
Dynamic Screen Manager APIs (V5R2)

Table of Contents

Dynamic Screen Manager APIs●

Using Dynamic Screen Manager APIs●

Low-level services

Using Low-Level Screen I/O Services APIs❍

Screen Manipulation and Query APIs

Change Low-Level Environment (QsnChgEnv)■

Clear Field Table (QsnClrFldTbl)■

Clear Screen (QsnClrScr)■

Create Low-Level Environment (QsnCrtEnv)■

Delete Low-Level Environment (QsnDltEnv)■

Initialize Low-Level Environment Description (QsnInzEnvD)■

Query 5250 (QsnQry5250)■

Query Color Support (QsnQryColorSup)■

Query Display Mode Support (QsnQryModSup)■

Restore Screen (QsnRstScr)■

Retrieve Display Mode (QsnRtvMod)■

Retrieve Low-Level Environment Description (QsnRtvEnvD)■

Retrieve Low-Level Environment User Data (QsnRtvEnvDta)■

Retrieve Low-Level Environment Window Mode (QsnRtvEnvWinMod)■

Retrieve Screen Dimensions (QsnRtvScrDim)■

Roll Down (QsnRollDown)■

Roll Up (QsnRollUp)■

Save Screen (QsnSavScr)■

Set Low-Level Environment Window Mode (QsnSetEnvWinMod)■

❍

Buffer Manipulation and Query APIs

Clear Buffer (QsnClrBuf)■

Copy Buffer (QsnCpyBuf)■

Create Command Buffer (QsnCrtCmdBuf)■

Create Input Buffer (QsnCrtInpBuf)■

Delete Buffer (QsnDltBuf)■

Put Command Buffer (QsnPutBuf)■

❍

●

Put Command Buffer and Perform Get (QsnPutGetBuf)■

Retrieve AID Code on Read (QsnRtvReadAID)■

Retrieve Available Data (QsnRtvAvailData)■

Retrieve Buffer Data Length (QsnRtvBufLen)■

Retrieve Buffer Size (QsnRtvBufSiz)■

Retrieve Cursor Address on Read (QsnRtvReadAdr)■

Retrieve Field Information (QsnRtvFldInf)■

Retrieve Length of Data in Input Buffer (QsnRtvDtaLen)■

Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen)■

Retrieve Number of Bytes Read from Screen (QsnRtvReadLen)■

Retrieve Number of Fields Read (QsnRtvFldCnt)■

Retrieve Pointer to Data in Input Buffer (QsnRtvDta)■

Retrieve Pointer to Field Data (QsnRtvFldDta)■

Retrieve Read Information (QsnRtvReadInf)■

Screen Input APIs

Get AID (QsnGetAID)■

Get Cursor Address (QsnGetCsrAdr)■

Get Cursor Address with AID (QsnGetCsrAdrAID)■

Put Input Command (QsnPutInpCmd)■

Read from Invited Device (QsnReadInvited)■

Read Immediate (QsnReadImm)■

Read Input Fields (QsnReadInp)■

Read Modified Alternate (QsnReadMDTAlt)■

Read Modified Fields (QsnReadMDT)■

Read Modified Immediate Alternate (QsnReadMDTImmAlt)■

Read Screen (QsnReadScr)■

❍

Screen Output APIs

Delete Field ID Definition (QsnDltFldId)■

Generate a Beep (QsnBeep)■

Insert Cursor (QsnInsCsr)■

Pad between Two Screen Addresses (QsnWrtPadAdr)■

Pad for N Positions (QsnWrtPad)■

Put Output Command (QsnPutOutCmd)■

Set Cursor Address (QsnSetCsrAdr)■

Set Error State (QsnSetErr)■

Set Field (QsnSetFld)■

❍

Set Field with CCSID (QsnSetFldCC)■

Set Output Address (QsnSetOutAdr)■

Write Data (QsnWrtDta)■

Write Data with CCSID (QsnWrtDtaCC)■

Write Structured Field Major (QsnWrtSFMaj)■

Write Structured Field Minor (QsnWrtSFMin)■

Write to Display (QsnWTD)■

Write Transparent Data (QsnWrtTDta)■

Low-Level Services Examples❍

5250 Data Stream Details❍

Window services

Using Window Services APIs❍

Window Manipulation and Query APIs

Change Window (QsnChgWin)■

Create a Window (QsnCrtWin)■

Initialize Window Description (QsnInzWinD)■

Move Window (QsnMovWin)■

Move Window by User (QsnMovWinUsr)■

Resize Window (QsnRszWin)■

Resize Window by User (QsnRszWinUsr)■

Retrieve Window Data (QsnRtvWinDta)■

Retrieve Window Description (QsnRtvWinD)■

Set Window Services Attributes (QsnSetWinAtr)■

❍

Window I/O APIs

Clear Window (QsnClrWin)■

Clear Window Message (QsnClrWinMsg)■

Display Window (QsnDspWin)■

Put Window Message (QsnPutWinMsg)■

❍

Window Manager Services APIs

End a Window (QsnEndWin)■

Retrieve Current Window (QsnRtvCurWin)■

Set Current Window (QsnSetCurWin)■

Start a Window (QsnStrWin)■

❍

●

Session services APIs

Using Session services APIs❍

Session manipulation and query APIs❍

●

Change Session (QsnChgSsn)■

Clear Scroller (QsnClrScl)■

Create a Session (QsnCrtSsn)■

Display Scroller Bottom (QsnDspSclB)■

Display Scroller Top (QsnDspSclT)■

Initialize Session Description (QsnInzSsnD)■

Query If Scroller in Line Wrap Mode (QsnQrySclWrp)■

Retrieve Number of Columns to Shift Scroller (QsnRtvSclNumShf)■

Retrieve Number of Rows to Roll Scroller (QsnRtvSclNumRoll)■

Retrieve Session Data (QsnRtvSsnDta)■

Retrieve Session Description (QsnRtvSsnD)■

Roll Scroller Down (QsnRollSclDown)■

Roll Scroller Up (QsnRollSclUp)■

Shift Scroller Left (QsnShfSclL)■

Shift Scroller Right (QsnShfSclR)■

Toggle Line Wrap/Truncate Mode (QsnTglSclWrp)■

Session I/O APIs

Using Session I/O APIs■

APIs

Backspace on Scroller Line (QsnSclBS)■

Go to Next Tab Position in Scroller Line (QsnSclTab)■

Go to Start of Current Scroller Line (QsnSclCR)■

Go to Start of Next Scroller Line (QsnSclNL)■

Print Scroller Data (QsnPrtScl)■

Read Data from Session (QsnReadSsnDta)■

Retrieve Session Line to Input Line (QsnRtvSsnLin)■

Start New Scroller Line at Current Position (QsnSclLF)■

Start New Scroller Page (QsnSclFF)■

Write Characters to Scroller (QsnWrtSclChr)■

Write Line to Scroller (QsnWrtSclLin)■

■

❍

Dynamic Screen Manager APIs
The Dynamic Screen Manager (DSM) APIs are a set of screen I/O interfaces that provide a dynamic way to
create and manage screens for the Integrated Language Environment (ILE) high-level languages. Because
the DSM interfaces are bindable, they are accessible to ILE programs only.

The DSM APIs provide an alternative to the existing way of defining screen appearance outside a program
by coding in DDS or UIM, for example. Instead, programmers can use a series of calls to DSM within their
programs to dynamically specify and control screen appearance for their applications. Unlike static
definition methods, the DSM interfaces provide the flexibility needed for those applications requiring more
dynamic screen control. The DSM support provided varies from low-level interfaces for direct screen
manipulation to windowing support.

The DSM APIs fall into the following functional groups:

Low-level services provide a direct interface to the 5250 data stream commands. These APIs are
used to query and manipulate the state of the screen; to create, query, and manipulate input and
command buffers used to interact with the screen; and to define fields and write data to the screen.

●

Window services are used to create, delete, move, and resize windows, and to manage multiple
windows during a session.

●

Session services provide a general scrolling interface that can be used to create, query, and
manipulate sessions, and to perform input and output operations to sessions.

●

See Using Dynamic Screen Manager APIs for additional information.

See Code disclaimer information for information pertaining to code examples.

Top | APIs by category

Using Dynamic Screen Manager APIs

Data Structures for DSM APIs

Data structures for use with ILE C, ILE COBOL, and ILE RPG/400(R) are available in the QSYSINC
library in member QSNAPI for service program QSNAPI.

Omitting Parameters with Associated Lengths

To omit a parameter with an associated length parameter, that length parameter should be omitted or
specified as 0. If the length parameter is specified with a value greater than 0, the parameter with which it is
associated is required.

For example, to omit the user extension information on the low-level environment, specify either a NULL
pointer by value, or 0 by reference for the length. The extension information structure is ignored. If the
length is greater than 0, the extension information structure cannot be NULL. If it is, then a Required
parameter omitted error is generated.

Dynamic Screen Manager APIs | APIs by category

Low-Level Screen I/O Services APIs
The low-level services are divided into the following functional groups:

Screen Manipulation and Query APIs, which are used to query and manipulate the state of the
screen.

●

Buffer Manipulation and Query APIs, which are used to create, query, and manipulate input and
command buffers used to interact with the screen.

●

Screen Input APIs, which are used to read field data and other information from the screen.●

Screen Output APIs, which are used to define fields and write data and other information to the
screen.

●

The low-level screen I/O services APIs provide a direct interface to the 5250 data stream commands and
user-defined data streams for performing basic screen I/O operations. For detailed information about the
results and interactions of these operations, refer to the following 5250 data stream documentation:

5250 Functions Reference, SA21-9247-06. This book is not accessible online, but can be ordered
from the IBM Publications Center.

●

5494 Remote Control Unit Functions Reference R3.1, SC30-3533-04. This book can be viewed
online through the IBM Publications Center.

●

For additional information, select one of the following:

Low-Level Services Examples●

DSM Error Handling●

Device Support●

Operating Environments●

Direct and Indirect Operations●

DBCS Considerations●

Performance Considerations●

Limitations and Restrictions●

5250 Data Stream Details, including

AID-Generating Keys❍

Control Characters❍

Screen Attribute Characters❍

Display Address❍

Insert Cursor Address❍

Modified Data Tag (MDT) Bit❍

Resequencing❍

States and Modes❍

Dumping the 5250 Data Stream Commands❍

●

Top | Dynamic Screen Manager APIs | APIs by category

Using Low-Level Screen I/O Services APIs

DSM Error Handling

Calls to most of the interfaces can result in a direct I/O operation, or in the storing of commands in a
command buffer. The command buffer provides a way of saving the commands so that multiple operations
can be specified and performed in a single I/O operation. DSM performs error handling as much as possible
prior to issuing an I/O operation. For example, if a request is made to place the screen in wide mode, and
the display does not support this mode, DSM detects and reports the error condition before performing an
I/O operation. This way of handling errors is particularly useful in the case where multiple commands have
been saved in a buffer. Otherwise, there is no obvious way to determine which command was in error when
the I/O operation fails.

The errors that can occur for each operation are listed with the operation. If an error message indicates that
the error is issued for a negative response code, this means that the error was not detected by DSM and
occurred on the I/O operation.

Note: When you are using the OS/400 TELNET display station emulation, an unsuccessful I/O operation
may be undetected initially, but will be reported on the next operation.

Device Support

The 5250 Query command is used to determine the valid commands for a particular device. This command
is issued for the current device at the start of each DSM session and the information is saved for subsequent
queries. If the 5250 Query command is not supported, the base data stream support as documented in the
5250 Functions Reference is assumed, with color and wide support being determined by the device type.

Operating Environments

The low-level interfaces operate within an environment that can be defined using the Create Low-Level
Environment (QsnCrtEnv) API. The low-level environment defines the operating modes, such as DBCS
support and the window mode. The environment is passed as a parameter to most of the low-level services
APIs. There is no need to define a low-level environment unless you need a specific operating environment
that is different from the default. The default low-level environment is indicated on the low-level service
APIs by specifying the environment handle as zero.

Direct and Indirect Operations

Many of the low-level APIs accept an optional command buffer as a parameter. For such APIs, the
command buffer can be used to store and accumulate a group of requested operations. The accumulated
operations can then be written to the screen in a single I/O operation. Better performance can be achieved
because a group of repetitive operations can be issued to the screen without having to recall the sequence of
individual APIs for each repeated operation.

A direct operation is one that omits the command buffer. The requested operation takes place
immediately. For most APIs, specifying the command buffer results in an indirect operation. No I/O
operation takes place and the operation is simply stored in the command buffer. Several of the screen input
APIs, however, do perform a direct operation when the command buffer is specified. This semantic is

discussed in Read Input Fields (QsnReadInp) API.

DBCS Considerations

You can write DBCS data enclosed with SO/SI to the screen, and when the underlying display supports it,
graphic DBCS using the Write Data (QsnWrtDta) API to specify the data stream Write Extended Attribute
order. (See the 5250 data stream documentation for further details.) You can define fields as being DBCS
through the Set Field (QsnSetFld) API using the appropriate field control word. DBCS data can be written
to such fields as described above. If you specify DBCS support on the low-level environment description,
(see Format of the Low-Level Environment Description), the APIs will handle the parsing of DBCS data
and fields appropriately.

The APIs do not provide any special processing of DBCS data, such as adding SO/SI to DBCS graphic data
when graphic data is not supported by the display. For example, if you want to define a field as graphic
DBCS and write graphic DBCS data to it, code the QsnSetFld API specifying a control word of
QSN_FCS_DBCS_PURE (x'8220') and then write the graphic data to a command buffer using the
QsnWrtDta API. Precede and follow this data with Write Extended Attribute orders to add the extended
NLS SO/SI attributes. If you want to write a graphic data value to a non-graphic DBCS field, you must
enclose the graphic DBCS data with SO/SI prior to calling the QsnWrtDta API.

Performance Considerations

The following operations can incur overhead and adversely affect the performance of your application:

QsnCrtEnv

Specifying translation of x'3f' to x'1f' can incur overhead because all outgoing data must be checked
for this value. This option should be specified only if CDRA is on and translation between the code
pages will result in a x'3f' occurrence in data to be displayed.

●

QsnSavScr

This operation results in the entire contents of the screen being read, which can adversely affect
response time. This is typically about 3KB, but could be up to 28KB.

●

QsnRstScr

This operation writes the result of a save screen back to the device, which can adversely affect
response time.

●

If you have GUI support, you can put additional commands after the QsnSavScr or QsnRstScr APIs to
reduce I/O operations and improve performance.

Deleting structures associated with handles, such as command buffers, prior to exiting a program will
improve performance for the programs that use APIs that create handles.

Limitations and Restrictions

The following limitations or restrictions apply to the low-level interfaces:

Certain functions are supported by control units that do not support the 5250 Query command. If
the Query command is not supported, it is assumed that the particular function is not supported
either. These functions are transparent data support and move cursor order support. Device
attributes such as wide mode and color support are determined based on the device type if the 5250
Query command is not supported.

●

For the Retrieve Display Mode (QsnRtvMod) operation to correctly report the current state of the
display, all commands that affect this state (such as a Clear Unit or Clear Unit Alternate) must
occur as the first command in any command stream written to the display. This is because the work
station control unit inspects the first command in the stream to determine if a state change is taking
place. Most iSeries programs, including the DSM APIs, send these commands only at the
beginning of a stream. If you write a stream in which such commands do not appear at the
beginning of the stream, the results of the Retrieve Display Mode (QsnRtvMod) operation may not
be accurate.

●

When conversions are performed, they are performed only after a Read Input Fields (QsnReadInp),
Read Modified Fields (QsnReadMDT), Read Modified Alternate (QsnReadMDTAlt), Read
Immediate (QsnReadImm), or Read Modified Immediate Alternate (QsnReadMDTImmAlt)
operation. They are performed on all incoming field data, including transparent and numeric data.
You must turn conversion on and off. To prevent certain data from being converted, you explicitly
set the conversion options on the QsnCrtEnv and QsnChgEnv APIs. The conversions that are
affected by this are CDRA conversion based on the job CCSID and conversions of X'1F' in the
incoming data stream to X'3F'.

●

Top | Dynamic Screen Manager APIs | APIs by category

Screen Manipulation and Query APIs
The screen manipulation and query APIs are used to query and manipulate the state of the screen. They are:

Change Low-Level Environment (QsnChgEnv) changes the low-level environment description.●

Clear Field Table (QsnClrFldTbl) clears the format table but does not alter the display.●

Clear Screen (QsnClrScr) clears the screen and sets the screen size.●

Create Low-Level Environment (QsnCrtEnv) creates the environment for the low-level services
APIs.

●

Delete Low-Level Environment (QsnDltEnv) deletes the environment for the low-level services
APIs.

●

Initialize Low-Level Environment Description (QsnInzEnvD) initializes the low-level environment
description.

●

Query 5250 (QsnQry5250) returns the results of the 5250 Query command.●

Query Color Support (QsnQryColorSup) determines if the display device supports color.●

Query Display Mode Support (QsnQryModSup) queries if the display device allows a given mode.●

Restore Screen (QsnRstScr) restores the contents of a screen saved with Save Screen (QsnSavScr)
API.

●

Retrieve Display Mode (QsnRtvMod) queries the current device mode.●

Retrieve Low-Level Environment Description (QsnRtvEnvD) retrieves the low-level environment
description.

●

Retrieve Low-Level Environment User Data (QsnRtvEnvDta) returns a pointer to the user data for
the low-level environment.

●

Retrieve Low-Level Environment Window Mode (QsnRtvEnvWinMod) retrieves the low-level
interface environment window mode description.

●

Retrieve Screen Dimensions (QsnRtvScrDim) retrieves the screen dimensions.●

Roll Down (QsnRollDown) rolls the screen down by the given number of rows.●

Roll Up (QsnRollUp) rolls the screen up by the given number of rows.●

Save Screen (QsnSavScr) saves the present display so it can be restored later.●

Set Low-Level Environment Window Mode (QsnSetEnvWinMod) sets the window mode for the
low-level interface environment.

●

Top | Dynamic Screen Manager APIs | APIs by category

Change Low-Level Environment (QsnChgEnv)
API

 Required Parameter Group:

1 Low-level environment description Input Char(*)
2 Length of low-level environment

description
Input Binary(4)

 Omissible Parameter Group:

3 Low-level environment handle Input Binary(4)
4 Error Code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Change Low-Level Environment (QsnChgEnv) API changes the description for the given low-level
environment. The Change Low-Level Environment exit routine will be called if specified on the user
extension information of the Create Low-Level Environment (QsnCrtEnv) API.

Authorities and Locks

Display file authority

*USE

Display file library authority

*USE

Exit routine authority

*EXECUTE

Required Parameter Group

Low-level environment description

INPUT; CHAR(*)

The new environment description for the given environment. The format of this parameter is shown
in Format of the Low-Level Environment Description.

Length of low-level environment description

INPUT; Binary(4)

The length of the low-level environment description parameter. The value specified must be 16, 36
or 38.

Omissible Parameter Group

Low-level environment handle

INPUT; BINARY(4)

The low-level environment to be modified. If this parameter is omitted or specified as 0, the default
low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA327 E Low level environment description value incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA344 E The file &2 in library &3 is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Clear Field Table (QsnClrFldTbl) API

 Omissible Parameter Group:

1 Command buffer handle Input Binary(4)
2 Low-level environment handle Input Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Clear Field Table (QsnClrFldTbl) API erases the contents of the format table without affecting the
display station screen. This allows for example, all input field definitions to be erased from the screen
without altering the physical appearance of the screen.

This command corresponds directly to the 5250 Clear Format Table command. See the 5250 data stream
documentation for details.

Authorities and Locks

None

Omissible Parameter Group

Command buffer handle

INPUT; BINARY(4)

If this parameter is omitted or specified as 0, this is a direct operation and the format table is
cleared immediately. Otherwise, this is an indirect operation and the command is stored in the
command buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Clear Screen (QsnClrScr) API

 Omissible Parameter Group:

1 Mode Input Char(1)
2 Command buffer handle Input Binary(4)
3 Low-level environment handle Input Binary(4)
4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Clear Screen (QsnClrScr) API clears the screen and sets the screen size to the specified mode. This
command corresponds directly to the 5250 Clear Unit or Clear Unit Alternate command, depending upon
the current screen presentation size. See the 5250 data stream documentation for details.

Authorities and Locks

None

Restrictions

If this is an indirect operation, it must be the first command in the command buffer.

Omissible Parameter Group

Mode

INPUT; CHAR(1)

The mode to place the screen in after the screen is cleared. If this parameter is omitted, a value of 0
is assumed.

The possible values are:

0 Indicates that the current screen size should be kept. For indirect operations where this value is
specified, the subsequent clear operation will be based on the current screen size, not on
whatever size the screen is when the command buffer is ultimately written out. The current
display size will be determined using the QsnRtvMod interface.

3 Set screen to 24x80 mode.

4 Set screen to 27x132 mode. This value is not supported by all devices. A CPFA306 error will
occur if an attempt is made to specify this value with a device that does not support it.

Command buffer handle

INPUT; BINARY(4)

If this parameter is omitted or specified as 0, this is a direct operation and the screen is cleared
immediately. Otherwise, this is an indirect operation and the command is stored in the command
buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA306 E Command not supported by current device.

CPFA321 E Operation not first command in command buffer.

CPFA322 E Incorrect display mode &1 specified.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Create Low-Level Environment (QsnCrtEnv)
API

 Required Parameter Group:

1 Low-level environment description Input Char(*)
2 Length of low-level environment

description
Input Binary(4)

 Omissible Parameter Group:

3 User Extension Information Input Char(*)
4 Length of user extension information Input Binary(4)
5 Low-level environment handle Output Binary(4)
6 Error Code I/O Char(*)

 Returned Value:

Low-level environment handle Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Create Low-Level Environment (QsnCrtEnv) API creates an operating environment for low-level
interface routines.

Authorities and Locks

Display file authority

*USE

Display file library authority

*USE

Exit routine authority

*EXECUTE

Required Parameter Group

Low-level environment description

INPUT; CHAR(*)

The environment description for the low-level interfaces. The format of this parameter is shown in
Format of the Low-Level Environment Description.

Length of low-level environment description

INPUT; Binary(4)

The length of the low-level environment description parameter. The value specified must be 16, 36,
or 38.

Omissible Parameter Group

User extension information

INPUT; CHAR(*)

The user extension information is used to associate data and exit routines with the low-level
environment. This essentially enables the object-oriented programming concept of inheritance,
allowing the low-level environment to be extended in a natural way. The user extension
information cannot be changed once the environment has been created. The format of this
parameter is shown in Format of the Low-Level User Environment Extension Information.

User extension information length

INPUT; BINARY(4)

The length of the user extension information parameter. If this parameter is specified with a zero
value, the user extension information parameter is ignored. If a non-zero value is specified, it must
be 48 and the user extension parameter is required.

Low-level environment handle

OUTPUT; BINARY(4)

The low-level environment that is created as a result of this operation. This handle can be used
across activation groups if the activation group in which the handle was created is still active.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Low-level environment handle

OUTPUT; BINARY(4)

The value for parameter 5 is returned. If an error occurs during processing, returns -1.

Format of the Low-Level Environment Description

Offset

Type FieldDec Hex

0 0 CHAR(1) Color support

1 1 CHAR(1) Character conversion

2 2 CHAR(1) CDRA conversions to 0x3F

3 3 CHAR(1) DBCS support

4 4 CHAR(1) Coexistence

5 5 CHAR(1) Alternative help key support

6 6 CHAR(10) Target device

16 10 CHAR(20) Display file

36 24 CHAR(1) Invite active

37 25 CHAR(1) Prevent override

Format of the Low-Level User Environment Extension Information

Offset

Type FieldDec Hex

0 0 PTR(SPP) User data associated with the environment

16 10 PTR(PP) Exit routine to call when the low-level environment is
changed

32 20 PTR(PP) Exit routine to call when the low-level environment is deleted

Field Descriptions

In the following descriptions, specifying the value Same indicates the current value when using the Change
Low-Level Environment (QsnChgEnv) API. The default value refers to the value set by the Initialize
Low-Level Environment Description (QsnInzEnvD) API.

Alternative help key support. Specifies if the alternative help key is used. The default is no alternative
help key support.

The possible values for this field are:

0 Same: Keep the current setting.

1 None: No alternative help key support is used.

QSN_F1 through QSN_F24 The specified key is the alternative help key. See Table 1 for the values that
correspond to these mnemonics. When this key is pressed, the AID code for
the Help key will be returned.

CDRA conversions to X'3F'. When CDRA conversion takes place, all characters not supported in the
target CCSID are converted to X'3F'. Sending data containing X'3F' to the display causes adverse effects.

This field specifies whether the DSM low-level routines are to check for X'3F' in the data to be displayed
and perform any conversions if necessary. Conversion will be performed for both direct and indirect
operations on data output through the QsnWrtDta and QsnWrtTDta APIs, and input through the
QsnReadInp, QsnReadMDT, QsnReadMDTAlt, QsnReadMDTAlt, QsnReadImm, and
QsnReadMDTImmAlt APIs.

The default is convert if character conversion (see below) is specified as convert. Otherwise, the default is
standard. (See Limitations and Restrictions for further details.)

The possible values for this field are:

0 Same: Keep the current setting.

1 Standard: Always display data as standard data with no replacement.

2 Convert: Always check for X'3F' in data and convert to X'1F' before displaying the data and convert
X'1F' in incoming data to X'3F'.

Character conversion. This field specifies whether CDRA conversion takes place on the data when the job
CCSID does not match that of the display device. Conversion will be performed for both direct and indirect
operations on data output through the QsnWrtDta and QsnWrtTDta APIs, and input through the
QsnReadInp, QsnReadMDT, QsnReadMDTAlt, QsnReadMDTAlt, QsnReadImm, and
QsnReadMDTImmAlt APIs.

The CCSID for the display device is determined from the CHRID of the device. The default is convert if
the job CCSID does not match that of the underlying device; otherwise, standard is the default.

The possible values for this field are:

0 Same: Keep the current setting.

1 Standard: Do not perform conversion.

2 Convert: If the job CCSID does not match that of the display device and neither has the value 65535,
perform the appropriate conversion on outgoing and incoming data. (See Limitations and Restrictions
for further details.)

Coexistence. Whether DSM coexists with other screen I/O methods, such as DDS- or UIM-coded
interfaces, during the course of this application. Better performance can be achieved if coexistence is not
required; the DSM APIs can assume the state of the device, for example, wide or normal mode.

The default is 1.

The possible values for this field are:

0 Same: Keep the current setting.

1 Coexist: Other screen I/O methods are used in conjunction with DSM.

2 Only: DSM is the only screen I/O method being used.

Color support. This field determines the color selection used when both a monochrome and a color display
attribute are supplied. The default is select.

The possible values for this field are:

0 Same: Keep the current setting.

1 Mono: Always use the monochrome attributes specified regardless of the underlying device type.

2 Always use the color attributes specified regardless of the underlying device type.

3 Select: Select the appropriate attribute based on the underlying display type.

DBCS support. This field specifies whether the data being sent to the display contains DBCS data. This
field affects, for example, how data is handled within sessions. For devices that do not support DBCS data,
the default is standard; for DBCS-capable devices, it is mixed. If a value other than standard is specified for
a device that does not support DBCS data, a CPFA306 error will occur.

The possible values for this field are:

0 Same: Keep the current setting.

1 Standard: Always handle data as single-byte characters.

2 Only: Data contains double-byte characters only. SO/SI control characters must enclose the data; these
are not implicitly added.

3 Either: Data contains either double-byte or single-byte characters, but not both. SO/SI control
characters must enclose the DBCS part of the data, unless a graphic DBCS value is passed. In this
case, extended ideographic attributes must enclose the data, which can be written using the QsnWrtDta
API (see Write Data (QsnWrtDta) API).

4 Mixed: Data may contain both single- and double-byte characters. All double-byte character strings
within the data must be enclosed by SO/SI control characters. Graphic DBCS data must be enclosed by
extended ideographic attributes as described for the preceding value.

Display file. The name of the display file to be used. The first 10 characters contain the file name, and the
last 10 characters contain the library name. By specifying a display file, you can, for example, direct the
input/output of different DSM environments to different devices, and you can specify the restore display
parameter on the display file at creation time. The default for this field is blanks, which indicate that the
system-supplied display file should be used.

If a file name is specified, the file must contain a record named USRRCD. This record must have the
USRDFN keyword specified.

Exit routine to call when low-level environment changed. Exit routine to call when the low-level
environment is changed through the QsnChgEnv or QsnSetEnvWinMod API. For a description of the
parameters passed to this routine, see Change Low-Level Environment Exit Routine. Specify NULL for this
field if no exit routine is required.

Exit routine to call when low-level environment deleted. Exit routine to call when the low-level
environment is deleted through the QsnDltEnv API. The exit routine will be called before the environment
itself is deleted. For a description of the parameters passed to this routine, see Delete Low-Level
Environment Exit Routine. Specify NULL for this field if no exit routine is required.

Invite active. This field determines whether each write that is sent out causes the device to be invited. After
the device is invited, the user is able to enter data, but the application can continue processing instead of
waiting for input. When the application is ready for the input, it can call QsnReadInvited, which will issue a
read from invited device operation.

The invite active flag is ignored by the read APIs, like QsnReadMDT. If the operation is indirect, then the
read command will be added to the command buffer. This command buffer can be passed into the
QsnReadInvited API, where it will be sent out before the read from invited device is done. If the operation
is direct, then the read command will be sent in a data stream to the device. The new data stream will cause

the invite to be retracted. A read with wait will be performed.

If the display file value is specified for the environment, the INVITE keyword must be specified on the
USRRCD record of the specified display file.

The timeout value for the read from invited device operation can be controlled, by supplying a display file
for the environment. The WAITRCD parameter on the CRTDSPF command can be set to the desired
timeout value. See the return value for the QsnReadInvited API to determine the return value if the read
from invited device operation times out.

The possible values for this field are:

0 Same: Keep the current setting.

1 Not active: The INVITE keyword, if specified in the display file, will be ignored. A normal read of the
device will be performed.

2 Active: Any request to get data from the display will result in a read from invited device being issued.

For more information on invite processing, see the Application Design Programming book.

Prevent override. This field determines whether the display file used by DSM can be overridden or not.
This value is ignored if the display file value is not specified.

The possible values for this field are:

0 Same: Keep the current setting.
1 Do not prevent override: When opened, the display file will allow overrides. For create

and initialize operations, this is the default.
2 Prevent overrides: When the display file is opened, the flag to block overrides will be set.

User data associated with the environment. A pointer to any data the user wants to associate with this
environment. This field can be used by the programmer to attach information to the low-level environment
that can be of any format. For example, if multiple environments are being used, a list of the fields currently
defined in an environment could be associated with the environment through this pointer. Specify NULL
for this field if you do not have any user data.

Target device. The program device name of the target display device for the environment. This parameter
must be specified with a value of *REQUESTER, which is the default.

Exit Routine Error Handling

If an exception occurs during the processing of an exit routine, the exception is ignored and processing
continues. A CPFA318 will be issued as a diagnostic message only. You can explicitly handle errors in an
exit routine by adding an exception handler to the routine.

Change Low-Level Environment Exit Routine

This exit routine, if specified on the user extension information, is called after the environment is changed
through the QsnChgEnv or QsnSetEnvWinMod API. The following parameter is passed to the exit routine:

1 Low-level environment handle Input Binary(4)

Change Low-Level Environment Exit Routine Parameter

Low-level environment handle

INPUT; BINARY(4)

A handle for the environment that was changed.

Delete Low-Level Environment Exit Routine

This exit routine, if specified on the user extension information, is called before the environment is deleted.
The following parameter is passed to the exit routine:

1 Low-level environment handle Input Binary(4)

Delete Low-Level Environment Exit Routine Parameter

Low-level environment handle

INPUT; BINARY(4)

A handle for the environment that was deleted.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA314 E Memory allocation error.

CPFA31E E Required parameter &1 omitted.

CPFA327 E Low level environment description value incorrect.

CPFA344 E The file &2 in library &3 is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Delete Low-Level Environment (QsnDltEnv) API

 Required Parameter:

1 Low-level environment handle Input Binary(4)

 Omissible Parameter:

2 Error Code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Delete Low-Level Environment (QsnDltEnv) API deallocates an operating environment for low-level
interface routines.

Authorities and Locks

None

Required Parameter

Low-level environment handle

INPUT; BINARY(4)

The low-level environment to be deallocated.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA317 E Cannot deallocate memory dynamically.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Initialize Low-Level Environment Description
(QsnInzEnvD) API

 Required Parameter Group:

1 Low-level environment description Output Char(*)
2 Length of low-level environment

description
Input Binary(4)

 Omissible Parameter:

3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Initialize Low-Level Environment Description (QsnInzEnvD) API initializes a low-level environment
description with default values. Unless otherwise specified in the low-level environment description in
Format of the Low-Level Environment Description, pointer fields are set to the null pointer, numeric fields
to 0, character flag fields to 0, and other character fields to blanks. For example, the default value for the
color support field is 3, so this field will be set to 3.

Authorities and Locks

Display file authority

*USE

Display file library authority

*USE

Exit routine authority

*EXECUTE

Required Parameter Group

Low-level environment description

OUTPUT; CHAR(*)

The low-level environment description to be initialized.

Length of low-level environment description

INPUT; Binary(4)

The length of the low-level environment description parameter. This parameter must be specified as
16, 36 or 38.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA344 E The file &2 in library &3 is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Query 5250 (QsnQry5250) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)

 Omissible Parameter:

3 Error Code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Query 5250 (QsnQry5250) API is used to retrieve the results of the Query 5250 command for the
current device. The Query 5250 command returns device and controller attributes for the current device,
such as whether wide mode and graphical user interface (GUI) are supported.

Authorities and Locks

None

Restrictions

This command is not supported by all control units. A query status of 3 indicates if the query failed.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that is to receive the result of the query. You can specify that the size of the
area be smaller than the format requested as long as you specify the length of the receiver variable
parameter correctly. As a result, the API returns only the data the area can hold. The format of the
data returned is shown in Format of the Query Data.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results are unpredictable. The minimum length is 8 bytes.

The API returns as much information as it can fit in this length. If the available information is
longer, it is truncated. If the available information is shorter, the unused output is unchanged;
whatever is already stored in that space remains there. To determine how much information the API
actually returns in response to this call, see the bytes returned field. To determine how much
information the API could return if space were available, see the bytes available field.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Query Data

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Query status

9 9 BINARY(2) Work station control unit

11 B CHAR(3) Code Level

14 E CHAR(16) Reserved

30 1E CHAR(1) Work station type code

31 1F CHAR(4) Machine type code

35 23 CHAR(3) Model number

38 26 CHAR(1) Keyboard ID

39 27 CHAR(1) Extended keyboard ID

40 28 CHAR(1) PC keyboard ID

41 29 CHAR(4) Serial number

45 2D BINARY(2) Maximum input fields

47 2F CHAR(2) Control unit customization

48 30 CHAR(1) Reserved

50 32 CHAR(12) Device capabilities

62 3E CHAR(1) Grid buffers

63 3F CHAR(1) Type of grid line support

64 40 CHAR(1) Reserved

65 41 CHAR(1) Images or faxes

66 42 CHAR(1) Image or fax scaling granularity

67 43 CHAR(1) Image or fax rotating granularity

68 44 CHAR(1) Image or fax support

69 45 CHAR(1) Invisible tags

70 46 CHAR(2) Reserved

Field Descriptions

Further details on the fields listed can be found in the 5494 Remote Control Unit Functions Reference,
SC30-3533, manual.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Code Level. Identifies the code release level.

Control unit customization. Indicates customization parameters for the control unit as:

Byte 0

Bit 0: Indicates that the iSeries server can send a 5250 WSC Customization command when set on●

Bit 1: Indicates that the iSeries server can send a 5250 Query Station State command when set on●

Bit 2: Indicates that the iSeries server can send a 5250 Workstation Customization command to
select the SBA code returned in READ commands for displays with ideographic extended
attributes when set on.

●

Bit 3: Indicates that the 5250 Workstation Customization command may be either 6 bytes or greater
than 8 bytes in length when set on.

●

Bits 4-7: Reserved●

Byte 1: Reserved

Device capabilities. Defines the operating capabilities of the designated device as:

Byte 0

Bits 0-1: Indicate Row 1/Column 1 support as:●

B'00' No support

B'01' limited support

Bit 2: Indicates the Read MDT Alternate command is supported when set on●

Bit 3: Indicates the work station and control unit have PA1 and PA2 support when set on●

Bit 4: Indicates the work station and control unit have PA3 support when set on●

Bit 5: Indicates the work station and control unit have cursor select support when set on●

Bit 6: Indicates the work station and control unit have move cursor order support when set on●

Bit 7: Indicates the Read Modified Immediate Alternate command is supported when set on●

Byte 1--display screen capabilities

Bits 0-3: Define screen size as:

B'0001' 24 x 80

B'0011' 24 x 80 or 27 x 132

●

Bit 4: Indicates selector light pen (SLP) is supported when set on●

Bit 5: Indicates magnetic stripe reader (MSR) is supported when set on●

Bits 6-7: Define color support as:

B'00' Monochrome display

B'01' Color support

●

Byte 2

Bit 0: Indicates Text Symbols support when set on●

Bit 1: Indicates work station and control unit have extended primary attribute●

Bits 2-4: Indicate Office Editor/Text support as:

B'000' No Office Editor/Text support

B'001' single language Office Editor/Text support

B'010' dual language Office Editor/Text support

●

Bit 5: Indicates work station and control unit have extended primary attribute support in data
processing (DP) mode (WEA order) when set on

●

Bits 6-7: Indicates extended foreground color attribute support

B'01' Available in DP mode. Fourteen colors are defined, but only seven are available. The other
seven colors are mapped into the available colors.

B'10' Available in DP mode. Fourteen colors are supported.

●

Byte 3

Bits 0-2: Indicate ideographic capability as:

B'000' No ideographic capability

B'001' Ideographic capability for presentation screen only

B'010' Ideographic data type and presentation screen ideographic capability

●

Bits 3-5: Indicate bidirectional support as:

B'000' No bidirectional capability

B'001' Bidirectional capability

●

Bit 6: Ideographic●

Bit 7: Indicates CCSID-based I/O is supported when set on.●

Byte 4

Bits 0-2: Indicate graphics capability as:

B'000' No graphics capability

B'001' 5292-style graphics

B'010' GDDM(R)-OS/2(R) Link Graphics

●

Bit 3: Indicates extended 3270 data stream capability when set on●

Bit 4: Indicates a pointer device is available when set on●

Bit 5: Indicates that GUI-like characters are available when set on●

Bit 6: Indicates the control unit supports enhanced user interface commands and field control words
(FCWs) when set on.

The commands include:

Create Window

Unrestricted Cursor Movement

Remove GUI Window

Remove All GUI Constructs

Read Screen To Print

Read Screen To Print With Extended Attributes

Write Error Code To Window

●

Save Partial Screen

Restore Partial Screen

Define Selection Field

Remove GUI Selection Field

Define Scroll Bar

Remove GUI Scroll Bar

The FCWs include:

Continued

Cursor Progression

Highlighted

Pointer Device Selection

Bit 7: Indicates Write Error Code To Window command is supported when set on●

Byte 5

Bit 0: Indicates the Write Data and Programmable Mouse Buttons structured field commands, the
Word Wrap FCW, and Ideographic Continued entry fields are supported when set on

●

Bit 1: Indicates this is a GUI device which will use all-points-addressable constructs for windows,
selection fields, and scroll bars, when set on

●

Bits 2-7: Reserved●

Byte 6: Reserved

Bytes 7-8:

Bit 0-13: Reserved●

Bit 14-15: 5250 fax or image support

B'00' No 5250 image or fax support

B'01' Support for seven formats:

TIFF

No compression■

CCITT Group 3 fax one-dimensional, modified-Huffman run-length
encoding

■

CCITT Group 3 fax compression■

CCITT Group 4 fax compression■

PackBits run-length encoding■

❍

PCX monochrome format❍

Stand-alone CCITT Group 3 fax compression❍

●

B'11' Support for the seven previous formats, plus five additional formats:

IOCA

IBM MMR algorithm■

No compression■

CCITT Group 3 fax one-dimensional, modified-Huffman run-length
encoding

■

CCITT Group 3 fax compression■

CCITT Group 4 fax compression■

❍

Byte 9: Reserved for use by PC emulators to indicate additional 5250 image or fax formats supported

Byte 10:

Bit 0: Indicates printer type as:

B'0' SCS printer

B'1' IPDS printer

●

Bits 1-7: Reserved●

Byte 11: Reserved

Extended keyboard ID. The device code for extended 5250 keyboards.

Grid buffers. The number of grid buffers that are available in the device.

X'00' Not grid-capable.

Images or faxes. The number of images or faxes that can be presented on a display screen.

X'00' No 5250 image or fax support

X'01-FE' Number allowed

X'FF' Variable, dependent on the size of the image or fax

Image or fax scaling granularity.

