPF1F71  File system unique exception occurred.

For details about calling the QHFRDDR API from an application, see the Read Directory Entries
(QHFRDDR) API. For details about the interface between the QHFRDDR API and a new file
system, see the Exit Program for Read Directory Entries (QHFRDDR) API.

Other HFS Directory Entry Attributes

File systems can define their own unique attributes for files and directoriesin addition to the standard ones.
Thefile system's documentation defines the attributes names and values, and explains how to access and
use them.

An application can aso define its own directory entry attributes. These attributes are sometimes called
extended attributes. They resemble the extended attributes in the IBM OS/2 file system and supply
additional information relevant to the application. The application must define the names and values of
these attributes.

HFS Attribute Information Table

The HFS APIs use acommon attribute information table to pass all types of directory entry attributes
between the application and the file system. Thus, the information is returned in the same format regardless
of which file system the application is using. Different file systems can use different attributes, so the
contents of the table can vary from one file system to another.

Thefile system must use the attribute information table when communicating with the application. It must
accept and return attributes in that format. For its own use, however, the file system can store the attribute
information in whatever format is most convenient.

The table consists of zero or more attributes and variesin length.

The attribute information table is used by these HFS APIs:
Create Directory (QHFCRTDR)
Retrieve Directory Entry Attributes (QHFRTVAT)
Change Directory Entry Attributes (QHFCHGAT)



Read Directory Entries (QHFRDDR)
Open Stream File (QHFOPNSF)

The attribute information table has three logical parts:
1. Thefirst field specifies the number of attributes defined in the table.

2. The next fields give the offsets to the attributes defined in the table. There is one offset field for
each attribute.

3. Next are groups of fields describing the attributes being defined or retrieved. There is one group of
descriptive fields for each attribute.

The format of the attribute information tableis:

IType |Field
BINARY (4) The number of attributes defined in the table. Thisisthe

number of attributes being defined for or retrieved from
the directory entry.

|Offsets:
IBINARY (4) |The offset to the first attribute
BINARY (4) The offset to the next attribute, if more than oneis being

defined or retrieved. Thisfield is repeated to list the offset
to each attribute being defined or retrieved.

|Description of the first attribute:

IBINARY (4) |Length of attribute name
IBINARY (4) |Length of attribute value
IBINARY (4) |Reserved; currently set to zero
|ICHAR(*) |Attribute name

[CHAR(*) |Attribute valuel

|D@cription of the next attribute (repeated for each attribute after the first):
IBINARY (4) |Length of attribute name
IBINARY (4) |Length of attribute value
IBINARY (4) |Reserved, currently set to zero
|ICHAR(*) |Attribute name

|CHAR(*) |Attribute valuel

Note:

1The attribute value is either a character or the character representation of a binary
field.

HFS Attribute Selection Table

The HFS APIs use a common attribute selection table to choose which directory entry attributes to retrieve
or to make available for reading. The attribute selection table specifies which attributes the file system
should return to the application. The file system must read the table, determine which attributes have been
selected, and return those attributes to the application in the attribute information table.



The attribute selection table variesin length.

The attribute selection table is used by these HFS APIs:

Open Directory (QHFOPNDR)

Retrieve Directory Entry Attributes (QHFRTVAT)
The attribute selection table contains an entry for every attribute the application selects. If a selected
attribute does not exist for the directory entry, no error is signaled. The attribute name is returned, and the
length of the attribute value is zero.
The attribute selection table has three logical parts.

1. Thefirst field specifies the number of attributes specified in the table.

2. Thenext fields give the offsets to the attributes specified in the table. There is one offset field for
each attribute.

3. Next are pairs of fields describing the attributes specified. Thereis one pair of descriptive fields for
each attribute.

The format of the attribute selection tableis:

IType |Field

IBINARY (4) |The number of attributes specified in this table
|Offsets:

IBINARY (4) |The offset to the first attribute

BINARY (4) The offset to the next attribute, if more than oneis

specified. Thisfield isrepeated for each attribute.
|Description of the first attribute:

IBINARY (4) |Length of attribute name

|ICHAR(*) |Attribute name

|Deecription of the next attribute (repeated for each attribute specified):
IBINARY (4) |Length of attribute name

|ICHAR(*) |Attribute name

Top | Hierarchical File System APIs| APIs by category




Hierarchical File System APIs

The HFS APIs alow you to work with files and directories and with the data stored in files. These APIs
perform awide variety of tasksin the following categories:

« File system management APIs help you manage your use of file systemsin general. Thefile
system management APIs are:

O

O

Control File System (QHFCTLFS) alows your applications to issue file-system-specific
commands.

List Registered File Systems (QHFLSTFS) lists the file systems that are registered on your
system and thus available for use through the HFS APIs.

« Directory management APIs allow you to perform general maintenance tasks for directoriesin
hierarchical file systems. The directory management APIs are:

O

O

O

Create Directory (QHFCRTDR) creates a new directory and its directory entry. Except for
the directory being created, all directoriesin the path must exist.

Delete Directory (QHFDLTDR) deletes a single, empty directory.

Rename Directory (QHFRNMDR) renames a single directory.

« Fileinput and output APIsallow you to work with the contents of filesin hierarchical file
systems. The APIswork with stream files, which are files that have varying lengths and no
conventional record structure. Stream files are also called byte-stream files, or simply files. Thefile
input and output APIs are:

O

Change File Pointer (QHFCHGFP) allows you to change the location of the current
read/write position in thefile.

Close Stream File (QHFCLOSF) closes the specified stream file, releasing any locks on the
file or ranges within the file.

Force Buffered Data (QHFFRCSF) forces data from a buffer into nonvolatile

storage.(Nonvolatile storage is any storage area whose contents are not lost when power is
cut off or when the system isloaded.)

Get Stream File Size (QHFGETSZ) returns the current size of a stream file's data, in bytes,
as of the last write operation to thefile.

Lock and Unlock Rangein Stream File (QHFLULSF) allows you to lock and unlock parts
of files.

Open Stream File (QHFOPNSF) opens and optionally creates a single stream file.

Read from Stream File (QHFRDSF) reads a specified number of bytes from a stream file
opened with an access mode of read only or read/write.

Set Stream File Size (QHFSETSZ) setsthe size of astream filein bytes.
Write to Stream File (QHFWRTSF) writes bytes to a stream file.

» File management APIsallow you to perform general maintenance tasks for filesin hierarchical
file systems. The file management APIs are:

O

Copy Stream File (QHFCPY SF) copies an existing stream file into another stream file and
optionally renames the copy.




Delete Stream File (QHFDLTSF) deletes a single stream file. Both the directory entry

associated with the file and all data contained in the file object are deleted.

Move Stream File (QHFM OV SF) moves a single stream file from one directory to another
and optionally changes the file's name. The fil€'s attributes are not changed.

Rename Stream File (QHFRNM SF) renames a stream file in the same path.

« Directory entry information APIs alow you to work with the directory entries for files and
directoriesin hierarchical file systems. The directory entry information APIs are:

O

Change Directory Entry Attributes (QHFCHGAT) changes the attributes of a specified
directory entry for an existing file or directory.

Close Directory (QHFCLODR) closes a specified directory that was opened using the
Open Directory (QHFOPNDR) API.

Open Directory (QHFOPNDR) opens the specified directory so its directory entries can be
read.

Read Directory Entry (QHFRDDR) reads one or more directory entries from a directory
opened with the Open Directory (QHFOPNDR) API.

Retrieve Directory Entry Attributes (QHFRTVAT) retrieves attribute information from a
specified directory entry for adirectory or file.

Top | Hierarchical File System APIs| APIs by category




Control File System (QHFCTLFS) API

Required Parameter Group:

1 Openfilehandle Input Char(16)
2  File system name Input Char(10)
3 Input data buffer Input Char(*)

4 Input data buffer length Input Binary(4)
5 Output data buffer Output Char(*)

6 Output data buffer length Input Binary(4)
7 Length of datareturned Output Binary(4)
8 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Control File System (QHFCTLFS) API transmits commands to your file system to be performed. The
commands must be defined by the file system.

Required Parameter Group

Open filehandle
INPUT; CHAR(16)
The identifier returned when the file was opened with the Open Stream File (QHFOPNSF) API. If
you specify afile system in the file system name parameter, this parameter isignored.
File system name
INPUT; CHAR(10)

Theregistered file system to send the request to. Valid values are:

name The name of the registered file system. The open file handle parameter is ignored.

*HANDLE A special value indicating that the registered file system name is derived from the
file handle provided in the open file handle parameter. Using the handle provides
better performance than using the file system name.

Input data buffer
INPUT; CHAR(*)
The command string to send to the file system. This string differs from file system to file system.
The QHFCTLFS API simply passesit on.
Input data buffer length
INPUT; BINARY (4)



The length of the input data buffer, in bytes.
Output data buffer
OUTPUT; CHAR(*)

The data returned from the file system.
Output data buffer length
INPUT; BINARY (4)

The length of the output data buffer, in bytes.
Length of data returned
OUTPUT; BINARY (4)

The length of the data returned by the file system in the output data buffer, in bytes.

Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D
CPF1FO5 E
CPF1F25 E
CPF1F41 E
CPF1F47 E
CPF1F52 E
CPF1F53 E
CPF1F62 E
CPF1F66 E
CPF1F71E
CPF1F72E
CPF1F73 E
CPF1F74E
CPF1F/5 E
CPF1F81 E
CPF1F82 E
CPF1F83 E
CPF1F85 E
CPF1F87 E
CPF1F97 E

Error Message Text

Directory handle not valid.

File handle not valid.

Severe error occurred while addressing parameter list.
Buffer overflow occurred.

Error code not valid.

Vaue for length of data buffer not valid.

Requested function failed.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.

API specific error occurred.

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.

File system &1 in use.



CPF3C90 E Literal value cannot be changed.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




List Registered File Systems (QHFLSTFS) API

Required Parameter Group:
1 Qualified user space name  Input Char(20)
2 Format name Input Char(8)
3 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The List Registered File Systems (QHFLSTFS) API returnsinformation similar to the Display Hierarchical
File Systems (DSPHFS) command. The QHFLSTFS AP retrieves alist of al file systemsthat are currently
registered and thus available for use through the HFS APIs. The list gives the name, version level, and text
description for each file system.

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The name of the * USRSPC object that is to receive the generated list. The first 10 characters give
the user space hame, and the second 10 characters give the name of the library in which the user
space resides. You can use these specia values for the library name:

*CURLIB Thejob's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The format of the information returned. Y ou must use this format name:

HFS.0100 File system list. For details, see HFSL 0100 Format.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.



HFSL0100 Format

The HFSL 0100 file system list consists of :
o A user area

» A generic header
« Aninput parameter section

o A list data section

The user area and generic header are described in the User Space Format for List APIs. When you retrieve

list entry information from a user space and you want to increase pointer values or add to variables used in
the QUSRTVUS API, you must use the entry size returned in the generic header. The entries can be padded
at the end.

The input parameter and list data sections are specific to the HFSL0100 format. They are described below.
For a detailed description of each item, see Field Descriptions.

Input Parameter Section

| Offset

| Dec | Hex |[Type Information

| 0 | 0 |[CHAR(10) |User space name

| 10 | A [CHAR(10) |User space library name
| 20 | 14 |[CHAR() |Format name

List Data Section

| Offset

| Dec | Hex |Type Information

| 0 | 0 |CHAR(10) |File system name
10 [ A [CHAR() [Verson

| 16 | 10 |CHAR(50) | Text description

Field Descriptions

File system name. The name of the file system when it was registered.
Format name. The format of the returned output.

Text description. The description of the file system specified at registration time.



User spacelibrary name. The name of the library containing the user space.
User space name. The name of the user space that receivesthelist.

Version. The version the file system supports. Thisisin the form VXRxMx, where x represents the version,
release, and modification levels, respectively.

Error Messages

Message | D Error Message Text

CPF1F41 E Severe error occurred while addressing parameter list.
CPF1F52 E Error code not valid.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F81 E API specific error occurred.

CPF3C21 E Format name & 1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx isfrom 01 to FF.
CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library & 3.

CPF9807 E One or more librariesin library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library & 1.

CPF9830 E Cannot assign library & 1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Create Directory (QHFCRTDR) API

Required Parameter Group:

1 Path name Input Char(*)

2 Length of path name Input Binary(4)

3 Attribute information table  Input Char(*)

4 Length of attribute Input Binary(4)
information table

5 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Create Directory (QHFCRTDR) API creates a new directory and its directory entry. Except for the
directory being created, all directoriesin the path must exist.

Required Parameter Group

Path name
INPUT; CHAR(*)
The path name for the new directory. The last element of the path name specifies the directory

being created. For example, specifying /QDLS/A/B creates new directory B and adds a directory
entry for B to directory A infile system QDLS.

Length of path name
INPUT; BINARY (4)

The length of the path name, in bytes.
Attribute information table
INPUT; CHAR(*)
The table specifying the attributes for the new directory. The file system determines which standard

and extended attributes you can specify. For detailed descriptions of the standard attributes and the
format of the table, see HES Directory Entry Attributes.

If no attributes are specified, the file system's defaults are used for required information.
Length of attributeinformation table
INPUT; BINARY (4)

The length of the attribute information table, in bytes. Valid values are:

length Use the attributes specified in the table.
0 Use the system defaults for standard attributes instead of using the attributesin the table.



Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

Message ID
CPF1FO1 E
CPF1FO2 E
CPF1FO4 E
CPF1FO6 E
CPF1FO7 E
CPF1FO8 E
CPF1FO9 E
CPF1F41E
CPF1F42 E
CPF1F43 E
CPF1F44 E
CPF1F46 E
CPF1F48 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPF1F71E
CPF1F72 E
CPF1F73E
CPF1F74 E
CPF1F75 E
CPF1F81E
CPF1F82 E
CPF1F83 E
CPF1F85 E
CPF1F87 E

Error Message Text

Directory name not valid.

Directory not found.

Directory name already exists.

Directory in use.

Authority not sufficient to access directory.
Damaged directory.

Use of reserved directory name not allowed.
Severe error occurred while addressing parameter list.
Attribute information table not valid.

Attribute name not valid.

Attribute value is not valid.

Use of reserved attribute name not allowed.
Path name not valid.

Error code not valid.

No free space available on media.

Reguested function failed.

Mediaiswrite protected.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.
Internal file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.
API specific error occurred.

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.



CPF1F97 E File system &1 in use.
CPF3C90 E Literal value cannot be changed.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Delete Directory (QHFDLTDR) API

Required Parameter Group:

1 Path name Input Char(*)
2 Length of path name Input Binary(4)
3 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Delete Directory (QHFDLTDR) API deletes a single, empty directory. It cannot contain any directory
entries. If thisjob or another job has already opened the directory with a deny none or deny write lock, it
cannot be deleted.

Required Parameter Group

Path name
INPUT; CHAR(*)
The path name of the directory being deleted. The last element of the path name must be a directory
name. Y ou cannot use a one-element path name specifying only the file system.
Path name length
INPUT; BINARY (4)

The length of the path name, in bytes.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF1FOA E Delete directory operation not allowed.
CPF1FO1 E Directory name not valid.

CPF1F02 E Directory not found.

CPF1F06 E Directory in use.

CPF1F07 E Authority not sufficient to access directory.



CPF1F08 E
CPF1F41 E
CPF1F48 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPFIF71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F75E
CPF1F81 E
CPF1F82 E
CPF1F83 E
CPF1F85 E
CPF1F87 E
CPF1F97 E
CPF3C90 E
CPF9872 E

Damaged directory.

Severe error occurred while addressing parameter list.
Path name not valid.

Error code not valid.

No free space available on media.

Requested function failed.

Mediaiswrite protected.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.

API specific error occurred.

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.

File system &1 in use.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Rename Directory (QHFRNMDR) API

Required Parameter Group:

1 Path name Input Char(*)
2 Path namelength Input Binary(4)
3 New directory name Input Char(*)
4 New directory namelength  Input Binary(4)
5 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Rename Directory (QHFRNMDR) API renames a single directory. Y ou cannot rename the directory if
another job has already opened it. (When ajob opens a directory with the Open Directory (QHFOPNDR)
AP, it specifies alock mode. The lock mode specifies what other jobs are alowed to do to the directory
whilethefirst job hasit open.)

Required Parameter Group

Path name
INPUT; CHAR(*)
The path name of the directory being renamed. The last element of the path name must be a
directory name. Y ou cannot use a one-element path name specifying only the file system.
Path name length
INPUT; BINARY (4)

The length of the path name, in bytes.
New directory name
INPUT; CHAR(*)

The new name for the directory. Specify only the directory name. Do not specify the path name.
New directory name length
INPUT; BINARY (4)

The length of the new directory name, in bytes.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.



Error Messages

Message ID
CPF1FO1 E
CPF1FO2 E
CPF1FO3 E
CPF1FO4 E
CPF1FO06 E
CPF1FO7 E
CPF1FO8 E
CPF1FO9 E
CPF1F41E
CPF1F48 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPF1F71E
CPF1F72 E
CPF1F73E
CPF1F74 E
CPF1F75 E
CPF1F81E
CPF1F82 E
CPF1F83 E
CPF1F85 E
CPF1F87 E
CPF1F97 E
CPF3C90E
CPF9872 E

Error Message Text

Directory name not valid.

Directory not found.

New directory name same as old directory name.
Directory name already exists.

Directory in use.

Authority not sufficient to access directory.

Damaged directory.

Use of reserved directory name not allowed.

Severe error occurred while addressing parameter list.
Path name not valid.

Error code not valid.

No free space available on media.

Reguested function failed.

Mediaiswrite protected.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Internal file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.

API specific error occurred.

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.

Filesystem &1 in use.

Literal value cannot be changed.

Program or service program & 1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs | APIs by category




Change File Pointer (QHFCHGFP) API

Required Parameter Group:

1 Openfilehandle Input Char(16)

2 Moveinformation Input Char(6)

3 Distanceto move Input Binary(4)

4 New offset Output Binary(4) Unsigned
5  Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Change File Pointer (QHFCHGFP) API moves the file pointer a specified number of bytes forward or
backward. (Thefile pointer isthe current read/write position in the file.) Thisfile pointer is used by the
Read from Stream File (QHFRDSF) and Write to Stream File (QHFWRTSF) APIs. Y ou can also use the
QHFCHGFP API to determine the size of afile by moving the pointer to the end of thefile.

Required Parameter Group

Open filehandle
INPUT; CHAR(16)

The handle returned when the file was opened with the Open Stream File (QHFOPNSF) API.
Moveinformation
INPUT; CHAR(6)

Additional information specifying the action to take. The 6 characters of this parameter are:

1 The pointer's starting location. The pointer is moved the distance you specify from this
place. For example, specifying O here and 5 in the distance to move parameter moves the
pointer to a new position 5 bytes from the start of the file. Valid values for the starting
location are:

0 The beginning of thefile.

1 The pointer's current location.

2 Theend of thefile. If the distance to move is zero, the new offset parameter returns the
file'ssize.

2-6 Reserved. These characters must be set to blanks.

Distance to move
INPUT; BINARY (4)



The distance to move the pointer from the starting location, in bytes. A negative value parameter
moves the pointer backward in the file. A positive value movesit forward.

The file pointer can be set to any location that can be supported by a 4-byte unsigned value. An
error isreturned only if the application tries to move the pointer to a negative position or an offset
larger than the maximum value that can be stored in a 4-byte unsigned binary humber.

Setting the file pointer beyond the end of the fileis allowed, but it does not change the file's size.
To change thefile's size, see Set Stream File Size (QHFSETSZ) API or Write to Stream File

(QHFWRTSF) API.

For brief examples of how the move information and the distance to move work together, see How
to Move the File Pointer.

New offset
OUTPUT; BINARY (4) UNSIGNED

The new position of the pointer.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

How to Move the File Pointer

The file pointer represents a position or offset within afile where the next read or write is to take place. It
does not actually point to a byte in the file; rather, it points to the gap between bytes. The diagram below
represents a 10-byte file as a series of boxes. Each box represents a byte of datain the file.

BEyte 1 e 3 4 5 & 7 8 g 10
Off=et 0 1 2 o 4 o i K o o 10
A A A
Examole 1 Examnle 2 Examole 3
Examples

1. To movethefile pointer to the beginning of thefile, set the start location in the move information
parameter to zero (the beginning of the file). Set the distance to move to zero, too.

2. Tomovethefile pointer to offset 3 (that is, pointing to the gap between bytes 3 and 4), set the start



location in the move information parameter to zero (the beginning of the file). Set the distance to

moveto 3.

3. To movethefile pointer to the end of the file, set the start location in the move information
parameter to 2 (the end of thefile). Set the distance to move to zero. The new offset parameter
returnsthefile's size.

Error Messages

Message I D
CPF1F2D E
CPF1F2E E
CPF1F25 E
CPF1F28 E
CPF1F4E E
CPF1F4F E
CPF1F41 E
CPF1F52 E
CPF1F62 E
CPF1F66 E
CPF1F71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F82 E
CPF1F87 E
CPF3C90 E
CPFO872 E

Error Message Text

File pointer position not valid.

Range of bytesin filein use.

File handle not valid.

Damaged file.

Move information value not valid.

Distance to move value not valid.

Severe error occurred while addressing parameter list.
Error code not valid.

Requested function failed.

Storage heeded exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Internal file system error occurred.

Not authorized to use command.

Not authorized to object.

Function not supported.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program & 1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Close Stream File (QHFCLOSF) API

Required Parameter Group:

1 Openfilehandle Input Char(16)
2 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Close Stream File (QHFCLOSF) API closes the specified stream file, releasing any locks on the file or
ranges within the file. Any data and directory information waiting to be written is forced to nonvolatile
storage. Nonvolatile storage is any storage area whose contents are not lost when power is cut off or when
the system is |oaded.

Required Parameter Group

Open filehandle
INPUT; Input Char(16)

The handle returned when the file being closed was opened with the Open Stream File
(QHFOPNSF) API.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF1F06 E Directory in use.

CPF1F25 E File handle not valid.

CPF1F28 E Damaged file.

CPF1F41 E Severe error occurred while addressing parameter list.
CPF1F52 E Error code not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediais write protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.



CPFIF71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F82 E
CPF1F87 E
CPF3C90 E
CPF9872 E

Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to abject.

Function not supported.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Force Buffered Data (QHFFRCSF) API

Required Parameter Group:

1 Filestoforce Input Char(16)
2 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Force Buffered Data (QHFFRCSF) API synchronously forces buffered data and directory entry
information out of main storage and into nonvolatile storage for either a specific file or al files opened by a
job. (Nonvolatile storage is any storage area whaose contents are not lost when power is cut off or when the
system isloaded.) Forcing buffered datais similar to closing afile because the datais forced. However,
after aforce operation, the file remains open, and forcing has no effect on locks and read/write positions.

Required Parameter Group

Filestoforce
INPUT; CHAR(16)

The files whose datais being forced. Valid values are:

Openfilehandle  Forcesthe single file that was assigned this handle when opened with the
Open Stream File (QHFOPNSF) API.

Hexadecimal zeros Forcesal files opened by the job.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF1F2B E Write operation not allowed to file opened for read only.
CPF1F2E E Range of bytesinfilein use.

CPF1F25 E File handle not valid.

CPF1F28 E Damaged file.

CPF1F41 E Severe error occurred while addressing parameter list.



CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPFIF71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F82 E
CPF1F86 E
CPF1F87 E
CPF3C90 E
CPF9872 E

Error code not valid.

No free space available on media.

Requested function failed.

Mediaiswrite protected.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Function not supported.

Force all files did not complete successfully.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Get Stream File Size (QHFGETSZ) API

Required Parameter Group:

1 Openfilehandle Input Char(16)

2 Filesize Output Binary(4)
Unsigned

3 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Get Stream File Size (QHFGETSZ) API returns the current size of a stream file's data, in bytes, as of
the last write operation to thefile.

Required Parameter Group

Open file handle
INPUT; CHAR(16)

The file handle returned when the file was opened with the Open Stream File (QHFOPNSF) API.
Filesize
OUTPUT; BINARY (4) UNSIGNED

The number of bytes of datain the file as of the last write operation. This number is either the last
offset written plus 1 or the size set with the Set Stream File Size (QHFSETSZ) API whichever is
higher.

This size can differ from the value of the QFILSIZE attribute, which is the size of thefile as of the
last close operation. In addition, it isthe size of the file€'s data only and does not include the size of
any object information stored by the file system. If your file system stores object or other
information with thefile, the file's allocated size is larger than this size.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text
CPF1F25 E File handle not valid.



CPF1F28 E
CPF1F41 E
CPF1F52 E
CPF1F62 E
CPF1F66 E
CPFIF71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F82 E
CPF1F87 E
CPF3C90 E
CPF9872 E

Damaged file.

Severe error occurred while addressing parameter list.

Error code not valid.

Requested function failed.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Function not supported.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Lock and Unlock Range in Stream File
(QHFLULSF) API

Required Parameter Group:

1 Openfilehandle Input Char(16)
2 Lock information Input Char(6)
3 File offset wherelock begins Input Binary(4)
Unsigned
4 Bytestolock Input Binary(4)
Unsigned
5 File offset where unlock Input Binary(4)
begins Unsigned
6 Bytesto unlock Input Binary(4)
Unsigned
7 Error code 1/0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Lock and Unlock Rangein Stream File (QHFLULSF) API locks or unlocks a range of bytesin an open
stream file. An application can lock part of afileinstead of the entire file to temporarily keep other open
instances from accessing that part.

An open instance is the state of afile having been opened and assigned an open file handle. The same job
can open afile more than once. At each open operation, the fileis assigned a unique open file handle, and
the system treats the resulting state of being open as unique. Locks obtained during one open instance are
honored by other open instances, even when the later open instances occur during the same job.

A locked range can be located anywhere in afile, and locking beyond the end of the fileis allowed. Locks
on arange are independent of the lock mode specified when the file is opened with the Open Stream File
(QHFOPNSF) API.

Once alock is obtained, the specified accessis denied to all other requests to access that range in the file.
The specified accessis denied until the range is explicitly unlocked, the file is explicitly closed by the job,
or thefileisimplicitly closed when the job ends. Closing afile releases all locks on thefile.

If both unlocking and locking are specified on the request, the range is unlocked first. When unlocking is
complete, the rangeis locked. This allows one open instance to keep other open instances from using a
range that must be unlocked and relocked.

Y our application should keep track of the rangesit locks. The QHFLULSF API does not track them, and
HFS does not provide an API that listslocks.



Required Parameter Group

Open file handle
INPUT; CHAR(16)

Thefile handle returned when the file was opened with the QHFOPNSF API.
L ock information
INPUT; CHAR(6)

Additional information specifying the action to take. Valid values for the 6 charactersin this
parameter are:

1 Thelock mode, indicating what access other open instances can have to this range of the file.
Vaid values are:

0 No lock. Use this when requesting an unlock operation only.

2 Deny write. Other open instances have read-only access to the locked range. The range
can overlap or include other ranges locked in deny write mode, but it cannot overlap or
include other ranges locked in deny read/write mode.

4 Deny read/write. Thisis an exclusive lock mode that denies other open instances all
access to the locked range. The range cannot overlap or include any other locked range.

2-6 Reserved. These characters must be blank.

File offset wherelock begins
INPUT; BINARY (4) UNSIGNED

The number of bytes from the beginning of the file where the range to lock begins.
Bytesto lock
INPUT; BINARY (4) UNSIGNED

The number of bytesto lock. If thisisan unlock operation only, use zero for this parameter.
File offset where unlock begins
INPUT; BINARY (4) UNSIGNED

The number of bytes from the beginning of the file where the range to unlock begins.
Bytesto unlock
INPUT; BINARY (4) UNSIGNED

The number of bytesto unlock. If thisisalock operation only, use zero for this parameter.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.



Error Messages

Message | D
CPF1F2E E
CPF1F2F E
CPF1F25 E
CPF1F28 E
CPF1F32 E
CPF1F4B E
CPF1F4ACE
CPF1F4D E
CPF1F41 E
CPF1F52 E
CPF1F62 E
CPF1F66 E
CPF1F71E
CPF1F72E
CPF1F73 E
CPF1F74E
CPF1F82 E
CPF1F87 E
CPF3C0E
CPF9872 E

Error Message Text

Range of bytesinfilein use.

Unlock range of bytesin file failed.

File handle not valid.

Damaged file.

Number of locks on file exceeds limit.

Vaue for number of bytes not valid.

Lock information value not valid.

File offset value not valid.

Severe error occurred while addressing parameter list.
Error code not valid.

Requested function failed.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Function not supported.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Open Stream File (QHFOPNSF) API

Required Parameter Group:

1 Openfilehandle Output Char(16)
2 Path name Input Char(*)
3 Path namelength Input Binary(4)
4 Openinformation Input Char(10)
5 Attribute information table  Input Char(*)

6 Length of attribute Input Binary(4)

information table
7 Action taken Output Char(1)
8 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Open Stream File (QHFOPNSF) API opens and optionally creates a single stream file. Applications
can use the QHFOPNSF API to perform these tasks:

« Open an existing file.

« Open and replace an existing file. (Y ou cannot perform this operation on read-only files)

» Create anew file and open it.

» Return an error if the specified file exists.

« Return an error if the specified file does not exist.

Do not use the QHFOPNSF API to change the directory entry attributes for an existing file. Instead, see
Change Directory Entry Attributes (QHFCHGAT) API.

When the file is opened, the file pointer is set to the first byte of the file (position 0). Subsequent read/write
operations move or increase the value of the file pointer. To move it explicitly, see Change File Pointer

(QHFCHGFP) API.

Required Parameter Group

Open filehandle
OUTPUT; CHAR(16)

Anidentifier made up of arbitrary characters assigned by the APl and used to refer to thefilein
subsequent operations.



Path name
INPUT; CHAR(*)

The path name for thefile. The last element of the path name is the file name.
Path namelength
INPUT; BINARY (4)

The length of the path name, in bytes.
Open information
INPUT; CHAR(10)

Whether or not to open the file, and what the opened fil€'s characteristics are. Each character of this
parameter has a specific meaning. The characters and their meanings are:

1 The action to take if the file already exists. Valid values are:

0 Do not open thefile. Return an error.

1 Open thefile. When an existing fileis opened and the file size is extended, thefile
system might not define the value of the new bytes.

2 Replacethe existing file. Thisis equivalent to deleting and re-creating the file. The
directory entry information is replaced.

2 The action to take if the file does not exist. Valid values are:

0 Return an error.
1 Createthefile.

3 The write-through flag for thefile. Valid values are:

0 Write operations to nonvolatile storage can be asynchronous. (Nonvolatile storageis
any storage area whose contents are not lost when power is cut off or when the system
isloaded.) An asynchronous write operation returns control to the application
immediately, so it can continue the operation. The write operation occurs at alater,
unspecified time.

1 Write operations to nonvolatile storage must be synchronous. A synchronous write
operation returns control to the operation only after the write operation compl etes.

Reserved. This field must be blank.

5 Thefile'slock mode. The lock mode defines what operations other jobs can perform on the
file. Valid values are:

1 Deny None
2 Deny Write
3 Deny Read
4 Deny Read/Write (exclusive)

For a detailed description of lock modes, see Lock and Access Modes.




6 Thefile's access mode, indicating the application's access rightsto the file. Valid values
are:

0 Read Only
1 Write Only
2 Read/Write

For a detailed description of access modes, see Lock and Access Modes.

7 The type of open operation to perform. Valid values are:

0 Normal

1 Permanent. Thefile can be closed in only two ways:. explicitly with the QHFCL OSF
AP, described in Close Stream File (QHFCLOSF) AP, or implicitly when the job

ends. The End Request (ENDRQS) and Reclaim Resource (RCLRSC) commands do
not close the file.

8-10 Reserved. These characters must be blank.

Attribute information table
INPUT; CHAR(*)
The table specifying the attributes of the directory entry for thisfile. The file system determines

which standard and extended attributes you can specify. For detailed descriptions of the standard
attributes and the format of the table, see HES Attribute Information Table.

Use this parameter only when creating a new file or replacing an existing file. It isignored when
opening an existing file.

Length of the attribute infor mation table
INPUT; BINARY (4)

The length of the attribute information table, in bytes, or a special value indicating which attributes
to use. Valid values are;

length Use the attributes contained in the attribute information table.
0 Use the system defaults for standard attributes.

Action taken
OUTPUT; CHAR(1)

One of these values, indicating the action taken by the file system:

1 Thefile aready existed and was not replaced.
2 Thefiledid not exist and was created.
3 Thefile aready existed and was replaced.

Error code



1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Lock and Access Modes

Lock and access modes determine which operations jobs can perform on files. The following sections
describe lock and access modesin detail.

Lock Modes

The lock mode determines the type of access your job lets other jobs have to the file. For example, if other
jobs can continue reading afile but cannot write to it without impeding your job, specify deny write. This
lock mode lets other jobs read the file but keeps them from writing to it.

When you assign alock mode, it applies only to that specific occurrence of the file being opened. The lock
mode you specified when opening a stream file restricts open operations by other jobs only; it does not
restrict additional open operations by the job that locked the file.

A file can be opened multiple times by different jobs as long as the lock modes specified on the open
operations are compatible.

Any locks placed on afile opened with the QHFOPNSF API are removed when the fileis closed with the
Close Stream File (QHFCLOSF) API or when the job ends.

The lock modes you can specify when opening afile are:

Deny Read/Write Accessto thefileisexclusive for the current job. The current job can perform
additional open operations on the file. However, no other job can open the file in any
lock mode until the current job either closesit or ends.

Deny Write Other jobs can read but cannot write to the file. In other words, no other job can open
the file with write access; the file must be closed first, or the current job must end.

Deny Read No other job can read the file until the current job either closesit or ends.

Deny None Other jobs can read and write to the file. However, they cannot delete, rename, move,

or change the attributes of the file until the current job either closesit or ends.

Access Modes

The access mode characteristic determines the type of access your job needs to the file. For example, if
your job requires read/write access and another job has already opened the file with alock mode of deny
none, your open request succeeds. However, if another job opened the file with alock mode of deny write,
your job is denied access.

The following table shows the results of opening and then trying to reopen the same file using all
combinations of access and lock modes:



1st Open
Operation (by
your job) 2nd, 3rd, 4th Open Operation (by other jobs)
Deny
L ock Access |[Read/Write Deny Write Deny Read Deny None
Mode Mode |R/O |RNV |W/O |R/O |RNV |W/O |R/O |R/W |W/O |R/O |R/W |W/O

Dey |RO [N [N [N [N [N [N [N [N [N [N [N |N

ReadWrite[pay [N~ [N~ [N [N [N [N [N [N [N [N [N [N

W/O N [N N N N N N N N N N N

Dey RO [N [N [N [Y [N [N [N [N [N [y [N |N

wite  RWw [N [N [N [N [N [N [N [N [N [¥ [N [N

W/O N [N N N N N Y N N Y [N |N

DeyRead[RO [N [N [N [N [N [Y [N [N [N [N [N [¥

RW [N N [N [N N [N [N N [N [N N _[v

W/IO N [N N N N N N N Y [N N Y

DeyNoreRO [N [N [N |[Y [Y [Y [N N [N [y [Y |¥

RW [N N N [N N [N NN N v ¥ ¥

W/IO N [N [N N N N Y Y |y |y ¥

Key:

Y  Openisalowed
N  Openisdenied
R/W Read/write
R/O Read only
W/O Write only

Error Messages

Message ID Error Message Text

CPF1FO1 E Directory name not valid.

CPF1FO2 E Directory not found.

CPF1FO06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.
CPF1FO8 E Damaged directory.

CPF1F2A E Number of open files exceeds limit.
CPF1F21 E File name not valid.

CPF1F22 E File not found.

CPF1F24 E File name already exists.



CPF1F26 E
CPF1F27 E
CPF1F28 E
CPF1F29 E
CPF1F37 E
CPF1F41 E
CPF1F42 E
CPF1F43 E
CPF1F44 E
CPF1F46 E
CPF1F48 E
CPF1F49 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPFIF71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F75E
CPF1F81 E
CPF1F82 E
CPF1F83 E
CPF1F85 E
CPF1F87 E
CPF1F97 E
CPF3C90 E
CPF9872 E

Filein use.

Authority not sufficient to accessfile.

Damaged file.

Use of reserved file name not allowed.
Fileisaread-only file.

Severe error occurred while addressing parameter list.
Attribute information table not valid.

Attribute name not valid.

Attribute value is not valid.

Use of reserved attribute name not allowed.

Path name not valid.

Open information value not valid.

Error code not valid.

No free space available on media.

Requested function failed.

Mediaiswrite protected.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.

API specific error occurred.

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.

File system &1 in use.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Read from Stream File (QHFRDSF) API

Required Parameter Group:

1 Openfilehandle Input Char(16)
2 Databuffer Output Char(*)

3 Bytestoread Input Binary(4)
4 Bytesactualy read Output Binary(4)
5 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Read from Stream File (QHFRDSF) API reads a specified number of bytes from a stream file opened
with an access mode of read only or read/write.