X'00' No 5250 image or fax support

X'01' Support for scaling percentages from 3% to 400%. No scroll-bar scaling, fill scaling, no change
scaling, increment and decrement

X'02-7E' Reserved

X'7F' Support for continuous scaling

X'80-FF' Reserved for use by 5250 PWS emulators

Image or fax rotating granularity.

X'00' No 5250 image or fax support

X'01' Support for rotating of 0, 90, 180, and 270 degrees

X'02-7E' Reserved

X'7F' Support for continuous rotation

X'80-FF' Reserved for use by 5250 PWS emulators

Image or fax support.

X'00' No 5250 image or fax support

B'0' Pop-up and pull-down windows that were written after
image or fax are presented over image or fax data when set
on

B'1' This device supports transparent mode.
B'2-7' Reserved

Invisible tags. Defines more device capabilities of the designated device as:

Bits 0-5: Reserved●

Bit 6: EBCDIC-to-ASCII translation. This is used by workstation gateway devices.●

Bit 7: True transparency.●

Keyboard ID. Reserved. This field is set to X'00'.

Machine type code. An EBCDIC code for the machine type.

Maximum input fields. The maximum number of input fields available (256).

Model number. An EBCDIC code for the machine model number.

PC keyboard ID. Device code for PC keyboards attached to a 5250 work station (X'00' for
nonprogrammable work stations).

Query status. The status of the 5250 query data. The possible values are:

DSM_5250Q_YES (1) Query information successfully retrieved.

DSM_5250Q_NO (2) Query cannot be issued for the device. This occurs when the device
configuration specifies that the query command should not be issued against the
device.

DSM_5250Q_FAIL (3) Query command failed. Default values are supplied based on the device type.
This occurs, for example, when the controller does not support the query
command.

Reserved. An ignored field.

Serial number. Field for device serial number. This field is set to zero for a work station with no serial
number.

Type of grid line support.

X'00' No grid line support

X'01' Type 1 grid line support including support for grid line commands

Work station control unit. The type of control unit.

Work station type code. The workstation type. The value is X'01' for display station.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Query Color Support (QsnQryColorSup) API

 Omissible Parameter Group:

1 Color indication Output Char(1)
2 Low-level environment handle Input Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Color indication Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Query Color Support (QsnQryColorSup) API determines whether the current display device supports
color or not.

Authorities and Locks

None

Omissible Parameter Group

Color indication

OUTPUT; CHAR(1)

Whether the device supports color or not. This information will be set based on the results of the
5250 Query command, if the display supports it; otherwise, certain defaults are assumed. See
Device Support for details. The possible values are:

0 Device does not support color

1 Device supports color

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Color indication

OUTPUT; BINARY(4)

This API returns the value for the color indication parameter if successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Query Display Mode Support (QsnQryModSup)
API

 Required Parameter:

1 Display mode Input Char(1)

 Omissible Parameter Group:

2 Mode indication Output Char(1)
3 Low-level environment handle Input Binary(4)
4 Error code I/O Char(*)

 Returned Value:

Mode indication Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Query Display Mode Support (QsnQryModSup) API determines if the current display device supports
the given mode. Certain devices, like the 3486 and 3487, support 27x132 mode but can be switched by
keystroke to turn off the wide capability. This will be reflected in the result returned by the QsnQryModSup
API. Use this API to determine if a subsequent mode change request through the Clear Screen (QsnClrScr)
API is valid. You can use the result of the Query 5250 (QsnQry5250) API to determine if the display is
capable of supporting wide mode or not.

Authorities and Locks

None

Required Parameter

Display mode

INPUT; CHAR(1)

The display mode for which to query support. The possible values are:

3 24x80 mode

4 27x132 mode

Omissible Parameter Group

Mode indication

OUTPUT; CHAR(1)

Whether the device allows the specified mode or not. The possible values are:

0 Device does not support the mode

1 Device supports the mode

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Mode indication

OUTPUT; BINARY(4)

This API returns the value for the mode indication parameter if successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA322 E Incorrect display mode &1 specified.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Restore Screen (QsnRstScr) API

 Required Parameter:

1 Input buffer containing saved
data

Input Binary(4)

 Omissible Parameter Group:

2 Command buffer handle Input Binary(4)
3 Low-level environment

handle
Input Binary(4)

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Restore Screen (QsnRstScr) API restores the state of the display as saved with an indirect command.
The display will be restored using the data contained in the input buffer given by parameter 1. If an indirect
operation is specified, the resulting command buffer will contain the Restore Screen command and the data
to restore the screen. Additional commands can be added to the command buffer subject to the conditions
described in Restrictions.

This command corresponds directly to the 5250 Restore Screen or Restore Partial Screen command. See the
5250 data stream documentation for details.

Authorities and Locks

None

Restrictions

This command must be the last command in the command buffer except when GUI support is used. In this
case, other input commands may follow.

Required Parameter

Input buffer containing saved data

INPUT; BINARY(4)

An input buffer that contains the result of an indirect QsnSavScr operation. The data will be copied
from this input buffer and used for the restore screen operation.

Omissible Parameter Group

Command buffer handle

INPUT; BINARY(4)

If this parameter is omitted or specified as 0, this is a direct operation and the screen is restored
immediately. Otherwise, this is an indirect operation and the command is stored in the command
buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA316 E Saved data not valid.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Display Mode (QsnRtvMod) API

 Omissible Parameter Group:

1 Display mode Output Char(1)
2 Low-level environment

handle
Input Binary(4)

3 Error code I/O Char(*)

 Returned Value:

Display mode Output Char(1)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Display Mode (QsnRtvMod) API returns the current display mode.

Authorities and Locks

None

Omissible Parameter Group

Display mode

OUTPUT; CHAR(1)

The current display mode. The possible values are:

3 Device is in 24x80 mode

4 Device is in 27x132 mode

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Display mode

OUTPUT; CHAR(1)

This API returns the value for the display mode parameter, or 0 if an error occurs during
processing.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA322 E Incorrect display mode &1 specified.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Low-Level Environment Description
(QsnRtvEnvD) API

 Required Parameter Group:

1 Low-level environment description Output Char(*)
2 Length of low-level environment

description
Input Binary(4)

 Omissible Parameter Group:

3 Low-level environment handle Input Binary(4)
4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Low-Level Environment Description (QsnRtvEnvD) API returns the description
corresponding to the specified low-level environment.

Authorities and Locks

None

Required Parameter Group

Low-level environment description

Output; CHAR(*)

The variable that contains the low-level environment description when the QsnRtvEnvD API has
completed. The format of the data returned is shown in Format of the Data Returned.

Length of low-level environment description

INPUT; Binary(4)

The length of the low-level environment description parameter. The minimum length is 8. If the

length is larger than the size of the receiver variable, the results are not predictable. The API returns
as much information as it can fit in this length. It the available information is longer, it is truncated.
If the available information is shorter, the unused output is unchanged; whatever is already stored
in that space remains there. To determine how much information the API actually returns in
response to this call, see the bytes returned field. To determine how much information the API
could return if space were available, see the bytes available field.

Omissible Parameter Group

Low-level environment handle

INPUT; BINARY(4)

The low-level environment for which the description should be retrieved. If this parameter is
omitted or specified as 0, the description for the default low-level environment is retrieved.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Data Returned

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(*) Environment description

The format of the remaining data returned is
shown in Format of the Low-Level Environment
Description.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Low-Level Environment User Data
(QsnRtvEnvDta) API

 Required Parameter:

1 Low-level environment
handle

Input Binary(4)

 Omissible Parameter Group:

2 User data pointer Output PTR(SPP)
3 Error code I/O Char(*)

 Returned Value:

User data pointer Output PTR(SPP)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Low-Level Environment User Data (QsnRtvEnvDta) API returns a pointer to the user data for
the given low-level environment.

Authorities and Locks

None

Required Parameter

Low-level environment handle

INPUT; BINARY(4)

A handle for the low-level environment for which the user data should be returned. If this
parameter is omitted or specified as 0, the default low-level environment is used.

Omissible Parameter Group

User data pointer

OUTPUT; PTR(SPP)

A pointer to the user data, as specified on the low-level environment description, for the given
low-level environment.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

User data pointer

OUTPUT; PTR(SPP)

This API returns the value for the user data pointer parameter, or the null pointer if an error occurs.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1F E Pointer is not on a 16 byte boundary.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Low-Level Environment Window Mode
(QsnRtvEnvWinMod) API

 Required Parameter Group:

1 Window mode description Output Char(*)
2 Length of window mode

description
Input Binary(4)

 Omissible Parameter Group:

3 Low-level environment
handle

Input Binary(4)

4 Error Code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Low-Level Environment Window Mode (QsnRtvEnvWinMod) API queries the state of the
window mode for the low-level interfaces.

Authorities and Locks

None

Required Parameter Group

Window mode description

OUTPUT; CHAR(*)

The field in which the window mode description should be stored. The format of the data returned
in this field is described in Format of the Data Returned.

Length of window mode description

INPUT; BINARY(4)

The length of the window mode description parameter. If the length is larger than the size of the
receiver variable, the results are not predictable. The minimum length is 8. The API returns as
much information as it can fit in this length. If the available information is longer, it is truncated. If
the available information is shorter, the unused output is unchanged; whatever is already stored in
that space remains there. To determine how much information the API actually returns in response
to this call, see the bytes returned field. To determine how much information the API could return
if space were available, see the bytes available field.

Omissible Parameter Group

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Data Returned

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Window mode

9 9 CHAR(*) Window mode description

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Window mode. Whether window mode is enabled or disabled. The possible values are:

0 Window mode is disabled.

1 Window mode is enabled.

Window mode description. The format of the remaining data returned is shown in Format of the Window
Mode Description.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Screen Dimensions (QsnRtvScrDim)
API

 Omissible Parameter Group:

1 Number of rows Output Binary(4)
2 Number of columns Output Binary(4)
3 Low-level environment

handle
Input Binary(4)

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Screen Dimensions (QsnRtvScrDim) API retrieves the current dimensions of the screen. You
must specify either the number-of-rows or the number-of-columns parameter, or a CPFA31E message will
be issued.

Authorities and Locks

None

Omissible Parameter Group

Number of rows

OUTPUT; BINARY(4)

The current height of the screen. This information will be set based on the current display size.

Number of columns

OUTPUT; BINARY(4)

The current width of the screen. This information will be set based on the current display size.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a

value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Roll Down (QsnRollDown) API

 Required Parameter Group:

1 Number of lines to roll Input Binary(4)
2 Top row of roll area Input Binary(4)
3 Bottom row of roll area Input Binary(4)

 Omissible Parameter Group:

4 Command buffer handle Input Binary(4)
5 Low-level environment

handle
Input Binary(4)

6 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Roll Down (QsnRollDown) API rolls the screen down a given number of lines within the roll area
specified. The following conditions cause a CPFA315 error to occur:

A top row of zero●

A bottom row greater than the number of display lines●

A top row greater than or equal to the bottom row●

A roll area greater than the bottom row minus the top row●

This API corresponds directly to the 5250 Roll command. See the 5250 data stream documentation for
details.

Restrictions

The following considerations apply to the QsnRollDown API:

Lines vacated due to a roll are not cleared to nulls.●

The command does not change the format table, and so, should be avoided when it could produce
discrepancies between the format table and the display.

●

Data rolled out of the roll area are lost.●

Authorities and Locks

None

Required Parameter Group

Number of lines to roll

INPUT; BINARY(4)

The number of lines to roll the designated area down by.

Top row of roll area

INPUT; BINARY(4)

The line number defining the top line of the area that will participate in the roll.

Bottom row of roll area

INPUT; BINARY(4)

The line number defining the bottom line of the area that will participate in the roll.

Omissible Parameter Group

Command buffer handle

INPUT; BINARY(4)

If this parameter is omitted or specified as 0, this is a direct operation and the screen is rolled down
immediately. Otherwise, this is an indirect operation and the command is stored in the command
buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA315 E Roll parameters not valid.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Roll Up (QsnRollUp) API

 Required Parameter Group:

1 Number of lines to roll Input Binary(4)
2 Top row of roll area Input Binary(4)
3 Bottom row of roll area Input Binary(4)

 Omissible Parameter Group:

4 Command buffer handle Input Binary(4)
5 Low-level environment handle Input Binary(4)
6 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

Usage Notes

The Roll Up (QsnRollUp) API is identical in function to the QsnRollDown API, except the lines are rolled
up instead of down.

Authorities and Locks

None

Required Parameter Group

Number of lines to roll

INPUT; BINARY(4)

The number of lines to roll the designated area up by.

Top row of roll area

INPUT; BINARY(4)

The line number defining the top line of the area that will participate in the roll.

Bottom row of roll area

INPUT; BINARY(4)

The line number defining the bottom line of the area that will participate in the roll.

Omissible Parameter Group

Command buffer handle

INPUT; BINARY(4)

If this parameter is omitted or specified as 0, this is a direct operation and the screen is rolled up
immediately. Otherwise, this is an indirect operation and the command is stored in the command
buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA315 E Roll parameters not valid.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Save Screen (QsnSavScr) API

 Omissible Parameter Group:

1 Saved data command buffer
handle

Output Binary(4)

2 Command buffer handle Input Binary(4)
3 Low-level environment

handle
Input Binary(4)

4 Error code I/O Char(*)

 Returned Value:

Saved data command buffer
handle

Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Save Screen (QsnSavScr) API saves the current state of the display. If this is a direct operation, the
API creates a command buffer that contains the operations used to restore the screen state and returns a
handle for this buffer. When a direct save screen operation is issued, the saved screen data is returned in a
command buffer. This command buffer contains the Restore Screen command along with the data to restore
the screen. Additional commands can be added to the command buffer as described in Restrictions under
the Restore Screen (QsnRstScr) API. The screen can be restored by sending this command buffer using the
Put Command Buffer (QsnPutBuf) API.

When an indirect save screen operation is issued, the Save Screen command is stored in the command
buffer and is considered an input operation. The command can be issued to the screen only through the Put
Command Buffer and Perform Get (QsnPutGetBuf) API. The saved data will be returned in the input buffer
parameter specified for the QsnPutGetBuf API. The screen can subsequently be restored by specifying this
input buffer on the QsnRstScr API.

This command corresponds directly to the 5250 Save Screen (when the underlying control unit supports it)
or Save Partial Screen command. See the 5250 data stream documentation for details.

Authorities and Locks

None

Restrictions

This command must be the last command in the command buffer, except when GUI support is available. In
this case, other non-input commands may follow.

Omissible Parameter Group

Saved data command buffer handle

OUTPUT; BINARY(4)

The variable that will contain the command buffer handle for the restore screen operation if this is a
direct operation.

For an indirect operation, the result of the save screen will be returned in the input buffer of a
subsequent input operation, which can be used to restore the screen using the QsnRstScr operation.

Command buffer handle

INPUT; BINARY(4)

If this parameter is omitted or specified as 0, this is a direct operation and the screen is saved
immediately. Otherwise, this is an indirect operation and the command is stored in the command
buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Saved data

OUTPUT; BINARY(4)

For a successful operation, this API returns the value for the saved data parameter if this is a direct
operation; otherwise, it returns zero. For an unsuccessful operation, it returns -1.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA313 E Command buffer already contains an input operation.

CPFA314 E Memory allocation error.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Set Low-Level Environment Window Mode
(QsnSetEnvWinMod) API

 Required Parameter:

1 Enable window mode Input Char(1)

 Omissible Parameter Group:

2 Previous window mode setting Output Char(1)
3 Window mode description Input Char(*)
4 Length of window mode description Input Binary(4)
5 Low-level environment handle Input Binary(4)
6 Error Code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Set Low-Level Environment Window Mode (QsnSetEnvWinMod) API enables or disables the window
mode for the low-level environment. Use this API to affect how row and cursor positions specified on
low-level interface operations are interpreted for operations to the given low-level environment. Additional
details regarding windows can be found in Introduction to the Window Services APIs.

When window mode is enabled, screen locations and cursor positions specified and retrieved in the
low-level interface routines are interpreted relative to the logical window area defined. The logical window
area is treated as a logical screen in terms of validity of cursor and data starting positions. If an attempt is
made to write data or define a field that starts outside of the current window area, a CPFA31D error is
issued for that particular API. If data or a field is written to the window that exceeds the window boundary,
no error condition occurs and the data or field is truncated.

The size of the logical window area can be determined through the Retrieve Low-Level Environment
Window Mode (QsnRtvEnvWinMod) API. When window mode is enabled, screen addresses must be
explicitly specified for APIs such as the QsnWrtDta API in order for the address to be interpreted relative to
the window area. If a screen address is not specified, the current display address will be used as an absolute
screen address irrespective of the current window mode. This is because the current screen address is not
tracked by DSM, but is handled by the control unit.

When window mode is enabled, APIs where a cursor position is specified, such as the QsnSetFld API, issue
a CPFA307 error if the given cursor position is outside the bounds of the current window area. For APIs
that return a cursor position, such as the Get Cursor Address (QsnGetCsrAdr) API, both the row and
column returned will be -1 if the cursor screen location is outside of the current window area, 0 if the cursor

is on the top or left border, or the number of screen rows or columns plus 1 if the cursor is on the bottom or
center border of the window area, respectively. The following low-level APIs are affected by the window
mode:

QsnRtvReadAdr
QsnRtvFldInf
QsnGetCsrAdr
QsnGetCsrAdrAID
QsnSetOutAdr
QsnWrtDta
QsnWrtSFMaj
QsnWrtTDta
QsnWrtExtAtr
QsnWrtPad
QsnWrtPadAdr
QsnSetFld
QsnSetCsrAdr
QsnInsCsr
QsnSetErr

The actual screen location used for a screen I/O operation is calculated using the formula
base+offset=actual, where base is the upper left row/column location of the window border (0 for full
screen) if offset is positive and the lower center row/column location of the window border (screen
height/width plus 1 for full screen), if offset is negative, offset is the row/column specified on the API, and
actual is the actual screen location. For example, if the window area were defined to be from row 3, column
10 with 15 rows and 30 columns, as shown in Figure 1, then an attempt to position the cursor through the
QsnSetCsrAdr API at row 4, column 5 would actually position the cursor on the screen at row 7, column
15, as indicated by the letter a in Figure 1. Specifying row 9, column -7 would position the cursor on the
screen at row 12, column 34 (b in Figure 1). An attempt to position the cursor at error issue a CPFA307
error row 16, column 5 would result error (Screen position &1,&2 outside of display or window area). since
this position is outside the bounds of the current window area. Given the same window area description, a
call to the QsnRtvFldInf API specifying an input buffer containing a field read from row 10, column 20 on
the actual screen (the c in Figure 1), would return a field row and column location of 7 and 10 respectively.
A call to the QsnGetCsrAdr API would return -1,-1 if the cursor were located outside of the window area,
such as in row 18 column 32.

Enabling or disabling the window mode does not affect any data currently displayed on the screen or the
behavior of any commands stored previously in a command buffer. For example, if the window mode was
enabled as described above and the QsnSetCsrAdr API was called as an indirect operation specifying row 4
and column 5, the cursor position command stored in the command buffer would reflect the current window
mode. Whenever that command buffer is written out, the cursor would always be set on the screen at row 6,
column 14, regardless of whether or not window mode was disabled or changed at the point when the
command buffer was written to the screen.

Figure 1. Window Area

Authorities and Locks

None

Required Parameter

Window mode

INPUT; CHAR(1)

Whether window mode should be enabled or disabled. The possible values are:

0 Disable window mode

1 Enable window mode

Window mode is initially disabled.

Omissible Parameter Group

Previous window mode setting

OUTPUT; CHAR(1)

Whether window mode was enabled or disabled prior to this API being called. The possible values
returned are:

0 Window mode was disabled prior to this API being called

1 Window mode was enabled prior to this API being called

Window mode description

INPUT; CHAR(*)

The window mode description. If this parameter is omitted or the length parameter is specified as 0,
and window mode is to be enabled, the values from the previous window mode setting will be used.
If no such values exist, the current screen size will be used. The window area described must fall
within the bounds of the current screen size. in a CPFA307 error (Screen position &1,&2 outside of
display or window area). The format of this field is shown in Format of the Window Mode
Description.

This parameter is ignored if window mode is to be disabled.

Length of window mode description

INPUT; BINARY(4)

The length of the window mode description parameter. If this parameter is specified, it must be
either 0, in which case the window mode description parameter is ignored, or exactly 13 bytes in
which case the window mode description is required.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Window Mode Description

Offset

Type FieldDec Hex

0 0 CHAR(1) Attribute column indication

1 1 BINARY(4) Upper left row of window area border

5 5 BINARY(4) Upper left column of window area border

9 9 BINARY(4) Number of rows in window area

13 D BINARY(4) Number of columns in window area

Field Descriptions

Attribute column indication. Whether the column containing the left border of the logical window is an
attribute column. Operations such as QsnWrtDta can specify column 1 for the data location and specify a
leading attribute. In this case the data will be written to the first column of the window area and the
attribute will be written to the column containing the logical window border. If the attribute column is not
specified for the window area, such an operation would result in a CPFA31D error (Attempt to write
outside of window area.). This column would also be used to insert the leading attribute when line
wrapping occurs within the window.

The allowable values are:

0 No attribute column

1 Attributes can be written to column containing left logical window border

Number of columns in window area. The number of columns in the window area.

Number of rows in window area. The number of rows in the window area.

Upper left column of window area border. The column location of the leftmost column in the window
area. This parameter must be a value between 0 and the screen width inclusive.

Upper left row of window border. The row location of the upper border of the logical window area. This
parameter must be a value between 0 and the screen height inclusive.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA324 E Window area definition is incorrect.

CPFA32A E Window mode indicator must be '0' or '1'.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Buffer Manipulation and Query APIs
The buffer manipulation and query APIs are used to create, query, and manipulate input and command
buffers that interact with the screen.

The two buffer types used by the low-level interfaces are command and input. A command buffer can be
used to accumulate a sequence of low-level commands without performing an I/O operation. The entire
buffer can be written out at once in a single I/O operation. See Direct and Indirect Operations for further
discussion of command buffers. When an input operation is performed, you can specify an input buffer as
the target of the operation. The input results are placed in this buffer, which can then be queried through
several interfaces. You may query for individual pieces of information, such as the AID byte from the input
operation using the Retrieve AID Code on Read (QsnRtvReadAID) API or for multiple pieces of
information using the Retrieve Read Information (QsnRtvReadInf) API.

Command and input buffers can be used across activation groups if the activation group in which the buffer
was created still exists.

The buffer manipulation and query interfaces are:

Clear Buffer (QsnClrBuf) clears all commands or data in a buffer resets its state.●

Copy Buffer (QsnCpyBuf) copies the contents of one buffer to another.●

Create Command Buffer (QsnCrtCmdBuf) creates a command buffer to accumulate low-level
commands.

●

Create Input Buffer (QsnCrtInpBuf) creates an input buffer to receive input results.●

Delete Buffer (QsnDltBuf) deletes a buffer.●

Put Command Buffer (QsnPutBuf) sends the commands in a command buffer to the screen.●

Put Command Buffer and Perform Get (QsnPutGetBuf) sends the commands in a command buffer
to the screen and performs a read operation.

●

Retrieve AID Code on Read (QsnRtvReadAID) determines the Aid code for a given input
operation.

●

Retrieve Available Data (QsnRtvAvailData) copies the user's data into an input buffer.●

Retrieve Buffer Data Length (QsnRtvBufLen) returns the length of data in a buffer.●

Retrieve Buffer Size (QsnRtvBufSiz) returns the size of a buffer.●

Retrieve Cursor Address on Read (QsnRtvReadAdr) retrieves the cursor position at the completion
of an input operation.

●

Retrieve Field Information (QsnRtvFldInf) returns information about a particular field in an input
buffer.

●

Retrieve Length of Data in Input Buffer (QsnRtvDtaLen) retrieves the number of data bytes in an
input buffer after an input operation.

●

Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen) retrieves the number of bytes of field
data after an input operation.

●

Retrieve Number of Bytes Read from Screen (QsnRtvReadLen) retrieves the number of data bytes
read from the screen after an input operation.

●

Retrieve Number of Fields Read (QsnRtvFldCnt) retrieves the number of fields in an input buffer.●

Retrieve Pointer to Data in Input Buffer (QsnRtvDta) returns a pointer to the first byte of input data
in an input buffer.

●

Retrieve Pointer to Field Data (QsnRtvFldDta) returns a pointer to the first byte of field data in an
input buffer.

●

Retrieve Read Information (QsnRtvReadInf) returns information about the input operation.●

Top | Dynamic Screen Manager APIs | APIs by category

Clear Buffer (QsnClrBuf) API

 Required Parameter Group:

1 Buffer handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Clear Buffer (QsnClrBuf) API clears all commands or data and resets the state of the given buffer. This
is the only API that clears or removes data in a buffer.

Authorities and Locks

None

Required Parameter

Buffer handle

INPUT; BINARY(4)

A handle for the buffer to be cleared. The storage associated with the buffer is not deallocated.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Copy Buffer (QsnCpyBuf) API

 Required Parameter Group:

1 Source buffer handle Input Binary(4)
2 Target buffer handle Input Binary(4)

 Omissible Parameter:

3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Copy Buffer (QsnCpyBuf) API copies the contents of one buffer to another buffer. Both buffers must
be the same type--command or input. If the target and source buffers are the same, no operation takes place
and no error is reported.

If a target command buffer contains data, the data in the source buffer is appended to the target buffer. A
CPFA301 error is issued if the target command buffer is not large enough to hold the contents of the source
buffer and cannot be resized.

If input buffers are being copied, the target buffer must be empty. If the target input buffer is not large
enough to hold the data from the source buffer, the data is truncated and no error is reported.

Authorities and Locks

None

Required Parameter Group

Source buffer handle

INPUT; BINARY(4)

A handle for the buffer from which data is to be copied. The contents of this buffer are not affected
by this operation.

Target buffer handle

INPUT; BINARY(4)

A handle for the buffer to which data is to be copied.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA305 E Cannot add operation to command buffer.

CPFA301 E Command buffer is full.

CPFA313 E Command buffer already contains an input operation.

CPFA31E E Required parameter &1 omitted.

CPFA330 E Buffer type mismatch.

CPFA331 E Buffer handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Create Command Buffer (QsnCrtCmdBuf) API

 Required Parameter:

1 Initial command buffer size Input Binary(4)

 Omissible Parameter Group:

2 Increment amount Input Binary(4)
3 Maximum size Input Binary(4)
4 Command buffer handle Output Binary(4)
5 Error code I/O Char(*)

 Returned Value:

Command buffer handle Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Create Command Buffer (QsnCrtCmdBuf) API creates a command buffer for use with low-level
operations that accept a command buffer parameter.

Authorities and Locks

None

Required Parameter

Initial command buffer size

INPUT; BINARY(4)

The initial size of the command buffer, in bytes, to create. This parameter must be greater than 0
and less than the size of the underlying display file I/O buffer: approximately 4500 bytes for 24x80,
6300 bytes for 27x132, 8000 bytes for DBCS-capable displays, 8800 bytes for DBCS presentation
screen-capable displays, and 16000 bytes for DBCS ideographic-capable displays.

Omissible Parameter Group

Increment amount

INPUT; BINARY(4)

The amount to increment the command buffer size by if there is not enough space to store a
specified command. If this parameter is omitted or specified with a zero value, the buffer size will
not be incremented and a CPFA301 error will be issued when there is no space in the buffer to store
a requested command. If an attempt is made to increment a command buffer to a size that exceeds
the available memory resources or the size of the underlying display file I/O buffer, the increment
will not take place and a CPFA301 error will be issued for that operation.

Maximum size

INPUT; BINARY(4)

The maximum size to increment the command buffer to when there is not enough space to store a
specified command. If this parameter is nonzero, it must be greater than the initial command buffer
size parameter, and less than the size of the underlying display file I/O buffer. If this parameter is
omitted or specified with a zero value, no maximum value is assigned for the command buffer. If
the buffer is to be incremented, it will be incremented until either there is no additional storage
available or the command buffer exceeds the size of the display file I/O buffer. If the increment
amount parameter is omitted or specified with a zero value, this parameter is ignored and the
maximum size is the same as the initial command buffer size.

Command buffer handle

OUTPUT; BINARY(4)

The variable containing the handle for the command buffer created after the QsnCrtCmdBuf API
has completed. The buffer state will be the same as that following a QsnClrBuf operation.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Command buffer handle

OUTPUT; BINARY(4)

This API returns the value for the command buffer handle parameter if successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA312 E Buffer size parameter error.

CPFA314 E Memory allocation error.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Create Input Buffer (QsnCrtInpBuf) API

 Required Parameter:

1 Input buffer size Input Binary(4)

 Omissible Parameter Group:

2 Increment amount Input Binary(4)
3 Maximum size Input Binary(4)
4 Input buffer handle Output Binary(4)
5 Error code I/O Char(*)

 Returned Value:

Input buffer handle Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Create Input Buffer (QsnCrtInpBuf) API creates an input buffer for use with low-level commands that
accept an input buffer parameter.

Authorities and Locks

None

Required Parameter

Input buffer size

INPUT; BINARY(4)

The size of the input buffer, in bytes, to create. This parameter must be greater than 0 and less than
the size of the underlying display file I/O buffer: approximately 4500 bytes for 24x80, 6300 bytes
for 27x132, 8000 bytes for DBCS-capable displays, 8800 bytes for DBCS presentation
screen-capable displays, and 16000 bytes for DBCS ideographic-capable displays.

Omissible Parameter Group

Increment amount

INPUT; BINARY(4)

The amount to increment the buffer size by if there is not enough space to store a read operation. If
this parameter is omitted or specified with a zero value, the buffer size is not be incremented and
input data is truncated if there is not enough space.

Maximum size

INPUT; BINARY(4)

The maximum size to increment the input buffer to when there is not enough space to store the
result of a read operation. If this parameter is nonzero, it must be greater than the initial input buffer
size parameter, and less than the size of the underlying display file I/O buffer. If this parameter is
omitted or specified with a zero value, no maximum value is assigned for the input buffer, if the
buffer is to be incremented, it will be incremented until either there is no additional storage
available or the input buffer exceeds the size of the display file I/O buffer. If the increment amount
parameter is omitted or specified with a zero value, this parameter is ignored and the maximum size
is the same as the initial input buffer size.

Input buffer handle

OUTPUT; BINARY(4)

The variable containing the handle for the created input buffer after the QsnCrtInpBuf API has
completed. The buffer state becomes the same as that following a QsnClrBuf operation.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Input buffer handle

OUTPUT; BINARY(4)

This API returns the value for the input buffer handle parameter, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA312 E Buffer size parameter error.

CPFA314 E Memory allocation error.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Delete Buffer (QsnDltBuf) API

 Required Parameter Group:

1 Buffer handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Delete Buffer (QsnDltBuf) API deletes a command or input buffer created with the Create Command
Buffer (QsnCrtCmdBuf) or the Create Input Buffer (QsnCrtInpBuf) API, respectively. All storage
associated with the buffer is deallocated.

Authorities and Locks

None

Required Parameter

Buffer handle

Input; BINARY(4)

A handle for the buffer to be deleted.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Put Command Buffer (QsnPutBuf) API

 Required Parameter Group:

1 Command buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Low-level environment
handle

Input Binary(4)

3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Put Command Buffer (QsnPutBuf) API sends the commands accumulated in a command buffer to the
screen. This corresponds to a write operation to the display file. If the command buffer contains no data, the
operation returns successfully, but no I/O operation is performed.

Authorities and Locks

None

Required Parameter

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer. The command buffer is not modified in any way as a result of
this command.

Omissible Parameter Group

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA308 E Attempt to write data past end of display.

CPFA309 E Invalid cursor position in command buffer.

CPFA30A E Field length &1 not valid.

CPFA30B E Invalid starting address for field.

CPFA30C E Maximum allowable number of fields exceeded.

CPFA316 E Saved data not valid.

CPFA31B E From position &1, &2 greater than to position &3, &4.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA338 E Command buffer contains an input operation.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Put Command Buffer and Perform Get
(QsnPutGetBuf) API

 Required Parameter Group:

1 Command buffer handle Input Binary(4)
2 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

3 Low-level environment
handle

Input Binary(4)

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Put Command Buffer and Perform Get (QsnPutGetBuf) API sends the commands accumulated in a
command buffer to the screen and performs a read operation. The command buffer must contain an input
operation. If it has no input operation, a CPFA333 error occurs.

Authorities and Locks

None

Required Parameter Group

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer to be sent to the screen.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation.

Omissible Parameter Group

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA308 E Attempt to write data past end of display.

CPFA309 E Invalid cursor position in command buffer.

CPFA30A E Field length &1 not valid.

CPFA30B E Invalid starting address for field.

CPFA30C E Maximum allowable number of fields exceeded.

CPFA316 E Saved data not valid.

CPFA31B E From position &1, &2 greater than to position &3, &4.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA338 E Command buffer contains an input operation.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve AID Code on Read (QsnRtvReadAID)
API

 Required Parameter:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

2 AID code Output Char(1)
3 Error code I/O Char(*)

 Returned Value:

AID code Output Char(1)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve AID Code on Read (QsnRtvReadAID) API determines the AID code corresponding to the
input operation that filled the given input buffer.

Authorities and Locks

None

Required Parameter

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation. The input buffer must
be filled as a result of a Read Input Fields (QsnReadInp), Read Modified Fields (QsnReadMDT), or
Read Modified Alternate (QsnReadMDTAlt) operation. If the input buffer is filled as a result of
any other input operation, a CPFA32E error is issued.

Omissible Parameter Group

AID code

OUTPUT; CHAR(1)

The variable that contains the AID code when the QsnRtvReadAID API has completed. See
AID-Generating Keys for a description of the possible values.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

AID code

OUTPUT; CHAR(1)

This API returns the value for the AID code parameter or X'00' if an error occurs during
processing.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA32E E Input data for query operation incorrect.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Available Data (QsnRtvAvailData) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)
2 Read command used Output Binary(4)

 Omissible Parameter Group:

3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Available Data (QsnRtvAvailData) API is used to retrieve invited available data. If the invite
active flag is on in a low-level environment description when an output operation is done, the end user is
able to enter data. If a subsequent output operation is done, without checking for input using the
QsnReadInvited API, and the user has entered data, DSM will store the end user's data in an internal input
buffer and issue CPFA343. The Retrieve Available Data (QsnRtvAvailData) API will copy the data into the
specified input buffer, as well as return the read command that is used to fill the buffer.

Authorities and Locks

None

Required Parameter Group

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer where available data should be moved.

Read command used

OUTPUT; CHAR(1)

The read command that was used to fill the input buffer. This can be used to determine what buffer
manipulation API to use to retrieve the data from the input buffer. The possible values are:

X'42' Read input fields

X'52' Read MDT fields

X'72' Read immediate

X'82' Read MDT alternate

Omissible Parameter Group

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA320 E Pointer parameter is null.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Buffer Data Length (QsnRtvBufLen)
API

 Required Parameter Group:

1 Buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Buffer data length Output Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Buffer data length Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Buffer Data Length (QsnRtvBufLen) API returns the number of bytes of command data in a
command buffer or of input data in an input buffer. After an indirect operation is applied to a command
buffer, the QsnRtvBufLen API result reflects the increase in the underlying command stream to
accommodate the command.

Authorities and Locks

None

Required Parameter

Buffer handle

INPUT; BINARY(4)

A handle for the buffer to be queried.

Omissible Parameter Group

Buffer data length

OUTPUT; BINARY(4)

The variable containing the buffer data length after the QsnRtvBufLen API has completed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Buffer data length

OUTPUT; BINARY(4)

This API returns the value for the buffer data length parameter, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Buffer Size (QsnRtvBufSiz) API

 Required Parameter Group:

1 Buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Buffer size Output Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Buffer size Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Buffer Size (QsnRtvBufSiz) API returns the total number of bytes allocated for a command or
input buffer. The result returned from this API is the current allocated buffer size, including any increments
that may have taken place.

Authorities and Locks

None

Required Parameter

Buffer handle

INPUT; BINARY(4)

A handle for the buffer to be queried.

Omissible Parameter Group

Buffer size

OUTPUT; BINARY(4)

The variable containing the buffer size after the QsnRtvBufSiz API has completed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Buffer size

OUTPUT; BINARY(4)

This API returns the value for the buffer size parameter, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Cursor Address on Read
(QsnRtvReadAdr) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Cursor row Output Binary(4)
3 Cursor column Output Binary(4)
4 Low-level environment

handle
Input Binary(4)

5 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Cursor Address on Read (QsnRtvReadAdr) API determines the row and column position of
the cursor when the input operation that filled the given input buffer has completed. You must specify at
least one of the cursor row or the cursor column parameter. If both of these parameters are omitted, a
CPFA31E error occurs.

The input buffer must be filled as a result of a Read Input Fields (QsnReadInp), Read Modified Fields
(QsnReadMDT), Read Modified Alternate (QsnReadMDTAlt), Read Immediate (QsnReadImm), or Read
Modified Immediate Alternate (QsnReadMDTImmAlt) operation. If the input buffer is filled as a result of
any other input operation, a CPFA32E message is issued.

Authorities and Locks

None

Required Parameter

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation.

Omissible Parameter Group

Cursor row

OUTPUT; BINARY(4)

The variable that contains the row position of the cursor when the QsnRtvReadAdr API has
completed.

Cursor column

OUTPUT; BINARY(4)

The variable that contains the column position of the cursor when the QsnRtvReadAdr API has
completed.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA32E E Input data for query operation incorrect.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Field Information (QsnRtvFldInf) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)
2 Field number Input Binary(4)
3 Receiver variable Output Char(*)
4 Length of receiver variable Input Bin(4)

 Omissible Parameter Group:

5 Low-level environment
handle

Input Binary(4)

6 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Field Information (QsnRtvFldInf) API retrieves information about a field in an input buffer
filled by a Read Modified Fields (QsnReadMDT), Read Modified Alternate (QsnReadMDTAlt), or Read
Modified Immediate Alternate (QsnReadMDTImmAlt) operation.

To query the results from a Read Input Fields (QsnReadInp) or Read Immediate (QsnReadImm) operation,
use the Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen) and Retrieve Pointer to Field Data
(QsnRtvFldDta) APIs. To query the result from any other input operations, use the Retrieve Length of Data
in Input Buffer (QsnRtvDtaLen) and Retrieve Pointer to Data in Input Buffer (QsnRtvDta) APIs.

Authorities and Locks

None

Required Parameter Group

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation.

Field number

INPUT; BINARY(4)

The number of the field to query, specified as n, where n is the nth field in the input buffer. The
value specified must not be greater than the field count returned by the read operation.

Receiver variable

Output; CHAR(*)

The structure that will contain the result of the query when the QsnRtvFldInf API has completed.

Length of receiver variable

Input; BINARY(4)

The length of the receiver variable parameter.

Omissible Parameter Group

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Query Input Field Result

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Type of field

9 9 BINARY(4) Row position of field

13 D BINARY(4) Column position of field

17 11 BINARY(4) Length of data read

21 15 CHAR(11) Reserved

32 20 PTR(SPP) Pointer to field data

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Column position of field. The column position relative to the window of the specified field on the screen.

Length of data read. The length of the data read from the specified field.

Pointer to field data. A pointer to the data for the specified field.

Row position of field. The row position relative to the window of the specified field on the screen.

Type of field. The type of the specified field. The possible values are:

Value Description

1 Normal field

2 Transparent field

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31A E Incorrect field number value &1 specified.

CPFA31E E Required parameter &1 omitted.

CPFA32E E Input data for query operation incorrect.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Length of Data in Input Buffer
(QsnRtvDtaLen) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Input data length Output Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Input data length Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Length of Data in Input Buffer (QsnRtvDtaLen) API determines the number of bytes of input
data contained in an input buffer after an input operation.

Authorities and Locks

None

Required Parameter

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation.

Omissible Parameter Group

Input data length

OUTPUT; BINARY(4)

The variable that contains the input data length when the QsnRtvDtaLen API has completed. This
number may be smaller than the number of bytes actually read if the input buffer was not large
enough to hold all the data. Use the Retrieve Number of Bytes Read from Screen (QsnRtvReadLen)
API to determine the amount of data actually read from the screen. If the value returned by the
QsnRtvReadLen API is less than the input data length, then truncation of the input data occurred.

Returned Value

Input data length

OUTPUT; BINARY(4)

This API returns the value for the input data length parameter, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Length of Field Data in Buffer
(QsnRtvFldDtaLen) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Length of field data Output Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Length of field data Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen) API determines the number of bytes of
field data returned after a Read Input Fields (QsnReadInp) or Read Immediate (QsnReadImm) input
operation. You can use the Retrieve Pointer to Field Data (QsnRtvFldDta) API to retrieve a pointer to this
data so that you can parse the field values. Refer to the Read Input Fields (QsnReadInp) API for a
description of the format of the data returned.

To query the results from a Read Modified Fields (QsnReadMDT), Read Modified Alternate
(QsnReadMDTAlt), or Read Modified Immediate Alternate (QsnReadMDTImmAlt) operation, use the
Retrieve Number of Fields Read (QsnRtvFldCnt) and Retrieve Field Information (QsnRtvFldInf) APIs. To
query the result from any other input operation, use the Retrieve Length of Data in Input Buffer
(QsnRtvDtaLen) and Retrieve Pointer to Data in Input Buffer (QsnRtvDta) APIs.

Authorities and Locks

None

Required Parameter

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation. The input buffer must
be filled as a result of a QsnReadInp or QsnReadImm operation.

Omissible Parameter Group

Length of field data

OUTPUT; BINARY(4)

The variable that contains the field data length when the QsnRtvFldDtaLen API has completed.
The field data length is 3 bytes less than the value returned by the QsnRtvDtaLen API. (The cursor
and AID-key values account for the first 3 bytes of the input data returned).

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Length of field data

OUTPUT; BINARY(4)

This API returns the value for the length of field data parameter, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA32E E Input data for query operation incorrect.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Number of Bytes Read from Screen
(QsnRtvReadLen) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group

2 Read data length Output Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Read data length Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Number of Bytes Read from Screen (QsnRtvReadLen) API returns the number of bytes of
data read from the screen into an input buffer after an input operation.

Authorities and Locks

None

Required Parameter

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation.

Omissible Parameter Group

Read data length

OUTPUT; BINARY(4)

The variable that contains the read data length when the QsnRtvReadLen API has completed. This
number may be larger than the number of bytes actually contained in the buffer if the input buffer
was not large enough to hold all the data. Use the Retrieve Length of Data in Input Buffer
(QsnRtvDtaLen) API to determine the amount of data contained in the buffer or to determine if
truncation occurred.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Read data length

OUTPUT; BINARY(4)

This API returns the value for the read data length parameter, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA320 E Pointer parameter is null.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Number of Fields Read
(QsnRtvFldCnt) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Field count Output Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Field count Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Number of Fields Read (QsnRtvFldCnt) API returns the number of fields contained in an
input buffer after a Read Modified Fields (QsnReadMDT), Read Modified Alternate (QsnReadMDTAlt), or
Read Modified Immediate Alternate (QsnReadMDTImmAlt) operation. Use the Retrieve Field Information
(QsnRtvFldInf) API to retrieve information about a specific field.

To query the results from a QsnReadInp or QsnReadImm operation, use the Retrieve Length of Field Data
in Buffer (QsnRtvFldDtaLen) and Retrieve Pointer to Field Data (QsnRtvFldDta) APIs. To query the result
from any other input operation, use the Retrieve Length of Data in Input Buffer (QsnRtvDtaLen) and
Retrieve Pointer to Data in Input Buffer (QsnRtvDta) APIs.

Authorities and Locks

None

Required Parameter

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation. The input buffer must
be filled as a result of a QsnReadMDT, QsnReadMDTAlt, or QsnReadMDTImmAlt operation.

Omissible Parameter Group

Field count

OUTPUT; BINARY(4)

The variable that contains the field count when the QsnRtvFldCnt API has completed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Field count

OUTPUT; BINARY(4)

This API returns the value for the field count parameter, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA314 E Memory allocation error.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA32E E Input data for query operation incorrect.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Pointer to Data in Input Buffer
(QsnRtvDta) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Pointer to input data Output PTR(SPP)
3 Error code I/O Char(*)

 Returned Value:

Pointer to input data Output PTR(SPP)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Pointer to Data in Input Buffer (QsnRtvDta) API returns a pointer to the first byte of input
data in an input buffer after a read operation.

Authorities and Locks

None

Required Parameter

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation.

Omissible Parameter Group

Pointer to input data

OUTPUT; PTR(SPP)

The variable that contains the pointer to the input data after the QsnRtvDta API has completed.
You can use the Retrieve Length of Data in Input Buffer (QsnRtvDtaLen) API to retrieve the length
of this data. Refer to the appropriate read operation for a description of the format of the data
returned. The value returned by this API is equivalent to the data returned by the system on an
input operation. This parameter must be on a 16-byte boundary.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Pointer to input data

OUTPUT; PTR(SPP)

This API returns the value for the pointer to input data parameter, or the null pointer otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1F E Pointer is not on a 16 byte boundary.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Pointer to Field Data (QsnRtvFldDta)
API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Pointer to field data Output PTR(SPP)
3 Error code I/O Char(*)

 Returned Value:

Pointer to field datacenter Outputcenter PTR(SPP)center

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Pointer to Field Data (QsnRtvFldDta) API returns a pointer to the first byte of field data in an
input buffer after a Read Input Fields (QsnReadInp), Read Immediate (QsnReadImm), Read Modified
Fields (QsnReadMDT), Read Modified Alternate (QsnReadMDTAlt), or Read Modified Immediate
Alternate (QsnReadMDTImmAlt) operation. You can use the Retrieve Length of Field Data in Buffer
(QsnRtvFldDtaLen) API to retrieve the length of this data. Refer to the Read Input Fields (QsnReadInp)
API for a description of the format of the data returned.

To query the results from a QsnReadMDT, QsnReadMDTAlt, or QsnReadMDTImmAlt operation, you can
also use the QsnRtvFldCnt and QsnRtvFldInf APIs. To query the result from any other input operations,
use the QsnRtvDtaLen and QsnRtvDta APIs.

Authorities and Locks

None

Required Parameter

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation. The input buffer must

be filled as a result of a QsnReadInp or QsnReadImm operation.

Omissible Parameter Group

Pointer to field data

OUTPUT; PTR(SPP)

The variable that contains the pointer to the field data when the QsnRtvFldDta API has completed.
The value returned by this API is the null pointer if the buffer contains no field data. Otherwise, it
is equivalent to adding 3 bytes to the address returned by QsnRtvDta API. (The cursor and AID key
values account for the first 3 bytes of input data returned.) This parameter must be on a 16-byte
boundary.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Pointer to field data

OUTPUT; PTR(SPP)

This API returns the value for the pointer to field data parameter, or the null pointer otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPFA319 E No data in input buffer.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA31E E Required parameter &1 omitted.

CPFA32E E Input data for query operation incorrect.

CPFA32F E Buffer type incorrect.

CPF3C1F E Pointer is not on a 16 byte boundary.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Read Information (QsnRtvReadInf) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)
2 Query result Output Char(*)
3 Length of query result Input Binary(4)

 Omissible Parameter Group:

4 Low-level environment
handle

Input Binary(4)

5 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Read Information (QsnRtvReadInf) API returns information about the input operation that
filled the given input buffer.

Authorities and Locks

None

Required Parameter Group

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that contains the results of the input operation.

Query result

OUTPUT; CHAR(*)

The structure that contains the result of the query when the QsnRtvReadInf API has completed. The
format of this structure is shown in Format of the Query Result.

Length of query result

INPUT; BINARY(4)

The length of the query result parameter. The minimum value must be 8.

Omissible Parameter Group

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Query Result

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(8) Reserved

16 10 PTR(SPP) Pointer to first byte of data

32 20 PTR(SPP) Pointer to first byte of field data

48 30 BINARY(4) Number of bytes of input data

52 34 BINARY(4) Number of bytes of field data

56 38 BINARY(4) Number of fields in input buffer

60 3C BINARY(4) Number of bytes of data received

64 40 BINARY(4) Row location of cursor

68 44 BINARY(4) Column location of cursor

72 48 CHAR(1) AID code for AID-associated read request

73 49 CHAR(7) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

AID code for AID-associated read request. AID code corresponding to key pressed to service an
AID-associated read request. The input buffer must be filled as a result of a QsnReadInp, QsnReadMDT, or
QsnReadMDTAlt operation. If the input buffer is filled as a result of any other input operation, this field is
set to X'00'. See AID-Generating Keys for a description of the possible values.

Column location of cursor. Column location of cursor when the input operation was serviced. The input
buffer must be filled as a result of a QsnReadInp, QsnReadMDT, QsnReadMDTAlt, QsnReadImm, or
QsnReadMDTImmAlt operation. If the input buffer is filled as a result of any other input operation, this
field is set to -1.

Number of bytes of data sent. Number of bytes of data sent from screen. If this value is larger than the
number of bytes of input data, then truncation occurs on the input operation.

Number of bytes of field data. Number of bytes of field data in input buffer. This does not include the 3
bytes of header information (the cursor row and column, and the AID byte). The input buffer must be filled
as a result of a QsnReadInp, QsnReadMDT, QsnReadMDTAlt, QsnReadImm, or QsnReadMDTImmAlt
operation. If the input buffer is filled as a result of any other input operation, this field is set to -1.

Number of bytes of input data. Number of bytes of input data in input buffer. This includes header
information such as row and column position.

Number of fields in input buffer. Number of fields in input buffer. This does not include header
information such as row and column position. The input buffer must be filled as a result of a
QsnReadMDT, QsnReadMDTAlt, or QsnReadMDTImmAlt operation. If the input buffer is filled as a
result of any other input operation, or the input data format cannot be determined, this field is set to -1.

Pointer to first byte of data. Pointer to first byte of data in input buffer. This includes header information
such as row and column position.

Pointer to first byte of field data. Pointer to first byte of field data in input buffer. This will be the first
byte of data following the header information (the cursor row and column, and the AID byte). If the buffer
does not contain field data, this field is set to the null pointer.

Reserved. An ignored field.

Row location of cursor. Row location of cursor when the input operation was serviced. The input buffer
must be filled as a result of a QsnReadInp, QsnReadMDT, QsnReadMDTAlt, QsnReadImm, or
QsnReadMDTImmAlt operation. If the input buffer is filled as a result of any other input operation, this
field is set to -1.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1F E Pointer is not on a 16 byte boundary.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA319 E No data in input buffer.

CPFA31E E Required parameter &1 omitted.

CPFA320 E Pointer parameter is null.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Screen Input APIs
The screen input APIs allow you to read data and other information from the screen. This includes field
data, screen attributes, and the cursor address. The screen-input interfaces correspond, either directly or
indirectly, to the 5250 data stream read commands.

The screen input APIs are:

Get AID (QsnGetAID) waits for an AID-generating key to be pressed.●

Get Cursor Address (QsnGetCsrAdr) gets the current cursor address.●

Get Cursor Address with AID (QsnGetCsrAdrAID) gets the current cursor address after an
AID-generating key is pressed.

●

Put Input Command (QsnPutInpCmd) issues a supplied read command.●

Read from Invited Device (QsnReadInvited) performs a read from invited device on a display that
has already been invited.

●

Read Immediate (QsnReadImm) reads the contents of all input fields on the display without
requiring an AID key to be pressed.

●

Read Input Fields (QsnReadInp) reads the contents of all input fields on the display requiring an
AID key to be pressed.

●

Read Modified Alternate (QsnReadMDTAlt) reads the contents of all modified fields on the
display, alternate form, requiring an AID key to be pressed.

●

Read Modified Fields (QsnReadMDT) reads the contents of all modified fields requiring an AID
key to be pressed.

●

Read Modified Immediate Alternate (QsnReadMDTImmAlt) reads the contents of all modified
fields on the display, alternate form, without requiring an AID key to be pressed.

●

Read Screen (QsnReadScr) reads the contents of the screen without requiring an AID key to be
pressed.

●

Top | Dynamic Screen Manager APIs | APIs by category

Get AID (QsnGetAID) API

 Omissible Parameter Group:

1 AID code Output Char(1)
2 Low-level environment

handle
Input Binary(4)

3 Error code I/O Char(*)

 Returned Value

AID code Output Char(1)

 Service Default Program: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Get AID (QsnGetAID) API waits for an AID-generating key to be pressed.

This command corresponds indirectly to the 5250 Read Input Fields command. Because the control
characters specified on the underlying command are both X'00', this operation will cause the cursor to move
to the insert cursor position when the keyboard is unlocked.

Authorities and Locks

None

Omissible Parameter Group

AID code

OUTPUT; CHAR(1)

The variable that contains the AID code when the QsnRtvReadAID API has completed.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

AID code

OUTPUT; CHAR(1)

This API returns the value for the AID code parameter, X'00' if a general error occurs during
processing.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA326 E Screen must be redrawn.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Get Cursor Address (QsnGetCsrAdr) API

 Omissible Parameter Group:

1 Cursor row Output Binary(4)
2 Cursor column Output Binary(4)
3 Low-level environment

handle
Input Binary(4)

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Get Cursor Address (QsnGetCsrAdr) API returns the current cursor address, without requiring an
AID-generating key to be pressed. Either the cursor row or cursor column parameter must be specified. If
both of these parameters are omitted, a CPFA31E error occurs.

This command corresponds indirectly to the 5250 Read Immediate command.

Authorities and Locks

None

Restrictions

The same restrictions apply as for the Read Immediate (QsnReadImm) API.

Omissible Parameter Group

Cursor row

OUTPUT; BINARY(4)

The variable that contains the cursor row when the QsnGetCsrAdr API has completed.

Cursor column

OUTPUT; BINARY(4)

The variable that contains the cursor column when the QsnGetCsrAdr API has completed.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Get Cursor Address with AID
(QsnGetCsrAdrAID) API

 Omissible Parameter Group:

1 Cursor row Output Binary(4)
2 Cursor column Output Binary(4)
3 AID code Output Char(1)
4 Low-level environment

handle
Input Binary(4)

5 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Public Default Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Get Cursor Address with AID (QsnGetCsrAdrAID API returns the cursor address after an
AID-generating key is pressed. Either the cursor row or the cursor column parameter must be specified. If
both of these parameters are omitted, a CPFA31E error occurs.

This command corresponds indirectly to the 5250 Read Input Fields command. Because the control
characters specified on the underlying command are both X'00', this operation may cause the cursor to
move to the default, or insert cursor, position when the keyboard is unlocked.

Authorities and Locks

None

Omissible Parameter Group

Cursor row

OUTPUT; BINARY(4)

The variable that contains the cursor row when the QsnGetCsrAdrAID API has completed.

Cursor column

OUTPUT; BINARY(4)

The variable that contains the cursor column when the QsnGetCsrAdrAID API has completed.

AID code

OUTPUT; CHAR(1)

The variable that contains the AID code when the QsnGetCsrAdrAID API has completed.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA31E E Required parameter &1 omitted.

CPFA326 E Screen must be redrawn.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Put Input Command (QsnPutInpCmd) API

 Required Parameter:

1 Command Input Char(1)

 Omissible Parameter Group:

2 Command data Input Char(*)
3 Command data length Input Binary(4)
4 Number of data bytes read Output Binary(4)
5 Input buffer handle Input Binary(4)
6 Command buffer handle Input Binary(4)
7 Low-level environment

handle
Input Binary(4)

8 Error code I/O Char(*)

 Returned Value:

Number of data bytes read Output Binary(4)

 Public Default Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Put Input Command (QsnPutInpCmd) API is used to issue data stream input commands that are not
directly supported through a DSM API. An Escape (X'04') character is inserted in the stream directly before
the command itself for both direct and indirect operations.

You must use this operation to issue an input command that is not directly supported by DSM as this will
cause the appropriate underlying screen I/O operation to occur in order to retrieve input. You cannot, for
example, use the Put Output Command (QsnPutOutCmd) API to issue an input command because no input
data will be requested by the underlying DSM screen I/O operation.

The following command buffer handle and input buffer handle combinations are valid.

The command buffer handle is specified with a nonzero value. The input buffer handle is omitted
or specified with a zero value.

This is an indirect operation. The command is stored in the command buffer without an I/O
operation taking place.

●

The command buffer handle is omitted or specified with a zero value. The input buffer handle is
specified with a nonzero value.

This is a direct operation. The input operation is issued to the screen, and the resulting input data is
stored in the input buffer.

●

Both a command buffer handle and an input buffer handle are specified with nonzero values.

This is a direct operation. The input operation is appended to the command stream given by the
command buffer, and the entire command stream is written to the display. The resulting input data
is stored in the input buffer. The contents of the command buffer are not affected by this operation.
That is, the input operation is not stored in the command buffer.

●

This operation corresponds to an Escape character followed by the specified command.

Authorities and Locks

None

Required Parameter

Command

INPUT; CHAR(1)

The 1-byte character code for the input command to be issued. For example, to issue a Save Partial
Screen command, the command data should contain X'03' and the command data will contain the
dimensions of the partial screen to be saved.

Omissible Parameter Group

Command data

INPUT; CHAR(*)

The data for the command to be issued.

Command data length

INPUT; BINARY(4)

The length of the command data parameter.

Number of data bytes read

OUTPUT; BINARY(4)

The variable that contains the number of data bytes returned after the QsnPutInpCmd API has
completed if a direct operation is specified. The parameter is not modified for an indirect operation
and the value remains unchanged from whatever was passed.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation if a direct operation is
specified.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Number of data bytes read

OUTPUT; BINARY(4)

This API returns the value for the number of data bytes read parameter if a direct operation was
specified, or -1 if an error occurs during processing. If this is an indirect operation, this API returns
zero if successful, or -1 if there was a general failure.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA313 E Command buffer already contains an input operation.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Read from Invited Device (QsnReadInvited) API

 Required Parameter Group:

1 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

2 Command buffer handle Input Binary(4)
3 Low-level environment

handle
Input Binary(4)

4 Return code Output Binary(4)
5 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

The Read from Invited Device (QsnReadInvited) API issues a read from invited device operation. Data will
be returned in the format corresponding to the read command used.

If the command buffer handle is specified and there is data to be sent in the command buffer, a QsnPutBuf
will be issued to send the data to the screen. If no read command is in the command buffer, a read MDT
command will be added to the data stream. Then the read from invited device will be issued.

The input buffer handle parameter must be specified.

See the appropriate read API for information on the format of the data returned.

Authorities and Locks

None

Restrictions

The invite active flag must be on in the low level environment description.

An error will be issued if the command buffer is empty, or not specified, and no other write has been done
with the invite active flag on in the low level environment description.

Required Parameter Group

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation if a direct operation is
specified. The result can be queried using the input buffer query operations.

Omissible Parameter Group

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to find the read command.

If no read command is found in the specified command buffer, a read MDT with null control
characters will be added to the data stream. This is the equivalent of calling the QsnReadMDT API.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, -1 if there was a general failure, and -2 if the operation was a read from invited
device which timed out.

Check the WAITRCD parameter on the display file specified in the low level environment
description, to determine the time out value.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, -1 if there was a general failure, and -2 if the operation was a read from invited
device which timed out.

Check the WAITRCD parameter on the display file specified in the low level environment

description, to determine the time out value.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA309 E Invalid cursor position in command buffer.

CPFA31E E Required parameter &1 omitted.

CPFA326 E Screen must be redrawn.

CPFA327 E Low level environment description value incorrect.

CPFA32F E Buffer type incorrect.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Read Immediate (QsnReadImm) API

 Omissible Parameter Group:

1 Number of field data bytes
read

Output Binary(4)

2 Input buffer handle Input Binary(4)
3 Command buffer handle Input Binary(4)
4 Low-level environment

handle
Input Binary(4)

5 Error code I/O Char(*)

 Returned Value:

Number of field data bytes
read

Output Binary(4)

 Public Default Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Read Immediate (QsnReadImm) API reads the contents of all input fields on the display without
requiring an AID key to be pressed. The command buffer handle or input buffer handle parameter must be
specified as described in Put Input Command (QsnPutInpCmd) API.

The information returned depends on the condition of the master MDT bit. (See Modified Data Tag (MDT)
Bit.) If the bit is not set, the input returned consists of the cursor address and an AID code only. If the bit is
set, the input returned also includes the field data in the data portion of the input buffer. In each case, the
returned cursor address indicates the current location of the cursor and an AID code of X'00'. The format of
the field data returned is the same as that for the Read Input Fields (QsnReadInp) API.

This command corresponds directly to the 5250 Read Immediate command.

Authorities and Locks

None

Restrictions

This command must be the last command in the command buffer. A CPFA305 error is issued if there is a
subsequent attempt to add another command to the specified command buffer after this command.

Omissible Parameter Group

Number of field data bytes read

OUTPUT; BINARY(4)

The variable that contains the number of field data bytes returned after the QsnReadImm API has
completed if a direct operation is specified. The parameter is not modified for an indirect operation
and the value remains unchanged from whatever was passed.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation if a direct operation is
specified. The result can be queried using the input buffer query operations. See Retrieve Pointer to
Field Data (QsnRtvFldDta) API and Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen)
API.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Number of field data bytes read

OUTPUT; BINARY(4)

This API returns the value for the number of field data bytes read parameter if a direct operation
was specified, or -1 if an error occurs during processing. If this is an indirect operation, this API
returns zero if successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA302 E Command buffer or input buffer parameters required.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA309 E Invalid cursor position in command buffer.

CPFA313 E Command buffer already contains an input operation.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Read Input Fields (QsnReadInp) API

 Required Parameter Group:

1 Control character byte 1 Input Char(1)
2 Control character byte 2 Input Char(1)

 Omissible Parameter Group:

3 Number of field data bytes
read

Output Binary(4)

4 Input buffer handle Input Binary(4)
5 Command buffer handle Input Binary(4)
6 Low-level environment

handle
Input Binary(4)

7 Error code I/O Char(*)

 Returned Value:

Number of field data bytes
read

Output Binary(4)

 Public Default Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Read Input Fields (QsnReadInp) API reads the contents of all input fields on the display while
requiring an AID-generating key to be pressed. The command buffer handle or input buffer handle
parameter must be specified as described in Put Input Command (QsnPutInpCmd) API. The format of the
data returned is:

Cursor
Address in
Row/Column

FMT
2 bytes

AID Code
1 byte

Field Data Field Data Field Data

The information returned depends on the condition of the master MDT bit (see Modified Data Tag (MDT)
Bit) and the AID-generating key pressed. If the bit is not set, the input returned consists of the cursor
address and an AID code only. If the bit is set, the input returned also includes the field data in the data
portion of the input buffer. In either case, the returned cursor address indicates the location of the cursor
when the AID-generating key was pressed and the AID code for the AID-generating key the operator used.
See AID-Generating Keys for a description of the AID-generating character values.

Field data is returned only when one of the following AID-generating keys is used:

Roll Up

Roll Down

Enter/Auto Record Advance

Auto Enter

An unmasked command function key

The field data, when returned, consists of the contents of all input fields as they appear on the display,
unless resequencing has been specified. (See Resequencing.) Any attributes contained in a field are treated
as data and returned as such. The attributes that start and end a field are not returned. These are considered
to be outside the boundaries of the field. No field delimiters are added; data from each field is followed
directly by the data from the next field. Data for nontransparent fields is formatted as follows:

All nulls (leading, embedded, or trailing) are converted to blanks.●

If the specified field is a signed numeric field:

The last character of the field is stripped off.❍

The last location of the field is checked for a negative sign. If detected, the zone portion of
the second to last character of the field is changed to a X'D'.

❍

●

The data returned for transparent or CCSID-capable fields is not edited. A transparent field is defined
with a transparency field control word X'84yy' (see Set Field (QsnSetFld) API.) The QsnSetFldCC API
creates CCSID-capable fields. Each field read is returned unedited with no intervening control information.
If a field is both transparent and signed numeric, unpredictable results can occur in the field data. CDRA
conversion may be peformed upon this data, see Limitations and Restrictions for further details.

This command corresponds directly to the 5250 Read Input Fields command.

Restrictions

This command cannot be issued if the control unit supports ideographic data types. A CPFA306 error will
occur if an attempt is made to issue this command to a control unit that supports ideographic data types.

Some control units, like those emulated by the Client Access program, do not support a control character
associated with input commands. For such units, the control character specified would be ignored. A
program could cause further actions to be suspended if, for example, the control character byte 2 specified
to unlock the keyboard and this action was not specified elsewhere in the data stream. If the underlying
control unit does not support a control character with input commands, you must specify the action to
perform using the QsnWTD API.

Authorities and Locks

None

Required Parameter Group

Control character byte 1

INPUT; CHAR(1)

The operation for the display to perform after the read operation has been serviced. See Control
Characters for a description of the control character values.

Control character byte 2

INPUT; CHAR(1)

The operation for the display to perform after the read operation and control character byte 1 have
been serviced. See Control Characters for a description of the control character values.

Omissible Parameter Group

Number of field data bytes read

OUTPUT; BINARY(4)

The variable that contains the number of field data bytes returned after the QsnReadInp API has
completed if a direct operation is specified. The parameter is not modified for an indirect operation
and the value remains unchanged from whatever was passed.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation if a direct operation is
specified. The result can be queried using the input buffer query operations. See Retrieve Pointer to
Field Data (QsnRtvFldDta) API and Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen)
API.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Number of field data bytes read

OUTPUT; BINARY(4)

This API returns the value for the number of field data bytes read parameter if a direct operation
was specified, or -1 if an error occurs during processing. If this is an indirect operation, this API
returns zero if successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA302 E Command buffer or input buffer parameters required.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA309 E Invalid cursor position in command buffer.

CPFA313 E Command buffer already contains an input operation.

CPFA31C E Incorrect value for control character byte &1.

CPFA31E E Required parameter &1 omitted.

CPFA326 E Screen must be redrawn.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Read Modified Alternate (QsnReadMDTAlt) API

 Required Parameter Group:

1 Control character byte 1 Input Char(1)
2 Control character byte 1 Input Char(1)

 Omissible Parameter Group:

3 Field count Output Binary(4)
4 Input buffer handle Input Binary(4)
5 Command buffer handle Input Binary(4)
6 Low-level environment

handle
Input Binary(4)

7 Error code I/O Char(*)

 Returned Value:

Field count Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Read Modified Alternate (QsnReadMDTAlt) API reads the contents of all modified fields on the
screen, alternate form, requiring an AID-generating key to be pressed. The QsnReadMDTAlt API is
functionally equivalent to the QsnReadMDT API with the following exceptions:

Leading and embedded nulls within the fields remain nulls. However, trailing nulls are stripped off.●

For fields consisting entirely of nulls, but with their MDT bit on, only the field's address is
returned.

●

See Read Modified Fields (QsnReadMDT) API for details.

This command corresponds directly to the 5250 Read MDT Alternate command.

Authorities and Locks

None

Restrictions

This command is not supported by all control units. A CPFA306 error occurs if an attempt is made to issue
this command to a control unit that does not support it.

Some control units, like those emulated by the Client Access program, do not support a control character
associated with input commands. For such units, the control character specified would be ignored. A
program could cause further actions to be suspended if, for example, the control character byte 2 specified
to unlock the keyboard and this action was not specified elsewhere in the data stream. If the underlying
control unit does not support a control character with input commands, you must specify the action to
perform using the QsnWTD API.

Required Parameter Group

Control character byte 1

INPUT; CHAR(1)

The operation for the display to perform after the read operation has been serviced. See Control
Characters for a description of the control character values.

Control character byte 2

INPUT; CHAR(1)

The operation for the display to perform after the read operation and control character byte 1 have
been serviced. See Control Characters for a description of the control character values.

Omissible Parameter Group

Field count

OUTPUT; BINARY(4)

The variable that will contain the number of input fields read after the QsnReadMDTAlt API has
completed, if a direct operation is specified. The parameter is not modified for an indirect operation
and the value remains unchanged from whatever was passed.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation if a direct operation is
specified. The result can be queried using the input buffer query operations. See Retrieve Pointer to
Field Data (QsnRtvFldDta) API and Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen)
API.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Field count

OUTPUT; BINARY(4)

Returns the value for the field count parameter if a direct operation was specified or -1 if an error
occurs during processing. If this is an indirect operation, returns zero if successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA302 E Command buffer or input buffer parameters required.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA306 E Command not supported by current device.

CPFA309 E Invalid cursor position in command buffer.

CPFA313 E Command buffer already contains an input operation.

CPFA31C E Incorrect value for control character byte &1.

CPFA31E E Required parameter &1 omitted.

CPFA326 E Screen must be redrawn.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Read Modified Fields (QsnReadMDT) API

 Required Parameter Group:

1 Control character byte 1 Input Char(1)
2 Control character byte 2 Input Char(1)

 Omissible Parameter Group:

3 Field count Output Binary(4)
4 Input buffer handle Input Binary(4)
5 Command buffer handle Input Binary(4)
6 Low-level environment

handle
Input Binary(4)

7 Error code I/O Char(*)

 Returned Value:

Field count Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Read Modified Fields (QsnReadMDT) API reads the contents of all modified fields on the screen
requiring an AID-generating key to be pressed. The command buffer handle or input buffer handle
parameter must be specified as described in Put Input Command (QsnPutInpCmd) API. See Control
Characters for a description of the control character values. The format of the data returned is:

Cursor
Row/ Column

2 bytes

AID Code
1 byte

SBA
X'11'

Field
Row/ Column
2 bytes

Field
Data SBA

X'11'
Field

Row/ Column
2 bytes

Field
Data

The field data returned for transparent fields and CCSID-capable fields (created with QsnSetFldCC)
includes an additional order and a length:

Field Data

Inbound
Transparent
Data order

X'10'

Length of
the following

data
2 bytes

Transparent
data

or data in
Field CCSID

The information returned depends on the state of the MDT bit for each field (see Modified Data Tag (MDT)
Bit) and the AID-generating key used. If no bits are set, the input returned consists of the cursor address
and an AID code only. If at least one bit is set, the input may also include field data. In each case, the
returned cursor address indicates the location of the cursor when the AID-generating key was pressed and
the AID code for the AID-generating key the operator used.

Field data is returned only when one of the following AID-generating keys is used:

Roll Up

Roll Down

Enter/Auto Record Advance

An unmasked command function key

The field data, when returned, consists of the row and column address and the contents of each field that
has an MDT bit on as they appear on the display, unless resequencing has been specified. (See
Resequencing.) The input buffer query routines Retrieve Number of Fields Read (QsnRtvFldCnt) API and
Retrieve Field Information (QsnRtvFldInf) API can be used to retrieve the value for each field. (To
interpret the data directly, QsnRtvDta can be used to obtain a pointer for the data portion of the input
buffer. The first data byte will be the SBA order for the first field as defined in the 5250 data stream
documentation.)

Data for nontransparent fields is formatted as follows:

Leading and embedded nulls within the field are translated to blanks, and trailing nulls are stripped
off. Only the field's address is returned for fields whose MDT bit is on but which consist entirely of
nulls.

●

If the specified field is a signed numeric field:

The last character of the field is stripped off unless it was previously stripped because it
was null.

❍

The last location of the field is checked for a negative sign. If detected, the zone portion of
the second to last character of the field is changed to a X'D'.

❍

●

If the field is a transparent or CCSID-capable field, no formatting is performed.

If a field is both transparent and signed numeric, unpredictable results can occur in the field data. CDRA
conversion may be peformed upon this data, see Limitations and Restrictions for further details.

This command corresponds directly to the 5250 Read MDT Fields command.

Restrictions

Some control units, like those emulated by the Client Access program, do not support a control character
associated with input commands. For such units, the control character specified would be ignored. A
program could cause further actions to be suspended if, for example, the control character byte 2 specified
to unlock the keyboard and this action was not specified elsewhere in the data stream. If the underlying
control unit does not support a control character with input commands, you must specify the action to
perform using the QsnWTD API.

Authorities and Locks

None

Required Parameter Group

Control character byte 1

INPUT; CHAR(1)

The operation for the display to perform after the read operation has been serviced. See Control
Characters or a description of the control character values.

Control character byte 2

INPUT; CHAR(1)

The operation for the display to perform after the read operation and control character byte 1 have
been serviced. See Control Characters for a description of the control character values.

Omissible Parameter Group

Field count

OUTPUT; BINARY(4)

The variable that contains the number of input fields read after the QsnReadMDT API has
completed if a direct operation is specified. The parameter is not modified for an indirect operation
and the value remains unchanged from whatever was passed.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation if a direct operation is
specified. The result can be queried using the input buffer query operations. See Retrieve Pointer to
Field Data (QsnRtvFldDta) API and Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen)
API.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Field count

OUTPUT; BINARY(4)

This API returns the value for the field count parameter if a direct operation was specified, or -1 if
an error occurs during processing. If this is an indirect operation, this API returns zero if successful,
or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA302 E Command buffer or input buffer parameters required.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA309 E Invalid cursor position in command buffer.

CPFA313 E Command buffer already contains an input operation.

CPFA31C E Incorrect value for control character byte &1.

CPFA31E E Required parameter &1 omitted.

CPFA326 E Screen must be redrawn.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Read Modified Immediate Alternate
(QsnReadMDTImmAlt) API

 Omissible Parameter Group:

1 Field count Output Binary(4)
2 Input buffer handle Input Binary(4)
3 Command buffer handle Input Binary(4)
4 Low-level environment

handle
Input Binary(4)

5 Error code I/O Char(*)

 Returned Value:

Field count Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Read Modified Immediate Alternate (QsnReadMDTImmAlt) API reads the contents of all modified
fields on the display without requiring an AID-generating key to be pressed. Processing for this API is the
same as for the Read Immediate (QsnReadImm) API, except that data is returned only for those fields that
have the MDT bit on. The format of the data returned is the same as for the Read Modified Alternate
(QsnReadMDTAlt) API.

See Read Immediate (QsnReadImm) API and Read Modified Alternate (QsnReadMDTAlt) API for details.

This command corresponds directly to the 5250 Read MDT Immediate Alternate command.

Restrictions

This command is not supported by all control units. A CPFA306 error occurs if an attempt is made to issue
this command to a control unit that does not support it.

Authorities and Locks

None

Omissible Parameter Group

Field count

OUTPUT; BINARY(4)

The variable that contains the number of input fields read after the QsnReadMDTImmAlt API has
completed if a direct operation is specified. The parameter is not modified for an indirect operation
and the value remains unchanged from whatever was passed.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation if a direct operation is
specified. The result can be queried using the input buffer query operations. See Retrieve Pointer to
Field Data (QsnRtvFldDta) API and Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen)
API.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Field count

OUTPUT; BINARY(4)

This API returns the value for the field count parameter if a direct operation was specified, or -1 if
an error occurs during processing. If this is an indirect operation, this API returns zero if successful,
or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA302 E Command buffer or input buffer parameters required.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA306 E Command not supported by current device.

CPFA309 E Invalid cursor position in command buffer.

CPFA313 E Command buffer already contains an input operation.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Read Screen (QsnReadScr) API

 Omissible Parameter Group:

1 Number of data bytes read Output Binary(4)
2 Input buffer handle Input Binary(4)
3 Command buffer handle Input Binary(4)
4 Low-level environment

handle
Input Binary(4)

5 Error code I/O Char(*)

 Returned Value:

Number of data bytes read Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Read Screen (QsnReadScr) API reads the contents of the entire screen without requiring an
AID-generating key to be pressed. The command buffer handle or input buffer handle parameter must be
specified as described in Put Input Command (QsnPutInpCmd) API.

The data returned consists of the contents of the entire display, including the attributes. No formatting or
conversion is done. The data will be available in the data portion of the input buffer. The result of this
operation can be queried using the Retrieve Length of Data in Input Buffer (QsnRtvDtaLen) API and the
Retrieve Pointer to Data in Input Buffer (QsnRtvDta) API.

This command corresponds directly to the 5250 Read Screen command.

Authorities and Locks

None

Restrictions

The same restrictions apply as for the Read Immediate (QsnReadImm) API. In addition, this command
cannot be issued if the control unit supports ideographic data types. A CPFA306 error occurs if an attempt
is made to issue this command to a control unit that supports ideographic data types.

Omissible Parameter Group

Number of data bytes read

OUTPUT; BINARY(4)

The variable that contains the number of data bytes returned after the QsnReadScr API has
completed if a direct operation is specified. The parameter is not modified for an indirect operation
and the value remains unchanged from whatever was passed.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer that receives the result of the input operation if a direct operation is
specified. The result can be queried using the input buffer query operations. See Retrieve Pointer to
Field Data (QsnRtvFldDta) API and Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen)
API.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Number of data bytes read

OUTPUT; BINARY(4)

This API returns the value for the number of data bytes read parameter if a direct operation was
specified, or -1 if an error occurs during processing. If this is an indirect operation, this API returns
zero if successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA302 E Command buffer or input buffer parameters required.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA309 E Invalid cursor position in command buffer.

CPFA313 E Command buffer already contains an input operation.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Screen Output APIs
The screen output APIs are used to define fields and write data and other information to the screen.

The screen output interfaces are:

Delete Field ID Definition (QsnDltFldId) deletes a field ID definition.●

Generate a Beep (QsnBeep) generates a beep.●

Insert Cursor (QsnInsCsr) sets the insert cursor address.●

Pad between Two Screen Addresses (QsnWrtPadAdr) pads the screen with characters between two
points.

●

Pad for N Positions (QsnWrtPad) pads the screen for a specified number of characters.●

Put Output Command (QsnPutOutCmd) writes a data stream command.●

Set Cursor Address (QsnSetCsrAdr) sets the position of the cursor on the screen.●

Set Error State (QsnSetErr) places the keyboard into prehelp error state and optionally places a
string on the error line with cursor positioning support.

●

Set Field (QsnSetFld) defines an input field on the screen at a given row and column.●

Set Field with CCSID (QsnSetFldCC) defines a CCSID-capable input field on the screen at the
given row and column.

●

Set Output Address (QsnSetOutAdr) sets the current display address.●

Write Data (QsnWrtDta) writes data to the display at a given row and column with standard
attributes.

●

Write Data with CCSID (QsnWrtDtaCC) writes data to the display at a given row and column
using standard attributes.

●

Write Structured Field Major (QsnWrtSFMaj) writes the major structure of a structured field.●

Write Structured Field Minor (QsnWrtSFMin) writes the minor structure of a structured field.●

Write to Display (QsnWTD) issues a Write to Display command.●

Write Transparent Data (QsnWrtTDta) writes transparent data to the display at a given row and
column.

●

Top | Dynamic Screen Manager APIs | APIs by category

Delete Field ID Definition (QsnDltFldId) API

 Required Parameter:

1 Field ID Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Delete Field ID Definition (QsnDltFldId) API deletes a field ID definition. The screen appearance,
including the fields defined on the screen, are not affected by this command.

Authorities and Locks

None

Required Parameter

Field ID

INPUT; BINARY(4)

The ID for the field definition to be deleted. Subsequent references to this field ID result in a
CPFA33C error. This parameter must be specified with a nonzero valid field value.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA33C E Undefined field ID &1.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Generate a Beep (QsnBeep) API

 Omissible Parameter Group:

1 Command buffer handle Input Binary(4)
2 Low-level environment

handle
Input Binary(4)

3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Generate a Beep (QsnBeep) API generates a beep. The display address is not affected by this
command.

This command corresponds directly to the 5250 Write to Display (WTD) command with control character 1
equal to X'00' and control character 2 equal to X'04'. If this is an indirect operation, this API issues a new
WTD command to the command buffer.

Authorities and Locks

None

Restrictions

The same restrictions apply as for the Write Data (QsnWrtDta) API (see Restrictions).

Omissible Parameter Group

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the beep is generated immediately. Otherwise, this is an
indirect operation and the command is stored in the command buffer without an I/O operation
taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Insert Cursor (QsnInsCsr) API

 Omissible Parameter Group:

1 Field ID Input Binary(4)
2 Cursor row Input Binary(4)
3 Cursor column Input Binary(4)
4 Command buffer handle Input Binary(4)
5 Low-level environment

handle
Input Binary(4)

6 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Insert Cursor (QsnInsCsr) API sets the insert-cursor address. The insert-cursor address specifies the
home-cursor address. (The position of the cursor when the host system unlocks the keyboard and the
display station operator presses the Home key.) The display address is not affected by this command if this
is an indirect operation and the target command buffer contains an active Write to Display (WTD)
command. Otherwise, a WTD command is inserted that resets the display address to row 1 column 1.

If bit 1 of the associated Write to Display command is set to 0 (which is the default), the cursor will be
moved on the screen when the QsnInsCsr API is called. To prevent the cursor from being moved, the
control character byte 2 bit should be set to 1 and the Write to Display (QsnWTD) operation should be
explicitly issued to a command buffer used by the QsnInsCsr API.

This command corresponds indirectly to the 5250 Write to Display (WTD) command with an Insert Cursor
order. (For an indirect operation, a WTD is placed in the command buffer only if one does not already exist
in that buffer.)

Authorities and Locks

None

Restrictions

The same restrictions apply as for the Write Data (QsnWrtDta) API.

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address. Either the field ID or the row and
column parameters must be specified.

Cursor row

INPUT; BINARY(4)

The row at which to position the insert cursor. The row parameter must refer to a row no greater
than the current screen or window mode height (if window mode is enabled). The actual screen row
used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
row location of the top window border (0 for full screen) if offset is positive, or the row location of
the bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is
the row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

Cursor column

INPUT; BINARY(4)

The column at which to position the insert cursor. The column parameter must refer to a column no
greater than the current screen or window mode width (if window mode is on). The actual screen
column used for a screen I/O operation is calculated using the formula base+offset=actual. The
base is the column location of the left window border (0 for full screen) if offset is positive, or the
column location of the center window border (screen width plus 1 for full screen) if offset is
negative. The offset is the column parameter value specified, and actual is the actual screen column
to be used. A CPFA307 error occurs if an incorrect column value is specified.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the insert cursor is positioned at the specified location
immediately. Otherwise, this is an indirect operation and the command is stored in the command
buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA33C E Undefined field ID &1.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Pad between Two Screen Addresses
(QsnWrtPadAdr) API

 Required Parameter Group:

1 Pad character Input Char(1)
2 To row Input Binary(4)
3 To column Input Binary(4)

 Omissible Parameter Group:

4 From row Input Binary(4)
5 From column Input Binary(4)
6 Command buffer handle Input Binary(4)
7 Low-level environment

handle
Input Binary(4)

8 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Pad between Two Screen Addresses (QsnWrtPadAdr) API pads the display repeatedly with a selected
character between two positions on the screen. The current display address is set to the position given by
the to-row and to-column values plus one. Padding may occur outside the logical window area defined by
the low-level environment window mode setting.