The read operation starts at the current position of the file pointer, the location in the file where the next
read or write operation occurs. When afile is opened with the Open Stream File (QHFOPNSF) API thefile
pointer is set to the first byte of the file (position 0). Y ou can move the pointer explicitly with the Change
File Pointer (QHFCHGFP) API; see page Change File Pointer (QHFCHGFP) API for details. After the read

operation, the file pointer value isincreased by the number of bytes actually read.

Required Parameter Group

Open filehandle
INPUT; CHAR(16)
The file handle returned when the file was opened with the QHFOPNSF API. Y our application
must have opened the file with an access mode of read only or read/write.
Data buffer
OUTPUT; CHAR(*)

The buffer that holds the data read from the file.
Bytesto read
INPUT; BINARY (4)
The number of bytesto read from thefile, starting at the current file pointer position. The number
must be less than or equal to the length of the data buffer.
Bytes actually read
OUTPUT; BINARY (4)

The number of bytes actually read and returned in the data buffer.

The vaue of this parameter equals the value of the bytes-to-read input parameter unless an error
occurs or the end of thefileis reached. Reaching the end of thefileis not an error. When thefile



pointer reaches the end of the file, the file system stores the bytes actually read in the data buffer
and sets the actual number of bytes read, which in this case isless than the number of bytesto read.
The application can then detect the end of the file by comparing the number of bytes actually read
to the number requested.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF1F2CE Read operation not allowed to file opened for write only.
CPF1F2EE Range of bytesin filein use.

CPF1F25 E File handle not valid.

CPF1F28 E Damaged file.

CPF1F35E Read file operation failed.

CPF1F4B E Value for number of bytes not valid.

CPF1F41 E Severe error occurred while addressing parameter list.
CPF1F52 E Error code not valid.

CPF1F62 E Reguested function failed.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71E Exception specific to file system occurred.

CPF1F72E Internal file system error occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F82 E Function not supported.

CPF1F87 E Missing or damaged exit program & 2.

CPF3C90 E Literal value cannot be changed.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs | APIs by category




Set Stream File Size (QHFSETSZ) API

Required Parameter Group:

1 Openfilehandle Input Char(16)

2 Filesize Input Binary(4)
Unsigned

3 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Set Stream File Size (QHFSETSZ) API sets the size of astream file in bytes. Applications can use the
QHFSETSZ API to increase or decrease the size of a stream file that has been opened with write only or
read/write access.

Existing locks on the file are maintained. If the entire fileislocked, you cannot change its size. If part of the
fileislocked, the new size cannot interfere with the locked part. The description of the file size parameter
discusses these restrictions.

Required Parameter Group

Open filehandle
INPUT; CHAR(16)
The handle returned from the Open Stream File (QHFOPNSF) APl when the file was opened. The
file must have been opened with write only or read/write access.

Filesize
INPUT; BINARY (4) UNSIGNED
The size to make thefile, in bytes. The size cannot start or end within arange of byteslocked in
deny write or deny read/write mode, and it cannot extend beyond alocked range. If alocked range

was not previously within the file, the file cannot be extended to include that range. If alocked
range is within the file, the file cannot be truncated to exclude that range.

When the file size isincreased, the file system may not define the value of the new bytes. When the
file size is decreased, the datain the truncated part of thefileislost.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.



Error Messages

Message | D
CPF1F2B E
CPF1F2E E
CPF1F25 E
CPF1F28 E
CPF1F4B E
CPF1F41 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPF1F71E
CPF1F72E
CPF1F73 E
CPF1F74E
CPF1F82 E
CPF1F87 E
CPF3C0E
CPF9872 E

Error Message Text

Write operation not allowed to file opened for read only.
Range of bytesinfilein use.

File handle not valid.

Damaged file.

Vaue for number of bytes not valid.

Severe error occurred while addressing parameter list.

Error code not valid.

No free space available on media.

Requested function failed.

Mediaiswrite protected.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Function not supported.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Write to Stream File (QHFWRTSF) API

Required Parameter Group:

1 Openfilehandle Input Char(16)
2 Databuffer Input Char(*)

3 Bytestowrite Input Binary(4)
4 Bytes actually written Output Binary(4)
5 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Write to Stream File (QHFWRTSF) API writes bytes to a stream file. The file must have been opened
with an access mode of write only or read/write. If thereis adeny write or deny read/write lock on a byte
range being written to, the function fails.

The write operation starts at the current position of the file pointer, the location in the file where the next
read or write operation occurs. When afile is opened with the Open Stream File (QHFOPNSF) API thefile
pointer is set to the first byte of the file. Y ou can move the pointer explicitly with the QHFCHGFP API; see
Change File Pointer (QHFCHGFP) API for details. After the write operation, the file pointer valueis

increased by the number of bytes written.

Required Parameter Group

Open filehandle
INPUT; CHAR(16)

Thefile handle returned when the file is opened with the QHFOPNSF API.
Data buffer
INPUT; CHAR(*)

The buffer containing the data being written.
Bytestowrite
INPUT; BINARY (4)
The number of bytes being written to the file, starting at the current file pointer position. The
number must be less than or equal to the length of the data buffer.
The application can write beyond the end of thefile. Thisincreasesthe file's size.
Bytes actually written
OUTPUT,; BINARY (4)

The number of bytes actually written to the file. If an error occurs during the write operation, the
value of this parameter can be less than the value of the bytes-to-write input parameter.



Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D
CPF1F2B E
CPF1F2EE
CPF1IF25E
CPF1F28E
CPFIF34 E
CPF1F36 E
CPF1F4B E
CPF1F41E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPFIF71E
CPF1F72E
CPF1F73E
CPFIF74E
CPF1F82 E
CPF1F87 E
CPF3C90 E
CPF9872 E

Error Message Text

Write operation not allowed to file opened for read only.
Range of bytesinfilein use.

File handle not valid.

Damaged file.

Attempted write operation beyond file size limit.

Write file operation failed.

Vaue for number of bytes not valid.

Severe error occurred while addressing parameter list.
Error code not valid.

No free space available on media.

Requested function failed.

Mediaiswrite protected.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Internal file system error occurred.

Not authorized to use command.

Not authorized to object.

Function not supported.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Copy Stream File (QHFCPYSF) API

Required Parameter Group:

1 Sourcefile path name Input Char(*)
2 Sourcefile path name length  Input Binary(4)
3 Copy information Input Char(6)
4  Target file path name Input Char(*)
5 Target file path name length  Input Binary(4)
6 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Copy Stream File (QHFCPY SF) API copies an existing stream file into another stream file and
optionally renames the copy. The existing file being copied is called the source file. The copy, or thefile
that the sourceis copied into, is called the target file.

All file attributes except the revision date and time are copied from the source file to the target file. The file
revision date and time are set to the current date and time. The file creation date and time stay as they
are--that is, the source file's creation date and time.

For restrictions about using the QHFCPY SF API with distributed data management (DDM), see the
information on hierarchical file system support in the Distributed Data M anagement book.

Required Parameter Group

Sour ce file path name
INPUT; CHAR(*)

The path name of the source file (the file being copied). The last element of the path nameisthe
source file name.

The source file must be accessible. No other job can have the source file open with a deny read or
deny read/write lock.

Sour cefile path name length
INPUT; BINARY (4)

The length of the source file path name, in bytes.
Copy information
INPUT; CHAR(6)

The type of copy operation being performed. The 6 characters of this parameter are:



1  Theactiontotakeif the target file already exists. Valid values are:
0 Do not replace the existing file.
1 Replacethe existing file with the copy.
2 Add the copy to the end of the existing file.

2-6 Reserved. These characters must be blank.

Target file path name
INPUT; CHAR(*)

The path name of the target file (the copy or the file that the source is copied into). The last element
of the path name is the target file name.

If the target file has a different name from the source file, it can be in the same path as the source.

Thetarget file must be accessible in write mode. It cannot be aread-only file, and another job
cannot have it open with a deny write or deny read/write lock.

Target file path name length
INPUT; BINARY (4)

The length of the target file path name, in bytes.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF1FO1 E Directory name not valid.

CPF1F02 E Directory not found.

CPF1F06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.
CPF1FO8 E Damaged directory.

CPF1F2A E Number of open files exceeds limit.
CPF1F2E E Range of bytesinfilein use.

CPF1F21 E File name not valid.

CPF1F22 E File not found.



CPF1F23 E
CPF1F24 E
CPF1F26 E
CPF1F27 E
CPF1F28 E
CPF1F29 E
CPF1F34 E
CPF1F35 E
CPF1F36 E
CPF1F37 E
CPF1F41 E
CPF1F42 E
CPF1F43 E
CPF1F44 E
CPF1F46 E
CPF1F48 E
CPF1F51 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPF1F71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F75 E
CPF1F81 E
CPF1F82 E
CPF1F83 E
CPF1F84 E

New file name same as old file name.

File name already exists.

Filein use.

Authority not sufficient to accessfile.

Damaged file.

Use of reserved file name not allowed.
Attempted write operation beyond file size limit.
Read file operation failed.

Write file operation failed.

Fileisaread-only file.

Severe error occurred while addressing parameter list.
Attribute information table not valid.

Attribute name not valid.

Attribute valueis not valid.

Use of reserved attribute name not allowed.

Path name not valid.

Copy information value not valid.

Error code not valid.

No free space available on media.

Requested function failed.

Mediaiswrite protected.

Storage heeded exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.
Internal file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.
API specific error occurred.

Function not supported.

File system name & 1 not found.

Operation across file systems not allowed.



CPF1F85 E Not authorized to file system & 1.

CPF1F87 E Missing or damaged exit program & 2.

CPF1F97 E Filesystem &1 in use.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs | APIs by category




Delete Stream File (QHFDLTSF) API

Required Parameter Group:

1 Path name [nput Char(*)
2 Path namelength Input Binary(4)
3 Error code I/O Char(*)

Default Public Authority: *USE

Threadsafe: No

The Delete Stream File (QHFDLTSF) API deletes asingle stream file. Both the directory entry associated
with thefile and al data contained in the file object are deleted.

Required Parameter Group

Path name
INPUT; CHAR(*)

The path name for the file being deleted. The last element of the path name isthe file name.

Thefile cannot be open or in use, and it cannot be aread-only file.
Path namelength
INPUT; BINARY (4)

The length of the path name, in bytes.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text

CPF1FO1 E Directory name not valid.

CPF1F02 E Directory not found.

CPF1F06 E Directory in use.

CPF1F0O7 E Authority not sufficient to access directory.
CPF1F08 E Damaged directory.



CPF1F21 E
CPF1F22 E
CPF1F26 E
CPF1F27 E
CPF1F28 E
CPF1F37 E
CPF1F41 E
CPF1F48 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPFIF71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F75E
CPF1F81 E
CPF1F82 E
CPF1F83 E
CPF1F85 E
CPF1F87 E
CPF1F97 E
CPF3C90 E
CPF9872 E

File name not valid.

File not found.

Filein use.

Authority not sufficient to accessfile.

Damaged file.

Fileisaread-only file.

Severe error occurred while addressing parameter list.
Path name not valid.

Error code not valid.

No free space available on media.

Requested function failed.

Mediaiswrite protected.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.

API specific error occurred

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.

File system &1 in use.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Move Stream File (QHFMOVSF) API

Required Parameter Group:

1 Sourcefile path name Input Char(*)
2 Sourcefile path name length  Input Binary(4)
3 Target file path name Input Char(*)
4 Target file path name length  Input Binary(4)
5 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Move Stream File (QHFMOV SF) API moves a single stream file from one directory to another and
optionally changes the file's name. The file's attributes are not changed.

The QHFMOV SF API only moves stream filesto a different path. To rename files within a path, see
Rename Stream File (QHFRNMSF) API.

Required Parameter Group

Sourcefile path name
INPUT; CHAR(*)

The path name of the file being moved. The file name is the last element of the path name.

The source file must be accessible. Y ou cannot move afile that is already in use by another job.
Sour ce file path name length
INPUT; BINARY (4)

The length of the source file path name, in bytes.
Target file path name
INPUT; CHAR(*)

The path name designating the new location and, optionally, the new name of the file being moved.
The target file cannot aready exist. It must reside in a different path from the source file. Thefile
name can be the same as or different from the source file name.

Target file path name length
INPUT; BINARY (4)

The length of the target file path name, in bytes.
Error code
1/O; CHAR(*)



The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

Message ID
CPF1FO1 E
CPF1FO2 E
CPF1FO3 E
CPF1FO6 E
CPF1FO7 E
CPF1FO8 E
CPF1F2A E
CPF1F2EE
CPF1F21 E
CPF1F22 E
CPF1F24 E
CPF1F26 E
CPF1F27 E
CPF1F28 E
CPF1F29 E
CPF1F34 E
CPF1F35E
CPF1F36 E
CPF1F41E
CPF1F42 E
CPF1F43 E
CPF1F44 E
CPF1F46 E
CPF1F48 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPF1F71E
CPF1F72 E
CPF1F73E

Error Message Text

Directory name not valid.

Directory not found.

New directory name same as old directory name.
Directory in use.

Authority not sufficient to access directory.
Damaged directory.

Number of open files exceeds limit.

Range of bytesinfilein use.

File name not valid.

File not found.

File name aready exists.

Filein use.

Authority not sufficient to accessfile.

Damaged file.

Use of reserved file name not allowed.
Attempted write operation beyond file size limit.
Read file operation failed.

Write file operation failed.

Severe error occurred while addressing parameter list.
Attribute information table not valid.

Attribute name not valid.

Attribute value is not valid.

Use of reserved attribute name not allowed.

Path name not valid.

Error code not valid.

No free space available on media.

Requested function failed.

Mediais write protected.

Storage heeded exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.
Internal file system error occurred.

Not authorized to use command.



CPF1F74 E
CPF1F75E
CPF1F81 E
CPF1F82 E
CPF1F83 E
CPF1F84 E
CPF1F85 E
CPF1F87 E
CPF1F97 E
CPF3C90 E
CPF9872 E

Not authorized to object.

Error occurred during start-job-session function.
API specific error occurred.

Function not supported.

File system name & 1 not found.

Operation across file systems not allowed.

Not authorized to file system amp; 1.

Missing or damaged exit program & 2.

File system &1 in use.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Rename Stream File (QHFRNMSF) API

Required Parameter Group:

1 Path name Input Char(*)
2 Path namelength Input Binary(4)
3 New filename Input Char(*)
4 New file name length Input Binary(4)
5 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Rename Stream File (QHFRNMSF) API renames a stream file in the same path.

Required Parameter Group

Path name
INPUT; CHAR(*)

The path name for the file being renamed. The last element of the path name is the name of the file.

The file cannot be open or in use.
Path namelength
INPUT; BINARY (4)

The length of the path name, in bytes.
New file name
INPUT; CHAR(*)

The new name for the file. Do not include the path.
The new name must be unique within adirectory. A file with this name cannot already exist in the
target directory.

New file namelength
INPUT; BINARY (4)

The length of the new file name, in bytes.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.



Error Messages

Message ID
CPF1FO1 E
CPF1FO2 E
CPF1FO6 E
CPF1FO7 E
CPF1FO8 E
CPF1F21 E
CPF1F22 E
CPF1F23 E
CPF1F24 E
CPF1F26 E
CPF1F27 E
CPF1F28 E
CPF1F29 E
CPF1F41E
CPF1F48 E
CPF1F52 E
CPF1F61 E
CPF1F62 E
CPF1F63 E
CPF1F66 E
CPF1F71E
CPF1F72 E
CPF1F73E
CPF1F74 E
CPF1F75E
CPF1F81E
CPF1F82 E
CPF1F83E
CPF1F85 E
CPF1F87 E
CPF1F97 E
CPF3C90E
CPFO872 E

Error Message Text

Directory name not valid.

Directory not found.

Directory in use.

Authority not sufficient to access directory.
Damaged directory.

File name not valid.

File not found.

New file name same as old file name.

File name aready exists.

Filein use.

Authority not sufficient to accessfile.

Damaged file.

Use of reserved file name not allowed.

Severe error occurred while addressing parameter list.
Path name not valid.

Error code not valid.

No free space available on media.

Requested function failed.

Mediais write protected.

Storage heeded exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.
Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.
API specific error occurred.

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.

File system &1 in use.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.




API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Change Directory Entry Attributes
(QHFCHGAT) API

Required Parameter Group:

1 Pathname Input Char(*)

2 Path namelength Input Binary(4)

3 Attribute information table  Input Char(*)

4 Length of the attribute Input Binary(4)
information table

5 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Change Directory Entry Attributes (QHFCHGAT) API changes the attributes of a specified directory
entry for an existing file or directory. Aslong as no other job has opened the directory in which the file or
directory islocated with adeny write lock, your application can add, change, or delete directory entry
attributes.

Required Parameter Group

Path name
INPUT; CHAR(*)
The path name of the directory or file whose attributes you want to change. The directory or file

must exist, and the path name must have more than one element. Y ou cannot change the directory
entry attributes of afile system.

Path namelength
INPUT; BINARY (4)

The length of the path name, in bytes.
Attribute information table
INPUT; CHAR(*)
The table specifying the directory entry attributes to change. The file system determines which

standard and extended attributes you can specify. For descriptions of the standard attributes, see
HES Directory Entry Attributes. For the format of the table, see HES Attribute Information Table.

Length of the attribute infor mation table
INPUT; BINARY (4)

The length of the attribute information table.
Error code



1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF1F01 E Directory name not valid.

CPF1F02 E Directory not found.

CPF1F06 E Directory in use.

CPF1F07 E Authority not sufficient to access directory.
CPF1F08 E Damaged directory.

CPF1F21 E File name not valid.

CPF1F22 E File not found.

CPF1F26 E Filein use.

CPF1F27 E Authority not sufficient to accessfile.
CPF1F28 E Damaged file.

CPF1F41 E Severe error occurred while addressing parameter list.
CPF1F42 E Attribute information table not valid.
CPF1F43 E Attribute name not valid.

CPF1F44 E Attribute value is not valid.

CPF1F46 E Use of reserved attribute name not allowed.
CPF1F48 E Path name not valid.

CPF1F52 E Error code not valid.

CPF1F61 E No free space available on media.
CPF1F62 E Requested function failed.

CPF1F63 E Mediais write protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPFIF71E Exception specific to file system occurred.
CPF1F72E Internal file system error occurred.
CPF1F73 E Not authorized to use command.
CPF1F74E Not authorized to object.

CPFIF7/5E Error occurred during start-job-session function.
CPF1F81 E API specific error occurred.

CPF1F82 E Function not supported.

CPF1F83 E File system name & 1 not found.

CPF1F85 E Not authorized to file system & 1.



CPF1F87 E Missing or damaged exit program & 2.