This command corresponds indirectly to the 5250 Write to Display (WTD) command with a Set Buffer
Address order (if the from row and from column parameters are specified) and a Repeat to Address order.
(For an indirect operation, a WTD is placed in the command buffer only if one does not already exist in that
buffer.)

Authorities and Locks

None

Restrictions

The same restrictions apply as for the Write Data (QsnWrtDta) API.

Required Parameter Group

Pad character

INPUT; CHAR(1)

The character to pad the screen with.

To row

INPUT; BINARY(4)

The row at which to write the last pad character. If the position to pad to is less than the position to
pad from, a CPFA31B error is issued. The row parameter must refer to a row no greater than the
current screen or window mode height (if window mode is enabled). The actual screen row used for
a screen I/O operation is calculated using the formula base+offset=actual. The base is the row
location of the top window border (0 for full screen) if offset is positive, or the row location of the
bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is the
row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

To column

INPUT; BINARY(4)

The column at which to write the last pad character. The column parameter must refer to a column
no greater than the current screen or window mode width (if window mode is on). The actual
screen column used for a screen I/O operation is calculated using the formula base+offset=actual.
The base is the column location of the left window border (0 for full screen) if offset is positive, or
the column location of the center window border (screen width plus 1 for full screen) if offset is
negative. The offset is the column parameter value specified, and actual is the actual screen column
to be used. A CPFA307 error occurs if an incorrect column value is specified.

Omissible Parameter Group

From row

INPUT; BINARY(4)

The row at which to write the first pad character. The row parameter must refer to a row no greater
than the current screen or window mode height (if window mode is enabled). The actual screen row
used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
row location of the top window border (0 for full screen) if offset is positive, or the row location of
the bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is
the row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

If both the from-row and from-column parameters are omitted, the pad characters are written
starting at the current display address. If the command is a direct operation or the buffer specified
does not contain a preceding output operation that sets the display address, the current display
address is set to row 1, column 1, prior to writing the pad characters. Both the from-row and

from-column parameters must be specified, or both parameters must be omitted.

From column

INPUT; BINARY(4)

The column at which to write the first pad character. The column parameter must refer to a column
no greater than the current screen or window mode width (if window mode is on). The actual
screen column used for a screen I/O operation is calculated using the formula base+offset=actual.
The base is the column location of the left window border (0 for full screen) if offset is positive, or
the column location of the center window border (screen width plus 1 for full screen) if offset is
negative. The offset is the column parameter value specified, and actual is the actual screen column
to be used. A CPFA307 error occurs if an incorrect column value is specified.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the screen is padded with the character specified
between the positions specified inclusively. Otherwise, this is an indirect operation and the
command is stored in the command buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA308 E Attempt to write data past end of display.

CPFA31B E From position &1, &2 greater than to position &3, &4.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33C E Undefined field ID &1.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Pad for N Positions (QsnWrtPad) API

 Required Parameter Group:

1 Pad character Input Char(1)
2 Number of bytes Input Binary(4)

 Omissible Parameter Group:

3 Field ID Input Binary(4)
4 From row Input Binary(4)
5 From column Input Binary(4)
6 Command buffer handle Input Binary(4)
7 Low-level environment

handle
Input Binary(4)

8 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Pad for N Positions (QsnWrtPad) API pads the display with the given pad character for the specified
number of bytes. Padding starts at the row and column specified, or at the current display address if these
parameters are omitted. To allow the QsnWrtPad operation to insert a group of characters without
overwriting the ending screen attribute, the following conditions must be satisfied:

The operation is an indirect operation.●

The row and column parameters are omitted.●

The low-level environment description does not indicate that DBCS data is being used.●

The previous command saved in the command buffer was a Write Data (QsnWrtDta) operation.●

If the row and column parameters are omitted and the command is either a direct operation or the buffer
specified does not contain a preceding output operation that sets the display address, then the current
display address is set to row 1, column 1, prior to writing the pad characters.

If the from-row and from-column parameters are specified, this command corresponds indirectly to the
5250 Write to Display (WTD) command with a Set Buffer Address order. (For an indirect operation, a
WTD is placed in the command buffer only if one does not already exist in the buffer.)

Authorities and Locks

None

Restrictions

The same restrictions apply as for the Write Data (QsnWrtDta) API.

Required Parameter Group

Pad character

INPUT; CHAR(1)

The pad character to pad the screen with.

Number of bytes

INPUT; BINARY(4)

The number of bytes to pad the screen for.

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address. If neither the field ID or row and
column parameters are specified, the current display address is used.

From row

INPUT; BINARY(4)

The row at which to write the first pad character. The row parameter must refer to a row no greater
than the current screen or window mode height (if window mode is enabled). The actual screen row
used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
row location of the top window border (0 for full screen) if offset is positive, or the row location of
the bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is
the row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

If both the from-row and from-column parameters are omitted, the pad characters are written
starting at the current display address. If this is the case and the command is a direct operation, or
the buffer specified does not contain a preceding output operation that sets the display address, the
current display address is set to row 1, column 1, prior to writing the pad characters. Both the
from-row and from-column parameters must be specified, or both parameters must be omitted.

From column

INPUT; BINARY(4)

The column at which to write the first pad character. The column parameter must refer to a column
no greater than the current screen or window mode width (if window mode is on). The actual
screen column used for a screen I/O operation is calculated using the formula base+offset=actual.
The base is the column location of the left window border (0 for full screen) if offset is positive, or
the column location of the center window border (screen width plus 1 for full screen) if offset is
negative. The offset is the column parameter value specified, and actual is the actual screen column
to be used. A CPFA307 error occurs if an incorrect column value is specified.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the pad characters are written to the screen at the
current display address. Otherwise, this is an indirect operation and the command is stored in the
command buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA308 E Attempt to write data past end of display.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33C E Undefined field ID &1.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Put Output Command (QsnPutOutCmd) API

 Required Parameter Group:

1 Command Input Char(1)

 Omissible Parameter Group:

2 Command data Input Char(*)
3 Command Data Length Input Binary(4)
4 Command buffer handle Input Binary(4)
5 Low-level environment

handle
Input Binary(4)

6 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Put Output Command (QsnPutOutCmd) API is used to issue data stream commands that are not
directly supported through a DSM API. An escape (X'04') character is inserted in the stream directly before
the command itself for both direct and indirect operations.

Note: The Write Data (QsnWrtDta) API should be used for issuing Write to Display command orders such
as the Write Extended Attributes order.

This operation corresponds to an escape character followed by the specified command.

Authorities and Locks

None

Required Parameter

Command

INPUT; CHAR(1)

The 1-byte character code for the output command to be issued. For example, to issue a Restore

Partial Screen, the command data should contain X'13', the command data will contain the restore
data length followed by the restore data, and the command data length will be 2 plus the restore
data length.

Omissible Parameter Group

Command data

INPUT; CHAR(*)

The data for the command to be issued.

Command data length

INPUT; BINARY(4)

The length of the command data parameter. If 0 is specified, the command data parameter is
ignored. Otherwise, the command data parameter is required.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the command is sent to the display. If the command
being sent is an input command, you must specify a command buffer and then use the Put
Command Buffer and Perform Get (QsnPutGetBuf) API to issue the command and retrieve the
resulting input. Otherwise, this is an indirect operation and the command is stored in the command
buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Set Cursor Address (QsnSetCsrAdr) API

 Omissible Parameter Group:

1 Field ID Input Binary(4)
2 Cursor row Input Binary(4)
3 Cursor column Input Binary(4)
4 Command buffer handle Input Binary(4)
5 Low-level environment

handle
Input Binary(4)

6 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Set Cursor Address (QsnSetCsrAdr) API sets the position of the cursor on the screen. The display
address is not affected by this command if this is an indirect operation and the target command buffer
contains an active Write to Display (WTD) command. Otherwise, a WTD command will be inserted that
resets the display address to row 1 column 1.

This command corresponds indirectly to the 5250 Write to Display command (WTD) with an Insert Cursor
or Move Cursor order. (For an indirect operation, a WTD is placed in the command buffer only if one does
not already exist in that buffer.) The Move Cursor order is used if the control unit supports it (based on the
5250 Query command). Otherwise, the Insert Cursor order is used.

If the Move Cursor order is supported, this API sets the cursor without modifying the home address and
without regard to the state of the keyboard. Otherwise, the behavior is the same as that of the Insert Cursor
(QsnInsCsr) API.

If multiple QsnSetCsrAdr operations are applied to the same command buffer, only the last QsnSetCsrAdr
operation is in effect. The last QsnSetCsrAdr or QsnInsCsr operation determines the cursor position. If the
Move Cursor order is used, the QsnSetCsrAdr negates any previous QsnInsCsr commands in the command
buffer, except for the last QsnInsCsr, which sets the home position. If the Insert Cursor order is used, it
negates any previous QsnInsCsr operations. If the Move Cursor order is supported, you can set the home
position and then move the cursor by issuing a QsnInsCsr first, followed by a QsnSetCsrAdr operation.

Authorities and Locks

None

Restrictions

The same restrictions apply as for the Write Data (QsnWrtDta) API.

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address. Either the field ID or the row and
column parameters must be specified.

Cursor row

INPUT; BINARY(4)

The row at which to position the cursor. The row parameter must refer to a row no greater than the
current screen or window mode height (if window mode is enabled). The actual screen row used for
a screen I/O operation is calculated using the formula base+offset=actual. The base is the row
location of the top window border (0 for full screen) if offset is positive, or the row location of the
bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is the
row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

Cursor column

INPUT; BINARY(4)

The column at which to position the cursor. The column parameter must refer to a column no
greater than the current screen or window mode width (if window mode is on). The actual screen
column used for a screen I/O operation is calculated using the formula base+offset=actual. The
base is the column location of the left window border (0 for full screen) if offset is positive, or the
column location of the center window border (screen width plus 1 for full screen) if offset is
negative. The offset is the column parameter value specified, and actual is the actual screen column
to be used. A CPFA307 error occurs if an incorrect column value is specified.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the cursor is positioned at the specified location
immediately. Otherwise, this is an indirect operation and the command is stored in the command
buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a

value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA33C E Undefined field ID &1.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Set Error State (QsnSetErr) API

 Omissible Parameter Group:

1 Message Input Char(*)
2 Message length Input Binary(4)
3 Field ID Input Binary(4)
4 Cursor row Input Binary(4)
5 Cursor column Input Binary(4)
6 Starting monochrome

attribute
Input Char(1)

7 Ending monochrome attribute Input Char(1)
8 Starting color attribute Input Char(1)
9 Ending color attribute Input Char(1)
10 Command buffer handle Input Binary(4)
11 Low-level environment

handle
Input Binary(4)

12 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Set Error State (QsnSetErr) API places the keyboard into prehelp error state and optionally places a
string on the error line. To place the keyboard in the prehelp error state, you must follow this API with an
AID-associated read API such as QsnReadInp.

Either the cursor or the message parameters must be specified to make the command valid. If neither of
these are used, a CPFA305 error is issued. If a cursor position is specified, the cursor is moved immediately
to the location given. This does not affect the cursor address set by the Insert Cursor (QsnInsCsr) API.

When the operator presses the Help key (prehelp error state only) in response to the error condition, the
message No help text is available is displayed.

This command corresponds directly to the 5250 Write Error Code command.

Authorities and Locks

None

Omissible Parameter Group

Message

INPUT; CHAR(*)

The message to be displayed. This parameter is required if the message length parameter is
specified as a nonzero value. The message data, including the screen attributes, must not exceed
132 characters for devices that are in 27x132 mode, or 80 characters for all other devices. A
CPFA310 error is issued if the message data is too long.

Message length

INPUT; BINARY(4)

The number of bytes of message data to be displayed.

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address.

Cursor row

INPUT; BINARY(4)

The row at which to position the cursor when the message is displayed. The row parameter must
refer to a row no greater than the current screen or window mode height (if window mode is
enabled). The actual screen row used for a screen I/O operation is calculated using the formula
base+offset=actual. The base is the row location of the top window border (0 for full screen) if
offset is positive, or the row location of the bottom window border (screen height plus 1 for full
screen) if offset is negative. The offset is the row parameter value specified, and actual is the actual
screen row to be used. A CPFA307 error occurs if an incorrect row value is specified.

If both the field ID and the row and column parameters are omitted, the cursor is not moved. The
row and column parameters must be specified together, or both parameters must be omitted.

Cursor column

INPUT; BINARY(4)

The column at which to position the cursor when the message is displayed. The column parameter
must refer to a column no greater than the current screen or window mode width (if window mode
is on). The actual screen column used for a screen I/O operation is calculated using the formula
base+offset=actual. The base is the column location of the left window border (0 for full screen) if
offset is positive, or the column location of the center window border (screen width plus 1 for full
screen) if offset is negative. The offset is the column parameter value specified, and actual is the
actual screen column to be used. A CPFA307 error occurs if an incorrect column value is specified.

Starting monochrome attribute

INPUT; CHAR(1)

The initial screen attribute for monochrome displays. If this parameter is omitted or specified as

X'00', a starting attribute of high intensity blink is inserted. See Screen Attribute Characters for a
description of the screen attribute values. The starting attribute is selected as for the QsnWrtDta
API.

Ending monochrome attribute

INPUT; CHAR(1)

The ending screen attribute for monochrome displays. If this parameter is omitted or specified as
X'00', an ending attribute of nondisplay is inserted. The ending attribute is selected as for the
QsnWrtDta API.

Starting color attribute

INPUT; CHAR(1)

The initial screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no initial attribute is written to the display for the data.

Ending color attribute

INPUT; CHAR(1)

The ending screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no ending attribute is written to the display for the data.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the error state is entered, the cursor is moved to the
specified position, and the message, if specified, is displayed. Otherwise, this is an indirect
operation and the command is stored in the command buffer without an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA30D E Invalid screen attribute.

CPFA30F E Required parameter not specified.

CPFA310 E Error message data/screen attributes exceed display width.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33C E Undefined field ID &1.

CPFA33F E Error occurred during data conversion.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Set Field (QsnSetFld) API

 Omissible Parameter Group:

1 Field ID Input Binary(4)
2 Field length Input Binary(4)
3 Row Input Binary(4)
4 Column Input Binary(4)
5 Field format word (FFW) Input Char(2)
6 Field control words (FCW) Input Char(*)
7 Number of field control

words
Input Binary(4)

8 Monochrome attribute Input Char(1)
9 Color attribute Input Char(1)
10 Command buffer handle Input Binary(4)
11 Low-level environment

handle
Input Binary(4)

12 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Set Field (QsnSetFld) API defines an input field on the screen at the given row and column. The
following occurs when this command is issued to the control unit as a direct operation or when the buffer
containing the command is written out:

Any outstanding AID requests are cleared.●

The keyboard is locked.●

If there is an entry in the format table whose starting address is equal to the address for this field,
then that entry is modified. The FFW of the existing entry is replaced by the new FFW and the
previous screen starting attribute is overlaid with the new screen starting attribute. The ending
screen attribute is not rewritten. All FCWs and the length parameter are ignored. See the 5250 data
stream documentation for details.

●

If no entry can be found in the table for the field being defined, a new entry will be added to the
end of the table. However, the address must be greater than the ending address of the field currently
defined last in the format table or an error will occur. If the new entry is valid, it will contain the
field's FFW, the optional FCWs, and the field's starting and ending address. An error will occur if
an attempt is made to define too many fields on the screen (see the 5250 data stream documentation

●

for details).

The display address after this operation will be the starting field address minus 1 if row and column are
specified as valid positive integers or if this is the first field specified within the current WTD command.
Otherwise, the display address will be one position past the ending screen attribute.

This command corresponds indirectly to the 5250 Write to Display (WTD) command with a Set Buffer
Address order and a Start of Field order if the row and column parameters are specified. (For an indirect
operation, a WTD is placed in the command buffer only if one does not already exist in that buffer.)

Authorities and Locks

None

Restrictions

The same restrictions apply as for the Write Data (QsnWrtDta) API, with the exception that the trailing
field attribute can be written past the end of the screen. (It will be suppressed by the control unit.)

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID to be associated with this field. The value specified can be any nonzero integer value.
For APIs that accept a field ID parameter, this value can be subsequently used instead of the row
and column parameter to specify a screen address. If the given ID is already defined, this operation
will redefine that field ID with the values specified. To remove a field ID definition, use the
QsnDltFldId API.

If a previously defined field ID is supplied and some or all of the parameters are omitted, the field
is defined using the current field definition values for those omitted parameters.

If this field is omitted or specified with a value of zero, then no field ID is associated with this field
description.

Field length

INPUT; BINARY(4)

The length of the field being defined. If no field ID is specified, the length must be a positive
integer value greater than 1 for signed numeric fields and greater than 0 for all other field types.
The entire field must fit on the display. If a field ID is specified with a nonzero value, the length
may be 0, in which case a field will not be defined on the screen; however, this will associate the
field definition with the specified field ID.

Row

INPUT; BINARY(4)

The row at which to define the field. The row parameter must refer to a row no greater than the
current screen or window mode height (if window mode is enabled). The actual screen row used for

a screen I/O operation is calculated using the formula base+offset=actual. The base is the row
location of the top window border (0 for full screen) if offset is positive, or the row location of the
bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is the
row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

The starting field address will be the row and column locations given if both parameters are
specified. Otherwise, it will be the current display address plus 1. If this is the case and the
command is a direct operation, or the buffer specified does not contain a preceding output operation
that sets the display address, the current display address is set to row 1, column 1, prior to writing
the initial screen attribute and the field definition. The ending field address for this field is the
starting field address plus the field length.

If a field ID is supplied along with a row and column, the row and column parameters will be
stored as specified. These parameters will be used as relative or actual screen positions on a
subsequent operation, depending upon the window mode setting for the environment supplied with
that operation.

If a previously undefined field ID is supplied with this operation, the row and column parameters
must be specified. Also, the row and column parameters must both be specified or omitted; one
cannot be specified if the other is omitted. A CPFA307 error occurs if an incorrect cursor position
is specified. On some devices, row and column can both be specified as 1, which will cause the
field to be defined at row 1, column 1, with a screen attribute of normal (X'20'). If this is the case,
then any initial screen attribute parameters specified are ignored. This is only supported by certain
devices. Whether or not this is supported can be determined by the Query 5250 (QsnQry5250) API.

Column

INPUT; BINARY(4)

The column at which to write the data. The column parameter must refer to a column no greater
than the current screen or window mode width (if window mode is on). The actual screen column
used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
column location of the left window border (0 for full screen) if offset is positive, or the column
location of the center window border (screen width plus 1 for full screen) if offset is negative. The
offset is the column parameter value specified, and actual is the actual screen column to be used. A
CPFA307 error occurs if an incorrect column value is specified.

Field format word (FFW)

INPUT; CHAR(2)

The field format word is a 2-byte value that controls the type of the field being defined. Table 6
shows the field types, and the corresponding bit to be set for each type. To omit this parameter,
specify X'00' in both characters of the parameter. You must specify this parameter to define an
input field, and it is required if a field control word is specified.

Field control words (FCW)

INPUT; CHAR(*)

An array of 2-byte field control words. The field control words are 2-byte values that request
certain functions to be performed. Table 7 shows the valid field control word values, their function,
and mnemonics for those values.

The 5250 CCSID-based I/O specific FCWs are not allowed (QsnSetFldCC must be used to create
CCSID-capable fields). If the CCSID-based I/O CCSID or Maximum data length FCWs are given
here, a CPFA332 will result. FCWs will not be exhaustivly checked to see if they are formatted

correctly or to see if the function requested is valid for the current device. However, some FCWs
are checked against the support provided by the device and a CPFA306 signaled if an
incompatibility is found. Table 8 shows the display capablility and FCW combinations that are
valid.

Errors not found here may be detected and reported when the FCW is required during subsequent
command and keystroke processing. See the 5250 data stream documentation for further details
about the meaning and use of these functions.

Number of field control words

INPUT; BINARY(4)

The number of control words in the field control word array. Omitting this parameter or specifying
it with a value of 0 indicates that no field control words are specified with the FCW parameter. If
this parameter is specified with a nonzero value, the FCW parameter is required; if the FCW
parameter is omitted, a CPFA31E error is issued.

Monochrome attribute

INPUT; CHAR(1)

The initial screen attribute for monochrome displays. A screen attribute is required for defining a
field on the screen; if this parameter is omitted and monochrome attributes are to be used, X'20' is
assumed. The initial screen attribute is written one position to the left of the starting field address.
The ending screen attribute (X'20') is supplied by the controller and written at the end-of-field
address plus 1.

The monochrome attribute and color attribute parameters consist of 1 byte that will be used as the
screen attribute for a monochrome or a color display, respectively. One of these parameters will be
selected based on the underlying display type, and the other will be discarded. See Screen Attribute
Characters for a description of the screen attribute values.

Color attribute

INPUT; CHAR(1)

The initial screen attribute for color displays. A screen attribute is required for defining a field on
the screen; if this parameter is omitted and color attributes are to be used, X'20' is assumed. See
Screen Attribute Characters for a description of the screen attribute values.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the starting field address will be the supplied location.
Otherwise, this is an indirect operation and the command is stored in the command buffer without
an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Field Format Word

The following table shows the field types and the bits to set for each type for the field format word (FFW).

Table 6. Field Format Words

Field Type Bit To
Set

Mnemonic Description

 0-15 QSN_NO_FFW If bits 0 to 15 are set to 0, then
no FFW is used. The field will
be defined as an output field
and its contents will not be
returned by operations such as
the Read Input Fields
(QsnReadInp) API.

 0-1 The first two bits of a field
format word must be 01. The
mnemonic for every other
field type includes this setting.

Bypass 2 QSN_FFW_BYPASS If this bit is set, this is a
bypass field and entries are
not allowed in it. If the
operator tries to enter
something in this field, an
error results.

Dup Enable 3 QSN_FFW_DUP If this bit is set, duplication is
allowed in the field. The
controller repeats X'1C' from
the cursor position to the end
of the field when the operator
presses the Dup key; this
shows on the display as an
overstruck asterisk.

Modified data tag (MDT) 4 QSN_FFW_MDT Setting this bit sets the
modified data tag for this
field. The field will then be
read with the Read Modified
Fields (QsnReadMDT) API
(see Read Modified Fields
(QsnReadMDT) API) as if the
operator had modified it.

Field Shift/ Edit
Specification

Bits 5-7 Mnemonic Description

Alphabetic shift 000 QSN_FFW_ALPHA_SHIFT The field accepts all
characters. The shift keys are
acknowledged. The characters
on the lower symbol of each
key are valid.

Alphabetic only 001 QSN_FFW_ALPHA_ONLY The field accepts only
characters A-Z (both
uppercase and lowercase) plus
the comma (,), period (.),
minus (-), space, and DUP (if
the DUP-enable bit is on in
the associated Field Format
Word (FFW)). Other
characters cause operator
errors. Some special
characters are also acceptable
(see the 5250 data stream
documentation).

Numeric shift 010 QSN_FFW_NUM_SHIFT The field accepts all
characters from all keys.

Numeric only 011 QSN_FFW_NUM_ONLY The field accepts only
characters 0-9 and the comma
(,), period (.), minus (-), plus
(+), space, and DUP (if the
DUP-enable bit is on in the
associated Field Format Word
(FFW)). Other characters
cause operator errors.

The unit position of this field
will carry the sign digit for the
field. If the field is exited with
the Field - key, the last
character in the field will be
'D' zoned, unless the last
character in the field is a '+',
'-', ',', '.', or space, in which
case an error will be posted.
In a center-adjusted field, the
field will be center-adjusted
before any 'D' zoning or
testing of the sign character is
performed. When a negative
field (from the Field - key) is

returned, the units digit will
have a 'D' zone.

Katakana shift 100 QSN_FFW_KATA This is the same as the
alphabetic shift except that the
keyboard is placed in the
Katakana shift on the Japan
Katakana data entry,
typewriter, and G keyboards.
This reverses the order of the
cursor direction with respect
to the screen. If the display is
in bidirectional mode, this
changes the cursor direction
to left to center; otherwise, it
changes the cursor direction
to center to left.

Digits only 101 QSN_FFW_DIGIT_ONLY The field allows keys 0-9 and
DUP (if the DUP-enable bit is
on in the associated Field
Format Word (FFW)).

I/O 110 QSN_FFW_IO This field will not accept any
data keys from the keyboard.
An operator error is posted if
keystrokes are entered in this
field. The operator may move
the cursor into and out of this
field similar to operation in
any non-bypass input field
(that is, Field Advance will
position the cursor to the start
of the field).

This field can be used for
input from feature devices
such as a magnetic stripe
reader of selector light pen
while data input from the
keyboard is excluded.

The Field +, Field Exit, and
Dup keys are valid for this
field and performance is the
same as that for any
non-bypass input field.

Signed Numeric 111 QSN_FFW_SIGNED_NUMERIC The field allows keys 0-9 and
DUP (if the DUP-enable bit is
on in the associated Field
Format Word (FFW)). Typing
any other character will cause
an operator error display.

This field reserves the
center-hand position for a sign
display (- for negative and
null for positive); therefore,
the largest number of
characters that can be entered
into this field is one less than
the field length. A signed
numeric field less than 2
characters long will cause an
error to be flagged.

No digit may be keyed into
the centermost position;
however, the cursor can be
positioned there by using the
cursor movement keys and
then followed by the F+ or F-
key. This allows changing the
sign without affecting the rest
of the field.

Signed Numeric
(continued)

 If this field is not a mandatory
fill or center-adjust field, it is
still handled as if it were
specified as a center-adjust
blank fill field. If the Field -
key is used to exit this field,
the field will be
center-adjusted and a negative
sign placed in the centermost
position of the field. The Field
Exit or Field + key will insert
a blank in the centermost
position and center-adjust this
field.

Before this field is returned on
an input operation, it is
changed as follows:

If the centermost
character is a negative
sign, the zone of the
low order digit is set
to a X'D'.

●

If the centermost
character is not a
negative sign, the low
order digit is not

●

changed.

In either case, the centermost
sign position is not sent to the
host.

Field Type Bit to
Set

Mnemonic Description

Auto Enter 8 QSN_FFW_AUTO_ENTER If this bit is set, this is an auto
enter field. The auto enter
function occurs only for valid
Field Exit/Field +, Field -, and
Dup exit keys, or if the last
data character position is
typed into the auto enter field.
After any required
center-adjust, mandatory fill,
data duplicating, or check
digit operations are
successfully performed, the
auto enter function causes the
panel to be sent to the host as
if the Enter key had been
pressed.

Field Exit Required 9 QSN_FFW_AUTO_FER If this bit is set, a nondata key
must be typed to leave the
field. When the last data
character is typed into the last
position of the field, the
cursor will remain under the
character and blink, signifying
the controller is waiting for an
exit key. Any nondata key
will satisfy the exit
requirement (including cursor
movement or function keys).

Monocase 10 QSN_FFW_AUTO_MONOCASE If this bit is set, then
regardless of the shift state of
the typewriter keyboard, only
the uppercase A-Z is entered
into the field being typed (that
is, if a lowercase a is typed,
the uppercase A is entered).
All other characters are
unaffected. Certain characters
on some typewriter keyboards
also will be translated to
uppercase (see the 5250 data
stream documentation).

Reserved 11

Mandatory Enter 12 QSN_FFW_ME If this bit is set, the operator
must enter something in the
field before the controller
allows the Enter key to be
active. The controller
recognizes the state of these
fields by checking the MDT
bit for the field. If the operator
tries to bypass the field using
a Field +, Field -, or Field
Exit key, an error occurs.

Center-Adjust/Mandatory
Fill

Bits
13-15

Mnemonic Description

No adjust specified 000 QSN_FFW_NOADJUST No field adjustment occurs.

Reserved 001

Reserved 010

Reserved 011

Reserved 100

Center-adjust, zero fill 101 QSN_FFW_RA_ZERO All leftmost unoccupied
positions of a field are filled
with zero. Characters are
center-adjusted and spaces are
zero-filled. The fill character
will appear on the display.

center-adjust is only activated
by keying the Field Exit, Field
+, or Field - keys. The field is
center-adjusted from the first
non-null character to the left
of the cursor when one of
these keys is depressed. If a
center-adjust field is left
through cursor movement
keys, the field will remain as
is (not center-adjusted).
center-adjust fields longer
than 15 characters might
cause a slow response that
would result in a keyboard
overrun. A center-adjust
specified field has an implied
field exit required function.

The Dup key will fill a
center-adjust field from the
cursor to the end of the field
with the Dup character
(X'1C'), but the field will not
be center-adjusted. After
typing the first character into
a center adjust field, but prior
to exiting the field (using
cursor movement or exit

keys), the Enter key will
cause an operator error to be
posted; that is, Enter is invalid
from an active center-adjust
field.

Center-adjust, blank fill 110 QSN_FFW_RA_BLANK The field behavior is the same
as for center-adjust, zero fill,
but the fill character is blank
instead of zero.

Mandatory fill 111 QSN_FFW_MF Once any data has been
entered into the field, the field
must be completely filled
before exiting it. Any attempt
to leave an unfilled field
causes an error. The cursor
may pass into and out of a
mandatory fill field as a result
of cursor movement keys
without fill-checking or error
posting by the controller, as
long as no data is entered into
the field.

The Dup key will fill the field
from the cursor to the end of
field with the Dup characters
X'2C', and then the entire field
will be checked for any nulls
(an error is posted if a null is
found). A mandatory fill field
with nulls can be returned
under the following
conditions:

The field was
initialized with nulls
and with the MDT bit
on.

1.

The Erase Input, Field
Exit, or Field + key is
used from the first
position of the field.
The field is filled with
nulls and the MDT bit
is set on.

2.

The above fields, with no
further entry, can be returned
with all data as blanks on a
Read Input Fields
(QsnReadInp) operation or as
a null field on a Read
Modified Fields
(QsnReadMDT) operation.

Format of the Field Control Word

The following table explains the valid field control words (FCW) for use with the QsnSetFld API.

Table 7. Field Control Words

FCW Value Mnemonic Description

X'80nn' QSN_FCW_RESEQ Entry field resequencing (used in the Read Input
Fields (QsnReadInp) and Read Modified Fields
(QsnReadMDT) APIs, and so forth). The nn specifies
the next entry field in the sequence (nn can be X'00'
to X'80'). See Resequencing.

X'8101' QSN_FCW_MSR Magnetic stripe reader entry field.

X'8102' QSN_FCW_SLP Selector light pen entry field.

X'8103' QSN_FCW_MSR_SLP Magnetic stripe reader and selector light pen entry
field.

X'8106' QSN_FCW_SLP_SA Selector light pen and selectable attention entry field.

X'8200' QSN_FCW_DBCS_ONLY DBCS only entry field.

X'8220' QSN_FCW_DBCS_PURE DBCS Graphic DBCS entry field.

X'8240' QSN_FCW_DBCS_EITHER DBCS Either entry field.

X'8280' or
X'82C0'

QSN_FCW_DBCS_OPEN or
QSN_FCW_DBCS_OPEN_C0

DBCS open entry field.

X'84??' QSN_FCW_TRANSPARENT Transparency entry field (used in the Read Input
Fields (QsnReadInp) and Read Modified Fields
(QsnReadMDT) APIs, and so forth). The ?? indicates
that these values are ignored.

X'8501' QSN_FCW_FET Forward edge trigger entry field. This provides the
same function as Auto Enter specified in the FFW,
except a unique AID is returned to the host when the
field is exited. The state on the Auto Enter flag in the
FFW is ignored.

X'8601' QSN_FCW_CONT_FIRST Continued entry field first segment.

X'8602' QSN_FCW_CONT_LAST Continued entry field last segment.

X'8603' QSN_FCW_CONT_MIDDLE Continued entry field middle segment.

X'88nn' QSN_FCW_CP Cursor progression entry field.

X'89nn' QSN_FCW_HL Highlighted entry field.

X'8Ann' QSN_FCW_PDS Pointer device selection entry field.

X'B140' QSN_FCW_MOD11 Self Check Modulus 11 entry field.

X'B1A0' QSN_FCW_MOD10 Self Check Modulus 10 entry field.

Valid Field Control Word and Device Capability Combinations

The following table explains the field control words (FCW) available for certain capabilities of the device.
If one of the FCW values listed is given to QsnSetFld and the corresponding device capability is not
supported, a CPFA306 will result. QsnSetFld, however, does not detect all invalid FCW combinations. See

the Field control words (FCW) parameter for more information.

See the QsnQry5250 API to determine the capablilities supported by the current device.

Table 8. Valid Field Control Word and Device Capability Combinations

FCW Values

Display
capablility

required for
FCW to be

valid

QSN_FCW_CONT_FIRST,
QSN_FCW_CONT_MIDDLE,
QSN_FCW_CONT_LAST,
QSN_FCW_CP,
QSN_FCW_HL,
QSN_FCW_PDS

ENPTUI

QSN_FCW_DBCS_ONLY,
QSN_FCW_DBCS_EITHER,
QSN_FCW_DBCS_OPEN,
QSN_FCW_DBCS_OPEN_C0

DBCS

QSN_FCW_DBCS_PURE Pure DBCS

QSN_FCW_TRANSPARENT Transparent
Data

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA306 E Command not supported by current device.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA308 E Attempt to write data past end of display.

CPFA30A E Field length &1 not valid.

CPFA30B E Invalid starting address for field.

CPFA30C E Maximum allowable number of fields exceeded.

CPFA30D E Invalid screen attribute.

CPFA30E E Invalid field format word.

CPFA314 E Memory allocation error.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA332 E Incorrect field control word.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33D E Invalid screen attribute.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Set Field with CCSID (QsnSetFldCC) API

 Omissible Parameter Group:

1 Field ID Input Binary(4)
2 Field length Input Binary(4)
3 Display Positions Input Binary(4)
4 CCSID Input Binary(4)
5 Row Input Binary(4)
6 Column Input Binary(4)
7 Field format word (FFW) Input Char(2)
8 Field control words (FCW) Input Char(*)
9 Number of field control words Input Binary(4)
10 Monochrome attribute Input Char(1)
11 Color attribute Input Char(1)
12 Command buffer handle Input Binary(4)
13 Low-level environment handle Input Binary(4)
14 Error code I/O Char(*)

 Returned Value:

 Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Set Field with CCSID (QsnSetFldCC) API defines a CCSID-capable input field on the screen at the
given row and column. The following occurs when this command is issued to the control unit as a direct
operation or when the buffer containing the command is written out:

Any outstanding AID requests are cleared.●

The keyboard is locked.●

If there is an entry in the format table whose starting address is equal to the address for this field,
then that entry is modified. The FFW of the existing entry is replaced by the new FFW and the
previous screen starting attribute is overlaid with the new screen starting attribute. The ending
screen attribute is not rewritten. All FCWs and the length parameter are ignored. See the 5250 data
stream documentation for details.

●

If no entry can be found in the table for the field being defined, a new entry will be added to the
end of the table. However, the address must be greater than the ending address of the field currently
defined last in the format table or an error will occur. If the new entry is valid, it will contain the
field's FFW, the optional FCWs, and the field's starting and ending address. An error will occur if
an attempt is made to define too many fields on the screen (see the 5250 data stream documentation

●

for details).

The display address after this operation will be the starting field address minus 1 if row and column are
specified as valid positive integers or if this is the first field specified within the current WTD command.
Otherwise, the display address will be one position past the ending screen attribute.

This command corresponds indirectly to the 5250 Write to Display (WTD) command with a Set Buffer
Address order and a Start of Field order if the row and column parameters are specified. Special FCWs
inserted into the data stream by this API to make the field CCSID-capable. (For an indirect operation, a
WTD is placed in the command buffer only if one does not already exist in that buffer.)

Restrictions

The same restrictions apply as for the Write Data with CCSID (QsnWrtDtaCC) API, with the exception that
the trailing field attribute can be written past the end of the screen. (It will be suppressed by the control
unit.)

This command is not supported by all control units. A CPFA306 error occurs if an attempt is made to issue
this command to a control unit that does not support it.

At this time, the CCSID given must have a unicode encoding scheme, otherwise a CPF3BDE will be
signaled.

Authorities and Locks

None

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID to be associated with this field. The value specified can be any nonzero integer value.
For APIs that accept a field ID parameter, this value can be subsequently used instead of the row
and column parameter to specify a screen address. If the given ID is already defined, this operation
will redefine that field ID with the values specified. To remove a field ID definition, use the
QsnDltFldId API.

If a previously defined field ID is supplied and some or all of the parameters are omitted, the field
is defined using the current field definition values for those omitted parameters.

If this field is omitted or specified with a value of zero, then no field ID is associated with this field
description.

Field length

INPUT; BINARY(4)

The number of bytes that this field being defined contains (a single character might be composed of
multiple bytes). If no field ID is specified, the length must be a positive integer value greater than 1
for signed numeric fields and greater than 0 for all other field types. The entire field must fit on the

display. If a field ID is specified with a nonzero value, the length may be 0, in which case a field
will not be defined on the screen; however, this will associate the field definition with the specified
field ID.

Display positions

INPUT; BINARY(4)

The number of positions on the display allowed for this field being defined (a single character may
require more than one position on the display).

If this parameter is not specified, the default is the number given by the field length parameter.

CCSID

INPUT; BINARY(4)

The CCSID of the data that can be entered into this field. If the CCSID given is not supported by
the device, a CPF3BDE is signaled.

If this parameter is omitted (zero is passed in as the CCSID), and the field ID parameter was
omitted or previously undefined, the job CCSID is used. If the job CCSID is 65535, the default job
CCSID is used instead.

Row

INPUT; BINARY(4)

The row at which to define the field. The row parameter must refer to a row no greater than the
current screen or window mode height (if window mode is enabled). The actual screen row used for
a screen I/O operation is calculated using the formula base+offset=actual. The base is the row
location of the top window border (0 for full screen) if offset is positive, or the row location of the
bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is the
row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

The starting field address will be the row and column locations given if both parameters are
specified. Otherwise, it will be the current display address plus 1. If this is the case and the
command is a direct operation, or the buffer specified does not contain a preceding output operation
that sets the display address, the current display address is set to row 1, column 1, prior to writing
the initial screen attribute and the field definition. The ending field address for this field is the
starting field address plus the number of character positions for the field.

If a field ID is supplied along with a row and column, the row and column parameters will be
stored as specified. These parameters will be used as relative or actual screen positions on a
subsequent operation, depending upon the window mode setting for the environment supplied with
that operation.

If a previously undefined field ID is supplied with this operation, the row and column parameters
must be specified. Also, the row and column parameters must both be specified or omitted; one
cannot be specified if the other is omitted. A CPFA307 error occurs if an incorrect cursor position
is specified. On some devices, row and column can both be specified as 1, which will cause the
field to be defined at row 1, column 1, with a screen attribute of normal (X'20'). If this is the case,
then any initial screen attribute parameters specified are ignored. This is only supported by certain
devices. Whether or not this is supported can be determined by the Query 5250 (QsnQry5250) API.

Column

INPUT; BINARY(4)

The column at which to write the data. The column parameter must refer to a column no greater
than the current screen or window mode width (if window mode is on). The actual screen column

used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
column location of the left window border (0 for full screen) if offset is positive, or the column
location of the right window border (screen width plus 1 for full screen) if offset is negative. The
offset is the column parameter value specified, and actual is the actual screen column to be used. A
CPFA307 error occurs if an incorrect column value is specified.

Field format word (FFW)

INPUT; CHAR(2)

The field format word is a 2-byte value that controls the type of the field being defined. QsnSetFld
Table 6 shows the field types, and the corresponding bit to be set for each type. To omit this
parameter, specify X'00' in both characters of the parameter. You must specify this parameter to
define an input field, and it is required if a field control word is specified.

Field control words (FCW)

INPUT; CHAR(*)

An array of 2-byte field control words. The field control words are 2-byte values that request
certain functions to be performed. Table 10 shows the valid field control word values, their
function, and mnemonics for those values.

Note: The 5250 CCSID-based I/O specific FCWs are not allowed, because they are implicitly
added as part of the QsnSetFldCC operation. If the CCSID-based I/O CCSID or Maximum data
length FCWs are given here, a CPFA332 will result. FCWs will not be exhaustivly checked to see
if they are formatted correctly or to see if the function requested is valid for the current device.
However, some FCWs are checked against the support provided by the device and a CPFA306
signaled if an incompatibility is found. Table 11 shows the display capablility and FCW
combinations that are valid.

Errors not found here may be detected and reported when the FCW is required during subsequent
command and keystroke processing. See the 5250 data stream documentation for further details
about the meaning and use of these functions.

Number of field control words

INPUT; BINARY(4)

The number of control words in the field control word array. Omitting this parameter or specifying
it with a value of 0 indicates that no field control words are specified with the FCW parameter. If
this parameter is specified with a nonzero value, the FCW parameter is required; if the FCW
parameter is omitted, a CPFA31E error is issued.

Monochrome attribute

INPUT; CHAR(1)

The initial screen attribute for monochrome displays. A screen attribute is required for defining a
field on the screen; if this parameter is omitted and monochrome attributes are to be used, X'20' is
assumed. The initial screen attribute is written one position to the left of the starting field address.
The ending screen attribute (X'20') is supplied by the controller and written at the end-of-field
address plus 1.

The monochrome attribute and color attribute parameters consist of 1 byte that will be used as the
screen attribute for a monochrome or a color display, respectively. One of these parameters will be
selected based on the underlying display type, and the other will be discarded. See Screen Attribute
Characters for a description of the screen attribute values.

Color attribute

INPUT; CHAR(1)

The initial screen attribute for color displays. A screen attribute is required for defining a field on
the screen; if this parameter is omitted and color attributes are to be used, X'20' is assumed. See
Screen Attribute Characters for a description of the screen attribute values.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the starting field address will be the supplied location.
Otherwise, this is an indirect operation and the command is stored in the command buffer without
an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Return Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Field Control Word

The following table explains the valid field control words (FCW) for use with the QsnSetFldCC API.

Field Control Words

FCW Value Mnemonic Description

X'80nn' QSN_FCW_RESEQ Entry field resequencing (used in the Read Input
Fields (QsnReadInp) and Read Modified Fields
(QsnReadMDT) APIs, and so forth). The nn specifies
the next entry field in the sequence (nn can be X'00' to
X'80'). See Resequencing.

X'8101' QSN_FCW_MSR Magnetic stripe reader entry field.

X'8102' QSN_FCW_SLP Selector light pen entry field.

X'8103' QSN_FCW_MSR_SLP Magnetic stripe reader and selector light pen entry
field.

X'8106' QSN_FCW_SLP_SA Selector light pen and selectable attention entry field.

X'8501' QSN_FCW_FET Forward edge trigger entry field. This provides the
same function as Auto Enter specified in the FFW,
except a unique AID is returned to the host when the
field is exited. The state on the Auto Enter flag in the
FFW is ignored.

X'8601' QSN_FCW_CONT_FIRST Continued entry field first segment.

X'8602' QSN_FCW_CONT_LAST Continued entry field last segment.

X'8603' QSN_FCW_CONT_MIDDLE Continued entry field middle segment.

X'88nn' QSN_FCW_CP Cursor progression entry field.

X'89nn' QSN_FCW_HL Highlighted entry field.

X'8Ann' QSN_FCW_PDS Pointer device selection entry field.

X'B140' QSN_FCW_MOD11 Self Check Modulus 11 entry field.

X'B1A0' QSN_FCW_MOD10 Self Check Modulus 10 entry field.

Valid Field Control Word and Device Capability Combinations

The following table explains the field control words (FCW) available for certain capabilities of the device.
If one of the FCW values listed is given to QsnSetFldCC and the corresponding device capability is not
supported, a CPFA306 will result. QsnSetFldCC, however, does not detect all invalid FCW combinations.
See the Field control words (FCW) parameter for more information.

See the QsnQry5250 API to determine the capablilities supported by the current device.

Valid Field Control Word and Device Capability Combinations

FCW Values Display capablility required for
FCW to be valid

QSN_FCW_CONT_FIRST,
QSN_FCW_CONT_MIDDLE,
QSN_FCW_CONT_LAST,
QSN_FCW_CP,
QSN_FCW_HL,
QSN_FCW_PDS

ENPTUI

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3BDE E CCSID &1 not supported by API.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA306 E Command not supported by current device.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA308 E Attempt to write data past end of display.

CPFA30A E Field length &1 not valid.

CPFA30B E Invalid starting address for field.

CPFA30C E Maximum allowable number of fields exceeded.

CPFA30D E Invalid screen attribute.

CPFA30E E Invalid field format word.

CPFA314 E Memory allocation error.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA332 E Incorrect field control word.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33D E Invalid screen attribute.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V5R2

Top | Dynamic Screen Manager APIs | APIs by category

Set Output Address (QsnSetOutAdr) API

 Omissible Parameter Group:

1 Field ID Input Binary(4)
2 Row Input Binary(4)
3 Column Input Binary(4)
4 Command buffer handle Input Binary(4)
5 Low-level environment

handle
Input Binary(4)

6 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Set Output Address (QsnSetOutAdr) API sets the current display address. Subsequent output
operations that do not reset the display address use this address. If multiple Set Output Address
(QsnSetOutAdr) operations are applied to the same command buffer, only the last QsnSetOutAdr operation
is in effect.

This command corresponds indirectly to the 5250 Write to Display command (WTD) with a Set Buffer
Address order. (For an indirect operation, a WTD is placed in the command buffer only if one does not
already exist in that buffer.)

Authorities and Locks

None

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address. Either the field ID or the row and
column parameters must be specified.

Row

INPUT; BINARY(4)

The row at which to set the display address. This parameter is required if the field ID is not
specified.

Column

INPUT; BINARY(4)

The column at which to set the display address. This parameter is required if the field ID is not
specified.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the display address is set to the specified location.
Otherwise, this is an indirect operation and the command is stored in the command buffer without
an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33C E Undefined field ID &1.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Write Data (QsnWrtDta) API

 Required Parameter Group:

1 Data Input Char(*)
2 Data length Input Binary(4)

 Omissible Parameter Group:

3 Field ID Input Binary(4)
4 Row Input Binary(4)
5 Column Input Binary(4)
6 Starting monochrome

attribute
Input Char(1)

7 Ending monochrome attribute Input Char(1)
8 Starting color attribute Input Char(1)
9 Ending color attribute Input Char(1)
10 Command buffer handle Input Binary(4)
11 Low-level environment

handle
Input Binary(4)

12 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Write Data (QsnWrtDta) API writes data to the display at a given row and column using standard
attributes. If a command buffer is specified that does not contain a previous or current WTD command, one
is implicitly added to the buffer using the control characters QSN_CC1_NULL and
QSN_CC2_UNLOCKBD. The display address after this operation will be one position past the last data
byte written to the screen (including the ending screen attribute, if any).

This command corresponds indirectly to the 5250 Write to Display command (WTD) with a Set Buffer
Address order if the row and column are specified. (For an indirect operation, a WTD is placed in the
command buffer only if one does not already exist in that buffer.)

Restrictions

If window mode is not set and the data (including attributes) exceeds the length of a row, the data will be
wrapped to the next line. If bottom-to-top wrapping is not supported, a CPFA308 error occurs when the
data (including attributes) exceeds the last row on the screen. If window mode is set, data that exceeds the
width of the window will not be truncated or wrapped within the window, but will wrap across screen rows.

If the field ID given was created or last redefined by the QsnSetFldCC API, a CPFA346 will be signaled.
This API should only be used to write data to fields that are not CCSID-capable. QsnWrtDta is only able to
enforce this for fields that have an associated field ID, however.

Authorities and Locks

None

Required Parameter Group

Data

INPUT; CHAR(*)

The data to be written to the screen. If the data being passed is graphic DBCS, the data must be
enclosed by extended ideographic attributes. (Use the Write Data (QsnWrtDta) API to specify the
data stream Write Extended Attribute order. See the 5250 Functions Reference, SA21-9247, for
further details.)

Data length

INPUT; BINARY(4)

The number of characters contained in the data parameter.

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address. If neither the field ID nor the row
and column parameters are specified, the current display address is used.

Row

INPUT; BINARY(4)

The row at which to write the data. The row parameter must refer to a row no greater than the
current screen or window mode height (if window mode is enabled). The actual screen row used for
a screen I/O operation is calculated using the formula base+offset=actual. The base is the row
location of the top window border (0 for full screen) if offset is positive, or the row location of the
bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is the
row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error

occurs if an incorrect row value is specified.

If both the field ID and the row and column parameters are omitted, the data is written starting at
the current display address. If this is the case and the command is a direct operation, or the buffer
specified does not contain a preceding output operation that sets the display address, the current
display address is set to row 1, column 1 prior to writing the data.

Row and column must both be specified or omitted; one cannot be specified if the other is omitted.

Column

INPUT; BINARY(4)

The column at which to write the data. The column parameter must refer to a column no greater
than the current screen or window mode width (if window mode is on). The actual screen column
used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
column location of the left window border (0 for full screen) if offset is positive, or the column
location of the center window border (screen width plus 1 for full screen) if offset is negative. The
offset is the column parameter value specified, and actual is the actual screen column to be used. A
CPFA307 error occurs if an incorrect column value is specified.

Starting monochrome attribute

INPUT; CHAR(1)

The initial screen attribute for monochrome displays. If this parameter is omitted and monochrome
attributes are to be used, no initial attribute is written to the display for the data.

The monochrome and color attributes parameters are the initial and ending screen attributes: an
initial and ending screen attribute to be used for a monochrome or a color display, respectively.
One of these parameters will be selected based on the underlying display type, and the other will be
discarded. Any of the attributes can be specified as a special value, X'00', indicating that no screen
attribute should be written to the display. If the initial screen attribute is specified as an actual
attribute, the data column, if specified, must be greater than or equal to 2. The initial screen
attribute, if not X'00', will be written to the screen at the column previous to the first data character
if row and column are specified, otherwise to the current display address. The ending screen
attribute, if not X'00', will be written at the column directly after the last data character. See Screen
Attribute Characters for a description of the screen attribute values.

Ending monochrome attribute

INPUT; CHAR(1)

The ending screen attribute for monochrome displays. If this parameter is omitted, and
monochrome attributes are to be used, no ending attribute is written to the display for the data.

Starting color attribute

INPUT; CHAR(1)

The initial screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no initial attribute is written to the display for the data.

Ending color attribute

INPUT; CHAR(1)

The ending screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no ending attribute is written to the display for the data.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the data is written to the screen at the specified location.
Otherwise, this is an indirect operation and the command is stored in the command buffer without
an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA308 E Attempt to write data past end of display.

CPFA30D E Invalid screen attribute.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33C E Undefined field ID &1.

CPFA33F E Error occurred during data conversion.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA346 E Operation for field ID &1 not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Write Data with CCSID (QsnWrtDtaCC) API

 Required Parameter Group:

1 Data Input Char(*)
2 Data length Input Binary(4)

 Omissible Parameter Group:

3 Field ID Input Binary(4)
4 CCSID Input Binary(4)
5 Row Input Binary(4)
6 Column Input Binary(4)
7 Starting monochrome attribute Input Char(1)
8 Ending monochrome attribute Input Char(1)
9 Starting color attribute Input Char(1)
10 Ending color attribute Input Char(1)
11 Command buffer handle Input Binary(4)
12 Low-level environment handle Input Binary(4)
13 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Write Data with CCSID (QsnWrtDtaCC) API writes data to the display at a given row and column
using standard attributes. If a command buffer is specified that does not contain a previous or current WTD
command, one is implicitly added to the buffer using the control characters QSN_CC1_NULL and
QSN_CC2_UNLOCKBD. The display address after this operation will be one position past the last data
character position written to the screen (including the ending screen attribute, if any).

This command corresponds indirectly to the 5250 Write to Display command (WTD) with a Set Buffer
Address order and Structured Field order if the row and column are specified. (For an indirect operation, a
WTD is placed in the command buffer only if one does not already exist in that buffer.)

Note: CDRA conversion is not performed upon this data.

Restrictions

If window mode is not set and the data (including attributes) exceeds the length of a row, the data will be
wrapped to the next line. If bottom-to-top wrapping is not supported, a CPFA308 error occurs when the
data (including attributes) exceeds the last row on the screen. If window mode is set, data that exceeds the
width of the window will not be truncated or wrapped within the window, but will wrap across screen rows.

If the field ID given was created or last redefined by the QsnSetFld API, a CPFA346 will be signaled. This
API should only be used to write data to CCSID-capable fields. QsnWrtDtaCC is only able to enforce this
for fields that have an associated field ID, however.

QsnWrtDtaCC does not validate the data passed to it. If the data is invalid for some reason, an exception
may occur if the control unit encounters improperly coded CCSID-based data. QsnWrtDta is not able to
truncate data if it does not fit within the bounds of a field or low level environment window area as
QsnWrtDta does for EBCDIC data.

This command is not supported by all control units. A CPFA306 error occurs if an attempt is made to issue
this command to a control unit that does not support it.

At this time, the CCSID given must have a unicode encoding scheme, otherwise a CPF3BDE will be
signaled.

Authorities and Locks

None.

Required Parameter Group

Data

INPUT; CHAR(*)

The data in the CCSID given by the CCSID parameter to write to the screen.

Data length

INPUT; BINARY(4)

The number of bytes contained in the data parameter.

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address. If neither the field ID nor the row
and column parameters are specified, the current display address is used. If this parameter is
specified with a nonzero value, the CCSID parameter is also ignored, and the data written to the
screen is assumed have the same CCSID as the field ID.

CCSID

INPUT; BINARY(4)

The CCSID of the data to be written. If the CCSID given is not supported by the device, a
CPF3BDE is signaled.

If this parameter is omitted (zero is passed in as the CCSID), and the field ID parameter was
omitted or previously undefined, the job CCSID is used. If the job CCSID is 65535, the default job
CCSID is used instead.

Row

INPUT; BINARY(4)

The row at which to write the data. The row parameter must refer to a row no greater than the
current screen or window mode height (if window mode is enabled). The actual screen row used for
a screen I/O operation is calculated using the formula base+offset=actual. The base is the row
location of the top window border (0 for full screen) if offset is positive, or the row location of the
bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is the
row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

If both the field ID and the row and column parameters are omitted, the data is written starting at
the current display address. If this is the case and the command is a direct operation, or the buffer
specified does not contain a preceding output operation that sets the display address, the current
display address is set to row 1, column 1 prior to writing the data.

Row and column must both be specified or omitted; one cannot be specified if the other is omitted.

Column

INPUT; BINARY(4)

The column at which to write the data. The column parameter must refer to a column no greater
than the current screen or window mode width (if window mode is on). The actual screen column
used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
column location of the left window border (0 for full screen) if offset is positive, or the column
location of the right window border (screen width plus 1 for full screen) if offset is negative. The
offset is the column parameter value specified, and actual is the actual screen column to be used. A
CPFA307 error occurs if an incorrect column value is specified.

Starting monochrome attribute

INPUT; CHAR(1)

The initial screen attribute for monochrome displays. If this parameter is omitted and monochrome
attributes are to be used, no initial attribute is written to the display for the data.

The monochrome and color attributes parameters are the initial and ending screen attributes: an
initial and ending screen attribute to be used for a monochrome or a color display, respectively.
One of these parameters will be selected based on the underlying display type, and the other will be
discarded. Any of the attributes can be specified as a special value, X'00', indicating that no screen
attribute should be written to the display. If the initial screen attribute is specified as an actual
attribute, the data column, if specified, must be greater than or equal to 2. The initial screen
attribute, if not X'00', will be written to the screen at the column previous to the first data character
if row and column are specified, otherwise to the current display address. The ending screen
attribute, if not X'00', will be written at the column directly after the last data character. See Screen
Attribute Characters for a description of the screen attribute values.

Ending monochrome attribute

INPUT; CHAR(1)

The ending screen attribute for monochrome displays. If this parameter is omitted, and
monochrome attributes are to be used, no ending attribute is written to the display for the data.

Starting color attribute

INPUT; CHAR(1)

The initial screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no initial attribute is written to the display for the data.

Ending color attribute

INPUT; CHAR(1)

The ending screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no ending attribute is written to the display for the data.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the data is written to the screen at the specified location.
Otherwise, this is an indirect operation and the command is stored in the command buffer without
an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3BDE E CCSID &1 not supported by API.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA308 E Attempt to write data past end of display.

CPFA30D E Invalid screen attribute.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33C E Undefined field ID &1.

CPFA33F E Error occurred during data conversion.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA346 E Operation for field ID &1 not valid.

Introduced: V5R2

Top | Dynamic Screen Manager APIs | APIs by category

Write Structured Field Major (QsnWrtSFMaj)
API

 Required Parameter Group:

1 Major structure Input Char(*)
2 Major structure length Input Binary(4)

 Omissible Parameter Group:

3 Field ID Input Binary(4)
4 Row Input Binary(4)
5 Column Input Binary(4)
6 Command buffer handle Input Binary(4)
7 Low-level environment

handle
Input Binary(4)

8 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Write Structured Field Major (QsnWrtSFMaj) API writes the major structure of a structured field,
setting the display address to the given row and column. If a command buffer is specified that does not
contain a previous or current WTD operation, one is implicitly added to the buffer using the control
characters QSN_CC1_NULL and QSN_CC2_UNLOCKBD.

Use this API in conjunction with the Write Structured Field Minor (QsnWrtSFMin) API to construct a
structured field operation. For indirect operations, the length contained in the minor structure data
parameter is added to the stored length for this major structure for every indirect QsnWrtSFMin operation
encountered directly after this operation. In this way, you need only calculate the length of each individual
structure for constructing a structured field operation. See the 5494 Remote Control Unit Functions
Reference, SC30-3533, for more information regarding structured fields.

This command corresponds indirectly to the 5250 Write to Display (WTD) command with a Set Buffer
Address and a Write to Display Structured Field order if the row and column are specified. (For an indirect
operation, a WTD is placed in the command buffer only if one does not already exist in the buffer.)

Authorities and Locks

None

Restrictions

If window mode is not set and the data (including attributes) exceeds the length of a row, the data will be
wrapped to the next line. If bottom-to-top wrapping is not supported, a CPFA308 error occurs when the
data (including attributes) exceeds the last row on the screen.

Not all structured field types are supported by all devices. A negative response code is issued if an attempt
is made to write a type to a device that does not support it.

Required Parameter Group

Major structure

INPUT; CHAR(*)

The major structure to be written to the screen. The data must consist of the entire major structure
as documented in the 5494 Remote Control Unit Functions Reference, SC30-3533.

Major structure length

INPUT; BINARY(4)

The length of the major structure parameter. This is the length only and does not include any
associated minor structure lengths.

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address. If neither the field ID nor the row
and column parameters are specified, the current display address is used.

Row

INPUT; BINARY(4)

The row at which to write the structure. The row parameter must refer to a row no greater than the
current screen or window mode height (if window mode is enabled). The actual screen row used for
a screen I/O operation is calculated using the formula base+offset=actual. The base is the row
location of the top window border (0 for full screen) if offset is positive, or the row location of the
bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is the
row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

If both the field ID and the row and column parameters are omitted, the data is written starting at

the current display address. If this is the case and the command is a direct operation, or the buffer
specified does not contain a preceding output operation that sets the display address, the current
display address is set to row 1, column 1 prior to writing the data.

Row and column must both be specified or omitted; one cannot be specified if the other is omitted.

Column

INPUT; BINARY(4)

The column at which to write the data. The column parameter must refer to a column no greater
than the current screen or window mode width (if window mode is on). The actual screen column
used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
column location of the left window border (0 for full screen) if offset is positive, or the column
location of the center window border (screen width plus 1 for full screen) if offset is negative. The
offset is the column parameter value specified, and actual is the actual screen column to be used. A
CPFA307 error occurs if an incorrect column value is specified.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the data is written to the screen at the specified location.
Otherwise, this is an indirect operation and the command is stored in the command buffer without
an I/O operation taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA308 E Attempt to write data past end of display.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33C E Undefined field ID &1.

CPFA341 E Length &2 of structure incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Write Structured Field Minor (QsnWrtSFMin)
API

 Required Parameter Group:

1 Minor structure Input Char(*)
2 Minor structure length Input Binary(4)
3 Command buffer handle Input Binary(4)

 Omissible Parameter Group:

4 Low-level environment handle Input Binary(4)
5 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Write Structured Field Minor (QsnWrtSFMin) API writes the minor structure of a structured field,
incrementing the length field in the corresponding major structure by the length of this minor structure. The
QsnWrtSFMin API must directly follow a QsnWrtSFMaj or QsnWrtSFMin operation to the given
command buffer.

Use this API in conjunction with the Write Structured Field Major (QsnWrtSFMaj) API to construct a
structured field operation. For indirect operations, the length contained in the minor structure data
parameter is added to the stored length for this major structure for every indirect QsnWrtSFMin operation
encountered directly after this operation. In this way, you need only calculate the length of each individual
structure for constructing a structured field operation. See the 5494 Remote Control Unit Functions
Reference, SC30-3533, for more information regarding structured fields.

Authorities and Locks

None.

Restrictions

Not all structured field types are supported by all devices. A negative response code is issued if an attempt
is made to write a type to a device that does not support it.

Required Parameter Group

Minor structure

INPUT; CHAR(*)

The minor structure to be written to the screen. The data must consist of the entire minor structure
as documented in the 5494 Remote Control Unit Functions Reference, SC30-3533.

Minor structure length

INPUT; BINARY(4)

The length of the minor structure.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. The last operation stored in this
command buffer must have been either a QsnWrtSFMaj or QsnWrtSFMin operation.

Omissible Parameter Group

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA308 E Attempt to write data past end of display.

CPFA30D E Invalid screen attribute.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33B E Incorrect operation before QsnWrtSFMin.

CPFA33C E Undefined field ID &1.

CPFA341 E Length &2 of structure incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Write to Display (QsnWTD) API

 Required Parameter Group:

1 Control character byte 1 Input Char(1)
2 Control character byte 2 Input Char(1)

 Omissible Parameter Group:

3 Command buffer handle Input Binary(4)
4 Low-level environment

handle
Input Binary(4)

5 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Write to Display (QsnWTD) API issues a Write to Display (WTD) command. A WTD command is
used to indicate the beginning of a series of output operations. For most of the DSM screen output
operations, the control unit requires that a WTD be issued prior to the actual operation itself, in the same
I/O operation. Multiple output operations can be sent with a given WTD command by using a command
buffer. For direct operations, such output APIs, implicitly issue a WTD command. For indirect operations, a
WTD is added to the buffer if one does not exist already. Each time a WTD command is received, the
control unit implicitly sets the display address to row 1, column 1, prior to issuing the operation.

For example, if two direct QsnWrtDta operations are performed in succession and the second operation
does not specify the row and column parameters, the data is written to row 1, column 1, and not the display
address following the first QsnWrtDta operation. If two indirect QsnWrtDta operations are issued to an
empty command buffer, the first QsnWrtDta operation causes a WTD command to be added to the buffer,
but the second QsnWrtDta operation can use the existing command. In this case, if no row and column are
specified, the display address used for the second operation will be the one after the first operation is issued.
If an intervening operation that does not require a WTD, such as a QsnClrScr or a QsnSetErr, is added to
the command buffer between two operations that do require a WTD command, a second WTD command is
added to the buffer for the second operation.

The screen output APIs that require a WTD command and that correspond to the WTD command orders
(as described in 5250 Functions Reference, SA21-9247) are as follows:

Set Output Address (QsnSetOutAdr)

Write Data (QsnWrtDta)

Write Transparent Data (QsnWrtTDta)

Pad for N Positions (QsnWrtPad)

Pad between Two Screen Addresses (QsnWrtPadAdr)

Set Field (QsnSetFld)

Set Cursor Address (QsnSetCsrAdr)

Insert Cursor (QsnInsCsr)

The cursor position is not affected if the keyboard is unlocked when command processing begins and is not
locked during command processing, or if a parameter error is detected. If specified by control character
byte 1, the cursor will be moved to the insert cursor or default location when the keyboard is unlocked.

This operation corresponds directly to the 5250 Write to Display command. If this is an indirect operation,
this operation will issue a new WTD command to the command buffer.

Authorities and Locks

None

Required Parameter Group

Control character byte 1

INPUT; CHAR(1)

The operation for the display to perform prior to processing the Write to Display command. See
Control Characters for a description of the control character values.

Control character byte 2

INPUT; CHAR(1)

The operation for the display to perform after the Write to Display command has been processed.
See Control Characters for a description of the control character values.

Omissible Parameter Group

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is omitted or
specified as 0, this is a direct operation and the command is sent to the display. Otherwise, this is an
indirect operation and the command is stored in the command buffer without an I/O operation
taking place.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA303 E Error occurred for screen I/O operation.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA31C E Incorrect value for control character byte &1.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA334 E Low level environment handle incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Write Transparent Data (QsnWrtTDta) API

 Required Parameter Group:

1 Data Input Char(*)
2 Data length Input Binary(4)

 Omissible Parameter Group:

3 Field ID Input Binary(4)
4 Row Input Binary(4)
5 Column Input Binary(4)
6 Starting monochrome

attribute
Input Char(1)

7 Ending monochrome attribute Input Char(1)
8 Starting color attribute Input Char(1)
9 Ending color attribute Input Char(1)
10 Command buffer handle Input Binary(4)
11 Low-level environment

handle
Input Binary(4)

12 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Write Transparent Data (QsnWrtTDta) API writes n bytes of transparent data to the display.

This command allows transmission of data with any value (X'00' to X'FF') to the display screen. If the data
destination is a 5250 display, and if the data X'04', X'11', or X'FF' is transmitted, unpredictable results
occur. Note that if DBCS characters are included in the data, the host system does not perform IGC
extension character processing. However, SI/SO characters will be processed correctly.

The display address after this operation is one position past the last data byte written to the screen.

This command corresponds indirectly to the 5250 Write to Display (WTD) command with a Set Buffer
Address and a Transparent Data order. (For an indirect operation, a WTD is placed in the command buffer
only if one does not already exist in that buffer.)

Authorities and Locks

None

Restrictions

This command is not supported by all control units. A CPFA306 error occurs if an attempt is made to issue
this command to a control unit that does not support it. Additional restrictions apply as for the Write Data
(QsnWrtDta) API.

If the field ID given was created or last redefined by the QsnSetFldCC API, a CPFA346 will be signaled.
This API should only be used to write data to fields that are not CCSID-capable. QsnWrtTDta is only able
to enforce this for fields that have an associated field ID, however.

Required Parameter Group

Data

INPUT; CHAR(*)

The data to be written to the screen.

Data length

INPUT; BINARY(4)

The number of bytes of data to be written.

Omissible Parameter Group

Field ID

INPUT; BINARY(4)

The field ID indicating the field at which to set the display address. If this parameter is specified
with a nonzero value, the row and column parameters are ignored and the row and column values
corresponding to the field ID are used to set the display address. If neither the field ID nor the row
and column parameters are specified, the current display address is used.

Row

INPUT; BINARY(4)

The row at which to write the data. The row parameter must refer to a row no greater than the
current screen or window mode height (if window mode is enabled). The actual screen row used for
a screen I/O operation is calculated using the formula base+offset=actual. The base is the row
location of the top window border (0 for full screen) if offset is positive, or the row location of the
bottom window border (screen height plus 1 for full screen) if offset is negative. The offset is the
row parameter value specified, and actual is the actual screen row to be used. A CPFA307 error
occurs if an incorrect row value is specified.

If both the field ID and the row and column parameters are omitted, the data is written starting at
the current display address. If this is the case and the command is a direct operation, or the buffer

specified does not contain a preceding output operation that sets the display address, the current
display address is set to row 1, column 1, prior to writing the data. Row and column must both be
specified or omitted; one cannot be specified if the other is omitted.

Column

INPUT; BINARY(4)

The column at which to write the data. The column parameter must refer to a column no greater
than the current screen or window mode width (if window mode is on). The actual screen column
used for a screen I/O operation is calculated using the formula base+offset=actual. The base is the
column location of the left window border (0 for full screen) if offset is positive, or the column
location of the center window border (screen width plus 1 for full screen) if offset is negative. The
offset is the column parameter value specified, and actual is the actual screen column to be used. A
CPFA307 error occurs if an incorrect column value is specified.

Starting monochrome attribute

INPUT; CHAR(1)

The initial screen attribute for monochrome displays. If this parameter is omitted and monochrome
attributes are to be used, no initial attribute is written to the display for the data. See Screen
Attribute Characters for a description of the screen attribute values. The attribute parameters are
specified with the same effect as for the QsnWrtDta operation.

Ending monochrome attribute

INPUT; CHAR(1)

The ending screen attribute for monochrome displays. If this parameter is omitted and monochrome
attributes are to be used, no ending attribute is written to the display for the data.

Starting color attribute

INPUT; CHAR(1)

The initial screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no initial attribute is written to the display for the data.

Ending color attribute

INPUT; CHAR(1)

The ending screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no ending attribute is written to the display for the data.

Command buffer handle

INPUT; BINARY(4)

A handle for the command buffer in which to store the command. If this parameter is specified, this
is an indirect operation; the command is stored in the command buffer without an I/O operation
taking place. If this parameter is omitted or specified with a zero value, this is a direct operation;
the data is written to the screen at the specified location.

Low-level environment handle

INPUT; BINARY(4)

The low-level environment that the operation applies to. If this parameter is omitted or given with a
value of zero, the default low-level environment is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA301 E Command buffer is full.

CPFA304 E Data-stream error &1 reported for screen I/O operation.

CPFA305 E Cannot add operation to command buffer.

CPFA306 E Command not supported by current device.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA31E E Required parameter &1 omitted.

CPFA31D E Attempt to write outside of window area.

CPFA31E E Required parameter &1 omitted.

CPFA331 E Buffer handle incorrect.

CPFA333 E Parameter &1 not positive integer value.

CPFA334 E Low level environment handle incorrect.

CPFA335 E Screen address parameter error.

CPFA33C E Undefined field ID &1.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA346 E Operation for field ID &1 not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Low-Level Services Examples

Low-Level Services Example--1

The sample ILE C program in Figure 1 shows how to use the Write Data (QsnWrtDta), Get AID (QsnGetAID), and Roll
Up (QsnRollUp) APIs. The program writes a line at the bottom of the screen and if F3 is not pressed, rolls the screen up
and writes a new line at the bottom of the screen. The roll area for the QsnRollUp API is defined to be from row 1 to 24
and one line is rolled up. If F3 is pressed, the program ends. A partial screen display is shown in Figure 2.

Figure 1. Program to Roll Text on Screen

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "qsnapi.h"

int main(void)
{
 long i;
 char s[100];

 QsnClrScr('0', 0, 0, NULL);
 for (i = 1; ; ++i) {
 sprintf(s, "Line %2.d. Press Enter to roll, F3 to quit.", i);
 QsnWrtDta(s, strlen(s), 0, 24, 2, QSN_SA_NORM, QSN_SA_NORM,
 QSN_SA_NORM, QSN_SA_NORM, 0, 0, NULL);
 if (QsnGetAID(NULL, 0, NULL) == QSN_F3)
 break;
 QsnRollUp(1, 1, 24, 0, 0, NULL);
 }
}

Figure 2. Screen Output from Roll Text Program

+--+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
| Line 1. Press Enter to roll, F3 to quit.
|
| Line 2. Press Enter to roll, F3 to quit.
|
| Line 3. Press Enter to roll, F3 to quit.
|
| Line 4. Press Enter to roll, F3 to quit.
|
| Line 5. Press Enter to roll, F3 to quit.
|
| Line 6. Press Enter to roll, F3 to quit.
|
| Line 7. Press Enter to roll, F3 to quit.
|
| Line 8. Press Enter to roll, F3 to quit.
|
|
|
+--+

Low-Level Services Example--2

Figure 3 shows how to use the Query 5250 (QsnQry5250) API. A sample display is shown in Figure 4.

Figure 3. Program Using the Query 5250 (QsnQry5250) API

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "qsnapi.h"

#define TRUE 1
#define FALSE 0

int main(void)
{
 Qsn_Qry_5250_T qry5250;
 Qsn_WSC_display_T *dsp = (Qsn_WSC_display_T *)(qry5250.WSC_display);
 char s[100];
 Q_Bin4 row;
 Qsn_Cmd_Buf_T buf;

 QsnQry5250(&qry5250, sizeof(qry5250), NULL);
 buf = QsnCrtCmdBuf(100, 20, 0, NULL, NULL);
 QsnClrScr('0', buf, Q_NO_HANDLE, NULL);
 sprintf(s, "Query status is %c, num input fields: %d, color: %c, wide:
%c",
 qry5250.query_status, qry5250.num_input_capable,
 (QsnQryColorSup(NULL, Q_NO_HANDLE, NULL) == TRUE ? 'Y' : 'N'),
 (dsp->scr_size == 3 ? 'Y' : 'N'));
 QsnWrtDta(s, strlen(s), 0, row=5, 5, QSN_SA_NORM, QSN_SA_NORM,

 QSN_SA_NORM, QSN_SA_NORM, buf, Q_NO_HANDLE, NULL);
 sprintf(s, "GUI display: %d, GUI support: %d",
 dsp->GUI_display, dsp->GUI_support);
 QsnWrtDta(s, strlen(s), 0, row+=2, 5, QSN_SA_NORM, QSN_SA_NORM,
 QSN_SA_NORM, QSN_SA_NORM, buf, Q_NO_HANDLE, NULL);
 sprintf(s, "Move cursor: %d, Row1/Col1: %d, ReadMDTImmAlt: %d",
 dsp->move_csr_order, dsp->row1_col1, dsp->Read_MDT_Imm_Alt);
 QsnWrtDta(s, strlen(s), 0, row +=2, 5, QSN_SA_NORM, QSN_SA_NORM,
 QSN_SA_NORM, QSN_SA_NORM, buf, Q_NO_HANDLE, NULL);
 sprintf(s, "Extended primary attributes: %d, DBCS: %x",
 dsp->extended_pri_atr_DP, dsp->DBCS);
 QsnWrtDta(s, strlen(s), 0, row +=2, 5, QSN_SA_NORM, QSN_SA_NORM,
 QSN_SA_NORM, QSN_SA_NORM, buf, Q_NO_HANDLE, NULL);
 sprintf(s, "Wide mode on: %c",
 QsnRtvMod(NULL, Q_NO_HANDLE, NULL) == QSN_DSP04 ? 'y' : 'n');
 QsnWrtDta(s, strlen(s), 0, row +=2, 5, QSN_SA_NORM, QSN_SA_NORM,
 QSN_SA_NORM, QSN_SA_NORM, buf, Q_NO_HANDLE, NULL);
 sprintf(s, "Wide mode allowed: %c",
 QsnQryModSup(QSN_DSP04, NULL, Q_NO_HANDLE, NULL) ==
 TRUE ? 'y' : 'n');
 QsnWrtDta(s, strlen(s), 0, 13, 5, QSN_SA_NORM, QSN_SA_NORM,
 QSN_SA_NORM, QSN_SA_NORM, buf, Q_NO_HANDLE, NULL);
 QsnPutBuf(buf, Q_NO_HANDLE, NULL);
 QsnGetAID(NULL, Q_NO_HANDLE, NULL);
}

Figure 4. Screen Output from QsnQry5250 API Program

+--+
|
|
|
|
|
|
|
|
| Query status is 1, num input fields: 500, color: Y, wide: Y
|
|
|
| GUI display: 1, GUI support: 1
|
|
|
| Move cursor: 0, Extended primary attributes: 0
|
|
|
| Wide mode on: n
|
|
|
| Wide mode allowed: y
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+--+

Low-Level Services Example--3

The sample program in Figure 5 shows how to use the Read Modified Fields (QsnReadMDT) API in conjunction with the
buffer query APIs. The resulting screen display before and after the input operations is shown in Figure 6 and Figure 7,
respectively.

Figure 5. Program Using Read Modified Fields (QsnReadMDT) API

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "qsnapi.h"

#define TRUE 1
#define FALSE 0

int main(void)
{
 Q_Bin4 i, t1, t2, t3, numflds;
 const Q_Uchar cc1=QSN_CC1_MDTALL_CLRALL, cc2=QSN_CC2_UNLOCKBD;
 const Q_Uchar nosa = QSN_NO_SA, norm = QSN_SA_NORM, saul = QSN_SA_UL;
 char pad = ' ';
 Qsn_Cmd_Buf_T cmdbuf, cmdbuf2;
 Qsn_Inp_Buf_T inpbuf;
 Qsn_Fld_Inf_T fldqry;
 Qsn_Read_Inf_T rdqry;
 char msg[100];
 Q_Fdbk_T fdbk = { sizeof(Q_Fdbk_T) };

 cmdbuf = QsnCrtCmdBuf(100, 50, 0, NULL, NULL);
 cmdbuf2 = QsnCrtCmdBuf(100, 50, 0, NULL, NULL);
 inpbuf = QsnCrtInpBuf(200, 50, 0, NULL, NULL);
 QsnClrScr('0', 0, 0, NULL);
 QsnWTD(cc1, cc2, cmdbuf, 0, NULL);
 while (TRUE) {
 QsnSetFld(0, 10, 3, 2, QSN_FFW_ALPHA_SHIFT, NULL, 0, saul,
 saul, cmdbuf, 0, NULL);
 QsnSetFld(0, 10, 5, 2, QSN_FFW_ALPHA_SHIFT, NULL, 0, saul,
 saul, cmdbuf, 0, NULL);
 QsnSetFld(0, 10, 7, 2, QSN_FFW_ALPHA_SHIFT, NULL, 0, saul,
 saul, cmdbuf, 0, NULL);

 numflds = QsnReadMDT(QSN_CC1_NULL, QSN_CC1_NULL, NULL,
 inpbuf, cmdbuf, 0, NULL);
 if (QsnRtvReadAID(inpbuf, NULL, NULL) == QSN_F3)
 break;
 QsnPutBuf(cmdbuf2, 0, NULL);
 QsnClrBuf(cmdbuf2, NULL);
 QsnClrBuf(cmdbuf, NULL);
 QsnWTD(cc1, cc2, cmdbuf, 0, NULL);
 sprintf(msg, "Num Fields Change: %d", numflds);
 QsnWrtDta(msg, strlen(msg), 0, 2, 30, norm, norm, norm, norm,
 cmdbuf, 0, NULL);
 for (i = 1; i <= numflds; i++) {
 fldqry.len = 0;
 if (QsnRtvFldInf(inpbuf, i, &fldqry, sizeof(fldqry),
 0, &fdbk) != QSN_FAIL) {
 sprintf(msg,
 "Field# %d, row %d, col %d, len %d, value %.*s",
 i, fldqry.row, fldqry.col, fldqry.len,
 fldqry.len, fldqry.data);
 QsnWrtDta(msg, t1=strlen(msg), 0,
 t2=i+3, t3=30, norm, norm, norm, norm,
 cmdbuf, 0, NULL);
 QsnWrtPad(pad, t1, 0, t2, t3, cmdbuf2, 0, NULL);
 } else {
 sprintf(msg, "Field query failed");
 QsnWrtDta(msg, t1=strlen(msg), 0,
 t2=4, t3=30, norm, norm, norm, norm,
 cmdbuf, 0, NULL);
 QsnWrtPad(pad, t1, 0, t2, t3, cmdbuf2, 0, NULL);
 }
 }

 QsnRtvReadInf(inpbuf, &rdqry, sizeof(rdqry), 0, NULL);
 sprintf(msg, "Read information:");
 QsnWrtDta(msg, strlen(msg), 0, t2=10, t3=2, norm, norm,
 norm, norm, cmdbuf, 0, NULL);
 QsnWrtPadAdr(pad, -1, -1, t2, t3, cmdbuf2, 0, NULL);
 sprintf(msg, "Bytes returned %d, available: %d",
 rdqry.bytes_returned, rdqry.bytes_available);
 QsnWrtDta(msg, strlen(msg), 0, ++t2, t3+2, norm, norm,
 norm, norm, cmdbuf, 0, NULL);
 sprintf(msg, "First data byte: %p", rdqry.dta);
 QsnWrtDta(msg, strlen(msg), 0, ++t2, t3+2, norm, norm,
 norm, norm, cmdbuf, 0, NULL);
 sprintf(msg, "First field byte: %p", rdqry.fld_dta);
 QsnWrtDta(msg, strlen(msg), 0, ++t2, t3+4, norm, norm,
 norm, norm, cmdbuf, 0, NULL);
 sprintf(msg, "Diff: %d", rdqry.fld_dta-rdqry.dta);
 QsnWrtDta(msg, strlen(msg), 0, ++t2, t3+4, norm, norm,
 norm, norm, cmdbuf, 0, NULL);
 sprintf(msg,
 "Read len: %d, data len: %d, field data len: %d,\
 num fields: %d",
 rdqry.read_len, rdqry.dta_len, rdqry.fld_dta_len,
 rdqry.num_flds);
 QsnWrtDta(msg, strlen(msg), 0, ++t2, t3+2, norm, norm,
 norm, norm, cmdbuf, 0, NULL);
 sprintf(msg, "Read row: %d, col: %d, aid: %x",
 rdqry.read_row, rdqry.read_col, rdqry.AID);
 QsnWrtDta(msg, strlen(msg), 0, ++t2, t3+2, norm, norm,
 norm, norm, cmdbuf, 0, NULL);
 }
}

Figure 6. Display Screen before Input Operation

+--+
|
|
|
|
| field 1
|
|
|
| field 2
|
|
|
| field 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+--+

Figure 7. Display Screen after Input Operation

+--+
|
|
| Num Fields Change: 3
|
| __________
|
| Field# 1, row 3, col 2, len 7, value field 1
|
| __________ Field# 2, row 5, col 2, len 9, value field 2
|
| Field# 3, row 7, col 2, len 7, value field 3
|
| __________
|
|
|
|
|
| Read information:
|
| Bytes returned 80, available: 80
|
| First data byte: SPP:0000 :1aefQPADEV0010JENNIFER 002600 :19b:0:d42
|
| First field byte: SPP:0000 :1aefQPADEV0010JENNIFER 002600 :19e:1:d42
|
| Diff: 3
|
| Read len: 35, data len: 35, field data len: 32, num fields: 3
|
| Read row: 3, col: 2, aid: f1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+--+

Low-Level Services Example--4

The sample program in Figure 8 shows how to use the QsnWrtSFMaj and QsnWrtSFMin APIs to display a window on the
screen using the 5250 Create Window command. See the 5494 Remote Control Unit Functions Reference R3.1,
SC30-3533-04, for more information. This book can be viewed online through the IBM Publications Center.