CPF1F97 E File system &1 in use.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Close Directory (QHFCLODR) API

Required Parameter Group:

1 Opendirectory handle Input Char(16)
2 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Close Directory (QHFCLODR) API closes a specified directory that was opened using the Open
Directory (QHFOPNDR) API. Once adirectory is closed, the open directory handle that refersto it isno
longer valid. If aprocess ends without closing directories, they are closed automatically. However, it is best
if the application closes directories that it no longer needs so that other applications have free access to
them.

Required Parameter Group

Open directory handle
INPUT; CHAR(16)

The directory handle returned by the QHFOPNDR API when the directory was opened.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF1FO5 E Directory handle not valid.

CPF1F06 E Directory in use.

CPF1F08 E Damaged directory.

CPF1F41 E Severe error occurred while addressing parameter list.
CPF1F52 E Error code not valid.

CPF1F62 E Requested function failed.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPFIF71E Exception specific to file system occurred.

CPF1F72E Internal file system error occurred.



CPF1F73 E
CPF1F74 E
CPF1F82 E
CPF1F87 E
CPF3C90 E
CPFO872 E

Not authorized to use command.

Not authorized to abject.

Function not supported.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Open Directory (QHFOPNDR) API

Required Parameter Group:

1 Directory handle Output Char(16)
2 Path name Input Char(*)
3 Path namelength Input Binary(4)
4 Openinformation Input Char(6)
5 Attribute selection table Input Char(*)
6 Length of attribute selection Input Binary(4)
table
7 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Open Directory (QHFOPNDR) API opens the specified directory so its directory entries can be read.
At open time, the directory pointer pointsto the first entry in the directory. As directory entries are read
using the Read Directory Entries (QHFRDDR) AP, the directory pointer advances so that the next entries
will be read during future read operations.

Opening adirectory can help streamline information retrieval and protect the directory. For example, you
might open a directory to:
« Improve performance when obtaining information from more than one directory entry.

« Prevent the directory from being renamed or deleted. A deny none lock mode lets other processes
read or change the contents of the directory, but keeps them from renaming or deleting the
directory itself.

« Prevent the contents of the directory from being changed. A deny write lock mode keeps other
processes from adding to or otherwise changing the open directory's contents. Directories and files
cannot be created in the directory until it is closed.

Required Parameter Group

Directory handle
OUTPUT; CHAR(16)
An identifier made up of arbitrary characters returned by the APl and used to identify the directory
for subsequent operations, such as reading and closing.
Path name
INPUT; CHAR(*)

The path name for the directory being opened. The path and directory must exist.



For the directory name (the last element of the path name), you can use either a specific name or a
generic name.

If the last element in the path is a specific name, that directory is opened and all directory entriesin
the directory are available for subsequent read operations.

If the last element in the path is a generic name, it identifies the directory entries to make available
for subsequent read operations; the previous name in the path specifies the directory to open.
Directory entries that are in the directory to open and that match the generic name are made
available.

Y ou can use these special matching charactersin generic names:

*  An asterisk stands for zero or more characters. Y ou can use it anywhere in a string.

? A question mark at the end of a string represents zero or one character. A question mark
embedded in a string represents one character.

For example, /QDLS/BUSY/DEPT* indicates al directories and files that have names beginning
with DEPT and that are located in directory BUSY in the QDL Sfile system.

Path name length
INPUT; BINARY (4)

The length of the path name, in bytes.
Open information
INPUT; CHAR(6)

Information about the type and mode of the open operation. The characters and their meanings are:

1 Thelock mode, indicating what other jobs can do to the directory. Valid values are:

0 No lock. Other jobs can read, change, rename, or delete the directory.

1 Deny none. Other jobs can read or change directory entries, but they cannot rename or
delete the directory.

2 Deny write. Other jobs can read the contents of the directory, but they cannot change,
rename, or deleteit.

2  Thetype of open operation to perform. Valid values are:

0 Normal.

1 Permanent. The directory can be closed in only two ways, explicitly by the Close
Directory (QHFCLODR) AP, or implicitly, when the job ends. End request and reclaim
resource operations do not close the directory.

3-6 Reserved. These characters must be blank.

Attribute selection table
INPUT; CHAR(*)

The table specifying which attributes are available when reading directory entries. The file system
determines which standard and extended attributes you can specify. For detailed descriptions of the



standard attributes, see HES Directory Entry Attributes. For the format of the table, see HFS
Attribute Selection Table.

This parameter lets you choose which attributes of the directory entries are available for reading
when the directory is open. It does not determine which directory entries can be read. Use the path
name parameter to select the directory entries you want to read.

Length of the attribute selection table
INPUT; BINARY (4)

The length of the table, in bytes, or a special value indicating which attributes are made available.
Valid values are:

length The attribute selection table parameter contains the attributes the application wants to

make available.

0 Only the standard attribute QNAME is available.
-1 All attributes are available.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID
CPF1FO1 E
CPF1FO2 E
CPF1FO6 E
CPF1FO7 E
CPF1FO8 E
CPF1F41E
CPF1F43 E
CPF1F45 E
CPF1F48 E
CPF1F49 E
CPF1F52 E
CPF1F62 E
CPF1F66 E
CPF1F71E
CPF1F72 E
CPF1F73E

Error Message Text

Directory name not valid.

Directory not found.

Directory in use.

Authority not sufficient to access directory.

Damaged directory.

Severe error occurred while addressing parameter list.
Attribute name not valid.

Attribute selection table not valid.

Path name not valid.

Open information value not valid.

Error code not valid.

Reguested function failed.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Internal file system error occurred.

Not authorized to use command.



CPF1F74 E
CPF1F75E
CPF1F81 E
CPF1F82 E
CPF1F83 E
CPF1F85 E
CPF1F87 E
CPF1F97 E
CPF3C90 E
CPF9872 E

Not authorized to abject.

Error occurred during start-job-session function.

API specific error occurred.

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.

File system &1 in use.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Read Directory Entries (QHFRDDR) API

Required Parameter Group:

1 Opendirectory handle Input Char(16)
2 Databuffer Output Char(*)
3 Databuffer length Input Binary(4)
4 Number of directory entries  Input Binary(4)
to read
5 Number of directory entries  Output Binary(4)
read
Length of data returned Output Binary(4)
7 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Read Directory Entries (QHFRDDR) API reads one or more directory entries from a directory opened
with the Open Directory (QHFOPNDR) API. The QHFOPNDR API's path name parameter determines
which directory entries are read. The QHFOPNDR API's attribute selection table determines what
information is returned for each directory entry. For details about the QHFOPNDR API, see Open

Directory (QHFOPNDR) API.

Y ou must open a directory before reading from it. The open directory handle returned by the QHFOPNDR
AP isneeded as input to the QHFRDDR API.

The QHFRDDR API reads directory entries sequentially. Each time the QHFRDDR API is called, the
directory pointer is advanced by the number of directory entries returned in the data buffer. Subsequent
calls of the QHFRDDR API return additional directory entries, until there are no more to return.

Required Parameter Group

Open directory handle
INPUT; CHAR(16)

The directory handle obtained when the directory was opened with the QHFOPNDR API.
Data buffer
OUTPUT; CHAR(*)

The buffer to hold the directory entry information returned. For the format, see Data Buffer.

Data buffer length
INPUT; BINARY (4)

The length of the data buffer described in Data Buffer. The buffer must be large enough to hold the
requested attributes for at |east one directory entry. If it istoo small, the read operation fails and no



dataisreturned. However, the length of data returned parameter contains the total number of bytes
the file system tried to return for the next directory entry. The application should increase the data
buffer sizeto at least that number and try the request again.

Number of directory entriesto read
INPUT; BINARY (4)

The number of directory entries to place in the data buffer.
Number of directory entriesread
OUTPUT,; BINARY (4)

The number of directory entries actually placed in the data buffer. The value of thisfield is 0 when
there are no more directory entriesto read.

Length of data returned
OUTPUT; BINARY (4)

If the read operation is successful, this field contains the total number of bytes returned in the data
buffer. If the read operation is not successful because the data buffer is not large enough to hold at
least one entry, this field contains the number of bytes required to hold the requested attributes for
the next directory entry.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Data Buffer

The data buffer holds the information returned about each directory entry. What information is returned
depends mostly on what attributes are selected in the attribute selection table when the directory is opened
with the QHFOPNDR API. However, the QNAME attribute is returned with every directory entry even
though it is never specified in the attribute selection table. Thus, the data buffer always contains at least one
piece of information about each directory entry found, its name. If the directory entry exists but cannot be
read because of damage or alock by another process, two pieces of information are returned: the name,
given in the QNAME attribute, and the error that occurred, given in the QERROR attribute. For details
about these attributes, see HES Directory Entry Attributes.

The data buffer has three logical parts:
1. Thefirst field specifies the number of directory entries returned.

2. Thenext fields give the offsets to the directory entries returned. There is one offset field for each
directory entry.

3. Next are the attribute information tables for the directory entries returned. There is one attribute
information table for each directory entry.

The following table shows the format of the data buffer. The offset fields are repeated until the offsets for
al directory entries are listed; the attribute information table for each directory entry is repeated in the same

way.
The format of the data buffer is:



IType |Field

IBINARY (4) INumber of directory entries returned.
IBINARY (4) |Offset to the first directory entry.

BINARY (4) Offset to the next directory entry, if more than

one exists. Thisfield is repeated for each
directory entry returned.

Directory entry

Attribute information table for the first directory
entry.

Directory entry

Attribute information table for the next directory
entry, if more than one exists. Thisfield is
repeated for each directory entry returned.

Note: Each directory entry in the table is represented by the standard attribute
information table described in HES Attribute Information Table. Offsets within the
directory entries are from the beginning of the directory entry, not from the
beginning of the data buffer.

Error Messages

Message ID
CPF1FO5 E
CPF1FO8 E
CPF1F4A E
CPF1F41E
CPF1F47 E
CPF1F52 E
CPF1F53 E
CPF1F62 E
CPF1F66 E
CPF1F71E
CPF1F72 E
CPF1F73E
CPF1F74E
CPF1F82 E
CPF1F87 E
CPF3C90E
CPF9872 E

Error Message Text

Directory handle not valid.

Damaged directory.

Vaue for number of directory entries not valid.
Severe error occurred while addressing parameter list.
Buffer overflow occurred.

Error code not valid.

Vaue for length of data buffer not valid.

Requested function failed.

Storage heeded exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Internal file system error occurred.

Not authorized to use command.

Not authorized to object.

Function not supported.

Missing or damaged exit program & 2.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1




Top | Hierarchical File System APIs| APIs by category




Retrieve Directory Entry Attributes
(QHFRTVAT) API

Required Parameter Group:

1 Pathname Input Char(*)

2 Path namelength Input Binary(4)

3 Attribute selection table Input Char(*)

4  Length of attribute selection Input Binary(4)
table

5 Attributeinformation table  Output Char(*)

6 Length of attribute Input Binary(4)
information table

7 Length of datareturned Output Binary(4)

8 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The Retrieve Directory Entry Attributes (QHFRTVAT) API retrieves attribute information from a specified
directory entry for adirectory or file. The QHFRTVAT API might be faster and more efficient than
explicitly opening, reading, and then closing the directory, even if your file system automatically opens and
closes the directory during its retrieve operation.

Y ou can use the QHFRTVAT API to determine whether a specific directory entry exists, as well asto get
one or more attributes of a specific directory entry. The QHFRTVAT API works with only one directory
entry at atime. To retrieve the attributes of several directory entries at once, see Read Directory Entries

(QHFRDDR) API and Open Directory (QHFOPNDR) API.

Required Parameter Group

Path name
INPUT; CHAR(*)
The path name of the directory or file to retrieve attributes from. The directory or file must exist,

and the path name must have more than one element. Y ou cannot retrieve directory entry attributes
for afile system.

Path name length
INPUT; BINARY (4)

The length of the path name, in bytes.
Attribute selection table
INPUT; CHAR(*)



The table specifying the attributes to be returned in the attribute information table. The file system
determines which standard and extended attributes you can specify. For descriptions of the standard
attributes, see HFS Directory Entry Attributes-. For the format of the table, see HFS Attribute

Selection Table.

Length of the attribute selection table
INPUT; BINARY (4)

The length of the attribute selection table, in bytes, or a special value indicating which attributes are
returned. Valid values are:

length The attribute selection table parameter contains the attributes the application wants to
make available.

0 No attributes are returned. Y ou can use this to see whether the directory entry exists.
-1 All attributes are returned.

Attributeinformation table
OUTPUT; CHAR(*)

The directory entry information returned, as specified in the attribute selection table parameter. For
the format of the table containing the returned information, see HES Attribute Information Table.

Length of the attribute information table
INPUT; BINARY (4)

The length of the attribute information table. The table must be large enough to hold all the
attributes requested. If it istoo small, the retrieve operation fails and no attribute information is
returned; however, the length of data returned parameter contains the number of bytesthefile
system tried to return for that directory entry. The application should increase the attribute
information table's length to at |east that size and try the request again.

Length of datareturned
OUTPUT,; BINARY (4)

If the retrieve operation is successful, this field contains the total number of bytes returned in the
attribute information table.

If the retrieve operation fails because the attribute information table is too small to hold all of the
attributes requested, this field contains the number of bytes required to hold the requested
attributes.

Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text
CPF1FO1 E Directory name not valid.



CPF1F02 E
CPF1F06 E
CPF1F0O7 E
CPF1F08 E
CPF1F21 E
CPF1F22 E
CPF1F26 E
CPF1F27 E
CPF1F28 E
CPF1F41 E
CPF1F42 E
CPF1F43 E
CPF1F45 E
CPF1F47 E
CPF1F48 E
CPF1F52 E
CPF1F62 E
CPF1F66 E
CPFIF71E
CPF1F72 E
CPF1F73 E
CPF1F74 E
CPF1F75E
CPF1F81 E
CPF1F82 E
CPF1F83 E
CPF1F85 E
CPF1F87 E
CPF1F97 E
CPF3C90 E
CPF9872 E

Directory not found.

Directory in use.

Authority not sufficient to access directory.
Damaged directory.

File name not valid.

File not found.

Filein use.

Authority not sufficient to accessfile.

Damaged file.

Severe error occurred while addressing parameter list.
Attribute information table not valid.

Attribute name not valid.

Attribute selection table not valid.

Buffer overflow occurred.

Path name not valid.

Error code not valid.

Requested function failed.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.
Interna file system error occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.
API specific error occurred.

Function not supported.

File system name & 1 not found.

Not authorized to file system & 1.

Missing or damaged exit program & 2.

File system &1 in use.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




File System Registration APIs

Thefile system registration APIs alow you to create support for the HFS APIs so that application
programmers can use them with new hierarchical file systems you are creating or installing.

See the following to understand how to use the HFS APIs and exit programs with a new hierarchical file
system.

« New File Systems

« Enabling Your File System to HFS

« How HFS Support Processes a File System Job
» Standard HFS API and Exit Program Functions

Thefile system registration APIs are for registering and deregistering file system to HFS. The APIs are:

« Deregister File System (QHFDRGFS) reverses file system registration, preventing applications
from using the file system through the HFS APIs.

« Reqister File System (QHFRGFS) registers afile system with the HFS APIs so that application
programmers can use the APIs to work with the file system.

The HFS exit programs support the HFS APIs. Y ou must create exit programs to support these APIs.

The operation parameters used in these exit programs are followed by an abbreviation, the function name.
For example, in the Start Job Session exit program, theinitialize (INIT) function is being performed. The
function names are passed to the HFS APl so that the file system knows which operation is being
performed.

The HFS exit programs are:
« Change Directory Entry Attributes (QHFCHGAT) API

« Change File Pointer (QHFCHGFP) AP
o Close Directory (QHFCLODR) API

o Close Stream File (QHFCLOSF) AP

« Control File System (QHFCTLFES) AP
« Copy Stream File (QHFCPY SF) API

« Create Directory (QHFCRTDR) API

» Delete Directory (QHFDLTDR) AP

o Delete Stream File (QHFDLTSF) API

« End Job Session

«» Force Buffered Data (QHFFRCSF) API
o Get Stream File Size (QHFGETSZ) API
« Lock and Unlock Rangein Stream File (QHFLUL SF) API
« Move Stream File (QHFMOV SF) API

« Open Directory (QHFOPNDR) AP

» Open Stream File (QHFOPNSF) API




» Read Directory Entries (QHFRDDR) AP

» Read from Stream File (QHFRDSF) API

« Rename Directory (QHFRNMDR) API

« Rename Stream File (QHFRNMSF) AP

 Retrieve Directory Entry Attributes (QHFRTVAT) API

o Set Stream File Size (QHFSETSZ) API
« Start Job Session
o Writeto Stream File (QHFWRTSF) API

Hierarchical File System APIs| APIs by category




New File Systems

Two types of tools are necessary to use your own file system with the HFS APIs. Y ou must supply these
tools:

« Exit programs that do the work for the HFS APIs. Y ou must provide these exit programs. Exit
programs enable application programs to use the specific HFS APIs to work with files and
directoriesin your file system. The HFS Exit Program--Scenario that follows shows how an
application creates a directory in your file system using an exit program.

o Programsthat call the Register File System (QHFRGFS) and Deregister File System (QHFDRGFS)
APIs. Registration makes your file system and its exit programs accessible to application programs
using the HFS APIs. Deregistration lets you remove afile system from use.

HFS Exit Program--Scenario

Most exit programs correspond directly to APIs. For example, to allow applications to create directoriesin
your file system, you must write an exit program that supplies the Create Directory function (CRTDR) for
the Create Directory (QHFCRTDR) API. When an application calls an HFS API, the system routes the call
to the appropriate exit program in the appropriate file system, according to the API's function and the file
system name specified in the API's path-name parameter.

Note: The abbreviation CRTDR in the following illustration is the function name. See HFES Exit Programs
for more information about function names.

Creating a Directory in Your File System



Annlication

FPathMame = QDL DIRA
CHFCRTDR (PathMame, ...

Create Directory (QHFCRTDR) API

FileSystem = ‘QDLS

Function = '"CHTDR'

FathMame = "'DIRA’

ExitProgram = (QDLS CHTDR exit Program)
Call ExitProgram (Function, PathMame, .

Create Directory (QHFCRETDR) AFI

Yalidate the path namse.
Verily that directory DIRA does not already exist
Create directory DIRA.

Top | Hierarchical File System APIs| APIs by category




Enabling Your File System to HFS

To make your file system available for use with the HFS APIs, take these steps:

1. Read Standard HFS API and Exit Program Functions carefully. It describes which functions the
HFS APIs perform for you and which functions your file system's exit programs must perform.