Figure 8. Program Using Read QsnWrtSFMaj and QsnWrtSFMin APIs

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "qsnapi.h"

#define STRUCTURED_FIELD '\xd9'
#define CREATE_WIN_STRUCTURED_FIELD '\x51'
#define WINDOW_CURSOR_RESTRICT '\x80'
#define WINDOW_PULL_DOWN '\x40'
#define WINDOW_BORDER_MINOR '\x01'
#define WINDOW_TITLE_MINOR '\x10'

typedef _Packed struct {
 Q_Bin2 length;
 Q_Uchar class;
 Q_Uchar type;
 Q_Uchar flag1;
 Q_Uchar flag2;
 Q_Uchar reserved;
 Q_Uchar num_rows;
 Q_Uchar num_cols;
} create_window_major;

typedef _Packed struct {
 Q_Uchar length;
 Q_Uchar type;
 Q_Uchar flag1;
 Q_Uchar mono_attr;
 Q_Uchar color_attr;
 Q_Uchar ul;
 Q_Uchar top;
 Q_Uchar ur;
 Q_Uchar left;
 Q_Uchar right;
 Q_Uchar ll;
 Q_Uchar bottom;
 Q_Uchar lr;
} create_window_border_minor;

typedef _Packed struct {
 Q_Uchar length;
 Q_Uchar type;
 Q_Uchar flag1;
 Q_Uchar mono_attr;
 Q_Uchar color_attr;
 Q_Uchar reserved;
} create_window_title_minor;

int main(void)
{
 create_window_major win;
 create_window_border_minor win_border;
 create_window_title_minor win_title;
 Qsn_Cmd_Buf_T cmdbuf;
 Q_Uchar c1;
 char title_text[] = "Title";

 cmdbuf = QsnCrtCmdBuf(300, 20, 0, NULL, NULL);

 /* setup Create window command major structure */
 win.length = sizeof(win);

 win.class = STRUCTURED_FIELD;
 win.type = CREATE_WIN_STRUCTURED_FIELD;
 win.flag1 = WINDOW_CURSOR_RESTRICT;
 win.flag2 = '\x00';
 win.reserved = '\x00';
 win.num_rows = 10;
 win.num_cols = 10;

 /* write Create window command major structure to command buffer */
 QsnWrtSFMaj((char *)(&win), sizeof(win), 0, 9, 22, cmdbuf, 0, NULL);

 /* setup border presentation minor structure */
 win_border.length = sizeof(win_border);
 win_border.type = WINDOW_BORDER_MINOR;
 win_border.flag1 = '\x00';
 win_border.mono_attr = QSN_SA_RI;
 win_border.color_attr = QSN_SA_PNK;
 win_border.ul = '+';
 win_border.top = '*';
 win_border.ur = '+';
 win_border.left = '-';
 win_border.right = '|';
 win_border.ll = '+';
 win_border.bottom = '*';
 win_border.lr = '+';

 /* write border presentation minor structure to command buffer */
 QsnWrtSFMin((char *)(&win_border), sizeof(win_border), cmdbuf, 0, NULL);

 /* setup window title minor structure */
 win_title.length = sizeof(win_title) + strlen(title_text);
 win_title.type = WINDOW_TITLE_MINOR;
 win_title.flag1 = '\x00';
 win_title.mono_attr = QSN_SA_BL;
 win_title.color_attr = QSN_SA_RED;
 win_title.reserved = '\x00';

 /* write window title minor structure to command buffer */
 QsnWrtSFMin((char *)(&win_title), sizeof(win_title), cmdbuf, 0, NULL);

 /* write title text to command buffer */
 QsnWrtDta(title_text, strlen(title_text), 0, 0, 0,
 QSN_NO_SA, QSN_NO_SA, QSN_NO_SA, QSN_NO_SA, cmdbuf, 0, NULL);

 /* write command buffer to screen and wait for key-press */
 QsnPutBuf(cmdbuf, 0, NULL);
 QsnGetAID(NULL, 0, NULL);
}

Top | Dynamic Screen Manager APIs | APIs by category

5250 Data Stream Details

AID-Generating Keys

The AID (attention indicator) code identifies to the host system the function being requested from the
keyboard. The AID code is returned by certain input operations when the operator presses an
AID-generating key. The following table lists the AID-generating keys and the AID codes associated with
each key. See Format of the Low-Level Environment Description for instructions on how to specify an
alternative help key.

AID Codes

AID key Mnemonic AID Code

Cmd 1 - 12 (cmd 1=x'31', cmd12=x'3C') QSN_F1 - QSN_F12 x'31' - x'3C'

Selector Light Pen Auto Enter QSN_SLP x'3F'

Forward Edge Trigger Auto Enter QSN_FET x'50'

PA1 QSN_PA1 x'6C'

PA2 QSN_PA2 x'6E'

PA3 QSN_PA3 x'6B'

Cmd 13 - 24 (cmd 13=x'B1', cmd24=x'BC') QSN_F13 - QSN_F24 x'B1' - x'BC'

Clear QSN_CLEAR x'BD'

Enter or Record Advance QSN_ENTER x'F1'

Help (not in error state) QSN_HELP x'F3'

Roll Down or Page Up QSN_ROLLDOWN or QSN_PAGEUP x'F4'

Roll Up or Page Down QSN_ROLLUP or QSN_PAGEDOWN x'F5'

Print QSN_PRINT x'F6'

Record Backspace QSN_RECBS x'F8'

Control Characters

The display control characters (CCs) are always specified as a pair of 1-byte fields. They are used on the
QsnWTD, QsnReadInp, QsnReadMDT, and QsnReadMDTAlt APIs. These characters select specific
operations for the display station to perform. Byte 1 is always processed first. When the CCs are used with
the QsnWTD API, the first CC is processed immediately while the second CC is not processed until all the
other information associated with the API has been processed. When used with an input operation, both
CCs are processed after the operation has completed. The following two tables list the valid control
character values and their associated mnemonics.

Control Character Byte 1

Mnemonic
Bits
0-2

Reset
Pending
Aid; Lock
Keyboard

Clear
Master
MDT; Reset
MDT Flags
in
Nonbypass
Fields

Clear
Master
MDT;
Reset
MDT
Flags in
All
Fields

Null
Nonbypass
Fields with
MDT On

Null All
Nonbypass
Fields

QSN_CC1_NULL 000

QSN_CC1_LOCKBD 001 x

QSN_CC1_MDTNBY 010 x x

QSN_CC1_MDTALL 011 x x

QSN_CC1_CLRMOD 100 x x

QSN_CC1_MDTNBY_CLRALL 101 x x x

QSN_CC1_MDTNBY_CLRMOD 110 x x x

QSN_CC1_MDTALL_CLRALL 111 x x x

Note:

Bits 3 through 7 are reserved and must be 0. A CPFA31C error will be issued if this is not the
case.

1.

If there are no bypass fields with MDT flags on, then the master MDT will be cleared.2.

Control Character Byte 2

Mnemonic Bit Meaning

 0 reserved

QSN_CC2_NO_IC 1 0: Cursor moves to default or IC order
position when keyboard unlocks

1: Cursor does not move when keyboard
unlocks

QSN_CC2_RST_CSR_BL 2 0: no action

1: Reset blinking cursor

QSN_CC2_SET_CSR_BL 3 0: no action

1: Set blinking cursor

QSN_CC2_UNLOCKBD 4 0: no action

1: Unlock the keyboard and reset any
pending AID bytes

QSN_CC2_ALARM 5 0: no action

1: Sound alarm

QSN_CC2_MSG_OFF 6 0: no action

1: Set Message Waiting indicator off

QSN_CC2_MSG_ON 7 0: no action

1: Set Message Waiting indicator on

Notes:

The mnemonics for control character byte 2 can be combined with a bitwise OR operation.●

See notes in the 5250 data stream documentation for further details regarding these functions.●

Screen Attribute Characters

The screen or field attributes control the image produced on the display station screen. Each attribute
occupies one character position in the display station regeneration buffer and is displayed as a blank. The
effect produced by an attribute begins at its location in the regeneration buffer and continues until the next
attribute appears. The attributes for non-color displays are shown in the table below and for color displays
in the Screen Attributes for Color Displays table. There are certain operations that allow a value to be
specified for a screen attribute that indicates no screen attribute should be used. Where supported, the value
is X'00' and the mnemonic is QSN_NO_SA.

Screen Attributes for Non-Color Displays

Mnemonic Bits Value

QSN_SA_NORM 0-2 001: Attribute identification flag

QSN_SA_CS 3 0: Column separator off

1: Column separator on

QSN_SA_BL 4 0: Do not blink field

1: Blink field

QSN_SA_UL 5 0: Do not underscore field

1: Underscore field

QSN_SA_HI 6 0: Low intensity

1: High intensity

QSN_SA_RI 7 0: Normal image

1: Reverse image

QSN_SA_ND Non-display: equivalent to specifying QSN_SA_UL,
QSN_SA_HI, and QSN_SA_RI.

Note: Multiple functions can be selected by combining the mnemonics with a bitwise OR operation.

Screen Attributes for Color Displays

Mnemonic Value Meaning

QSN_SA_GRN x'20' Green

QSN_SA_GRN_RI x'21' Green/Reverse Image

QSN_SA_WHT x'22' White

QSN_SA_WHT_RI x'23' White/Reverse Image

QSN_SA_GRN_UL x'24' Green/Underscore

QSN_SA_GRN_UL_RI x'25' Green/Underscore/Reverse Image

QSN_SA_WHT_UL x'26' White/Underscore

QSN_SA_ND x'27' Nondisplay

QSN_SA_RED x'28' Red

QSN_SA_RED_RI x'29' Red/Reverse Image

QSN_SA_RED_BL x'2A' Red/Blink

QSN_SA_RED_RI_BL x'2B' Red/Reverse Image/Blink

QSN_SA_RED_UL x'2C' Red/Underscore

QSN_SA_RED_UL_RI x'2D' Red/Underscore/Reverse Image

QSN_SA_RED_UL_BL x'2E' Red/Underscore/Blink

QSN_SA_ND_2F x'2F' Nondisplay

QSN_SA_TRQ_CS x'30' Turquoise/Column Separators

QSN_SA_TRQ_CS_RI x'31' Turquoise/Column Separators/Reverse Image

QSN_SA_YLW_CS x'32' Yellow/Column Separators

QSN_SA_YLW_CS_RI x'33' Yellow/Column Separators/Reverse Image

QSN_SA_TRQ_UL x'34' Turquoise/Underscore

QSN_SA_TRQ_UL_RI x'35' Turquoise/Underscore/Reverse Image

QSN_SA_YLW_UL x'36' Yellow/Underscore

QSN_SA_ND_37 x'37' Nondisplay

QSN_SA_PNK x'38' Pink

QSN_SA_PNK_RI x'39' Pink/Reverse Image

QSN_SA_BLU x'3A' Blue

QSN_SA_BLU_RI x'3B' Blue/Reverse Image

QSN_SA_PNK_UL x'3C' Pink/Underscore

QSN_SA_PNK_UL_RI x'3D' Pink/Underscore/Reverse Image

QSN_SA_BLU_UL x'3E' Blue/Underscore

QSN_SA_ND_3F x'3F' Nondisplay

Display Address

The display address is the address at which data is displayed or a field definition begins. This can be
modified explicitly with a Set Output Address (QsnSetOutAdr) call, or implicitly with output operations,
such as those associated with the Write Data (QsnWrtDta) API, that accept a cursor position. The 5250
Write to Display (WTD) command initializes the display address to row 1, column 1. Because each output
operation contains a WTD command, this means that the display address is reset on each direct screen
output operation.

Insert Cursor Address

The insert cursor (IC) order specifies the position of the cursor when the host system unlocks the keyboard
and when the display station operator presses the Home key. The display address is not affected by this
address. This can be set with the Insert Cursor (QsnInsCsr) API, and in some cases with the Set Cursor
Address (QsnSetCsrAdr) API (only when the Move Cursor (MC) order is not supported).

Modified Data Tag (MDT) Bit

There is a modified data tag (MDT) bit for each input field and a master MDT bit. These bits are used to
determine which fields should be returned in response to the Read Modified Fields (QsnReadMDT), Read
Modified Alternate (QsnReadMDTAlt), and Read Modified Immediate Alternate (QsnReadMDTImmAlt)
APIs. The MDT bit for a field and the master MDT bit can be set using bit 4 of the field format word (see
Format of the Field Format Word) on a Set Field (QsnSetFld) API. The master MDT bit and the MDT bit
for a field are set on anytime the operator types into or alters a field on the display. Once the bits are set,
only a control character for resetting them (see Table 2), or a clear screen operation using the Clear Screen
(QsnClrScr) API or a Start of Header order, can reset them.

Resequencing

Resequencing allows the control unit to return up to 128 input fields in any specified order. Resequencing is
accomplished by chaining input fields together with Field Control Words specifying resequencing. (See
Format of the Field Control Word and the 5250 data stream documentation for details.)

States and Modes

The display station can be in one of several states (conditions), each with its accompanying modes
(methods of operation). The following is a list of these states and their associated modes:

Hardware error state●

Normal locked state●

Normal unlocked state

Command mode❍

Insert mode❍

Data mode❍

●

Power-on state●

Prehelp error state●

Post-help error state●

System services (SS) message state●

System request state●

See the 5250 data stream documentation for a detailed explanation of each state and mode.

Dumping the 5250 Data Stream Commands

If you wish to produce a dump of the 5250 data stream commands that are produced by the DSM APIs, you
should create a physical file (using the CRTPF command) having a record length of 2000. Name the
physical file QSNDEBUGF, and ensure that the QSNDEBUGF file exists in the library list. DSM will
dump the 5250 data stream commands to that file.

Top | Dynamic Screen Manager APIs | APIs by category

Window Services APIs
The window services APIs consist of two functional groups: the window builder and window manager
services. The window builder APIs provide the services needed to create, delete, move, and resize
windows. The window builder services include the window manipulation and query APIs, and the window
I/O APIs. The window manager APIs provide the services needed to manage multiple windows, support
I/O to several active windows, and switch between windows.

Window Services APIs include:

Window Manipulation and Query APIs●

Window I/O APIs●

Window Manager Services APIs●

See Using Window Services APIs for additional information.

Dynamic Screen Manager APIs | APIs by category

Using Window Services APIs
A window is created using a window and a low-level environment description. The window description
provides the window attributes, a pointer to data that is specified by the using application, and several exit
routines that the window module calls when a window is moved, resized, or deleted so the using program
can perform the appropriate actions. The low-level environment description is the same as that used on the
Create Low-Level Environment (QsnCrtEnv) API to create a low-level environment. A window is
implemented as a low-level environment where the user data pointer describes the window itself. Thus, a
window can be manipulated through the low-level APIs or through the window APIs by using the same
window handle. This implementation is similar to the concept of inheritance in object-oriented
programming languages. DSM window support uses graphical user interface (GUI) when the underlying
control unit supports it.

Each window has the low-level environment window mode enabled. The low-level environment window
area is set to the usable area in the window, which consists of the area inside the border and attributes that
can be accessed by screen I/O services. (It does not include the message line.) Use relative coordinates
when specifying a row and column on an I/O API. The upper left corner of the usable area is (1,1). To use
absolute coordinates with a window, disable the low-level environment window mode with the Set
Low-Level Environment Window Mode (QsnSetEnvWinMod) API.

Figure 1 shows the components of a DSM window. The window in this example has a specified depth of 13
rows and a width of 19 columns.

The attributes of a DSM window are similar to those of a data description specifications (DDS) window.
The initial size and location of a DSM window are specified using the location of the upper-left window
border character and the number of rows and columns within the window. For DSM windows, the leading
window attribute, right continuation attribute, or message line can be specified separately. Unlike a DDS
window, a DSM window does not require the following:

A border

If a window is defined with no border, no extra space is used on the display for the border
characters or their attributes (L and B in Figure 1). An area of the screen is cleared starting from the
specified location for the upper left corner of the window and continues for the number of rows and
columns given as the window size. Figure 2 shows an example of a window with no border.

Note: In discussions throughout the DSM sections that refer to window borders, this should be
taken to mean the top/bottom window row or left/right window column for a window with no
borders.

●

Window border attributes

If a window is defined with no border attributes (L and B in Figure 1), no extra space for these is
used on the display. Figure 3 shows a window with no border attributes.

●

Leading window attribute

The leading window attribute (A in Figure 1) is part of the addressable window area. If specified,
this attribute takes up an extra screen character and does not reduce the size of the window area.
Figure 4 shows a window defined with no leading window attribute. The window text directly
follows the window border character. Attribute characters can be written inside the window if
desired.

●

Right continuation attribute

If the right continuation attribute (R in Figure 1) is specified on a window description, DSM
determines the appropriate attribute to use, based on the screen image underlying the window. If

●

the window is not a GUI window, right-continuation-attribute correction is performed for
display-screen and presentation screen DBCS-only attributes. (No correction is performed for
extended primary attributes and DBCS data types). When a window is placed on a screen that
supports extended attributes, all extended attributes are cleared prior to displaying the window. To
have the right continuation attribute handle extended attributes, you must use a display that
supports GUI windows and specify GUI window support on the window description.

Message line

Specifying a message line on a window description decreases the number of lines in the window
area by 1, as shown in Figure 1.

●

Figure 1. DSM Window Layout

Key

L Left border attribute

. Top and bottom border

R Right continuation attribute

: Left and right border

A Leading window attribute

w Window area

m Message line

B Right border attribute

Figure 2. DSM Window with No Border

Figure 3. DSM Window with No Border Attributes

Figure 4. DSM Window with No Leading Window Attribute

Top | Dynamic Screen Manager APIs | APIs by category

Window Manipulation and Query APIs
The window manipulation and query APIs are:

Change Window (QsnChgWin) changes the description for a window.●

Create a Window (QsnCrtWin) creates a window.●

Initialize Window Description (QsnInzWinD) initializes a window description with default values.●

Move Window (QsnMovWin) moves a window to a new screen location.●

Move Window by User (QsnMovWinUsr) moves a window to a new screen location specified by
the user.

●

Resize Window (QsnRszWin) changes the size of a window.●

Resize Window by User (QsnRszWinUsr) changes the size of a window according to
user-specified cursor movements.

●

Retrieve Window Data (QsnRtvWinDta) returns a pointer to the user data for the given window.●

Retrieve Window Description (QsnRtvWinD) retrieves a copy of the description for a window.●

Set Window Services Attributes (QsnSetWinAtr) sets the default attributes for the window
services.

●

Top | Dynamic Screen Manager APIs | APIs by category

Change Window (QsnChgWin) API

 Required Parameter Group:

1 Window handle Input Binary(4)
2 Window description Input Char(*)
3 Length of window

description
Input Binary(4)

 Omissible Parameter:

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Change Window (QsnChgWin) API changes the window description for the given window. The size
cannot be changed for a window that contains DBCS data.

Authorities and Locks

Exit Routine Authority

*EXECUTE

Required Parameter Group

Window handle

INPUT; BINARY(4)

A handle for the window that will have its description changed.

Window description

INPUT; CHAR(*)

The new window description for the given window. The format of the window description is shown
in Format of the Window Description.

Length of window description

Input; BINARY(4)

The length of the window description parameter.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA314 E Memory allocation error.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A1 E Window description value is incorrect.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Create a Window (QsnCrtWin) AP

 Required Parameter Group:

1 Window description Input Char(*)
2 Length of window

description
Input Binary(4)

 Omissible Parameter Group:

3 User extension information Input Char(*)
4 Length of user extension

information
Input Binary(4)

5 Start window Input Char(1)
6 Low-level environment

description
Input Char(*)

7 Length of low-level
environment description

Input Binary(4)

8 Window handle Output Binary(4)
9 Error code I/O Char(*)

 Returned Value:

Window handle Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Create a Window (QsnCrtWin) API creates a window and returns a handle for that window. The
window must be deleted using the Delete Low-Level Environment (QsnDltEnv) API. Whenever a window
is made current, the window mode is set to the usable area of the window.

Authorities and Locks

Exit Routine Authority

*EXECUTE

Required Parameter Group

Window description

INPUT; CHAR(*)

The window description defines the attributes for the window. The format of the window
description is shown in Format of the Window Description.

Length of window description

INPUT; BINARY(4)

The length of the window description parameter.

Omissible Parameter Group

User extension information

INPUT; CHAR(*)

The user extension information is used to associate data and exit routines with the window. This
parameter is required if the length of user extension information parameter is supplied. This
essentially enables the object-oriented programming concept of inheritance, allowing the window
to be extended in a natural way. The user extension information cannot be changed once the
window has been created. The format of this parameter is shown in Format of the Window User
Extension Information.

Length of user extension information

INPUT; BINARY(4)

The length of the user extension information parameter.

Start window

Input; CHAR(1)

Whether the window should be displayed on the screen when it is allocated. The possible values
are:

0 The window is not displayed on the screen when it is allocated. You must use the Start a
Window (QsnStrWin) API to start the window.

1 The window is displayed on the screen when it is allocated. This is the default if this parameter
is omitted.

Low-level environment description

INPUT; CHAR(*)

The low-level environment description defines the operating environment for low-level operations
used to create and manipulate the window. This parameter is required if the length of the low-level
environment description parameter is supplied. The format of the low-level environment
description is shown in Format of the Low-Level Environment Description. If this parameter is
omitted, a low-level environment will be created with default values.

Length of low-level environment description

INPUT; BINARY(4)

The length of the low-level environment description parameter.

Window handle

OUTPUT; BINARY(4)

The variable containing the handle for the window created after the QsnCrtWin API has completed.
This handle can be used across activation groups if the activation group in which the handle was
created is still active.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Window handle

OUTPUT; BINARY(4)

This API returns the value for the window handle parameter or a -1 if an error occurred during
processing.

Restrictions

Windows where the associated low-level environment indicates DBCS support cannot be resized. GUI
windows must fit within the screen boundary. This includes the leading left border attribute and the center
border continuation attribute. GUI windows must have a border and the associated left and center border
attributes for the left and center borders. The concept of current and noncurrent window border attributes
does not apply to GUI windows. No error-checking is performed for GUI-specific fields. The fields are
passed to the control unit, as specified, and any errors will be detected by the control unit.

Format of the Window Description

Offset

Type FieldDec Hex

0 0 BINARY(4) Row location of upper left corner of window
border

4 4 BINARY(4) Column location of upper left corner of window
border

8 8 BINARY(4) Number of rows within the window

12 C BINARY(4) Number of columns within the window

16 10 BINARY(4) Minimum number of rows within the window

20 14 BINARY(4) Minimum number of columns within the
window

24 18 BINARY(4) Maximum number of rows within the window

28 1C BINARY(4) Maximum number of columns within the
window

32 20 CHAR(1) Full-screen flag for the window

33 21 CHAR(3) Window display attributes for a monochrome
display

36 24 CHAR(3) Window display attributes for a color display

39 27 CHAR(1) Border flag for the window

40 28 CHAR(1) Border attributes flag for the window

41 29 CHAR(1) Leading attribute flag for the window

42 2A CHAR(1) center continuation attribute flag for the window

43 2B CHAR(1) Message line flag for the window

44 2C CHAR(1) Upper left border character

45 2D CHAR(1) top border character

46 2E CHAR(1) Upper center border character

47 2F CHAR(1) left border character

48 30 CHAR(1) center border character

49 31 CHAR(1) Lower left border character

50 32 CHAR(1) bottom border character

51 33 CHAR(1) Lower center border character

52 34 CHAR(1) GUI support flag for the window

53 35 CHAR(1) Flag byte 1 (GUI only)

54 36 CHAR(1) Flag byte 2 (GUI only)

55 37 CHAR(1) Reserved (GUI only). The default is X'00'.

56 38 CHAR(1) Border flags (GUI only)

57 39 CHAR(1) Window title flags (GUI only)

58 3A CHAR(1) Monochrome title attribute

59 3B CHAR(1) Color title attribute

60 3C CHAR(1) Reserved (GUI only). The default is X'00'.

61 3D CHAR(3) Reserved. This field must be set to X'00'.

64 40 BINARY(4) Offset to title text

68 44 BINARY(4) Length of title text

72 48 BINARY(4) Reserved. This field must be set to X'00'.

* * CHAR(*) Title text

Field Descriptions

In the following descriptions, the default value refers to the value set by the Initialize Window Description
(QsnInzWinD) API.

The GUI-only fields in the following descriptions refer to fields within the data stream for the Create
Window command major and minor structures. See the 5494 Remote Control Unit Functions Reference,
SC30-3533, manual for details.

Border attributes flag for the window. Whether or not the window border has left and center border
attributes. (See Figure 10.) The possible values are:

0 Window border has no attributes.

1 Window border has attributes. This is the default.

For GUI windows, 1 must be specified.

Border flag for the window. This flag indicates whether or not the window has a border. (See Figure 10.)
The possible values are:

0 Window has no border.

1 Window has a border. This is the default.

If this field is set to 0, the border attributes are not written to the screen, regardless of the values of the other
fields.

For GUI windows, 1 must be specified.

Border flags (GUI only). Determines if border presentation characters are used (byte 3 of the border
presentation minor structure of the GUI Create Window command). The default is X'80'.

Bottom border character. The character used for the bottom border. The default is X'00' for all border
characters. The default border character used for non-GUI windows is '.'. For GUI windows, the default
GUI character is used.

Color title attribute. The display attribute to precede the title on a color display. The default is X'20'. If
this attribute is not valid, it is ignored.

Column location of upper left corner of window border. The column number of the upper left corner of
the window. If the window has a leading window attribute, the first window column is two greater than the
value specified in this field; otherwise, it is one greater. This must be a positive integer value greater than or
equal to 0. For GUI windows, the minimum value must be 2. Otherwise, it must be a positive integer value
greater than or equal to 0. For non-GUI windows, if 0 or 1 is specified, the left border of the window or the
leading border attribute, respectively, will not be displayed on the screen unless the window is moved. The
default value is such that the maximum-sized window will be displayed, with border and attributes, given
the other window description attributes (for example, window border attributes). If the window is a
full-screen window, this field is ignored.

Flag byte 1 (GUI only). Byte 5 of the GUI Create Window command major structure. The default is X'00'.

Flag byte 2 (GUI only). Byte 6 of the GUI Create Window command major structure. The default is X'00'.

Full-screen flag for the window. Indicates whether or not this is a full-screen window. (A full-screen
window cannot be moved or resized.) The possible values are:

0 Window is not a full-screen window. This is the default.

1 Window is a full-screen window.

GUI support flag for the window. This flag indicates whether or not GUI support should be used to build
the window if the underlying device supports it. GUI windows always include a leading and trailing border
attribute. The possible values are:

0 Do not use GUI support.

1 Use GUI support if the underlying device supports it. This is the default.

Leading attribute flag for the window. This flag indicates whether or not the window has a leading
attribute. (See Figure 10.) The possible values are:

0 Window has no leading attribute byte.

1 Window has a leading attribute byte. This is the default.

For GUI windows, 1 must be specified.

Left border character. The character used for the left border. The default is X'00' for all border characters.
The default border character used for non-GUI windows is ':'. For GUI windows, the default GUI character
is used.

Length of title text. The length of the title text. The default value is 0.

Lower left border character. The character used for the lower left border. The default is X'00' for all
border characters. The default border character used for non-GUI windows is ':'. For GUI windows, the
default GUI character is used.

Lower center border character. The character used for the lower center border. The default is X'00' for all
border characters. The default border character used for non-GUI windows is ':'. For GUI windows, the
default GUI character is used.

Maximum number of columns within the window. A value of 0, which is the default, indicates this value
is the same as the maximum number of columns for the device in its current mode. If the window is a
full-screen window, this field is ignored.

Maximum number of rows within the window. A value of 0, which is the default, indicates this value is
the same as the maximum number of rows for the device in its current mode. If the window is a full-screen
window, this field is ignored.

Message line flag for the window. This flag indicates whether or not the window has a message line. (See
Figure 10). The possible values are:

0 Window does not have a message line

1 Window has a message line. This is the default.

Minimum number of columns within the window. The minimum value allowed is 1. This is the default.
If the window is a full-screen window, this field is ignored.

Minimum number of rows within the window. The minimum value allowed is 1. This is the default. If
the window is a full-screen window, this field is ignored.

Monochrome title attribute. The display attribute to precede the title on a monochrome display. The
default is X'20'. If this attribute is not valid, it is ignored.

Number of columns within the window. The number of columns in the window, from the first window
column to the last. This excludes the left and center border, and the border and window attributes. (See
Figure 10.) A value of 0, which is the default, indicates this value is the maximum number of columns that
can be defined given the other window description attributes (for example, window border attributes). The
minimum allowed number of columns is 1. If the window is a full-screen window, this field is ignored.

Number of rows within the window. The number of rows in the window, from the first window row to the
last. This includes the message line, if specified. (See Figure 10.) A value of 0, which is the default,
indicates this value is the maximum number of rows that can be defined given the other window description
attributes (for example, window message line). The minimum allowed number of rows is 1. If the window

is a full-screen window, this field is ignored.

Offset to title text. The offset for the window title text. The default value is 0.

Center border character. The character used for the center border. The default is X'00' for all border
characters. The default border character used for non-GUI windows is ':'. For GUI windows, the default
GUI character is used.

Center continuation attribute flag for the window. Whether or not the window has a center continuation
attribute (see Figure 10). The possible values are:

0 Window has no center continuation attribute byte.

1 Window has a center continuation attribute byte. This is the default. For GUI windows, 1 must be
specified.

The center continuation attribute used is X'20', which is green for color displays and normal attribute for
monochrome displays.

Row location of upper left corner of window border. The row number of the upper left corner of the
window. The first window row is one greater than the value specified in this field. This must be a positive
integer value greater than or equal to 0. For GUI windows, the minimum value must be 1. Otherwise, it
must be a positive integer value greater than or equal to 0. For non-GUI windows, if 0 is specified, the top
border of the window will not be displayed on the screen unless the window is moved. The default value is
such that the maximum-sized window will be displayed, with border and attributes, given the other window
description attributes (for example, window border attributes). If the window is a full-screen window, this
field is ignored.

Title text. The text for the window title, which is written in the top border of the window. If the title text is
too long to fit in the window border, it is truncated. Otherwise, it is centered in the window border. You can
add padding (extra blanks beside the text) to specify left or center justification for the title. If an attribute is
specified for the title text, the window border attribute is placed after the title text. This field is ignored if
the window does not have a top border.

The default is no title text.

Top border character. The character used for the top border. The default is X'00' for all border characters.
The default border character used for non-GUI windows is '.'. For GUI windows, the default GUI character
is used.

Upper left border character. The character used for the upper left border. The default is X'00' for all
border characters. The default border character used for non-GUI windows is '.'. For GUI windows, the
default GUI character is used.

Upper center border character. The character used for the upper center border. The default is X'00' for all
border characters. The default border character used for non-GUI windows is '.'. For GUI windows, the
default GUI character is used.

Window display attributes for a color display. The window display attributes for a color display. The
first character is the attribute for the window border when the window is not current, the second for when
the window is current, and the third for the leading window attribute. All bytes may contain the same value.
The special value X'00' can be used to indicate that no screen attribute should be used for the given
character. The first attribute is ignored for GUI windows, which only use the second attribute. If X'00' is
specified as the second attribute for a GUI window, the default GUI border attribute will be used. Both the
current and noncurrent border attributes must be either X'00' or a valid attribute. For example, it is incorrect
to specify the current attribute field X'00' and the noncurrent attribute field with a valid attribute.

The default values for these fields are those specified by the window services mode description (see Format

of the Window Services Attribute Description).

Window display attributes for a monochrome display. The window display attributes for a monochrome
display. The first character is the attribute for the window border when the window is not current, the
second for when the window is current, and the third is for the leading window attribute. All bytes may
contain the same value. The special value X'00' can be used to indicate that no screen attribute should be
used for the given character. The first attribute is ignored for GUI windows, which only use the second
attribute. If X'00' is specified as the second attribute for a GUI window, the default GUI border attribute
will be used. Both the current and noncurrent border attributes must be either X'00' or a valid attribute. For
example, it is incorrect to specify the current attribute field X'00' and the noncurrent attribute field with a
valid attribute.

The default values for these fields are those specified by the window services mode description (see Format
of the Window Services Attribute Description).

Window title flags (GUI only). Byte 3 of the window title minor structure of the Create Window
command. The default is X'00'.

Format of the Window User Extension Information

Offset

Type FieldDec Hex

0 0 PTR(SPP) User data associated with window

16 10 PTR(PP) Exit routine to call for Change Window
(QsnChgWin) API

32 20 PTR(PP) Exit routine to call for Delete Low-Level
Environment (QsnDltEnv) API

48 30 PTR(PP) Exit routine for QsnMovWin, Move Window by
User (QsnMovWinUsr), Resize Window
(QsnRszWin), or Resize Window by User
(QsnRszWinUsr) APIs

64 40 PTR(PP) Exit routine for Display Window (QsnDspWin)
API

80 50 PTR(PP) Exit routine for Set Current Window
(QsnSetCurWin) API

Field Descriptions

Exit routine for Change Window (QsnChgWin) API. This exit routine is called after the window is
changed. If the window is redrawn, it is called after the window is redrawn.

Exit routine for Delete Low-Level Environment (QsnDltEnv) API. The exit routine to call when a
window is deleted using the Delete Low-Level Environment (QsnDltEnv) API.

Exit routine for Display Window (QsnDspWin) API. The exit routine to call immediately before the
window is drawn or redrawn. The following APIs may cause the window to be redrawn: QsnCrtWin,
QsnStrWin, QsnChgWin, QsnMovWin, QsnMovWinUsr, QsnRszWin, QsnRszWinUsr, QsnDspWin, and
QsnSetCurWin.

Exit routine for move or resize window APIs. The exit routine to call when window coordinates are
changed using the QsnMovWin, Move Window by User (QsnMovWinUsr), Resize Window (QsnRszWin),
or Resize Window by User (QsnRszWinUsr) APIs. This exit routine is called after the window is redrawn.

Exit routine for Set Current Window (QsnSetCurWin) API. The exit routine to call whenever a window
is made current by one of the following APIs: QsnCrtWin, QsnStrWin, or QsnSetCurWin. This exit routine
is called after the window is drawn or redrawn.

User data associated with window. A pointer to any data that the user wants to associate with this
window.

Window Exit Routines

Exit routines are user-supplied functions with a defined interface. The routines are called from certain APIs
and allow the programmer to attach additional function to those APIs. For instance, if fields have been set
up in a window, a Change Coordinates exit routine could be supplied to move the fields if the window is
moved.

Exit Routine Error Handling

If an exception occurs during the processing of an exit routine, the exception is ignored and processing
continues. A CPFA318 will be issued as a diagnostic message only. You can explicitly handle errors in an
exit routine by adding an exception handler to the routine.

Change Window Exit Routine

This exit routine, if specified on the user extension information, is called when the window is changed. The
following parameter is passed to the exit routine:

 Parameter Passed to Exit Routine

1 Window handle Input Binary(4)

Change Window Exit Routine Parameter

Window handle

INPUT; BINARY(4)

The window that was changed.

Delete Window Exit Routine

This exit routine, if specified on the user extension information, is called when the window is deleted. The
following parameter is passed to the exit routine:

 Parameter Passed to Exit Routine

1 Window handle Input Binary(4)

Delete Window Exit Routine Parameter

Window handle

INPUT; BINARY(4)

The window that was deleted.

Change Window Coordinates Exit Routine

This exit routine, if specified on the user extension information, is called when the move or resize APIs are
called, after the window has been successfully moved or resized, but before the window is drawn on the
screen. For this reason, you should not use this exit routine to draw anything in the window. The draw exit
routine is called when the window is moved or resized. The following parameters are passed to the exit
routine:

 Parameters Passed to Exit Routine

1 Window handle Input Binary(4)
2 Top border offset Input Binary(4)
3 Left border offset Input Binary(4)
4 Bottom border offset Input Binary(4)
5 Center border offset Input Binary(4)

Change Window Coordinates Exit Routine Parameters

Window handle

INPUT; BINARY(4)

The window for which the coordinates were changed.

Top border offset

INPUT; BINARY(4)

The offset, in screen rows, from the previous top window border to the current top window border
(after the window coordinates have been changed). It can be positive, negative, or zero, depending
on how the top window border was changed. For example, if the top border was moved down two
rows, this value would be 2; if it was moved up 4 rows, this value would be -4; if the top row was
not changed, this value would be 0.

Left border offset

INPUT; BINARY(4)

The offset, in screen columns, from the previous left window border to the current left window
border (after the window coordinates have been changed). It can be positive, negative, or zero,
depending on how the left window border was changed. For example, if the left border was moved
two columns to the center, this value would be 2; if it was moved 4 columns to the left, this value
would be -4, and if the left column was not changed, this value would be 0.

Bottom border offset

INPUT; BINARY(4)

The offset, in screen rows, from the previous bottom window border to the current bottom window
border (after the window coordinates have been changed). It can be positive, negative, or zero,
depending on how the bottom window border was changed. For example, if the border was moved
down two rows, this value would be 2; if it was moved up 4 rows, this value would be -4; if the
bottom row was not changed, this value would be 0.

Center border offset

INPUT; BINARY(4)

The offset, in screen columns, from the previous center window border to the current center
window border (after the window coordinates have been changed). It can be positive, negative, or
zero, depending on how the center window border was changed. For example, if the center border
was moved two columns to the center, this value would be 2; if it was moved 4 columns to the left,
this value would be -4; if the center column was not changed, this value would be 0.

Draw Window Exit Routine

This exit routine, if specified on the user extension information, is called when the Display Window
(QsnDspWin) API is called, before the window is drawn. Because the exit routine is called before the
window is drawn, you should only write inside the window using the command buffer parameter. Direct
operations should not be used for the exit routine. The following parameters are passed to the exit routine:

 Parameters Passed to Exit Routine

1 Window handle Input Binary(4)
2 Command buffer Input Binary(4)

Draw Window Exit Routine Parameters

Window handle

INPUT; BINARY(4)

The window to be drawn.

Command buffer

INPUT; BINARY(4)

The command buffer used to store the commands that re-create the window contents. The contents
of the command buffer are written to the screen along with the window border. This allows the
window and its contents to be redrawn in a single I/O operation.

Current Window Exit Routine

This exit routine, if specified on the user extension information, is called when the window is made current
through the Set Current Window (QsnSetCurWin) API. The following parameter is passed to the exit
routine:

 Parameter Passed to Exit Routine

1 Window handle Input Binary(4)

Current Window Exit Routine Parameter

Window handle

INPUT; BINARY(4)

A handle for the window that is made current.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA314 E Memory allocation error.

CPFA318 E Error calling exit routine.

CPFA327 E Low level environment description value incorrect.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A1 E Window description value is incorrect.

CPFA3AB E The value for &1 must be '0' or '1'.

Additional errors may be generated by this API. They are listed in Error Messages under the Create
Low-Level Environment (QsnCrtEnv) API.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Initialize Window Description (QsnInzWinD) API

 Required Parameter Group:

1 Window description Output Char(*)
2 Length of window

description
Input Binary(4)

 Omissible Parameter:

3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

TheInitialize Window Description (QsnInzWinD) API initializes a window description with default values.
Unless otherwise specified in the window description (see Format of the Window Description), pointer
fields are set to the null pointer, numeric fields to 0, character flag fields to 0, and other character fields to
blanks. For example, the default value for the border flag is 1, so this field will be set to 1.

Authorities and Locks

Exit Routine Authority

*EXECUTE

Required Parameter Group

Window description

OUTPUT; CHAR(*)

The window description to be initialized.

Length of window description

INPUT; BINARY(4)

The length of the window description parameter.

Omissible Parameter Group

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Move Window (QsnMovWin) API

 Required Parameter Group:

1 Window handle Input Binary(4)
2 Upper left row Input Binary(4)
3 Upper left column Input Binary(4)

 Omissible Parameter:

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The QsnMovWin API moves the window to the new upper left coordinate (upper left row, upper left
column) specified. If the window can fit within the display at the location specified, it is moved to the new
position. If a Change Window Coordinates exit routine is specified on the window description, it is called
after the window is successfully moved. If the window is a full screen window, the API will complete
successfully, but the window will not be moved.

Authorities and Locks

None

Required Parameter Group

Window handle

INPUT; BINARY(4)

A handle for the window to be moved.

Upper left row

INPUT; BINARY(4)

The absolute screen row for the new upper left corner of the window.

Upper left col

INPUT; BINARY(4)

The absolute screen column for the new upper left corner of the window.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A2 E Window does not fit on screen.

CPFA3A4 E Specified window is not active.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Move Window by User (QsnMovWinUsr) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Move Window by User (QsnMovWinUsr) API allows a window to be moved on the screen to a new
location specified by the user. The API positions the cursor at the upper left corner of the window and
prompts the user to move the cursor to the new position for the upper left corner. The prompt is displayed
only if a message line has been defined. If the window can fit within the display at the location specified, it
is moved to the new position. If a Change Window Coordinates exit routine is specified on the window
description, it is called after the window is successfully moved. If the window is a full screen window, the
API will complete successfully, but the window will not be moved.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window to be moved.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Resize Window (QsnRszWin) API

 Required Parameter Group:

1 Window handle Input Binary(4)
2 Number of rows Input Binary(4)
3 Number of columns Input Binary(4)

 Omissible Parameter:

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Resize Window (QsnRszWin) API allows a window to be resized. If a Change Window Coordinates
exit routine is specified on the window description, it is called after the window is successfully resized. If
the window is a full screen window, the API will complete successfully, but the window will not be moved.
Windows where the associated low-level environment indicates DBCS support cannot be resized.

Authorities and Locks

None

Required Parameter Group

Window handle

INPUT; BINARY(4)

A handle for the window to be resized.

Number of rows

INPUT; BINARY(4)

The new value for the number of rows in the window.

Number of columns

INPUT; BINARY(4)

The new value for the number of columns in the window.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A2 E Window does not fit on screen.

CPFA3A4 E Specified window is not active.

CPFA3A5 E Window dimensions not within window limits.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Resize Window by User (QsnRszWinUsr) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Resize Window by User (QsnRszWinUsr) API allows a window to be resized according to the cursor
movements specified by the user. If the cursor is located on a border when this API is called, then that
border can be moved. If the cursor is located on a border corner, the two sides that meet at that corner can
be moved. If the user positions the cursor to a new row/column for the horizontal or vertical border, the
border is moved to the new coordinate position and the window is resized accordingly. If the cursor is not
on the border when the API is called, then the cursor is moved to the bottom center corner of the window
and the user is prompted to move the cursor to the new position for the bottom center corner of the window.
The prompt is displayed only if a message line has been defined. If the window is a full screen window, the
API will complete successfully, but the window will not be moved.

A window can be made only as small (large) as the minimum (maximum) size allowed for the window. If
the user moves the cursor such that the resulting window will be smaller (larger) than the minimum
(maximum) size allowed, the resulting window will be the minimum (maximum) size. If a Change Window
Coordinates exit routine is specified on the window description, this routine is called after the window is
successfully resized. Typically, this API would be called after the user presses a particular function key.
Windows where the associated low-level environment indicates DBCS support cannot be resized.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window to be resized.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Window Data (QsnRtvWinDta) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter Group:

2 User data pointer Output PTR(SPP)
3 Error code I/O Char(*)

 Returned Value:

User data pointer Output PTR(SPP)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Window Data (QsnRtvWinDta) API returns a pointer to the user data for the given window.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window for which the user data should be returned.

Omissible Parameter Group

User data pointer

OUTPUT; PTR(SPP)

A space pointer to the user data field supplied in the user extension information when the window
was defined. If no user data is associated with the window, the null pointer is returned.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

User data pointer

OUTPUT; PTR(SPP)

This API returns the value for the user data pointer parameter, or the null pointer if an error occurs.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1F E Pointer is not on a 16 byte boundary.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Window Description (QsnRtvWinD)
API

 Required Parameter Group:

1 Window handle Input Binary(4)
2 Window description Output Char(*)
3 Length of window

description
Input Binary(4)

 Omissible Parameter:

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Window Description (QsnRtvWinD) API retrieves a copy of the window description for the
given window.

Authorities and Locks

None

Required Parameter Group

Window handle

INPUT; BINARY(4)

A handle for the window for which the window description should be returned.

Window description

OUTPUT; CHAR(*)

The window description for the given window. The format of the data returned is shown in Format
of the Window Description Returned.

Length of window description

INPUT; BINARY(4)

The length of the window description parameter. If the length is larger than the size of the receiver
variable, the results are not predictable. The minimum length is 8. The API returns as much
information as it can fit in this length. If the available information is longer, it is truncated. If the
available information is shorter, the unused output is unchanged; whatever is already stored in that
space remains there. To determine how much information the API actually returns in response to
this call, see the bytes returned field. To determine how much information the API could return if
space were available, see the bytes available field.

Omissible Parameter

Error code

I/O; CHAR(*)

Thestructure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Window Description Returned

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(*) Window description

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Window description. The format of the remaining data returned is shown in Format of the Window
Description.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Set Window Services Attributes
(QsnSetWinAtr) API

 Required Parameter Group:

1 Window services attributes
description

Input Char(*)

2 Length of window service
attributes description

Input Binary(4)

 Omissible Parameter:

3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Set Window Services Attributes (QsnSetWinAtr) API sets the default attributes for the window
services.

Authorities and Locks

None

Required Parameter Group

Window services attributes

INPUT; CHAR(*)

Defines the attributes for the window services APIs. The format of the window services attributes
description is shown in Format of the Window Services Attribute Description.

Length of window services attributes

INPUT; BINARY(4)

The length of the window services attributes parameter.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Window Services Attribute Description

Offset

Type FieldDec Hex

0 0 CHAR(3) Monochrome window display attributes

3 3 CHAR(3) Color window display attributes

Field Descriptions

Color window display attributes. The window display attributes for a color display. The first character is
the attribute for the window border when the window is not current, the second for when the window is
current, and the third for the leading window attribute. The first attribute is ignored for GUI windows,
which only use the second attribute. All bytes can contain the same value. The special value X'00' indicates
that no screen attribute is to be used for the given character. Both the current and noncurrent border
attributes must be either X'00' or a valid attribute. For example, it is incorrect to specify the current attribute
field X'00' and the noncurrent attribute field with a valid attribute.

The default values for these fields are X'20' for green, X'3A' for blue, and X'20' for green.

Monochrome window display attributes. The window display attributes for a monochrome display. The
first character is the attribute for the window border when the window is not current, the second for when
the window is current, and the third for the leading window attribute. The first attribute is ignored for GUI
windows, which only use the second attribute. All bytes may contain the same value. The special value
X'00' indicates that no screen attribute is to be used for the given character. Both the current and noncurrent
border attributes must be either X'00' or a valid attribute. For example, it is incorrect to specify the current
attribute field X'00' and the noncurrent attribute field with a valid attribute.

The default values for these fields are X'20' for normal attribute, X'22' for high intensity, and X'20' for
normal attribute, respectively.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3AC E Window services attributes description value is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Window I/O APIs
The majority of window I/O operations are performed through calls to the low-level services interfaces. If
specified on the window description or through an explicit call to the Set Low-Level Environment Window
Mode (QsnSetEnvWinMod) API, the low-level interfaces can operate in a relative mode, where operations
such as Set Field (QsnSetFld) are performed relative to the current window. See Set Low-Level
Environment Window Mode (QsnSetEnvWinMod) API for details.

The APIs specific to window I/O operations are:

Clear Window (QsnClrWin) clears the window area.●

Clear Window Message (QsnClrWinMsg) clears the message for a given window.●

Display Window (QsnDspWin) draws the window border and clears the window area.●

Put Window Message (QsnPutWinMsg) puts a message on the message line for a given window.●

Top | Dynamic Screen Manager APIs | APIs by category

Clear Window (QsnClrWin) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Clear Window (QsnClrWin) API clears the window area for the given window. Any field definitions
remain intact. Use the Clear Field Table (QsnClrFldTbl) API to remove field definitions.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window to be cleared.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Clear Window Message (QsnClrWinMsg) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Clear Window Message (QsnClrWinMsg) API clears the window message for the given window. This
API is valid only if the window has a message line specified for it.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window containing the message to be cleared.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3A7 E Window does not have a message line.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Display Window (QsnDspWin) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Display Window (QsnDspWin) API draws the window border for the current window and clears the
window area. The QsnDspWin API does not make a window current. It simply redraws the window using
the existing border attributes. For overlapping windows, use this API only for the current window. If a
Draw Window exit routine is specified on the window description, this routine is called after the window is
defined successfully and prior to actually drawing the window.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window to be drawn.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Put Window Message (QsnPutWinMsg) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter Group:

2 Message Input Char(*)
3 Message length Input Binary(4)
4 Lock keyboard Input Char(1)
5 Message identifier Input Char(7)
6 Qualified message file name Input Char(20)
7 Row Input Binary(4)
8 Column Input Binary(4)
9 Starting monochrome

attribute
Input Char(1)

10 Ending monochrome attribute Input Char(1)
11 Starting color attribute Input Char(1)
12 Ending color attribute Input Char(1)
13 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Put Window Message (QsnPutWinMsg) API places an error message on the message line for the given
window. This API is valid only if the window has a message line specified for it.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window in which the message should be placed.

Omissible Parameter Group

Message

INPUT; CHAR(*)

The message to be displayed. If the message does not fit within the window, it is truncated to fit. If
the message length parameter is specified as nonzero, the message parameter is required. The
message or the message ID parameter must be specified. If the message parameter is specified, the
message ID parameter is ignored and no help key support is available for the message.

Message length

INPUT; BINARY(4)

The number of bytes of message data to be displayed.

Lock keyboard

INPUT; CHAR(1)

Whether the keyboard should be placed in prehelp error state of not. The possible values are:

0 Do not place the keyboard in prehelp error state.

1 Place the keyboard in prehelp error state. If 1 is specified, the processing of this API follows
that of the QsnSetErr API and the QsnPutWinMsg API must be followed by an
AID-associated read API. This is the default.

Message identifier

INPUT; CHAR(7)

The identifying code for the predefined message to be displayed. The first level text is displayed. If
the user moves the cursor to the message line and presses the Help key, the message No help text
available is displayed. This parameter is required if the message parameter is omitted.

Qualified message file name

INPUT; CHAR(20)

The name of the message file from which to retrieve the message information, and the library in
which the message file resides. This parameter is required if the message parameter is omitted. The
format of this parameter is:

Bytes Value

1-10 Message file name

11-20 Message file library. This can be an actual library name or one of the special values
*CURLIB or *LIBL.

Row

INPUT; BINARY(4)

The relative window row at which to position the cursor when the message is displayed. To move
the cursor, the API must be followed by an AID-associated read API.

If both row and column are omitted or specified with a zero value, the cursor is not moved. Row
and column must both be specified or omitted; one cannot be specified if the other is omitted.

Column

INPUT; BINARY(4)

The relative window column at which to position the cursor when the message is displayed.

Starting monochrome attribute

INPUT; CHAR(1)

The initial screen attribute for monochrome displays. If this parameter is omitted and monochrome
attributes are to be used, no initial attribute is written to the display for the data.

The monochrome and color attributes parameters are the initial and ending screen attributes: an
initial and ending screen attribute to be used for a monochrome or a color display, respectively.
One of these parameters will be selected based on the underlying display type, and the other will be
discarded. Any of the attributes can be specified as a special value, X'00', indicating that no screen
attribute should be written to the display. If the initial screen attribute is specified as an actual
attribute, the data column, if specified, must be greater than or equal to 2. The initial screen
attribute, if not X'00', will be written to the screen at the column previous to the first data character
if row and column are specified, otherwise to the current display address. The ending screen
attribute, if not X'00', will be written at the column directly after the last data character.

See Screen Attribute Characters for a description of the screen attribute values.

Ending monochrome attribute

INPUT; CHAR(1)

The ending screen attribute for monochrome displays. If this parameter is omitted and monochrome
attributes are to be used, no ending attribute is written to the display for the data.

Starting color attribute

INPUT; CHAR(1)

The initial screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no initial attribute is written to the display for the data. See Screen Attribute Characters for
a description of the screen attribute values.

Ending color attribute

INPUT; CHAR(1)

The ending screen attribute for color displays. If this parameter is omitted and color attributes are to
be used, no ending attributes are written to the display for the data.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA307 E Screen position &1, &2 outside of display or window area.

CPFA30D E Invalid screen attribute.

CPFA31E E Required parameter &1 omitted.

CPFA333 E Parameter &1 not positive integer value.

CPFA335 E Screen address parameter error.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3A7 E Window does not have a message line.

CPFA3A8 E Error occurred retrieving message text.

CPFA3AA E Window handle incorrect.

CPFA3AB E The value for &1 must be '0' or '1'.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Window Manager Services APIs
The window manager services APIs manage multiple windows, support I/O to several active windows, and
allow switching between windows. Much of the work of the window manager services is performed
implicitly through the window builder routines.

Windows are managed on an activation-group basis. That is, all windows that were started within a given
activation group will be managed as a unit. You can only switch to or end a window that was started within
the current activation group. If windows need to be redrawn, only those windows within the current
activation group will be redrawn. A window can be created in one activation group and started in another
group. The activation group in which the window was started will be the group to manage the window.

The window manager services APIs are:

End a Window (QsnEndWin) ends an active, current window and removes it from the screen.●

Retrieve Current Window (QsnRtvCurWin) returns the handle for the current window.●

Set Current Window (QsnSetCurWin) makes the specified window current.●

Start a Window (QsnStrWin) starts a window by displaying it and making it the current window.●

Top | Dynamic Screen Manager APIs | APIs by category

End a Window (QsnEndWin) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter Group:

2 Restore screen Input Char(1)
3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The End a Window (QsnEndWin) API ends a currently active window that was started with the Start a
Window (QsnStrWin) API. The window is removed from the display on the screen and from the active
window list. The data associated with the window is not deallocated.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window to be ended.

Omissible Parameter Group

Restore screen

INPUT; CHAR(1)

Indicates if the underlying display image should be restored when the window is ended. This

parameter is ignored if the underlying display image was not saved. This option should be used if
the screen will be refreshed by another application and does not need to be refreshed when the
window is removed. Performance can be improved by not restoring the display image. However,
the saved screen may not be restored properly if it is not restored by another application.

The possible values are:

0 Do not restore the screen when the window is ended.

1 Restore the screen, if saved, when the window is ended. This is the default.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3AA E Window handle incorrect.

CPFA3AB E The value for &1 must be '0' or '1'.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Current Window (QsnRtvCurWin) API

 Omissible Parameter Group:

1 Current window handle Output Binary(4)
2 Error code I/O Char(*)

 Returned Value:

Current window handle Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Current Window (QsnRtvCurWin) API returns the handle for the current window.

Authorities and Locks

None

Omissible Parameter Group

Current window handle

OUTPUT; BINARY(4)

The variable that contains the handle for the current window when the QsnRtvCurWin API has
completed. If there is no current window, this parameter is set to 0.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Current window handle

OUTPUT; BINARY(4)

This API returns the value for the current window handle parameter. If there is no current window,
this API returns 0.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Set Current Window (QsnSetCurWin) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Set Current Window (QsnSetCurWin) API makes the given window the current window. The
QsnSetCurWin API draws the window with the current window border attribute, if specified. The Current
Window exit routine, if specified on the window description, is called after the given window becomes
current. The current window overlays all other windows on the display screen.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window that will become current.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3AA E Window handle incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Start a Window (QsnStrWin) API

 Required Parameter:

1 Window handle Input Binary(4)

 Omissible Parameter Group:

2 Save screen Input Char(1)
3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Start a Window (QsnStrWin) API starts a window created with the Create a Window (QsnCrtWin) API. This causes
the window to be displayed on the screen and added to the active window list. If specified, the Draw Window exit routine
is called immediately before the window is drawn.

Authorities and Locks

None

Required Parameter

Window handle

INPUT; BINARY(4)

A handle for the window to be started.

Omissible Parameter Group

Save screen

INPUT; CHAR(1)

Indicates if the underlying display image should be saved prior to drawing the window. This option should be used
only if the window will not be moved or resized over an existing display image. Performance can be improved by
not saving the display image. However, doing this limits the overlapping nature of the window. If an attempt is
made to move or resize a window for which the display image was not saved, the screen is cleared and all windows
are redrawn prior to moving the window.

The possible values for this parameter are:

0 Do not save the underlying display image when the window is started.

1 Save the underlying display image when the window is started. This is the default.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code Parameter. If this
parameter is omitted, diagnostic and escape messages are issued to the application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation was successful, or
-1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA318 E Error calling exit routine.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3AA E Window handle incorrect.

CPFA3AB E The value for &1 must be '0' or '1'.

Performance Considerations
You can improve the performance of window operations by doing the following:

Do not save or restore the underlying screen image when a window is started or ended with the Start a Window
(QsnStrWin) or End a Window (QsnEndWin) API, respectively. See pages Start a Window (QsnStrWin) API and
End a Window (QsnEndWin) API.

●

For non-GUI windows, use the same color for current and noncurrent boundaries.●

Use a display station attached to a control unit that supports an enhanced interface for a nonprogrammable work
station, even if you are not using GUI windows.

●

Use GUI window support when the underlying control unit supports this.●

Creating/Manipulating Windows Example
The sample program in Figure 14 shows how to create and manipulate several windows with exit routines. The program
creates three windows- Window 1, Window 2, and Window 3. Each time Enter is pressed, the next window is made
current; in which case, the Draw Window exit routine for that window is called. If the user presses F4=Move or F5=Resize,
the current window is moved or resized and the Draw Window exit routine is called again. The resulting screen output is
shown in Figure 15.

Figure 14. Creating and Manipulating Windows

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "qsnapi.h"

void GenericDraw(const Qsn_Cmd_Buf_T *cbuf, const Qsn_Win_T *win)
{
 char *msg1 = "F3: quit F4: move F5: resize";
 char *msg2 = "text no attribute";

 QsnWrtDta(msg2, strlen(msg2), 0, 2, 1, QSN_NO_SA, QSN_NO_SA,
 QSN_NO_SA, QSN_NO_SA, *cbuf, *win, NULL);
 QsnWrtDta(msg1, strlen(msg1), 0, -1, 1, QSN_SA_HI, QSN_SA_NORM,
 QSN_SA_RED, QSN_SA_NORM, *cbuf, *win, NULL);
}

void Draw1(const Qsn_Win_T *win, const Qsn_Cmd_Buf_T *cbuf)
{
 char *txt = "window 1 (ul/blue)";

 GenericDraw(cbuf, win);
 QsnWrtDta(txt, strlen(txt), 0, 5, 5, QSN_SA_UL, QSN_SA_NORM,
 QSN_SA_BLU, QSN_SA_NORM, *cbuf, *win, NULL);
}

void Draw2(const Qsn_Win_T *win, const Qsn_Cmd_Buf_T *cbuf)
{
 char *txt = "window 2 (ul/red)";

 GenericDraw(cbuf, win);
 QsnWrtDta(txt, strlen(txt), 0, 5, 5, QSN_SA_UL, QSN_SA_NORM,
 QSN_SA_RED, QSN_SA_NORM, *cbuf, *win, NULL);
}

void Draw3(const Qsn_Win_T *win, const Qsn_Cmd_Buf_T *cbuf)
{
 char *txt = "window 3 (ul/pink)";

 GenericDraw(cbuf, win);
 QsnWrtDta(txt, strlen(txt), 0, 5, 5, QSN_SA_UL, QSN_SA_NORM,
 QSN_SA_PNK, QSN_SA_NORM, *cbuf, *win, NULL);
}
int main (void) {
 int i;
 char text[100];
 Qsn_Win_T win1, win2, win3, cur;
 Qsn_Win_Desc_T win_desc;
 Qsn_Win_Ext_Inf_T ext = { NULL, NULL, NULL, NULL, NULL, NULL };
 Q_Bin4 win_desc_length = sizeof(win_desc);
 char aid;

 QsnInzWinD(&win_desc, win_desc_length, NULL);
 win_desc.GUI_support = '0';

 /* define and start window 1 */
 win_desc.top_row = 3;
 win_desc.left_col = 5;
 win_desc.num_rows = 13;
 win_desc.num_cols = 40;
 ext.draw_fp = Draw1;
 win1 = QsnCrtWin(&win_desc, win_desc_length, &ext, sizeof(ext),
 '1', NULL, 0, NULL, NULL);
 QsnGetAID(NULL, 0, NULL);

 /* define and start window 2 */
 win_desc.top_row = 10;
 win_desc.left_col = 10;
 win_desc.num_rows = 10;
 win_desc.num_cols = 30;
 ext.draw_fp = Draw2;
 win2 = QsnCrtWin(&win_desc, win_desc_length, &ext, sizeof(ext),
 '1', NULL, 0, NULL, NULL);
 QsnGetAID(NULL, 0, NULL);

 /* define and start window 3 */
 win_desc.top_row = 5;
 win_desc.left_col = 20;
 win_desc.num_rows = 15;
 win_desc.num_cols = 50;
 ext.draw_fp = Draw3;
 win3 = QsnCrtWin(&win_desc, win_desc_length, &ext, sizeof(ext),
 '1', NULL, 0, NULL, NULL);
 cur = win3;

 for (;;) {
 if (((aid=QsnGetAID(NULL, 0, NULL)) == QSN_F3))
 break;
 else if (aid == QSN_F4)
 QsnMovWinUsr(cur, NULL);
 else if (aid == QSN_F5)
 QsnRszWinUsr(cur, NULL);
 else {
 /* switch current window to next window */
 if (cur == win1) {
 QsnSetCurWin(win2, NULL);
 cur = win2;
 } else if (cur == win2) {
 QsnSetCurWin(win3, NULL);
 cur = win3;
 } else {
 QsnSetCurWin(win1, NULL);
 cur = win1;
 }
 }
 }

}

Figure 15. Display Screen

+--+
 Command Entry
RCHASD0I
 Request level:
1
 Pr ..
 : :
 : text no attr ..
 : : :
 : : text no attribute :
 : window 1 : :
 : : :
 : : window 3 (ul/pink) :
 : : : :
 : : text no : :
 : : : :
 : : : :
 : F3 : win : :
 : : : :
ottom
 Ty :... : : :
 ===> ca : : :
 : F3: qui : F3: quit F4: move F5: resize :
 : : :
 :........ :..:
 F3=Exit F4=Prompt F9=Retrieve F10=Include detailed messages
 F11=Display full F12=Cancel F13=Information Assistant F24=More
keys

+--+

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Session Services APIs
The session services APIs provide a general scrolling I/O interface. They can be used to build a standard
input-line scrolling interface or an interface that has an output-only scroll area (called a scroller) in a
window. Sessions are special cases of windows as supported by the window services. A session is defined
using a session, a window, and a low-level environment description. The window and low-level
environment descriptions are the same as those used to define a window directly with the window services
APIs. The session description defines the structure of the session. The structure includes the coordinates of
the scrolling portion, the length of the input line, the amount to roll by, and so on. A session is implemented
as a window, where the window user data pointer describes the session itself. Thus, a session can be
manipulated through the window and low-level interfaces by passing the session handler or through the
session interfaces. This implementation is similar to the concept of inheritance in object-oriented
programming languages.

Sessions are similar in concept to subfiles and can be used for any application that requires a scrolling line
interface. The session services APIs are divided into the following functional groups:

Session manipulation and query APIs allow you to create, query, and manipulate sessions.●

Session I/O APIs allow you to perform input and output operations to sessions.●

For additional information, select one of the following:

Session Details●

Line Mode and Character Mode I/O●

Command Key Action Routines●

Action Routine Parameters●

Active Position●

EBCDIC Display Control Characters●

DBCS Considerations●

Top | Dynamic Screen Manager APIs | APIs by category

Using Session Services APIs

Session Details

The following figure shows the default attributes provided by the DSM session description for a session.

Session Attributes

 1 2 3 4 5 6 7
... ... 8

 1|
|
 2|
|
 3| : *------------------------------* :
|
 4| : | | :
|
 5| : | | :
|
 6| : | | :
|
 7| : | SCROLLER | :
|
 8| : | | :
|
 9| : | | :
|
10| : *------------------------------* :
|
11| : :
|
12| : ===> __________________________ :
|
13| : ________________________________ :
|
14| : :
|
15| : F3=Exit F6=Print F9=Retrieve :
|
16| : F14=Move F15=Resize F22=Switch :
|
17| : :
|
18| :..................................:
|
19|
|
20|
|
21|
|
22|
|
23|
|
24|
|

.---.

The main component of a session is the scrollable area, or scroller, where output data can be displayed for the session. A
session may or may not have a data input line, depending on the application. A session that uses the default attributes has
an input line underneath the scroller. You can allow the size and location of the session attributes to default based on the
window size, or you can specify these explicitly. Up to two lines of command key descriptions can appear below the
scroller and can be managed by a session. For details on the session description see Create a Session (QsnCrtSsn) API.

When a window containing a session is moved or resized, the scroller and any automatically defined fields are redrawn to
reflect the new window positions and size. If any additional items have been added to the session through the low-level
interface APIs, you must supply an exit program that will reposition such items explicitly. See Create a Session
(QsnCrtSsn) API for details on the exit program.

Line Mode and Character Mode I/O

Session I/O can be performed in a line mode or a character mode basis. In line mode, each call to the line-specific
interfaces operates on a complete line, either on input or output. In character mode, I/O is performed a character at a time.
This means that multiple I/O operations can be issued to operate on the current line. For example, an output operation
could output several characters. Then a backspace operation could be followed by input from the current cursor position.
(All input operations are still performed in block mode, where the input is not available until an AID-generating key has
been pressed.)

Line mode output is performed using the Write Line to Scroller (QsnWrtSclLin) API. This API writes a line of data to the
next session line and sets the active position (see Active Position) to the start of the next line after the added line. For
character output, the Write Characters to Scroller (QsnWrtSclChr) API is used. This API outputs a string of characters
starting at the active position. After this operation completes, the active position is one position past the last character
written, or it is the position specified by a control character sequence if this appears at the end of the data.

Command Key Action Routines

Part of the session description is an array of command key actions. Each action is an exit routine that is specified as a
function pointer. When a command key is pressed during a QsnReadSsnDta operation, if an action has been specified, the
appropriate exit routine is called. Otherwise, an Invalid key pressed error message will be issued. DSM provides a group
of functions that can be called, or user-defined exit-routines can be specified. The action routines are specified as an array
of 24 function pointers in the session description. (See Create a Session (QsnCrtSsn) API for details.) The default values
for the action routines DSM calls are:

Cmd Key Action Routine

1

2

3

4

5

6 Print Scroller Data (QsnPrtScl)

7 Roll Scroller Down (QsnRollSclDown)

8 Roll Scroller Up (QsnRollSclUp)

9 Retrieve Session Input Line to Input Line (QsnRtvSsnLin)

10

11 Toggle Line Wrap/Truncate Mode (QsnTglSclWrp)

12

13

14 Move Window by User (QsnMovWinUsr)

15 Resize Window by User (QsnRszWinUsr)

16

17 Display Scroller Top (QsnDspSclT)

18 Display Scroller Bottom (QsnDspSclB)

19 Shift Scroller Left (QsnShfSclL)

20 Shift Scroller Right (QsnShfSclR)

21 Display Command Line Window (direct mapping to QUSCMDLN API)

22

23

24

The default action routines for command keys 7, 8, 19, and 20 (QsnRollSclDown, QsnRollSclUp, QsnShfSclL, and
QsnShfSclR, respectively) will pass any numeric input to the API when the command key is pressed. For example, to
shift the scroller to the right by 10 columns, the value 10 could be entered at the input line prior to pressing command key
20. Non-numeric input is ignored.

When a user-defined action routine is called, it is passed the following information:

 Information Passed to the Action Routine

1 Session handle Input Binary(4)
2 Input buffer Input Binary(4)
3 Returned action Output Char(1)

When the specified command key is pressed, the action routine for the command key is called. If you change the default
values to have a command key call a different DSM API, you cannot specify the API directly because the action routine is
passed specific parameters. You must define an action routine that can accept the action routine parameters and then call
the desired DSM API with the appropriate parameters. You can define a generic action routine that is specified for each
key you want to define, and in that action routine query the input buffer to determine the command key pressed and the
appropriate action to take.

When an action routine is called, any data on the input line will remain. You can use the QsnWTD API to clear the line.
However, if you write to the session or perform any action that causes the session to be redrawn in the action routine, the
data on the input line will be lost.

If an exception occurs during the processing of an action routine, it is ignored and processing continues. A CPFA3D9 will
be issued as an exception from the QsnReadSsnDta API when control returns from the action routine. You can handle
exceptions explicitly by adding an exception handler to the action routine.

Action Routine Parameters

Session handle

INPUT; BINARY(4)

The session currently active. If the action routine causes the active session to change, this variable will be
changed to reflect the new session.

Input buffer

INPUT; BINARY(4)

The input buffer containing the results of the input operations that caused this exit routine to be called. The input
buffer can be queried using the low-level interface routines. This is the buffer that was passed to QsnReadSsnDta.

Returned action

OUTPUT; CHAR(1)

The variable containing the flag indicating if, following a successful return from this exit routine, control returns
to the caller of the Read Data from Session (QsnReadSsnDta) API or if QsnReadSsnDta handles the next input
operation. If an error occurs in the exit routine, control always returns to the caller. The possible values are:

0 QsnReadSsnDta continues to handle the next input operation. Control does not return to the caller.

1 QsnReadSsnDta returns control to the caller. The output parameters for QsnReadSsnDta are filled in
appropriately.

Active Position

The active position in the scroller is the point at which data will be written for character mode operations. The active
position is affected by output operations to the scroller, including the writing of data that contains EBCDIC display
control character sequences.

EBCDIC Display Control Characters

The data written to the scroller may contain display control characters consisting of single byte EBCDIC values. If
specified on the session description (see Create a Session (QsnCrtSsn) API), the APIs for writing data to the scroller will
check for and interpret such control characters. Each control character recognized in the output data is replaced by a call
to a DSM API or internal routine that will perform the appropriate function. The following table shows the control
characters that are recognized and the APIs that are called, where applicable.

EBCDIC Display Control Characters

Character Hex Value Interpretation

HT 05 QsnSclTab

VT 0B QsnSclLF

FF 0C QsnSclFF

CR 0D QsnSclCR

NL 15 QsnSclNL

BS 16 QsnSclBS

BEL 2F QsnBeep

DBCS Considerations

If the low-level environment description (see Format of the Low-Level Environment Description) for the session specifies
DBCS support, the session services will check for and handle DBCS data. DBCS data must be enclosed by shift control
(SO/SI) characters. The DBCS support field determines the type of the input field defined for the session, but does not
affect the checking done for session output data other than to indicate that DBCS data may be present. The scroller does
not display data using extended NLS attributes, regardless of the underlying display device support.

If DBCS support is specified, the wrap indication for the session description must always be set to 1. Also, line retrieval is
not supported for DBCS sessions.

The QsnWrtSclChr, QsnSclBS, QsnSclCR, QsnSclFF, QsnSclLF, QsnSclNL and QsnSclTab APIs are disabled for a
DBCS session. A CPFA340 (Operation not supported with double-byte data.) will be signaled. QsnWrtSclLin is the only
DBCS-capable session output API.

If DBCS support is specifed, the display control characters indication of the session description (see Format of the
Session Description) is ignored. Any EBCDIC control characters in the line of data passed to QsnWrtSclLin will be
interpreted as shown in Table 9 - EBCDIC Display Control Characters.

Top | Dynamic Screen Manager APIs | APIs by category

Session Manipulation and Query APIs
The session manipulation and query APIs are:

Change Session (QsnChgSsn) changes the description for a session.●

Clear Scroller (QsnClrScl) clears the scroller data.●

Create a Session (QsnCrtSsn) creates a session for subsequent session I/O operations.●

Display Scroller Bottom (QsnDspSclB) shows the last line of scroller data.●

Display Scroller Top (QsnDspSclT) shows the first line of scroller data.●

Initialize Session Description (QsnInzSsnD) initializes a session description with default values.●

Query If Scroller in Line Wrap Mode (QsnQrySclWrp) queries if line wrap mode is on or off.●

Retrieve Number of Columns to Shift Scroller (QsnRtvSclNumShf) returns number of columns to
shift scroller by.

●

Retrieve Number of Rows to Roll Scroller (QsnRtvSclNumRoll) returns the number of rows to roll
scroller by.

●

Retrieve Session Data (QsnRtvSsnDta) returns a pointer to the user data for a session.●

Retrieve Session Description (QsnRtvSsnD) retrieves a copy of the description for a session.●

Roll Scroller Down (QsnRollSclDown) rolls the scroller down.●

Roll Scroller Up (QsnRollSclUp) rolls the scroller up.●

Shift Scroller Left (QsnShfSclL) shifts the scroller to the left.●

Shift Scroller Right (QsnShfSclR) shifts the scroller to the right.●

Toggle Line Wrap/Truncate Mode (QsnTglSclWrp) toggles the session between line wrap and
truncation mode.

●

Top | Dynamic Screen Manager APIs | APIs by category

Change Session (QsnChgSsn) API

 Required Parameter Group:

1 Session handle Input Binary(4)
2 Session description Input Char(*)
3 Length of session description Input Binary(4)

 Omissible Parameter:

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Change Session (QsnChgSsn) API changes the session description for the given session. If the session
contains DBCS data, the input line or the number of columns in the scroller cannot be changed. If the
session is currently displayed, it will be redrawn to reflect any changes.

Authorities and Locks

Exit Routine Authority

*EXECUTE

Required Parameter Group

Session handle

INPUT; BINARY(4)

A handle for the session for which the session description is to be changed.

Session description

INPUT; CHAR(*)

The format of the session description is shown in Format of the Session Description.

Length of session description

INPUT; BINARY(4)

The length of the session description parameter.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape essages are issued to the application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA314 E Memory allocation error.

CPFA318 E Error calling exit routine.

CPFA340 E Operation not supported with double-byte data.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D1 E Session description value is incorrect.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Clear Scroller (QsnClrScl) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Resize indication Input Char(1)
3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Clear Scroller (QsnClrScl) API clears the scroller data associated with a session and optionally resizes
the scroller buffer.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be cleared. All data in the scroller will be cleared.

Omissible Parameter Group

Resize indication

Input; CHAR(1)

Whether the scroller buffer should be resized when it is cleared.

0 Maintain current buffer size and data. This is the default.

1 Resize the buffer to the initial size given on the session description.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA314 E Memory allocation error.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3AB E The value for &1 must be '0' or '1'.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Create a Session (QsnCrtSsn) API

 Required Parameter Group:

1 Session description Input Char(*)
2 Length of session description Input Binary(4)

 Omissible Parameter Group:

3 User extension information Input Char(*)
4 Length of user extension

information
Input Binary(4)

5 Start session flag Input Char(1)
6 Window description Input Char(*)
7 Length of window

description
Input Binary(4)

8 Low-level environment
description

Input Char(*)

9 Length of low-level
environment description

Input Binary(4)

10 Session handle Output Binary(4)
11 Error code I/O Char(*)

 Returned Value:

Session handle Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Create a Session (QsnCrtSsn) API creates a session and returns a handle for the created session. The
session must be deleted using the Delete Low-Level Environment (QsnDltEnv) API.

Authorities and Locks

None.

Required Parameter Group

Session description

INPUT; CHAR(*)

The defined attributes of the session to be created. It must be declared aligned on a 16-byte
boundary. The format of the session description is shown in Format of the Session Description.

Length of session description

INPUT; BINARY(4)

The length of the session description parameter.

Omissible Parameter Group

User extension information

INPUT; CHAR(*)

Information that is used to associate data and exit routines with the session. This parameter is
required if the user extension information length parameter is supplied. This essentially enables the
object-oriented programming concept of inheritance, allowing the session to be extended in a
natural way. The user extension data cannot be changed once the session has been created. The
format of this parameter is shown in the section Format of the Session User Extension Data.

Length of user extension information

INPUT; BINARY(4)

The length of the user extension information parameter.

Start session flag

INPUT; CHAR(1)

Whether or not the session should be displayed on screen when it is created. The possible values
are:

0 Do not display the session on the screen when it is created. If you specify this value, you must
use the Start a Window (QsnStrWin) API to display the session.

1 Display the session on the screen when it is created. This is the default.

Window description

INPUT; CHAR(*)

The defined attributes for the window containing the session. This parameter is required if the
window description length parameter is supplied. The format of the window description is shown in
Format of the Window Description. If this parameter is omitted, a window will be created with
default values.

Length of window description

INPUT; BINARY(4)

The length of the window description parameter.

Low-level environment description

INPUT; CHAR(*)

operating environment for low-level operations used to create and manipulate the windows. This
parameter is required if the low-level environment description length parameter is supplied. The
format of the low-level environment description is shown in Format of the Low-Level Environment
Description. If this parameter is omitted, a low-level environment will be created with default
values.

Length of low-level environment description

INPUT; BINARY(4)

The length of the low-level environment description parameter.

Session handle

OUTPUT; BIN(4)

The variable containing a handle for the created session after the QsnCrtSsn API has completed.
This handle can be used across activation groups if the activation group in which the handle was
created is still active.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Session handle

OUTPUT; BINARY(4)

This API returns the value for the session handle parameter or -1 if an error occurs during
processing.

Format of the Session Description

Offset

Type FieldDec Hex

0 0 PTR(PP) [24] Array of command key actions

384 180 BINARY(4) top row of scroller

388 184 BINARY(4) left column of scroller

392 188 BINARY(4) Number of rows in scroller

396 18C BINARY(4) Number of columns in scroller

400 190 BINARY(4) Default number of rows to roll scroller by

404 194 BINARY(4) Default number of columns to shift scroller by

408 198 BINARY(4) Scroller buffer initial size

412 19C BINARY(4) Scroller buffer maximum size

416 1A0 BINARY(4) Scroller buffer increment

420 1A4 BINARY(4) Number of rows for input line

424 1A8 CHAR(1) Reserved

425 1A9 CHAR(1) Wrap indication

426 1AA CHAR(1) Reserved

427 1AB CHAR(1) Display control characters indication

428 1AC CHAR(1) Echo session input

429 1AD CHAR(1) Show scroller lines

430 1AE CHAR(1) Show scroller characters

431 1AF CHAR(1) Show command key descriptions

432 1B0 CHAR(1) Command key attribute for a monochrome
display

433 1B1 CHAR(1) Command key attribute for a color display

434 1B2 CHAR(1) Input line attribute for a monochrome display

435 1B3 CHAR(1) Input line attribute for a color display

436 1B4 BINARY(4) Offset to input line prompt

440 1B8 BINARY(4) Length of input line prompt

444 1BC BINARY(4) Offset to command key description line 1

448 1C0 BINARY(4) Length of command key description line 1

452 1C4 BINARY(4) Offset to command key description line 2

456 1C8 BINARY(4) Length of command key description line 2

460 1CC CHAR(20) Reserved.

* * CHAR(*) Input line prompt

* * CHAR(*) Command key description line 1

* * CHAR(*) Command key description line 2

Field Descriptions

In the following descriptions, the default value refers to the value set by the Initialize Session Description
(QsnInzSsnD) API.

Array of command key actions. An array of 24 function pointers, each corresponding to the action to be
performed when the associated command key is pressed. An element that is specified as a null pointer
indicates that the command key is invalid. An element can also be set to the dummy routine
QsnSameAction, in which case the current action routine for that key is used. If a command key action is
set to the dummy routine QsnDefaultAction, then the default action for that key is used. The defaults for
command key actions and the parameters passed to the action routines are described in Command Key
Action Routines. The procedures are exported as part of the service program that contains the DSM session
services.

Command key attribute for a color display. The default value is X'28' for red.

Command key attribute for a monochrome display. The default value is X'20' for normal attribute.

Command key description line 1. The text string for the first line of command key descriptions.

Command key description line 2. The text string for the second line of command key descriptions.

Default number of columns to shift scroller by. The default number of columns to shift scroller by for the
Shift Scroller left (QsnShfSclL) and Shift Scroller center (QsnShfSclR) APIs. This value must be a positive
integer value. If 0 is specified, the default is the number of columns in the scroller less two (two scroller
columns are reserved for the prefix area).

Default number of rows to roll scroller by. The default number of rows to roll scroller by for the Roll
Scroller Up (QsnRollSclUp) and Roll Scroller Down (QsnRollSclDown) APIs. This value must be a
positive integer value. If 0 is specified, the default is the number of rows in the scroller.

Display control characters indication. Specifies whether or not scroller lines contain EBCDIC display
control characters. If the data contains such control characters and this is not indicated, unexpected results
can occur. (See EBCDIC Display Control Characters for details of the control characters supported and
their interpretation.) The possible values are:

0 Scroller lines do not contain EBCDIC display control characters. This is the default.

1 Scroller lines contain EBCDIC display control characters. If 1 is specified, any data written to the
session with a value below X'40' is converted to blank.