2. Defineyour own file and directory objects. These objects can be any of the following:

o 0OS/400 abjects, such as user spaces and user indexes
o Objects on external devices attached to your i Series server
o Objects on other systems that are attached to your i Series server by communications lines
Y our file system controls the structure, format, and location of the file and directory objects it
defines. It also controls security and authority for those abjects.
3. Create these programs:

o A program or command to call the Register File System (QHFRGFS) API, which enrolls
the file system for use with the HFS APIs.

o A Start Job Session exit program, which is called the first time ajob triesto use the file
system. See Start Job Session Exit Program for details.

o An End Job Session exit program, which is called at job end to perform job cleanup. See
End Job Session Exit Program for details.

o An exit program for every HFS APl function that you want your file system to support. For
alist of exit programs you can supply, seethelist of qualified exit program names
parameter in the Register File System (QHFRGFES) API. If your file system iswrittenin a
high-level language that supports a variable number of input parameters, you can specify
the same exit program for more than one function.

Y our file system does not need to support every function. However, if you supply an Open
Stream File or Open Directory function to support the QHFOPNSF or QHFOPNDR API,
you must supply the corresponding close function.

4. Register your file system with HFS, specifying the exit programs you want to make available. See
Register File System (QHFRGFS) API for complete instructions.

5. Givethefile system's users authority to the Start Job Session Exit Program. Authority to this
program gives users authority to the file system as awhole.

6. Givethefile system's users authority to the HFS APIs that you support with exit programs and that
you want to make public. A user needs * USE authority to an API to call the API from a program.

7. Providethe file system's users with compl ete documentation, so they know which HFS APIs are
supported, and whether any of the HFS APIs work differently from the way they are described in
thisinformation.

Top | Hierarchical File System APIs| APIs by category




How HFS Support Processes a File System Job

0S/400 HFS support and your file system work together to perform the function that an application
requests when it calls an HFS API. HFS support isthe part of the system that managesthe HFS APIsas a
group and passes information between the HFS APIs and the file system.

First Call to File System

The first time an application or job specifies a particular file system in acall to an HFS API, HFS support
does the following:

1. Checksthejob's authority to the file system by checking its authority to the Start Job Session exit
program. The job must have at least * USE authority to the Start Job Session exit program.

2. Obtains a shared read (* SHRRD) lock on the Start Job Session exit program. This prevents other
jobs from deregistering the file system while the current job isusing it. Thislock remainsin effect
until the current job ends.

3. Callsthe Start Job Session exit program, supplying the file system's name on the call in case thefile
system has been renamed during installation.

The Start Job Session exit program performs any setup that the file system requires and returns a
job handle to HFS support. The job handle is an arbitrary identifier that HFS support passes to the
file system to help the file system keep track of thisjab. If the job calls another HFS API for this
file system, HFS support passes this job handle as a parameter. The handle istreated asif it were a
pointer, but it does not have to contain pointer data.

4. Callsthefile system to complete the job's request by performing the work for the API.

Subsequent Calls to File System

On subsequent calls to the file system, HFS support retrieves the job handle for that file system and calls
the file system exit program for the appropriate API. The file system can use the Start Job Session exit
program only at the start of ajob.

End of Job

When 0S/400 work management notifies HFS support that the job has ended, HFS support checksto see if
the job has left any files or directories open. If it has, HFS support calls the file system to close them. HFS
support then calls the End Job Session exit program to clean up any work areas used by the job. Your file
system can use the End Job Session exit program to destroy temporary spaces and remove outstanding
locks that were created during the job.

After the End Job Session exit program is run, HFS support unlocks the Start Job Session exit program,
which was locked when the job first called the file system through an HFS API. The file systemisno
longer in use and can be deregistered.



File System Job--Scenario

When the Start Job Session exit program is called, the file system could create a user spacein thejob's
QTEMP library and return a space pointer to that user space as the job handle. On subsequent callsto HFS
APlsfor that file system, HFS support would pass that space pointer to the file system as the job handle.
When the job ends, the file system's End Job Session exit programis called. The file system could use that
exit program to delete the user space.

File System--Error Messages

The exceptions that file systems are allowed to use are listed after each of the HFS exit programs. When a
file system returns an alowed exception after acall from an HFS API, HFS support either sends the
exception to the application or fillsin the error code.

Top | Hierarchical File System APIs| APIs by category




Standard HFS API and Exit Program Functions

The HFS APIs and the file system's exit programs share the responsibility for validating input data,
performing the functions requested by the application, reporting errors, and so on. The two sections that
follow describe the standard functions that the HFS APIs perform for you and the standard functions that
your exit programs must perform. A few APIs perform additional functions, and afew exit programs have
additional requirements; these additions are listed at the end of each exit program description.

Standard HFS API Functions

This section describes the functions that the HFS APIs and HFS support perform for your file system.
When an application callsan HFS API, it appears to the application that the HFS API performs all the
resulting functions. In reality, the APl and HFS support perform only some of the functions. Thefile
system exit program performs the rest.

Use thisinformation to plan and create exit programs to support the HFS APIsin new file systems. Y ou do
not need this information to use the HFS APIs in your applications.
In general, every HFS API performs these functions for your file system:

« Automatically callsthefile system's Start Job Session exit program the first time ajob refersto the
file system in acall to an HFS API. For a detailed explanation, see Start Job Session Exit Program.

« Processes the path name parameter as follows:
o Extracts the file system name from the path name parameter.
o Verifiesthat the file system isregistered for use with the HFS APIs.

o Passes the part of the path name that follows the file system name to the file system. For
example, if the path name received from the application is/QDLS/A/BI/C, then /A/B/C is
passed to file system QDLS.

There is one exception to this: The Open Directory (QHFOPNDR) API allows jobs to open
the directory representing the file system itself. In that case, the path name consists of a
slash and asingle element, such as/QDLS, and the API passes just the slash (/) to thefile
system.

o Recomputes the length of the path name by subtracting the length of the extracted file
system name, and passes the new length to the file system.

o Verifiesthat thereisat least one valid byte (the leading /) in the rest of the path name
parameter.

« Verifiesthat adirectory or file handle passed from the application to the API isvalid, and looks up
the corresponding directory or file handle to pass from the API to the file system.

« Verifiesthat APl parameters contain allowable values, and that reserved portions are set to blanks.
APl parametersinclude all fixed-length character fields like the open information parameter of the
Open Stream File (QHFOPNSF) API.

« Verifiesthat length parameters contain allowable values. These length parameters are verified:

o Length of attribute selection table



o Length of attribute information table
o Length of data buffer to read directory entries into
Verifiesthat numeric or counting parameters contain avalid value. These parameters are verified:

o Number of directory entriesto read
o Number of bytesto read
o Number of bytesto write

Callsthe appropriate file system exit program to perform the operation.

Monitors for valid exceptions from the file system, and either returns these to the application or
maps them into an error code, as the application requestsin the API's error code parameter.

Signals successful completion of the operation to the application by not returning any errors.

Returns control to the application.

Standard HFS Exit Program Requirements

In general, every exit program you provide to support an HFS APl must perform these functions:

Verifies that the application has authority to perform the request ed operation on the specified
objects.

Verifiesthat parameter values meet the file system's criteria.

Verifiesthat directories and files named in the path name parameter either exist in the file system
or, during operations like create and rename, that new names conform to the file system’'s naming
conventions.

The path name that the API passes to the file system does not include the file system's name but
only therest of the path name. If an application calls the Open Directory (QHFOPNDR) API and
passes a path name specifying only the directory consisting of the file system, such as/QDLS, the
API passes only the slash (/) to the file system.

Maintains APl INPUT parameters as is, without changing their contents. If the file system must
change these parameters, it must move them to another storage location. INPUT parameters must
have the same value on entry to the file system exit program as on exit from the exit program. The
file system can change OUTPUT parameters when the requested operation succeeds.

Accepts attributes in the attribute selection and information tables used by HFS support, validates
the data contained in the tables, and returns the appropriate data in the appropriate format.

HFS support uses two common formats for passing attribute information between the application
and the file system. These formats are described in AES Attribute Selection Table and HFS

Attribute Information Table.

Performs the requested operation and returns any requested status information or data to the API.

If the operation does not succeed, returns an exception describing the error to the API.



The file system should return only the exceptions defined for the API because HFS support
monitors only for those messages. If the file system sends any other message, the message I nternal
file system error occurred is returned to the application.

If the file system needs to send its own messages, it can use the message Exception specific to file
system occurred defined for each API. Thefile system's message ID is sent asinsert data.

Top | Hierarchical File System APIs| APIs by category




Deregister File System (QHFDRGFS) API

Required Parameter Group:

1 Filesystem name Input Char(10)
2 Error code /10 Char(*)
Threadsafe: No

The Deregister File System (QHFDRGFS) API removes afile system and its functions from HFS support
so that applications can no longer work with the file system through the HFS APIs. Y ou can use the
QHFDRGFS API to keep users from working with afile system while you upgrade to a new release.

If there are open files or directories in the file system being deregistered, HFS support automatically closes
them before deregistering the file system. See End Job Session Exit Program for details.

Required Parameter Group

File system name
INPUT; CHAR(10);

The name of the file system being deregistered.
Note: Y ou cannot deregister the document library services (DLS) file system, QDLS.

For deregistration to succeed, the file system cannot be in use. If ajob that called the file system is
not yet complete, the file system's Start Job Session exit program is still locked on behalf of that
job, and the file system is till in use.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF1F41 E Severe error occurred while addressing parameter list.
CPF1F52 E Error code not valid.

CPF1F81 E API specific error occurred.

CPF1F85 E Not authorized to file system &1.

CPF1F87 E Missing or damaged exit program & 2.



CPF1F9B E
CPF1F92 E
CPF1F97 E
CPF1F98 E
CPF3C90 E
CPFO872 E

Reregister or deregister file system failed.

File system &1 not registered.

File system &1 in use.

Registration or deregistration cannot be done now.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Register File System (QHFRGFS) API

Required Parameter Group:
1 Filesystem name Input Char(10)
2 Version Input Char(6)
3 Registration information Input Char(6)
4 List of qualified exit program Input Array of

names Char(20)

5 File system description Input Char(50)
6 Error code /0 Char(*)

Threadsafe: No

The Register File System (QHFRGFS) API adds a new file system to OS/400 HFS support and records the
APIsthat it supports so they are accessible to user applications. Y ou must register afile system before users
can access it with the HFS APIs.

Authorities and Locks

Exit Program Authority
*USE or higher for all exit programs being registered.

File System Authority

For information about users authority to use the file systems you register, see User Authorizations
and L ocksfor File System Functions.

Required Parameter Group

File system name
INPUT; CHAR(10)

The name of the file system being registered. The name can be 1-10 characterslong. The first
character must be a capital letter other than Q (Q is reserved for IBM-supplied file systems). The
remaining characters can be any combination of capital letters (A-Z) and numbers (0-9). The name
cannot contain lowercase letters (a-z), special characters, or quotation marks.

The file system name determines where calls to HFS APIs are sent. For example, acall that
contains a path name beginning with NEWS, such as/NEWS/DIRA/FILEL, is sent to the NEWS
file system.

Note: IBM preregisters the document library services (DLS) file system, QDLS. Y ou cannot
register or deregister it yourself.

Version



INPUT; CHAR(6)

The version indicates the level of HFS the file system chooses to use. Use the format VXRxMx
where x stands for the version, release, and modification levels, respectively. The values indicate
the different versionsin which HFS enabled new support that the file systems can use. The valid
versions are:

V2RIMO Version 2 Release 1 Modification Level O
V2R3MO Version 2 Release 3 Modification Level O

Registration information
INPUT; CHAR(6)

Additional information describing the actions to take during registration.

The characters in this parameter are:

1 Whether to register afile system that is already registered. This character lets you reregister
a changed file system without deregistering it first. Valid values are:

0 Do not reregister the file system.
1 Reregister the file system.

2 Which type of cross-file-system copy or move operation to perform. This character is called
the copy or moveindicator. HFS support checks its value only when an application
specifies different source and target file systemsin calls to the Copy Stream File
(QHFCPY SF) or Move Stream File (QHFMOV SF) API.

This character has no effect on operations within the same file system. For cross-file-system
operations, it tells the QHFCPY SF and QHFM OV SF APIs whether to call the source file
system's copy and move exit programsto see if they can perform the operations. If they
cannot, the API triesthe exit programs for the target file system. If the source file system and
the target file system cannot perform the operations, the API calls a series of other exit
programs (such as those that open, read from, and write to stream files) to perform the
operation. The last method is the least efficient.

For a detailed explanation of cross-file-system copy and move processing, see Exit Program
for Copy Stream File (QHFCPY SF) API.

Valid values for this character are:

0 Do not call thisfile system's Copy Stream File or Move Stream File exit program when
performing cross-file-system operations. The copy and move exit programs for thisfile
system cannot communicate directly with any other file system, so the APIs should not
waste time trying them.

1 Cdl thisfile system's Copy Stream File or Move Stream File exit program when
performing cross-file-system operations. Thisfile system's copy and move exit
programs might be able to perform cross-file-system operations in some cases, so the
APIs should try them before trying the less efficient copy and move method.

3-6 Reserved. These characters must be blank.

List of qualified exit program names



INPUT; ARRAY OF CHAR(20)

An array listing the exit programs that perform the work for the HFS APIs. (An array isalist of
items in a specific sequence.) The first 10 characters of each array element contain the exit program
name, and the second 10 characters of each array element contain the name of the library in which
the exit program resides.

If the file system being registered does not support a particular APl and thus there is no exit
program, specify * NONE for the program name and blanks for the library name. If an application
callsan API for which there is no exit program, the API issues a message stating that the file
system does not support that operation.

If the file system is written in alanguage that supports a variable number of input parameters, you
can specify the same exit program for more than one function.

The sequence of array elements indicates the operation or API supported by the exit program
specified there. For example, the exit program you specify in position 3 is called when an
application callsthe QHFCRTDR API. The sequence is as follows:

1. Start Job Session Operation (required)

2. End Job Session Operation (required)

3. Create Directory (for the QHFCRTDR API)

4. Open Directory (for the QHFOPNDR API)

5. Read Directory Entries (for the QHFRDDR API)

6. Close Directory (for the QHFCLODR API; required if an Open Directory exit programis
specified)

7. Retrieve Directory Entry Attributes (for the QHFRTVAT API)
8. Change Directory Entry Attributes (for the QHFCHGAT API)
9. Delete Directory (for the QHFDLTDR API)
10. Rename Directory (for the QHFRNMDR API)
11. Open Stream File (for the QHFOPNSF API)
12. Read from Stream File (for the QHFRDSF APl)
13. Writeto Stream File (for the QHFWRTSF API)
14. Lock and Unlock Range in Stream File (for the QHFLULSF API)
15. Change File Pointer (for the QHFCHGFP API)

16. Force Buffered Data (for the QHFFRCSF API)



17. Get Stream File Size (for the QHFGETSZ API)
18. Set Stream File Size (for the QHFSETSZ API)

19. Close Stream File (for the QHFCLOSF API; required if an Open Stream File exit program
is specified)

20. Copy Stream File (for the QHFCPY SF API)

21. Delete Stream File (for the QHFDLTSF API)
22. Move Stream File (for the QHFMOV SF API)
23. Rename Stream File (for the QHFRNMSF API)
24. Control File System (for the QHFCTLFS API)

File system description
INPUT; CHAR(50)

A brief description of the file system. This description is returned when applications use the List
Registered File Systems (QHFLSTFS) or the Display Hierarchical File Systems (DSPHFS)
command.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

User Authorizations and Locks for File System Functions

The exit program that performs the Start Job Session operation controls user authority and locking for the
file system as awhole. The Start Job Session exit program is called the first time ajob uses agiven file
system. At that time, the system checks the job's authority to the Start Job Session exit program. Authority
for this program gives the user authority to use all other valid exit programs for the file system. OS/400
HFS support a so obtains a shared read (* SHRRD) lock on the exit program and maintainsit until the end
of the job so that other jobs cannot deregister the file system whileit isin use. For details about this exit
program, see Start Job Session Exit Program.

HFS support maintains system pointers to the file system's exit programs. HFS support uses these pointers

when your exit programs are called. If a system pointer to any exit program becomes inaccurate, asit does

when the program is recompiled, HFS support updates the pointer. If the system pointer cannot be resolved
to the object, an error is returned.

Y ou can change and recompile any exit program without having to reregister your file system. Y ou should
remember that if others are using the file system, they will have a* SHRRD lock on the Start Job Session
exit program. This may prevent recompilation of that program. Y ou should only recompile the Start Job
Session program when no one else is using the file system. Y ou can use the Work with Object Locks



(WRKOBJLCK) command on the Start Job Session program to see if any other job is using the file system.

Error Messages

Message ID
CPF1F41E
CPF1F52 E
CPF1F74 E
CPF1F81E
CPF1F85 E
CPF1F9A E
CPF1F9B E
CPF1F91 E
CPF1F93 E
CPF1F94 E
CPF1F95 E
CPF1F96 E
CPF1F97 E
CPF1F98 E
CPF1F99 E
CPF3C90E
CPF9872 E

Error Message Text

Severe error occurred while addressing parameter list.
Error code not valid.

Not authorized to object.

API specific error occurred.

Not authorized to file system & 1.

Exit program list not valid.

Reregister or deregister file system failed.

File system name not valid.

File system & 1 already registered.

Exit program & 2 not found.

Required exit program not specified.

Version level &2 not valid.

File system &1 in use.

Registration or deregistration cannot be done now.
Register information value not valid.

Literal value cannot be changed.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Change Directory Entry
Attributes (QHFCHGAT) API

Required Parameter Group:

1 Operation (CHGAT) Input Char(5)
2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4  Path name Input Char(*)
5 Path namelength Input Binary(4)
6 Attributeinformation table  Input Char(*)
7 Length of attribute Input Binary(4)

information table

Before applications can use the Change Directory Entry Attributes (QHFCHGAT) API with your file
system, you must:

1. Write an exit program that performs the change attribute operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Change Directory Entry Attributes

(QHFCHGAT) API.

2. Givethe exit program's name when you register the file system with the Register File System API,
QHFRGFS.

After that, when an application calls the QHFCHGAT API, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any datato
the API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (CHGAT)
INPUT; CHAR(5)

The abbreviation for the operation being performed (CHGAT).
File system job handle
INPUT; CHAR(16)

The work area or job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.



Path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Path namelength
INPUT; BINARY (4)

Attributeinformation table
INPUT; CHAR(*)

Length of the attribute information table
INPUT; BINARY (4)

API Functions

The QHFCHGAT API performs the standard functions described in Standard HFS API Functions. The API

does not validate the attribute information table in any way. It checks only the length parameter to make
sureit hasavalid value.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Validates the attribute information table,

« Changesvalid attributes in the directory entry.
« Ignores arequest to delete an attribute that does not exist for the directory entry.

« Ignores arequest to change an attribute that cannot be changed or that does not apply to the
directory entry. For example, the exit program must ignore regquests to change the QFILSIZE
attribute in a directory entry for a directory object and must ignore requests to change directories to
files, or vice versa.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

MessageID Error Message Text
CPF1FO1 E Directory name not valid.
CPF1FO2 E Directory not found.
CPF1F06 E Directory in use.



CPF1FO7 E Authority not sufficient to access directory.

CPF1FO8 E Damaged directory.

CPF1F21 E File name not valid.

CPF1F22 E File not found.

CPF1F26 E Filein use.

CPF1F27 E Authority not sufficient to accessfile.

CPF1F28 E Damaged file.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F42 E Attribute information table not valid.

CPF1F43 E Attribute name not valid.

CPF1F44 E Attribute valueis not valid.

CPF1F46 E Use of reserved attribute name not allowed.

CPF1F48 E Path name not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Change File Pointer
(QHFCHGFP) API

Required Parameter Group:

1 Operation (CHGFP) Input Char(5)

2 Filesystemjob handle Input Char(16)

3 Openfilehandle Input Char(16)

4 Moveinformation Input Char(6)

5 Distanceto move Input Binary(4)

6 New offset Output Binary(4)
Unsigned

Before applications can use the Change File Pointer (QHFCHGFP) APl with your file system, you must:

1. Write an exit program that performs the change file pointer operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Change File Pointer (QHFCHGFP)

API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFCHGFP AP, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any datato the
API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the APl passes to your exit program and the output
parameter that the exit program must pass back to the AP!I:

Operation (CHGFP)
INPUT; CHAR(5)

The abbreviation for the operation being performed (CHGFP).
File system job handle
INPUT; CHAR(16)

Thework area or job identifier for use by the file system.

The following parameters are the same as the parameters for the API.
Open filehandle
INPUT; CHAR(16)

Moveinformation



INPUT; CHAR(6)

Distance to move
INPUT; BINARY (4)

New offset

OUTPUT,; BINARY (4) UNSIGNED

APl Functions

The QHFCHGFP API performs the standard functions described in Standard HFS APl Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit

Program Reguirements and these additional functions;

« Checksfor an attempt to set the file pointer to anegative position (that is, before the start of the
file) or a position beyond the maximum value alowed in a 4-byte unsigned binary number, and

signals an error if either occurs.

« Movesthefile pointer the specified distance from the specified starting location, and records the

file pointer's new offset value.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message ID
CPF1F2D E
CPF1F2EE
CPF1F28 E
CPF1F4EE
CPF1F4F E
CPF1F41E
CPF1F62 E
CPF1F66 E
CPF1F71E
CPF1F73E
CPF1F74 E
CPF1F77 E

Error Message Text

File pointer position not valid.

Range of bytesin filein use.

Damaged file.

Move information value not valid.

Distance to move value not valid.

Severe error occurred while addressing parameter list.
Requested function failed.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Not authorized to use command.

Not authorized to object.

Severe parameter error occurred on call to file system.




Exit Program Introduced: V2R1

Top | Hierarchical File System APIs | APIs by category




Exit Program for Close Directory (QHFCLODR)
API

Required Parameter Group:

1 Operation (CLODR) Input Char(5)
2 Filesystemjob handle Input Char(16)
3 Opendirectory handle Input Char(16)

Optional Parameter Group:

4 Closetype Input Char(2)

Before applications can use the Close Directory (QHFCLODR) API with your file system, you must:

1. Write an exit program that performs the close directory operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Close Directory (QHFCLODR) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFCLODR API, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any data to
the API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (CLODR)
INPUT; CHAR(5)

The abbreviation for the operation being performed (CLODR).
File system job handle
INPUT; CHAR(16)

Thework area or job identifier for use by the file system.

The following parameter is the same as the parameter for the API.
Open directory handle
INPUT; CHAR(16)



Optional Parameter Group

If your file system was registered with a Version 2 Release 3 Modification Level 0, this parameter is passed
to your exit program for the Close Directory API.

Closetype
INPUT; CHAR(1)

The type of close operation to be performed. Valid values are:

0 If the exit program cannot close the directory, HFS does not mark the directory as closed.

1 Unconditional close. HFS marks the directory as closed regardless of what valid exceptionis
returned by the exit program. HFS may call your exit program for an unconditional close at the
end of the job and during the reclaim resource processing. If your file systemis called to
unconditionally close a directory, the directory should not be marked as open by the file
system when control isreturned to HFS.

HFS uses the close type value 0 when the QHFCLODR API is called to close the directory. The
unconditional closetypevalue 1 is used when:

« Thejob ends.
« Reclaim resource processing is done.

o The Deregister File System (QHFDRGFS) API iscaled, and the job is using the file system that is
to be deregistered.

APl Functions

In addition to the standard functions described in Standard HFS API Functions, the QHFCLODR API
performs these functions for your file system:

« Validates the open directory handle to ensure that the directory is open and the current user profile
isthe user that opened it.

« Passes the corresponding file system handle to the file system.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and one additional function. The exit program should close the directory, releasing
the lock that the user obtained when the directory was opened, and invalidate the directory handle so that it
cannot be used again.




Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text

CPF1F06 E Directory in use.

CPF1FO8 E Damaged directory.

CPF1F62 E Requested function failed.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Close Stream File
(QHFCLOSF) API

Required Parameter Group:

1 Operation (CLOSF) Input Char(5)
2 Filesystemjob handle Input Char(16)
3 Openfilehandle Input Char(16)

Optional Parameter Group:

4 Closetype Input Char(2)

Before applications can use the Close Stream File (QHFCLOSF) API with your file system, you must:

1. Write an exit program that performs the close stream file operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Close Stream File (QHFCL OSF)

APL.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFCLOSF API, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any datato the
API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (CLOSF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (CLOSF).
File system job handle
INPUT; CHAR(16)

The work area or job identifier for use by the file system.

The following parameter is the same as the parameter for the API.
Open file handle
INPUT; CHAR(16)



Optional Parameter Group

If your file system was registered with a Version 2 Release 3 Modification Level 0, this parameter is passed
to your exit program for the Close Stream File API.

Closetype
INPUT; CHAR(1)

The type of close operation to be performed. Valid values are:

0 If the exit program cannot close the file, HFS does not mark the file as closed.

1 Unconditional close. HFS marks the directory as closed regardless of what valid exceptionis
returned by the exit program. HFS may call your exit program for an unconditional close at the
end of the job and during the reclaim resource processing. If your file systemis called to
unconditionally close afile, the file should not be marked as open by the file system when
control is returned to HFS.

HFS uses the close type value 0 when the QHFCLOSF API is called to close the file. The unconditional
close type value 1 is used when:
« Thejob ends.

« Reclaim resource processing is done.

o The Deregister File System (QHFDRGFS) API iscalled, and the job is using the file system to be
deregistered.

APl Functions

The QHFCLOSF API performs the standard functions described in Standard HFS APl Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described Standard HFS Exit
Program Requirements and these additional functions:

« Releases any byte locks that the job has on thefile.

« Closesthefile and invalidates the file system job handle so that the handle cannot be used again.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text
CPF1F06 E Directory in use.
CPF1F28 E Damaged file.



CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Control File System
(QHFCTLFS) API

Required Parameter Group:

1 Operation (CTLFS) Input Char(5)

2 Filesystemjob handle Input Char(16)
3 Filehandle Input Char(16)
4 Input data buffer Input Char(*)

5 Input data buffer length Input Binary(4)
6 Output data buffer Output Char(4)

7 Output data buffer length Input Binary(4)
8 Length of datareturned Output Binary(4)

Before applications can use the Control File System (QHFCTLFS) API with your file system, you must:

1. Write an exit program that performs the control file system operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Control File System (QHFCTLFS)

API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFCTLFS API, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the API passes to your exit program and the output
parameters that the exit program must pass back to the API:

Operation (CTLFS)
INPUT: CHAR(10)

The abbreviation for the operation being performed (CTLFS).
File system job handle
INPUT; CHAR(16)

The work area or job identifier for use by the file system.

The following parameters are the same as the parameters for the API:
File handle
INPUT; CHAR(16)

Input data buffer



INPUT; CHAR(*)

Input data buffer length
INPUT; BINARY (4)

Output data buffer
OUTPUT; CHAR(*)

Output data buffer length
INPUT; BINARY (4)

Length of data returned
OUTPUT; BINARY (4)

API Functions

The QHFCTLFS API performs the standard functions described in Standard HFS API Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text

CPF1F41 E Severeerror occurred while addressing parameter list.
CPF1F47 E Buffer overflow occurred.

CPF1F53 E Vauefor length of data buffer not valid.

CPF1F62 E Requested function failed.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1



Top | Hierarchical File System APIs| APIs by category




Exit Program for Copy Stream File (QHFCPYSF) API

Required Parameter Group:
1  Operation (CPYSF) Input Char(5)
2  Filesystemjob handle Input Char(16)
3  Reserved Input Char(20)
4  Source file path name Input Char(*)
5  Sourcefile path name length Input Binary(4)
6  Copy information Input Char(6)
7  Target file path name Input Char(*)
8  Target file path name length Input Binary(4)
9  Filesystem names Input Char(20)

Before applications can use the Copy Stream File (QHFCPY SF) APl with your file system, you must:

1. Write an exit program that performs the copy stream file operation on behalf of the API. For a detailed description of the API and its calling parameters, see Copy
Stream File (QHECPY SF) API.

2. Givethe exit program's name when you register the file system with the Register File System (QHFRGFS) API. In the registration-information parameter of the
QHFRGFS AP, indicate whether this exit program can be used for copy operations involving two different file systems.

After that, when an application calls the QHFCPY SF AP, the API calls your exit program and passes it the parameters specified by the application. Y our exit program performs
the work and returns any data to the API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (CPY SF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (CPY SF).
File system job handle
INPUT; CHAR(16)



The work area or job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.
Sourcefile path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Sour ce file path name length
INPUT; BINARY (4)

Copy information
INPUT; CHAR(6)

Target file path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Target file path name length
INPUT; BINARY (4)

File system names
INPUT; CHAR(20)

Thisisnot an APl parameter. The API derives thisinformation from its source and target file path name parameters. The first 10 characters contain the name of the
source file system, and the second 10 characters contain the name of the target file system.

API Functions

The QHFCPY SF API performs the standard functions described in Standard HFS API Functions.

When the source and target file systems are different, the API performs additional functions so that the file is copied by the most efficient means available. The following
diagram outlines the processing steps. The steps are the same for copy and move operations. They are described in detail after the diagram.



Annolication

Y

Copy or Move
Stream File AP

Y

v

Source System

QHFRGFS APl's
Copy or Move
Indicator

Source System

Vv

I

1 (Yes) 0 (M)

Cony or Move
Stream File
Exit Program

Souree System

SuUCCess

or any
arror

Copy or Move
Stream File
Exit Program

Sucoess
ar other
Error Error

CPFiFa8

Target System

QHFRGFS APl's
Copy or Move
Indicator

I

1 (¥es) 0 (M)

Target System

Copy or Move
Stream File
Exit Pragram

Success
or other
Error Error

Source or
Target System

v

Existence of
Other Needed
Exit Programs

for Conmy or
Move Operation

L

Yoz Mo

Source System

QOHFRGFS AFI's
Copy or Move
Indicator

CPF1Fa8

Success
or ather CPFiF&82
Error error

Return to Anolication

-




After determining that the file systems differ, the APl tries to perform the copy operation in severa different ways. If amethod fails, the API proceeds to the next method. The
possible methods are to call the following exit programs in the sequence listed:

1. The source file system's Copy Stream File exit program
2. Thetarget file system's Copy Stream File exit program

3. A series of other exit programs, such as those for opening, reading from, and writing to stream files, in the source and target file systems

The following paragraphs describe each method in detail.
1. Thesourcefilesystem's Copy Stream File exit program:

First, the API checks the information provided when the source file system was registered with the Register File System (QHFRGFS) API. The copy or move indicator
is character 2 of the registration-information parameter described in the Register File System (QHFRGFS) API.

If the value of the source file system's copy or moveindicator is O for no (indicating that this file system has no cross-file-system capability), the API proceedsto try the
target file system.

If the value of the source file system's copy or moveindicator is 1 for yes (indicating that thisfile system has some cross-file-system capability), the API callsthefile
system's Copy Stream File exit program.

If the exit program encounters an error in communicating with the source file system--for example, the exit program can work with some other file systems but not with
this one--it returns message CPF1F88 to the API, which proceeds to the target file system.

If the exit program compl etes the copy or encounters any other type of error--for example, the exit program cannot find the file to be copied--it returns control to the
API. The API resends any errors received from the exit program to the application and then returns control to the application.

2. Thetarget file system's Copy Stream File exit program:
The API follows the same procedure as for the source file system, checking the copy or move indicator and then trying the target file system's Copy Stream File exit
program. If the copy or move indicator is O for no or if the exit program returns message CPF1F88, the API proceeds to try the other exit programs.

3. A seriesof other exit programsin the source and tar get file systems:
If the source and target file systems' Copy Stream File exit programs have no cross-file-system capability at all, or if they have no such capability with respect to each
other, the API might be able to perform aless efficient form of copy operation. If the following exit programs exist in the source and target file systems, the API triesto
perform the copy operation. If any of these exit programs do not exist, the API returns message CPF1F82 and returns control to the application without performing the
copy operation.
The required exit programsin the source file system are:

o Open Stream File (for the QHFOPNSF API)

o Read from Stream File (for the QHFRDSF API)



O

0

O

Close Stream File (for the QHFCLOSF API)
Retrieve Stream File Attributes (for the QHFRTVAT API)

Delete Stream File (for the QHFDLTSF API). This exit program is required for both copy and move operations. However, it is used only during move
operations.

The required exit programs in the target file system are:

O

O

Open Stream File (for the QHFOPNSF API)
Writeto Stream File (for the QHFWRTSF API)

Change File Pointer (for the QHFCHGFP API). This exit program is required for both copy and move operations. However, it is used only during copy
operations in which the source file is being added to an existing target file.

Close Stream File (for the QHFCLOSF API)
Change Stream File Attributes (for the QHFCHGAT API)

Delete Stream File (for the QHFDLTSF API)

The API uses the exit programs to perform their ordinary functions:

0

The source file system's Open Stream File exit program opens the source file, and the target file system's Open Stream File exit program opens the target file.

The source file system's Read from Stream File exit program and the target file system's Write to Stream File exit program repeatedly read from the source file
and write to the target file until al the data has been copied from one to the other.

The source file system's Retrieve Stream File Attributes exit program retrieves the attributes stored with the source file, and the target file system’'s Change
Stream File Attributes exit program writes the attributes to the target file.

The source and target file systems' Close Stream File exit programs close the source and target files.

The source file system's Del ete Stream File exit program del etes the source file after a successful move operation.

Thetarget file system's Delete Stream File exit program is used during unsuccessful copy and move operations. If errors cause the failure of the operation as a
whole, the exit program deletes any incomplete target files created during the operation. Target files that existed before the operation began are not deleted but
might be partly changed.



Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit Program Requirements and these additional functions:

« If the source and target paths to the files are the same, verifies that the source and target file names are different.

« If the source and target file systems are different, takes these actions:
o Determines whether it is the source or the target file system by examining the exit program's file-system-names parameter.

o Performsthe copy operation or returns control to the application or API as described in APl Functions.

When the exit program has some cross-file-system capability but cannot complete this specific copy operation, it should return message CPF1F88 to the API.
Thistellsthe API that it might still be possible to perform the copy operation by other means. If unavoidable errors occur--for example, if the file being copied
does not exist--then the exit program should return those errors to the API.

Whether or not the QHFCPY SF API callsthis exit program for cross-file-system operations depends on information provided when this file system was registered. If the
second character of the registration-information parameter of the Register File System (QHFRGFS) API has avalue of 1 (yes), the QHFCPY SF API calls this exit
program. If that character has a value of 0 (no), the QHFCPY SF API does not call this exit program for cross-file-system operations; instead, the API bypasses this exit
program and proceeds to try the next available method of copying files.

« If the operation is replacing or adding a copy to afile, verifies that the target file exists.
« Ensuresthat the user has the required authority to both the source and target paths and files.

« Ensuresthat the user has read access to the source file and write access to the target file.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message ID Error Message Text

CPF1F01 E Directory name not valid.

CPF1FO2 E Directory not found.

CPF1F06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.
CPF1FO8 E Damaged directory.

CPF1F21 E File name not valid.

CPF1F22 E Filenot found.



CPF1F23 E New file name same as old file name.

CPF1F24 E File name aready exists.

CPF1F26 E Fileinuse.

CPF1F27 E Authority not sufficient to accessfile.

CPF1F28 E Damaged file.

CPF1F29 E Use of reserved file name not allowed.

CPF1F41 E Severeerror occurred while addressing parameter list.
CPF1F48 E Path name not valid.

CPF1F51 E Copy information value not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.
CPF1F88 E Unable to complete copy or move operation.

Note: You can use message CPF1F88 only when trying to perform cross-file-system copy operations. If you use it when copying files within asingle file system, an Internal file
system error message is returned to the application. Y ou can use the exit program's file-system-names parameter to determine whether the moveis across file systems.

Because this message does not always indicate an error, the application calling the QHFCPY SF API does not receiveit. It is used only to communicate between the file system's
exit program and the API.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Create Directory (QHFCRTDR)
API

Required Parameter Group:

1 Operation (CRTDR) Input Char(5)

2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4  Path name Input Char(*)
5 Length of path name Input Char(*)
6 Attributeinformation table  Input Char(*)

7 Length of attribute Input Binary(4)

information table

Before applications can use the Create Directory (QHFCRTDR) API with your file system, you must:

1. Write an exit program that performs the create directory operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Create Directory (QHFCRTDR) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application callsthe QHFCRTDR AP, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any data to
the API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (CRTDR)
INPUT; CHAR(5)

The abbreviation for the operation being performed (CRTDR).
File system job handle
INPUT; CHAR(16)

Thework area or job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.
Path name
INPUT; CHAR(*)



The API removes the file system name before passing the path name to the exit program.
Length of path name
INPUT; BINARY (4)

Attributeinformation table
INPUT; CHAR(*)

Length of attributeinformation table
INPUT; BINARY (4)

APl Functions

The QHFCRTDR API performs the standard functions described in Standard HES API Functions and one

additional function. The API verifiesthat the length of the attribute information table is not negative. It
does not validate the attribute information in any way.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Supports user-defined attribute types.
« Validates the attribute information.
» Associates the specified attributes with the directory when it is created.

« Returns an exception without creating a directory if another user has the higher-level directory
locked in deny write mode. (The higher-level directory isthe directory in which the new directory
isbeing created.)