Echo session input. Specifies whether lines entered at the session command line are to be echoed to the
scroller. The possible values are:

0 Do not echo session input lines to the scroller.

1 Echo session input lines to the scroller. This is the default.

Input line attribute for a color display. The default value is X'24' for green underline attribute. If X'00' is
specified, the default value is used.

Input line attribute for a monochrome display. The default value is X'24' for underline attribute. If X'00'
is specified, the default value is used.

Input line prompt. The text string for the input line prompt.

Left column of scroller. This position is relative to the left of the window which is column 1. The default
is 1.

Length of command key description line 1. This value must not exceed the maximum number of columns
in the window. The default value is 0. No space is used in the session for this line. If the description line
cannot be displayed completely within the window, it is truncated to fit.

Length of command key description line 2. This value must not exceed the maximum number of columns
in the window. The default value is 0. No space is used in the session for this line. If the description cannot
be displayed completely in the window, it is truncated to fit.

Length of input line prompt. This value must not exceed the maximum number of columns in the
window. A value of 0 specifies that there is no prompt. The default value is -1 and corresponds to the
default input line prompt ===.

If the input line cannot be displayed completely within the window, it is truncated to fit. The input line will
continue on the next window line.

Number of columns in scroller. This value must be a positive integer no greater than the number of
columns in the session window. If 0 is specified, the default is the number of columns remaining in the

window from the left column of the scroller. This value includes the 2 bytes used for the prefix area to the
left of the scroller input line.

Number of rows for input line. The input line starts in the row specified by the formula: last window row
less the number of rows required for input line less the number of rows required for the function key
descriptions. The input line will start one column past the end of the input line prompt. If there is no input
line prompt, then the input line starts one byte to the center of the leftmost usable column of the window. If
this value is 0, then no input line is created. The default is 1.

Number of rows in scroller. This value must be a positive integer no greater than the number of rows in
the session window. If 0 is specified, the default is the number of rows remaining in the window from the
top row of the scroller.

Offset to command key description line 1. The offset from the beginning of the structure to the start of
the command key description line 1. This field is ignored if the length of command key description line 1
field specifies no command key description. The offset plus the length must be less than the session
description length.

Offset to command key description line 2. The offset from the beginning of the structure to the start of
the command key description line 2. This field is ignored if the length of command key description line 2
field specifies no command key description. The offset plus the length must be less than the session
description length.

Offset to input line prompt. The offset from the beginning of the structure to the start of the input line
prompt. This field is ignored if the length of input line prompt field specifies no prompt or the default
prompt. The offset plus the length must be less than the session description length.

Reserved. This field must be set to X'00'.

Scroller buffer increment. Specifies, in bytes, the amount to increment the scroller buffer size by when
the buffer is full and the buffer-full action is to increment the buffer size. The default value is 2000 bytes.

If the scroller buffer cannot be incremented because of insufficient resources, data at the beginning of the
scroller will be removed to create space for the new data.

Scroller buffer initial size. The initial buffer size, in number of bytes, that will be allocated for storing the
session scroller lines. The default value is 2000 bytes.

Scroller buffer maximum size. The maximum buffer size, in bytes, that will be allocated for storing the
session scroller lines. The default value is 0, indicating no maximum size.

Show command key descriptions. Whether or not the function key description lines are to be shown. The
possible values are:

0 Do not show function key descriptions.

1 Show function key descriptions. This is the default.

Show scroller characters. Whether or not characters written to the scroller in character mode are shown
immediately on the screen. You can use the scroller line and character display options together to specify
that groups of characters are not displayed immediately, but each complete line is. The possible values are:

0 Do not show characters on the screen as they are written. Use the Display Scroller bottom
(QsnDspSclB) API to display the scroller data on the screen. This is the default.

1 Show scroller characters on the screen as they are written.

Show scroller lines. Whether or not lines written to the scroller are shown immediately on the screen. The
possible values are:

0 Do not show scroller lines on the screen as they are written. Use the Display Scroller bottom
(QsnDspSclB) API to display the scroller lines on the screen. This is the default.

1 Show scroller lines on the screen as they are written.

Top row of scroller. This position is relative to the top of the window, which is row 1. The default is 1.

Wrap indication. How to handle lines that do not fit within the session window. Possible values are:

0 Truncate lines that do not fit. The truncated portion of the line may be viewed by scrolling to the
center.

1 Wrap lines to the next line. This is the default. A value of 1 must be specified if the session contains
DBCS data.

Format of the Session User Extension Data

Offset

Type FieldDec Hex

0 0 PTR(SPP) User data associated with the session

16 10 PTR(PP) Exit routine to call when the session is changed

32 20 PTR(PP) Exit routine to call when window is deleted

48 30 PTR(PP) Exit routine to call when window coordinates
are changed

64 40 PTR(PP) Exit routine to call when window is drawn

80 50 PTR(PP) Exit routine to call when this window made
current

Field Descriptions

Exit routine to call when session changed. The exit routine to call when a session is changed using the
Change Session (QsnChgSsn) API.

Exit routine to call when window coordinates changed. The exit routine to call when the window
coordinates are changed using the QsnMovWin, Move Window by User (QsnMovWinUsr), Resize
Window (QsnRszWin), or Resize Window by User (QsnRszWinUsr), APIs.

Exit routine to call when window deleted. The exit routine to call when a window is deleted using the
Delete Low-Level Environment (QsnDltEnv) API.

Exit routine to call when window drawn. The exit routine to call when a window is drawn using the
Display Window (QsnDspWin) API.

Exit routine to call when window made current. The exit routine to call when this window is made
current using the Set Current Window (QsnSetCurWin) API.

User data associated with the session. This is a pointer to any data that the user wants to associate with
this session.

Session Exit Routines

Exit routines are user-supplied functions with a defined interface. The routines are called from certain APIs
and allow the programmer to attach additional function to those APIs. For instance, if fields have been set
up in a window, a Change Coordinates exit routine could be supplied to move the fields if the window is
moved.

Change Session Exit Routine

This exit routine, if specified on the user extension information, is called when the session is changed. The
following parameter is passed to the exit routine:

 Parameter Passed to Exit Routine

1 Session handle Input Binary(4)

Change Session Exit Routine Parameter

Session handle

INPUT; BINARY(4)

The session that was changed.

Delete Session Exit Routine

This exit routine, if specified on the user extension information, is called when the session is deleted. The
following parameter is passed to the exit routine:

 Parameter Passed to Exit Routine

1 Session handle Input Binary(4)

Delete Session Exit Routine Parameter

Session handle

INPUT; BINARY(4)

The session that was deleted.

Change Session Coordinates Exit Routine

This exit routine, if specified on the user extension information, is called when the move or resize APIs are
called. It is called after the session has been successfully moved or resized, but before the session is drawn
on the screen. For this reason, you should not use this exit routine to draw anything in the session. The draw
exit routine will be called when the session is moved or resized. The following parameters are passed to the
exit routine:

 Parameters Passed to Exit Routine

1 Session handle Input Binary(4)
2 Top border offset Input Binary(4)
3 Left border offset Input Binary(4)
4 Bottom border offset Input Binary(4)
5 Center border offset Input Binary(4)

Change Session Coordinates Exit Routine Parameters

Session handle

INPUT; BINARY(4)

The Session for which the coordinates were changed.

Top border offset

INPUT; BINARY(4)

The offset, in screen rows, from the previous top session border to the current top session border
(after the session coordinates have been changed). It can be positive, negative, or zero, depending
on how the top session border was changed. For example, if the top border was moved down two
rows, this value would be 2; if it was moved up 4 rows, this value would be -4; if the top row was
not changed, this value would be 0.

Left border offset

INPUT; BINARY(4)

The offset, in screen columns, from the previous left session border to the current left session
border (after the session coordinates have been changed). It can be positive, negative, or zero,
depending on how the left session border was changed. For example, if the left border was moved
two columns to the center, this value would be 2; if it was moved 4 columns to the left, this value

would be -4, and if the left column was not changed, this value would be 0.

Bottom border offset

INPUT; BINARY(4)

The offset, in screen rows, from the previous bottom session border to the current bottom session
border (after the session coordinates have been changed). It can be positive, negative, or zero,
depending on how the bottom session border was changed. For example, if the border was moved
down two rows, this value would be 2; if it was moved up 4 rows, this value would be -4; if the
bottom row was not changed, this value would be 0.

Center border offset

INPUT; BINARY(4)

The offset, in screen columns, from the previous center session border to the current center session
border (after the session coordinates have been changed). It can be positive, negative, or zero,
depending on how the center session border was changed. For example, if the center border was
moved two columns to the center, this value would be 2; if it was moved 4 columns to the left, this
value would be -4; if the center column was not changed, this value would be 0.

Exit Routine Error Handling

If an exception occurs during the processing of an exit routine, the exception is ignored and processing
continues. A CPFA318 will be issued as a diagnostic message only. You can explicitly handle errors in an
exit routine by adding an exception handler to the routine.

Draw Session Exit Routine

This exit routine, if specified on the user extension information, is called when the Display Window
(QsnDspWin) API is called, before the session is drawn. Because the exit routine is called before the
session is drawn, you should only write inside the session using the command buffer parameter. Direct
operations should not be used for the exit routine.

The following parameters are passed to the exit routine:

 Parameters Passed to Exit Routine

1 Session handle Input Binary(4)
2 Command buffer Input Binary(4)

Draw Session Exit Routine Parameters

Session handle

INPUT; BINARY(4)

The session to be drawn.

Command buffer

INPUT; BINARY(4)

The command buffer used to store the commands that re-create the window contents. The contents
of the command buffer are written to the screen along with the window border. This allows the
window and its contents to be redrawn in a single I/O operation.

Current Session Exit Routine

This exit routine, if specified on the user extension information, is called when the session is made current
through the Set Current Window (QsnSetCurWin) API. The following parameter is passed to the exit
routine:

 Parameter Passed to Exit Routine

1 Session handle Input Binary(4)

Current Session Exit Routine Parameter

Session handle

INPUT; BINARY(4)

A handle for the session that is made current.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA314 E Memory allocation error.

CPFA318 E Error calling exit routine.

CPFA327 E Low level environment description value incorrect.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A1 E Window description value is incorrect.

CPFA3AB E The value for &1 must be '0' or '1'.

CPFA3D1 E Session description value is incorrect.

Additional errors may be generated by this API. They are listed under the applicable API as follows:

Error Category (API) Page Reference

Environment description (QsnCrtEnv) Error Messages

Window description (QsnCrtWin) Error Messages

For examples of Create Session APIs, see Create Session and Read Data--Example.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Display Scroller Bottom (QsnDspSclB) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Display Scroller Bottom (QsnDspSclB) API positions the scroller at the last line in the scroller area. As
many lines preceding the last line as can fit in the scroller area are displayed as well.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be manipulated.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Display Scroller top (QsnDspSclT) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Display Scroller top (QsnDspSclT) API positions the scroller at the first line in the scroller area. As
many lines following the first line as can fit in the scroller area are displayed as well.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be manipulated.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Initialize Session Description (QsnInzSsnD) API

 Required Parameter Group:

1 Session description Output Char(*)
2 Length of session description Input Binary(4)

 Omissible Parameter:

3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Initialize Session Description (QsnInzSsnD) API initializes a session description with default values.
Unless otherwise specified in the session description (see Format of the Session Description), pointer fields
are set to the null pointer, numeric fields to 0, character flag fields to 0, and other character fields to blanks.
For example, the default value for the wrap indication is 1, so this field will be set to 1.

Authorities and Locks

Exit Routine Authority

*EXECUTE

Required Parameter Group

Session description

OUTPUT; CHAR(*)

The session description to be initialized.

Length of session description

INPUT; BINARY(4)

The length of the session description parameter.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Query If Scroller in Line Wrap Mode
(QsnQrySclWrp) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Wrap indication Output Char(1)
3 Error code I/O Char(*)

 Returned Value:

Wrap indication Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Query If Scroller in Line Wrap Mode (QsnQrySclWrp) API queries if line wrap mode is set on or off
for the given session.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be queried.

Omissible Parameter Group

Wrap indication

OUTPUT; CHAR(1)

Whether line wrap mode is on or off. The possible values are:

0 Line wrap mode is off.

1 Line wrap mode is on.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Wrap indication

OUTPUT; BINARY(4)

This API returns the value for the wrap indication parameter if the operation was successful, or -1
otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Number of Columns to Shift Scroller
(QsnRtvSclNumShf) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Shift amount Output Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Shift amount Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Number of Columns to Shift Scroller (QsnRtvSclNumShf) API returns the default number of
columns to shift the scroller by for the Shift Scroller top (QsnShfSclL) and Shift Scroller center
(QsnShfSclR) APIs. The default number of columns is specified on the session description. See Create a
Session (QsnCrtSsn) API and Change Session (QsnChgSsn) API for details.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be queried.

Omissible Parameter Group

Shift amount

OUTPUT; BINARY(4)

The variable that contains the number of scroller columns to shift by when the QsnRtvSclNumShf
API has completed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Shift amount

OUTPUT; BINARY(4)

Returns the value for the shift amount parameter if the operation was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Number of Rows to Roll Scroller
(QsnRtvSclNumRoll) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Roll amount Output Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Roll amount Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Number of Rows to Roll Scroller (QsnRtvSclNumRoll) API returns the default number of
rows to roll the scroller by for the Roll Scroller Up (QsnRollSclUp) and Roll Scroller Down
(QsnRollSclDown) APIs. The default number of rows is specified on the session description. See Create a
Session (QsnCrtSsn) API and Change Session (QsnChgSsn) API for details.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be queried.

Omissible Parameter Group

Roll amount

OUTPUT; BINARY(4)

The variable that contains the number of scroller rows to roll by when the QsnRtvSclNumRoll API
has completed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Roll amount

OUTPUT; BINARY(4)

This API returns the value for the roll amount parameter if the operation was successful, or -1
otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Session Data (QsnRtvSsnDta) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 User data pointer Output PTR(SPP)
3 Error code I/O Char(*)

 Returned Value:

User data pointer Output PTR(SPP)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Session Data (QsnRtvSsnDta) API returns a pointer to the user data for the given session. The
user data is the pointer specified on the session description and consists of user-specified data that is
associated with the session. See Format of the Session Description for details.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session for which the user data should be returned.

Omissible Parameter Group

User data pointer

OUTPUT; PTR(SPP)

A pointer to the user data, as specified on the session description, for the given session.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

User data pointer

OUTPUT; PTR(SPP)

This API returns the value for the user data pointer parameter if the operation was successful, or the
null pointer if an error occurs.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1F E Pointer is not on a 16 byte boundary.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA3A4 E Specified window is not active.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Session Description (QsnRtvSsnD)
API

 Required Parameter Group:

1 Session handle Input Binary(4)
2 Session description Output Char(*)
3 Length of session description Input Binary(4)

 Omissible Parameter:

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Session Description (QsnRtvSsnD) API retrieves a copy of the session description for the
given session. The session description may be different from the session description used when the Create a
Session (QsnCrtSsn) or the Change Session (QsnChgSsn) API is called. The following fields will have
actual values replacing 0 (if used):

Number of rows in scroller

Number of columns in scroller

Default number of rows to roll scroller by

Default number of columns to shift scroller by

Authorities and Locks

None

Required Parameter Group

Session handle

INPUT; BINARY(4)

A handle for the session for which the session description should be returned.

Session description

OUTPUT; CHAR(*)

The format of the data is shown in Format of the Session Description Returned.

Length of session description

INPUT; BINARY(4)

The length of the session description parameter.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Format of the Session Description Returned

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(8) Reserved

16 10 CHAR(*) Session description. The format of the
remaining data returned is shown in Format of
the Session Description.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Roll Scroller Down (QsnRollSclDown) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Roll amount Input Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Roll Scroller Down (QsnRollSclDown) API rolls the scroller down by the specified number of scroller
rows. A scroller row is distinct from a scroller line in that a scroller line consists of multiple scroller rows if
line wrapping is set on and the line exceeds the width of the scroller.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be rolled.

Omissible Parameter Group

Roll amount

INPUT; BINARY(4)

The number of scroller rows to roll the scroller by. If this parameter is omitted or set to 0, the

default value is used. The default value can be queried using the Retrieve Number of Rows to Roll
Scroller (QsnRtvSclNumRoll) API. If the roll amount would cause the scroller to roll past its top,
then the top of the scroller will be displayed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA333 E Parameter &1 not positive integer value.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D3 E Scroller not printed.

CPFA3D6 E Session handle is incorrect.

CPFA3D8 E Scroller display is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Roll Scroller Up (QsnRollSclUp) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Roll amount Input Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Roll Scroller Up (QsnRollSclUp) API rolls the scroller up by the specified number of scroller rows. A
scroller row is distinct from a scroller line in that a scroller line consists of multiple scroller rows if line
wrapping is set on and the line exceeds the width of the scroller.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be rolled.

Omissible Parameter Group

Roll amount

INPUT; BINARY(4)

The number of scroller rows to roll the scroller by. If this parameter is omitted or set to 0, the

default value is used. The default value can be queried using the Retrieve Number of Rows to Roll
Scroller (QsnRtvSclNumRoll) API. If the roll amount causes the scroller to roll past its bottom,
then the bottom of the scroller is displayed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA333 E Parameter &1 not positive integer value.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D3 E Scroller not printed.

CPFA3D6 E Session handle is incorrect.

CPFA3D8 E Scroller display is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Shift Scroller left (QsnShfSclL) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Shift amount Input Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Shift Scroller left (QsnShfSclL) API shifts the scroller to the left by the specified number of scroller
columns. If line wrap mode is on, shifting has no effect.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be shifted.

Omissible Parameter Group

Shift amount

INPUT; BINARY(4)

The number of scroller columns to shift the scroller by. If this parameter is omitted or set to 0, the
default value is used. The default value can be queried using the Retrieve Number of Columns to

Shift Scroller (QsnRtvSclNumShf) API. The scroller is shifted by the minimum of the shift amount
and the number of scroller columns between the visible left column and the first column in the
scroller.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA333 E Parameter &1 not positive integer value.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

CPFA3D8 E Scroller display is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Shift Scroller Right (QsnShfSclR) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Shift amount Input Binary(4)
3 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Service Program: QSNAPI

 Default Public Authority: *USE

 Threadsafe: No

The Shift Scroller Right (QsnShfSclR) API shifts the scroller to the right by the specified number of
scroller columns. Any truncated data will become visible. If line wrap mode is on, shifting has no effect.

Authorities and Locks

None.

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be shifted.

Omissible Parameter Group

Shift amount

INPUT; BINARY(4)

The number of scroller columns to shift the scroller by. If this parameter is omitted or set to 0, the

default value is used. The default value can be queried using the Retrieve Number of Columns to
Shift Scroller (QsnRtvSclNumShf) API. The scroller is shifted by the minimum of the shift amount
and the number of scroller columns between the visible center column and the last column
(determined by the longest line currently visible) in the scroller.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA333 E Parameter &1 not positive integer value.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

CPFA3D8 E Scroller display is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Toggle Line Wrap/Truncate Mode
(QsnTglSclWrp) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter Group:

2 Wrap indication Output Char(1)
3 Error code I/O Char(*)

 Returned Value:

Wrap indication Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Toggle Line Wrap/Truncate Mode (QsnTglSclWrp) API toggles the session between line wrap and
truncation mode.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session to be queried.

Omissible Parameter Group

Wrap indication

OUTPUT; CHAR(1)

Indicates whether line wrap mode is on or off when the QsnTglSclWrp API has completed. The
possible values are:

0 Line wrap mode is now off. Lines are truncated.

1 Line wrap mode is now on.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Wrap indication

OUTPUT; BINARY(4)

This API returns the value for the wrap indication parameter if the operation was successful, or -1
otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Session I/O APIs
For additional information, see:

Performance considerations●

Example: Create Session and Read Data●

The session I/O APIs are:

Backspace on Scroller Line (QsnSclBS) sets the active position to the previous position in the
current scroller line.

●

Go to Next Tab Position in Scroller Line (QsnSclTab) sets the active position to the next horizontal
tab position.

●

Go to Start of Current Scroller Line (QsnSclCR) sets the active position to the start of the current
scroller line.

●

Go to Start of Next Scroller Line (QsnSclNL) sets the active position to the start of the next scroller
line.

●

Print Scroller Data (QsnPrtScl) prints the scroller data.●

Read Data from Session (QsnReadSsnDta) reads the data from a session.●

Retrieve Session Line to Input Line (QsnRtvSsnLin) retrieves the input line from the scroller.●

Start New Scroller Line at Current Position (QsnSclLF) sets the active position to the current
position on the next scroller line.

●

Start New Scroller Page (QsnSclFF) starts a new scroller page.●

Write Characters to Scroller (QsnWrtSclChr) writes characters to the scroller.●

Write Line to Scroller (QsnWrtSclLin) writes a data line to the scroller.●

Top | Dynamic Screen Manager APIs | APIs by category

Using Session I/O APIs

Performance Considerations

Specifying EBCDIC control-character options on the session description can incur overhead. Additional processing is
required to handle these. Specifying the scroller line and character display as immediate can incur additional overhead. An
output operation will occur for each line or group of characters written. If you need to write multiple lines to the scroller,
you can achieve better performance by delaying line display until all the lines are written. Then you can use the Display
Scroller Bottom (QsnDspSclB) API to display the data on the screen.

Create Session and Read Data--Example

The sample program in Figure 1 shows how to create and read data from a session. The resulting screen output is shown in
Figure 2.

Figure 1. Program for Creating a Session and Reading Data

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "qsnapi.h"

#define TRUE 1
#define FALSE 0

#define PF1 "PF4 - Move PF5 - Resize"
#define PF2 "PF6 - Print"

typedef struct {
 Qsn_Ssn_Desc_T sess_desc;
 char buffer[100];
} storage_t;

int main (void)
{
 Qsn_Inp_Buf_T ibuf = 0;
 char *fld_dta;
 int i;
 char text[100];
 storage_t storage;

 Qsn_Ssn_T session1;
 Qsn_Ssn_Desc_T *sess_desc = (Qsn_Ssn_Desc_T *) &storage;
 Qsn_Win_Desc_T win_desc;
 Q_Bin4 win_desc_length = sizeof(win_desc);
 char *pf1 = PF1;
 Q_Bin4 pf1_len = sizeof(PF1) - 1;
 char *pf2 = PF2;
 Q_Bin4 pf2_len = sizeof(PF2) - 1;
 Q_Bin4 sess_desc_length = sizeof(Qsn_Ssn_Desc_T) + pf1_len +
 pf2_len;

 /* initialize and set up session and window descriptions */
 QsnInzSsnD(sess_desc, sess_desc_length, NULL);
 QsnInzWinD(&win_desc, win_desc_length, NULL);

 sess_desc->cmd_key_desc_line_1_offset = sizeof(Qsn_Ssn_Desc_T);
 sess_desc->cmd_key_desc_line_1_len = pf1_len;

 memcpy(storage.buffer, pf1, pf1_len);

 sess_desc->cmd_key_desc_line_2_offset = sizeof(Qsn_Ssn_Desc_T) +
 pf1_len;
 sess_desc->cmd_key_desc_line_2_len = pf2_len;
 memcpy(storage.buffer + pf1_len, pf2, pf2_len);

 sess_desc->scl_line_dsp = '1';
 sess_desc->scl_chr_dsp = '1';
 sess_desc->num_input_line_rows = 2;
 sess_desc->wrap = '0';

 QsnCrtSsn(sess_desc, sess_desc_length, NULL, 0, '1',
 &win_desc, win_desc_length, NULL, 0,
 &session1, NULL);

 if (ibuf == 0)
 ibuf = QsnCrtInpBuf(100, 50, 0, NULL, NULL);
 while (TRUE) {
 QsnReadSsnDta(session1, ibuf, NULL, NULL);
 /* check if any data read, then end if exit entered */
 if ((fld_dta=QsnRtvFldDta(ibuf, NULL, NULL)) != NULL) {
 if (strncmp(fld_dta, "exit", 4) == 0)
 break;
 }
 }
 }

Figure 2. Screen Output from Create Session Program

+--+
|
..|
| : > this is line 1
:|
| : > this is line 2
:|
| : > more lines
:|
| : > more data
:|
| : > another line
:|
| :
:|
| :
:|
| :
:|
| :
:|
| :
:|
| :
:|
| :
:|
| :
:|
| :
:|

| :
:|
| :
:|
| : ===>
__:|
| :
__ :|
| : F4=Move F5=Resize
:|
| : F6=Print
:|
| :
:|
|
:..:|
|
|
+--+

Top | Dynamic Screen Manager APIs | APIs by category

Backspace on Scroller Line (QsnSclBS) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Backspace on Scroller Line (QsnSclBS) API sets the active position to the previous position on the
current scroller line. If the active position is at the start of the line, this operation has no effect.

Restrictions

If the low-level environment description (see Format of the Low-Level Environment Description) for the
session specifies DBCS support, a CPFA340 (Operation not supported with double-byte data.) will be
signaled. QsnWrtSclLin is the only DBCS-capable session output API.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session that the operation applies to.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Go to Next Tab Position in Scroller Line
(QsnSclTab) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Go to Next Tab Position in Scroller Line (QsnSclTab) API sets the active position to the next
horizontal tab position. Each tab interval is eight positions beyond the previous one, starting at the leftmost
column in the scroller.

Restrictions

If the low-level environment description (see Format of the Low-Level Environment Description) for the
session specifies DBCS support, a CPFA340 (Operation not supported with double-byte data.) will be
signaled. QsnWrtSclLin is the only DBCS-capable session output API.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session that the operation applies to.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA3D6 E Session handle is incorrect.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Go to Start of Current Scroller Line (QsnSclCR)
API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Go to Start of Current Scroller Line (QsnSclCR) API sets the active position to the start of the current
scroller line.

Restrictions

If the low-level environment description (see Format of the Low-Level Environment Description) for the
session specifies DBCS support, a CPFA340 (Operation not supported with double-byte data.) will be
signaled. QsnWrtSclLin is the only DBCS-capable session output API.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session that the operation applies to.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Go to Start of Next Scroller Line (QsnSclNL)
API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Go to Start of Next Scroller Line (QsnSclNL) API sets the active position to the start of the next
scroller line.

Restrictions

If the low-level environment description (see Format of the Low-Level Environment Description) for the
session specifies DBCS support, a CPFA340 (Operation not supported with double-byte data.) will be
signaled. QsnWrtSclLin is the only DBCS-capable session output API.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session that the operation applies to.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Print Scroller Data (QsnPrtScl) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Print Scroller Data (QsnPrtScl) API prints the entire contents of the scroller data to the default printer
file. No printer file is produced if the scroller is empty.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session that the operation applies to.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA3D3 E Scroller not printed.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Read Data from Session (QsnReadSsnDta) API

 Required Parameter Group:

1 Session handle Input Binary(4)
2 Input buffer handle Input Binary(4)

 Omissible Parameter Group:

3 Number of bytes read Output Binary(4)
4 Error code I/O Char(*)

 Returned Value:

Number of bytes read Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Read Data from Session (QsnReadSsnDta) API is used to read data from a session. A QsnReadInp
operation is implicitly performed to read any field data. If the session has a DSM-defined input line, an
implicit Clear Field Table (QsnClrFldTbl) operation is issued prior to redefining the session input line on
each input operation. The data returned consists of only the data entered. That is, only the data from the
cursor position within the field up to the last nonblank input character when an AID generating key is
pressed is returned. If the session does not have a DSM-defined input line, data is read from any input fields
defined on the screen, and all data, including blanks, is returned. In other respects, the processing of these
user-defined input fields will be equivalent with the processing of the DSM-defined input line.

If an AID key is pressed for which a corresponding function has been defined, this function will be called.
Depending upon the return action specified, control would then return to the caller or another input
operation will occur. See Command Key Action Routines for details.

Authorities and Locks

None

Required Parameter Group

Session handle

INPUT; BINARY(4)

A handle for the session from which to read input. The session being read from must be the current
window. You can use the Set Current Window (QsnSetCurWin) API to change the current window.

Input buffer handle

INPUT; BINARY(4)

A handle for the input buffer to receive the result of the input operations if a direct operation is
specified. The input buffer must have been created with the Create Input Buffer (QsnCrtInpBuf)
API. The format of the data returned is the same as that of the Read Input Fields (QsnReadInp)
API.

Omissible Parameter Group

Number of bytes read

OUTPUT; BINARY(4)

The number of bytes of data read. On a successful read operation, this value is the same as that
returned by the Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen) API if passed the input
buffer resulting from this operation.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Paramemter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Number of bytes read

OUTPUT; BINARY(4)

This API returns the value for the number of bytes read parameter if the operation was successful,
-1 if there was a general failure, or -2 if the invite active flag is on in the associated environment
and the read from invited device operation timed out.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3A4 E Specified window is not active.

CPFA3D6 E Session handle is incorrect.

CPFA3D9 E Error calling the command key action routine.

For examples of Read Data from Session APIs, see Create Session and Read Data--Example.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Retrieve Session Line to Input Line
(QsnRtvSsnLin) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Retrieve Session Line to Input Line (QsnRtvSsnLin) API retrieves the input line from the scroller that
corresponds to the cursor position within the scroller. If the cursor is outside the scroller and the retrieve
request directly follows another retrieve with no intervening I/O operations, then the line before the line
previously retrieved is returned. Otherwise, the last input line is retrieved. If there is no input data, this API
still completes successfully.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session for which to retrieve the input line.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA3A4 E Specified window is not active.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Start New Scroller Line at Current Position
(QsnSclLF) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Start New Scroller Line at Current Position (QsnSclLF) API sets the active position to the current
position on the next scroller line.

Restrictions

If the low-level environment description (see Format of the Low-Level Environment Description) for the
session specifies DBCS support, a CPFA340 (Operation not supported with double-byte data.) will be
signaled. QsnWrtSclLin is the only DBCS-capable session output API.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session that the operation applies to.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Start New Scroller Page (QsnSclFF) API

 Required Parameter:

1 Session handle Input Binary(4)

 Omissible Parameter:

2 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Start New Scroller Page (QsnSclFF) API starts a new scroller page. Any data currently on the session
is rolled off the top of the scroller, but can still be viewed by rolling the scroller up.

Restrictions

If the low-level environment description (see Format of the Low-Level Environment Description) for the
session specifies DBCS support, a CPFA340 (Operation not supported with double-byte data.) will be
signaled. QsnWrtSclLin is the only DBCS-capable session output API.

Authorities and Locks

None

Required Parameter

Session handle

INPUT; BINARY(4)

A handle for the session for which to start the new page.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Write Characters to Scroller (QsnWrtSclChr)
API

 Required Parameter Group:

1 Session handle Input Binary(4)
2 Data Input Char(*)
3 Data length Input Binary(4)

 Omissible Parameter:

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Write Characters to Scroller (QsnWrtSclChr) API writes one or more characters to the scroller starting
at the active position. The active position following this operation is one position past the last character
written or that specified by a control character sequence if it appears at the end of the data. If the entire data
string cannot fit in the scroller buffer, no portion of the string will be written.

Restrictions

If the low-level environment description (see Format of the Low-Level Environment Description) for the
session specifies DBCS support, a CPFA340 (Operation not supported with double-byte data.) will be
signaled. QsnWrtSclLin is the only DBCS-capable session output API.

Authorities and Locks

None

Required Parameter Group

Session handle

INPUT; BINARY(4)

A handle for the session to which the scroller characters are to be written.

Data

Input; CHAR(*)

The characters to be written to the scroller. If the data does not fit within the width of the session
window, it is wrapped across multiple lines or truncated, depending on the value of the wrap
indication field on the session description.

Data length

Input; CHAR(*)

The length of the data parameter.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA333 E Parameter &1 not positive integer value.

CPFA31E E Required parameter &1 omitted.

CPFA340 E Operation not supported with double-byte data.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

CPFA3D7 E Data for scroller is too long.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

Write Line to Scroller (QsnWrtSclLin) API

 Required Parameter Group:

1 Session handle Input Binary(4)
2 Line data Input Char(*)
3 Line data length Input Binary(4)

 Omissible Parameter:

4 Error code I/O Char(*)

 Returned Value:

Return code Output Binary(4)

 Default Public Authority: *USE

 Service Program: QSNAPI

 Threadsafe: No

The Write Line to Scroller (QsnWrtSclLin) API writes a line of data, such as an informational message, to
the scroller. The data is written starting at the first position on the next scroller line. The active position
after this operation is the start of the next scroller line following the row containing the last data character
written, or specified by a control character sequence if one appears at the end of the data. If the entire line
cannot fit in the scroller buffer, no portion of the data will be written.

Note: If the low-level environment description (see Format of the Low-Level Environment Description)
for the session specifies DBCS support, the display control characters indication of the session description
(see Format of the Session Description) is ignored. Any EBCDIC control characters in the line of data will
be interpreted as shown in Table 9 - EBCDIC Display Control Characters in the Session Services APIs
document.

Authorities and Locks

None

Required Parameter Group

Session handle

INPUT; BINARY(4)

A handle for the session to which the scroller line is to be written.

Line data

Input; CHAR(*)

The data to be written to the scroller. If the line does not fit within the width of the session window,
it is wrapped across multiple lines or truncated, depending on the value of the wrap indication field
on the session description.

Note: The first 2 bytes of the scroller are reserved for the prefix area to the left of the scroller line.

Line data length

Input; CHAR(*)

The length of the line data parameter.

Note: The first 2 bytes of the scroller are reserved for the prefix area to the left of the scroller line.

Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Return code

OUTPUT; BINARY(4)

A return code indicating the result of the operation. The value returned will be 0 if the operation
was successful, or -1 otherwise.

Error Messages

Message ID Error Message Text

CPD0024 E No matching shift-in character for shift-out character.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA333 E Parameter &1 not positive integer value.

CPFA31E E Required parameter &1 omitted.

CPFA343 E Output operation not done.

CPFA344 E The file &2 in library &3 is not valid.

CPFA345 E The invite active flag is not valid.

CPFA3D6 E Session handle is incorrect.

CPFA3D7 E Data for scroller is too long.

CPG3264 D DBCS character string does not have even length.

API Introduced: V2R3

Top | Dynamic Screen Manager APIs | APIs by category

	Dynamic Screen Manager APIs (V5R2)
	Table of Contents
	Dynamic Screen Manager APIs
	Using Dynamic Screen Manager APIs
	Low-Level Screen I/O Services APIs
	Using Low-Level Screen I/O Services APIs
	Screen Manipulation and Query APIs
	Change Low-Level Environment (QsnChgEnv) API
	Clear Field Table (QsnClrFldTbl) API
	Clear Screen (QsnClrScr) API
	Create Low-Level Environment (QsnCrtEnv) API
	Delete Low-Level Environment (QsnDltEnv) API
	Initialize Low-Level Environment Description (QsnInzEnvD) API
	Query 5250 (QsnQry5250) API
	Query Color Support (QsnQryColorSup) API
	Query Display Mode Support (QsnQryModSup) API
	Restore Screen (QsnRstScr) API
	Retrieve Display Mode (QsnRtvMod) API
	Retrieve Low-Level Environment Description (QsnRtvEnvD) API
	Retrieve Low-Level Environment User Data (QsnRtvEnvDta) API
	Retrieve Low-Level Environment Window Mode (QsnRtvEnvWinMod) API
	Retrieve Screen Dimensions (QsnRtvScrDim) API
	Roll Down (QsnRollDown) API
	Roll Up (QsnRollUp) API
	Save Screen (QsnSavScr) API
	Set Low-Level Environment Window Mode (QsnSetEnvWinMod) API

	Buffer Manipulation and Query APIs
	Clear Buffer (QsnClrBuf) API
	Copy Buffer (QsnCpyBuf) API
	Create Command Buffer (QsnCrtCmdBuf) API
	Create Input Buffer (QsnCrtInpBuf) API
	Delete Buffer (QsnDltBuf) API
	Put Command Buffer (QsnPutBuf) API
	Put Command Buffer and Perform Get (QsnPutGetBuf) API
	Retrieve AID Code on Read (QsnRtvReadAID) API
	Retrieve Available Data (QsnRtvAvailData) API
	Retrieve Buffer Data Length (QsnRtvBufLen) API
	Retrieve Buffer Size (QsnRtvBufSiz) API
	Retrieve Cursor Address on Read (QsnRtvReadAdr) API
	Retrieve Field Information (QsnRtvFldInf) API
	Retrieve Length of Data in Input Buffer (QsnRtvDtaLen) API
	Retrieve Length of Field Data in Buffer (QsnRtvFldDtaLen) API
	Retrieve Number of Bytes Read from Screen (QsnRtvReadLen) API
	Retrieve Number of Fields Read (QsnRtvFldCnt) API
	Retrieve Pointer to Data in Input Buffer (QsnRtvDta) API
	Retrieve Pointer to Field Data (QsnRtvFldDta) API
	Retrieve Read Information (QsnRtvReadInf) API

	Screen Input APIs
	Get AID (QsnGetAID) API
	Get Cursor Address (QsnGetCsrAdr) API
	Get Cursor Address with AID (QsnGetCsrAdrAID) API
	Put Input Command (QsnPutInpCmd) API
	Read from Invited Device (QsnReadInvited) API
	Read Immediate (QsnReadImm) API
	Read Input Fields (QsnReadInp) API
	Read Modified Alternate (QsnReadMDTAlt) API
	Read Modified Fields (QsnReadMDT) API
	Read Modified Immediate Alternate (QsnReadMDTImmAlt) API
	Read Screen (QsnReadScr) API

	Screen Output APIs
	Delete Field ID Definition (QsnDltFldId) API
	Generate a Beep (QsnBeep) API
	Insert Cursor (QsnInsCsr) API
	Pad between Two Screen Addresses (QsnWrtPadAdr) API
	Pad for N Positions (QsnWrtPad) API
	Put Output Command (QsnPutOutCmd) API
	Set Cursor Address (QsnSetCsrAdr) API
	Set Error State (QsnSetErr) API
	Set Field (QsnSetFld) API
	Set Field with CCSID (QsnSetFldCC) API
	Set Output Address (QsnSetOutAdr) API
	Write Data (QsnWrtDta) API
	Write Data with CCSID (QsnWrtDtaCC) API
	Write Structured Field Major (QsnWrtSFMaj) API
	Write Structured Field Minor (QsnWrtSFMin) API
	Write to Display (QsnWTD) API
	Write Transparent Data (QsnWrtTDta) API

	Low-Level Services Examples
	5250 Data Stream Details

	Window Services APIs
	Using Window Services APIs
	Window Manipulation and Query APIs
	Change Window (QsnChgWin) API
	Create a Window (QsnCrtWin) API
	Initialize Window Description (QsnInzWinD) API
	Move Window (QsnMovWin) API
	Move Window by User (QsnMovWinUsr) API
	Resize Window (QsnRszWin) API
	Resize Window by User (QsnRszWinUsr) API
	Retrieve Window Data (QsnRtvWinDta) API
	Retrieve Window Description (QsnRtvWinD) API
	Set Window Services Attributes (QsnSetWinAtr) API

	Window I/O APIs
	Clear Window (QsnClrWin) API
	Clear Window Message (QsnClrWinMsg) API
	Display Window (QsnDspWin) API
	Put Window Message (QsnPutWinMsg) API

	Window Manager Services APIs
	End a Window (QsnEndWin) API
	Retrieve Current Window (QsnRtvCurWin) API
	Set Current Window (QsnSetCurWin) API
	Start a Window (QsnStrWin) API

	Session Services APIs
	Using Session Services APIs
	Session Manipulation and Query APIs
	Change Session (QsnChgSsn) API
	Clear Scroller (QsnClrScl) API
	Create a Session (QsnCrtSsn) API
	Display Scroller Bottom (QsnDspSclB) API
	Display Scroller top (QsnDspSclT) API
	Initialize Session Description (QsnInzSsnD) API
	Query If Scroller in Line Wrap Mode
	Retrieve Number of Columns to Shift Scroller (QsnRtvSclNumShf) API
	Retrieve Number of Rows to Roll Scroller (QsnRtvSclNumRoll) API
	Retrieve Session Data (QsnRtvSsnDta) API
	Retrieve Session Description (QsnRtvSsnD) API
	Roll Scroller Down (QsnRollSclDown) API
	Roll Scroller Up (QsnRollSclUp) API
	Shift Scroller left (QsnShfSclL) API
	Shift Scroller Right (QsnShfSclR) API
	Toggle Line Wrap/Truncate Mode (QsnTglSclWrp) API

	Session I/O APIs
	Using Session I/O APIs
	APIs
	Backspace on Scroller Line (QsnSclBS) API
	Go to Next Tab Position in Scroller Line (QsnSclTab) API
	Go to Start of Current Scroller Line (QsnSclCR) API
	Go to Start of Next Scroller Line (QsnSclNL) API
	Print Scroller Data (QsnPrtScl) API
	Read Data from Session (QsnReadSsnDta) API
	Retrieve Session Line to Input Line (QsnRtvSsnLin) API
	Start New Scroller Line at Current Position
	Start New Scroller Page (QsnSclFF) API
	Write Characters to Scroller (QsnWrtSclChr) API
	Write Line to Scroller (QsnWrtSclLin) API