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

MessageID Error Message Text

CPF1FO1 E Directory name not valid.

CPF1F02 E Directory not found.

CPF1F04 E Directory name aready exists.

CPF1F06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.
CPF1FO8 E Damaged directory.

CPF1F09 E Use of reserved directory name not allowed.



CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F42 E Attribute information table not valid.

CPF1F43 E Attribute name not valid.

CPF1F44 E Attribute valueis not valid.

CPF1F46 E Use of reserved attribute name not allowed.

CPF1F48 E Path name not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Delete Directory (QHFDLTDR)
API

Required Parameter Group:

1 Operation (DLTDR) Input Char(5)
2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4  Path name Input Char(*)
5 Path namelength Input Binary(4)

Before applications can use the Delete Directory (QHFDLTDR) API with your file system, you must:

1. Write an exit program that performs the delete directory operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Delete Directory (QHFDLTDR) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application callsthe QHFDLTDR API, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any datato
the API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (DLTDR)
INPUT; CHAR(5)

The abbreviation for the operation being performed (DLTDR).
File system job handle
INPUT; CHAR(16)

The work area or job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.
Path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Path namelength



INPUT; BINARY (4)

APl Functions

The QHFDLTDR API performs the standard functions described in Standard HES API Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Verifiesthat the directory being deleted isnot in use.

» Deletesthe directory and its associated directory entry.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message D Error Message Text

CPF1FOA E Delete directory operation not allowed.

CPF1FO1 E Directory name not valid.

CPF1F02 E Directory not found.

CPF1F06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.

CPF1FO8 E Damaged directory.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F48 E Path name not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1




Top | Hierarchical File System APIs| APIs by category




Exit Program for Delete Stream File
(QHFDLTSF) API

Required Parameter Group:

1 Operation (DLTSF) Input Char(5)

2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4  Path name Input Char(*)
5 Path namelength Input Binary(4)

Before applications can use the Delete Stream File (QHFDLTSF) APl with your file system, you must:

1. Write an exit program that performs the delete stream file operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Delete Stream File (QHFDLTSF)

API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFDLTSF AP, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (DLTSF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (DLTSF).
File system job handle
INPUT; CHAR(16)

The work areaor job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.
Path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.



Path namelength
INPUT; BINARY (4)

APl Functions

The QHFDLTSF API performs the standard functions described in Standard HSF API Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Ensuresthat the file being deleted is not open or in use.

« Ensuresthat the file being deleted is not aread-only file.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

MessageID Error Message Text

CPF1FO1 E Directory name not valid.

CPF1FO2 E Directory not found.

CPF1F06 E Directory in use.

CPF1FO7 E  Authority not sufficient to access directory.

CPF1FO8 E Damaged directory.

CPF1F21 E File name not valid.

CPF1F22 E Filenot found.

CPF1F26 E Fileinuse.

CPF1F27 E Authority not sufficient to accessfile.

CPF1F28 E Damaged file.

CPF1F37 E Fileisaread-only file.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F48 E Path name not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.



CPF1F74 E Not authorized to object.
CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




End Job Session Exit Program

Required Parameter Group:

1 Operation (TERM) Input Char(5)
2 Filesystem job handle Input Char(16)

Y ou must supply an End Job Session exit program for your file system. HFS support calls the End Job
Session exit program whenever a job that uses the HFS APIs ends. The End Job Session exit program
cleans up any work areas that the job used. If your Start Job Session exit program creates temporary work
spaces, use the End Job Session exit program to del ete them.

Required Parameter Group

HFS support passes this information to the End Job Session exit program:
Operation (TERM)
INPUT; CHAR(5)

The abbreviation for the operation being performed (TERM, meaning end).
File system job handle
INPUT; CHAR(16)

Thework areaor job identifier for use by the file system.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text
CPF1F76 E Error occurred during end-job-session function

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Force Buffered Data
(QHFFRCSF) API

Required Parameter Group:

1 Operation (FRCSF) Input Char(5)
2 Filesystemjob handle Input Char(16)
3 Filestoforce Input Char(16)

Before applications can use the Force Buffered Data (QHFFRCSF) API with your file system, you must:

1. Write an exit program that performs the force operation on behalf of the API. For a detailed
description of the API and its calling parameters, see Force Buffered Data (QHFFRCSF) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFFRCSF API, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (FRCSF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (FRCSF).
File system job handle
INPUT; CHAR(16)

The work areaor job identifier for use by the file system.

The following parameter is the same as the parameter for the API.
Filesto force
INPUT; CHAR(16)

APl Functions

The QHFFRCSF API performs the standard functions described in Standard HFS API Functions and these
additional functions:

« It verifiesthat the files to force parameter gives either avalid open file handle or hexadecimal zeros
to indicate all files.




« If onefileisspecified, it calls the appropriate file system to force the data. Any exceptions received
from the file system are either resignaled or mapped into an error code, as the application requests.

« If all files are specified, it calls each file system used by the process once for each open file within
that file system to force the data for that file. Any exceptions received from the file system are | eft
in the job log, and the API continues processing the remaining open files until al are forced. Any
exceptions are reported to the caller as a specia error condition indicating that the attempt to force
all files partialy failed.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text

CPF1F2B E Write operation not alowed to file opened for read only.
CPF1F2E E Range of bytesinfilein use.

CPF1F28 E Damaged file.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Get Stream File Size
(QHFGETSZ) API

Required Parameter Group:

1 Operation (GETSZ) Input Char(5)

2 Filesystemjob handle Input Char(16)

3 Openfilehandle Input Char(16)

4 Filesize Output Binary(4)
Unsigned

Before applications can use the Get Stream File Size (QHFGETSZ) API with your file system, you must:

1. Write an exit program that performs the get size operation on behalf of the API. For adetailed
description of the API and its calling parameters, see Get Stream File Size (QHFGETSZ) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFGETSZ API, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the APl passes to your exit program and the output
parameter that the exit program must pass back to the AP!I:

Operation (GETSZ)
INPUT; CHAR(5)

The abbreviation for the operation being performed (GETSZ).
File system job handle
INPUT; CHAR(16)

Thework area or job identifier for use by the file system.

The following parameters are the same as the parameters for the API.
Open filehandle
INPUT; CHAR(16)

Filesize
OUTPUT; BINARY (4) UNSIGNED



API Functions

The QHFGETSZ API performs the standard functions described in Standard HFS APl Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and one additional function. The exit program should retrieve the size of thefile as
of the last write operation, excluding any object information stored with the file.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text

CPF1F28 E Damaged file.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F62 E Requested function failed.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Lock and Unlock Range in
Stream File (QHFLULSF) API

Required Parameter Group:
1 Operation (LULSF) Input Char(5)
2 Filesystemjob handle Input Char(16)
3 Openfilehandle Input Char(16)
4 Lock information Input Char(6)
5 File offset wherelock begins Input Binary(4)
6 Bytestolock Input Binary(4)
Unsigned
7  File offset where unlock Input Binary(4)
begins Unsigned
8 Bytesto unlock Input Binary(4)
Unsigned

Before applications can use the Lock and Unlock Range in Stream File (QHFLULSF) API with your file
system, you must:

1. Write an exit program that performs the lock and unlock operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Lock and Unlock Range in Stream

File (QHFLULSF) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFLULSF AP, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (LULSF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (LULSF).
File system job handle
INPUT; CHAR(16)

The work areaor job identifier for use by the file system.

The following parameters are the same as the parameters for the API.
Open filehandle



INPUT; CHAR(16)

Lock information
INPUT; CHAR(6)

File offset wherelock begins
INPUT; BINARY (4) UNSIGNED

Bytesto lock
INPUT; BINARY (4) UNSIGNED

File offset where unlock begins
INPUT; BINARY (4) UNSIGNED

Bytesto unlock
INPUT; BINARY (4) UNSIGNED

APl Functions

The QHFLUL SF API performs the standard functions described in Standard HFS APl Functions and these
additional functions:

« Verifiesthat the bytesto lock and bytes to unlock parameters are not both zero. In other words, the
APl ensuresthat alock, unlock, or both operations are to be performed. If both parameters are zero,
an error isreturned.

» Verifiesthat the lock information parameter contains valid values, and that the lock mode value is

applicable to the lock or unlock operation requested.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

» Verifiesthat the file offsets to lock and unlock are valid offsets.
« Verifiesthat the number of bytesto lock and unlock are valid values.
« For an unlock operation, verifies that thisjob previously locked the range.

« For alock operation, verifies that no part of the range already has alock that does not allow the
access requested.

« Unlocks or locks the range requested.



Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text

CPF1F2E E Range of bytesinfilein use.

CPF1F2F E Unlock range of bytesin file failed.

CPF1F28 E Damaged file.

CPF1F32 E Number of locks on file exceeds limit.

CPF1F4B E Vaue for number of bytes not valid.

CPF1F4C E Lock information value not valid.

CPF1F4D E File offset value not valid.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F62 E Requested function failed.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Move Stream File

(QHFMOVSF) API
Required Parameter Group:
1 Operation (MOVSF) Input Char(5)
2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4  Source file path name Input Char(*)
5 Sourcefile path name length Input Binary(4)
6 Target file path name Input Char(*)
7 Target file path namelength  Input Binary(4)
8 Filesystem names Input Char(20)

Before applications can use the Move Stream File (QHFMOV SF) APl with your file system, you must:

1. Write an exit program that performs the move stream file operation on behaf of the API. For a
detailed description of the API and its calling parameters, see Move Stream File (QHFMOV SF)

API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API. In the registration-information parameter of the QHFRGFS AP, indicate
whether this exit program can be used for move operations involving two different file systems.

After that, when an application calls the QHFMOV SF API, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any data to
the API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (MOV SF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (MOV SF).
File system job handle
INPUT; CHAR(16)

The work area or job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.



Sourcefile path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Sour cefile path name length
INPUT; BINARY (4)

Target file path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Target file path name length
INPUT; BINARY (4)

File system names
INPUT; CHAR(20)

Thisisnot an API parameter. The API derives this information from its source and target file path
name parameters. The first 10 characters contain the name of the source file system, and the second
10 characters contain the name of the target file system.

APl Functions

The QHFMOV SF API performs the standard functions described in Standard HES APl Functions.

When the source and target file systems are different, the API performs additional functions so that the file
ismoved by the most efficient means available. The processing steps are the same as those described for
the Copy Stream File exit program in APl Functions, with these exceptions:

« The Move Stream File (QHFMOV SF) APl and Move Stream File exit program are used instead of
the Copy Stream File API and exit program.

« After successful completion of the move operation, the source file system's Delete Stream File exit
program is used to delete the source file.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« When the source and target file systems are different, performs the same actions described for the
Copy Stream File exit program; see Exit Program Requirements.

« Verifiesthat the target file does not exist.

» Ensuresthat the file being moved is not open or in use.



Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message D Error Message Text

CPF1F01 E Directory name not valid.

CPF1F02 E Directory not found.

CPF1FO3 E New directory name same as old directory name.
CPF1F06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.

CPF1FO8 E Damaged directory.

CPF1F21 E File name not valid.

CPF1F22 E File not found.

CPF1F24 E File name already exists.

CPF1F26 E Filein use.

CPF1F27 E Authority not sufficient to accessfile.

CPF1F28 E Damaged file.

CPF1F29 E Use of reserved file name not allowed.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F48 E Path name not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.
CPF1F88 E Unableto complete copy or move operation.

Note: Y ou can use message CPF1F88 only when trying to perform cross-file-system move operations. |f
you use it when moving files within asingle file system, an Internal file system error message is returned to
the application. Y ou can use the exit program's file-system-names parameter to determine whether the
move is across file systems.

Because this message does not always indicate an error, the application calling the QHFMOV SF API does
not receiveit. It is used only to communicate between the file system's exit program and the API.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs | APIs by category




Exit Program for Open Directory (QHFOPNDR)
API

Required Parameter Group:

1 Operation (OPNDR) Input Char(5)

2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4  Open directory handle Output Char(16)
5 Path name Input Char(*)
6 Path namelength Input Binary(4)
7  Open information Input Char(6)

8 Attribute selection table Input Char(4)

9 Length of attribute selection  Input Binary(4)

table

Before applications can use the Open Directory (QHFOPNDR) API with your file system, you must:

1. Write an exit program that performs the open directory operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Open Directory (QHFOPNDR) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFOPNDR API, the API cals your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any data to
the API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the API passes to your exit program and the output
parameter that the exit program must pass back to the API:

Operation (OPNDR)
INPUT; CHAR(5)

The abbreviation for the operation being performed (OPNDR).
File system job handle
INPUT; CHAR(16)

The work area or job identifier used by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.



Except as noted, the following parameters are the same as the parameters for the API.
Open directory handle
OUTPUT; CHAR(16)

Path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Path namelength
INPUT; BINARY (4)

Open information
INPUT; CHAR(6)
The exit program can ignore character 2, which describes the type of open operation to perform.
Thisfield is used by HFS support during job cleanup if the job ends before the file is closed.
Attribute selection table
INPUT; CHAR(*)

Length of the attribute selection table
INPUT; BINARY (4)

API Functions

The QHFOPNDR API performs the standard functions described in Standard HFS API Functions. The AP
does not validate the attribute selection table in any way.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Verifiesthat all directoriesin the path exist.

« If thelast element of the path name is a specific name, opens that specific directory.
« If thelast element of the path name is a generic name:
o Opensthe directory specified as the next-to-last element.

0 Interprets the generic name so that only directory entries that match it are available for
subsequent read operations.

« Validates the attribute selection table.



« Locksthe directory and its attributes according to the specified lock mode.

« Associates the attribute selection table with the open directory so that subsequent read operations
using the QHFRDDR API return only the attributes selected when the directory was opened.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text

CPF1F01 E Directory name not valid.

CPF1F02 E Directory not found.

CPF1F06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.

CPF1FO8 E Damaged directory.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F43 E Attribute name not valid.

CPF1F45E Attribute selection table not valid.

CPF1F48 E Path name not valid.

CPF1F49 E Openinformation value not valid.

CPF1F62 E Requested function failed.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Open Stream File
(QHFOPNSF) API

Required Parameter Group:

1 Operation (OPNSF) Input Char(5)

2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4 Openfile handle Output Char(16)
5 Path name Input Char(*)
6 Path namelength Input Binary(4)
7  Open information Input Char(10)
8 Attributeinformation table  Input Char(*)

9 Length of attribute Input Binary(4)

information table
10 Actiontaken Output Char(2)

Before applications can use the Open Stream File (QHFOPNSF) API with your file system, you must:

1. Write an exit program that performs the open stream file operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Open Stream File (QHFOPNSF) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFOPNSF API, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the APl passes to your exit program and the output
parameters that the exit program must pass back to the API:

Operation (OPNSF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (OPNSF).
File system job handle
INPUT; CHAR(16)

Thework area or job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.



Except as noted, the following parameters are the same as the parameters for the API.
Open file handle
OUTPUT; CHAR(16)

Path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Path namelength
INPUT; BINARY (4)

Open information
INPUT; CHAR(10)
The exit program can ignore character 7, which describes the type of open operation to perform.

Thisfield is used by OS/400 HFS support during job cleanup if the job ends before thefileis
closed.

Attributeinformation table
INPUT; CHAR(*)

Length of the attribute information table
INPUT; BINARY (4)

Action taken
OUTPUT; CHAR(1)

API Functions

The QHFOPNSF API performs the standard functions described in Standard HFS API Functions and these
additional functions:

« Verifiesthat the length of the attribute information table is not negative.

« Ensuresthat thefileis closed during normal job cleanup, in case the user forgetsto close it before
ending the job.

« Handles the type-of-open value represented by character 7 of the open information parameter. The
file system does not need to take any action on the basis of this value.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Checksfor previous open operations that have lock modes conflicting with the requested access
mode for thisfile.



« Attemptsto take the action designated by the open information. The action can be opening an
existing file, opening and replacing an existing file, or creating and opening a new file.

« If theaction is successful, assigns afile handle, locks the file and its attributes, and returns the
handle and action taken to the API. The API does not return this handle to the application. The AP
creates a handle of its own to return to the application. This procedure improves APl performance
and ensures that handles are unique across file systems.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message ID Error Message Text

CPF1F01 E Directory name not valid.

CPF1FO2 E Directory not found.

CPF1F06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.
CPF1FO8 E Damaged directory.

CPF1F2A E Number of open files exceeds limit.
CPF1F21 E File name not valid.

CPF1F22 E Filenot found.

CPF1F24 E File name already exists.

CPF1F26 E Fileinuse.

CPF1F27 E Authority not sufficient to accessfile.
CPF1F28 E Damaged file.

CPF1F29 E Use of reserved file name not allowed.
CPF1F37 E Fileisaread-only file.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F42 E Attribute information table not valid.
CPF1F43 E Attribute name not valid.

CPF1F44 E Attribute valueis not valid.

CPF1F46 E Use of reserved attribute name not allowed.
CPF1F48 E Path name not valid.

CPF1F49 E Openinformation value not valid.
CPF1F61 E No free space available on media.
CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.



CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Read Directory Entries
(QHFRDDR) API

Required Parameter Group:

1 Operation (RDDR) Input Char(5)

2 Filesystemjob handle Input Char(16)

3 Opendirectory handle Input Char(16)

4 Databuffer Output Char(*)

5 Databuffer length Input Binary(4)

6 Number of directory entries  Input Binary(4)
to read

7 Number of directory entries  Output Binary(4)
read

8 Length of datareturned Output Binary(4)

Before applications can use the Read Directory Entries (QHFRDDR) API with your file system, you must:

1. Write an exit program that performs the read directory entries operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Read Directory Entries (QHFRDDR)

API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFRDDR AP, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the API passes to your exit program and the output
parameter that the exit program must pass back to the API:

Operation (RDDR)
INPUT; CHAR(5)

The abbreviation for the operation being performed (RDDR).
File system job handle
INPUT; CHAR(16)

The work areaor job identifier for use by the file system.

The following parameters are the same as the parameters for the API.
Open directory handle
INPUT; CHAR(16)



Data buffer
OUTPUT; CHAR(*)

Data buffer length
INPUT; BINARY (4)

Number of directory entriesto read
INPUT; BINARY (4)

Number of directory entriesread
OUTPUT; BINARY (4)

Length of data returned
OUTPUT; BINARY (4)

APl Functions

The QHFRDDR API performs the standard functions described in Standard HFS API Functions and one

additional function. The API validates the open directory handle to ensure that the directory is open and the
current user profileisthe user that opened it.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Retrievesthe directory entry information. The file system should return only attributes selected
with the attribute selection table when the directory was opened. The file system must build the
table and set the number of directory entries actually read and the length of data returned.

« If arequested attribute is not associated with a directory entry, returns the attribute name and the
length of the attribute value, which is zero.

« Increases the directory pointer value to reflect its new position after directory entries are read.

In addition, your file system's documentation should describe the order in which directory entries are
returned (for example, alphabetic or last-used date).

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

MessageID Error Message Text
CPF1FO8 E Damaged directory.



CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F47 E Buffer overflow occurred.

CPF1F53 E Vauefor length of data buffer not valid.

CPF1F62 E Requested function failed.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Read from Stream File
(QHFRDSF) API

Required Parameter Group:

1 Operation (RDSF) Input Char(5)

2 Filesystemjob handle Input Char(16)
3 Openfilehandle Input Char(16)
4 Databuffer Output Char(*)

5 Bytesto read Input Binary(4)
6 Bytesactually read Output Binary(4)

Before applications can use the Read from Stream File (QHFRDSF) API with your file system, you must:

1. Write an exit program that performs the read operation on behalf of the API. For a detailed
description of the API and its calling parameters, see Read from Stream File (QHFRDSF) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFRDSF AP, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the API passes to your exit program and the output
parameters that the exit program must pass back to the API:

Operation (RDSF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (RDSF).
File system job handle
INPUT; CHAR(16)

The work areaor job identifier for use by the file system.

The following parameters are the same as the parameters for the API.
Open filehandle
INPUT; CHAR(16)

Data buffer
OUTPUT; CHAR(*)



Bytesto read

INPUT; BINARY (4)

Bytesactually read

OUTPUT; BINARY (4)

API Functions

The QHFRDSF API performs the standard functions described in Standard HFS API Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

Verifies that the file was previously opened with an access maode of read only or read/write.

Checks the range of bytes being read to make sure no part of the range is locked in deny read/write
mode, which would preclude this operation.

Reads the number of bytes specified from the file, starting at the current file pointer position, and
places the data read in the data buffer.

Records the number of bytes actually read. If the end of the file is reached during the read
operation, this number isless than the number specified in the bytes-to-read parameter.

Increases the value of the file pointer by the number of bytes read.

If the read operation is not successful, sets the bytes actually read to zero and returns an exception
describing the error to the API.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message ID Error Message Text

CPF1F2C E Read operation not allowed to file opened for write only.
CPF1F2EE Rangeof bytesinfilein use.

CPF1F28 E Damaged file.

CPF1F35E Read file operation failed.

CPF1F4B E Vaue for number of bytes not valid.

CPF1F41 E Severe error occurred while addressing parameter list.
CPF1F62 E Requested function failed.



CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Rename Directory
(QHFRNMDR) API

Required Parameter Group:

1 Operation (RNMDR) Input Char(5)
2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4  Path name Input Char(*)
5 Path namelength Input Binary(4)
6 New directory name Input Char(*)
7 New directory namelength  Input Binary(4)

Before applications can use the Rename Directory (QHFRNMDR) API with your file system, you must:

1. Write an exit program that performs the rename directory operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Rename Directory (QHFRNMDR)

APL.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFRNMDR API, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any datato
the API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (RNMDR)
INPUT; CHAR(5)

The abbreviation for the operation being performed (RNMDR).
File system job handle
INPUT; CHAR(16)

The work area or job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.
Path name



INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Path name length
INPUT; BINARY (4)

New directory name
INPUT; CHAR(*)

New directory name length
INPUT; BINARY (4)

API Functions

The QHFRNMDR API performs the standard functions described in Standard HFS API Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

» Verifiesthat the new directory does not already exist and that it has a different name from the old
directory.

« Verifiesthat the directory is not in use before renaming it.

« Renamesthe directory.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message ID Error Message Text

CPF1FO1 E Directory hame not valid.

CPF1F02 E Directory not found.

CPF1FO3 E New directory name same as old directory name.
CPF1F04 E Directory name aready exists.

CPF1F06 E Directory in use.

CPF1FO7 E Authority not sufficient to access directory.

CPF1FO8 E Damaged directory.

CPF1F09 E Use of reserved directory name not allowed.
CPF1F41 E Severe error occurred while addressing parameter list.



CPF1F48 E Path name not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Rename Stream File
(QHFRNMSF) API

Required Parameter Group:

1 Operation (RNMSF) Input Char(5)

2 Filesystemjob handle Input Char(16)
3 Reserved Input Char(20)
4  Path name Input Char(*)
5 Path namelength Input Binary(4)
6 New file name Input Char(*)

7 New file name length Input Binary(4)

Before applications can use the Rename Stream File (QHFRNMSF) API with your file system, you must:

1. Write an exit program that performs the rename stream file operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Rename Stream File (QHFRNM SF)

APL.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFRNMSF API, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any datato
the API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (RNM SF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (RNM SF).
File system job handle
INPUT; CHAR(16)

The work area or job identifier for use by the file system.
Reserved
INPUT; CHAR(20)

Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.
Path name



INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Path name length
INPUT; BINARY (4)

New file name
INPUT; CHAR(*)

New file namelength
INPUT; BINARY (4)

API Functions

The QHFRNMSF API performs the standard functions described in Standard HFS API Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described Standard HFS Exit
Program Requirements and these additional functions:

« Veifiesthat the new file name does not exist and is different from the current file name.

« Ensuresthat the file being renamed is not open or in use.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message ID Error Message Text

CPF1FO1 E Directory hame not valid.

CPF1F02 E Directory not found.

CPF1F06 E Directory in use.

CPF1FQ7 E  Authority not sufficient to access directory.
CPF1FO8 E Damaged directory.

CPF1F21 E File name not valid.

CPF1F22 E File not found.

CPF1F23 E New file name same as old file name.
CPF1F24 E File name already exists.

CPF1IF26 E Fileinuse.

CPF1F27 E Authority not sufficient to accessfile.



CPF1F28 E Damaged file.

CPF1F29 E Use of reserved file name not allowed.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F48 E Path name not valid.

CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F75 E Error occurred during start-job-session function.
CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Retrieve Directory Entry
Attributes (QHFRTVAT) API

Required Parameter Group:

1 Operation (RTVAT) Input Char(5)

2 Filesystemjob handle Input Char(16)

3 Reserved Input Char(20)

4  Path name Input Char(*)

5 Path namelength Input Binary(4)

6 Attribute selection table Input Char(*)

7 Length of attribute selection Input Binary(4)
table

8 Attributeinformationtable  Output Char(*)

9 Length of attribute Input Binary(4)
information table

10 Length of datareturned Output Binary(4)

Before applications can use the Retrieve Directory Entry Attributes (QHFRTVAT) API with your file
system, you must:

1. Write an exit program that performs the retrieve attributes operation on behalf of the API. For a
detailed description of the API and its calling parameters, see Retrieve Directory Entry Attributes

(QHFRTVAT) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application callsthe QHFRTVAT API, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any datato
the API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the API passes to your exit program and the output
parameters that the exit program must pass back to the API:

Operation (RTVAT)
INPUT; CHAR(5)

The abbreviation for the operation being performed (RTVAT).
File system job handle
INPUT; CHAR(16)

The work area or job identifier for use by the file system.
Reserved



INPUT; CHAR(20)
Reserved for future use. This parameter is set to blanks.

Except as noted, the following parameters are the same as the parameters for the API.
Path name
INPUT; CHAR(*)

The API removes the file system name before passing the path name to the exit program.
Path namelength
INPUT; BINARY (4)

Attribute selection table
INPUT; CHAR(*)

Length of the attribute selection table
INPUT; BINARY (4)

Attributeinformation table
OUTPUT; CHAR(*)

Length of the attribute information table
INPUT; BINARY (4)

Length of data returned
OUTPUT; BINARY (4)

APl Functions

The QHFRTVAT API performs the standard functions described in Standard HFS APl Functions. The AP

does not validate the attribute sel ection table, the attribute information table, or the length of the attribute
information table.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Validates the attribute selection table.

« Buildsthe attribute information table to return the requested attributes to the application.



Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message |D Error Message Text

CPF1F01 E
CPF1F02 E
CPF1F06 E
CPF1F0O7 E
CPF1F08 E
CPF1F21 E
CPF1F22 E
CPF1F26 E
CPF1F27 E
CPF1F28 E
CPF1F41 E
CPF1F42 E
CPF1F43 E
CPF1F45 E
CPF1F47 E
CPF1F48 E
CPF1F62 E
CPF1F66 E
CPFIF71E
CPF1F73 E
CPF1F74 E
CPF1F75E
CPF1F77 E

Directory name not valid.

Directory not found.

Directory in use.

Authority not sufficient to access directory.

Damaged directory.

File name not valid.

File not found.

Filein use.

Authority not sufficient to accessfile.

Damaged file.

Severe error occurred while addressing parameter list.
Attribute information table not valid.

Attribute name not valid.

Attribute selection table not valid.

Buffer overflow occurred.

Path name not valid.

Requested function failed.

Storage needed exceeds maximum limit for user profile & 1.
Exception specific to file system occurred.

Not authorized to use command.

Not authorized to object.

Error occurred during start-job-session function.
Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Set Stream File Size
(QHFSETSZ) API

Required Parameter Group:

1 Operation (SETSZ) Input Char(5)

2 Filesystemjob handle Input Char(16)

3 Openfilehandle Input Char(16)

4 Filesize Input Binary(4)
Unsigned

Before applications can use the Set Stream File Size (QHFSETSZ) API with your file system, you must:

1. Write an exit program that performs the set size operation on behalf of the API. For a detailed
description of the API and its calling parameters, see Set Stream File Size (QHFSETSZ) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFSETSZ API, the API calls your exit program and passesit the
parameters specified by the application. Y our exit program performs the work and returns any data to the
API. The API passes the data back to the calling application.

Required Parameter Group

The API passes thisinformation to your exit program:
Operation (SETSZ)
INPUT; CHAR(5)

The abbreviation for the operation being performed (SETSZ).
File system job handle
INPUT; CHAR(16)

Thework area or job identifier for use by the file system.

The following parameters are the same as the parameters for the API.
Open filehandle
INPUT; CHAR(16)

Filesize
INPUT; BINARY (4) UNSIGNED



API Functions

The QHFSETSZ API performs the standard functions described in Standard HFS APl Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Checksfor byte locks that conflict with changing the size of the file, and returns an exception if any
are found. The application cannot set the file size into or beyond alocked range.

« Verifiesthat thefile size parameter value is valid for that file system.

o Increases or decreases the file size.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message D Error Message Text

CPF1F2B E Write operation not allowed to file opened for read only.
CPF1F2E E Rangeof bytesinfilein use.

CPF1F28 E Damaged file.

CPF1F4B E Vaue for number of bytes not valid.

CPF1F41E Severeerror occurred while addressing parameter list.
CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on cal to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Start Job Session Exit Program

Required Parameter Group:

1 Operation (INIT) Input Char(5)
2 Filesystem job handle Output Char(16)
3 Filesystem name Input Char(10)

Before applications can use the HFS APIswith your file system, you must supply a Start Job Session exit
program for the file system.

The Start Job Session exit program controls access to the file system as awhole for each job in which that
file system isused. Thefirst time an application refers to a specific file system within ajob by calling any
HFS API, the HFS API performs these operations before performing its own function:

1. Checksthe application's authority to the Start Job Session exit program. Authority to the Start Job
Session exit program provides authority to all other exit programs that are registered for use with
the file system.

2. Locksthe Start Job Session exit program in shared read (* SHRRD) mode to keep the file system
from being deregistered while in use.

3. Calsthe Start Job Session exit program. The Start Job Session exit program sets up a 16-byte area
called ajob handle for the file system to use during the job, and returns the job handle to the HFS
API. Thefile system can use the job handle to store a pointer to a separate work area or as awork
areain itself.

Required Parameter Group

The following shows the input parameters that the API passes to your exit program and the output
parameter that the exit program must pass back to the API:

Operation (INIT)
INPUT; CHAR(5)
The abbreviation for the operation being performed (the letters INIT, for initialize, followed by a
blank).
File system job handle
OUTPUT; CHAR(16)
The work area or job handle for use by the file system. The file system returns the job handle to

HFS on the Start Job Session. On all subsequent API calls, HFS returns the job handle to the file
system.

The file system can keep whatever you choose in the job handle. For example, the job handle might
contain a pointer giving the address of another work area or a control block used by the file system.
File system name

INPUT; CHAR(10)

The name of the file system received from the application in the call to the HFS API. This



parameter specifies which name the file system should use when it issues exceptions.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

MessageID Error Message Text
CPF1F75 E Error occurred during start-job-session function.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




Exit Program for Write to Stream File
(QHFWRTSF) API

Required Parameter Group:

1 Operation (WRTSF) Input Char(5)

2 Filesystemjob handle Input Char(16)
3 Openfilehandle Input Char(16)
4 Databuffer Input Char(*)

5 Bytesto write Input Binary(4)
6 Bytesactually written Output Binary(4)

Before applications can use the Write to Stream File (QHFWRTSF) API with your file system, you must:

1. Write an exit program that performs the write operation on behalf of the API. For a detailed
description of the API and its calling parameters, see Write to Stream File (QHFWRTSF) API.

2. Givethe exit program's name when you register the file system with the Register File System
(QHFRGFS) API.

After that, when an application calls the QHFWRTSF AP, the API calls your exit program and passes it
the parameters specified by the application. Y our exit program performs the work and returns any data to
the API. The API passes the data back to the calling application.

Required Parameter Group

The following shows the input parameters that the API passes to your exit program and the output
parameters that the exit program must pass back to the API:

Operation (WRTSF)
INPUT; CHAR(5)

The abbreviation for the operation being performed (WRTSF).
File system job handle
INPUT; CHAR(16)

The work areaor job identifier for use by the file system.

The following parameters are the same as the parameters for the API.
Open filehandle
INPUT; CHAR(16)

Data buffer
INPUT; CHAR(*)



Bytestowrite
INPUT; BINARY (4)

Bytes actually written
OUTPUT; BINARY (4)

API Functions

The QHFWRTSF API performs the standard functions described in Standard HFS API Functions.

Exit Program Requirements

Y ou must create an exit program that performs the standard functions described in Standard HFS Exit
Program Requirements and these additional functions:

« Verifiesthat the file was previously opened with an access mode of write or read/write.

« Makes surethat no part of the range of bytes being written is locked in away that denies accessto
this operation.

« Writes the number of bytes specified in the data buffer to the file, starting at the current file pointer
position.

» Records the number of bytes actually written. Unless an error occurs, this number must be the same
as the number specified in the bytes-to-write parameter.

« Increasesthe value of the file pointer by the number of bytes written.

« If thewrite operation is not successful, sets the bytes actually written to zero and signals an
exception describing the error to the API.

Error Messages for Exit Program Use

This section lists the messages that the exit program can return to the API.

Message ID Error Message Text

CPF1F2B E Write operation not allowed to file opened for read only.
CPF1F2EE Rangeof bytesinfilein use.

CPF1F28 E Damaged file.

CPF1F34 E Attempted write operation beyond file size limit.
CPF1F36 E Writefile operation failed.

CPF1F4B E Vaue for number of bytes not valid.

CPF1F41E Severe error occurred while addressing parameter list.



CPF1F61 E No free space available on media.

CPF1F62 E Requested function failed.

CPF1F63 E Mediaiswrite protected.

CPF1F66 E Storage needed exceeds maximum limit for user profile & 1.
CPF1F71 E Exception specific to file system occurred.

CPF1F73 E Not authorized to use command.

CPF1F74 E Not authorized to object.

CPF1F77 E Severe parameter error occurred on call to file system.

Exit Program Introduced: V2R1

Top | Hierarchical File System APIs| APIs by category




	Hierarchical File System APIs (V5R2)
	Table of Contents
	Hierarchical File System APIs
	HFS Concepts
	HFS Use--Requirements
	HFS Directory Entry Attributes
	APIs
	Hierarchical File System APIs
	File system management APIs
	Control File System (QHFCTLFS) API
	List Registered File Systems (QHFLSTFS) API

	Directory management APIs
	Create Directory (QHFCRTDR) API
	Delete Directory (QHFDLTDR) API
	Rename Directory (QHFRNMDR) API

	File input and output APIs
	Change File Pointer (QHFCHGFP) API
	Close Stream File (QHFCLOSF) API
	Force Buffered Data (QHFFRCSF) API
	Get Stream File Size (QHFGETSZ) API
	Lock and Unlock Range in Stream File (QHFLULSF) API
	Open Stream File (QHFOPNSF) API
	Read from Stream File (QHFRDSF) API
	Set Stream File Size (QHFSETSZ) API
	Write to Stream File (QHFWRTSF) API

	File management APIs
	Copy Stream File (QHFCPYSF) API
	Delete Stream File (QHFDLTSF) API
	Move Stream File (QHFMOVSF) API
	Rename Stream File (QHFRNMSF) API

	Directory entry information APIs
	Change Directory Entry Attributes (QHFCHGAT) API
	Close Directory (QHFCLODR) API
	Open Directory (QHFOPNDR) API
	Read Directory Entry (QHFRDDR) API
	Retrieve Directory Entry Attributes (QHFRTVAT) API


	File System Registration APIs
	New File Systems
	Enabling Your File System to HFS
	How HFS Support Processes a File System Job
	Standard HFS API and Exit Program Functions
	APIs
	Deregister File System (QHFDRGFS) API
	Register File System (QHFRGFS) API

	Exit programs
	Exit Program for Change Directory Entry Attributes (QHFCHGAT) API
	Exit Program for Change File Pointer (QHFCHGFP) API
	Exit Program for Close Directory (QHFCLODR) API
	Exit Program for Close Stream File (QHFCLOSF) API
	Exit Program for Control File System (QHFCTLFS) API
	Exit Program for Copy Stream File (QHFCPYSF) API
	Exit Program for Create Directory (QHFCRTDR) API
	Exit Program for Delete Directory (QHFDLTDR) API
	Exit Program for Delete Stream File (QHFDLTSF) API
	End Job Session Exit Program
	Exit Program for Force Buffered Data (QHFFRCSF) API
	Exit Program for Get Stream File Size (QHFGETSZ) API
	Exit Program for Lock and Unlock Range in Stream File (QHFLULSF) API
	Exit Program for Move Stream File (QHFMOVSF) API
	Exit Program for Open Directory (QHFOPNDR) API
	Exit Program for Open Stream File (QHFOPNSF) API
	Exit Program for Read Directory Entries (QHFRDDR) API
	Exit Program for Read from Stream File (QHFRDSF) API
	Exit Program for Rename Directory (QHFRNMDR) API
	Exit Program for Rename Stream File (QHFRNMSF) API
	Exit Program for Retrieve Directory Entry Attributes (QHFRTVAT) API
	Exit Program for Set Stream File Size (QHFSETSZ) API
	Start Job Session Exit Program
	Exit Program for Write to Stream File (QHFWRTSF) API






